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Abstract

We formulate differential cohomology and Chern-Weil theory — the theory of connections on fiber
bundles and of gauge fields — abstractly in homotopy toposes that we call cohesive. Cocycles in this
differential cohomology classify higher principal bundles equipped with cohesive structure (topological,
smooth, complex-analytic, formal, supergeometric, etc.) and equipped with connections, hence higher
gauge fields. Furthermore we formulate differential geometry abstractly in homotopy toposes that we
call differentially cohesive. The manifolds in this theory are higher étale stacks (orbifolds) equipped with
higher Cartan geometry (higher Riemannian-, complex, symplectic, conformal-, geometry) together with
partial differential equations on spaces of sections of higher bundles over them, and equipped with higher
pre-quantization of the resulting covariant phase spaces. We also formulate super-geometry abstractly
in homotopy toposes and lift all these constructions to include fermionic degrees of freedom. Finally
we indicate an abstract formulation of non-perturbative quantization of prequantum local field theory
by fiber integration in twisted generalized cohomology of spectral linearizations of higher prequantum
bundles.

We then construct models of the abstract theory in which traditional differential super-geometry is
recovered and promoted to higher (derived) differential super-geometry.

We show that the cohesive and differential refinement of universal characteristic cocycles constitutes
a higher Chern-Weil homomorphism refined from secondary characteristic classes to morphisms of higher
moduli stacks of higher gauge fields, and at the same time constitutes extended geometric prequantization
— in the sense of extended/multi-tiered quantum field theory — of hierarchies of higher dimensional Chern-
Simons-type field theories, their higher Wess-Zumino-Witten-type boundary field theories and all further
higher codimension defect field theories.

We find that in the Whitehead tower of superpoints in higher supergeometry one finds god given
such cocycles on higher supersymmetry-groups, reflecting the completed brane scan of string/M-theory.
We show that the induced higher super Cartan geometry is higher dimensional supergravity with super
p-brane charge corrections included. For the maximal case of 11-dimensional supergravity we find the
Einstein equations of motion with cancellation of the classical anomalies of the M-brane sigma-models
on these targets. Their higher Noether currents yield higher extensions of super-isometry groups by
M2/M5-brane BPS charges in twisted generalized cohomology.

We close with an outlook on the cohomological quantization of these higher boundary prequantum
field theories by a kind of cohesive motives.
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General Abstract

We formulate differential cohomology (e.g. [Bunl2]) and Chern-Weil theory (e.g. [BoTo82]) — the theory of
connections on fiber bundles and of gauge fields — abstractly in the context of a certain class of co-toposes
([L-Topos|) that we call cohesive. Cocycles in this differential cohomology classify principal co-bundles
equipped with cohesive structure (topological, smooth, complex-analytic, formal, supergeometric etc.) and
equipped with co-connections, hence higher gauge fields (e.g. [Ex00]).

We construct the cohesive co-topos of smooth co-groupoids and oco-Lie algebroids and show that in this
concrete context the general abstract theory reproduces ordinary differential cohomology (Deligne cohomol-
ogy/differential characters), ordinary Chern-Weil theory, the traditional notions of smooth principal bundles
with connection, abelian and nonabelian gerbes/bundle gerbes with connection, principal 2-bundles with
2-connection, connections on 3-bundles, etc. and generalizes these to higher degree and to base spaces that
are orbifolds and generally smooth oo-groupoids, such as smooth realizations of classifying spaces/moduli
stacks for principal co-bundles and configuration spaces of gauge theories.

We exhibit a general abstract oo-Chern-Weil homomorphism and observe that it generalizes the La-
grangian of Chern-Simons theory to co-Chern-Simons theory. For every invariant polynomial on an oo-Lie
algebroid it sends principal oo-connections to Chern-Simons circle (n + 1)-bundles (n-gerbes) with connec-
tion, whose higher parallel transport is the corresponding higher Chern-Simons Lagrangian. There is a
general abstract formulation of the higher holonomy of this parallel transport and this provides the action
functional of co-Chern-Simons theory as a morphism on its cohesive configuration oo-groupoid. Moreover,
to each of these higher Chern-Simons Lagrangian is canonically associated a differentially twisted looping,
which we identify with the corresponding higher Wess-Zumino- Witten Lagrangian.

We show that, when interpreted in smooth co-groupoids and their variants, these intrinsic constructions
reproduce the ordinary Chern-Weil homomorphism, hence ordinary Chern-Simons functionals and ordinary
Wess-Zumino-Witten functionals, provide their geometric prequantization in higher codimension (localized
down to the point) and generalize this to a fairly extensive list of action functionals of quantum field theories
and string theories, some of them new. All of these appear in their refinement from functionals on local
differential form data to global functionals defined on the full moduli co-stacks of field configurations/oco-
connections, where they represent higher prequantum line bundles. We show that these moduli co-stacks
naturally encode fermionic o-model anomaly cancellation conditions, such as given by higher analogs of
Spin-structures and of Spin®-structures.

We moreover show that higher symplectic geometry is naturally subsumed in higher Chern-Weil theory,
such that the passage from the unrefined to the refined Chern-Weil homomorphism induced from higher
symplectic forms implements geometric prequantization of the above higher Chern-Simons and higher Wess-
Zumino-Witten functionals. We study the resulting formulation of local prequantum field theory, show how
it subsumes traditional classical field theory and how it illuminates the boundary and defect structure of
higher Chern-Simons-type field theories, their higher Wess-Zumino-Witten type theories, etc.

We close with an outlook on the “motivic quantization” of such local prequantum field theory of higher
moduli stacks of fields to genuine local quantum field theory with boundaries and defects, by pull-push in
twisted generalized cohomology of higher stacks and conclude that cohesive co-toposes provide a “synthetic”
axiomatization of local quantum gauge field theories obtained from geometric Lagrangian data [Sc13d].

We think of these results as providing a further ingredient of the recent identification of the mathemat-
ical foundations of quantum field and perturbative string theory [SaScllal: while the cobordism theorem
|[L-TET] identifies topological quantum field theories and their boundary and defect theories with a univer-
sal construction in higher monoidal category theory, our results indicate that the geometric pre-qauntum
geometry that these arise from under geometric motivic quantization originate in a universal construction
in higher topos theory: cohesion.
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Outline

In [1] we motivate our discussion, give an informal introduction to the main concepts involved and survey
various of our constructions and applications in a more concrete, more traditional and more expository way
than in the sections to follow. This may be all that some readers ever want to see, while other readers may
want to skip it entirely.

In 2| we review relevant aspects of homotopy-type theory, the theory of co-categories and co-toposes, in terms
of which all of the following is formulated. This serves to introduce context and notation and to provide a
list of technical lemmas which we need in the following, some of which are not, or not as explicitly, stated in
existing literature.

In we introduce cohesive homotopy-type theory, a general abstract theory of differential geometry,
differential cohomology and Chern-Weil theory in terms of universal constructions in co-topos theory. This
is in the spirit of Lawvere’s proposals [Law(7] for axiomatic characterizations of those gros toposes that
serve as contexts for abstract geometry in general and differential geometry in particular: cohesive toposes.
We claim that the decisive role of these axioms is realized when generalizing from topos theory to oco-topos
theory and we discuss a fairly long list of geometric structures that is induced by the axioms in this case.
Notably we show that every co-topos satisfying the immediate analog of Lawvere’s axioms — every cohesive
oo-topos— comes with a good intrinsic notion of differential cohomology and Chern-Weil theory.

Then we add a further simple set of axioms to obtain a theory of what we call differential cohesion, a

refinement of cohesion that axiomatizes the explicit presence of infinitesimal objects. This is closely related
to Lawvere’s other proposal for axiomatizing toposes for differential geometry, called synthetic differential
geometry [Law97], but here formulated entirely in terms of higher closure modalities as for cohesion itself.
We find that these axioms also capture the modern synthetic-differential theory of D-geometry [L-DGed]. In
particular a differential cohesive oco-topos has an intrinsic notion of (formally) étale maps, which makes it
an axiomatic geometry in the sense of [L-Geo] and equips it with intrinsic manifold theory.
Finally we add axioms for linear homotopy-types that encode structure embodied by parameterized spectrum
objects and discuss how this serves to naturally encode secondary integral transforms parameterized by
correspondences of cohesive homotopy types. We show that these have the interpretation of cohomological
path integrals for topological field theory.

Where cohesive-homotopy theory axiomatizes Lagrangian pre-quantum geometry, linear homotopy-type
theory axiomatizes quantization.

In [6] we discuss models of the axioms, hence co-toposes of co-groupoids which are equipped with a geo-
metric structure (topology, smooth structure, supergeometric structure, etc.) in a way that all the abstract
differential geometry theory developed in the previous chapter can be realized. The main model of in-
terest for our applications is the cohesive oco-topos SmoothooGrpd as well as its infinitesimal thickening
FormalSmoothooGrpd, which we construct. Then we go step-by-step through the list of general abstract
structures in cohesive oco-toposes and unwind what these amount to in this model. We demonstrate that
these subsume traditional definitions and constructions and generalize them to higher differential geometry
and differential cohomology.

In [7] we discuss the application of the general theory in the context of smooth oco-groupoids and their
synthetic-differential and super-geometric refinements to aspects of higher gauge prequantum field theory.
We present a fairly long list of higher Spin- and Spin®-structures, of classes of local action functionals on
higher moduli stacks of fields of higher Chern-Simons type and functionals of higher Wess-Zumino-Witten
type, that are all naturally induced by higher Chern-Weil theory. We exhibit a higher analog of geometric
prequantization that applies to these systems and show that it captures a wealth of structures, such as
notably the local boundary and higher codimension defect structure. Apart from the new constructions
and results, this shows that large parts of local prequantum gauge field theory are induced by axiomatic
cohesive homotopy-theory. In[7.6] we close this section with an outlook on how the quantization of the local
prequantum gauge field theory to genuine local quantum field theory proceeds via higher linear algebra in
linear cohesive co-toposes, namely via duality of cohesive linear homotopy-types.
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1 Introduction

In
o [[L11 - Motivation

we motivate the formulation of physics within higher differential geometry and informally survey some of
our key constructions and results. The sections

o [[.2) - Geometry;
. — Physics;

are an introduction to and review of modern differential geometry and mathematical physics, in their tradi-
tional formulation but with an eye towards the formulation developed below in the main sections. Section

e [1.4 - Examples and Applications

is an exposition of some motivating examples and applications.

1.1 Motivation
In
° — Prequantum field theory

we highlight the open problem of prequantizing local field theory in a local and gauge invariant way, and we
informally survey how a solution to this problem exists in higher differential geometry. In

° — Examples of prequantum field theories
we survey examples and problems of interest. In
. — Abstract prequantum field theory

we survey the abstract cohesive homotopy theory that serves to make all this precise and tractable. Combin-
ing this cohesive with linear homotopy theory should serve to non-perturbatively quantize higher prequantum
geometry, see section @

1.1.1 Prequantum field theory

The geometry that underlies the physics of Hamilton and Lagrange’s classical mechanics and classical field
theory has long been identified: this is symplectic geometry [Ar89] and wariational calculus on jet bun-
dles [And89, [0193]. In these theories, configuration spaces of physical systems are differentiable manifolds,
possibly infinite-dimensional, and the physical dynamics is all encoded by way of certain globally defined
differential forms on these spaces.

But fundamental physics is of course of quantum nature, to which classical physics is but an approximation
that applies at non-microscopic scales. Of what mathematical nature are systems of quantum physics?

° — The need for prequantum geometry;

° — The principle of extremal action — comonadically;
° — The global action functional — cohomologically;

. — The covariant phase space — transgressively;

° — The local observables — Lie theoretically;

. — The evolution — correspondingly.



1.1.1.1 The need for higher prequantum geometry A sensible answer to this question is given
by algebraic deformation theory. One considers a deformation of classical physics to quantum physics by
deforming a Poisson bracket to the commutator in a non-commutative algebra, or by deforming a classical
measure to a quantum BV operator.

deformation

Classical quantization pertul"batiVe
_— >
physics quantum
e physics

However, this tends to work only perturbatively, in the infinitesimal neighbourhood of classical physics,
expressed in terms of formal (possibly non-converging) power series in Planck’s constant 7.

There is a genuinely non-perturbative mathematical formalization of quantization, called geometric quan-
tization [So70l [So74l [Ko75, BaWe97]. A key insight of geometric quantization is that before genuine quan-
tization even applies, there is to be a pre-quantization step in which the classical geometry is supplemented
by global coherence data.

geometric full
pre-quantum quantization
physics —— | quantum
physics
disregard

global information

classical
physics

For global gauge groups, this coherence data is also known as the cancellation of classical anomalies [Ar89l
5.A].

The archetypical example of pre-quantization is Dirac charge quantization [Di31], [Fral 5.5], [Er00]. The
classical mechanics of an electron propagating in an electromagnetic field on a spacetime X is all encoded in
a differential 2-form on X, called the Faraday tensor F', which encodes the classical Lorentz force that the
electromagnetic field exerts on the electron. But this data is insufficient for passing to the quantum theory
of the electron: locally, on a coordinate chart U, what the quantum electron really couples to is the “vector
potential”, a differential 1-form Ay on U, such that dAy = F|y. But globally such a vector potential may
not exist. Dirac realizecﬂ that what it takes to define the quantized electron globally is, in modern language,
a lift of the locally defined vector potentials to an (R/Z)-principal connection on a (R/Z)-principal bundle
over spacetime. The first Chern class of this principal bundle is quantized, and this is identified with the
quantization of the magnetic charge whose induced force the electron feels. This quantization effect, which
needs to be present before the quantization of the dynamics of the electron itself even makes sense globally,
is an example of pre-quantization.

A variant of this example occupies particle physics these days. As we pass attention from electrons to
quarks, these couple to the weak and strong nuclear force, and this coupling is, similarly, locally described
by a 1-form Ay, but now with values in a Lie algebra su(n), from which the strength of the nuclear force
field is encoded by the 2-form F|y := dAy + %[AU A Ay]. For the consistency of the quantization of quarks,
notably for the consistent global definition of Wilson loop observables, this local data must be lifted to an
SU(n)-principal connection on a SU(n)-principal bundle over spacetime. The second Chern class of this

IDirac considered this in the special case where spacetime is the complement in 4-dimensional Minkowski spacetime of
the worldline of a magnetic point charge. The homotopy type of this space is the 2-sphere and hence in this case principal
connections may be exhibited by what in algebraic topology is called a clutching construction, and this is what Dirac described.
What the physics literature knows as the “Dirac string” in this context is the ray whose complement gives one of the two
hemispheres in the clutching construction.



bundle is quantized, and is physically interpreted as the number of mstam‘onsﬂ In the physics literature
instantons are expressed via Chern-Simons 3-forms, mathematically these constitute the pre-quantization of
the 4-form tr(F A F) to a 2-gerbe with 2-connection, more on this in a moment.

The vacuum which we inhabit is filled with such instantons at a density of the order of one instanton per
femtometer in every direction. (The precise quantitative theoretical predictions of this [ScSh98] suffer from
an infrared regularization ambiguity, but numerical simulations demonstrate the phenomenon [Gr13].) This
“instanton sea” that fills spacetime governs the mass of the n/-particle [Wi79l [Ve79] as well as other non-
perturbative chromodynamical phenomena, such as the quark-gluon plasma seen in experiment [Shul01]. It
is also at the heart of the standard hypothesis for the mechanism of primordial baryogenesis [Sak67] [tHo70,
RiTr99], the fundamental explanation of a universe filled with matter.

Passing beyond experimentally observed physics, one finds that the qualitative structure of the standard
model of particle physics coupled to gravity, namely the structure of Einstein-Maxwell-Yang-Mills-Dirac-
Higgs theory, follows naturally if one assumes that the 1-dimensional worldline theories of particles such as
electrons and quarks are, at very high energy, accompanied by higher dimensional worldvolume theories of
fundamental objects called strings, membranes and generally p-branes (e.g. [Duff99]). While these are hypo-
thetical as far as experimental physics goes, they are interesting examples of the mathematical formulation
of field theory, and hence their study is part of mathematical physics, just as the study of the Ising model or
¢*-theory. These p-branes are subject to a higher analog of the Lorentz force, and this is subject to a higher
analog of the Dirac charge quantization condition, again a prequantum effect for the worldvolume theory.

For instance the strong CP-problem of the standard model of particle physics has several hypothetical
solutions, one is the presence of particles called axions. The discrete shift symmetry (Peccei-Quinn symmetry)
that characterizes these may naturally be explained as the result of R/Z-brane charge quantization in the
hypothetical case that axions are wrapped membranes [SyWi06, section 6].

More generally, p-brane charges are not quantized in ordinary integral cohomology, but in generalized
cohomology theories. For instance 1-branes (strings) are by now well-known to carry charges whose quanti-
zation is in K-theory (see [Fr00]). While the physical existence of fundamental strings remains hypothetical,
since the boundaries of strings are particles this does impact on known physics, for instance on the quanti-
zation of phase spaces that are not symplectic but just Poisson [Nuil3].

Finally, when we pass from fundamental physics to low energy effective physics such as solid state physics,
then prequantum effects control topological phases of matter. Indeed, symmetry protected topological phases
are described at low energy by higher dimensional WZW models [CGLWII], of the same kind as those
hypothetical fundamental super p-brane models.

worldvolume

field theory prequantum effect

Dirac charge quantization,

electron magnetic flux quantization
quark instantons,
baryogenesis
p-brane brane charge quantization,

axion shift symmetry

These examples show that pre-quantum geometry is at the heart of the description of fundamental and of
effective physical reality. Therefore, before rushing to discuss the mathematics of quantum geometry proper,
it behooves us to first carefully consider the mathematics of pre-quantum geometry. This is what we do here.

If the prequantization of the Lorentz force potential 1-form A for the electron is a connection on a (R/Z)-
principal bundle, what then is the prequantization of the Chern-Simons 3-form counting instantons, or of
the higher Lorentz force potential (p + 1)-form of a p-brane for higher p?

2Strictly speaking, the term “instanton” refers to a principal connection that in addition to having non-trivial topological
charge also minimizes Euclidean energy. Here we are just concerned with the nontrivial topological charge, which in particular
is insensitive to and independent of any “Wick rotation”.



This question has no answer in traditional differential geometry. It is customary to consider it only
after transgressing the (p + 1)-forms down to 1-forms by splitting spacetime/worldvolume as a product
¥ =3, x [0,1] of p-dimensional spacial slices with a time axis, and fiber integrating the (p + 1)-forms over
Xp

global in space local in spacetime
1-form A, (p+ 1)-form Apyq
Al::fzp Apt1
[0‘{‘1]A1 fiber integration s, >-<]£071]AP+1

This transgression reduces (p+ 1)-dimensional field theory to 1-dimensional field theory, hence to mechanics,
on the moduli space of spatial field configurations. That 1-dimensional field theory may be subjected to the
traditional theory of prequantum mechanics.

But clearly this space/time decomposition is a brutal step for relativistic field theories. It destroys their
inherent symmetry and makes their analysis hard. In physics this is called the “non-covariant” description
of field theory, referring to covariance under application of diffeomorphisms.

We need prequantum geometry for spacetime local field theory where (p+ 1)-forms may be prequantized
by regarding them as connections on higher degree analogs of principal bundles. Where an ordinary principal
bundle is a smooth manifold, hence a smooth set, with certain extra structure, a higher principal bundle
needs to be a smooth homotopy type.

prequantum bundle
global in space ‘ local in spacetime
smooth set ‘ smooth homotopy type

The generalization of geometry to higher geometry, where sets — which may be thought of as homotopy
O-types — are generalized to homotopy p-types for higher p, had been envisioned in [Gr81] and a precise
general framework has eventually been obtained in [L-Topos|. This may be specialized to higher differential
geometry, as discussed in this book, which is what we are surveying here.

The description of pre-quantum field theory local in spacetime is related to the description of topological
quantum field theory local-to-the-point known as “extended” or “multi-tiered” field theory [L-TET][Bel0].

’ H classical prequantum ‘
global in space symp@ectic geome.try prequantum geomet?y
classical mechanics prequantum mechanics
. . diffiety geometry higher prequantum geometry
local -
ocal in spacetime classical field theory prequantum field theory

Once we are in a context of higher geometry where higher prequantum bundles exist, several other
subtleties fall into place.

new examples
available in
higher geometry
spacetime orbifolds
instanton sectors of gauge fields,
field bundle integrated BRST gcor;glplex
prequantum bundle global Lagrangians for WZW-type models

ingredient of
variational calculus

A well-kept secret of the traditional formulation of variational calculus on jet bundles is that it does not
in fact allow to properly formulate global aspects of local gauge theory. Namely the only way to make the
fields of gauge theory be sections of a traditional field bundle is to fix the instanton number (Chern class) of



the gauge field configuration. The gauge fields then are taken to be connections on that fixed bundle. One
may easily see [Scl4f] that it is impossible to have a description of gauge fields as sections of a field bundle
that is both local and respects the gauge principle. However, this is possible with a higher field bundle.
Indeed, the natural choice of the field bundle for gauge fields has as typical fiber the smooth moduli stack
of principal connections. Formulated this way, not only does the space of all field configurations then span
all instanton sectors, but it also has the gauge transformations between gauge field configurations built into
it. In fact it is then the globalized (integrated) version of what in the physics literature is known as the
(off-shell) BRST complex of gauge theory.

Moreover, in a context of higher geometry also spacetime itself is allowed to be a smooth homotopy type.
This is relevant at least in some hypothetical models of fundamental physics, which require spacetime to be
an orbifold. Mathematically, an orbifold is a special kind of Lie groupoid, which in turn is a special kind of
smooth homotopy 1-type.

1.1.1.2 The principle of extremal action — comonadically Most field theories of relevance in theory
and in nature are local Lagrangian field theories (and those that are not tend to be holographic boundary
theories of those that are). This means that their equations of motion are partial differential equations
obtained as Euler-Lagrange equations of a local variational principle. This is the modern incarnation of the
time-honoured principle of least action (really: of extremal action).

We review how this is formalized, from a category-theoretic point of view that will point the way to
prequantum field theory below in section

The kinematics of a field theory is specified by a smooth manifold ¥ of dimension (p + 1) and a smooth
bundle E over X. A field configuration is a smooth section of E. If we think of ¥ as being spacetime, then
typical examples of fields are the electromagnetic field or the field of gravity. But we may also think of ¥ as
being the worldvolume of a particle (such as the electron in the above examples) or of a higher dimensional
“brane” that propagates in a fixed background of such spacetime fields, in which case the fields are the maps
that encode a given trajectory.

The dynamics of a field theory is specified by an equation of motion, a partial differential equation for such
sections. Since differential equations are equations among all the derivatives of such sections, we consider
the spaces that these form: the jet bundle J3°E is the bundle over ¥ whose fiber over a point o € X is the
space of sections of E over the infinitesimal neighbourhood D, of that point:

JXF FE
12 7
% ~ 4
AN SR
Y /
x —2 >3 D,t—sX%

Therefore every section ¢ of E yields a section j°°(¢) of the jet bundle, given by ¢ and all its higher order
derivatives.
jet bundle JE

A}
N
\
\

»oo derivatives of

field bundle E \J |, dorivatives of
E

(15 / field configuration

spacetime /
worldvolume



Accordingly, for F, F any two smooth bundles over ¥, then a bundle map

encodes a (non-linear) differential operator Dy : I's(E) — I's(F) by sending any section ¢ of E to the
section foj™(¢) of F. Under this identification, the composition of differential operators DyoD corresponds
to the Kleisli-composite of f and g, which is

J=f g

JXE —> J®J%F J®F G .
\ E

Here the first map is given by re-shuffling derivatives and gives the jet bundle construction Jg° the structure
of a comonad — the jet comonad.

Differential operators are so ubiquitous in the present context that it is convenient to leave them nota-
tionally implicit and understand every morphism of bundles £ — F to designate a differential operator
D : 'y (F) — I's(F). This is what we will do from now on. Mathematically this means that we are now in
the co-Kleisli category KI1(J2°) of the jet comonad

DiffOpy, ~ KI(J°) .

For example the de Rham differential is a differential operator from sections of APT*3 to sections of
APTLT*Y and hence now appears as a morphism of the form

dp : \PT*Y —s APTIT*Y

With this notation, a globally defined local Lagrangian for fields that are sections of some bundle E over
spacetime/worldvolume ¥ is simply a morphism of the form

L:E — APTIT*S

Unwinding what this means, this is a function that at each point of ¥ sends the value of field configurations

and all their spacetime/worldvolume derivatives at that point to a (p+ 1)-form on ¥ at that point. It is this

pointwise local (in fact: infinitesimally local) dependence that the term local in local Lagrangian refers to.
Notice that this means that APT1T*Y serves the role of the moduli space of horizontal (p + 1)-forms:

ng_l(E) = HomDiffOpE (E, /\p+1T*E) .

Regarding such L for a moment as just a differential form on Jg°(E), we may apply the de Rham
differential to it. One finds that this uniquely decomposes as a sum of the form

dL = EL — dy©, (1.1)

for some © and for EL pointwise the pullback of a vertical 1-form on FE; such a differential form is called a
source form:
EL € Q% Y(E).

This particular source form is of paramount importance: the equation

°°($)*1,EL = 0
vertv ey (0)" Lo



on sections ¢ € I's(FE) is a partial differential equation, and this is called the Fuler-Lagrange equation of
motion induced by L. Differential equations arising this way from a local Lagrangian are called variational.

A little reflection reveals that this is indeed a re-statement of the traditional prescription of obtaining
the Euler-Lagrange equations by locally varying the integral over the Lagrangian and then applying partial
integration to turn all variation of derivatives (i.e. of jets) of fields into variation of the fields themselves.
Here we do not consider this under the integral, and hence the boundary terms arising from the would-be
partial integration show up as the contribution ©.

We step back to say this more neatly. In general, a differential equation on sections of a bundle F is what
characterizes the kernel of a differential operator. Now such kernels do not in general exist in the Kleisli
category DiffOpy; of the jet comonad that we have been using, but (as long as it is non-singular) it does exist
in the full Eilenberg-Moore category EM(J2°) of jet-coalgebras. In fact, that category turns out [Marv86]
to be equivalent to the category PDEy; whose objects are differential equations on sections of bundles, and
whose morphisms are solution-preserving differential operators :

PDEy, ~ EM(JZ).

Our original category of bundles with differential operators between them sits in PDEy; as the full subcategory
on the trivial differential equations, those for which every section is a solution. This inclusion extends to
(pre-)sheaves via left Kan extension; so we are now in the sheaf topos

Sh(PDEy) .

And while source forms such as the Euler-Lagrange form EL are not representable in DiffOpy;, it is still true
that for f : F — F any differential operator then the property of source forms is preserved by precompo-
sition with this map, hence we have the induced pullback operation on source forms: f* : Qngl’l(F) —
QZH’I(E). This means that source forms do constitute a presheaf on DiffOpy;, hence by left Kan extension
an object

Q2! € Sh(PDEy).

Therefore now the Yoneda lemma applies to say that Qgﬂ’l is the moduli space for source forms in this
context: a source form on F is now just a morphism of the form £ — Q’S’.H’l. Similarly, the Euler variational
derivative is now incarnated as a morphism of moduli spaces of the form QZH v, Qgﬂ’l, and applying
the variational differential to a Lagrangian is now incarnated as the composition of the corresponding two
modulating morphisms

EL:=6yL: E 5 bt 2, gl
. Finally, and that is the beauty of it, the Euler-Lagrange differential equation £ induced by the Lagrangian
L is now incarnated simply as the kernel of ELﬂ

ker(EL)
—

In summary, from the perspective of the topos over partial differential equations, the traditional structure
of local Lagrangian variational field theory is captured by the following diagram:

classical variational local field theory
B o Qr+l
< H
-
solution ~ ~ \ L ov
s ker(EL) local variational
_ \ Lagrangian  differential
spacetime/ ) < ¢ E Qp+1,1
worldvolume field configuration EL S

3That kernel always exists in the topos Sh(PDEy), but it may not be representable by an actual submanifold of JE if
there are singularities. Without any changes to the general discussion one may replace the underlying category of manifolds
by one of “derived manifolds” formally dual to “BV-complexes”, where algebras of smooth functions are replaced by higher
homotopy-theoretic algebras, for instance by graded algebras equipped with a differential dgv .



So far, all this assumes that there is a globally defined Lagrangian form L in the first place, which is
not in fact the case for all field theories of interest. Notably it is in general not the case for field theories
of higher WZW type. However, as the above diagram makes manifest, for the purpose of identifying the
classical equations of motion, it is only the variational Euler differential EL := §y L that matters. But if that
is so, the variation being a local operation, then we should still call equations of motion £ locally variational
if there is a cover {U; — E} and Lagrangians on each patch of the cover L : U; — Q’;IH, such that there is a
globally defined Euler-Lagrange form EL which restricts on each patch U; to the variational Euler-derivative
of Lz

classical locally variational local field theory
T T
£ 1€1 ~ Vigcally defined | H
7 local Lagrangians
solution, ~ \ Sv
P ker(EL) o
_ \ variational
_ differential
spacetime/ n - ® E Qp+1’1
worldvolume field configuration EL S

Such locally variational classical field theory is discussed in [AnDu80, [FPWTT].

But when going beyond classical field theory, the Euler-Lagrange equations of motion £ are not the end
of the story. As one passes to the quantization of a classical field theory, there are further global structures
on E and on £ that are relevant. These are the action functional and the Kostant-Souriau prequantization
of the covariant phase space. For these one needs to promote a patchwise system of local Lagrangians to a
p-gerbe connection. This we turn to now.

1.1.1.3 The global action functional — cohomologically For a globally defined Lagrangian (p + 1)-
form L,y on the jet bundle of a given field bundle, then the value of the action functional on a compactly
supported field configuration ¢ is simply the integral

S(¢) = / 7°(0) Ly

of the Lagrangian, evaluated on the field configuration, over the spacetime/worldvolume X.

But when Lagrangian forms are only defined patchwise on a cover {U; — E}; as in the locally variational
field theories mentioned above in then there is no way to globally make invariant sense of the action
functional! As soon as sections pass through several patches, then making invariant sense of such an integral
requires more data, in particular it requires more than just a compatibility condition of the locally defined
Lagrangian forms on double intersections.

The problem of what exactly it takes to define global integrals of locally defined forms has long found a
precise answer in mathematics, in the theory of ordinary differential cohomology. This has several equivalent
incarnations, the one closest to classical constructions in differential geometry involves Cech cocycles: one
first needs to choose on each intersection U;; of two patches U; and U, a differential form (k,);; of degree
p, whose horizontal de Rham differential is the difference between the two Lagrangians restricted to that
intersection

(Lp+1)j = (Lpt1)i = du(kp)i;  on Ui .

Then further one needs to choose on each triple intersection U,;, a horizontal differential form (xp—1)ijk
of degree p — 1 whose horizontal differential is the alternating sum of the relevant three previously defined
forms:

(kp)jk — (Kp)ik + (kp)ij = du(kp—1)ije  on Uijg .

And so on. Finally on (p + 2)-fold intersections one needs to choose smooth functions (kg)s,...i,,, Whose
horizontal differential is the alternating sum of (p + 2) of the previously chosen horizontal 1-forms, and,
moreover, on (p + 3)-fold intersections the alternating sum of these functions has to vanish. Such a tuple
{Ui}s{(Lp41)i}, {(kp)ij},---) is a horizontal Cech-de Rham cocycle in degree (p + 2).



Given such, there is then a way to make sense of global integrals: one chooses a triangulation subordinate
to the given cover, then integrates the locally defined Lagrangians (L,+1); over the (p+ 1)-dimensional cells
of the triangulation, integrates the gluing forms (k,);; over the p-dimensional faces of these cells, the higher
gluing forms (k,);;x over the faces of these faces, etc., and sums all this up. This defines a global action
functional, which we may denote by

S(6) = / 70) (L {mp)ish ).

This horizontal Cech-de Rham cocycle data is subject to fairly evident coboundary relations (gauge trans-
formations) that themselves are parameterized by systems (pe) of (p + 1) — k-forms on k-fold intersections:

Li— Li +du(pp)i
(kp)ig = (Kp)ij + du(pp—1)ij + (pp)j — (Pp)i

The definition of the global integral as above is preserved by these gauge transformations. This is the point
of the construction: if we had only integrated the (L,11); over the cells of the triangulation without the
contributions of the gluing forms (k,), then the resulting sum would not be invariant under the operation
of shifting the Lagrangians by horizontally exact terms (“total derivatives”) L; — L; + dpp;.

It might seem that this solves the problem. But there is one more subtlety: if the action functional
takes values in the real numbers, then the functions assigned to (p + 2)-fold intersections of patches are real
valued, and then one may show that there exists a gauge transformation as above that collapses the whole
system of forms back to one globally defined Lagrangian form after all. In other words: requiring a globally
well-defined R-valued action functional forces the field theory to be globally variational, and hence rules out
all locally variational field theories, such as those of higher WZW-type.

But there is a simple way to relax the assumptions such that this restrictive conclusion is evaded. Namely
we may pick a discrete subgroup I' < R and relax the condition on the functions (xo)...;,., on (p + 2)-fold
intersections to the demand that on (p + 3)-fold intersections their alternating sum vanishes only modulo T".
A system of (p + 2) — k-forms on k-fold intersections with functions regarded modulo I" this way is called a
(horizontal) R/T'-Cech-Deligne cocycle in degree (p + 2).

For instance for field theories of WZW-type, as above, we may take I" to be the discrete group of periods
of the closed form w. Then one may show that a lift of w to a Cech-Deligne cocycle of local Lagrangians
with gluing data always exists. Indeed in general more than one inequivalent lift exists. The choice of these
lifts is a choice of prequantization.

However, modding out a discrete subgroup I' this ways also affects the induced global integral: that
integral itself is now only defined modulo the subgroup I':

S(¢) = / 76 {(Len)ih ()i} +-)  ERJT.

Now, there are not that many discrete subgroups of R. There are the subgroups isomorphic to the
integers, and then there are dense subgroups, which make the quotient R/T" ill behaved. Hence we focus on
the subgroup of integers.

The space of group inclusions i : Z < R is parameterized by a non-vanishing real number 27h € R — {0},
given by ¢ : n — 2mhn. The resulting quotient R/;Z is isomorphic to the circle group SO(2) ~ U(1),
exhibited by the short exact exponential sequence

. S exp(%(-))

U(1) —0 (1.2)

Hence in the case that we take I' := Z, then we get locally variational field theories whose action functional
is well defined modulo 27A. Equivalently the exponentiated action functional is well defined as a function
with values in U(1):

exp(£5(¢)) € U(l) 2R/Z.



The appearance of Planck’s constant i here signifies that requiring a locally variational classical field
theory to have a globally well-defined action functional is related to preparing it for quantization. Indeed,
if we consider the above discussion for p = 0, then the above construction reproduces equivalently Kostant-
Souriau’s concept of geometric pre-quantization. Accordingly we may think of the Cech-Deligne cocycle data
{U:}; {(Lps1)i}, {(Kp)ij}, - - ) for general p as encoding higher pre-quantum geometry.

Coming back to the formulation of variational calculus in terms of diagrammatics in the sheaf topos
Sh(PDEy) as in section above, what we, therefore, are after is a context in which the moduli object
Q’;{H of globally defined horizontal (p+ 1)-forms may be promoted to an object which we are going to denote
B%H(R/;;Z)COHH and which modulates horizontal Cech-Deligne cocycles, as above.

Standard facts in homological algebra and sheaf cohomology say that in order to achieve this we are to
pass from the category of sheaves on PDEy to the “derived category” over PDEy. We may take this to be the
category of chain complexes of sheaves, regarded as a homotopy theory by understanding that a morphism
of sheaves of chain complexes that is locally a quasi-isomorphism counts as a weak equivalence. In fact we
may pass a bit further. Using the Dold-Kan correspondence to identify chain complexes in non-negative
degree with simplicial abelian groups, hence with group objects in Kan complexes, we think of sheaves of
chain complexes as special cases of sheaves of Kan complexes [Br73):

Dold—Kan

Sh(PDEy, ChainCplx) Sh(PDEsy;, KanCplx) ~ Sh,,(PDEy) .

In such a homotopy-theoretically enlarged context we find the sheaf of chain complexes that is the (p + 1)-
truncated de Rham complex with the integers included into the 0-forms:

BY (R/hZ)comn = |2 5 Q% L, 4 ... qril]
This chain complex of sheaves is known as the (horizontal) Deligne complez in degree (p+2). The horizontal
Cech-Deligne cocycles that we saw before are exactly the cocycles in the sheaf hypercohomology with coef-

ficients in the horizontal Deligne complex. Diagrammatically in She(PDEy) these are simply morphisms
L: E — BP*Y(R/4Z) from the field bundle to the Deligne moduli:

(U@ b Ak )} = {E = BE ®R/pZ)oomn } -

This is such that a smooth homotopy between two maps to the Deligne moduli is equivalently a coboundary
of Cech cocycles:

Ui} A Lp1)i}s {(mp)ighs ) L

~ p+1
(U} o)} L (op—1)is 1) =~ E By (R/hZ)

{Uit s {(Lp+1)i +dn(pp)its {(kp)ij + du(pp—1)ij + (pp)j — (pp)its-+)

Evidently, the diagrammatics serves as a considerable compression of data. In the following all diagrams we
displays are filled with homotopies as on the right above, even if we do not always make them notationally
explicit.

There is an evident morphism Q2" — B? (R /,Z)conn which includes the globally defined horizontal
forms into the horizontal Cech-Deligne cocycles (regarding them as Cech-Deligne cocycles with all the gluing
data (k) vanishing). This morphism turns out to be the analog of a covering map in traditional differential
geometry, it is an atlas of smooth stacks:

10



atlas of atlas of
a smooth manifold a smooth oco-groupoid
Hi Ui Qz;;-l
E BI;[+1(R/hZ)conn

Via this atlas, the Euler variational differential §y on horizontal forms that we have seen in section[I.1.1.2]
extends to horizontal Deligne coefficients to induce a curvature map on these coefficients.

Qo<p+1 Qp-i-l

S,cl
\ /

Bp+1 R/EZ conn

A prequantization of a source form EL is a lift through this curvature map, hence a horizontal Cech-Deligne
cocycle of locally defined local Lagrangians for EL, equipped with gluing data:

—

BI])L;_I(R/hZ)conn .
L_ -~ l

—~ p+1,1
E = Qg

Hence in conclusion we find that in the co-topos Sh., (PDEy;) the diagrammatic picture of prequantum
local field theory is this:

prequantum local field theory
Euler—Lagrange (Li)ier 1
equation H ) Uz : QIH‘
< el locally defined H
7 local Lagrangians
solution, -~ \ Sv
Phd ker(EL)
P Euler—Lagrange
spacetime/ » ¢ E— 71’75’”}@7 Bp+1 R/.7 curv Qp+1,1
worldvolume field configuration \(/ﬁ,)conn/ S
EL

In summary, comparing this to the diagrammatics for variational and locally variational classical field the-
ory which we discussed in section[I.1.1.2] we have the following three levels of description of local Lagrangian
field theory:

11



local Lagrangian field theory

classical pre-quantum
variational locally variational
(Li)iel p+1
(Li)ier 1 11, 1 Us QY
Qp+1 ) Uz Qp+ 1€
H [Lies ;S / 5
N | N S
+1 curv, 1,1
E Qi E Qi E —1— B} (R/iZ)conn —= Q@*
EL S EL S
EL

L: Lagrangian horizontal form (integrand in locally defined action functional)
L: Euler-Lagrange horizontal p-gerbe connection (integrand in globally defined action functional)
O0y: Euler variational differential
EL: FEuler-Lagrange differential source form
€ :=ker(EL): Euler-Lagrange partial differential equations of motion

1.1.1.4 The covariant phase space — transgressively The FEuler-Lagrange p-gerbes discussed above
are singled out as being exactly the right coherent refinement of locally defined local Lagrangians that may be
integrated over a (p+ 1)-dimensional spacetime/worldvolume to produce a function, the action functional. In
a corresponding manner there are further refinements of locally defined Lagrangians by differential cocycles
that are adapted to integration over submanifolds of ¥, of positive codimension. In codimesion % these
will yield not functions, but (p — k)-gerbes.

We consider this now for codimension 1 and find the covariant phase space of a locally variational
field theory equipped with its canonical (pre-)symplectic structure and equipped with a Kostant-Souriau
prequantization of that.

First consider the process of transgression in general codimension.

Given a smooth manifold ¥, then the mapping space [2, 272] into the smooth moduli space of (p + 2)-
forms is the smooth space defined by the property that for any other smooth manifold U, there is a natural
identification

{U— [5,9°7%]} ~ QPP(UxX)
of smooth maps into the mapping space with smooth (p + 2)-forms on the product manifold U x X.

Now suppose that 3 = X, is an oriented closed smooth manifold of dimension d. Then there is the fiber

integration of differential forms on U x ¥ over ¥ (e.g [BoTo82]), which gives a map

CQPPH(U x 2g) — QP24 .
(UxXq)/U

This map is natural in U, meaning that it is compatible with pullback of differential forms along any smooth
function Uy — U,. This property is precisely what is summarized by saying that the fiber integration map
constitutes a morphism in the sheaf topos of the form

/ s [Bg, QP2 — P2l

b

This provides an elegant means to speak about transgression. Namely given a differential form o € QP2(X)
(on any smooth space X) modulated by a morphism « : X — €QP*2 then its transgression to the mapping
space [, X] is simply the form in QP+2-4([2, X]) which is modulated by the composite

[z 22 B ey B gread
P

of the fiber integration map above with the image of & under the functor [X, —] that forms mapping spaces
out of X.

12



Moreover, this statement has a prequantization [FSS12d, 2.8]: the fiber integration of curvature forms
lifts to a morphism of differential cohomology coefficients

/E : [27 Bp+1(R/ﬁZ)Conn] — Bp+1_d(R/hZ)conn

and hence the transgression of a p-gerbe V : X — BPT1(R/4Z)conn (on any smooth space X ) to the mapping
space [, X] is given by the composite [i o[¥, —]

[=1 m xS

All this works verbatim also in the context of PDEs over X. For instance if L : & — Q’;IH is a local
Lagrangian on (the jet bundle of) a field bundle E over ¥,41 as before, then the action functional that it
induces, as in section [1.1.1.3] is the transgression to ¥, :

s ZHE 5 qriyg J go

But now the point is that we have the analogous construction in higher codimension k, where the Lagrangian
does not integrate to a function (a differential O-form) but to a differential k-form.
And all this goes along with passing from globally defined differential forms to Cech-Deligne cocycles.

[Z ¥l [E Bp+1(R/hZ)conn} rz Bp+1 d(R/hZ)Conn-

To apply this for codimension k£ = 1, consider now p-dimensional submanifolds ¥, < X of space-
time/worldvolume. We write Ng°¥, for the infinitesimal normal neighbourhood of ¥, in 3. In practice
one is often, but not necessarily, interested in X, being a Cauchy surface, which means that the induced
restriction map

[Epr1,E] — [Ng'5,, €]

(from field configurations solving the equations of motion on all of ¥ to normal jets of solutions on ¥,) is
an equivalence. An element in the solution space [X,41,&] is a classical state of the physical system that is
being described, a classical trajectory of a field configuration over all of spacetime. Its image in [X,41,€&] is
the restriction of that field configuration and of all its derivatives to 3,,.

In many — but not in all — examples of interest, classical trajectories are fixed once their first order
derivatives over a Cauchy surface is known. In these cases the phase space may be identified with the
cotangent bundle of the space of field configurations on the Cauchy surface

The expression on the right is often taken as the definition of phase spaces. But since the equivalence with
the left hand side does not hold generally, we will not restrict attention to this simplified case and instead
consider the solution space [X,E]s; as the phase space. To emphasize this more general point of view, one
sometimes speaks of the covariant phase space. Here “covariance” refers to invariance under the action of
the diffeomorphism group of ¥, meaning here that no space/time split in the form of a choice of Cauchy
surface is made (or necessary) to define the phase space, even if a choice of Cauchy surface is possible and
potentially useful for parameterizing phase space in terms of initial value data.

Now it is crucial that the covariant phase space [, £]s comes equipped with further geometric structure
which remembers that this is not just any old space, but the space of solutions of a locally variational
differential equation.

To see how this comes about, let us write (Q’C’I+ 1)2 for the moduli space of all closed p+ 1-forms on PDEs.
This is to mean that if E is a bundle over 3, and regarded as representing the space of solutions of the trivial
PDE on sections of E, then morphisms E — (QP*1)5 are equivalent to closed differential (p + 2)-forms on
the jet bundle of F.

{E— (@t)g) ~ QFFHIFE).
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The key now is that there is a natural filtration on these differential forms adapted to spacetime codimension.
This is part of a bigrading structure on differential forms on jet bundles known as the variational bicomplex
[And89]. In its low stages it looks as follows [FRS13al:

(@ ths

Q%‘HJ @ Qp-2

p+1,1
QS

The lowest item here is what had concerned us in section [I.1.1.2)and [1.1.1.3] it is the moduli of p + 2-forms
which have p + 1 of their legs along spacetime/worldvolume ¥ and whose remaining vertical leg along the
space of local field configurations depends only on the field value itself, not on any of its derivatives. This
was precisely the correct recipient of the variational curvature, hence the variational differential of horizontal
(p + 1)-forms representing local Lagrangians.

But now that we are moving up in codimension, this coefficient will disappear, as these forms do not
contribute when integrating just over p-dimensional hypersurfaces. The correct coefficient for that case is
instead clearly £2P-2, the moduli space of those (p + 2)-forms on jet bundles which have p of their legs along
spacetime/worldvolume, and the remaining two along the space of local field configurations. (There is a
more abstract way to derive this filtration from first principles, and which explains why we have restriction
to “source forms” (not differentially depending on the jets), indicated by the subscript, only in the bottom
row. But for the moment we just take that little subtlety for granted.)

So QP2 is precisely the space of those (p + 2)-forms on the jet bundle that become (pre-)symplectic
2-forms on the space of field configurations once evaluated on a p-dimensional spatial slice ¥, of spacetime
Yp+1. We may think of this as a current on spacetime with values in 2-forms on fields.

Indeed, there is a canonical such presymplectic current for every locally variational field theory [Zu87] [Kh14].
To see this, we ask for a lift of the purely horizontal locally defined Lagrangian L; through the variational
bicomplex to a (p+ 1)-form on the jet bundle whose curvature d(L; + ©;) coincides with the Euler-Lagrange
form EL = 0y L; in vertical degree 1. Such a lift L; + ©; is known as a Lepage form for L; (e.g. [?, 2.1.2]).

Notice that it is precisely the restriction to the shell £ that makes the Euler-Lagrange form EL; disappear,
by construction, so that only the new curvature component {2; remains as the curvature of the Lepage form
on shell:

Q;=dvO;

/_N
el o e

l d(L;+0;) — 7 \L

~
~
Ui

p+1,1
E Qb

EL,=6y L,
The condition means that the horizontal differential of ©; has to cancel against the horizontally exact part
that appears when decomposing the differential of L; as in equation Hence, up to horizontal derivatives,
this ©; is in fact uniquely fixed by L;:
d(L; +0;) = (EL; —dg(©; +du(---))) + (dg©; + dv©;)
=EL; +dy©;
=:EL; + Q;

14



The new curvature component
Qe OWP2(JXE)

whose restriction to patches is given this way

Q

U, == dy 0Oy

is known as the presymplectic current [Zu87), [Kh14]. Because, by the way we found its existence, this is such
that its transgression over a codimension-1 submanifold ¥, < 3 yields a closed 2-form (a “presymplectic

2-form”) on the covariant phase space:

w:z/ 5, 0] € (NS, €]).

14

Since €2 is uniquely specified by the local Lagrangians L;, this gives the covariant phase space canonically
the structure of a presymplectic space ([2, £],w). This is the reason why phase spaces in classical mechanics

are given by (pre-)symplectic geometry as in [Ar89].

Since 2 is a conserved current, the canonical presymplectic form w is indeed canonical, it does not
depend on the choice of (Cauchy-)surface: if 9,2 and 0oyt are the incoming and outgoing Cauchy surfaces,

respectively, in a piece of spacetime X, then the corresponding presymplectic forms agreeEI

Wout — win = 0.

But by the discussion in [1.1.1.3] we do not just consider a locally variational field classical field theory
to start with, but a prequantum field theory. Hence in fact there is more data before transgression than just
the new curvature components dy ©;, there is also Cech cocycle coherence data that glues the locally defined

0O; to a globally consistent differential cocycle.

We write BPT'(R/4Z) for the moduli space for such coefficients (with the subscript for “Lepage”), so
that morphisms £ — BIEH(R/;»LZ) are equivalent to properly prequantized globally defined Lepage lifts of

Euler-Lagrange p-gerbes.

In summary then, the refinement of an Euler-Lagrange p-gerbe L to a Lepage-p-gerbe © is given by the

following diagram

prequantum field theory
in codimension 1

presymplectic
current

Q QP2

|

Cauch; classical state p+1 curv, p+1,1 2
y 2 £ BY Y (R/hZ) conn —2 Q1L @ b

surface

Ve |

spacetime/ E L B;I;I+1 (R/ﬁZ) curv QIéJrl,l

worldvolume EPJrl \ﬁl/

EL
Euler-Lagrange form

Lepage
p-gerbe

Euler-Lagrange

p-gerbe

And now higher prequantum geometry bears fruit: since transgression is a natural operation, and since
the differential coefficients B2 (R/4Z)conn and BYT(R/4Z) precisely yield the coherence data to make the

41f the shell £ is taken to be resolved by a derived manifold/BV-complex as in footnote then any on-shell vanishing condition
becomes vanishing up to a dgy-exact term, hence then there is a 2-form wgy of BV-degreee -1 such that wout — win = dpvwiv.
(In [CMR12| this appears as BV-BFV axiom (9).) The Poisson bracket induced from this “shifted symplectic form” wpy is

known as the “BV-antibracket” (e.g. [HeTe92|).
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local integrals over the locally defined differential forms L; and ©; be globally well defined, we may now hit
this entire diagram with the transgression functor fz [N°X,, —] to obtain this diagram:

transgression of Lepage p-gerbe on the shell
to Kostant-Souriau prequantum bundle
on the covariant phase space

Kostant-Souriau
prequantum bundle

Js,
[NEOE;D? BZI){_‘—l (R/ﬁZ)Conn] - B(R/hZ)conn

Js

(NS, QP01 @ Q) - Q?

e
[£p,dv ©] o

w
canonical
presymplectic form

covariant [Ngo Ep’ 5]

phase-space

This exhibits the transgression

0:= / [Ne°E,, O]
EP
of the Lepage p-gerbe © as a (R/;Z)-connection whose curvature is the canonical presymplectic form.

But this ([3,&]x, 0) is just the structure that Souriau originally called and demanded as a prequan-
tization of the (pre-)symplectic phase space ([Z,&]s,w) [So70, [So74, Ko75]. Conversely, we see that the
Lepage p-gerbe © is a “de-transgression” of the Kostant-Souriau prequantization of covariant phase space
in codimension-1 to a higher prequantization in full codimension. In particular, the higher prequantization
constituted by the Lepage p-gerbe constitutes a compatible choice of Kostant-Souriau prequantizations of
covariant phase space for all choices of codimension-1 hypersurfaces at once. This is a genuine reflection
of the fundamental locality of the field theory, even if we look at field configurations globally over all of a
(spatial) hypersurface X,,.

1.1.1.5 The local observables — Lie theoretically We discuss now how from the previous consid-
erations naturally follow the concepts of local observables of field theories and of the Poisson bracket on
them, as well as the concept of conserved currents and the variational Noether theorem relating them to
symmetries. At the same time all these concepts are promoted to prequantum local field theory.

In section[I.1.1.4] we have arrived at a perspective of prequantum local field theory where the input datum
is a partial differential equation of motion £ on sections of a bundle E over spacetime/worldvolume ¥ and
equipped with a prequantization exhibited by a factorization of the Euler-Lagrange form E EL, Qgﬂ’l and

of the presymplectic current form £ 2, qp2 through higher Cech-Deligne cocycles for an Euler-Lagrange
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p-gerbe L and for a Lepage p-gerbe ©:

field

shell bundle
higher
@l prcquangtization lL
resymplectic p+1 p+1 EI, Euler-Lagrange
B urrent Q2 BL (R/hz)conn — BH (R/EZ)conn form
Cllrv Cllrv
D,2 p+1,1
ch QS,CI

This local data then transgresses to spaces of field configurations over codimension-k submanifolds of .
Transgressing to codimension-0 yields the globally defined exponentiated action functional

[E E] space of
? 3 field configurations
9
lexp(hs) action functional

U()

and transgressing to a codimension-1 (Cauchy-)surface ¥, < ¥ yields the covariant phase space as a pre-
quantized pre-symplectic manifold

covariant
phase space

[Ngozpag]z

bundle

presyf;r;];)iectic w B(R/hZ)conn

2
ch

Given any space equipped with a map into some moduli space like this, an automorphism of this structure is
a diffeomorphism of the space together with a homotopy which which exhibits the preservation of the given
map into the moduli space.

We consider now the automorphisms of the prequantized covariant phase space and of the Euler-Lagrange
p-gerbe that it arises from via transgression, and find that these recover and make globally well-defined
the traditional concepts of symmetries and conserved currents, related by the Noether theorem, and of
observables equipped with their canonical Poisson bracket.

The correct automorphisms of presymplectic smooth spaces ([£,, s, w) — ([Ep, E]x,w) are of course
diffeomorphisms ¢ : [E,,E]s — [Ep, E]x such that the presymplectic form is preserved, ¢*w = w. In the
diagrammatics this means that ¢ fits into a triangle of this form:

INES,, E]s L NEE,,Elx

LA

2
ch
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Viewed this way, there is an evident definition of an automorphism of a prequantization ([N°X,, £]x, 6)
of ([N&X,, €]s,w). This must be a diagram of the following form

[NES,, € L [NES,, €]
%
B (R/hz)conn

hence a diffeomorphism ¢ together with a homotopy 7 that relates the modulating morphism of the trans-
lated prequantum bundle back to the original prequantum bundle. By the discussion in section [[.1.1.3]
such homotopies are equivalently coboundaries between the Cech-Deligne cocycles that correspond to the
maps that the homotopy goes between. Here this means that the homotopy in the above diagram is an
isomorphism 7 : ¢*6 —5 0 of circle bundles with connection. These pairs (¢,m) are what Souriau called
the quantomorphisms. Via their canonical action on the space of section of the prequantum bundle, these
become the quantum operators.

To see what this is in local data, consider the special case that 6 is a globally defined 1-form and suppose
that ¢ = exp(tv) is the flow of a vector field v .

IS exp(tv) oo
g5 £l ——= NS, €l
N(fiita) / )
B (R/hz)conn

Then the homotopy filling the previous diagram is given by a smooth function exp(itcr) such that
exp(tv)*0 — 0 = tdo .

Infinitesimally, for ¢ — 0, this becomes
L0 =da.

Using Cartan’s formula for the Lie derivative on the left, and the fact that df = w, by prequantization, this
is equivalent to

dla — 1,0) = tyw . (1.3)
——
H

This is the classical formula [Ar89] which says that
H:=a— 1,0

is a Hamiltonian for the vector field v.
There is an evident smooth group structure on the homotopies as above, and one checks that the induced
Lie bracket on Hamiltonians H with Hamiltonian vector fields v is the following

[(UhHl), (U23H2)] = ([UlvUQ]u Lv2bv1w) .

Traditionally this is considered only in the special case that w is symplectic, hence equivalently, in the case
that equation uniquely associates a Hamiltonian vector field v with any Hamiltonian H. In that case
we may identify a pair (v, H) with just H and then the above Lie bracket becomes the Poisson bracket
on smooth functions induced by w. Hence the Poisson bracket Lie algebra is secretly the infinitesimal
symmetries of the prequantum line bundle 6. This is noteworthy. For instance in the example of the phase
space (T*R = R2,w = dp A dq) and writing ¢,p : R? — R for the two canonical coordinates (p being called
the “canonical momentum”), then the Poisson bracket, as above, between these two is

18



| lg.p] =il € ihR < Pois(R?,dp A dq) |

This equation is often regarded as the hallmark of quantum theory. In fact it is a prequantum phenomenon.
Notice how the identification of the central term with A follows here from the first prequantization step back

around equation ((1.2)).

19



From equation (1.3 it is clear that the Poisson bracket is a Lie extension of the Lie algebra of (Hamil-
tonian) vector fields by the locally constant Hamiltonians, hence by constant functions in the case that X
is connected. The non-trivial Lie integration of this statement is the Kostant-Souriau extension, which says

that the quantomorphism group of a connected phase space is a U(1)-extension of the diffeological group of
Hamiltonian symplectomorphisms.

Hence in summary the situation for observables on the covariant phase space in codimension 1 is as

follows:

Kostant-Souriau

curv

extension observables flows
(connected phase space)
i
= . o
g ihR Pois([N3Ep, Els, w) — Vect(X)
é ’ Poisson bracket ‘
=
R
5 U(1) QuantMorph([NF%,, s, 6) — Diff (X)
& ’ quantomorphism group ‘
flow
NS, €] 2 NS, €]
Hamiltonian
NS, s =
>
= 0 0
2 . .
Z: Hamlltomau 6 B(R/hZ)Conn — { [NE Ep? g] —=> [NE EP’ 5]2 }
< w
R/EZ conn
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Generally the symmetries of a p-gerbe connection V : X — BPTH(R/,Z)conn form an extension of the

symmetry group of the underlying space by the higher group of flat (p — 1)-gerbe connections [FRS13al:

symmetry of

automorphisms

Bp+1 R/hZ conn

curv

p+2
ch

higher
extegnsion p-gerbe of base space
(p + 1)-connection
=
=
% < symy (F)
2 Chirla(X) — Vect(X)
'3 ' ’stablizer Loo—algebra‘
E
>
2| onrexo) Stabaue(x) (V) — Aut(X)
= ’stabilizor 0O-group ‘
autom(;phism X

homotSpy

stabjilization
= v /
Q
g / Bp+1(R/hZ)conn — { v ==V }
< F
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Specifying this general phenomenon to the Lepage p-gerbes, it gives a Poisson bracket L..-algebra on
higher currents (local observables) [FRS13b] and its higher Lie integration to a higher quantomorphism group
constituting a higher Kostant-Souriau extension of the differential automorphisms of the field bundle. This
is determined by the (pre-)symplectic current p + 2-form 2 in analogy to how the ordinary Poisson bracket
is determined by the (pre-)symplectic 2-form w, hence this is a Poisson L..-bracket for what has been called

“multisymplectic geometry” (see [Rogl0]):

higher differential
Kostant-Souriau Lseyr;nzet_r};:tf)'e automorphisms
extension Page p-g of dynamical shell
o
=
% - PBois(&, N)
= Chigla(€) — — Vect(€)
i ’ ’Poisson bracket Loo—algebra‘
E
>
g Ch'=P(£,U(1)) — Stabau(e) (©) — Aut(€)
g
= ’quantomorphism oo-group‘
£ on-shell g/xnrnetry <
Hamiltohian
g current
= e /
‘g ﬁ‘;ﬁﬂﬁff.iln . . < on-shell symmetry <
~
E © / © Bi+1(R/hZ)conn
9 Q
+1
B][)/ (R/hZ)Conn curv
,2
Qg
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So far this concerned the covariant phase space with its prequantization via the Lepage p-gerbe. In the
same way there are the higher symmetries of the field space with its prequantization via the Euler-Lagrange

p-gerbes L

Bp+1 R/hZ conn

To see what these are in components, consider again the special case that L is given by a globally defined
horizontal form, and consider a one-parameter flow of such symmetries

exp(tv)

NEe

Bp+1 R/hZ conn

In Cech-Deligne cochain components this diagram equivalently exhibits the equation
exp(tv)*L — L =tdgA

on differential forms on the jet bundle of E, where v is a vertical vector field. Infinitesimally for ¢ — 0 this
becomes
L,L=dgA.

Since L is horizontal while v is vertical, the left hand reduces, by equation to
tydL = 1,(EL — dg©),
Therefore the infinitesimal symmetry of L is equivalent to

dH (A — Lv@) = L,UEL .
—_————
J

This says that associated to the symmetry v is a current
J=A—-1,0

which is conserved (horizontally closed) on shell (on the vanishing locus £ of the Euler-Lagrange form EL).
This is precisely the statement of Noether’s theorem (the first variational theorem of Noether, to be precise).
Indeed, in its modern incarnation [?, [Kh16], Noether’s theorem is understood as stating a Lie algebra
extension of the Lie algebra of symmetries by topological currents to the Lie-Dickey bracket on equivalence
classes of conserved currents (see [?, section 3]).
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Hence the oco-group extension of symmetries of the Euler-Lagrange p-gerbe promotes Noether’s theorem
to the statement that higher Noether currents form an L..-algebra extension of the infinitesimal symmetries

by topological currents: E]

higher differential
topological charge Eulersiranr::rfrz of erbe automorphisms
extension grange p-g of field bundle
o
=
§ cure(E, EL)
2 Ch(.iépcl(E) — — Vect(E)
E ' ’Dickey bracket current Loo—algebra‘
R=!
>
2 Ch!=F(E,U(1)) — Stab (s (L) — Aut(E)
=
ha ’de—transgressed Kac-Moody co-group ‘
E variational symmetry E
E current
= L / L
g “Oé’orlfcgri‘:al N N E symmetry E
~ >
45 L / L Bl;[-i_l(R/hZ)conn
< EL
p+1
BH (R/hZ)conn curv
+1,1
Qg7cl

5That the currents above are indeed conserved follows purely abstractly as follows.
Let ¥ have a boundary 9% — . Transgression with boundary works as follows: in the bulk one obtains a section of the

pullback of the boundary transgression. This is exibited by a diagram of the form

=€y ———— !

|

[827 5]2 —— B(R/hz)conn

|

which is natural in £. Using this naturality, every symmetry of L given by a triangular diagram as above yields a prism diagram
when hit with the transgression operation. Cutting that prism open it is an equivalence of the following form:

[%,€]

[275]2

g

|\

(0%, €]

Q! (0%, €]

ST

B(R/hz)conn

ﬂl

1

(%, €]

- [, €]

7

Ql

|

B(R/hz)conn

This says that if ¥ = 3, x [0,1], then the difference between the two incarnations of the conserved observable on the two
bounding surfaces, as measured via the identification of the underlying bundles canonically given by transgression, vanishes.

24




In summary, physical local observables arise from symmetries of higher prequantum geometry as follows.

requantum automorphism Lie derivative
P e?)me tr up to up to equivalently physical quantity
g y homotopy differential
£ exp(tv) £
ex
preqsllllzﬁtum \ / L,0 = duo dla — 1,0) = 1,9 Hamiltonian
BTN (R/,Z) —
Q
\LCHI‘V
2
Q
E Z;p(tv) E
exp(itA)/
Iéz(igus;ﬁgirel X h L L,L =dgA dr(A —1,0) = 1,EL | conserved current
B?—I-Fl (R/TLZ) J
EL EL
curv
+1,1
Qg,cl

1.1.1.6 The evolution — correspondingly The transgression formula discussed in section gen-
eralizes to compact oriented d-manifolds 3, possibly with boundary 0% < 3. Here it becomes transgression
relative to the boundary transgression.

For curvature forms this is again classical: For w € QP*2(Z x U) a closed differential form, then [jw €
QP*+2-4(7J) is not in general a closed differential form anymore, but by Stokes’ theorem its differential equals

the boundary transgression:
dU/ W = / dUw
by b

:7/dgw

)

:7/ w.
)3

This computation also shows that a sufficient condition for the bulk transgression of w to be closed and for
the boundary transgression to vanish is that w be also horizontally closed, i.e. closed with respect to dx.

Applied to the construction of the canonical presymplectic structure on phase spaces in [1.1.1.4] this has
the important implication that the canonical presymplectic form on phase space is indeed canonical.

Namely, by equation (1.1)), the presymplectic current Q € QP2(E) is horizontally closed on shell, hence
is indeed a conserved current:

dgQ =dydy©
= —dydyO

—dy(—dyL +EL)
= —dyEL.

It follows that if ¥ is a spacetime/worldcolume with, say, two boundary components 0¥ = 0in ¥ Ll Oput 2,
then the presymplectic structures wi, := |, 5 52 [Oin2, w] and wout 1= J 5 tZE[&th,w] agree on the covariant
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phase Spaceﬂ
[27 5]2

(}V wz
(NP O, Els / [N Oout 5, €]z

7
This diagram may be thought of as expressing an isotropic correspondence between the two phase spaces,
where [%, €]y is isotropic in the product of the two boundary phase spaces, regarded as equipped with the
presymplectic form wyyy — wiy. In particular, when both 9,3 and 0,y Y are Cauchy surfaces in 3, so that
the two boundary restriction maps in the above diagram are in fact equivalences, then this is a Lagrangian
correspondence in the sense of [We71][We83].

All this needs to have and does have prequantization: The transgression of a p-gerbe V : X —
Bp"rl(R/hZ)Conn to the bulk of a d-dimensional ¥ is no longer quite a p — d-gerbe itself, but is a section
of the pullback of the p — d + 1-gerbe that is the transgression to the boundary 0%. Diagrammatically this
means that transgression to maps out of ¥ is a homotopy filling a diagram of the following form

2, X] — BT S B (R o] — Qpi2-d
(o= (=)los T,
[82’ X] % [827 Bp+1 (R/EZ)COHH] I —— Bp+2_d(R/hZ)conn
[62,V] faz

Here the appearance of the differential forms coefficients 2P+2=¢ in the top right corner witnesses the fact
that the bulk term fz [, V] is a trivialization of the pullback of the boundary gerbe [, o5:[0%, V] only as a
plain gerbe, not necessarily as a gerbe with connection: in general the curvature of the pullback of [, a5 [0%, V]
will not vanish, but only be exact, as in the above discussion, and the form that it is the de Rham differential
of is expressed by the top horizontal morphism in the above diagram.

Hence in the particular case of the transgression of a Lepage p-gerbe to covariant phase space, this
formula yields a prequantization of the above Lagrangian correspondence, where now the globally defined

action functional
exp(}S) = [ .0 = [ 2L
b b

exhibits the the equivalence between the incoming and outgoing prequantum bundles

ein/out = / [8in/outza 0]
in/outE

61f one uses a BV-resolution of the covariant phase space, then they agree up to the BVV-differential of a BV (-1)-shifted
2-form, we come back to this in section @
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on covariant phase space:

)laoutz

outE E

field
initial trajectories Hamiltonian
valy \evolution
incoming . / outgoing
field action field
configurations functional configirations
prequantum Auan’cum
bundle 2-group bundle
of phases

This prequantized Lagrangian correspondence hence reflects the prequantum evolution from fields on the
incoming piece 9, % of spacetime/worldvolume to the outgoing piece Oyt % via trajectories of field configu-

rations along 3.
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1.1.2 Examples of prequantum field theory

We survey classes of examples of prequantum field theory in the sense of section

o [1.1.2.1]— Gauge fields;
e [1.1.2.3]— Sigma-model field theories;

° — Chern-Simons-type field theory;
e [1.1.2.5|— Wess-Zumino-Witten-type field theory.

1.1.2.1 Gauge fields Modern physics rests on two fundamental principles. One is the locality principle;
its mathematical incarnation in terms of differential cocycles on PDEs was the content of section The
other is the gauge principle.

In generality, the gauge principle says that given any two field configurations ¢; and ¢5 — and everything
in nature is some field cofiguration — then it is physically meaningless to ask whether they are equal, instead
one has to ask whether they are equivalent via a gauge transformation

~

gauge

/\
d)l equivalence ¢2 .

There may be more than one gauge transformation between two field configurations, and hence there may
be auto-gauge equivalences that non-trivially re-identify a field configuration with itself. Hence a space of
physical field configurations does not really look like a set of points, it looks more like this cartoon:

¢1N\\ b3 X

¢2 ¢4

Moreover, if there are two gauge transformations, it is again physically meaningless to ask whether they are
equal, instead one has to ask whether they are equivalent via a gauge-of-gauge transformation.

o1 $2

And so on.

b1

&6

In this generality, the gauge principle of physics is the mathematical principle of homotopy theory: in
general it is meaningless to say that some objects form a set whose elements are either equal or not, instead
one has to consider the groupoid which they form, whose morphisms are the equivalences between these
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objects. Moreover, in general it is meaningless to assume that any two such morphisms are equal or not,
rather one has to consider the groupoid which these form, which then in total makes a 2-groupoid. But
in general it is also meaningless to ask whether two equivalences of two equivalences are equal or not, and
continuing this way one finds that objects in general form an oco-groupoid, also called a homotopy type.

Of particular interest in physics are smooth gauge transformations that arise by integration of infinitesimal
gauge transformations. An infinitesimal smooth groupoid is a Lie algebroid and an infinitesimal smooth oco-
groupoid is an L., -algebroid. The importance of infinitesimal symmetry transformations in physics, together
with the simple fact that they are easier to handle than finite transformations, makes them appear more
prominently in the physics literature. In particular, the physics literature is secretly well familiar with smooth
oo-groupoids in their infinitesimal incarnation as L.-algebroids: these are equivalently what in physics are
called BRST complezes. What are called ghosts in the BRST complex are the cotangents to the space of
equivalences between objects, and what are called higher order ghosts-of-ghosts are cotangents to spaces of
higher order equivalences-of-equivalences. We indicate in a moment how to see this.

While every species of fields in physics is subject to the gauge principle, one speaks specifically of gauge
fields for those fields which are locally given by differential forms A with values in a Lie algebra (for ordinary
gauge fields) or more generally with values in an L.-algebroid (for higher gauge fields).

infinitesimal finite
by itself ‘ acting on fields by itself ‘ acting on fields
symmetry Lie algebra Lie algebroid Lie group Lie groupoid
symmetries
of Lie 2-algebra Lie 2-algebroid smooth 2-group | smooth 2-groupoid

symmetries

higher

order Loo-algebra L.-algebroid smooth co-group | smooth oco-groupoid
symmetries

physics
terminology FDA BRST complex gauge group -

(e.g. [CaDAFr91]) (e.g. [HeTe92])

We now indicate how such gauge fields and higher gauge fields come about.

e [1.1.2.1.1] - Ordinary gauge fields;
e [1.1.2.1.2] - Higher gauge fields.

1.1.2.1.1 Ordinary gauge fields. To start with, consider a plain group G. For the standard appli-
cations mentioned in section we would take G = U(1) or G = SU(n) or products of these, and then
the gauge fields we are about to find would be those of electromagnetism and of the nuclear forces, as they
appear in the standard model of particle physics.
In order to highlight that we think of G as a group of symmetries acting on some (presently unspecified
object) x, we write
g

RN
G: * *k

In this vein, the product operation (=) - (=) : G x G — G in the group reflects the result of applying two

symmetry operations
*
Ox @~ / \ .
k—————————> %

gi1-92
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Similarly, the associativity of the group product operation reflects the result of applying three symmetry
operations:

g2
—_— —_—

* * * 2 *
GxGxGr~ 91|/9192/lg3 = 91|\gz\lgs
* * * *

(91-92)-93 91-(92-93)

Here the reader should think of the diagram on the right as a tetrahedron, hence a 3-simplex, that has been
cut open only for notational purposes.

Continuing in this way, k-tuples of symmetry transformations serve to label k-simplices whose edges and
faces reflect all the possible ways of consecutively applying the corresonding symmetry operations. This
forms a simplicial set, called the simplicial nerve of G, hence a system

BG : k— G**

of sets of k-simplices for all k, together with compatible maps between these that restrict k 4+ 1-simplices to
their k-faces (the face maps) and those that regard k-simplices as degenerate k+ 1-simplices (the degeneracy
maps). From the above picture, the face maps of BG in low degree look as follows (where p; denotes
projection onto the ith factor in a Cartesian product):

(p1.p2) »
—(i —)(— -
BG = GxGxGg =0 6 —G *
—((=)-(=),id)> T
_— p2

(p2,p3)

It is useful to remember the smooth structure on these spaces of k-fold symmetry operation by remem-
bering all possible ways of forming smoothly U-parameterized collections of k-fold symmetry operations, for
any abstract coordinate chart U = R™. Now a smoothly U-parameterized collection of k-fold G-symmetries
is simply a smooth function from U to G**, hence equivalently is k smooth functions from U to G. Hence
the symmetry group G together with its smooth structure is encoded in the system of assignments

BG : (U, k) — C®(U,G**) = C=(U, G)**

which is contravariantly functorial in abstract coordinate charts U (with smooth functions between them)
and in abstract k-simplices (with cellular maps between them). This is the incarnation of BG as a smooth
simplicial presheaf.

Another basic example of a smooth simplicial presheaf is the nerve of an open cover. Let ¥ be a
smooth manifold and let {U; < X},c5 be a cover of ¥ by coordinate charts U; ~ R™. Write Uj,...;, =
Ui, % U, X U;, for the intersection of (k + 1) coordinate charts in X. These arrange into a simplicial

object like so

C{U:}) = I Uig,ir i [ Ui, iy

10,%1,%2 10,11

[0,
io

A map of simplicial objects

is in degree 1 a collection of smooth G-valued functions g;; : U;; — G and in degree 2 it is the condition
that on Uy, these functions satisfy the cocycle condition g;; - gji = gir. Hence this defines the transition

30



functions for a G-principal bundle on ¥. In physics this may be called the instanton sector of a G-gauge
field. A G-gauge field itself is a connection on such a G-principal bundle, we come to this in a moment.

We may also think of the manifold ¥ itself as a simplicial object, one that does not actually depend on the
simplicial degree. Then there is a canonical projection map C({U;}) — ¥. When restricted to arbitrarily
small open neighbourhoods (stalks) of points in 3, then this projection becomes a weak homotopy equivalence
of simplicial sets. We are to regard smooth simplicial presheaves which are connected by morphisms that
are stalkwise weak homotopy equivalences as equivalent. With this understood, a smooth simplicial presheaf
is also called a higher smooth stack. Hence a G-principal bundle on X is equivalently a morphism of higher
smooth stacks of the form

¥ — BG.

For analysing smooth symmetries it is useful to focus on infinitesimal symmetries. To that end, consider
the (first order) infinitesimal neighbourhood D.(—) of the neutral element in the simplicial nerve. Here
D.(—) is the space around the neutral element that is “so small” that for any smooth function on it which
vanishes at e, the square of that function is “so very small” as to actually be equal to zero.

We denote the resulting system of k-fold infinitesimal G-symmetries by Bg:

(p1,p2)
P1
Bg = DG x G x@G) =y @y a — DG
g= e( X X )7((7)_(7)&(1)} e( X )i} e() *
p2

(p2,p3)

The alternating sum of pullbacks along the simplicial face maps shown above defines a differential dcg on
the spaces of functions on these infinitesimal neighbourhoods. The corresponding normalized chain complex
is the differential-graded algebra on those functions which vanish when at least one of their arguments is the
neutral element in G. One finds that this is the Chevalley-Eilenberg complex

CE(Bg) = (A\*¢", dce = [, —]") ,

which is the Grassmann algebra on the linear dual of the Lie algebra g of G equipped with the differential
whose component Alg* — A2g* is given by the linear dual of the Lie bracket [—, —], and which hence extends
to all higher degrees by the graded Leibnitz rule.

For example, when we choose {t,} a linear basis for g, with structure constants of the Lie bracket denoted
[ta,ts] = CCupte, then with a dual basis {t*} of g* we have that

dogt® = %Cabc t A te.

Given any structure constants for a skew bracket like this, then the condition (dcg)? = 0 is equivalent to
the Jacobi identity, hence to the condition that the skew bracket indeed makes a Lie algebra.
Traditionally, the Chevalley-Eilenberg complex is introduced in order to define and to compute Lie algebra
cohomology: a dcg-closed element
p € APTg* < CE(Bg)

is equivalently a Lie algebra (p 4+ 1)-cocycle. This phenomenon will be crucial further below.

Thinking of CE(Bg) as the algebra of functions on the infinitesimal neighbourhood of the neutral element
inside BG makes it plausible that this is an equivalent incarnation of the Lie algebra of G. This is also easily
checked directly: sending finite dimensional Lie algebras to their Chevalley-Eilenberg algebra constitutes a
fully faithful inclusion

CE : LieAlg — dgcAlg®®

of the category of Lie algebras into the opposite of the category of differential graded-commutative algebras.
This perspective turns out to be useful for computations in gauge theory and in higher gauge theory. There-
fore it serves to see how various familiar constructions on Lie algebras look when viewed in terms of their
Chevalley-FEilenberg algebras.
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Most importantly, for ¥ a smooth manifold and °(X) denoting its de Rham dg-algebra of differential
forms, then flat g-valued 1-forms on ¥ are equivalent to dg-algebra homomorphisms like so:

08 (2,0) = {A € QD) @g| Fa=dard — L{ANA] =0} ~ { Q*(3)«— CE(Bg) } .

To see this, notice that the underlying homomorphism of graded algebras Q°(X) +— A®g* is equivalently a
g-valued 1-form, and that the respect for the differential forces it to be flat:

A® |t

%C“bcAb N AC <— %Cabctb N t€

The flat Lie algebra valued forms play a crucial role in recovering a Lie group from its Lie algebra as the
group of finite paths of infinitesimal symmetries. To that end, write A! := [0,1] for the abstract interval.
Then a g-valued differential form A € QL (Al g) is at each point of Al an infinitesimal symmetry, hence
it encodes the finite symmetry transformation that is given by applying the infinitesimal transformation
A; at each t € A! and then “integrating these”. This integration is called the parallel transport of A and
is traditionally denoted by the symbols P exp( fol A) € G. Now of course different paths of infinitesimal
transformations may have the same integrated effect. But precisely if A; and Ay have the same integrated
effect, then there is a flat g-valued 1-form on the disk which restricts to A; on the upper semicircle and to
As on the lower semicircle.

In particular, the composition of two paths of infinitesimal gauge transformations is in general not equal
to any given such path with the same integrated effect, but there will always be a flat 1-form A on the
2-simplex A? which interpolates:

infinitesimal . . finite
. integration .
syminetries symmetries

*
A As I:’exp(fo1 Aq) Pexp(fo1 As)
i —
Z  — > x
Aq2

chp(fo1 Aq)-P cxp(fo1 As)

In order to remember how the group obtained this way is a Lie group, we simply need to remember how
the above composition works in smoothly U-parameterized collections of 1-forms. But a U-parameterized
collection of 1-forms on A is simply a 1-form on U x A which vanishes on vectors tangent to U, hence a
vertical 1-form on U x AF, regarded as a simplex bundle over U.

All this is captured by saying that there is a simplicial smooth presheaf exp(g) which assigns to an
abstract coordinate chart U and a simplicial degree k the set of flat vertical g-valued 1-forms on U x A*:

exp(g) := (U, k) = Q% (U x A*,g)

vert

— { Q. (U x A¥) «— CE(Bg) }
By the above discussion, we do not care which of various possible flat 1-forms A on 2-simplices are used to
exhibit the composition of finite gauge transformation. The technical term for retaining just the information
that there is any such 1-form on a 2-simplex at all is to form the 2-coskeleton coska(exp(g)). And one
finds that this indeed recovers the smooth gauge group G, in that there is a weak equivalence of simplicial
presheaves:

cosks(exp(g)) ~ BG.
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So far this produces the gauge group itself from the infinitesimal symmetries. We now discuss how
similarly its action on gauge fields is obtained. To that end, consider the Weil algebra of g, which is obtained
from the Chevalley-Eilenberg algebra by throwing in another copy of g, shifted up in degree

W (Bg) := (A*(g" ® g"[1]),dw = dce +d) ,

where d : Alg* 5 g*[1] is the degree shift and we declare dcg and d to anticommute. So if {t*} is the dual
basis of g* from before, write {r®} for the same elements thought of in one degree higher as a basis of g*[1];

then
dw : t% — %Cabctb AtC+r?

dw : 1% = C% AP Ar¢
A key point of this construction is that dg-algebra homomorphisms out of the Weil algebra into a de Rham
algebra are equivalent to unconstrained g-valued differential forms:

(2, g) = {A c (%) ®g} ~ { Q%) «+— W(Bg) }.

This is because now the extra generators r® pick up the failure of the respect for the dgg-differential, that
failure is precisely the curvature F4:

Ac £ F$ o
Iddn —|;ddR
dqrA® \ dw darF'§ dw
2C%eAY NAC 4 Ff <=1 50% 2" At 1 CeAP N F§ <—— Cyet A1°

Notice here that once t* — A® is chosen, then the diagram on the left uniquely specifies that r* +— F§ and
then the diagram on the right is already implied: its commutativity is the Bianchi idenity dFs = [A A F4]
that is satisfied by curvature forms.

Traditionally, the Weil algebra is introduced in order to define and compute invariant polynomials on a
Lie algebra. A dw-closed element in the shifted generators

(=, —, ) € A"g*[1] — W(Bg)
is equivalently a invariant polynomial of order k£ on the Lie algebra g. Therefore write
inv(Bg)

for the graded commutative algebra of invariant polynomials, thought of as a dg-algebra with vanishing
differential.

(For notational convenience we will later often abbreviate CE(g) for CE(Bg), etc. This is unambiguous
as long as no algebroids with nontrivial bases spaces appear.)

There is a canonical projection map from the Weil algebra to the Chevalley-Eilenberg algebra, given
simply by forgetting the shifted generators (t* — t; r® — 0). And there is the defining inclusion inv(Bg) <
W(Bg).



Cartan had introduced all these dg-algebras as algebraic models of the universal G-principal bundle. We
had seen above that homomorphisms Q2. (U x A*) «+— CE(Bg) constitute the gauge symmetry group G
as integration of the paths of infinitesimal symmetries. Here the vertical forms on U x AF are themselves
part of the sequence of differential forms on the trivial k-simplex bundle over the given coordinate chart U.
Hence consider compatible dg-algebra homomorphisms between these two sequences

Q\./crt(U X Ak) i CE(BG)
(Ux ARy =2 W(Bg)

TN inv(Bg)
We unwind what this means in components: The middle morphism is an unconstrained Lie algebra valued
form A € QY (U x A¥, g), hence is a sum

A= AU + AAk

of a 1-form Ay along U and 1-form Axx along A¥. The second summand Aax is the vertical component of
A. The commutativity of the top square above says that as a vertical differential form, A has to be flat.
By the previous discussion this means that Aax encodes a k-tuple of G-gauge transformations. Now we will
see how these gauge transformations naturally act on the gauge field Ay:

Consider this for the case k = 1, and write ¢ for the canonical coordinate along A! = [0,1]. Then Ay
is a smooth t-parameterized collection of 1-forms, hence of g-gauge fields, on U; and Ax: = kdt for k a
smooth Lie algebra valued function, called the gauge parameter. Now the equation for the t-component of
the total curvature F'4 of A says how the gauge parameter together with the mixed curvature component
causes infinitesimal transformations of the gauge field Ay as t proceeds:

%AU =dyk — [k, Al +15,Fa .

But now the commutativity of the lower square above demands that the curvature forms evaluated in
invariant polynomials have vanishing contraction with ¢;. In the case that g = R this means that tg.F4 = 0,
while for nonabelian g this is still generically the necessary condition. So for vanishing ¢-component of the
curvature the above equation says that

d
£AU =dk — [k, 4].

This is the traditional formula for infinitesimal gauge transformations k acting on a gauge field Ay. Inte-
grating this up, k integrates to a gauge group element g := P exp( fol kdt) by the previous discussion, and
this equation becomes the formula for finite gauge transformations (where we abbreviate now A; := Ay (t)):

Ay =g "Aog+ g 'darg.
This gives the smooth groupoid BGon, of g-gauge fields with G-gauge transformations between them.

infinitesimal finite
gauge integration gauge
transformations transformations

Ay ———F— A2

A
k0,1 1 K1,2 PexP(fU fo, Niy x%jp(fo r1,2dt)
’ ’ >
/ A \
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Hence BGeonn is the smooth groupoid such that for U an abstract coordinate chart, the smoothly U-
parameterized collections of its objects are g-valued differential forms A € Q(U,g) of, and whose U-
parameterized collections of gauge transformations are G-valued functions g acting by

g~ 'Ag+g~ldg

This dg-algebraic picture of gauge fields with gauge transformations between them now immediately
generalizes to higher gauge fields with higher gauge transformations between them. Moreover, this picture
allows to produce prequantized higher Chern-Simons-type Lagrangians by Lie integration of transgressive
Lo-cocycles.

1.1.2.1.2 Higher gauge fields. Ordinary gauge fields are characterized by the property that there
are no non-trivial gauge-of-gauge transformations, equivalently that their BRST complexes contain no higher
order ghosts. Mathematically, it is natural to generalize beyond this case to higher gauge fields, which do have
non-trivial higher gauge transformations. The simplest example is a “2-form field” (“B-field”), generalizing
the “vector potential” 1-form A of the electromagnetic field. Where such a 1-form has gauge transformations
given by O-forms (functions) x via

K

/N
A A= Atdr |

a 2-form B has gauge transformations given by 1-forms p;, which themselves then have gauge-of-gauge-

transformations given by 0-forms py:
P1

>

B po B! =B+dp; = B+dp}

c

pi=p1+dpo

Next a “3-form field” (“C-field”) has third order gauge transformations:

>3

C ol 2 ))er G'=C+dps=C+dp

€

ph=pa+dpy
=pa+dp)

Similarly “n-form fields” have order-n gauge-of-gauge transformations and hence have order-n ghost-of-ghosts
in their BRST complexes.

Higher gauge fields have not been experimentally observed, to date, as fundamental fields of nature, but
they appear by necessity and ubiquitously in higher dimensional supergravity and in the hypothetical physics
of strings and p-branes. The higher differential geometry which we develop is to a large extent motivated by
making precise and tractable the global structure of higher gauge fields in string and M-theory.

Generally, higher gauge fields are part of mathematical physics just as the Ising model and ¢*-theory
are, and as such they do serve to illuminate the structure of experimentally verified physics. For instance
the Einstein equations of motion for ordinary (bosonic) general relativity on 11-dimensional spacetimes are
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equivalent to the full super-torsion constraint in 11-dimensional supergravity with its 3-form higher gauge
field [CaLe94]. (We come to this in section 8.2.1}) From this point of view one may regard the the 3-
form higher gauge field in supergravity, together with the gravitino, as auxiliary fields that serve to present
Einstein’s equations for the graviton in a particularly neat mathematical way.

We now use the above dg-algebraic formulation of ordinary gauge fields above in section[1.1.2.1.1]in order
to give a quick but accurate idea of the mathematical structure of higher gauge fields.

Above we saw that (finite dimensional) Lie algebras are equivalently the formal duals of those differential
graded-commutative algebras whose underlying graded commutative algebra is freely generated from a (finite
dimensional) vector space over the ground field. From this perspective, there are two evident generalizations
to be considered: we may take the underlying vector space to already have contributions in higher degrees
itself, and we may pass from vector spaces, being modules over the ground field R, to (finite rank) projective
modules over an algebra of smooth functions on a smooth manifold.

Hence we say that an L..-algebroid (of finite type) is a smooth manifold X equipped with a N-graded
vector bundle (degreewise of finite rank), whose smooth sections hence form an N-graded projective C*°(X)-
module a,, and equipped with an R-linear differential dcg on the Grassmann algebra of the C*°(X)-dual a*
modules

CE(O) = (/\Evoo(x)(a*)7 dCE(u)) :

Accordingly, a homomorphism of L..-algebroids we take to be a dg-algebra homomorphism (over R) of their
CE-algebras going the other way around. Hence the category of L..-algebroids is the full subcategory of
the opposite of that of differential graded-commutative algebras over R on those whose underlying graded-
commutative algebra is free on graded locally free projective C°°(X)-modules:

LoAlgbd — dgcAlg®P .

We say we have a Lie n-algebroid when a is concentrated in the lowest n-degrees. Here are some important
examples of L.-algebroids:

When the base space is the point, X = %, and a is concentrated in degree 0, then we recover Lie
algebras, as above. Generally, when the base space is the point, then the N-graded module a is just an
N-graded vector space g. We write a = Bg to indicate this, and then g is an L.,-algebra. When in addition
g is concentrated in the lowest n degrees, then these are also called Lie n-algebras. With no constraint on
the grading but assuming that the differential sends single generators always to sums of wedge products of
at most two generators, then we get dg-Lie algebras.

The Weil algebra of a Lie algebra g hence exhibits a Lie 2-algebra. We may think of this as the Lie
2-algebra inn(g) of inner derivations of g. By the above discussion, it is suggestive to write Eg for this Lie
2-algebra, hence

W(Bg) = CE(BEg) .

If g = R[n] is concentrated in degree p on the real line (so that the CE-differential is necessarily trivial),
then we speak of the line Lie (p+ 1)-algebra BPR, which as an L..-algebroid over the point is to be denoted

BBPR = BPIR.

All this goes through verbatim, up to additional signs, with all vector spaces generalized to super-vector
spaces. The Chevalley-Eilenberg algebras of the resulting super L..-algebras are known in parts of the
supergravity literature as FDAs [dAFr82).

Passing now to L.-algebroids over non-trivial base spaces, first of all every smooth manifold X may be
regarded as the L,.-algebroid over X, these are the Lie 0-algebroids. We just write a = X when the context
is clear.

For the tangent bundle T X over X then the graded algebra of its dual sections is the wedge product
algebra of differential forms, CE(TX) = Q°®(X) and hence the de Rham differential makes A®T'(T*X) into
a dgc-algebra and hence makes T'X into a Lie algebroid. This is called the tangent Lie algebroid of X.
We usually write a = TX for the tangent Lie algebroid (trusting that context makes it clear that we do
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not mean the Lie 0-algebroid over the underlying manifold of the tangent bundle itself). In particular this
means that for any other L. -algebroid a then flat a-valued differential forms on some smooth manifold %
are equivalently homomorphisms of L..-algebroids like so:

Qgat(Z,0) = {TZ —a}.
In particular ordinary closed differential forms of degree n are equivalently flat B"R-valued differential forms:

L) ~ {TS — B"R}.

cl

More generally, for a any L.-algebroid over some base manifold X, then we have its Weil dgc-algebra
W(a) = (Agw(x)(a* & T(T*X) @ a*[1]), dw = dop + d)) ,

where d acts as the degree shift isomorphism in the components Alcoo(x)a* — /\éw(x)a* [1] and as the de

Rham differential in the components AFT'(T* X) — A*+IT(T*X). This defines a new L.-algebroid that may
be called the tangent L..-algebroid Ta

CE(Ta) := W(a).
We also write EBPR for the L..-algebroid with
CE(EB’R) := W(B’R).

In direct analogy with the discussion for Lie algebras, we then say that an unconstrained a-valued
differential form A on a manifold ¥ is a dg-algebra homomorphism from the Weil algebra of a to the de
Rham dg-algebra on X:

Q(X,a) :={Q*X) +— W(a) } .

For G a Lie group acting on X by diffeomorphisms, then there is the action Lie algebroid X/g over
X with ap = T'x (X X g) the g-valued smooth functions over X. Write p : g — Vect for the linearized action.
With a choice of basis {t,} for g as before and assuming that X = R" with canonical coordinates x%, then
p has components {pf} and the CE-differential on A2 ) (I'x (X x g")) is given on generators by

deg : f = 1ph0uf
dop : 1% = LO% A" At

In the physics literature this Chevalley-Eilenberg algebra CE(X/g) is known as the BRST complex of X
for infinitesimal symmetries g. If X is thought of as a space of fields, then the t, are called ghost ﬁeldsm

Given any L,-algebroid, it induces further L..-algebroids via its extension by higher cocycles. A p + 1-
cocycle on an L-algebroid a is a closed element

€ (Agoe ()8 )p+1 — CE(a) .
Notice that now cocycles are representable by the higher line Lo.-algebras BP*'R from above:
{1 € CE(a)ps1 | dopp = 0} =~ { CE(a) ¢ CE(B"*'R) }

{5 BHR |

"More generally the base manifold X may be a derived manifold/BV-complex as in footnote [3} Then CE(X/g) is known as
the “BV-BRST complex”.
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It is a traditional fact that R-valued 2-cocycles on a Lie algebra induce central Lie algebra extensions. More
generally, higher cocycles p on an L,-algebroid induce L.-extensions a, given by the pullback

a— > EBPR
(pb)

a— " o BptiR

Equivalently this makes a be the homotopy fiber of p in the homotopy theory of L,-algebras, and induces
a long homotopy fiber sequence of the form

BPR ——a

-

a BPHIR

In components this means simply that CE(a) is obtained from CE(a) by adding one generator ¢ in degre p
and extending the differential to it by the formula

dcg:c=p.

This construction has a long tradition in the supergravity literature [dAFr82][FSS13Dh], we come to the
examples considered there below in section [[.1.2.5 Iterating this construction, out of every Loo-algebroid
their grows a whole bouquet of further L.,-algebroids

"

L Bp2+2

< <—0»

a . gpit2

For example for g a semisimple Lie algebra with binary invariant polynomial (—, —) (the Killing form),
then us = (—,[—, —]) is a 3-cocycle. The L..-extension by this cocycle is a Lie 2-algebra called the string
Lie 2-algebra string,. If {t*} is a linear basis of g* as before write ku, := (fa,tp) for the components of

the Killing form; the components of the 3-cocycle are pape = kaa c pe- The CE-algebra of the string Lie
2-algebra then is that of g with a generator b added and with CE-differential defined by

dCE(stting) A %Cabctb A t€
dCE(stting) 1b = ko C% opt™ A tb ATEE.

Hence a flat string-valued differential form on some 3 is a pair consisting of an ordinary flat g-valued 1-form
A and of a 2-form B whose differential has to equal the evaluation of A in the 3-cocoycle:

Qqat (3, string,) ~ {(4,B) € Q' (2,9) x V*(T) | Fa=0, dB=(AN[ANA])} .
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Notice that since A is flat, the 3-form (AA[AA A]) is its Chern-Simons 3-form. More generally, Chern-Simons
forms are such that their differential is the evaluation of the curvature of A in an invariant polynomial.

An invariant polynomial (—) on an L..-algebroid we may take to be a dw-closed element in the shifted
generators of its Weil algebra W(a)

(=) € Noo(x)(@7[1]) = W(a).

When one requires the invariant polynomial to be binary, i.e. in A%(a*[1]) — W(a) and non-degenerate, then
it is also called a shifted symplectic form and it makes a into a “symplectic Lie n-algebroid”. For n = 0 these
are the symplectic manifolds, for n = 1 these are called Poisson Lie algebroids, for n = 2 they are called
Courant Lie 2-algebroids [Roy02]. There are also plenty of non-binary invariant polynomials, we discuss
further examples below in section

Being dyy-closed, an invariant polynomial on a is represented by a dg-homomorphism:

W(a) +— CE(BP™R) : (-)

This means that given an invariant polynomial (—) for an L..-algebroid a, then it assigns to any a-valued
differential form A a plain closed (p+ 2)-form (F4) made up of the a-curvature forms, namely the composite

0*() < W(a) L CEBPIR) : (Fa).

In other words, A may be regarded as a nonabelian pre-quantization of (Fa).

Therefore we may consider now the oo-groupoid of a-connections whose gauge transformations preserve
the specified invariant polynomial, such as to guarantee that it remains a globally well-defined differential
form. The smooth oo-groupoid of a-valued connections with such gauge transformations between them we
write exp(a)conn. As a smooth simplicial presheaf, it is hence given by the following assignment:

Q.

vert

(U x AF) CE(a)

| |

exp(@)conn : (U, k) — Q* (U x AF) Wi(a)

| |

Q*(U) o inv(a)

Here on the right we have, for every U and k, the set of those A on U x A that induce gauge transformations
along the AF-direction (that is the commutativity of the top square) such that the given invariant polynomials
evaluated on the curvatures are preserved (that is the commutativity of the bottom square).

This exp(a)conn 18 the moduli stack of a-valued connections with gauge transformations and gauge-of-
gauge transformations between them that preserve the chosen invariant polynomials [FSS10][FRS11].

The key example is the moduli stack of (p + 1)-form gauge fields

exp(BP™R) conn/Z =~ B(R/LZ) conn
Generically we write

Aconn = COSkn—i—l(exp(a)conn)

for the n-truncation of a higher smooth stack of a-valued gauge field connections obtained this way. If a = Bg
then we write BG onn for this.
Given such, then an a-gauge field on ¥ (an A-principal connection) is equivalently a map of smooth
higher stacks
V:Y— Acomn -

By the above discussion, a simple map like this subsumes all of the following component data:
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1. a choice of open cover {U; — X};
2. a a-valued differential form A; on each chart Uj;

3. on each intersection U;; of charts a path of infinitesimal gauge symmetries whose integrated finite
gauge symmetry g;; takes A; to Aj;

4. on each triple intersection U,j, of charts a path-of-paths of infinitesimal gauge symmetries whose
integrated finite gauge-of-gauge symmetry takes the gauge transformation g;; - g;1 to the gauge trans-
formation g;x

5. and so on.

Hence a a-gauge field is locally a-valued differential form data which are coherently glued together to a global
structure by gauge transformations and higher order gauge-of-gauge transformations.

Given two globally defined a-valued gauge fields this way, then a globally defined gauge transformation
them is equivalently a homotopy between maps of smooth higher stacks

Vi
by = Acomn
Va

Again, this concisely encodes a system of local data: this is on each chart U; a path of inifinitesimal gauge
symmetries whose integrated gauge transformation transforms the local a-valued forms into each other,
together with various higher order gauge transformations and compatibilities on higher order intersections
of charts.

Then a gauge-of-gauge transformation is a homotopy of homotopies

Vi
E@Conn
Va
and again this encodes a recipe for how to extract the corresponding local differential form data.

1.1.2.2 The BV-BRST complex The category of partial differential equations that we referred to so
far, as in [Marv86], is modeled on the category of smooth manifolds. Accordingly, it really only contains
differential equations that are non-singular enough such as to guarantee that the shell locus £ — J*F
is itself a smooth manifold. This is not the case for all differential equations of interest. For some pairs
of differential operators, their equalizer £ . F does not actually exist in smooth bundles modeled on
manifolds.

This is no problem when working in the sheaf topos over PDEy;, where all limits do exist as diffeological
bundles. However, even though all limits exist here, some do not interact properly with other construc-
tions of interest. For instance intersection products in cohomology will not properly count non-transversal
intersections, even if they do exist as diffeological spaces.

To fix this, we may pass to a category of “derived manifolds”. In generalization of how an ordinary
smooth manifold is the formal dual to its real algebra of smooth functions, via the faithful embedding

C* : SmoothMfd — CAlgp”,
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so a derived manifold is the formal dual to a differential graded-commutative algebra in non-positive degrees,
whose underlying graded algebra is of the form /\ij( X)(F(V*)) for V' a —N-graded smooth vector bundle
over X. In the physics literature these dg-algebras are known as BV-complexes.

For example, for X a smooth manifold and S € C*°(X) a smooth function on it, then the vanishing locus
of S in X is represented by the derived manifold kery(.S) that is formally dual to the dg-algebra denoted
O (kery(S)) which is spanned over C*°(X) by a single generator ¢ of degree -1 and whose differential (linear
over R) is defined by

dgy :t+— 5.

For ¥ an ordinary smooth manifold, then morphisms ¥ — kery(X) are equivalently dg-algebra homo-
morphisms C*(3) «+— C>(kery(X)), and these are equivalently algebra homomorphisms ¢* : C>®(X) «—
C>°(X) such that ¢*S = 0. These, finally, are equivalently smooth functions ¢ : ¥ — X that land every-
where in the 0-locus of S. It is in this way that kery(S) is a resolution of the possibly singular vanishing
locus by a complex of non-singular smooth bundles.

Notice that even if the kernel of S does exist as a smooth submanifold ker(.S) < it need not be equivalent
to the derived kernel: for instance over X = R! with its canonical coordinate function x, then ker(z) = {0}
but kerg(x?) ~ ]D)(()l) is the infinitesimal interval around 0.

Given a derived manifold X4 this way, then for each k € N the differential k-forms on X also inherit the
BV-differential, on top of the de Rham differential. We write Q% ~%(X,) to indicate the differential k-forms
of BV-degree —s. So in particular the O-forms recover the BV dg-algebra itself Q¥~*(X ) = C(X,).

Hence using underived manifolds, then the conservation of the presymplectic current, dg€) = 0, implies
that over a spacetime/worldvolume ¥ with two boundary components ¥, = 0;,X and Yoy = OoutX then
the canonical pre-symplectic forms wi, and wqy; agree

[235}2

/ NA ToutWout — TinWin = 0
[NgoEimE]Z / [Ngozoutvg]z

Win Wout
QQ
When the covariant phase space is resolved by a derived space ([X, E]x)q, then this equation becomes a

homotopy which asserts the existence of a 2-form wgy of BV-degree -1 which witnesses the invariance of the
canonical presymplectic form:

Tin

ou * * —
\ ToutWout — MipWin = dBVWBV .
[N S, ] / [N Sout, €]
Win %

92;70

([, €]5)a

The equation on the right appears in the BV-liteature as [CMR12, equation (9)]).

For the purpose of prequantum field theory, we again wish to de-transgress this phenomenon. Instead of
just modelling the covariant phase space by a derived space, we should model the dynamical shell £ — J°E
itself by a derived bundle.

The derived shell kery(EL) is the derived manifold bundle over ¥ whose underlying manifold is J2°E and
whose bundle of antifields is the pullback of V*E ® APTIT*Y to the jet bundle (along the projection maps
to E).



If ¢* are a choice of local vertical coordinates on E (the fields) and ¢ denotes the corresponding local
antifield coordinates with respect to any chosen volume form on X, then this BV-differential looks like

9 .

When regarded as an odd graded vector field, this differential is traditionally denoted by Q.
In such coordinates there is then the following canonical differential form

Qpy = dof Adg' € QPTHE 7 (kery(EL))

which, as indicated, is of BV-degree -1 and otherwise is a (p + 3)-form with horizontal degree p 4+ 1 vertical
degree 2. More abstractly, this form is characterized by the property that

1oQpv = EL € QP 1 10(ker,(EL)) .

As before, we write

WBV IZ/QBV
5

for the transgression of this form to the covariant phase space. We now claim that there it satisfies the
above relation of witnessing the conservation of the presymplectic current up to BV-exact terms ﬁ In fact it
satisfies the following stronger relation

towpy = dS + 770 (1.4)

which turns out to be the transgressed and BV-theoretic version of the fundamental variational equation

i
dS:d/L
)

~ [
b

- /E (EL — dy0)

Z/(LQQBV —dH@)
%
= lQWBV — 0.

Equation has been postulated as the fundamental compatibility condition for BV-theory on spacetimes
Ys with boundary in [CMR12l equation (7)]. Applying d to both sides of this equation recovers the previous
dBVWBV =m*w.

Notice that equation may be read as saying that the action functional is a Hamiltonian, not for the
ordinary presymplectic structure, but for the BV-symplectic structure.

8 This was first pointed out by us informally on the nLab in October 2011 lhttp://ncatlab.org/nlab/revision/diff/phase+
space/29,
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concept in local model in

classical field theory BV-BRST formalism
o dpv
UK?S?Z ’ i]ci BV-complex
P P of anti-fields
Win = Wout Win AR Wout

independence of presymplectic form coboundary by

from choice of Cauchy surface BV-bracket
[Ngozpﬂg]ﬁl — [Ea BGconn] dBRST
smooth groupoid BRST complex
of gauge fields and gauge transformations of ghost fields

[Epag]ﬁl — [EkaU(l)conn]
higher smooth groupoid
of higher gauge fields
and higher gauge transformations

dBRsT
BRST complex
of higher order ghost-of-ghost fields

1.1.2.3 Sigma-model field theories A sigma-model is a field theory whose field bundle (as in section

11.1.1)) is of the simple form
Yx X

2

)y

for some space X. This means that in this case field configurations, which by definition are sections of the
field bundle, are equivalently maps of the form

6% — X.

One naturally thinks of such a map as being a Y-shaped trajectory of a p-dimensional object (a p-brane)
on the space X. Hence X is called the target space of the model. Specifically, if this models Y-shaped
trajectories of p-dimensional relativistic branes, then X is the target spacetime. There are also famous
examples of sigma-models where X is a more abstract space, usually some moduli space of certain scalar
fields of a field theory that is itself defined on spacetime. Historically the first sigma-models were of this kind.
In fact in the first examples X was a linear space. For emphasis that this is not assumed one sometimes
speaks of non-linear sigma models for the sigma-models that we consider here. In fact we consider examples
where X is not even a manifold, but a smooth co-groupoid, a higher moduli stack.

Given a target space X, then every (p + 1)-form A,;; € QP*1(X) on X induces a local Lagrangian for
sigma-model field theories with target X: we may simply pull back that form to the jet bundle J°(X x X)
and project out its horizontal component. Lagrangians that arise this way are known as topological terms.

The archetypical example of a sigma-model with topological term is that for describing the electron
propagating in a spacetime and subject to the background forces of gravity and of electromagnetism. In this
case p = 0 (a point particle, hence a “0O-brane”), ¥ is the interval [0, 1] or the circle S*, regarded as the abstract
worldline of an electron. Target space X is a spacetime manifold equipped with a pseudo-Riemannian metric
g (modelling the background field of gravity) and with a vector potential 1-form A € Q!(X) whose differential
is the Faraday tensor F' = dA (modelling the electromagnetic background field). The local Lagrangian is

L= L+ q(As)r € Q5T (JZ (T x X)),
N—_——
Ling

where Ly, is the standard kinetic Lagrangian for (relativistic) point particles, g is some constant, the electric
charge of the electron, and (Ay)gy is the horizontal component of the pullback of A to the jet bundle. The
variation of Li,; yields the Lorentz force that the charged electron experiences.
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Now, as in the the discussion in section |1.1.1] in general the Faraday tensor F' is not globally exact, and
hence in general there does not exist a globally defined such 1-form on the jet bundle. But via the sigma-model
construction, the prequantization of the worldline field theory of the electron on its jet bundle is naturally
induced by a Dirac charge quantization of its background electromagnetic field on target spacetime: given

BU (1)conn
|

X Q2

a circle-principal connection on target spacetime for the given field strength Faraday tensor F' (hence with
local “vector potential” 1-forms {A;} with respect to some cover {U; — X}), then the horizontal projection
(V) g of the pullback of the whole circle-bundle with connection to the jet bundle constitutes a prequantum
field theory in the sense of sections [[.1.1.3] Similarly, the background electromagnetic field V also serves
to prequantize the covariant phase space of the electron, according to section [I.1.1.4] This is related to the
familiar statement that in the presence of a magnetic background field the spatial coordinates of the electron
no longer Poisson-commute with each other.

This prequantization of sigma-models via (p + 1)-form connections on target space works generally: we
obtain examples of prequantum field theories of sigma-model type by adding to a globally defined kinetic
Lagrangian form a prequantum topological term given by the pullback of a (p+ 1)-form connection on target
space. The pullback of that target (p + 1)-form connection to target space serves to prequantize the entire
field theory in all codimensions

’ prequantum sigma-model topological terms ‘

background field vV X — BPPU (1) comn
prequantum . p+1
Lagrangian (VE)H : Yx X — BH U(l)conn
prequantized
phase space

(VZ)L : g — BiJrlU(]-)conn

While sigma-models with topological terms are just a special class among all variational field theories,
in the context of higher differential geometry this class is considerably larger than in traditional differential
geometry. Namely we may regard any of the moduli stacks A.onn of gauge fields that we discuss in section
1.1.2.1] as target space, i.e. we may consider higher stacky field bundles of the form

E X A‘COHD

|

D)

Everything goes through as before, in particular a field configuration now is a map ¥ — Aconn from
worldvolume/spacetime ¥ to this moduli stack. But by the discussion above in section such maps
now are equivalent to gauge fields on . These are, of course, the field configurations of gauge theories.
Hence, in higher differential geometry, the concepts of sigma-model field theories and of gauge field theories
are unified.

In particular both concepts may mix. Indeed, we find below that higher dimensional Wess-Zumino-
Witten-type models generally are “higher gauged”, this means that their field configurations are a pair
consisting of a map ¢ : ¥ — X to some target spacetime X, together with a ¢-twisted higher gauge field on
3.
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prequantum
sigma-model
target space  tOpOlogical terms

= moduli stack

target space

spacetime of gauge fields

higher Che};ilg—}éinons
WZW terms
\ terms
higher
gauged
WZW terms

Examples of a (higher) gauged WZW-type sigma model are the Green-Schwarz-type sigma-models of those
super p-branes on which other branes may end. This includes the D-branes and the M5-brane. The former
are gauged by a 1-form gauge field (the “Chan-Paton gauge field”) while the latter is gauged by a 2-form
gauge field. We say more about these examples below in [I.1.2.5]

We may construct examples of prequantized topological terms from functoriality of the Lie integration
process that already gave the (higher) gauge fields themselves in section [1.1.2.1] There we saw that a
(p + 2)-cocycle on an Ly-algebroid is a homomorphism of L.-algebroids of the form

p:a— BPFPR,

Moreover, the exp(—)-construction which sends L.,-algebroids to simplicial presheaves representing universal
higher moduli stacks of a-valued gauge fields is clearly functorial, hence it sends this cocycle to a morphism
of simplicial presheaves of the form

exp(p) : exp(a) — BPT2R.

One finds that this descends to the (p+2)-coskeleton A := cosk,;2 exp(a) after quotienting out the subgroup
I' — R of periods of p [FSS10] (just as in the prequantization of the global action functional in section|1.1.1.3]):

exp(n)

exp(a) BPH2R
e l
A < BPT2(R/T)

To get a feeling for what the resulting morphism c is, consider the case that A = BG for some group G.
There is a geometric realization operation 7., which sends smooth oo-groupoids to plain homotopy types
(homotopy types of topological spaces). Under this operation a map c as above becomes a map c¢ of the form

BG © Br+2(R/Z)

in”w ln”“’

BG —————= K(Z,p+3) >

where BG is the traditional classifying space of a (simplicial) topological group G, and where K(Z,p+3) =
BPT37 is the Eilenberg-MacLane space that classifies integral cohomology in degree (p + 3). What BG
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classifies are G-principal bundles, and hence for each space ¥ the map c turns into a characteristic class of
equivalence classes of G-principal bundles:

cs : GBund(X) . — HPT3(%,7Z).

Hence c itself is a universal characteristic class. Accordingly, c is a refinement of ¢ that knows about
gauge transformations: it sends smooth G-bundles with smooth gauge transformations and gauge-of-gauge
transformations between these to integral cocycles and coboundaries and coboundaries-between-coboundaries
between these.

Equivalently, we may think of ¢ as classifying a (p+ 1)-gerbe on the universal moduli stack of G-principal
bundles. This is equivalently its homotopy fiber (in direct analogy with the infinitesimal version of this
statement above in section fitting into a long homotopy fiber sequence of the form

BPt1(R/Z) — BG

|

BG k BP+23(R/Z)

Yet another equivalent perspective is that this defines an oo-group extension G of the oo-group G by the
oo-group BP(R/Z).

So far all this is without connection data, so far these are just higher instanton sectors without any actual
gauge fields inhabiting these instanton sectors. We now add connection data to the situation.
Adding connection data to ¢ regarded as a higher prequantum bundle on the moduli stack BG yields

° — Chern-Simons-type prequantum field theory.
Adding instead connection data to c regarded as a higher group extension yields

e [1.1.2.5|— Wess-Zumino-Witten-type prequantum field theories.

1.1.2.4 Chern-Simons-type field theories For g a semisimple Lie algebra with Killing form invariant
polynomial (—, —), classical 3-dimensional Chern-Simons theory [Fr95] has as fields the space of g-valued
differential 1-forms A, and the Lagrangian is the Chern-Simons 3-form

Los(A) = CS(A) == (AN dA) — LAA AN A)).

This Chern-Simons form is characterized by two properties: for vanishing curvature it reduces to the value
of the 3-cocycle (—,[—,—]) on the connection 1-form A, and its differential is the value of the invariant
polynomial (—, —) on the curvature 2-form Fj.

There is a slick way to express this in terms of the dg-algebraic description from section there
is an element cs € W(Bg), which in terms of the chosen basis {t?} for Alg* is given by

es : kap(dwt®) AP — Tkoa O pet® AP AEE.
Hence equivalently this is a dg-homomorphism of the form
W(Bg) <> W(B®R)
and for A € QY(Z,g) = { Q°(X) +— W(Bg) } then the Chern-Simons form of A is the composite

(%) <2 W(Bg) &2 CS(4).
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Now, the two characterizing properties satisfied by the Chern-Simons equivalently mean in terms of dg-
algebra that the map cs makes the following two squares commute:

CE(Bg) <———"— CE(B?R)

| |

W(Bg) = W(B’R)

| |

inv(Bg) A inv(B3R)

This shows how to prequantize 3d Chern-Simons theory in codimension 3: the vertical sequences appearing
here are just the Lie algebraic data to which we apply differential Lie integration, as in section [[.1.2.3]
to obtain the moduli stacks of G-connections and of 3-form connections, resepctively. Moreover, by the
discussion at the end of section and using that (—, [—, —]) represents an integral cohomology class on
G we get a map

(€2)conn = exp(cs) : BGeonn — B*(R/Z)conn -

This is the background 3-connection which induces prequantum Chern-Simons field theory by the general
procedure indicated in section [1.1.2.3

Notice that this map is a refinement of the traditional Chern-Weil homomorphism. More on this below
in section [1.4.2.3] This allows for instance to prequantize the Green-Schwarz anomaly cancellation condition
heterotic strings: the higher moduli stack of GS-anomaly free gauge fields is the homotopy fiber product of
the prequantum Chern-Simons Lagrangians for the simple groups Spin and SU [SSS09d].

This higher Lie theoretic formulation of prequantum 3-Chern-Simons theory now immediately generalizes
to produce higher (and lower) dimensional prequantum L..-algebroid Chern-Simons theories.

For a any L.-algebroid as in section we say that a (p + 2)-cocycle p on a is in transgression
with an invariant polynomial (—) on a if there is an element cs € W (a) such that dycs = (—) and cs|cg = p-
Equivalently this means that cs fits into a diagram of dg-algebras of the form

CE(a) <——— CE(BP*2R)

T |

W(a) <= W(BFR)
inv(a) — inv(BPT2R)

Applying exp(—) to this, this induces maps of smooth moduli stacks of the form
Cconn - Aconn — Bp+2 (R/F)conn .

This gives a prequantum Chern-Simons-type field theory whose field configurations locally are a-valued
differential forms, and whose Lagrangian is locally the Chern-Simons element cs evaluated on these forms.
For instance if (a,w) is a symplectic Lie p-algebroid, then we obtain the prequantization of (p + 1)-
dimensional AKSZ-type field theories [FRS11]. For p = 1 this subsumes the topological string A- and
B-model [AKSZ97]. Generally, the prequantum moduli stack of fields for 2-dimensional prequantum AKSZ
theory is a differential refinement of the symplectic groupoid of a given Poisson manifold [Bon14]. The Poisson
manifold canonically defines a boundary condition for the corresponding prequantum 2d Poisson-Chern-
Simons theory, and the higher geometric boundary quantization of this 2d prequantum theory reproduces
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ordinary Kostant-Souriau geometric quantization of the symplectic leafs [Nuil3]. This is a non-perturbative
improvement of the perturbative algebraic deformation quantization of the Poisson manifold as the boundary
of the perturbative 2d AKSZ field theory due to [CaFe99].

Generally one expects to find non-topological non-perturbative p-dimensional quantum field theories
arising this way as the higher geometric boundary quantization of (p + 1)-dimensional prequantum Chern-
Simons type field theories [Sc14d) [ScI4a).

For instance for (B®R,w) the line Lie 3-algebra equipped with its canonical binary invariant polynomial,
the corresponding prequantum Chern-Simons type field theory is 7-dimensional abelian cup-product Chern-
Simons theory [FFSS12¢]|. This has been argued to induce on its boundary the conformal 6-dimensional field
theory of a self-dual 2-form field [Wi96] [HoSi05]. This 7-dimensional Chern-Simons theory is one summand
in the Chern-Simons term of 11-dimensional supergravity compactified on a 4-sphere. The AdS;/CFTg
correspondence predicts that this carries on its boundary the refinement of the self-dual 2-form to a 6-
dimensional superconformal field theory. There are also nonabelian summands in this 7d Chern-Simons
term. For instance for (Bstring,, (—, —, —, —)) the string Lie 2-algebra equipped with its canonical degree-4
invariant polynomial, then the resulting prequantum field theory is 7-dimensional Chern-Simons field theory
on String 2-connection fields [FSS12b].

For more exposition of prequantum Chern-Simons-type field theories see also [FSS13al.

1.1.2.5 Wess-Zumino-Witten type field theory The traditional Wess-Zumino-Witten (WZW) field
theory [Ga88|[Ga00] for a semisimple, simply-connected compact Lie group G is a 2-dimensional sigma-model
with target space G, in the sense of section [[.1.2.3] given by a canonical kinetic term, and with topological
term that is locally a potential for the left-invariant 3-form (8 A [0 A 6]) € Q3(G) I where 6 is the Maurer-

Cartan form on G. This means that for {U; — G} a cover of G by coordinate charts U; ~ R™, then the
classical WZW model is the locally variational classical field theory (in the sense discussed in section
whose local Lagrangian L; is (in the notation introduced above in section L; = (Lkin)i + (Bi)s)n
for B; € Q%(U;) a 2-form such that dB; = (0 A [0 A 0))|u

By the discussion in section [1.1.2.3] in order to prequantize this field theory it is sufficient that we
construct a U(1)-gerbe on G whose curvature 3-form is (8 A [0 A 6]). In fact we may ask for a little more: we
ask for the gerbe to be multiplicative in that it carries 2-group structure that covers the group structure on G,
hence that it is given by the 2-group extension classified by the smooth universal class ¢ : BG — B3U(1).

An elegant construction of this prequantization, which will set the scene for the general construction of
higher WZW models, proceeds by making use of a universal property of the differential coefficients. Namely
one finds that for all p € Z, then the moduli stack BP*1(R/Z)conn of (p+1)-form connections is the homotopy
fiber product of BP+!(R/Z) with Q% over bqr BP+2R.

p+2
ch

TN

BP*1(R/Z)conn (pb) BP+2HpR

~. 7

Br+27

Here “p” indicates the discrete underlying group, and hence this homotopy pullback says that giving a (p+1)-
form connection is equivalent to giving an integral (p + 2)-class and a closed (p + 2)-form together with a
homotopy the identifies the two as cocycles in real cohomology.

In view of this, consider the following classical Lie theoretic data associated with the semisimple Lie
algebra g.



g semisimple Lie algebra

G its simply-connected Lie group
0eQ(G,g) Maurer-Cartan form

(=, —) Killing metric

w3 = {—,[—,—]) Lie algebra 3-cocycle

ke H3(G,Z) level

u3(0 N0 N0) %) kr | prequantization condition

Diagrammatically, this data precisely corresponds to a diagram as shown on the left in the following, and
hence the universal property of the homotopy pullback uniquely associates a lift Vywzw as on the right:

le B2 (R/Z)COUH — le

7
r3(0) qi & waw// i (pb) l
G——=BZ B3R G~ —> B%Z B3R

This Vwzw is the required prequantum topological term for the 2d WZW model. Hence the prequantum
2d WZW sigma-model field theory is the (p = 2)-dimensional prequantum field theory with target space the
group G and with local prequantum Lagrangian, i.e. with Euler-Lagrange gerbe given by

L:= (0 A%0) + (Vwzw)a : 2 x G — BY(R/WZ)conn -

Liin Lwzw

This prequantization is a de-transgression of a famous traditional construction. To see this, write QxG for
level-k Kac-Moody loop group extension of G. This has an adjoint action by the based path group P.G.
Write

String(G) := P,G//4.G

for the homotopy quotient. This is a differentiable group stack, called the string 2-group [BCSSQOT]. It turns
out to be the total space of the 2-bundle underlying Vwzw

String(G) *

e ]

GV B2(R/Z)eonn — B2(R/Z) —=~ K(Z,3)

and it is a de-transgression of the Kac-Moody loop group extension Ly G: transgressing to fields over the
circle gives:

.i/kG *

N

1
s Vwzw.

LG—— B(R/Z)conn - B(R/Z)

The string 2-group also appears again as the 2-group of Noether symmetries, in the sense of section[1.1.1.5
of the prequantum 2d WZW model. The Noether homotopy fiber sequence for the prequantum 2d WZW
model looks as follows
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symmctry

G
. 6 °§f§,§§al v N Noet/}m current R { o Sy:;%r;T) o }
B2, (R/hZ)conn BN (R/hZ)conn
BU(1) — String(G) — G

In fact, this extension is classified by the smooth universal characteristic class ¢ : BG — B3U(1), whose
differential refinement gave 3d Chern-Simons theory in section

Given a G-principal bundle P — X, the one may aks for a fiberwise parameterization of Vwzw over P.
If such definite parameterization V : P — B2?(R/Z)conn exists, then it defines the prequantum topological
term for the parameterized WZW model with target space P.

Vwzw
G = Pm P defivnite B2(R/Z)C0nn
parameterization
l (pb) L

{r}——X

Such a parameterization is equivalent to a lift of a structure group of P through the above extension
String(G) — G. Accordingly, the obstruction to parameterizing Vwyzw over P is the universal extension
class ¢ evaluated on P. Specifically for the case that G = Spin x SU, this is the sum of fractional Pontryagin
and second Chern class:

ip1—c € HY(X,Z).

The vanishing of this class is the Green-Schwarz anomaly cancellation condition for the 2d field theory
describing propagation of the heterotic string on X. This perspective on the Green-Schwarz anomaly via
parameterized WZW models had been suggested in [DiSh07]. The prequantum field theory we present serves
to make this precise and to generalize it to higher dimensional parameterized WZW-type field theories.

Generally, given any L..-cocycle p : Bg — BPT2R as in section with induced smooth oo-
group cocycle ¢ : BG — BPT2(R/T) as in section then there is a higher analog of the universal
construction of the WZW-type topological term Vyzw.

First of all, the homotopy pullback characterization of BP*!(R/Z)conn refines to one that does not just
involve the geometrically discrete coefficients BPT2Z, but the smooth coefficients BP*1(R/R).

2
" \
Berl R/Z conn (pb) bdRBp+2R
B (R/Z)

Here bgr(—) denotes the homotopy fiber of the canonical map b(—) — (—) embedding the underlying
discrete smooth structure of any object into the given smooth object. A key aspect of the theory is that the
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further homotopy fiber of bgr(—) — b(—) has the interpretation of being the Maurer-Cartan form 6 on the
given smooth co-groupoid.

G

I\/Iaurfc;;glartan l 0
bdRBG E— bBG
BG

Or rather, one finds that bqg BG =~ Qéi’gp +2(—, g) is the coefficient for “hypercohomology” in flat g-valued

differential forms, hence for G a higher smooth group then its Maurer-Cartan form 6 is not, in general, a
globally defined differential form, but instead a system of locally defined forms with higher coherent gluing
data.

But one may universally force 6 to become globally defined, so to speak, by pulling it back along the
inclusion Qqa¢(—, g) of the globally defined flat g-valued forms. This defines a differential extension G of G
equipped with a globally defined Maurer-Cartan form 6, by the following homotopy pullback diagram

Qﬂat(_7 g)

P

G (pb) barBG
\ /
G

When G is an ordinary Lie group, then it so happens that by, BG ~ Qg.:(—, g), and so in this case G~G
and 0 ~ 0, so that nothing new happens.

At the other extreme, when G = BPT1(R/Z), then 6 ~ curv as above, and so in this case one find that G
is B?T1(R/Z)conn and that 6 ~ F(_y is the map that sends an (p+ 1)-form connection to its globally defined
curvature (p + 2)-form.

More generally these two extreme cases mix: when G is a B?(R/Z)-extension of an ordinary Lie group,
then G is a twisted product of G with BP(R/Z)conn, hence then a single map

(¢,B): ¥ — G

is a pair consisting of an ordinary sigma-model field ¢ together with a ¢-twisted p-form connection on .
Hence the construction of G is a twisted generalization of the construction of differential coefficients.

In particular, given an L..-cocycle p : Bg — BP12R Lie-integrating to an co-group cocycle ¢ : BG —

BPT2(R/T), then it Lie integrates to a prequantum topological term Vwzw : G — BP(R/T)conn via the
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universal dashed map in the following induced diagram:

Qfat(— 9)

N

QZJ+2

/

/ |
é C /;dRBG
%wzw // \bdRC\
BP*H(R/T)conn e barBF 2R
/
G
\\ /
C\

Br+1(R/T)

This construction provides a large supply of prequantum Wess-Zumino-Witten type field theories. Indeed,
by the discussion in [[.I.2.1.2] from every Loo-algebroid there emanates a bouquet of L..-extensions with
L.-cocycles on them, hence for every WZW-type sigma model prequantum field theories we find a whole
bouquet of prequantum field theories emanating from it.

Therefore it is interesting to consider the simplest non-trivial L..-algebroids and see which bouquets of
prequantum field theories they induce. The abelian line Lie algebra R is arguably the simplest non-vanishing
Lo-algebroid, but it is in fact a little too simple for this purpose, the bouquet it induces is not interesting.
But all of the above generalizes essentially verbatim to super-algebra and super-geometry, and in super-Lie-
algebra we have the odd lines R%%. The bouquet which emanates from these turns out to be remarkably
rich [FSS13b], it gives the entire p-brane spectrum of string theory/M-theory.

’@()btane‘ IQthcme‘ ’©4btane‘ ’©6btane‘ ’Z‘DSbtane
KK \\ l //
50string stringypa stringy,q littlestringy,q;
d=6 d—‘lO d— /

N=‘2’°>\N:_5/1’1;/N£N:
mbbrane | ———— m2brane d=11 R&N d=10

4= nsbbranepet

— d=10 d=1 d=10
- N=(2,0) N= (‘2 ,0) N=(2,0)
= — . . .
ROV stringqg (p, q)string g Dstring

P RN

(p, q)1brane 03brane (p, q)5brane

S

Each entry in this diagram denotes a super L..,-algebra extension of some super Minkowski spacetime
RA-LIN (regarded as the corresponding supersymmetry super Lie algebra), and each arrow denotes a super-
L -extension classified by a p+2 cocycle for some p. By the above general construction, this cocycle induces
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a (p+ 1)-dimensional WZW-type sigma-model prequantum field theory with target space a higher extension
of super-Minkowski spacetime [FSS13b|, and the names of the super L..-algebras in the above diagram
correspond to the traditional names of these super p-branes.

As for the traditional WZW-models, all of this structure naturally generalizes to its parameterized ver-
sions: given any higher extended super Minkowski spacetime V' equipped with a prequantum topological
term Vwzw : V — Bp+1(R/ IM)conn for a super p-brane sigma model, we may ask for globalizations of V
over V-manifolds (V-étale stacks) X, hence for topological term V on all of X that is suitably equivalent on
each infinitesimal disk DX ~ DY to Vwzw.

Vwzw
Dx(l) TWX dotiaiee Bp+1(R/F)conn
globalization
J/ (pb) l

{1} — X

Such globalizations serve as prequantum topological terms for WZW-type sigma-models describing the prop-
agation of super p-branes on V-manifolds X (e.g. [Duff99, sections 2,3]). One finds (this is proven with the
abstract theory surveyed below in section that such globalizations equip the higher frame bundle of
X with a lift of its structure group through a canonical map Stabgry,v)(V) — GL(V') from the homotopy
stabilizer group of the WZW term, in direct analogy to the previous examples. Apart from “cancelling the
classical anomalies” of making the super p-brane WZW-type sigma-model be globally defined on X, such a
lift induces metric structure on X:

Since the homotopy stabilization of V in particular stabilizes its curvature form, there is a reduction of
the structure group of the V-manifold in direct analogy to how a globalization of the “associative” 3-form
a on R” equips a 7-manifold with G2-structure. For the above super p-brane models the relevant stabilizer
is the spin-cover of the Lorentz group, and hence globalizing the prequantum p-brane model over X in
particular induces orthogonal structure on X, hence equips X with a field configuration of supergravity.

Given such a globalization of a topological term V over a V-manifold X, it is natural to require it to be
infinitesimally integrable. In the present example this comes out to imply that the torsion of the orthogonal
structure on X vanishes. This is particularly interesting at the top end of the brane bouquet: for globalization
over over an 11-dimensional supermanifold, the vanishing of the torsion is equivalent to X satisfying the
equations of motion of 11-dimensional gravity [Cale94]. The Noether charges of the corresponding WZW-
type prequantum field theory are the supergravity BPS-charges [SaSclj].

Here the relation to Ga-structure is more than an analogy. We may naturally lift the topological term
for the M2-brane sigma-model from R/Z-coefficients to C/Z-coefficients by adding o : R1%:1132 — R7 — Q3.
Then a globalization of the complex linear combination

VMQ + o R10,1|32 — BS(C/F)conn

over an 11-dimensional supermanifold X equips X with the structure of a Go-fibration over a 4-dimensional
N = 1 supergravity spacetime. The volume holonomy of V2 + ia around supersymmetric 3-cycles are
the “M2-instanton contributions”. This setup of 11-dimensional supergravity Kaluza-Klein-compactified on
Go-manifolds to 4 spacetime dimensions and with the prequantum M2/Mb5-brane charges and instantons
included — known as M-theory on Ga-manifolds [Ach02l, ?] — comes at least close to capturing the qualitative
structure of experimentally observed fundamental physics.
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branch

M-theory
on (GGo-manifolds

This shows that there is some interesting physics encoded in those prequantum field theories that are
canonically induced from a minimum of input data. We continue in section [1.1.3] with indicating that the
concept of prequantum field theory itself arises from first principles.
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1.1.3 Abstract prequantum field theory

Above in section[I.1.1] we have surveyed mathematical structure that captures prequantum local field theory.
While the constructions and results proceed smoothly, the whole setup may still look somewhat intricate.
One needs a good abstract machinery to be practically able to analyze properties of, say, Euler-Lagrange
5-gerbes on 3-stacky jet super-bundles (as they do arise in the formulation of the M5-brane prequantum
sigma-model field theory as in section , because it is unfeasible to do so in components. Moreover,
if prequantum field theory is part of the fundamental description of nature, one may expect that its mathe-
matical formulation is indeed natural and neat. We now survey results from [?] showing that a good abstract
formalization of the differential super-geometry and of the differential cohomology and of the PDE-theory
necessary for formulating prequantum field theory does exist. For further exposition of the following see also
[Sc14bl, [ScT5al, [Sc15b).

° — Modal homotopy theory;
e [1.1.3.2] - Abstract differential cohomology;

e [1.1.3.3] - Abstract differential geometry;
e [1.1.3.4] - Abstract PDE theory.

For further exposition of the following see also [ScI14bl [Sc15al [Sc15b].

1.1.3.1 Modal homotopy theory The homotopy theory in which all pre-quantum physics that has
been considered in section [1.1.2] naturally finds its place is that of super formal smooth higher stacks. We
briefly state the definition below. Then we claim that this homotopy theory carries a rich progression of
adjoint idempotent co-(co-)monads. Such idempotent (co-)monads equip the homotopy theory with what
in formal logic is known as modalities, hence we may speak of modal homotopy theory. The particular
system of modalities that we find and consider we call (super-)differential cohesive homotopy theory. Below
in sections [1.1.3.2] and [I.1.3.3] we survey the rich differential cohomology and differential geometry that is
implied formally from just this abstract modal homotopy theoretic structure.

Definition 1.1.1. The site of super formal smooth Cartesian spaces
SupFormCartSp < sCAlgp”
is the full subcategory of that of super-commutative superalgebras over R on those which are tensor products
C®R" x D) :=C®R")@r (R V)

of the algebra of smooth real functions in n variables, for any n € N, with a supercommutative superalgebra
(R@ V) for finite dimensional nilpotent V. Take this to be a site by equipping it with the coverage whose

i,id
(¢_>)

coverings are of the form {U; x D X x D} for {U; i X } being an open cover of smooth manifolds.

e Mifd is the category of smooth manifolds;
e FormMIfd is the category of formal smooth manifolds [Kock80] [Kock06l sections I.17 and I1.19];

e DiffeolSp is the category of diffeological spaces [[g-Z13], which is the category of concrete sheaves on
Mfd;

e Sh(FormMId) is the “Cahiers topos” [Dub79b] that was introduced as a model for the Kock-Lawvere
axioms [Kock06) I1.12] [Kock10l 1.3] for synthetic differential geometry.
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Proposition 1.1.2. The sheaf toposes and co-sheaf oo-toposes [L-Topos] over the sites in def. form

the following system of full inclusions of categories of geometric spaces.

discrette cohesitve d?g;:ﬁg;l synthetict relati\t/e D-geometry
geometry geometry geometry supergeometry geometry
. U
SetC MfdC FormMfd ——— SupFormMfd — SupFormMfd /s, EM(Jg°) ~ PDEy,
Orbfld
Frechftl\/[fd
DiffeologicalSp
Sh(*)————— Sh(Mfd)~—— / > Sh(FormMfd) — Sh(SupFormMfd) — Sh(SupFormMfd ;) = Sh(SupFor
LieGrpd/
GeomStack
¢ SmoothGrpd/
Grl:\)d SmoothStack
2G1;Pd<—> Smoot}}?Grpd
She (%) = Sheo (Mfd)——— Sh,, (FormMfd) > Shu, (SupFormMfd) > She, (SupFormMfd 5;) T Sho (SupFormMfd /4,)
o (n2)"
OOGI‘pd( H%( Hw( H H/E H/gz
(n2)+
discre;ce cohesitve dsi}fjfgi};zg;l synthetict relati;/e D-geometry
geometry geometry geometry supergeometry geometry

mMfd )

A1007}

A1001]) 2d A}y

A110U1008
jos-qutod

A1001}
sodo)

sodog
TSI

Adojowroy

[epowt
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The key now is that super formal smooth homotopy theory exhibits the following abstract structure.

Theorem 1.1.3. The homotopy theory H := Sho, (SupFormMfd) over the site of def. carries a system
of idempotent co-(co-)monads as follows:

id S| id
Y Y
= o ~
synthetic N N
supergeometry
~ B Rh ~ IOCRo\l
% L v
§R S I =~ locp
synthetic
differential 1 1
geometry
locp =~ R . &
% %
locgr =~» Tg = b
cohesive L L
geometry
4|
% L v
discrete @ ; *
geometry

Here
e cach O 40 is an adjunction of idempotent co-(co-)monads arising from an adjoint triple;

e O1 < O2 means that (U1 X ~ X) = (02X ~ X).
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The existence of a progression of modal operators in theorem [1.1.3]is strong condition on an co-topos H.
This suggests that much of the differential geometry available in Sh., (SupFormMfd) may be seen abstractly
from reasoning in the internal language of oco-toposes with such a progression of modal operators added.
This abstract homotopy theory might be called super differential cohesive homotopy theory, or just cohesive
homotopy theory for short. In [?] it is shown that:

Claim 1.1.4. In super differential cohesive homotopy theory, fundamental physics is syntheticallﬂ azriom-
atized

1. naturally — the formalization is elegant and meaningful;
2. faithfully — the formalization captures the deep nontrivial phenomena;

3. usefully — the formalization yields proofs and constructions that are unfeasible otherwise.

At the International Congress of Mathematics in Paris, 1900, David Hilbert stated his list of 23 central
open questions of mathematics [Hil900]. Among them, the sixth problem has possibly received the least
attention from mathematicians [Cor04], but: “From all the problems in the list, the sixth is the only one
that continually engaged [Hilbert’s] efforts over a very long period, at least between 1894 and 1932.” [Cor06].
Hilbert stated the problem as follows:

Hilbert’s problem 6. To treat by means of axioms, those physical sciences in which mathematics plays an
important part [...] try first by a small number of axioms to include as large a class as possible of physical
phenomena, and then by adjoining new azioms to arrive gradually at the more special theories. [...] take
account not only of those theories coming near to reality, but also, as in geometry, all logically possible
theories .

Since then, various aspects of physics have been given a mathematical formulation. The following table,
necessarily incomplete, gives a broad idea of central concepts in theoretical physics and the mathematics
that captures them.

physics mathematics

prequantum physics differential geometry

18xx-19xx Lagrangian mechanics  variational calculus
18xx-19xx Hamiltonian mechanics symplectic geometry

1910s gravity Riemannian geometry

1950s gauge theory Chern-Weil theory

2000s higher gauge theory differential cohomology
\ quantum physics noncommutative algebra

1920s quantum mechanics operator algebra

1960s local observables co-sheaf theory

1990s-2000s | local field theory (00, n)-category theory

These are traditional solutions to aspects of Hilbert’s sixth problem. Two points are noteworthy: on
the one hand the items in the list are crown jewels of mathematics; on the other hand their appearance is
somewhat unconnected and remains piecemeal.

9 A synthetic axiomatization specifies intended properties of an object, in contrast to an analytic axiomatization which
specifies how to build the intended object from more basic constituents. In synthetic formalization, a duck is what quacks like
a duck, whereas in analytic formalization a duck has to be built out of its molecules. Euclid’s plane geometry is synthetic,
Descartes’ plane geometry is analytic.
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Towards the end of the 20th century, William Lawvere, the founder of categorical logic [Shul6b], aimed
for a more encompassing answer that formulates the axiomatization of physics natively in a well-adapted
foundation of mathematics itself. He suggested to

1. rest the foundations of mathematics itself in topos theory [Law65];
2. build the foundations of physics synthetically inside topos theory by

(a) imposing properties on a topos which ensure that the objects have the structure of differential
geometric spaces [Law98, [Kock06];

(b) formalizing classical mechanics on this basis by universal constructions
(“Categorical dynamics” [Law67], “Toposes of laws of motion” [Law97]);

3. use adjunctions on the topos to formalize dualities [Law69, [Lam81] and in particular used adjoint
idempotent (co-)monads (adjoint closure operators) to formalize qualitative properties [Law91l, [Law07].

What makes toposes a good foundation for mathematics is that working inside them is essentially like
working inside sets. Technically, elementary toposes are (finitely complete) regular locally cartesian closed
categories with a subobject classifier; and the internal language of locally cartesian closed categories is
intuitionistic type theory [See84l [CIDy11]. This means essentially that one handles objects as if they were
sets, but has to stick to using only intuitionistic logic in doing so (avoiding the law of excluded middle).

Moreover, the existence of (co-)monads on the topos means precisely that this intuitionistic logic is
equipped with modal operators [Mog91l [Kob97], hence that the intuitionistic type theory is modal type
theory.

Hence, following Lawvere, we see categorical logic [Shul6b| as the natural formal backdrop on which to
approach Hilbert’s 6th problem:

Hilbert’s problem 6 (ITT). Find synthetic axioms for physics in modal type theory.

But with hindsight, this needs refinement in two ways:

1. modern mathematics naturally wants foundations not in topos theory, but in higher topos theory
[L-Topos|, [L-Alg];

2. modern physics needs to refine classical continuum mechanics to local quantum gauge field theory

(section [1.1.1)).

Hence there is need for refining Lawvere’s synthetic approach on Hilbert’s sixth problem
from classical physics formalized in synthetic differential geometry axiomatized in topos theory
to high energy physics formalized in higher differential geometry axiomatized in higher topos theory.

The internal language of co-toposes is thought to be homotopy type theory [UFP13l ?] with univalent
universes and higher inductive types (HoTT+UV+HIT):

Theorem 1.1.5. Assuming the initiality theorem [?] then

e HoTT has semantics in locally presentable locally Cartesian closed oco-categories [Shull2d];

o HoTT+UVgyict has semantics in the co-topos coGrpd [KLVI12J;

o HoTT+UVgyyict has semantics in a few infinite classes of co-presheaf co-toposes [ShullS, [Shullbal/;
Remark 1.1.6.

e HoTTHUV yeax is argued to have semantics in all co-toposes [Shull4];

e HoTT+UV+Modalities is developed in [LiSh15l [Shull5l [RSS15].
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Hilbert’s problem 6 (HoTT). Find synthetic azioms for physics in modal homotopy type theory.

Kock-Lawvere .
synthetic synthetic
diff. geometry higher diff. geometry
model topos oo-topos
internal intuitionistic homotopy
language type theory type theory
KL-axiom scheme progression of
axioms forcing adjoint modal operators
internal infinitesimals forcing super-differential cohesion
application elementary pre-quantum local
differential geometry gauge field theory

In the following we will not reason fully formally in cohesive homotopy type theory, but instead proceed
in the familiar pseudocode formerly known as mathematics. But all constructions that follow are manifestly
such that they lend themselves to full formalization in cohesive homotopy type theory. The formal translation
is being worked out elsewhere ([Shull5]).

1.1.3.2 Abstract differential cohomology We now survey a list of abstract constuctions and theorems
that follow formally for every homotopy theory H which is equipped with the first stage of adjoint (co-
Jmonads in theorem m These we call cohesive homotopy theories.

Definition 1.1.7. For H an oco-topos, write TH for the co-category of parameterized spectrum objects in
H.

Proposition 1.1.8 ([Jo08bl section 35]). TH is itself an co-topos. The spectra Stab(H) ~ T, H are precisely
the stable (linear) objects.

Example 1.1.9. For H = 0coGrpd then an object E € T,00Grpd is equivalently a spectrum, and for any
X € coGrpd < TooGrpd then
E*(X) ~ X, E|

is the E-cohomology spectrum of X. More generally, for 7 € T'xcoGrpd a bundle of spectra whose fibers are
equivalent to E, then
E*TT(X) ~ [X,7]x

is the 7-twisted E-cohomology spectrum of X [ABGHR13].

Example 1.1.10. For S a site, let H := Sh(S) be the hypercomplete co-topos over that site. The
stable Dold-Kan correspondence turns a sheaf of chain complexes A € Che(Sh(S)) into a spectrum object
HA e T,H— TH. Then

HA®*(X) ~ [X, HA]

is the sheaf hypercohomology of X with coefficients in A [Br73].

Proposition 1.1.11. For (1o b 4 4) : H = H a cohesive co-topos then also its tangent co-topos is
cohesive
(Tree 1ThATH): TH — TH..

Definition 1.1.12. For () an idempotent oco-(co-)monad on TH, write O for the homotopy (co-)fiber of
its (co-unit).
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Proposition 1.1.13 ([BNVI3]). For (ro 4b 48) : H = H a cohesive oo-topos, then for every A € T,H
the canonical hexagon

[y PR — |

Moo A

is homotopy exact, in that in addition to the diagonals being homotopy fiber sequences, also
1. both squares are homotopy cartesian;
2. both outer sequences are homotopy fiber sequences.

Proof. Use that homotopy pullback of stable objects is detected on homotopy fibers. Then use cohesion
and idempotency to find that the squares are homotopy cartesian.

Example 1.1.14. Let H be as in theorem Inside H the traditional Poincaré lemma is equivalent to
the statement that there is an equivalence

PR~ Q* eT.H.

This induces for each p € N an instance of the exact hexagon of prop. [1.1.13

. +2
Qe QZI de Rb
lemma / theorem
HBPHIR B (R/,Z) HBPHIR
YBP+(R/pZ) Br+27
Bockstein

The object appearing the middle is the Deligne complex
B (R/uZ) conn ~ H[Z 5 0 %8 b 498 ., qp+1],
For X e H <£> T.H then .
HPP2(X,Z) ~ 7o [X, BT (R/4Z))]

is known equivalently as

1. the ordinary differential cohomology of X in degree (p + 2);

2. the Deligne cohomology of X in degree (p + 2);

3. the equivalence classes of p-gerbe connections for band (R ,Z);

4. the equivalence classes of BP (R /,Z-principal bundles with connection.

Remark 1.1.15. In [?] it was observed that the natural hexagon that ordinary differential cohomology
sits in already characterizes it. The authors suggested that this may be true for generalized differential
cohomology theories. In view of this prop. may be regarded as the lift of the Brown representability
theorem from generalized cohomology theories to generalized differential cohomology theories.

61



Combining this observation with example we find that as we vary the slices of the cohesive co-topos,
it knows also about twisted differential cohomology:

] | cohomology | differential cohomology |
plain A € T,0oGrpd AcTH
twisted | 7 € TPic(A) ooGrpd T E TPic(A)H

Hence the hexagon in prop. [1.1.13| generally has the following interpretation:

connections . . curvature
de Rham differential—

on trivial bundles forms
regard as regard as curvature de Rham theorem
closed connections on rationalized
differential forms geometric bundles bundle
7 ~ P
regard as }gard as topol. class Chern_character
N e
flat ——— comparison map —— > shape of
connections P P bundles

Definition 1.1.16 ([BNV13]). Using that 7o, =~ locg: the universal property of mo, induces for each linear
cohesive object A € T,H a canonical morphism of the form

1
/ . [RL,5A] — 7oA.
0
o , ) 1
Proposition 1.1.17 ([BNV13]). In the situation of example|1.1.14}, the abstracty defined map fo from def.

s equivalent to traditional fiber integration of differential forms.

Proposition 1.1.18 (fundamental theorem of calculus [BNV13]). For every linear object A € T,H we have
1
| ed = G- b,
0
where d is the top morphism in prop. and where fol is the morphism from def. .

Remark 1.1.19. The statement of prop. [1.1.18 was long imposed as an extra axiom on differential coho-
mology theories (see [Bunl2]).

In summary, this shows that (mo, - b) synthetically axiomatizes the existence of differential cocycles.
The remaining monad f turns out to give the moduli spaces of such cocycles:

Definition 1.1.20. For n € N, write f,, for the n-image factorization of the unit id — .

Proposition 1.1.21. For H as in theorem [1.1.3, the diffeological spaces are equivalently the reduced 0-
truncated objects which are in addition #1-modal

DiffeologicalSp ~ H,, %3, — H.

Example 1.1.22. For H as in theorem and QP! € H the sheaf of differential forms and for ¥ € H any
smooth manifold, then the mapping space [%, 2P11] is not the diffeological space of differential (p+ 1)-forms
on ¥, but #; [, QP is.
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For object which are not O-truncated, concretification depends on a choice of co-filtration:

Definition 1.1.23. For X € H equipped with a co-filtration F*X, we say that its concretification is the
iterated homotopy fiber product

Conc(F*X) :=HhF'X x #F'X x ---,
i F1X 22X

with fx from def. [1.1.20] or rather, is the canonical morphism
conc : X — Conc(F*X).

Proposition 1.1.24. For BP*Y(R/4,Z) € H from prop. |1.1.14| and equipped with its canonical co-filtration
induced from the Hodge filtration on Q°, then for ¥ € H a smooth manifold, the concretification

B?(R/3Z)Conn(X) := Conc([Z, BP (R/4Z)))
is given by the diffeological (p 4+ 1)-groupoid of Deligne (p + 2)-cocycles on X.

Using this there is an axiomatization of the higher groups of symmetries of p-gerbes as they appeared in
section [L.1.1.5

Proposition 1.1.25. For any X € H and give V : X — BPTY(R/4Z)conn, then there is a homotopy fiber
sequence of the form

BP(R/pZ)FlatConn(X) —— Stab g y¢(x)(conc(V))

HamAut(X,V) —>Y . B(B?(R/,Z)FlatConn(X))

where Stab(...) denotes the stabilizer co-group of V in BP(R/,Z)Conn(X) under the canonical co-action of
the automorphism oco-group of ¥, and where HamAut(X, V) is the 1-image of the canonical map from there
to Aut(X).

Example 1.1.26. In the case that V is a U(1)-principal connection, KSy is the class of the traditioonal
Kostant-Souriau quantomorphism extension.

Proposition 1.1.27. With (X,V) as in prop. giwen an X fiber bundle E — X then definite
globalizations of V over E are equivalent to lifts of the structure group of E through Stabsug(x)(conc(V)) —
Aut(X). In particular KSv (F) is the obstruction class to the existence of such a globalization.

1.1.3.3 Abstract differential geometry We now survey a list of abstract constructions and theorems
that follow formally for every homotopy theory H which is equipped with the first and the second stage of
adjoint (co-)monads in theorem m These we call differential cohesive homotopy theories.

Proposition 1.1.28. In the situation of theorem[I.1.3, for ¥ € SmoothMfd — H then there is a pullback
diagram

Ty 2 %

p1 \L (pb) i'qg

s

where T°°Y is the formal neighbourhood of the diagonal of ¥, and IX is the coequalizer of the two projections

o ns
Ty Yy——= Q¥

_—
b2
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Remark 1.1.29. Hence X is what elsewhere is called the de Rham stack of X3, also denoted Xgr. Its sheaf
cohomology is crystalline cohomology.

Definition 1.1.30. For H a differential cohesive co-topos, say that a morphism f : X — Y is formally étale
if the naturality square of its S-unit is a homotopy pullback
7

=
— 53X

b

fC‘t (pb) i%‘f~
Y

&2

Y —
5

For V € Grp(H) a group object, say that a V-manifold is an object X € H equipped with a V -atlas, namely
with a correspondence of the form

such that both maps are formally étale and such that the right map is in addition a 1-epimorphism.

Proposition 1.1.31. For H a differential cohesive oo-topos and for V- € Grp(H) any group object, then its
formal disk bundle p1 : TV — V is canonically trivialized by left translation. Moreover, for X any V -
manifold, def. then the formal disk bundle of X is associated to a uniquely defined GL™ (V')-principal
bundle

Fr(X) — X,

its frame bundle, where
GL>(V) := Aut(D})

is the automorphism group of the formal disk around the neutral element in V.

Proposition [I.1.31] allows to abstractly speak of G-structure and torsion-free G-structure on V-manifolds,
in any differential cohesive co-topos, hence to formalize Cartan geometry, which subsumes (pseudo-)Riemannian
geometry, complex geometry, symplectic geometry, conformal geometry, etc. Moreover, G-structures natu-
rally arise as follows.

Proposition 1.1.32. Given a differential cocycle VV : V. — BPYL(R/,Z) and a V-manifold X, then there
is an co-functor from definite globalizations of VV over X to StabGL(V)(cochDV’E)-structures on the frame

bundle of X, where VP s the restriction of V to the infinitesimal neighbourhood of e in V. In particular
the class KS_ oy (Fr(X)) from prop. is an obstruction to the existence of such a globalization.

1.1.3.4 Abstract PDE theory We survey more abstract constructions and theorems that follow for-
mally for every differential cohesive homotopy theory, H i.e. one equipped with the first and second stage
of adjoint (co-)monads in theorem [[.1.3]

Definition 1.1.33. For any ¥ € H, write
(TR 4T3 i= ()"  (ns): = ()" o (n).) : Hyss — Hyy

for the base change (co-)monad along the unit of the S-monad.

Proposition 1.1.34. For H fmm then for E € FormMfd s, < H/x the (co-)monads in def.
come out as follows:

1. TS is the formal disk bundle of ¥ [Kock80, above prop. 2.2];
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2. JXE is the jet bundle of E [Kockl(, remark 7.3.1].

Proposition 1.1.35 ([Marv86],[Marv86l section 1.1]). In the situation of prop. |1.1.34}, the Eilenberg-Moore
category of jet coalgebras over X is equivalent to Vinogradov’s category of partial differential equations with
free variables in 3:

EM(Jg°) ~ PDEy, .
In particular the co-Kleisli category of the jet comonad is that of bundles over ¥ with differential operators

between them as morphisms.
K1(Jg°) ~ DiffOpy;, .

Since prop. [1.1.33| gives the jet comonad by base change, the co-Beck monadicity theorem gives in
generality that

Proposition 1.1.36. There is an equivalence of co-categories
EM(Jg', H) ~ H/gx .

Write then
(=)=

H H/s H/gx

for the canonical map that regards objects of the differential cohesive co-topos as co-free homotopy partial
differential equations:

In the situation of example consider the universal decomposition of the differential forms (2°<P*1)s
regarded over &Y this way into horizontal and vertical forms.

p+1
QV

el

E (Q.Sp+1)2 Q;ISZH_l

M=o

Proposition 1.1.37. This induces a horizontal projection of the exact hexagon from example|1.1.14):

(Q°§p+1)Z dan (Qflﬂ)E
o
x o<p+1 / 3% \\‘\ +1,1
Q5 Qg
e N
N\ ~ N
(GBPFIR)s (BP* (R/AZ) conn)s o (OBPTR)s
\
\ i \
(bBPFIR)y; BY (R/hZ)conn (bBP°R)y
e N e
(be+1(R/hZ))g\ o (BP""QZ)Z\
OBPTH(R/Z))s (BP*Z)s

Bs



This is the abstract characterization of the Euler-Lagrange p-gerbes of section [1.1.1.3] Hence the front
hexagon in prop. now has the following interpretation.

lobally defined
gi any enne —variational Euler differential—- souree
agrangians forms
&ard as regard as curyature de Rham ‘kheorem
trivial Euler-Lagrange E;tél(znfifsg
Lagrangians p-gerbes ch:irge
topol. class e
regard as regard as P Chern character
N e N S
flat background
Euler-Lagrange topological
p-gerbes charge

Similarly there is a further filtration of horizontal projections which induces also the Lepage p-gerbes of

section [L1.1.41

Hence the abstract differential cohomology in cohesive homotopy theory combined with the abstract
manifold theory and abstract PDE theory of differential cohesive homotopy theory provides just the right
formal language for abstractly speaking about the prequantum field theory surveyed in section [[.1.1]
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1.2 Geometry

The following is an introduction to and review of some key aspects of differential geometry, connecting to
traditional formulations but with an eye towards the further developments below.

To some extent this is classical material, roughly along the lines of a textbook such as [Fra], but we
present it from a perspective that serves to motivate and prepare for the more general abstract developments
in section [4l

This section and the next has an online counterpart in [ScI3a] with more material and further pointers.

° — Coordinate systems

° — Smooth O-types
o [[.2.3] - Differential forms

e [[:274 - Integration

. — Smooth homotopy types
. — Principal bundles

e [1.2.7]— Principal connections

o [[.2.8] - Characteristic classes

° — Lie algebras
e [1.2.10|— Chern-Weil homomorphism

1.2.1 Coordinate systems

Every kind of geometry is modeled on a collection of archetypical basic spaces and geometric homomor-
phisms between them. In differential geometry the archetypical spaces are the abstract standard Cartesian
coordinate systems, denoted R™, in every dimension n € N, and the geometric homomorphism between them
are smooth functions R™* — R™2 hence smooth (and possibly degenerate) coordinate transformations.

Here we discuss the central aspects of the nature of such abstract coordinate systems in themselves. At
this point these are not yet coordinate systems on some other space. That is instead the topic of the next
section Smooth spaces.

1.2.1.1 The continuum real (world-)line The fundamental premise of differential geometry as a
model of geometry in physics is the following.

Premise. The abstract worldline of any particle is modeled by the continuum real line R.

This comes down to the following sequence of premises.

1. There is a linear ordering of the points on a worldline: in particular if we pick points at some intervals
on the worldline we may label these in an order-preserving way by integers

Z.

2. These intervals may each be subdivided into n smaller intervals, for each natural number n. Hence we
may label points on the worldline in an order-preserving way by the rational numbers

Q.
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3. This labeling is dense: every point on the worldline is the supremum of an inhabited bounded subset
of such labels. This means that a worldline is the real line, the continuum of real numbers

R.

The adjective“real” in “real number” is a historical shadow of the old idea that real numbers are related
to observed reality, hence to physics in this way. The experimental success of this assumption shows that it
is valid at least to very good approximation.

Speculations are common that in a fully exact theory of quantum gravity, currently unavailable, this
assumption needs to be refined. For instance in p-adic physics one explores the hypothesis that the relevant
completion of the rational numbers as above is not the reals, but p-adic numbers @, for some prime number
p € N. Or for example in the study of QF T on non-commutative spacetime one explore the idea that at small
scales the smooth continuum is to be replaced by an object in noncommutative geometry. Combining these
two ideas leads to the notion of non-commutative analytic space as a potential model for space in physics.
And so forth.

For the time being all this remains speculation and differential geometry based on the continuum real line
remains the context of all fundamental model building in physics related to observed phenomenology. Often
it is argued that these speculations are necessitated by the very nature of quantum theory applied to gravity.
But, at least so far, such statements are not actually supported by the standard theory of quantization: we
discuss below in Geometric quantization how not just classical physics but also quantum theory, in the best
modern version available, is entirely rooted in differential geometry based on the continuum real line.

This is the motivation for studying models of physics in geometry modeled on the continuum real line.
On the other hand, in all of what follows our discussion is set up such as to be maximally independent of
this specific choice (this is what topos theory accomplishes for us). If we do desire to consider another choice
of archetypical spaces for the geometry of physics we can simply “change the site”, as discussed below and
many of the constructions, propositions and theorems in the following will continue to hold. This is notably
what we do below in Supergeometric coordinate systems when we generalize the present discussion to a flavor
of differential geometry that also formalizes the notion of fermion particles: “differential supergeometry”.

1.2.1.2 Cartesian spaces and smooth functions
Definition 1.2.1. A function of sets f : R — R is called a smooth function if, coinductively:
1. the derivative % : R — R exists;

2. and is itself a smooth function.

Definition 1.2.2. For n € N, the Cartesian space R™ is the set
B = {(a!, - a")fo' € B}
of n-tuples of real numbers. For 1 < k < n write
i*:R—R"

for the function such that i*(x) = (0,---,0,2,0,---,0) is the tuple whose kth entry is # and all whose other
entries are 0 € R; and write

PP R” 5 R
for the function such that p*(z!, .-, 2") = z*.

A homomorphism of Cartesian spaces is a smooth function
f:R™ 5 R"2

hence a function f:R™ — R™ such that all partial derivatives exist and are continuous.
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Example 1.2.3. Regarding R™ as an R-vector space, every linear function R™ — R"2 is in particular a
smooth function.

Remark 1.2.4. But a homomorphism of Cartesian spaces in def. is not required to be a linear map.
We do not regard the Cartesian spaces here as vector spaces.

Definition 1.2.5. A smooth function f : R™ — R”2 is called a diffeomorphism if there exists another
smooth function R™ — R™* such that the underlying functions of sets are inverse to each other

fog=id
and
go f=id.
Proposition 1.2.6. There exists a diffeornorphism R™ — R™2 precisely if ny = ns.
Definition 1.2.7. We will also say equivalently that
1. a Cartesian space R is an abstract coordinate system;
2. a smooth function R™ — R™2 is an abstract coordinate transformation;

3. the function p* : R® — R is the kth coordinate of the coordinate system R™. We will also write this
function as ¥ : R” — R.

4. for f:R™ — R™ a smooth function, and 1 < k < ny we write
(a) fFe=plof
(b) (F1- ) = f.
Remark 1.2.8. It follows with this notation that
idgn = (z!,---,2") : R" — R".
Hence an abstract coordinate transformation
f:R™ > R™
may equivalently be written as the tuple
(f1 (xl,--~ ,x”1> PN (xl,... 795"1)) .
Proposition 1.2.9. Abstract coordinate systems form a category — to be denoted CartSp — whose
e objects are the abstract coordinate systems R™ (the class of objects is the set N of natural numbers n);
e morphisms f : R™ — R™2 are the abstract coordinate transformations = smooth functions.

Composition of morphisms is given by composition of functions.
We have that

1. The identity morphisms are precisely the identity functions.
2. The isomorphisms are precisely the diffeomorphisms.

Definition 1.2.10. Write CartSp°? for the opposite category of CartSp.
This is the category with the same objects as CartSp, but where a morphism R™* — R"2 in CartSp°? is
given by a morphism R™ <« R™2 in CartSp.
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We will be discussing below the idea of exploring smooth spaces by laying out abstract coordinate systems
in them in all possible ways. The reader should begin to think of the sets that appear in the following
definition as the set of ways of laying out a given abstract coordinate systems in a given space. This is the
content of definition below.

Remark 1.2.11 (The fundamental theorems about smooth functions). The special properties of smooth
functions that make them play an important role, different from other classes of functions, are the following;:

1. Milnor’s exercise [KoMiSI93| 35.8-35.10]: the functor that takes smooth manifolds (not necessarily
compact!) to their R-algebras of smooth functions is fully faithful

SmthMfd < CAlgp”

2. Hadamard’s lemma: the remainder of the first order Taylor expansion of a smooth function R — R
is 22g, where g is another smooth function.

3. Borel’s theorem: every formal power series in one variable is the Taylor expansion of some smooth
function

4. derivations of R-algebras of smooth functions on a smooth manifold X are equivalently vector fields:
Derg (C* (X)) ~ Vect(X).

5. There exist bump functions such that every open cover of a smooth manifold admits a subordinate
partition of unity.

“Milnor’s exercise” says that smooth manifolds in differential geometry are much like affine schemes in
algebraic geometry. (Notice that a crucial difference is that the Kahler differentials of R-algebras of smooth
functions do not exhaust the smooth differential forms. )

With this, the Hadamard lemma implies that we may enlarge the category of smooth manifolds inside
CAlgy? to a category of “infinitesimally thickened smooth manifolds” akin to formal schemes, containing
objects such as the first order infinitesimal interval D' (1). The fact that derivations of smooth functions are
equivalently vector fields then implies that morphisms of the form D!(1) — X in this larger category are
equivalently vectors on X. This is a key point of the standard models for “synthetic differentia geometry”
see section

In summary this says that smooth functions share some key properties of function algebras in algebraic
geometry. The last point above says that in addition, and in stark contrast to function algebras in algebraic
geometry, they are still flexible enough to admit bump functions and partitions of unity subordinate to open
covers.

1.2.2 Smooth O-types

We now discuss concretely the definition of smooth sets/smooth spaces and of homomorphisms between
them, together with basic examples and properties.

1.2.2.1 Plots of smooth spaces and their gluing The general kind of “smooth space” that we want
to consider is something that can be probed by laying out coordinate systems inside it, and that can be
obtained by gluing all the possible coordinate systems in it together.

At this point we want to impose no further conditions on a “space” than this. In particular we do not
assume that we know beforehand a set of points underlying X. Instead, we define smooth spaces X entirely
operationally as something about which we can ask “Which ways are there to lay out R™ inside X?” and
such that there is a self-consistent answer to this question. The following definitions make precise what we
mean by this.

For brevity we will refer “a way to lay out a coordinate system in X” as a plot of X. The first set of
consistency conditions on plots of a space is that they respect coordinate transformations. This is what the
following definition formalizes.
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Definition 1.2.12. A smooth pre-space X is
1. a collection of sets: for each Cartesian space R™ (hence for each natural number n) a set
X (R™) € Set
— to be thought of as the set of ways of laying out R™ inside X;

2. for each abstract coordinate transformation, hence for each smooth function f : R"* — R"2 a function
between the corresponding sets
X(f): X(R™) —» X(R™)

— to be thought of as the function that sends a plot of X by R™ to the correspondingly transformed
plot by R™ induced by laying out R™ inside R"2.

such that this is compatible with coordinate transformations:
1. the identity coordinate transformation does not change the plots:

X(/Lan) - ZdX(]Rn) 5

2. changing plots along two consecutive coordinate transformations f;: R™ — R™ and fo: R™ — R"s
is the same as changing them along the composite coordinate transformation fs o f1:

X(f1) o X(f2) = X(f20 f1)-

But there is one more consistency condition for a collection of plots to really be probes of some space: it
must be true that if we glue small coordinate systems to larger ones, then the plots by the larger ones are
the same as the plots by the collection of smaller ones that agree where they overlap. We first formalize this
idea of “plots that agree where their coordinate systems overlap”.

Definition 1.2.13. Let X be a smooth pre-space, def. [1.2.12] For {U; — R"},¢ a differentially good open

cover, def. let
GluedPlots({U; — R"}, X)) € Set

be the set of I-tuples of U;-plots of X which coincide on all double intersections

U,NU;

UZ/ \UJ
N

(also called the matching families of X over the given cover):
GluedPlots({U; — R"}, X) := { (0 € X(Ui));er | Vijer = X(u)(pi) = X(15)(p)) } -
Remark 1.2.14. In def. [1.2.13| the equation
X (i) (pi) = X () (ps)
says in words:
“The plot p; of X by the coordinate system U; inside the bigger coordinate system R™ coincides with the

plot p; of X by the other coordinate system U; inside X when both are restricted to the intersection U; N U;
of U; with Uy inside R™.”
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Remark 1.2.15. For each differentially good open cover {U; — X };cr and each smooth pre-space X, def.
1.2.12] there is a canonical function

X(R") = GluedPlots({U; — R™}, X)

from the set of R™-plots of X to the set of tuples of glued plots, which sends a plot p € X(R"™) to its
restriction to all the ¢;: U; — R™:

p = (X(0i)(p))ier -

If X is supposed to be consistently probeable by coordinate systems, then it must be true that the set
of ways of laying out a coordinate system R"™ inside it coincides with the set of ways of laying out tuples of
glued coordinate systems inside it, for each good cover {U; — R™} as above. Therefore:

Definition 1.2.16. A smooth pre-space X, def. [1.2.12]is a smooth space if for all differentially good open
covers {U; — R™}, def. the canonical function of remark [1.2.15| from plots to glued plots is a bijection

X (R") 5 GluedPlots({U; — R"}, X).

Remark 1.2.17. We may think of a smooth space as being a kind of space whose local models (in the
general sense discussed at geometry) are Cartesian spaces:

While definition explicitly says that a smooth space is something that is consistently probeable by
such local models; by a general abstract fact that is sometimes called the co- Yoneda lemma, it follows actially
that smooth spaces are precisely the objects that are obtained by gluing coordinate systems together.

For instance we will see that two open 2-balls R? ~ D? along a common rim yields the smooth space
version of the sphere S?, a basic example of a smooth manifold. But before we examine such explicit
constructions, we discuss here for the moment more general properties of smooth spaces.

Example 1.2.18. For n € R"”, there is a smooth space, def. [1.2.16] whose set of plots over the abstract
coordinate systems R” is the set
CartSp(R*, R") € Set

of smooth functions from R to R™.
Clearly this is the rule for plots that characterize R" itself as a smooth space, and so we will just denote
this smooth space by the same symbols “R™”:

R": R¥ — CartSp(R* R").

In particular the real line R is this way itself a smooth space. In a moment we find a formal justification for
this slight abuse of notation.

Of course this is a special case of the general fact that smooth manifolds are smooth spaces. Further
below we find an intrinsic definition of smooth manifolds from withing the theory of smooth spaces, but for
readers already familiar with smooth manifolds, we should state the following:

Example 1.2.19. For X € SmthMfd, then it defines a smooth space in the sense of def. by taking
the set of plots over the abstract coordinate chart R¥ to be the set of smooth functions C*°(R¥, X) between
smooth manifolds.

This construction constitutes a fully faithful functor

SmthMfd < SmoothOType

embedding the category of smooth manifolds into that of smooth spaces.

Another basic class of examples of smooth spaces are the discrete smooth spaces:
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Definition 1.2.20. For S € Set a set, write
DiscS € SmoothOType
for the smooth space whose set of U-plots for every U € CartSp is always S.
DiscS: U — S

and which sends every coordinate transformation f: R™ — R™2 to the identity function on S.
A smooth space of this form we call a discrete smooth space.

More examples of smooth spaces can be built notably by intersecting images of two smooth spaces inside
a bigger one. In order to say this we first need a formalization of homomorphism of smooth spaces. This we
turn to now.

1.2.2.2 Homomorphisms of smooth spaces We discuss “functions” or “maps” between smooth
spaces, def. [[.2.16] which preserve the smooth space structure in a suitable sense. As with any notion
of function that preserves structure, we refer to them as homomorphisms.

The idea of the following definition is to say that whatever a homomorphism f : X — Y between two
smooth spaces is, it has to take the plots of X by R™ to a corresponding plot of Y, such that this respects
coordinate transformations.

Definition 1.2.21. Let X and Y be two smooth spaces, def. [1.2.16| Then a homomorphism f: X — Y is

e for each abstract coordinate system R™ (hence for each n € N) a function fgn : X (R") — Y(R") that
sends R™-plots of X to R™-plots of Y

such that

e for each smooth function ¢ : R"* — R"2 we have

Y(¢) o frm = frra © X(¢) )

hence a commuting diagram

frn1
E—

X (R™)

lX(@

X (R"2) L Y (R™)
For fi: X — Y and f5 : Y — Z two homomorphisms of smooth spaces, their composition fyo f1: X — Z is
defined to be the homomorphism whose component over R™ is the composite of functions of the components
of f1 and fs:

(f20 fi)rn == fogn © fign -

Definition 1.2.22. Write SmoothOType for the category whose objects are smooth spaces, def. [1.2.16] and
whose morphisms are homomorphisms of smooth spaces, def. [1.2.21

At this point it may seem that we have now two different notions for how to lay out a coordinate system
in a smooth space X: on the hand, X comes by definition with a rule for what the set X (R™) of its R™-plots
is. On the other hand, we can now regard the abstract coordinate system R itself as a smooth space, by
example [[.2.18] and then say that an R™-plot of X should be a homomorphism of smooth spaces of the form
R™ — X.

The following proposition says that these two superficially different notions actually naturally coincide.
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Proposition 1.2.23. Let X be any smooth space, def. and regard the abstract coordinate system R™
as a smooth space, by example|1.2.18. There is a natural bijection

X(Rn) ~ HOmSmoothOTpr (Rn’ X)

between the postulated R™-plots of X and the actual R™-plots given by homomorphism of smooth spaces
R™ — X.

Proof. This is a special case of the Yoneda lemma. The reader unfamiliar with this should write out the
simple proof explicitly: use the defining commuting diagrams in def. [[.2:21] to deduce that a homomorphism
f:R™ — X is uniquely fixed by the image of the identity element in R™(R") := CartSp(R™, R™) under the
component function fgn : R™"(R™) — X (R™). O

Example 1.2.24. Let R € SmoothOType denote the real line, regarded as a smooth space by def. [[.2.18]
Then for X € SmoothOType any smooth space, a homomorphism of smooth spaces

f+ X—=R

is a smooth function on X. Proposition [1.2.23|says here that when X happens to be an abstract coordinate
system regarded as a smooth space by def. [1.2.18] then this general notion of smooth functions between
smooth spaces reproduces the basic notion of def.

Definition 1.2.25. The 0-dimensional abstract coordinate system R? we also call the point and regarded
as a smooth space we will often write it as

* € SmoothOType.
For any X € SmoothOType, we say that a homomorphism
rix— X
is a point of X.

Remark 1.2.26. By prop. [1.2:23] the points of a smooth space X are naturally identified with its 0-
dimensional plots, hence with the “ways of laying out a 0-dimensional coordinate system” in X:

Hom(x, X) ~ X (R?).

1.2.2.3 Products and fiber products of smooth spaces

Definition 1.2.27. Let X,Y € SmoothOType by two smooth spaces. Their product is the smooth space
X XY € SmoothOType whose plots are pairs of plots of X and Y:

(X xY)R") := X(R") x Y(R™) € Set.
The projection on the first factor is the homomorphism
pr: X XY > X
which sends R™-plots of X X Y to those of X by forming the projection of the cartesian product of sets:
pign: X(R™) x Y(R™) B X(R").
Analogously for the projection to the second factor

pe: X XY =Y.
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Proposition 1.2.28. Let x = RY be the point, regarded as a smooth space, def. [1.2.25. Then for X €
SmoothOType any smooth space the canonical projection homomorphism

X xx—= X

is an isomorphism.

Definition 1.2.29. Let f: X — Z and ¢g: Y — Z be two homomorphisms of smooth spaces, def. [1.2.21
There is then a new smooth space to be denoted

X Xz Y € SmoothOType

(with f and g understood), called the fiber product of X and Y along f and g, and defined as follows:
the set of R"-plots of X Xz Y is the set of pairs of plots of X and Y which become the same plot of Z
under f and g, respectively:

(X xzY)(R") = {(px € X(R"),py € Y(R")) | frn(px) = gr=(py)} -

1.2.2.4 Smooth mapping spaces and smooth moduli spaces

Definition 1.2.30. Let 3, X € SmoothOType be two smooth spaces, def. [1.2.16] Then the smooth mapping
space
[, X] € SmoothOType

is the smooth space defined by saying that its set of R™-plots is

2, X](R") := Hom(Z x R", X).

Here in ¥ x R™ we first regard the abstract coordinate system R™ as a smooth space by example [1.2.18
and then we form the product smooth space by def.

Remark 1.2.31. This means in words that an R™-plot of the mapping space [X, X] is a smooth R™-
parameterized collection of homomorphisms > — X.

Proposition 1.2.32. There is a natural bijection
Hom(K, [X, X]) ~ Hom(K x X, X)
for every smooth space K.

Proof. With a bit of work this is straightforward to check explicitly by unwinding the definitions. It
follows however from general abstract results once we realize that [—, —] is of course the internal hom of
smooth spaces. O

Remark 1.2.33. This says in words that a smooth function from any K into the mapping space [3, X] is
equivalently a smooth function from K x ¥ to X. The latter we may regard as a K-parameterized smooth
collections of smooth functions ¥ — X. Therefore in view of the previous remark this says that
smooth mapping spaces have a universal property not just over abstract coordinate systems, but over all
smooth spaces.

We will therefore also say that [, X] is the smooth moduli space of smooth functions from ¥ — X,
because it is such that smooth maps K — [X, X]| into it modulate, as we move around on K, a family of
smooth functions ¥ — X, depending on K.

Proposition 1.2.34. The set of points, def. of a smooth mapping space (2, X] is the bare set of
homomorphisms % — X : there is a natural isomorphism

Hom(x, [X, X]) ~ Hom(%, X).
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Proof. Combine prop. [1.2.32| with prop. [1.2.28 O

Example 1.2.35. Given a smooth space X € SmoothOType, its smooth path space is the smooth mapping
space
PX := R} X].

By prop. |1.2.34| the points of PX are indeed precisely the smooth trajectories R — X. But PX also knows
how to smoothly vary such smooth trajectories.

This is central for variational calculus which determines equations of motion in physics.

Remark 1.2.36. In physics, if X is a model for spacetime, then PX may notably be interpreted as the
smooth space of worldlines in X, hence as the smooth space of paths or trajectories of a particle in X.

Example 1.2.37. If in the above example [1.2.35| the path is constrained to be a loop in X, one obtains the
smooth loop space
LX :=[S' X]

(where the circle S! is regarded as a smooth space by example [1.2.19).

1.2.2.5 The smooth moduli space of smooth functions In example [[.2:24] we saw that a smooth
function on a general smooth space X is a homomorphism of smooth spaces, def. [1.2.21

f: X —-R.

The collection of these forms the hom-set HomgmoothoType(X,R). But by the discussion in [1.2.2.4] such
hom-sets are naturally refined to smooth spaces themselves.

Definition 1.2.38. For X € SmoothOType a smooth space, we say that the moduli space of smooth functions
on X is the smooth mapping space (def. [1.2.30)), from X into the standard real line R

[X,R] € SmoothOType.

We will also denote this by
C*(X) :=[X,R],

since in the special case that X is a Cartesian space this is the smooth refinement of the set C*°(X) of
smooth functions, def. [[.:2.1] on X.

Remark 1.2.39. We call this a moduli space because by prop. [1.2.32] above and in the sense of remark
[1.2.33] it is such that smooth functions into it modulate smooth functions X — R.

By prop. [1.2.34] a point * — [X, R!] of the moduli space is equivalently a smooth function X — R!.
1.2.2.6 Outlook Later we define/see the following:

e A smooth manifold is a smooth space that is locally equivalent to a coordinate system;

e A diffeological space is a smooth space such that every coordinate labels a point in the space. In other
words, a diffeological space is a smooth space that has an underlying set Xy € Set of points such that
the set of R™-plots is a subset of the set of all functions:

X (R™) < Functions(R", S;) .

We discuss below a long sequence of faithful inclusions
{coordinate systems } < {smooth manifolds} — {diffeological spaces} < {smooth spaces} — {smooth
groupoids} < - - -
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1.2.3 Differential forms

A fundamental concept in differential geometry is that of differential forms. We here introduce this in the
spirit of the topos of smooth spaces.

1.2.3.1 Differential forms on abstract coordinate systems We introduce the basic concept of a
smooth differential form on a Cartesian space R™. Below in [1.2.68| we use this to define differential forms on
any smooth space.

Definition 1.2.40. For n € N a smooth differential 1-form w on the Cartesian space R™ is an n-tuple
(fs € CartSp (R, R))].,

of smooth functions, which we think of equivalently as the coefficients of a formal linear combination

w = z”: fidz?
i=1

on a set {dx!,dz?, - - ,da"} of cardinality n.
Write
Q' (R*) ~ CartSp(R*, R)** € Set

for the set of smooth differential 1-forms on R¥.

Remark 1.2.41. We think of dz? as a measure for infinitesimal displacements along the x’-coordinate of a
Cartesian space. This idea is made precise by the notion of parallel transport.

If we have a measure of infintesimal displacement on some R’ and a smooth function f: R® — R?, then
this induces a measure for infinitesimal displacement on R*: We may first send the displacement along f
from R® to R? and then measure it there. This is captured by the following definition.

Definition 1.2.42. For ¢: R® — R! a smooth function, the pullback of differential 1-forms along ¢ is the
function

¢*: Q'R = Q'(R?)
between sets of differential 1-forms, def. which is defined on basis-elements by

¢t

oI
j=1

¢*da’ = dz’

and then extended linearly by

7

i=1 j:l

Remark 1.2.43. The term “pullback” in pullback of differential forms is not really related, certainly not
historically, to the term pullback in category theory. One can relate the pullback of differential forms to
categorical pullbacks, but this is not really essential here. The most immediate property that both concepts
share is that they take a morphism going in one direction to a map between structures over domain and
codomain of that morphism which goes in the other direction, and in this sense one is “pulling back structure
along a morphism” in both cases.
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Even if in the above definition we speak only about the set Q! (R¥) of differential 1-forms, this set naturally
carries further structure.

Definition 1.2.44. The set Q!(R*¥) is naturally an abelian group with addition given by componentwise
addition

w+ A= szdm +Z)\ da?

k
szJr)\ dzj

Moreover, the abelian group Ql(Rk) is naturally equipped with the structure of a module over the ring
C>(R¥,R) = CartSp(R¥,R) of smooth functions, where the action C*°(R¥ R) x Q}(R¥) — Q! (R¥) is given
by componentwise multiplication

k

f~w:Z(f-wi)dx

i=1

Remark 1.2.45. More abstractly, this just says that Q(R¥) is the free module over C*°(R¥) on the set

{dxi}fﬂ

The following definition captures the idea that if dz® is a measure for displacement along the x’-
coordinate, and da’/ a measure for displacement along the z’ coordinate, then there should be a way to
get a measure, to be called da’ Ada/, for infinitesimal surfaces (squares) in the x*-z7-plane. And this should
keep track of the orientation of these squares, with

dz? Adat = —dz® Ada?
being the same infinitesimal measure with orientation reversed.

Definition 1.2.46. For k € N, the smooth differential forms on R” is the exterior algebra
O (RF) := Ao sy 2" (RY)

over the ring C*(R¥) of smooth functions of the module 2!(R¥) of smooth 1-forms, prop. [1.2.44
For n € N we write Q"(R¥) for the sub-module of degree n and call its elements the smooth differential
n-forms.

Remark 1.2.47. Explicitly this means that a differential n-form w € Q"(R¥) on R¥ is a formal linear
combination over C>°(R¥) of basis elements of the form da™ A --- A dai® for iy < iy < --- < ip:

w = Z Wiy, da™ A Adatn

>
1<i1 <o < <ip <k

Remark 1.2.48. The pullback of differential 1-forms of def. |1.2.40] extends as an C*(R¥)-algebra homo-
morphism to Q"(—), given for a smooth function f: R¥ — R¥ on basis elements by

f* (d.’Eil /\.../\dxin) — (f*dl'“ Ao /\f*dl’i") )
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1.2.3.2 Differential forms on smooth spaces Above we have defined differential n-forms on abstract
coordinate systems. Here we extend this definition to one of differential n-forms on arbitrary smooth spaces.
We start by observing that the space of all differential n-forms on coordinate systems is itself naturally a
smooth space.

Proposition 1.2.49. The assignment of differential n-forms
Q"(—): RF s Q™(R¥)
of def. together with the pullback of differential forms-functions of def.

RF —— Q1 (RM)

fT if*
RF2 —— Q1 (RF2)
defines a smooth space in the sense of def. |[1.2.16}:

0"(—) € Smooth0Type.

Definition 1.2.50. We call this
Q" € Smooth0Type

the universal smooth moduli space of differential n-forms.

The reason for this terminology is that homomorphisms of smooth spaces into Q! modulate differential
n-forms on their domain, by prop. [1.2.23| (and hence by the Yoneda lemma):

Example 1.2.51. For the Cartesian space R regarded as a smooth space by example [1.2.18] there is a
natural bijection
Q" (R¥) ~ Hom(R*, Q")

between the set of smooth n-forms on R™ according to def. [[.2:40] and the set of homomorphism of smooth
spaces, RF — Q" according to def. [1.2.21

In view of this we have the following elegant definition of smooth n-forms on an arbitrary smooth space.

Definition 1.2.52. For X € SmoothOType a smooth space, def. [1.2.16] a differential n-form on X is a
homomorphism of smooth spaces of the form

w: X = Q"(-).

Accordingly we write
0"(X) := Smooth0Type(X, Q")

for the set of smooth n-forms on X.

We may unwind this definition to a very explicit description of differential forms on smooth spaces. This
we do in a moment in remark [L2.56]
Notice the following

Proposition 1.2.53. Differential 0-forms are equivalently smooth R-valued functions:

0 ~R.
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Definition 1.2.54. For f: X — Y a homomorphism of smooth spaces, def. [L.2.21] the pullback of differential
forms along f is the function
famYy) - Q" (X)

given by the hom-functor into the smooth space Q" of def. [1.2.50

f*:=Hom(f,Q").
This means that it sends an n-form w € Q"(Y) which is modulated by a homomorphism ¥ — Q" to the
n-form f*w € Q™(X) which is modulated by the composite X Ly 5 on.

By the Yoneda lemma we find:

Proposition 1.2.55. For X = RF and Y = R¥ definition reproduces def. .

Remark 1.2.56. Using def. for unwinding def. [1.2.52] yields the following explicit description:
a differential n-form w € Q™(X) on a smooth space X is

1. for each way ¢: RF — X of laying out a coordinate system R* in X a differential n-form

P*w € QM(RF)
on the abstract coordinate system, as given by def.

2. for each abstract coordinate transformation f: R*¥2> — R¥ a corresponding compatibility condition
between local differential forms ¢;: RF* — X and ¢o: RF2 — X of the form

[foiw = gow.

Hence a differential form on a smooth space is simply a collection of differential forms on all its coordinate
systems such that these glue along all possible coordinate transformations.

The following adds further explanation to the role of 2" € SmoothOType as a moduli space. Notice that
since Q" is itself a smooth space, we may speak about differential n-forms on Q" itself.

Definition 1.2.57. The universal differential n-form is the differential n-form
Wiy € (")
which is modulated by the identity homomorphism id: Q™ — Q™.
With this definition we have:

Proposition 1.2.58. For X € SmoothOType any smooth space, every differential n-form on X, w € Q™(X)
is the pullback of differential forms, def. of the universal differential n-form, def. along a

homomorphism f from X into the moduli space Q™ of differential n-forms:
W= f*wgniv .
Remark 1.2.59. This statement is of course a tautology. Nevertheless it is a very useful tautology to make

explicit. The whole concept of differential forms on smooth spaces here may be thought of as simply a
variation of the theme of the Yoneda lemma.
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1.2.3.3 Concrete smooth spaces The smooth universal moduli space of differential forms Q"(—) from
def. is noteworthy in that it has a property not shared by many smooth spaces that one might think
of more naively: while evidently being “large” (the space of all differential forms!) it has “very few points”
and “very few k-dimensional subspaces” for low k. In fact

Proposition 1.2.60. For k < n the smooth space Q™ (def. admits only a unique probe by R¥:
Hom(R*, Q") ~ Q" (R¥) = {0} .

So while Q™ is a large smooth space, it is “not supported on probes” in low dimensions in as much as
one might expect, from more naive notions of smooth spaces.

We now formalize this. The formal notion of a smooth space which is supported on its probes is that of a
concrete object. There is a universal map that sends any smooth space to its concretification. The universal
moduli spaces of differential forms turn out to be non-concrete in that their concretification is the point.

Definition 1.2.61. For X € SmoothOType a smooth space (definition , write
I'(X) € Set
for its underlying set of points which is equivalently
['(X) := X(R?) = HomgsmoothoType (*, X) -

This extends to a functor
I' : Smooth0Type — Set .

Remark 1.2.62. If thinking of the category of smooth spaces as a category of sheaves, then the functor I'
in def. [1.2.61] is called its global section functor.

Definition 1.2.63. Let X € SmoothOType a smooth space (definition [1.2.22). We write §X for the smooth
space whose plots are given by all maps of underlying sets

§X : R" — Homget (I'(R™),T(X))

(where T is the functor from def. . Moreover, we define a natural morphism of smooth spaces
DeCohy : X — X

given on R”-plots by the function

Irn, x

X(Rn) i> HomSmoothOType(Rn, X) — Set(F(U), F(X)) s

where the first function is the bijection from the Yoneda lemma (prop. [1.2.23)) and the second function is
the components of the functor I' from def. [1.2.61

Definition 1.2.64. Let X € SmoothOType a smooth space (definition |1.2.22]).

1. We call X concrete if the morphism
DeCohx: X — X

(from def. [1.2.63) is a monomorphism.

2. We say the concretification Conc(X) € SmoothOType of X is the image factorization of DeCohyx,
hence the factorization into an epimorphism followed by a monomorphism

DeCohx : X — Conc(X) — #X .
Remark 1.2.65. Hence the concretification Conc(X) of a smooth space X is itself a concrete smooth space
and it is universal with this property.

Proposition 1.2.66. Forn > 1 we have
Conc(Q") ~ *.

In this sense the smooth moduli space of differential n-forms is maximally non-concrete.
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1.2.3.4 Smooth moduli spaces of differential forms on a smooth space We discuss the smooth
space of differential forms on a fized smooth space X.

Remark 1.2.67. Let X € SmoothOType a smooth space (definition [1.2.22). Then the mapping space (def.

1.2.30)
[X, Q"] € Smooth0Type

is the smooth space whose R*-plots are differential n-forms on the product X x R*
[X,0"]: R = Q™(X x RF).

This is not quite what one usually wants to regard as an RF-parameterized collection of differential forms on
X. That is instead usually meant to be a differential form w on X x R* which has “no leg along R*”. Another
way to say this is that the family of forms on X that is represented by some w on X x R is that which over
a point v: * — R¥ has the value (idx,v)*w. Under this pullback of differential forms any components of w
with “legs along R¥” are identified with the 0 differential form.

This is captured by the following definition.

Definition 1.2.68. For X € Smooth0Type and n € N, the smooth space of differential n-forms Q™(X) on
X is the concretification, def. [1.2.64] of the smooth mapping space [X,Q"], def. [1.2.30] into the smooth
moduli space of differential n-forms, def. [L.2.50

Q"(X) := Conc([X,Q"]).

Proposition 1.2.69. The R¥-plots of Q" (R¥) (def. are indeed smooth differential n-forms on X x R¥
which are such that their evaluation on vector fields tangent to RF vanish.

Proof. By def. [1.2.64and prop. [1.2.63| the set of plots of Q" (X) over RF is the image of the function

RE,[X, Q"
—

T
0"(X x R*) =~ HomgmoothoType (RF, [X, Q™) " Homge (D(R*), T[X, 2"]) ~ Homget (R¥, Q™(X)),

where on the right R* denotes, just for emphasis, the underlying set of R¥. This function manifestly sends
a smooth differential form w € Q"(X x RF) to the function from points v of R¥ to differential forms on X
given by

wr (v (idx,v) w) .

Under this function all components of differential forms with a ”leg along” RF are sent to the 0-form.
Hence the image of this function is the collection of smooth forms on X x R¥ with “no leg along RF”. O

Remark 1.2.70. For n = 0 we have (for any X € SmoothOType)

Q°(X) := Conc[X, Q7]
~ Conc[X, R]
~ [X,R],

by prop. [1.2.53

1.2.4 Integration

We discuss the traditional concept of fiber integration and of transgression of differential forms, (e.g.
[BoTo82]) along the lines of
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Definition 1.2.71. Given a closed oriented smooth manifold ¥ of dimension k, and any smooth manifold
U, write

/(U) C QR U x B) = QY(U)
>

for the traditional operation of fiber integration of differential forms over 3. For every smooth function
¢ : Uy — U, these operations form a commuting square of the form

U
QUHR (U, x X) _ Bt Qn(Uy)
o o
f):(UZ)

QR (U, x %) Q" (Uy)

In view of the internal hom adjunction ((—) x ¥ = [X,—]) in SmoothOType and with the smooth set of
differential forms Q" € SmoothO0Type as in def. [1.2.49] this means equivalently that fiber integration of
differential forms over X for arbitrary base manifolds U is a morphism in SmoothOType the forms

/ D [Z, QM — an .
b))

Definition 1.2.72. With ¥ a compact oriented smooth manifold, and X any smooth manifold, then the
traditional construction of transgression of differential forms on X to the smooth mapping space [3, X] is
the composite

/,: sevt : QTR(X) — O7(%, X]),
of pulling back along the canonical evaluation map
ev : B, X]xX—X
followed by fiber integration over ¥ (def .

We will have extensive use of the following equivalent re-formulation of this traditional definition:

Proposition 1.2.73. Under the natural identification Q°*(X) ~ SmoothOType(X, Q°®) of example [1.2.51

def. the traditional transgression morphism of def. 1s given by sending a differential form
modulated by a morphism A : X — Q"¢ to the differential form modulated by the composite

(£,4]

Js

/[E,A] LB, X] 2, k] 2 qn
¥

Proof. We need to check that for all plots v : U — [X, X] the pullbacks of the two forms to U coincide.
For the traditional formula we have, by def.

7*/ ev*A:/('y,idg)*ev*A e (V)
b >

Here we recognize in the integrand the pullback along the ((—) x ¥ 4 [2, —])-adjunct 7 : U x ¥ — X of ~,
which is given by applying the left adjoint (—) x ¥ and then postcomposing with the adjunction counit ev:

(7,ids)

UxS 2, X] x 8 —¥s X

Hence the integral is now



This is the operation of the top horizontal composite in the following naturality square for adjuncts, and so
the claim follows by its commutativity:

U
e HU x 5, X) 202D g s, aety — 2D gy
l FoF
ve  HOU[SX) UEY gz ee) SO gwen

]

An application of transgression of differential forms as above is the following operation in def.
which corresponds to a special case of what in physics is called “double dimensional reduction”, since it
reduces both the dimension of a manifold as well as the degree of the differential forms on it. We discuss
double dimensional reduction is more detail and in fully generality in the following is a concrete
special case:

Definition 1.2.74. Given a closed oriented smooth manifold 3 of dimension &, and given any smooth space
X, then we say that double dimensional reduction of smooth differential forms is the map

QR (X x B) — QY(X)

given by sending a differential form
A X x ¥ — QntF

to the pullback of its transgression to the mapping space [2, X x X], via prop. [1.2.73] along the canonical
smooth function X — [X, X X X (the unit of the (=) x ¥ 4 [, —])-adjunction.

Js

,A
[%,A] [27 Qn-‘,—k] —ZL0n

X —=[2,X x 3]

1.2.5 Smooth homotopy types

Here we give an introduction to and a survey of the general theory of cohesive differential geometry that is
developed in detail in [ below.

The framework of all our constructions is topos theory [Joh02] or rather, more generally, co-topos theory
|[L-Toposg]. In [1.2.5.1] and [1.2.5.2| below we recall and survey basic notions with an eye towards our central
example of an co-topos: that of smooth co-groupoids. In these sections the reader is assumed to be familiar
with basic notions of category theory (such as adjoint functors) and basic notions of homotopy theory (such
as weak homotopy equivalences). A brief introduction to relevant basic concepts (such as Kan complexes
and homotopy pullbacks) is given in section which can be read independently of the discussion here.

Then in[1.2.5.3|and [1.2.5.4| we describe, similarly in a leisurely manner, the intrinsic notions of cohomology
and geometric homotopy in an co-topos. Several aspects of the discussion are fairly well-known, we put them
in the general perspective of (cohesive) co-topos theory and then go beyond.

Finally in [T.2.7.2] we indicate how the combination of the intrinsic cohomology and geometric homotopy
in a locally co-connected oco-topos yields an intrinsic notion of differential cohomology in an co-topos.

e [1:2.5.1] - Toposes;

e [1.2.5.2] - co-Toposes;

. — Cohomology;

e [[:2.5.4 - Homotopy;

. — Differential cohomology.

Each of these topics surveyed here are discussed in technical detail below in [4
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1.2.5.1 Toposes There are several different perspectives on the notion of topos. One is that a topos is a
category that looks like a category of spaces that sit by local homeomorphisms over a given base space: all
spaces that are locally modeled on a given base space.

The archetypical class of examples are sheaf toposes over a topological space X denoted Sh(X). These
are equivalently categories of étale spaces over X: topological spaces Y that are equipped with a local
homeomorphism Y — X. When X = % is the point, this is just the category Set of all sets: spaces that are
modeled on the point. This is the archetypical topos itself.

What makes the notion of toposes powerful is the following fact: even though the general topos contains
objects that are considerably different from and possibly considerably richer than plain sets and even richer
than étale spaces over a topological space, the general abstract category theoretic properties of every topos
are essentially the same as those of Set. For instance in every topos all small limits and colimits exist and
it is cartesian closed (even locally). This means that a large number of constructions in Set have immediate
analogs internal to every topos, and the analogs of the statements about these constructions that are true
in Set are true in every topos.

This may be thought of as saying that toposes are wery nice categories of spaces in that whatever
construction on spaces one thinks of — for instance formation of quotients or of intersections or of mapping
spaces — the resulting space with the expected general abstract properties will exist in the topos. In this
sense toposes are convenient categories for geometry — as in: convenient category of topological spaces, but
even more convenient than that.

On the other hand, we can de-emphasize the role of the objects of the topos and instead treat the topos
itself as a generalized space (and in particular, a categorified space). We then consider the sheaf topos Sh(X)
as a representative of X itself, while toposes not of this form are “honestly generalized” spaces. This point
of view is supported by the fact that the assignment X +— Sh(X) is a full embedding of (sufficiently nice)
topological spaces into toposes, and that many topological properties of a space X can be detected at the
level of Sh(X).

Here we are mainly concerned with toposes that are far from being akin to sheaves over a topological
space, and instead behave like abstract fat points with geometric structure. This implies that the objects of
these toposes are in turn generalized spaces modeled locally on this geometric structure. Such toposes are
called gros toposes or big toposes. There is a formalization of the properties of a topos that make it behave
like a big topos of generalized spaces inside of which there is geometry: this is the notion of cohesive toposes.

1.2.5.1.1 Sheaves More concretely, the idea of sheaf toposes formalizes the idea that any notion of
space is typically modeled on a given collection of simple test spaces. For instance differential geometry
is the geometry that is modeled Cartesian spaces R™, or rather on the category C' = CartSp of Cartesian
spaces and smooth functions between them.

A presheaf on such C' is a functor X : C°? — Set from the opposite category of C' to the category of
sets. We think of this as a rule that assigns to each test space U € C the set X(U) =: Maps(U, X) of
structure-preserving maps from the test space U into the would-be space X - the probes of X by the test
space U. This assignment defines the generalized space X modeled on C. Every category of presheaves
over a small category is an example of a topos. But these presheaf toposes, while encoding the geometry
of generalized spaces by means of probes by test spaces in C fail to correctly encode the topology of these
spaces. This is captured by restricting to sheaves among all presheaves.

Each test space V' € C itself specifies presheaf, by forming the hom-sets Maps(U, V) := Hom¢ (U, V) in
C. This is called the Yoneda embedding of test spaces into the collection of all generalized spaces modeled
on them. Presheaves of this form are the representable presheaves. A bit more general than these are the
locally representable presheaves: for instance on C' = CartSp this are the smooth manifolds X € SmoothMfd,
whose presheaf-rule is Maps(U, X) := Homsmeotnmtd (U, X). By definition, a manifold is locally isomorphic
to a Cartesian space, hence is locally representable as a presheaf on CartSp.

These examples of presheaves on C are special in that they are in fact sheaves: the value of X on a test
space U is entirely determined by the restrictions to each U; in a cover {U; — U},;¢cr of the test space U by
other test spaces U;. We think of the subcategory of sheaves Sh(C) < PSh(C) as consisting of those special
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presheaves that are those rules of probe-assignments which respect a certain notion of ways in which test
spaces U; € C may glue into U € C.

One may axiomatize this by declaring that the collections of all covers under consideration forms what
is called a Grothendieck topology on C that makes C' a site. But of more intrinsic relevance is the equivalent
fact that categories of sheaves are precisely the subtoposes of presheaf toposes

L
Sh(C)~— 2 PSh(C) = [C°?, Set] |,

meaning that the embedding Sh(X) < PSh(X) has a left adjoint functor L that preserves finite limits.
This may be taken to be the definition of Grothendieck toposes. The left adjoint is called the sheafification
functor. It is determined by and determines a Grothendieck topology on C.

For the choice C' = CartSp such is naturally given by the good open cover coverage, which says that a
bunch of maps {U; — U} in C exhibit the test object U as being glued together from the test objects {U;}
if these form a good open cover of U. With this notion of coverage every smooth manifold is a sheaf on
CartSp.

But there are important generalized spaces modeled on CartSp that are not smooth manifolds: topological
spaces for which one can consistently define which maps from Cartesian spaces into them count as smooth
in a way that makes this assignment a sheaf on CartSp, but which are not necessarily locally isomorphic
to a Cartesian space: these are called diffeological spaces. A central example of a space that is naturally
a diffeological space but not a finite dimensional manifold is a mapping space [X, X] of smooth functions
between smooth manifolds ¥ and X: since the idea is that for U any Cartesian space the smooth U-
parameterized families of points in [X, X] are smooth U-parameterized families of smooth maps ¥ — X, we
can take the plot-assigning rule to be

(¥, X] : U = Homgmoothmra (X x U, X).

It is useful to relate all these phenomena in the topos Sh(C') to their image in the archetypical topos Set.
This is simply the category of sets, which however we should think of here as the category Set ~ Sh(x) of
sheaves on the category * which contains only a single object and no nontrivial morphism: objects in here
are generalized spaces modeled on the point. All we know about them is how to map the point into them,
and as such they are just the sets of all possible such maps from the point.

Every category of sheaves Sh(C) comes canonically with an essentially unique topos morphism to the
topos of sets, given by a pair of adjoint functors

Disc
Sh(C') == Sh(x) ~ Set .
r

Here T is called the global sections functor. If C has a terminal object *, then it is given by evaluation
on that object: the functor I' sends a plot-assigning rule X : C°P — Set to the set of plots by the point
I'(X) = X(x). For instance in C' = CartSp the terminal object exists and is the ordinary point * = R?. If
X € Sh(C) is a smooth manifold or diffeological space as above, then I'(X) € Set is simply its underlying
set of points. So the functor I' can be thought of as forgetting the cohesive structure that is given by the
fact that our generalized spaces are modeled on C. It remembers only the underlying point-set.

Conversely, its left adjoint functor Disc takes a set S to the sheafification Disc(S) = LConst(.S) of the
constant presheaf Const : U — S, which asserts that the set of its plots by any test space is always the
same set S. This is the plot-rule for the discrete space modeled on C' given by the set S: a plot has to be a
constant map of the test space U to one of the elements s € S. For the case C' = CartSp this interpretation
is literally true in the familiar sense: the generalized smooth space Disc(S) is the discrete smooth manifold
or discrete diffeological space with point set S.

1.2.5.1.2 Concrete and non-concrete sheaves The examples for generalized spaces X modeled
on C that we considered so far all had the property that the collection of plots U — X into them was a
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subset of the set of maps of sets from U to their underlying set I'(X) of points. These are called concrete
sheaves. Not every sheaf is concrete. The concrete sheaves form a subcategory inside the full topos which is
itself almost, but not quite a topos: it is the quasitopos of concrete objects.

Conc(C)—___Sh(C) .

Non-concrete sheaves over C' may be exotic as compared to smooth manifolds, but they are still usefully
regarded as generalized spaces modeled on C. For instance for n € N there is the sheaf x(n,R) given by
saying that plots by U € CartSp are identified with closed differential n-forms on U:

k(n,R) : U — QJ{(U).

This sheaf describes a very non-classical space, which for n > 1 has only a single point, I'(k(n,R)) = * , only
a single curve, a single surface, etc., up to a single (n — 1)-dimensional probe, but then it has a large number
of n-dimensional probes. Despite the fact that this sheaf is very far in nature from the test spaces that it is
modeled on, it plays a crucial and very natural role: it is in a sense a model for an Eilenberg-MacLane space
K(n,R). We shall see in that these sheaves are part of an incarnation of the oco-Lie-algebra "R and
the sense in which it models an Eilenberg-MacLane space is that of Sullivan models in rational homotopy
theory. In any case, we want to allow ourselves to regard non-concrete objects such as k(n,R) on the same
footing as diffeological spaces and smooth manifolds.

1.2.5.2 oo-Toposes While therefore a general object in the sheaf topos Sh(C) may exhibit a considerable
generalization of the objects U € C' that it is modeled on, for many natural applications this is still not quite
general enough: if for instance X is a smooth orbifold (see for instance [MoPr97]), then there is not just a
set, but a groupoid of ways of probing it by a Cartesian test space U: if a probe v : U — X is connected by
an orbifold transformation to another probe ' : U — X, then this constitutes a morphism in the groupoid
X (U) of probes of X by U.

Even more generally, there may be a genuine co-groupoid of probes of the generalized space X by the test
space U: a set of probes with morphisms between different probes, 2-morphisms between these 1-morphisms,
and so on.

Such structures are described in co-category theory: where a category has a set of morphisms between
any two objects, an oo-category has an oco-groupoid of morphisms, whose compositions are defined up to
higher coherent homotopy. The theory of co-categories is effectively the combination of category theory
and homotopy theory. The main fact about it, emphasized originally by André Joyal and then further
developed in [L-Topos|, is that it behaves formally entirely analogously to category theory: there are notions
of oo-functors, co-limits, adjoint co-functors etc., that satisfy all the familiar relations from category theory.

1.2.5.2.1 oo-Groupoids We first look at bare co-groupoids and then discuss how to equip these
with smooth structure.

An oo-groupoid is first of all supposed to be a structure that has k-morphisms for all k € N, which for
k > 1 go between (k — 1)-morphisms. A useful tool for organizing such collections of morphisms is the notion
of a simplicial set. This is a functor with valiues in sets on the opposite category of the simplex category
A (hence a presheaf on A), whose objects are the abstract cellular k-simplices, denoted [k] or A[k] for all
k € N, and whose morphisms Alk;] — A[ks] are all ways of mapping these into each other. So we think of
such a simplicial set given by a functor

K : A°? — Set

as specifying
e aset [0] — Ky of objects;
e aset [1] — Kj of morphisms;

e a set [2] = Ky of 2-morphisms;
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e a set [3] = K3 of 8-morphisms;
and generally
e a set [k] — K of k-morphisms.
as well as specifying
e functions ([n] — [n+1]) — (K,+1 — K,,) that send n 4 1-morphisms to their boundary n-morphisms;

e functions ([n + 1] — [n]) — (K, — Kp,4+1) that send n-morphisms to identity (n + 1)-morphisms on
them.

The fact that K is supposed to be a functor enforces that these assignments of sets and functions satisfy
conditions that make consistent our interpretation of them as sets of k-morphisms and source and target
maps between these. These are called the simplicial identities. But apart from this source-target matching,
a generic simplicial set does not yet encode a notion of composition of these morphisms.

For instance for A'[2] the simplicial set consisting of two attached 1-cells

1
Al[g] = / \
0 2

and for (f,g) : A1[2] — K an image of this situation in K, hence a pair xo EN z1 5 x4 of two composable
1-morphisms in K, we want to demand that there exists a third 1-morphisms in K that may be thought of
as the composition xq LS z9 of f and g. But since we are working in higher category theory, we want to
identify this composite only up to a 2-morphism equivalence

el
From the picture it is clear that this is equivalent to demanding that for A'[2] < A[2] the obvious inclusion

of the two abstract composable 1-morphisms into the 2-simplex we have a diagram of morphisms of simplicial
sets

Al[Q] VLK
| A
A2]

A simplicial set where for all such (f,g) a corresponding such h exists may be thought of as a collection of
higher morphisms that is equipped with a notion of composition of adjacent 1-morphisms.

For the purpose of describing groupoidal composition, we now want that this composition operation has
all inverses. For that purpose, notice that for

1

A%[2] = \

0——m—2
h

the simplicial set consisting of two 1-morphisms that touch at their ends, hence for

(g,h) : A*[2] = K
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two such 1-morphisms in K, then if g had an inverse ¢! we could use the above composition operation to

compose that with i and thereby find a morphism f connecting the sources of h and g. This being the case
is evidently equivalent to the existence of diagrams of morphisms of simplicial sets of the form

A2 WM

| A

Al2]

Demanding that all such diagrams exist is therefore demanding that we have on 1-morphisms a composition
operation with inverses in K.

In order for this to qualify as an co-groupoid, this composition operation needs to satisfy an associativity
law up to 2-morphisms, which means that we can find the relevant tetrahedra in K. These in turn need to
be connected by pentagonators and ever so on. It is a nontrivial but true and powerful fact, that all these
coherence conditions are captured by generalizing the above conditions to all dimensions in the evident way:

Let A’[n] — Aln] be the simplicial set — called the ith n-horn — that consists of all cells of the n-simplex
A[n] except the interior n-morphism and the ith (n — 1)-morphism.

Then a simplicial set is called a Kan complex, if for all images f : A’[n] — K of such horns in K, the
missing two cells can be found in K — in that we can always find a horn filler ¢ in the diagram

A L~ K .
| A
Aln]

The basic example is the nerve N(C) € sSet of an ordinary groupoid C, which is the simplicial set with
N(C)j, being the set of sequences of k composable morphisms in C. The nerve operation is a full and faithful
functor from 1-groupoids into Kan complexes and hence may be thought of as embedding 1-groupoids in the
context of general co-groupoids.

roupoid
N

Qu351Categorles ~ oo-Categories

Categori KanComplexes

SimplicialSets

But we need a bit more than just bare co-groupoids. In generalization of Lie groupoids, hence of smooth
1-groupoids, we need smooth co-groupoids. A useful way to encode that an co-groupoid has extra structure
modeled on geometric test objects that themselves form a category C' is to remember the rule which for each
test space U in C produces the co-groupoid (i.e. the Kan complex) of U-parameterized families of objects,
morphisms and higher morphisms in K. For instance for a smooth oco-groupoid we could test with each
Cartesian space U = R™ and find the oco-groupoids K (U) of smooth n-parameter families of k-morphisms in
K.

This data of U-families arranges itself into a presheaf with values in Kan complexes

K : C°?" — KanCplx < sSet,
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hence with values in simplicial sets. This is equivalently a simplicial presheaf of sets. The functor category
[C°P,sSet] on the opposite category of the category of test objects C serves as a model for the co-category
of co-groupoids with C-structure.

While there are no higher morphisms in this functor 1-category that could for instance witness that two
oo-groupoids are not isomorphic, but still equivalent, it turns out that all one needs in order to reconstruct
all these higher morphisms (up to equivalence!) is just the information of which morphisms of simplicial
presheaves would become invertible if we were keeping track of higher morphisms. These would-be invertible
morphisms are called weak equivalences and denoted K1 = K.

For common choices of C there is a well-understood way to define the weak equivalences W C Mor[C°P, sSet],
and equipped with this information the category of simplicial presheaves becomes a category with weak equiva-
lences. There is a well-developed but somewhat intricate theory of how exactly this 1-categorical data models
the full higher category of structured groupoids that we are after, but for our purposes here we essentially
only need to work inside the category of fibrant objects of a model structure on presheaves, which in practice
amounts to the fact that we use the following two basic constructions:

1. oo-anafunctor A morphism X — Y between oco-groupoids with C-structure is not just a morphism
X — Y in [C°P,sSet], but is a span of such ordinary morphisms

)A(—>Y,

|-

X
where the left leg is a weak equivalence. This is sometimes called an co-anafunctor from X to Y.

2. homotopy pullback — For A — B & C a diagram, the co-pullback of it is the ordinary pullback in

[C°P, sSet] of a replacement diagram A — B & C, where p is a good replacement of p in the sense of
the following factorization lemma.

Proposition 1.2.75 (factorization lemma). For p: C — B a morphism in [C°P,sSet], a good replacement
p: C — B is given by the composite vertical morphism in the ordinary pullback diagram

C C
L

BAll - B
B

where BAM s the path object of B: the presheaf that is over each U € C the simplicial path space B(U)Am.

1.2.5.2.2 oo-Sheaves / oo-Stacks In particular, there is a notion of co-presheaves on a category
(or oo-category) C': oco-functors
X : C° — coGrpd

to the oco-category ocoGrpd of oco-groupoids — there is an co-Yoneda embedding, and so on. Accordingly,
oo-topos theory proceeds in its basic notions along the same lines as we sketched above for topos theory: An
oo-topos of co-sheaves is defined to be a reflective sub-oco-category

L
Sh(oo,1) (C) - PSh(se,1)(C)
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of an oco-category of co-presheaves, such that the localization functor L preserves finite co-limits. As before,
such is essentially determined by and determines a Grothendieck topology or coverage on C'. Since a 2-sheaf
with values in groupoids is usually called a stack, an co-sheaf is often also called an co-stack.

In the spirit of the above discussion, the objects of the co-topos of co-sheaves on C' = CartSp we shall
think of as smooth co-groupoids. This is our main running example. We shall write SmoothooGrpd =
Shoo (CartSp) for the co-topos of smooth co-groupoids.

Let

e C := SmoothMIfd be the category of all smooth manifolds (or some other site, here assumed to have
enough points);

e gSh(C) be the category of groupoid-valued sheaves over C,
for instance X = { X —= X },BG = { G —= * } € gSh(C);

e Hogsn(c) the homotopy category obtained by universally turning the stalkwise groupoid-equivalences
into isomorphisms.

Fact: H'Y(X,G) ~ Hoggn(c) (X, BG). Let
e sSet(C)isp < Sh(C, sSet) be the stalkwise Kan simplicial sheaves;

e LysSh(C)gp the simplicial localization obtained by universally turning stalkwise homotopy equiva-
lences into homotopy equivalences.

Definition/Theorem. This is the oo-category theory analog of the sheaf topos over C, the oco-stack oco-
topos: H := Sho(C) = Ly sSh(C)igip.

Example. SmoothooGrpd := Shy. (SmoothMfd) is the oo-topos of smooth oco-groupoids.

Proposition. Every object in SmoothooGrpd is presented by a simplicial manifold, but not necessarily by
a locally Kan simplicial manifold (see below).

But a crucial point of developing our theory in the language of co-toposes is that all constructions work
in great generality. By simply passing to another site C, all constructions apply to the theory of generalized
spaces modeled on the test objects in C. Indeed, to really capture all aspects of co-Lie theory, we should and
will adjoin to our running example C' = CartSp that of the slightly larger site C' = FormalSmoothCartSp of
infinitesimally thickened Cartesian spaces. Ordinary sheaves on this site are the generalized spaces considered
in synthetic differential geometry: these are smooth spaces such as smooth loci that may have infinitesimal
extension. For instance the first order jet D C R of the origin in the real line exists as an infinitesimal space
in Sh(FormalSmoothCartSp). Accordingly, co-groupoids modeled on FormalSmoothCartSp are smooth oo-
groupoids that may have k-morphisms of infinitesimal extension. We will see that a smooth co-groupoid
all whose morphisms has infinitesimal extension is a Lie algebra or Lie algebroid or generally an oo-Lie
algebroid.

While oo-category theory provides a good abstract definition and theory of oco-groupoids modeled on
test objects in a category C' in terms of the co-category of co-sheaves on C', for concrete manipulations it is
often useful to have a presentation of the co-categories in question in terms of generators and relations in
ordinary category theory. Such a generators-and-relations-presentation is provided by the notion of a model
category structure. Specifically, the co-toposes of co-presheaves that we are concerned with are presented in
this way by a model structure on simplicial presheaves, i.e. on the functor category [C°P,sSet] from C to the
category sSet of simplicial sets. In terms of this model, the corresponding oco-category of co-sheaves is given
by another model structure on [C°P, sSet], called the left Bousfield localization at the set of covers in C.

These models for oo-stack co-toposes have been proposed, known and studied since the 1970s and are
therefore quite well understood. The full description and proof of their abstract role in co-category theory
was established in [L-Topos].

As before for toposes, there is an archetypical co-topos, which is coGrpd = Sh o 1) (*) itself: the collection
of generalized oo-groupoids that are modeled on the point. All we know about these generalized spaces is
how to map a point into them and what the homotopies and higher homotopies of such maps are, but
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no further extra structure. So these are bare co-groupoids without extra structure. Also as before, every
oo-topos comes with an essentially unique geometric morphism to this archetypical co-topos given by a pair
of adjoint oco-functors

Shse,1)(§')Discl’ 0oGrpd .

Again, if C happens to have a terminal object *, then I' is the operation that evaluates an oo-sheaf on
the point: it produces the bare co-groupoid underlying an oo-groupoid modeled on C'. For instance for
C = CartSp a smooth oco-groupoid X € Sh( 1)(C) is sent by I' to to the underlying oo-groupoid that
forgets the smooth structure on X.

Moreover, still in direct analogy to the 1-categorical case above, the left adjoint Disc is the oco-functor
that sends a bare co-groupoid S to the oo-stackification DiscS = LConstS of the constant co-presheaf on S.
This models the discretely structured oo-groupoid on S. For instance for C' = CartSp we have that DiscS is a
smooth oco-groupoid with discrete smooth structure: all smooth families of points in it are actually constant.

1.2.5.2.3 Structured co-Groups It is clear that we may speak of group objects in any topos, (or
generally in any category with finite products): objects G equipped with a multiplication G x G — G and a
neutral element x — G such that the multiplication is unital, associative and has inverses for each element.
In a sheaf topos, such a G is equivalently a sheaf of groups. For instance every Lie group canonically becomes
a group object in Sh(CartSp).

As we pass to an oco-topos the situation is essentially the same, only that the associativity condition is
replaced by associativity up to coherent homotopy (also called: up to strong homotopy), and similarly for
the unitalness and the existence of inverses. One way to formalize this is to say that a group object in an
oo-topos H is an A,.-algebra object G such that its O-truncation 790G is a group object in the underlying
1-topos. (This is discussed in [L-Alg].)

For instance in the co-topos over CartSp a Lie group still naturally is a group object, but also a Lie
2-group or differentiable group stack is. Moreover, every sheaf of simplicial groups presents a group object in
the co-topos, and we will see that all group objects here have a presentation by sheaves of simplicial groups.

A group object in coGrpd ~ Top we will for emphasis call an co-group. In this vein a group object in
an co-topos over a non-trivial site is a structured co-group (for instance a topological co-group or a smooth
0o-group).

A classical source of co-groups are loop spaces, where the group multiplication is given by concatenation
of based loops in a given space, the homotopy-coherent associativity is given by reparameterizations of
concatenations of loops, and inverses are given by reversing the parameterization of a loop. A classical
result of Milnor says, in this language, that every co-group arises as a loop space this way. This statement
generalizes from discrete oo-groups (group objects in coGrpd ~ Top) to structured co-groups.

Theorem. (Milnor—Lurie) There is an equivalence

{ groups in H } ~
delooping B

looping © .
oopiie { pointed connected }

objects in H

This equivalence is a most convenient tool. In the following we will almost exclusively handle co-groups G
in terms of their pointed connected delooping objects BG. We discuss this in more detail below in [5.1.9
This is all the more useful as the objects BG happen to be the moduli co-stacks of G-principal co-bundles.
We come to this in [[.2.6.5

1.2.5.3 Cohomology Where the archetypical topos is the category Set, the archetypical co-topos is the
oo-category coGrpd of co-groupoids. This, in turn, is equivalent, by a classical result (see , to Top, the
category of topological spaces of CW-type, regarded as an oo-category by taking the 2-morphisms to be
homotopies between continuous maps, 3-morphisms to be homotopies of homotopy, and so forth:

o0oGrpd ~ Top.
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In Top it is familiar — from the notion of classifying spaces and from the Brown representability theorem
(the reader in need of a review of such matter might try [May99]) — that the cohomology of a topological
space X may be identified as the set of homotopy classes of continuous maps from X to some coefficient
space A

H(X,A) :=mTop(X,A).

For instance for A = K(n,Z) ~ B"Z the topological space called the nth FEilenberg-MacLane space of the
additive group of integers, we have that

H(X,A) := moTop(X, B"Z) ~ H"(X,Z)

is the ordinary integral (singular) cohomology of X. Also nonabelian cohomology is famously exhibited this
way: for G a (possibly nonabelian) topological group and A = BG its classifying space (we discuss this
construction and its generalization in detail in|6.3.5.1) we have that

H(X,A):=mTop(X, BG) ~ H'(X,G)

is the degree-1 nonabelian cohomology of X with coeffients in G, which classifies G-principal bundles over
X (more on that in a moment).

Since this only involves forming oo-categorical hom-spaces and since this is an entirely categorical opera-
tion, it makes sense to define for X, A any two objects in an arbitrary co-topos H the intrinsic cohomology
of X with coefficients in A to be

H(X,A) :=mH(X,A),

where H(X, A) denotes the co-groupoid of morphism from X to A in H. This general identification of
cohomology with hom-spaces in co-toposes is central to our developments here. We indicate now two classes
of justification for this definition.

1. Essentially every notion of cohomology already considered in the literature is an example of this
definition. Moreover, those that are not are often improved on by fixing them to become an example.

2. The use of a good notion of G-cohomology on X should be that it classifies “G-structures over X” and
exhibits the obstruction theory for extensions or lifts of such structures. We find that it is precisely the
context of an ambient co-topos (precisely: the co-Giraud axioms that characterize an co-topos) that
makes such a classification and obstruction theory work.

We discuss now a list of examples of co-toposes H together with notions of cohomology whose cocycles
are given by morphisms ¢ € H(X, A) between a domain object X and coefficient object A in this co-topos.
Some of these examples are evident and classical, modulo our emphasis on the co-topos theoretic perspective,
others are original. Even those cases that are classical receive new information from the co-topos theoretic
perspective. Details are below in the relevant parts of section [G].

In view of the unification that we discuss, some of the traditional names for notions of cohomology are a
bit suboptimal. For instance the term generalized cohomology for theories satisfying the Eilenberg-Steenrod
axioms does not well reflect that it is a generalization of ordinary cohomology of topological spaces (only)
which is, in a quite precise sense, orthogonal to the generalizations given by passage to sheaf cohomology or
to nonabelian cohomology, all of which are subsumed by cohomology in an co-topos. In order to usefully
distinguish the crucial aspects here we will use the following terminology

e We speak of structured cohomology to indicate that a given notion is realized in an co-topos other than
the archetypical coGrpd ~ Top (which representes “discrete strcuture” in the precise sense discussed
in . Hence traditional sheaf cohomology is “structured” in this sense, while ordinary cohomology
and FEilenberg-Steenrod cohomology is “unstructured”.
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e We speak of nonabelian cohomology when coeflicient objects are not required to be abelian (groups) or
stable (spectra), but may generally be deloopings A := BG of arbitrary (structured) co-groups G.

More properly this might be called not-necessarily abelian cohomology, but following common practice
(as in “noncommutative geometry”) we stick with the slightly imprecise but shorter term. One point
that we will dwell on (see the discussion of examples in is that the traditional notion of twisted
cohomology (already twisted abelian cohomology) is naturally a special case of nonabelian cohomology.

Notice that the “generalized” in “generalized cohomology” of Eilenberg-Steenrod type refers to allowing
coefficient objects which are abelian oo-groups, def. more general than Eilenberg-MacLane objects.
Hence this is in particular subsumed in nonabelian cohomology.

In this terminology, the notion of cohomology in co-toposes that we are concerned with here is structured
nonabelian/twisted generalized cohomology.

Finally, not only is it natural to allow the coefficient objects A to be general objects in a general co-topos,
but also there is no reason to restrict the nature of the domain objects X. For instance traditional sheaf
cohomology always takes X, in our language, to be the terminal object X = * of the ambient co-topos. This
is also called the (-2)-truncated object (see below) of the co-topos, being the unique member of the
lowest class in a hierarchy of n-truncated objects for (—2) < n < co. As we increase n here, we find that the
domain object is generalized to

e n = —1: subspaces of X;

e n = 0: étale spaces over X;

e n = 1: orbifolds / orbispaces / groupoids over X;
e n > 2: higher orbifolds / orbispaces / groupoids

One finds then that cohomology of an n-truncated object for n > 1 reproduces the traditional notion
of equivariant cohomology. In particular this subsumes group cohomology: ordinary group cohomology in
the unstructured case (in H = ocoGrpd) and generally structured group cohomology such as Lie group
cohomology.

Therefore, strictly speaking, we are here concerned with equivariant structured nonabelian/twisted gener-
alized cohomology. All this is neatly encapsulated by just the fundamental notion of hom-spaces in co-toposes.

Cochain cohomology

The origin and maybe the most elementary notion of cohomology is that appearing in homological algebra:
given a cochain complex of abelian groups
dO

d? d*

Ve = Vv’ & Ve,

its cohomology group in degree n is defined to be the quotient group
H™(V) := ker(d")/im(d" ).

To see how this is a special case of cohomology in an co-topos, consider a fixed abelian group A and suppose
that this cochain complex is the A-dual of a chain complex

Voe |- Vo —2sv 2o vy |,

in that V* = Homap(Ve, A). For instance if A = Z and V,, is the free abelian group on the set of n-simplices
in some topological space, then V" is the group of singular n-cochains on X.

Write then A[n] (or A[—n], if preferred) for the chain complex concentrated in degree n on A. In terms
of this
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1. morphisms of chain complexes ¢ : Vo — A[n] are in natural bijection with closed elements in V™, hence
with ker(d™);

2. chain homotopies 1 : ¢; — c2 between two such chain morphisms are in natural bijection with elements
in im(d"~1).

This way the cohomology group H™(V'*) is naturally identified with the homotopy classes of maps Vo — Aln].

Consider then again an example as that of singular cochains as above, where V, is degreewise a free
abelian group on a simplicial set X. Then this cohomology is the group of connected components of a
hom-space in an oco-topos. To see this, one observes that the category of chain complexes in non-negative
degree, Che>0, is but a convenient presentation for the category of co-groupoids that are equipped with strict
abelian group structure in their incarnation as Kan complexes: simplicial abelian groups. This equivalence
Che>¢ =~ sAb is known as the Dold-Kan correspondence, to be discussed in more detail in We write
E(Vs) for the Kan complex corresponding to a chain complex under this equivalence. Moreover, for chain

complexes of the form A[n] we write
B"A :==(A[n]).

With this notation, the co-groupoid of chain maps V, — A[n] is equivalently that of oo-functors X — B™A
and hence the cochain cohomology of V* is

H™"(V*) ~moH(X,B"A).

Lie group cohomology

There are some definitions in the literature of cohomology theories that are not special cases of this
general concept, but in these cases it seems that the failure is with the traditional definition, not with the
above notion. We will be interested in particular in the group cohomology of Lie groups. Originally this was
defined using a naive direct generalization of the formula for bare group cohomology as

H! . .(G, A) = {smooth maps G*" — A}/ ~ .

But this definition was eventually found to be too coarse: there are structures that ought to be cocycles on
Lie groups but do not show up in this definition. Graeme Segal therefore proposed a refined definition that
was later rediscovered by Jean-Luc Brylinski, called differentiable Lie group cohomology HY:q,,(G, A). This
refines the naive Lie group cohomology in that there is a natural morphism H", (G, A) — H}q, (G, A).
But in the oo-topos of smooth oco-groupoids H = Sh (CartSp) we have the natural intrinsic definition
of Lie group cohomology as
Hélmooth(Gv A) = WOH(BGv BnA)

and one finds that this naturally includes the Segal/Brylinski definition
Hr?aive(Gv A) - H(?iﬁrbl(Gv A) - Hgmooth(Ga A) = 7TOH(BG’ BnA) :

and at least for A a discrete group, or the group of real numbers or a quotient of these such as U(1) = R/Z,

the notions coincide
Hc?iffrbl(G5 A) = ngnooth(Gv A) .

Details on this discussion about refined Lie group cohomology are below in [6.4.6.2]

For instance one of the crucial aspects of the notion of cohomology is that a cohomology class on X
classifies certain structures over X.

It is a classical fact that if G is a (discrete) group and BG its delooping in Top, then the structure
classified by a cocycle g : X — BG is the G-principal bundle over X obtained as the 1-categorical pullback
P—-X

P——EG

L,

X —2. Ba
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of the universal G-principal bundle FG — BG. But one finds that this pullback construction is just a
1-categorical model for what intrinsically is something simpler: this is just the homotopy pullback in Top of
the point

P——s %

| /]

XT>BG

This form of the construction of the G-principal bundle classified by a cocycle makes sense in any co-topos
H:

We say that for G € H a group object in H and BG its delooping and for g : X — BG a cocycle (any
morphism in H) that the G-principal co-bundle classified by g is the co-pullback/homotopy pullback

P——x

| /]

X—Q>BG

in H. (Beware that usually we will notationally suppress the homotopy filling this square diagram.)

Let G be a Lie group and X a smooth manifold, both regarded naturally as objects in the co-topos of
smooth oco-groupoids. Let g : X — BG be a morphism in H. One finds that in terms of the presentation
of SmoothooGrpd by the model structure on simplicial presheaves this is a Cech 1-cocycle on X with values
in G. The corresponding oo-pullback P is (up to equivalence or course) the smooth G-principal bundle
classified in the usual sense by this cocycle.

The analogous proposition holds for G a Lie 2-group and P a G-principal 2-bundle.

Generally, we can give a natural definition of G-principal co-bundle in any co-topos H over any co-group
object G € H. One finds that it is the Giraud axioms that characterize co-toposes that ensure that these are
equivalently classified as the co-pullbacks of morphisms g : X — BG. Therefore the intrinsic cohomology

H(X,G) :=mH(X, BG)

in H classifies G-principal co-bundles over X. Notice that X here may itself be any object in H.

1.2.5.4 Homotopy Every oco-sheaf co-topos H canonically comes equipped with a geometric morphism
given by pair of adjoint co-functors

LConst
(LConst 4T") : H =" coGrpd
r

relating it to the archeytpical co-topos of co-groupoids. Here I" produces the global sections of an co-sheaf
and LConst produces the constant co-sheaf on a given oco-groupoid.

In the cases that we are interested in here H is a big topos of oco-groupoids equipped with cohesive
structure, notably equipped with smooth structure in our motivating example. In this case I" has the
interpretation of sending a cohesive oo-groupoid X € H to its underlying oo-groupoid, after forgetting
the cohesive structure, and LConst has the interpretation of forming oco-groupoids equipped with discrete
cohesive structure. We shall write Disc := LConst to indicate this.

But in these cases of cohesive oo-toposes there are actually more adjoints to these two functors, and this
will be essentially the general abstract definition of cohesiveness. In particular there is a further left adjoint

IT: H — coGrpd

to Disc: the fundamental oco-groupoid functor on a locally oco-connected oo-topos. Following the standard
terminology of locally connected toposes in ordinary topos theory we shall say that H with such a property is a
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locally co-connected co-topos. This terminology reflects the fact that if X is a locally contractible topological
space then H = Sh(X) is a locally contractible oo-topos. A classical result of Artin-Mazur implies, that
in this case the value of I on X € Sh.(X) is, up to equivalence, the fundamental co-groupoid of X:

IT: (X € Shoo(X)) — (SingX € ocoGrpd),
which is the oo-groupoid whose
e objects are the points of X;
e morphisms are the (continuous) paths in X;
e 2-morphisms are the continuous homotopies between such paths;
e k-morphisms are the higher order homotopies between (k — 1)-dimensional paths.

This is the object that encodes all the homotopy groups of X in a canonical fashion, without choice of fixed
base point.
Also the big co-topos SmoothooGrpd = Sh, (CartSp) turns out to be locally co-connected

I
_— >

(IT 4 Disc 4T') : SmoothooGrpd = Disc ocoGrpd
r

as a reflection of the fact that every Cartesian space R™ € CartSp is contractible as a topological space. We
find that for X any smooth manifold, regarded as an object of SmoothooGrpd, again II(X) € SmoothooGrpd
is the corresponding fundamental co-groupoid. More in detail, under the homotopy-hypothesis-equivalence
[
(| = | 4 Sing) : Top = =_ coGrpd we have that the composite
Sing

II(—)| : H 2L ooGrpd d Top

sends a smooth manifold X to its homotopy type: the underlying topological space of X, up to weak
homotopy equivalence.

Analogously, for a general object X € H we may think of [II(X)| as the generalized geometric realization
in Top. For instance we find that if X € SmoothooGrpd is presented by a simplicial paracompact smooth
manifold, then |II(X)| is the ordinary geometric realization of the underlying simplicial topological space
of X. This means in particular that for X € SmoothooGrpd a Lie groupoid, II(X) computes its homotopy
groups of a Lie groupoid as traditionally defined.

The ordinary homotopy groups of II(X) or equivalently of |II(X)| we call the geometric homotopy groups
of X € H, because these are based on a notion of homotopy induced by an intrisic notion of geometric
paths in objects in X. This is to be contrasted with the categorical homotopy groups of X. These are the
homotopy groups of the underlying co-groupoid I'(X) of X. For instance for X a smooth manifold we have
that Yes | 0

edet |n=
m(r0) = { XG5 2
but
T (II(X)) ~ 7, (X € Top).

This allows us to give a precise sense to what it means to have a cohesive refinement (continuous refinement,
smooth refinement, etc.) of an object in Top. Notably we are interested in smooth refinements of classifying
spaces BG € Top for topological groups G by deloopings BG € SmoothooGrpd of co-Lie groups G and we
may interpret this as saying that

II(BG) ~ BG

in Top ~ SmoothooGrpd.
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1.2.6 Principal bundles

The following is an exposition of the notion of principal bundles in higher but low degree.

We assume here that the reader has a working knowledge of groupoids and at least a rough idea of
2-groupoids. For introductions see for instance [BrHiSill] [Por]

Below in a discussion of the formalization of co-groupoids in terms of Kan complexes is given and
is used to present a systematic way to understand these constructions in all degrees.

1.2.6.1 Principal 1-bundles Let G be a Lie group and X a smooth manifold (all our smooth manifolds
are assumed to be finite dimensional and paracompact). We give a discussion of smooth G-principal bundles
on X in a manner that paves the way to a straightforward generalization to a description of principal
oo-bundles. From X and G are naturally induced certain Lie groupoids.
From the group G we canonically obtain a groupoid that we write BG and call the delooping groupoid
of G. Formally this groupoid is
BG=(G_—Zx)

with composition induced from the product in G. A useful depiction of this groupoid is

*
BG = V o
a I ’
K ———— > %
92-91

where the g; € G are elements in the group, and the bottom morphism is labeled by forming the product in
the group. (The order of the factors here is a convention whose choice, once and for all, does not matter up
to equivalence.)

But we get a bit more, even. Since G is a Lie group, there is smooth structure on BG that makes it a
Lie groupoid, an internal groupoid in the category SmoothMfd of smooth manifolds: its collection of objects
(trivially) and of morphisms each form a smooth manifold, and all structure maps (source, target, identity,
composition) are smooth functions. We shall write

BG € LieGrpd

for BG regarded as equipped with this smooth structure. Here and in the following the boldface is to indicate
that we have an object equipped with a bit more structure — here: smooth structure — than present on the
object denoted by the same symbols, but without the boldface. Eventually we will make this precise by
having the boldface symbols denote objects in the co-topos SmoothooGrpd which are taken by a suitable
functor to objects in coGrpd denoted by the corresponding non-boldface symbols.

Also the smooth manifold X may be regarded as a Lie groupoid - a groupoid with only identity morphisms.
Its depiction is simply

X={z SR }

for all x € X But there are other groupoids associated with X: let {U; — X };cs; be an open cover of X. To
this is canonically associated the Cech-groupoid C({U;}). Formally we may write this groupoid as

o) = { i, UinU; == IL.0: } -

A useful depiction of this groupoid is

o ( ')/(%j)\( k) |

98




This indicates that the objects of this groupoid are pairs (z,4) consisting of a point 2 € X and a patch

U; C X that contains z, and a morphism is a triple (x, 1, j) consisting of a point and two patches, that both

contain the point, in that € U; N U;. The triangle in the above depiction symbolizes the evident way in

which these morphisms compose. All this inherits a smooth structure from the fact that the U; are smooth

manifolds and the inclusions U; < X are smooth functions. Hence also C({U;}) becomes a Lie groupoid.
There is a canonical projection functor

CHU;}) = X : (z,i) — .

This functor is an internal functor in SmoothMfd and moreover it is evidently essentially surjective and full
and faithful. However, while essential surjectivity and full-and-faithfulness implies that the underlying bare
functor has a homotopy-inverse, that homotopy-inverse never has itself smooth component maps, unless X
itself is a Cartesian space and the chosen cover is trivial.

We do however want to think of C({U;}) as being equivalent to X even as a Lie groupoid. One says
that a smooth functor whose underlying bare functor is an equivalence of groupoids is a weak equivalence of
Lie groupoids, which we write as C({U;}) = X. Moreover, we shall think of C'({U;}) as a good equivalent
replacement of X if it comes from a cover that is in fact a good open cover in that all its non-empty finite
intersections Uy, ... ;, := U, N -+ NU;, are diffeomorphic to the Cartesian space RUmX

We shall discuss later in which precise sense this condition makes C({U;}) good in the sense that smooth
functors out of C({U;}) model the correct notion of morphism out of X in the context of smooth groupoids
(namely it will mean that C({U;}) is cofibrant in a suitable model category structure on the category of Lie
groupoids). The formalization of this statement is what oo-topos theory is all about, to which we will come.
For the moment we shall be content with accepting this as an ad hoc statement.

Observe that a functor
g:CH{U;}) —» BG

is given in components precisely by a collection of smooth functions
{9ij : Uij — Gl}ijer

such that on each U; N U; N Uy, the equality g;rg:; = gix of functions holds.

It is well known that such collections of functions characterize G-principal bundles on X. While this is a
classical fact, we shall now describe a way to derive it that is true to the Lie-groupoid-context and that will
make clear how smooth principal co-bundles work.

First observe that in total we have discussed so far spans of smooth functors of the form

C({U;}) ~—BG

lN

X

Such spans of functors, whose left leg is a weak equivalence, are sometimes known, essentially equivalently,
as Morita morphisms, as generalized morphisms of Lie groupoids, as Hilsum-Skandalis morphisms, or as
groupoid bibundles or as anafunctors. We are to think of these as concrete models for more intrinsically
defined direct morphisms X — BG in the oo-topos of smooth co-groupoids.

Now consider yet another Lie groupoid canonically associated with G: we shall write EG for the groupoid
— the smooth universal G-bundle — whose formal description is

(=)-(=)
EG = (GxG‘: G>

p1
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with the evident composition operation. The depiction of this groupoid is

g2
92911/’ 9395 "
[ 7

g1 ——— 93
939,

This again inherits an evident smooth structure from the smooth structure of G and hence becomes a Lie
groupoid.
There is an evident forgetful functor
EG = BG

which sends B

(g1 — g2) — (o = ..

Consider then the pullback diagram
EG

in the category Grpd(SmoothMfd). The object P is the Lie groupoid whose depiction is

pP= { (z,1,91) — (,7,92 = gij(x)g1) } ;

where there is a unique morphism as indicated, whenever the group labels match as indicated. Due to
this uniqueness, this Lie groupoid is weakly equivalent to one that comes just from a manifold P (it is
O-truncated)

P> P.
This P is traditionally written as

P= (HUZ-XG>/~,

where the equivalence relation is precisely that exhibited by the morphisms in P. This is the traditional
way to construct a G-principal bundle from cocycle functions {g;;}. We may think of P as being P. Tt is a
particular representative of P in the co-topos of Lie groupoids.

While it is easy to see in components that the P obtained this way does indeed have a principal G-action
on it, for later generalizations it is crucial that we can also recover this in a general abstract way. For notice
that there is a canonical action

(EG) x G = EG,
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given by the group action on the space of objects. Then consider the pasting diagram of pullbacks

PxG——=EGxG .

]

P——EG

|

BG

c)

~

X

Here the morphism P x G — P exhibits the principal G-action of G on P.
In summary we find the following

Observation 1.2.76. For {U; — X} a good open cover, there is an equivalence of categories
SmoothFunc(C({U;}), BG) ~ GBund(X)

between the functor category of smooth functors and smooth natural transformations, and the groupoid of
smooth G-principal bundles on X.

It is no coincidence that this statement looks akin to the maybe more familiar statement which says that
equivalence classes of G-principal bundles are classified by homotopy-classes of morphisms of topological

spaces
moTop(X, BG) ~ myGBund(X),

where BG € Top is the topological classifying space of G. What we are seeing here is a first indication of
how cohomology of bare co-groupoids is lifted inside a richer co-topos to cohomology of co-groupoids with
extra structure.

In fact, all of the statements that we considered so far becomes conceptually simpler in the co-topos. We
had already remarked that the anafunctor span X & C HU:h) 4 BG is really a model for what is simply a
direct morphism X — BG in the co-topos. But more is true: that pullback of EG which we considered is
just a model for the homotopy pullback of just the point

PxG—=EGxG PxG——G

| | A |

P EG r *

| | A |

CU)— ~BG X —5—>BCG
X~

in the model category in the co-topos
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The traditional statement which identifies the classifying topological space BG as the quotient of the con-
tractible EG by the free G-action
BG ~ EG/G

becomes afte the refinement to smooth groupoids the statement that BG is the homotopy quotient of G
acting on the point:
BG ~ x//G.

Generally:

Definition 1.2.77. For V' a smooth manifold equipped with a smooth action by G (not necessarily free),
the action groupoid V//G is the Lie groupoid whose space of objects is V', and whose morphisms are group
elements that connect two points (which may coincide) in V.

V//G = { v —> vy |vg = 9(01)} :

Such an action groupoid is canonically equipped with a morphism to BG ~ x//G obtained by sending
all objects to the single object and acting as the identity on morphisms. Below in we discuss that the
sequence

V—->V/G— BG

entirely encodes the action of G on V. Also we will see in that the morphism V//G — BG is the
smooth refinement of the V-bundle which is associated to the universal G-bundle via the given action. If V
is a vector space acted on linearly, then this is an associated vector bundle. Its pullbacks along anafunctors
X — BG yield all V-vector bundles on X.

1.2.6.2 Principal 2-bundles and twisted 1-bundles The discussion above of G-principal bundles
was all based on the Lie groupoids BG and EG that are canonically induced by a Lie group G. We now
discuss the case where G is generalized to a Lie 2-group. The above discussion will go through essentially
verbatim, only that we pick up 2-morphisms everywhere. This is the first step towards higher Chern-Weil
theory. The resulting generalization of the notion of principal bundle is that of principal 2-bundle. For
historical reasons these are known in the literature often as gerbes or as bundle gerbes, even though strictly
speaking there are some conceptual differences.

Write U(1) = R/Z for the circle group. We have already seen above the groupoid BU(1) obtained from
this. But since U(1) is an abelian group this groupoid has the special property that it still has itself the
structure of a group object. This makes it what is called a 2-group. Accordingly, we may form its delooping
once more to arrive at a Lie 2-groupoid B2U(1). Its depiction is

*
1d 1d
B*U(1) = U-@\
* >
for g € U(1). Both horizontal composition as well as vertical composition of the 2-morphisms is given by
the product in U(1).
Let again X be a smooth manifold with good open cover {U; — X}. The corresponding Cech groupoid
we may also think of as a Lie 2-groupoid,

o) = (Hi,j,k U,NU; NUy —= 11, Ui NU; == HiUi) .

What we see here are the first stages of the full Cech nerve of the cover. Eventually we will be looking at
this object in its entirety, since for all degrees this is always a good replacement of the manifold X, as long
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as {U; — X} is a good open cover. So we look now at 2-anafunctors given by spans

C({Ui}) —=B2U(1)

lN

X

of internal 2-functors. These will model direct morphisms X — B2U(1) in the oo-topos. It is straightforward
to read off the following

Observation 1.2.78. A smooth 2-functor g : C({U;}) — B?U(1) is given by the data of a 2-cocycle in the
Cech cohomology of X with coefficients in U(1).

Because on 2-morphisms it specifies an assignment

(x,7)
g: / ﬂ \ — %ﬂc(x
(z,1) (z,k)

that is given by a collection of smooth functions

(gije U NU; NU, = U1)) .

On 3-morphisms it gives a constraint on these functions, since there are only identity 3-morphisms in B2U (1):

(z,§) — (2,k) (z,§) — (z,k) * * *
T./l - T,\l - \ ‘4)
(2,i) — (z,1) (2,1) —— (2,1) ! oy

This relation
Gijk * Gikl = Gijl * ikl
defines degree-2 cocycles in Cech cohomology with coefficients in U/(1).
In order to find the circle principal 2-bundle classified by such a cocycle by a pullback operation as before,

we need to construct the 2-functor EBU(1) — B2U(1) that exhibits the universal principal 2-bundle over
U(1). The right choice for EBU(1) — which we justify systematically in [1.2.6.4] — is indicated by

EBU(1) = /L\

€3=gcacCi

for ¢1,co,c3,9 € U(1), where all possible composition operations are given by forming the product of these
labels in U(1). The projection EBU (1) — B2U(1) is the obvious one that simply forgets the labels ¢; of the
1-morphisms and just remembers the labels g of the 2-morphisms.
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Definition 1.2.79. With g : C({U;}) — B2U(1) a Cech cocycle as above, the U(1)-principal 2-bundle or
circle 2-bundle that it defines is the pullback

P——>EBU(1) .

|,

C({U;}) —=B2U(1)

|

X

Unwinding what this means, we see that P is the 2-groupoid whose objects are that of C'({U;}), whose
morphisms are finite sequences of morphisms in C({U;}), each equipped with a label ¢ € U(1), and whose
2-morphisms are generated from those that look like

(z,J)
@J;/7%;§%x@

subject to the condition that
c1- ¢ =3 giji(T)

in U(1). As before for principal 1-bundles P, where we saw that the analogous pullback 1-groupoid P was
equivalent to the O-groupoid P, here we see that this 2-groupoid is equivalent to the 1-groupoid

P:(CthUm:::cwﬂ

with composition law
((2,1) S (2,5) 3 (@, k) = ((,3) “H (2, 8)).

This is a groupoid central extension
BU(1) - P - C{U;}) ~ X .

Centrally extended groupoids of this kind are known in the literature as bundle gerbes (over the surjective
submersion Y = [[, U; = X ). They may equivalently be thought of as given by a line bundle

over the space C'(U); of morphisms, and a line bundle morphism
tg M L@7m5L — L

that satisfies an evident associativity law, equivalent to the cocycle codition on g. In summary we find that:
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Observation 1.2.80. Bundle gerbes are presentations of Lie groupoids that are total spaces of BU(1)-
principal 2-bundles, def.

Notice that, even though there is a close relation, the notion of bundle gerbe is different from the original
notion of U(1)-gerbe. This point we discuss in more detail below in[1.2.92] and more abstractly in [6.3.10

This discussion of circle 2-bundles has a generalization to 2-bundles that are principal over more general
2-groups.

Definition 1.2.81. 1. A smooth crossed module of Lie groups is a pair of homomorphisms 0 : G; — G
and p : Gg — Aut(G) of Lie groups, such that for all g € Gy and h, hy, ha € G1 we have p(0hy)(h2) =
hihahit and 9p(g)(h) = gd(h)g™".

2. For (G1 — Gjy) a smooth crossed module, the corresponding strict Lie 2-group is the smooth groupoid
Go x G1 —__~ Gy , whose source map is given by projection on Gy, whose target map is given by
applying 0 to the second factor and then multiplying with the first in Gy, and whose composition is
given by multiplying in G;.

This groupoid has a strict monoidal structure with strict inverses given by equipping Gy x G1 with the
semidirect product group structure Gy x G induced by the action p of Gy on G;.

3. The corresponding one-object strict smooth 2-groupoid we write B(G; — Gp). As a simplicial object
(under the Duskin nerve of 2-categories) this is of the form

B(G1 — Gy) = cosks ( G x G T Z G x G Gy H*) .

The infinitesimal analog of a crossed module of groups is a differential crossed module.

Definition 1.2.82. A differential crossed module is a chain complex of vector space of length 2 V; — 1}
equipped with the structure of a dg-Lie algebra.

Example 1.2.83. For G; — Gj a smooth crossed module of Lie groups, differentiation of all structure maps
yields a corresponding differential crossed module g; — go.

Observation 1.2.84. For G := [G; LN Gy)] a crossed module, the 2-groupoid delooping a 2-group coming
from a crossed module is of the form

*k
BG = 7 UN | 91,92 € Go,k e Gy p

k ———————— > %
3(k)g2-g1

where the 3-morphisms — the composition identities — are

92 g2

*
N /
7 h2-p(gs)(h1)=hq-h3 s ha
*

*
*
*

*

*
*

Remark 1.2.85. All ingredients here are functorial, so that the above statements hold for presheaves over
sites, hence in particular for cohesive 2-groups such as smooth 2-groups. Below in corollarly [5.1.172 it is
shown that every cohesive 2-group has a presentation by a crossed module this way.
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Notice that there are different equivalent conventions possible for how to present BG in terms of the
correspondiung crossed module, given by the choices of order in the group products. Here we are following
convention “LB” in [RoSc08].

Example 1.2.86 (shift of abelian Lie group). For K an abelian Lie group then BK is the delooping 2-group
coming from the crossed module [K' — 1] and BBK is the 2-group coming from the complex [K — 1 — 1].
Example 1.2.87 (automorphism 2-group). For H any Lie group with automorphism Lie group Aut(H),
the morphism H ad Aut(H) that sends group elements to inner automorphisms, together with p = id, is a
crossed module. We write AUT(H) := (H — Aut(H)) and speak of the automorphism 2-group of H.

Example 1.2.88. The inclusion of any normal subgroup N — G with conjugation action of G on N is a
crossed module, with the canonical induced conjugation action of G on N.

Example 1.2.89 (string 2-group). For G a compact, simple and simply connected Lie group, write PG for
the smooth group of based paths in G and QG for the universal central extension of the smooth group of
based loops. Then the evident morphism (QG — PQG) equipped with a lift of the adjoint action of paths on
loops is a crossed module [BCSS07]. The corresponding strict 2-group is (a presentation of what is) called
the string 2-group extension of G. The string 2-group we discuss in detail in [7.1.10]

It follows immediately that

Observation 1.2.90. For G = (G; — Gp) a 2-group coming from a crossed module, a cocycle

X & o) 2 BG
is given by data

{hij € C=(Uis, Go), giji € C= (Uiji, G1)}

such that on each U;;, we have

hir = 6(hiji)hjihi;
and on each Ujjx; we have

girt - P(hjr)(gijr) = Gijk - Gjkl -
Because under the above correspondence between crossed modules and 2-groups, this is the data that

encodes assignments

(=,7) *

hm(m/’ I W(m)
9ijk(x)
¥

¥ ———————— > %k

hik(x)
*
‘/hu
*

For the case of the crossed module (U(1) — 1) this recovers the cocycles for circle 2-bundles from observation
r278

Apart from the notion of bundle gerbe, there is also the original notion of gerbe. The terminology is
somewhat unfortunate, since neither of these concepts is, in general, a special case of the other. But they
are of course closely related. We consider here the simple cocycle-characterization of gerbes and the relation
of these to cocycles for 2-bundles.

that satisfy

h]‘k
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Definition 1.2.91 (G-gerbe). Let G be a smooth group. Then a cocycle for a smooth G-gerbe over a
manifold X is a cocycle for a AUT(G)-principal 2-bundle, where AUT(G) is the automorphism 2-group from

example

Observation 1.2.92. For every 2-group coming from a crossed module (G4 KN Go, p) there is a canonical
morphism of 2-groups
(G1 — Go) — AUT(Gl)

given by the commuting diagram of groups

G1 Go

id P
G1 —24 Aut(Go)

Accordingly, every (G7 — Gp)-principal 2-bundle has an underlying G;-gerbe, def. [1.2.91} But in general
the passage to this underlying G1-gerbe discards information.

Example 1.2.93. For G a simply connected and compact simple Lie group, let String ~ (QG — PQ) be
the corresopnding String 2-group from example [1.2.89] Then by observation every String-principal
2-bundle has an underlying QG-gerbe. But there is more information in the String-2-bundle than in this
gerbe underlying it.

Example 1.2.94. Let G = (Z — R) be the crossed module that includes the additive group of integers into
the additive group of real numbers, with trivial action. The canonical projection morphism

B(Z — R) 5 BU(1)

is a weak equivalence, by the fact that locally every smooth U(1)-valued function is the quotient of a smooth
R-valued function by a (constant) Z-valued function. This means in particular that up to equivalence,
(Z — R)-2-bundles are the same as ordinary circle 1-bundles. But it means a bit more than that:

On a manifold X also BZ-principal 2-bundles have the same classification as U(1)-bundles. But the
morphisms of BZ-principal 2-bundles are essentially different from those of U(1)-bundles. This means that
the 2-groupoid BZBund(X) is not, in general equivalent to U(1)Bund(X). But we do have an equivalence
of 2-groupoids

(Z - U(1))Bund(X) ~ U(1)Bund(X) .

Example 1.2.95. Let ACA? — G be a central extension of Lie groups by an abelian group A. This induces the
crossed module (A — G). There is a canonical 2-anafunctor

B(4—G)—5B(4—1)=B4

lz

BG

from BG to B?A. This can be seen to be the characteristic class that classifies the extension (see m
below): BG — BG is the A-principal 2-bundle classified by this cocycle.

Accordingly, the collection of all (A — é)—principal 2-bundles is, up to equivalence, the same as that of
plain G-1-bundles. But they exhibit the natural projection to BA-2-bundles. Fixing that projection gives
twisted G-1-bundles.

more in detail: the above 2-anafunctor indiuces a 2-anafunctor on cocycle 2-groupoid

(A — G)Bund(X) *— BABund(X) .

lz

GBund(X)
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If we fix a BA-2-bundle g we can consider the fiber of the characteristic class ¢ over g, hence the pullback
GBund[g] (X) in

GBundg)(X) ————x

| g

(A = G)Bund(X) —~— BABund(X)

lz

GBund(X)

This is the groupoid of [g]-twisted G-bundles. The principal 2-bundle classfied by g is also called the lifting
gerbe of the G-principal bundles underlying the [g]-twisted G-bundle: because this is the obstruction to
lifting the former to a genuine G-principal bundle.

If g is given by a Cech cocycle {gijr € C°(Uijk, A)} then [g]-twisted G-bundles are given by data
{hi; € C>(U;j,G)} which does not quite satisfy the usual cocycle condition, but instead a modification by
g:

hix = 6(gijr)hjrhij -

For instance for the extension U(1) — U(n) — PU(n) the corresponding twisted bundles are those that

model twisted K-theory with n-torsion twists .

1.2.6.3 Principal 3-bundles and twisted 2-bundles As one passes beyond (smooth) 2-groups and
their 2-principal bundles, one needs more sophisticated tools for presenting them. While the crossed modules
from def. have convenient higher analogs — called crossed complexes — the higher analog of remark
does not hold for these: not every (smooth) 3-group is presented by them, much less every n-group for
n > 3. Therefore below in [1.2.6.4] we switch to a different tool for the general situation: simplicial groups.

However, it so happens that a wide range of relevant examples of (smooth) 3-groups and generally of
smooth n-groups does have a presentation by a crossed complex after all, as do the examples which we shall
discuss now.

Definition 1.2.96. A crossed complex of groupoids is a diagram

Ot
03 CQ 01 *; CVO

Co—Cy—=>Cy—Cp

§ [ [

[
where C} Z Cy is equipped with the structure of a 1-groupoid, and where Cj —— Cy , for all k > 2,

are bundles o; groups, abelian for & > 2; and equipped with an action p of the groupoid C{, such that
1. the maps 6k, k > 2 are morphisms of groupoids over Cj compatible with the action by Cf;
2. 8100, =0: k > 3:
3. im(d2) C C4 acts by conjugation on Cs and trivially on Cy, k > 3.

Surveys of standard material on crossed complexes of groupoids are in [BrHiSill][Por]. We discuss
sheaves of crossed complexes, hence cohesive crossed complexes in more detail below in As mentioned
there, the key aspect of crossed complexes is that they provide an equivalent encoding of precisely those
oo-groupoids that are called strict.
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Definition 1.2.97. A crossed complex of groups is a crossed complex C, of groupoids with Cy = *. If the
complex of groups is constant on the trivial group beyond C,,, we say this is a strict n-group.
Explicitly, a crossed complex of groups is a complex of groups of the form

d2 o1 50

G2

Gy Go

with Gg>2 abelian (but G1 and Gy not necessarily abelian), together with an action py of Gy on Gy, for all
k € N, such that

1. po is the adjoint action of Gy on itself;

2. p1 04y is the adjoint action of Gy on itself;

3. pr o g is the trivial action of G; on Gy, for k > 1;
4. all 0, respect the actions.

A morphism of crossed complexes of groups is a sequence of morphisms of component groups, respecting all
this structure.

For n = 2 this reproduces the notion of crossed module and strict 2-group, def. If furthermore Gy
and Gg here are abelian and the action of G is trivial, then this is an ordinary complex of abelian groups
as considered in homological algebra. Indeed, all of homological algebra may be thought of as the study of

this presentation of abelian co-groups, def. [5.1.157 (More on this in below.)
We consider now examples of strict 3-groups and of the corresponding principal 3-bundles.

Example 1.2.98. For A an abelian group, the delooping of the 3-group given by the complex (A — 1 — 1)
is the one-object 3-groupoid that looks like

B34 =

Therefore an cc-anafunctor X < C({U;}) 2% B3U(1) sends 3-simplices in the Cech groupoid

(z,)) —(z,k) (x,j) —— (@, k)
N
(z,i) ———— (=,1) (z,i) ——— (=,1)

to 3-morphisms in B3U(1) labeled by group elements g;;x(x) € U(1)

7=
AN

(where all 1-morphisms and 2-morphisms in B3U (1) are necessarily identities).

g
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The 3-functoriality of this assignment is given by the following identity on all Cech 4-simplices (x,(h,i,j,k,1)):

SN L 0N
N/ g/

Jhijk Gijki

R
\Ls7 NN

I
VALY,

This means that the cocycle data {g;;ri(x)} has to satisfy the equations

I

9rijk () gnirt(2)gijr(2) = Gnjri () gniji(x)
for all (h,i,j,k,1) and all & € Up;jii. Since U(1) is abelian this can equivalently be rearranged to
ghijk(x)ghijl(x)_lghikl(x)ghjkl(x)_lgijkl(x) =1.
This is the usual form in which a Cech 3-cocycles with coefficients in U(1) are written.

Definition 1.2.99. Given a cocycle as above, the total space object P given by the pullback

P

is the corresponding circle principal 3-bundle.
In direct analogy to the argument that leads to observation we find:

Observation 1.2.100. The structures known as bundle 2-gerbes [St01] are presentations of the 2-groupoids
that are total spaces of circle principal 2-bundles, as above.
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Again, notice that, despite a close relation, this is different from the original notion of 2-gerbe. More
discussion of this point is below in [6.3.10

The next example is still abelian, but captures basics of the central mechanism of twistings of principal
2-bundles by principal 3-bundles.

Example 1.2.101. Consider a morphism ¢ : N — A of abelian groups and the corresponding shifted crossed
complex (N — A — 1). The corresponding delooped 3-group looks like

o— > o
as
B(N —A— 1) = 5(n)= a4ada2 taT?t /
ad
o— > o

A cocycle for a (N — A — 1)-principal 3-bundle is given by data
{amk € C™( zﬂmA) nikt € C™° ( Ukl’N)}
such that
1. ajkla;j}ﬂaijka;k} = 0(nijk1)
2. npije (@) npik ()N (@) = npjr(2) g (z) .

The first equation on the left is the cocycle for a 2-bundle as in observation But the extra term n,;z
on the right “twists” the cocycle. This twist itself satisfies a higher order cocycle condition.

Notice that there is a canonical projection
B(N+A—-1)—-B(N—-1—-1)=B3N.
Therefore we can consider the higher analog of the notion of twisted bundles in example
Definition 1.2.102. Let N — A be an inclusion and consider a fixed B2N-principal 3-bundle with cocycle
g, let B(A/N)Bundj,(X) be the pullback in

B(A/N)Bund(X) ———

i ;
B(N — A)Bund(X) — B2NBund(X)
B(A/N)Bund(X)
We say an object in this 2-groupoid is a [g]-twisted B(A/N)-principal 2-bundle.

Below in example we discuss this and its relation to characteristic classes of 2-bundles in more
detail.
We now turn to the most general 3-group that is presented by a crossed complex.

Observation 1.2.103. For (L S HS G) an arbitrary strict 3-group, def. the delooping 3-groupoid
looks like

* * * 9 *
h
/ el \ 7 hahs
B(L — H — G) = 5(’11)9291 — 1 d(h3)g293 93 =

/ " /h\ 0 e le) [
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with the 4-cells — the composition identities — being

N

p(g34)(Xo123) A1234

O
ho234 . p(g923)(Xo124)

gi2 g23
° 3
NV
901 934
. .

X &cw) ™M BL - H Q)

-

If follows that a cocycle

for a (L - H — G)-principal 3-bundle is a collection of functions
{9i € € (Ui, G), hiji € C(Uiji, H), Nijra € C(Uijia, L)}

satisfying the cocycle conditions
ik = 6(hijr)gjkgi; on Uik
hijihjre = (Nijrr) - hara - p(93) (hijr)  on Usjp
Nijkt Akt P(gk1) (Anije) = p(gjk) AnigiAnjkt o Unijka -

Definition 1.2.104. Given such a cocycle, the pullback 3-groupoid P we call the corresponding principal
(L - H — G)-3-bundle
P

CcU:)

M

X

EB(L - H— G)

|

O B(L - H - Q)

We can now give the next higher analog of the notion of twisted bundles, def. [1.2.95
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Definition 1.2.105. Given a 3-anafunctor

B(L—+H—G)——=B(L—+1—1)=—=B3L

lz

B(H/L — G)
then for g the cocycle for an B2 L-principal 3-bundle we say that the pullback (H — G)Bund,(X) in

(H — G)Bundy(X) ——— «

| lg

(L - H — G)Bund(X) — B3 LBund(X)

is the 3-groupoid of g-twisted (H — G)-principal 2-bundles on X.

Example 1.2.106. Let G be a compact and simply connected simple Lie group. By example[[.2.89 we have
associated with this the string 2-group crossed module QG — PG, where

U(l) = QG - QG

is the Kac-Moody central extension of level 1 of the based loop group of G. Accordingly, there is an evident

crossed complex )
U(l) = QG — PG.

The evident projection
B(U(1) — QG — PG) 5 BG

is a weak equivalence. This means that (U(1) — QG — PG)-principal 3-bundles are equivalent to G-1-
bundles. For fixed projection g to a B2U(1)-3-bundle a (U(1) — QG — PG)-principal 3-bundles may hence
be thought of as a g-twisted string-principal 2-bundle.

One finds that these serve as a resolution of G-1-bundles in attempts to lift to string-2-bundles (discussed

below in[7.1.2)).

1.2.6.4 A model for principal co-bundles We have seen above that the theory of ordinary smooth
principal bundles is naturally situated within the context of Lie groupoids, and then that the theory of
smooth principal 2-bundles is naturally situated within the theory of Lie 2-groupoids. This is clearly the
beginning of a pattern in higher category theory where in the next step we see smooth 3-groupoids and so
on. Finally the general theory of principal co-bundles deals with smooth oco-groupoids. A comprehensive
discussion of such smooth co-groupoids is given in section In this introduction here we will just briefly
describe principal co-bundles in this model.

Recall the discussion of co-groupoids from in terms of Kan simplicial sets. Consider an object
BG € [C°P,sSet] which is an oo-groupoid with a single object, so that we may think of it as the delooping
of an co-group G. Let % be the point and * — BG the unique inclusion map. The good replacement of this
inclusion morphism is the universal G-principal co-bundle EG — BG given by the pullback diagram

EG ———«

L

(BG)AN — =BG

l

BG
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An oc-anafunctor X & X — BG we call a cocycle on X with coefficients in GG, and the oo-pullback P of
the point along this cocycle, which by the above discussion is the ordinary limit

P EG *

L

we call the principal co-bundle P — X classified by the cocycle.

Example 1.2.107. A detailed description of the 3-groupoid fibration that constitutes the universal principal
2-bundle EG for G any strict 2-group in given in [RoSc08§].

It is now evident that our discussion of ordinary smooth principal bundles above is the special case of
this for BG the nerve of the one-object groupoid associated with the ordinary Lie group G. So we find
the complete generalization of the situation that we already indicated there, which is summarized in the
following diagram:

PxG—=EGxG P x
P— S EG ’I
X

|

<~ %x<—0Q)

Z
/

——— BG

c(U) BG g
X
in the model category in the oo-topos

1.2.6.5 Higher fiber bundles We indicate here the natural notion of principal bundle in an oo-topos
and how it relates to the intrinsic notion of cohomology discussed above.

1.2.6.5.1 Ordinary principal bundles For G a group, a G-principal bundle over some space X
is, roughly, a space P — X over X, which is equipped with a G-action over X that is fiberwise free and
transitive (“principal”), hence which after a choice of basepoint in a fiber looks there like the canonical
action of GG on itself. A central reason why the notion of G-principal bundles is relevant is that it consistutes
a “geometric incarnation” of the degree-1 (nonabelian) cohomology H'(X,G) of X with coefficients in G
(with G regarded as the sheaf of G-valued functions on G): G-principal bundles are classified by H' (X, G).
We will see that this classical statement is a special case of a natural and much more general fact, where
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principal co-bundles incarnate cocycles in the intrinsic cohomology of any co-topos. Before coming to that,
here we briefly review aspects of the classical theory to set the scene.

Let G be a topological group and let X be a topological space.

Definition 1.2.108. A topological G-principal bundle over X is a continuous map p : P — X equipped
with a continuous fiberwise G-action p: P x G — G

PxG
pl¢¢ﬂ
P

VP
X
which is locally trivial: there exists a cover ¢ : U — X and an isomorphism of topological G-spaces
P‘U ~UxG

between the restriction (pullback) of P to U and the trivial bundle U x G — U equipped with the canonical
G-action given by multiplication in G.

Observation 1.2.109. Let P — X be a topological G-principal bundle. An immediate consequence of the
definition is

1. The base space X is isomorphic to the quotient of P by the G-action, and, moreover, under this
identitfication P — X is the quotient projection P — P/G.

2. The principality condition is satisfied: the shear map
(p1,p) : PXG—Pxx P

is an isomorphism.

Remark 1.2.110. Sometimes the quotient property of principal bundles has been taken to be the defining
property. For instance [Cart50al [Cart50b] calls every quotient map P — P/G of a free topological group
action a “G-principal bundle”, without requiring it to be locally trivial. This is a strictly weaker definition:
there are many examples of such quotient maps which are not locally trivial. To distinguish the notions,
[Pa61] refers to the weaker definition as that of a Cartan principal bundle. Also for instance the standard
textbook [Hus94] takes the definition via quotient maps as fundamental and explicitly adds the adjective
“locally trivial” when necessary.
For our purposes the following two points are relevant.

1. Local triviality is crucial for the classification of topological G-principal bundles by nonabelian sheaf
cohomology to work, and so from this perspective a Cartan principal bundle may be pathological.

2. On the other hand, we see below that this problem is an artefact of considering G-principal bundles
in the ill-suited context of the 1-category of topological spaces or manifolds. We find below that after
embedding into an oo-topos (for instance that of Euclidean topological oco-groupoids, discussed in
both definitions in fact coincide.

The reason is that the Yoneda embedding into the higher categorical context of an oco-topos “corrects
the quotients”: those quotients of G-actions that are not locally trivial get replaced, while the “good
quotients” are being preserved by the embedding. This statement we make precise in below.
See also the discussion in B.TI11.1] below.
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It is a classical fact that for X a manifold and G a topological or Lie group, regarded as a sheaf of groups
C(—,G) on X, there is an equivalence of the following kind
’ algebraic data on X geometric data on X ‘

degree-1 nonabelian - isomorphism classes of
sheaf cohomology B G-principal bundles over X
H'(X,G) GBund(X)
) PxG EG x G

(2,7) *
/\T g gz'j(x)/ \]‘jk(w) plilp Pllip G-actions
: ‘ N P— s FEG total spaces

(2,i) ——

12

, (@, k) *——x
gik ()
\ / pullback

X —————> BG  quotient spaces

v lgl
G-principal universal
g bundle Classifying bundle
X —BG map
cocycle N /n

We give a detailed exposition of the construction indicated in this diagram below in [1.2.6.1}

1.2.6.5.2 Principal oo-bundles Let now H be an oo-topos, and G a group object in H,
Up to the technical issue of formulating homotopy coherence, the formulation in H of the definition
of G-principal bundles, in its version as Cartan G-principal bundle, remark is immediate:
Definition. A G-principal bundle over X € H is

e a morphism P — X; with an oo-action p: P x G — P;
e such that P — X is the co-quotient map P — P//G.

In}5.1.11|below we discuss a precise formulation of this definition and the details of the following central state-
ment about the relation between G-principal co-bundles and the intrinsic cohomology of H with coefficients
in the delooping object BG.

hofib
-~

Theorem. There is equivalence of co-groupoids GBund(X) ~ H(X,BG) , where
lim
1. hofib sends a cocycle X — BG to its homotopy fiber;
2. h_n} sends an oo-bundle to the map on oo-quotients X ~ P//G — x//G ~ BG.

In particular, G-principal co-bundles are classified by the intrinsic cohomology of H

GBund(X)/. ~ HY(X,G) := ngH(X,BG) .
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Idea of Proof. Repeatedly apply two of the
Giraud-Rezk-Lurie axioms, prop. PxGxQG

. GxG
that characterize co-toposes: i l i J/ i i
1. every oo-quotient is effective; PxG G
2. oo-colimits are preserved
by co-pullbacks. O Pl? G-oo-actions

* total objects

P
l oo-pullback J{
X

BG  quotient objects

g

G-principal universal
oo-bundle cocycle oo-bundle

This gives a general abstract theory of principal co-bundles in every oco-topos. We also have the following
explicit presentation. Definition For G € Grp(sSh(C)), and X € sSh(C)isp, a weakly G-principal simplicial
bundle is a G-action p over X such that the principality morphism (p,p1) : P x G — P x x P is a stalkwise
weak equivalence.

Below in [5.1.11.4] we discuss that this construction gives a presentation of the co-groupoid of G-principal
bundles as the nerve of the ordinary category of weakly G-principal simplicial bundles.

weakly G-principal
Nerve simplicial bundles ~ GBund(X).
over X

For the special case that X is the terminal object over the site C' and when restricted from cocycle oco-
groupoids to sets of cohomology classes, this reproduces the statement of |[JaLu04]. For our applications in
??, in particular for applications in twisted cohomology, [5.1.13} it is important to have the general statement,
where the base space of a principal co-bundle may be an arbitrary oo-stack, and where we remember the
oo-groupoids of gauge transformations between them, instead of passing to their sets of equivalence classes.

The special case where the site C is trivial, C' = %, leads to the notion of principal co-bundles in coGrp.
These are presented by certain bundles of simplicial sets. This we discuss below in [6.2.5

1.2.6.5.3 Associated and twisted oo-bundles The notion of G-principal bundle is a very special
case of the following natural more general notion. For any F', an F'-fiber bundle over some X is a space
E — X over X such that there is a cover U — X over which it becomes equivalent as a bundle to the trivial
F-bundle U x FF = U.

Principal bundles themselves form but a small subclass of all possible fiber bundles over some space
X. Even among G-fiber bundles the G-principal bundles are special, due to the constraint that the local
trivialization has to respect the G-action on the fibers. However, every F-fiber bundle is associated to a
G-principal bundle.

Given a representation p : F' x G — F, the p-associated F-fiber bundle is the quotient P x¢ F of the
product P x F by the diagonal G-action. Conversely, using that the automorphism group Aut(F') of F
canonically acts on F, it is immediate that every F-fiber bundle is associated to an Aut(F)-principal bundle
(a statement which, of course, crucially uses the local triviality clause).

All of these constructions and statements have their straightforward generalizations to higher bundles,
hence to associated co-bundles. Moreover, just as the theory of principal bundles improves in the context of
oo-toposes, as discussed above, so does the theory of associated bundles.

For notice that by the above classification theorem of G-principal oco-bundles, every G-oo-action p :
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V x G — G has a classifying map, which we will denote by the same symbol:

V—V//G

l”

BG

One may observe now that this map V//G — BG is the universal p-associated V -co-bundle: for every F-fiber
oo-bundle £ — X there is a morphism X — BG such that E — X is the co-pullback of this map to X.

E——>V/G

L,

X —2-BaG

One implication of this is, by the universal property of the co-pullback, that sections o of the associated
bundle
E

()

X

are equivalently lifts of its classifying map through the universal p-associated bundle

VG
Tx(P xg V)= o7 J/p

//g
X ——BG

One observes that by local triviality and by the fact that V is, by the above, the homotopy fiber of V//G —
BG@G, it follows that locally over a cover U — X such a section is identified with a V-valued map U — V.
Conversely, globally a section of a p-associated bundle may be regarded as a twisted V-valued function.

While this is an elementary and familiar statement for ordinary associated bundles, this is where the
theory of associated co-bundles becomes considerably richer than that of ordinary oo-bundles: because here
V itself may be a higher stack, notably it may be a moduli co-stack V' = BA for A-principal oco-bundles. If
so, maps U — V classify A-principal oco-bundles locally over the cover U of X, and so conversely the section
o itself may globally be regarded as exhibiting a twisted A-principal co-bundle over X.

We can refine this statement by furthermore observing that the space of all sections as above is itself the
hom-space in an oo-topos, namely in the slice co-topos H gg. This means that such sections are themselves
cocycles in a structured nonabelian cohomology theory:

Lx (P xgV):=G/Ba(9,p)-

This we may call the g-twisted cohomology of X relative to p. We discuss below in[7.1] how traditional notions
of twisted cohomology are special cases of this general notion, as are many further examples.

Now p, regarded as an object of the slice H g is not in general a connected object. This means that it
is not in general the moduli object for some principal co-bundles over the slice. But instead, we find that
we can naturally identify geometric incarnations of such cocycles in the form of twisted oco-bundles.
Theorem. The g-twisted cohomology H,p¢(g,p) classifies P-twisted oo-bundles: twisted G-equivariant
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QV-oco-bundles on P:

Q— % P-twisted QV-principal co-bundle
P \% * G-principal oco-bundle
X —%Vv/)G—-—L~BG section of p-associated V-oco-bundle
g
sections of N g-twisted QV-cohomology N QV-oco-bundles
p-associated V-oco-bundle - relative p - twisted by P

A survey of classes of examples of twisted oo-bundles classified by twisted cohomology is below in [7.1.1
Among them, in particular the classical notion of nonabelian gerbe [GirTl], and 2-gerbe [Br94] is a special
case.

Namely one see that a (nonabelian/Giraud-)gerbe on X is nothing but a connected and 1-truncated
object in H,x. Similarly, a (nonabelian/Breen) 2-gerbe over X is just a connected and 2-truncated object
in H/x. Accordingly we may call a general connecte object in H,y an nonabelian co-gerbe over X. We
say that it is a G-oco-gerbe if it is an Aut(BG)-associated co-bundle. We say its band is the underlying
Out(G)-principal co-bundle. For 1-gerbes and 2-gerbes this reproduces the classical notions.

In terms of this, the above says that G-oo-gerbes bound by a band are classified by (BAut(BG) —
BOut(G))-twisted cohomology. This is the generalization of Giraud’s original theorem. We discuss all this
in detail below in 119

1.2.7 Principal connections

1.2.7.1 Parallel n-transport for low n With a decent handle on principal co-bundles as described
above, we now turn to the description of connections on oo-bundles. It will turn out that the above cocycle-
description of G-principal co-bundles in terms of co-anafunctors X & X % BG has, under mild conditions,
a natural generalization where BG@ is replaced by a (non-concrete) simplicial presheaf BGconn, which we may
think of as the co-groupoid of co-Lie algebra valued forms. This comes with a canonical map BGeonn — BG
and an oo-connection V on the co-bundle classified by g is a lift V of g in the diagram

BGCOHH .

In the language of co-stacks we may think of BG as the oo-stack (on CartSp) or co-prestack (on SmoothMfd)
GTrivBund(—) of trivial G-principal bundles, and of BGconn correspondingly as the object GTrivBundy (—)
of trivial G-principal bundles with (non-trivial) connection. In this sense the statement that oo-connections
are cocycles with coefficients in some BGopny is a tautology. The real questions are:

1. What is BG¢onn in concrete formulas?
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2. Why are these formulas what they are? What is the general abstract concept of an oo-connection?
What are its defining abstract properties?

A comprehensive answer to the second question is provided by the general abstract concepts discussed in
section [l Here in this introduction we will not go into the full abstract theory, but using classical tools we
get pretty close. What we describe is a generalization of the concept of parallel transport to higher parallel
transport. As we shall see, this is naturally expressed in terms of oco-anafunctors out of path m-groupoids.
This reflects how the full abstract theory arises in the context of an oo-connected oo-topos that comes
canonically with a notion of fundamental co-groupoid.

Below we begin the discussion of co-connections by reviewing the classical theory of connections on a
bundle in a way that will make its generalization to higher connections relatively straightforward. In an
analogous way we can then describe certain classes of connections on a 2-bundle — subsuming the notion
of connection on a bundle gerbe. With that in hand we then revisit the discussion of connections on
ordinary bundles. By associating to each bundle with connection its corresponding curvature 2-bundle with
connection we obtain a more refined description of connections on bundles, one that is naturally adapted
to the construction of curvature characteristic forms in the Chern-Weil homomorphism. This turns out to
be the kind of formulation of connections on an oco-bundle that drops out of the general abstract theory.
In classical terms, its full formulation involves the description of circle n-bundles with connection in terms
of Deligne cohomology and the description of the oco-groupoid of co-Lie algebra valued forms in terms of
dg-algebra homomorphisms. The combination of these two aspects yields naturally an explicit model for the
Chern-Weil homomorphism and its generalization to higher bundles.

Taken together, these constructions allow us to express a good deal of the general co-Chern-Weil theory
with classical tools. As an example, we describe how the classical Cech-Deligne cocycle construction of the
refined Chern-Weil homomorphism drops out from these constructions.

1.2.7.1.1 Connections on a principal bundle There are different equivalent definitions of the
classical notion of a connection. One that is useful for our purposes is that a connection V on a G-principal
bundle P — X is a rule tray for parallel transport along paths: a rule that assigns to each path v : [0,1] — X
a morphism tray(y) : P, — P, between the fibers of the bundle above the endpoints of these paths, in a
compatible way:

tray (v) . trav(y')

P, ——P,——P, P
Ty >z X

In order to formalize this, we introduce a (diffeological) Lie groupoid to be called the path groupoid of X.
(Constructions and results in this section are from [ScWaQT].

Definition 1.2.111. For X a smooth manifold let [/, X] be the set of smooth functions I = [0,1] — X.
For U a Cartesian space, we say that a U-parameterized smooth family of points in [I, X] is a smooth map
U x I — X. (This makes [I, X] a diffeological space).

Say a path v € [I, X] has sitting instants if it is constant in a neighbourhood of the boundary 9I. Let
[I, Plsi C [I, P] be the subset of paths with sitting instants.

Let [I, X]s — [I, Xt be the projection to the set of equivalence classes where two paths are regarded
as equivalent if they are cobounded by a smooth thin homotopy.

Say a U-parameterized smooth family of points in [I, X]tI' is one that comes from a U-family of repre-
sentatives in [I, X]g under this projection. (This makes also [, X]tI" a diffeological space.)
The passage to the subset and quotient [I, X ]Sl of the set of all smooth paths in the above definition
is essentially the minimal adjustment to enforce that the concatenation of smooth paths at their endpoints
defines the composition operation in a groupoid.

120



Definition 1.2.112. The path groupoid P1(X) is the groupoid
Py (X) = ([I, X]i = X)

with source and target maps given by endpoint evaluation and composition given by concatenation of classes
[7] of paths along any orientation preserving diffeomorphism [0,1] — [0,2] ~ [0,1][]; ,[0, 1] of any of their
representatives

el o bn] = 0.1 3 0.1 T lo.1) ©23") x
1,0

This becomes an internal groupoid in diffeological spaces with the above U-families of smooth paths. We
regard it as a groupoid-valued presheaf, an object in [CartSp°?, Grpd]:

P (X): U — (SmoothMfd(U x I, X)" = SmoothMfd(U, X)).

Observe now that for G a Lie group and BG its delooping Lie groupoid discussed above, a smooth functor
tra: P1(X) — BG sends each (thin-homotopy class of a) path to an element of the group G

tra: (z [l> Y) tmgeG

such that composite paths map to products of group elements :

tra : / H \[1 = ey H Yj(v

[’y ov] tra(y tra('y

and such that U-families of smooth paths induce smooth maps U — G of elements.
There is a classical construction that yields such an assignment: the parallel transport of a Lie-algebra
valued 1-form.

Definition 1.2.113. Suppose 4 € Q!(X,g) is a degree-1 differential form on X with values in the Lie
algebra g of G. Then its parallel transport is the smooth functor

tray : P1(X) —» BG

given by

[] HPeXp(/ 7' A) €G,
[0,1]

where the group element on the right is defined to be the value at 1 of the unique solution f : [0,1] — G of
the differential equation
darf +7Y*ANf=0

for the boundary condition f(0) =
Proposition 1.2.114. This construction A — tra induces an equivalence of categories
[CartSp°?, Grpd](P1(X), BG) ~ BGconn(X),

where on the left we have the hom-groupoid of groupoid-valued presheaves, and where on the right we have
the groupoid of Lie-algebra valued 1-forms, whose

e objects are 1-forms A € QY(X, g),

e morphisms g : Ay — As are labeled by smooth functions g € C°(X, Q) such that Ay = g~*Ag+g~tdg.
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This equivalence is natural in X, so that we obtain another smooth groupoid.
Definition 1.2.115. Define BGcony : CartSp°® — Grpd to be the (generalized) Lie groupoid
BGconn : U — [CartSp°?, Grpd](P1(—), BG)
whose U-parameterized smooth families of groupoids form the groupoid of Lie-algebra valued 1-forms on U.
This equivalence in particular subsumes the classical facts that parallel transport v — P exp( f[o,l] v*A)
e is invariant under orientation preserving reparameterizations of paths;
e sends reversed paths to inverses of group elements.

Observation 1.2.116. There is an evident natural smooth functor X — P (X) that includes points in X
as constant paths. This induces a natural morphism BGon, — BG that forgets the 1-forms.

Definition 1.2.117. Let P — X be a G-principal bundle that corresponds to a cocycle g : C(U) — BG
under the construction discussed above. Then a connection V on P is a lift V of the cocycle through
BG.onn — BG.
BGCOHH
>
C(U)——BG

Observation 1.2.118. This is equivalent to the traditional definitions.
A morphism V : C(U) = BGconn is

e on each U; a 1-form A; € QY (U;, g);

e on each U; NU; a function g;; € C>(U; NU;, G);
such that

e on each U; NU; we have A; = gigl(A + dar)9gij;

e on each U; NU; N Uy, we have g;; - gjx = Gik-

Definition 1.2.119. Let [I, X]!! — [I, X]" the projection onto the full quotient by smooth homotopy classes
of paths. Write [, (X) = ([I, X]" = X)) for the smooth groupoid defined as P;(X), but where instead of
thin homotopies, all homotopies are divided out.

Proposition 1.2.120. The above restricts to a natural equivalence
[CartSp°?, Grpd]([,(X),BG) ~bBG,

where on the left we have the hom-groupoid of groupoid-valued presheaves, and on the right we have the full
sub-groupoid PBG C BGconn on those g-valued differential forms whose curvature 2-form Fa = dagrA+[ANA]
vanishes.

A connection V is flat precisely if it factors through the inclusion YBG — BGconn-

For the purposes of Chern-Weil theory we want a good way to extract the curvature 2-form in a general
abstract way from a cocycle V : X & C(U) — BGconn- In order to do that, we first need to discuss
connections on 2-bundles.
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1.2.7.1.2 Connections on a principal 2-bundle There is an evident higher dimensional general-
ization of the definition of connections on 1-bundles in terms of functors out of the path groupoid discussed
above. This we discuss now. We will see that, however, the obvious generalization captures not quite all
2-connections. But we will also see a way to recode l-connections in terms of flat 2-connections. And
that recoding then is the right general abstract perspective on connections, which generalizes to principal
oo-bundles and in fact which in the full theory follows from first principles.

(Constructions and results in this section are from [ScWa0§|, [ScWa08g].)

Definition 1.2.121. The path path 2-groupoid Po(X) is the smooth strict 2-groupoid analogous to P (X),
but with nontrivial 2-morphisms given by thin homotopy-classes of disks A2Di ¢ — X with sitting instants.

In analogy to the projection P1(X) — [, (X) there is a projection to Py(X) — [,(X) to the 2-groupoid
obtained by dividing out full homotopy of disks, relative boundary.

We want to consider 2-functors out of the path 2-groupoid into connected 2-groupoids of the form BG,
for G a 2-group, def. [1.2.81] A smooth 2-functor [ ,(X) — BG now assigns information also to surfaces

*
\ tra('y/ Y(W/)
tra : = 1
traf>)
*

Yy
(] 7]
Uiz
r—z *
[y ov]

and thus encodes higher parallel transport.
Proposition 1.2.122. There is a natural equivalence of 2-groupoids
[CartSp°?, 2Grpd]( [,(X),BG) ~bBG
where on the right we have the 2-groupoid of Lie 2-algebra valued forms] whose
e objects are pairs A € Q1 (X, g1), B € Q*(X, g2) such that the 2-form curvature
Fy(A,B) :=dqrA + [AN A] +6,.B

and the 3-form curvature
F5(A,B) :=dqrB + [A A B]

vanish.

e morphisms (X, a) : (A, B) — (A, B') are pairs a € Q'(X,g2), A € C°(X,G1) such that A’ = ANAN"! +
AA~! + 0.0 and B' = \(B) + dqra + [A A a

o The description of 2-morphisms we leave to the reader (see [ScWa0§)).
As before, this is natural in X, so that we that we get a presheaf of 2-groupoids
bBG : U — [CartSp°?, 2Grpd]([,(U), BG).

Proposition 1.2.123. If in the above definition we use Po(X) instead of [,(X), we obtain the same 2-
groupoid, except that the 3-form curvature F5(A, B) is not required to vanish.

Definition 1.2.124. Let P — X be a G-principal 2-bundle classified by a cocycle C(U) — BG. Then a
structure of a flat connection on a 2-bundle V on it is a lift

bBG .

>

o) —1-Bag
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For G = BA, a connection on a 2-bundle (not necessarily flat) is a lift

[P2(—),B%4] .

> |

cw)—L =BG

We do not state the last definition for general Lie 2-groups G. The reason is that for general G 2-
anafunctors out of Po(X) do not produce the fully general notion of 2-connections that we are after, but
yield a special case in between flatness and non-flatness: the case where precisely the 2-form curvature-
components vanish, while the 3-form curvature part is unrestricted. This case is important in itself and
discussed in detail below. Only for G of the form BA does the 2-form curvature necessarily vanish anyway,
so that in this case the definition by morphisms out of P2(X) happens to already coincide with the proper
general one. This serves in the following theorem as an illustration for the toolset that we are exposing,
but for the purposes of introducing the full notion of co-Chern-Weil theory we will rather focus on flat 2-
connections, and then show below how using these one does arrive at a functorial definition of 1-connections
that does generalize to the fully general definition of co-connections.

Proposition 1.2.125. Let {U; — X} be a good open cover, a cocycle C(U) — [P2(—),B2A] is a cocycle in
Cech-Deligne cohomology in degree 3.
Moreover, we have a natural equivalence of bicategories

[CartSp°P, 2Grpd](C(U), [Pa(—), B*U(1)]) =~ U(1)Gerby (X),

where on the right we have the bicategory of U(1)-bundle gerbes with connection [Gaj97].
In particular the equivalence classes of cocycles form the degree-8 ordinary differential cohomology of X :

Hgiﬁ(Xv Z) = 70([C(U)a [PQ(_)v BQU(]-)) .
A cocycle as above naturally corresponds to a 2-anafunctor

Q —B2U(1)

lw

Py(X)

The value of this on 2-morphisms in Po(X) is the higher parallel transport of the connection on the 2-bundle.
This appears for instance in the action functional of the sigma model that describes strings charged under
a Kalb-Ramond field.

The following example of a flat nonabelian 2-bundle is very degenerate as far as 2-bundles go, but does
contain in it the seed of a full understanding of connections on 1-bundles.

Definition 1.2.126. For G a Lie group, its inner automorphism 2-group INN(G) is as a groupoid the
universal G-bundle EG, but regarded as a 2-group with the group structure coming from the crossed module

¢4 a.
The depiction of the delooping 2-groupoid BINN(G) is

*
BINN(G) = o UN | 1,92 € G, k€G

— sk
kg291

This is the Lie 2-group whose Lie 2-algebra inn(g) is the one whose Chevalley-Eilenberg algebra is the Weil
algebra of g.
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Example 1.2.127. By the above theorem we have that there is a bijection of sets
{[,(X) = BINN(G)} ~ Q'(X, g)

of flat INN(G)-valued 2-connections and Lie-algebra valued 1-forms. Under the identifications of this theorem
this identification works as follows:

e the 1-form component of the 2-connection is A;

e the vanishing of the 2-form component of the 2-curvature Fy(A, B) = F4 + B identifies the 2-form
component of the 2-connection with the curvature 2-form, B = —Fly;

e the vanishing of the 3-form component of the 3-curvature F5(A, B) =dB + [AAB] =da+[ANFy] is
the Bianchi identity satisfied by any curvature 2-form.

This means that 2-connections with values in INN(G) actually model 1-connections and keep track of their
curvatures. Using this we see in the next section a general abstract definition of connections on 1-bundles
that naturally supports the Chern-Weil homomorphism.

1.2.7.1.3 Curvature characteristics of 1-bundles We now describe connections on 1-bundles in
terms of their flat curvature 2-bundles .

Throughout this section G is a Lie group, BG its delooping 2-groupoid and INN(G) its inner automor-
phism 2-group and BINN(G) the corresponding delooping Lie 2-groupoid.

Definition 1.2.128. Define the smooth groupoid BGgis € [CartSp°?, Grpd] as the pullback
BGdiﬁ =BG XBINN(G') bBINN(G) .

This is the groupoid-valued presheaf which assigns to U € CartSp the groupoid whose objects are commuting
diagrams

U BG

T

[,(U) —= BINN(G)

where the vertical morphisms are the canonical inclusions discussed above, and whose morphisms are com-
patible pairs of natural transformations

of the horizontal morphisms.
By the above theorems, we have over any U € CartSp that
e an object in BGyi(U) is a 1-form A € QY(U, g);
e amorphism A; (ﬂ) Ay is labeled by a function g € C*°(U, G) and a 1-form a € Q(U, g) such that
Ay =g Aig+g7ldg +a.

Notice that this can always be uniquely solved for a, so that the genuine information in this morphism
is just the data given by g.
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e ther are no nontrivial 2-morphisms, even though BINN(G) is a 2-groupoid: since BG is just a 1-
groupoid this is enforced by the commutativity of the above diagram.

From this it is clear that
Proposition 1.2.129. The projection BG i 5 BG is a weak equivalence.

So BGyig is a resolution of BG. We will see that it is the resoluton that supports 2-anafunctors out of
BG which represent curvature characteristic classes.

Definition 1.2.130. For X & C(U) — BU(1) a cocycle for a U(1)-principal bundle P — X, we call a lift
Vps in
BGuis

a pseudo-connection on P.

Pseudo-connections in themselves are not very interesting. But notice that every ordinary connection is
in particular a pseudo-connection and we have an inclusion morphism of smooth groupoids

BGconn — BGdiff .

This inclusion plays a central role in the theory. The point is that while BGg;g is such a boring extension of
BG that it is actually equivalent to BG, there is no inclusion of BG oy, into BG, but there is into BGy;g.
This is the kind of situation that resolutions are needed for.

It is useful to look at some details for the case that G is an abelian group such as the circle group U(1).
In this abelian case the 2-groupoids BU(1), B2U (1), BINN(U(1)), etc., that so far we noticed are given by
crossed complexes are actually given by ordinary chain complexes: we write

Z:Chy — sAb — KanCplx

for the Dold-Kan correspondence map that identifies chain complexes with simplicial abelian group and
then considers their underlying Kan complexes. Using this map we have the following identifications of our
2-groupoid valued presheaves with complexes of group-valued sheaves

BU(1) = Z[C™(—,U(1)) — 0]
B2U(1) = E[C*(—,U(1)) = 0 — 0]
BINNU (1) = E[C™(—,U(1)) 3 (-, U(1)) = 0].

Observation 1.2.131. For G = A an abelian group, in particular the circle group, there is a canonical
morphism BINN(U(1)) — BBU(1).

On the level of chain complexes this is the evident chain map

[C(—,U(1)) —%= C=(—,U(1)) —0 .

| |

[C>=(=,U(1)) 0 0]
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On the level of 2-groupoids this is the map that forgets the labels on the 1-morphisms

* *
g1 g2 — Id 1d
% 7
¥ —mMm8M8Mm > % X ———mMm8M8 > %
kg291 Id

In terms of this map INN(U(1)) serves to interpolate between the single and the double delooping of U(1).
In fact the sequence of 2-functors

BU(1) — BINN(U(1)) — B?*U(1)
is a model for the universal BU(1)-principal 2-bundle
BU(1) — EBU(1) — B2U(1).

This happens to be an exact sequence of 2-groupoids. Abstractly, what really matters is rather that it is a
fiber sequence, meaning that it is exact in the correct sense inside the oo-category SmoothocoGrpd. For our
purposes it is however relevant that this particular model is exact also in the ordinary sense in that we have
an ordinary pullback diagram

BU(1) *

| |

BINN(U(1)) — B2U(1)

exhibitng BU(1) as the kernel of BINN(U (1)) — B2U(1).
We shall be interested in the pasting composite of this diagram with the one defining BGgig over a

domain U:
U BU(1) *

I

[,(U) — BINN(U(1)) — B2U(1)

The total outer diagram appearing this way is a component of the following (generalized) Lie 2-groupoid.

Definition 1.2.132. Set
bdRBQU(l) =k XB2u(1) bBQU(1> .

Over any U € CartSp this is the 2-groupoid whose objects are sets of diagrams

U— > %

L

[,(U) —=B2U(1)

This are equivalently just morphisms [ ,(U) = B2U(1), which by the above theorems we may identify with
closed 2-forms B € Q2 (U).
The morphisms B; — By in bqrB2?U(1) over U are compatible pseudonatural transformations of the

horizontal morphisms
— T

=

[,(U)  y BINN(G)

~__ 7
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which means that they are pseudonatural transformations of the bottom morphism whose components over
the points of U vanish. These identify with 1-forms A\ € Q'(U) such that By = B; + dqr\. Finally the
2-morphisms would be modifications of these, but the commutativity of the above diagram constrais these
to be trivial.

In summary this shows that

Proposition 1.2.133. Under the Dold-Kan correspondence bqrB2U (1) is the sheaf of truncated de Rham
complezes

arB7U (1) = E[0' (=) “F Q4 ().
Corollary 1.2.134. Equivalence classes of 2-anafunctors
X — bqrB2U(1)
are canonically in bijection with the degree 2 de Rham cohomology of X .

Notice that — while every globally defined closed 2-form B € Q%(X) defines such a 2-anafunctor — not
every such 2-anafunctor comes from a globally defined closed 2-form. Some of them assign closed 2-forms
B; to patches Uy, that differ by differentials B; — B; = dqr\;; of 1-forms A;; on double overlaps, which
themselves satisfy on triple intersections the cocycle condition A;; + Ajr = Ajx. But (using a partition of
unity) these non-globally defined forms are always equivalent to globally defined ones.

This simple technical point turns out to play a role in the abstract definition of connections on co-bundles:
generally, for all n € N the cocycles given by globally defined forms in bgg B"U(1) constitute curvature char-
acteristic forms of genuine connections. The non-globally defined forms also constitute curvature invariants,
but of pseudo-connections. The way the abstract theory finds the genuine connections inside all pseudo-
connections is by the fact that we may find for each cocycle in bqg B"U (1) an equivalent one that does comes
from a globally defined form.

Observation 1.2.135. There is a canonical 2-anafunctor ¢{® : BU(1) — bqgrB2U (1)

BU(1)air — barB?U(1) ,
BU(1)

where the top morphism is given by forming the -composite with the universal BU(1)-principal 2-bundle, as
described above.

For emphasis, notice that this span is governed by a presheaf of diagrams that over U € CartSp is of the
form

U BU(1) transition function .
f2(U) —— BINN(U) connection
[,(U) B2U(1) curvature

The top morphisms are the components of the presheaf BU(1). The top squares are those of BU(1)q;s.
Forming the bottom square is forming the bottom morphism, which necessarily satifies the constraint that
makes it a components of bB2U (1).

The interpretation of the stages is as indicated in the diagram:

1. the top morphism is the transition function of the underlying bundle;
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2. the middle morphism is a choice of (pseudo-)connection on that bundle;
3. the bottom morphism picks up the curvature of this connection.

We will see that full co-Chern-Weil theory is governed by a slight refinement of presheaves of essentially this
kind of diagram. We will also see that the three stage process here is really an incarnation of the computation
of a connecting homomorphism, reflecting the fact that behind the scenes the notion of curvature is exhibited
as the obstruction cocycle to lifts from bare bundles to flat bundles.

Observation 1.2.136. For X & C(U) % BU(1) the cocycle for a U(1)-principal bundle as described above,
the composition of 2-anafunctors of g with ¢{® yields a cocycle for a 2-form ¢{%(g)

BU(1)conn

e

C(V) —— BU(1)aig — barB*U(1)

o,k

Cc(U) —L~BU(1)

|

X

1

-

R

If we take {U; — X} to be a good open cover, then we may assume V = U. We know we can always find
a pseudo-connection C(V) — BU(1)qix that is actually a genuine connection on a bundle in that it factors
through the inclusion BU(1)conn — BU(1)gig as indicated.

The corresponding total map c®(g) represented by ¢{®(V) is the cocycle for the curvature 2-form of
this connection. This represents the first Chern class of the bundle in de Rham cohomology.

For X, A smooth 2-groupoids, write H(X, A) for the 2-groupoid of 2-anafunctors between them.

Corollary 1.2.137. Let H2;(X) — H(X,barB?U(1)) be a choice of one closed 2-form representative for
each degree-2 de Rham cohomology-class of X. Then the pullback groupoid Haig (X, BU(1)) in

Heonn (X, BU(1)) Hig (X)

l |

H(X, BU(l)diﬁ‘) —_—> H()(7 bdRBQU(l))

lN

H(X,BU(1)) ~ U(1)Bund(X)

is equivalent to disjoint union of groupoids of U(1)-bundles with connection whose curvatures are the chosen
2-form representatives.

1.2.7.1.4 Circle n-bundles with connection For A an abelian group there is a straightforward
generalization of the above constructions to (G = B"~! A)-principal n-bundles with connection for all n € N.
We spell out the ingredients of the construction in a way analogous to the above discussion. A first-principles
derivation of the objects we consider here below in [6.4.16)

This is content that appeared partly in [SSS09¢]|, [FSS10]. We restrict attention to the circle n-group
G =B"U(1).
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There is a familiar traditional presentation of ordinary differential cohomology in terms of Cech-Deligne
cohomology. We briefly recall how this works and then indicate how this presentation can be derived along
the above lines as a presentation of circle n-bundles with connection.

Definition 1.2.138. For n € N the Deligne-Beilinson complex is the chain complex of sheaves (on CartSp
for our purposes here) of abelian groups given as follows
0% (= R/Z) T Q1) T - Q7 () S 07

n n—1 e 1 0

Z(n+ 1) =

This definition goes back to [Del7l] [Bel85]. The complex is similar to the n-fold shifted de Rham
complex, up to two important differences.

e In degree n we have the sheaf of U(1)-valued functions, not of R-valued functions (= 0-forms). The
action of the de Rham differential on this is often written dlog : C*°(—,U(1)) — Q*(—). But if we
think of U(1) ~ R/Z then it is just the ordinary de Rham differential applied to any representative in
C*(—,R) of an element in C*(—,R/Z).

e In degree 0 we do not have closed differential n-forms (as one would have for the de Rham complex
shifted into non-negative degree), but all n-forms.

As before, we may use of the Dold-Kan correspondence = : Chy = sAb Y sSet to identify sheaves of chain
complexes with simplicial sheaves. We write

B"U(1)conn :=ZZ(n+ 1)y

for the simplicial presheaf corresponding to the Deligne complex.
Then for {U; — X} a good open cover, the Deligne cohomology of X in degree (n+ 1) is

H;ﬁ.}l (X) = m[CartSp°?, sSet](C({U;}), B"U(1)conn) -

Further using the Dold-Kan correspondence, this is equivalently the cohomology of the Cech-Deligne double
complex. A cocycle in degre (n 4 1) then is a tuple

(Gig, o yins - » Aiji, Bij, Cy)

with

o C; € O(Uy);

e B;j € Q"YU NU;);

o Aijr €Q"2(U,NU; NUy)

e and so on...

® Gy i, €C®°WU;,N---NU;,,UL))
satisfying the cocycle condition

(dar + (=1)"96)(Gi,— in» -+ » Aiji, Bij, Ci) = 0,

where § = >_,(—1)p} is the alternating sum of the pullback of forms along the face maps of the Cech nerve.
This is a sequence of conditions of the form
e C;—C;=dB

ij3
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® Bij — Bii + Bji = dAiji;
e and so on
b (6g)i0,"',in+1 =0.

For low n we have seen these conditions in the dicussion of line bundles and of line 2-bundles (bundle
gerbes) with connection above. Generally, for any n € N, this is Cech-cocycle data for a circle n-bundle with
connection, where

e (; are the local connection n-forms;
® Gio.-- i, is the transition function of the circle n-bundle.

We now indicate how the Deligne complex may be derived from differential refinement of cocycles for circle
n-bundles along the lines of the above discussions. To that end, write

B"U(1)en :==EU(1)[n],
for the simplicial presheaf given under the Dold-Kan correspondence by the chain complex
U(1)[n] =(C®(-,U(1)) > 0—---—0)
with the sheaf represented by U(1) in degree n.

Proposition 1.2.139. For {U; — X} an open cover of a smooth manifold X and C({U;}) its Cech nerve,
oco-anafunctors

C({Ui}) —=B"U(1)

lN

X
are in natural bijection with tuples of smooth functions
Gig-vin,  Uig N---NU; — R/Z
satisfying .,
(09)igerinsy = Zgio‘“ik—lik‘in =0,
k=0

that is, with cocycles in degree-n Cech cohomology on U with values in U(1).
Natural transformations

are in natural bijection with tuples of smooth functions

>‘i0"'in,71 : Uio Nn---NU; —)R/Z

n—1

such that
Gioi, = Gigervin, = (ON)ig-iyy 5

that is, with Cech coboundaries.
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The oo-bundle P — X classified by such a cocycle according to we call a circle n-bundle. For
n = 1 this reproduces the ordinary U(1)-principal bundles that we considered before in for n = 2
the bundle gerbes considered in and for n = 3 the bundle 2-gerbes discussed in

To equip these circle n-bundles with connections, we consider the differential refinements of B*U (1), to
be denoted B"U(1)qigr, B"U(1)conn and bqr B"H1U(1).

Definition 1.2.140. Write
anB U (e := 2 (21(=) 5 02(—) - 25 ()

— the truncated de Rham complex — and

(—) —= B U(1) (=, R/Z) = Q' (=) ... > n(—)
B"U(1)air = l i _= o % A
1 dar g,
[(=) =B "INN(U(1)) Q=) > ()

and

B"U(1)conn = = (C“(—,R/Z) dop () dap 2y dap . dap m(—))
— the Deligne complex, def.
Observation 1.2.141. We have a pullback diagram

BnU 1)conn —— QZL1+1(*)

o

B"U(1)gig —% bgr B"1U(1)

lN

B"U(1)
in [CartSp°?, sSet]. This models an oco-pullback

B"U(1)conn — Q4T (—)

| |

B"U(1) bar B U (1)

in the co-topos SmoothooGrpd, and hence for each smooth manifold X (in particular) a homotopy pullback

H(X,B"U(1)conn) —— QHH(X)

| |

H(X,B"U(1)) — H(X,bagB" U (1))

We write
Hglllff(X> = H(X7 BnU(l)conn)

132



for the group of cohomology classes on X with coefficients in B"U(1)conn. On these cohomology classes the
above homotopy pullback diagram reduces to the commutative diagram

n+1
Hdiff

H"H (X, Z/ \
\ /

n n+1
H™ (X, R) ~ H™¥Y(

Qg(x)

that had appeared above in [[.1.2.4. But notice that the homotopy pullback of the cocycle n-groupoids
contains more information than this projection to cohomology classes.

Objects in H(X,B"U(1)conn) are modeled by oo-anafunctors X & C({U;}) — B"U(1)conn, and these
are in natural bijection with tuples

(Ci, Bigiy, A

ivivsizs " Digeevin s Gigervin) 4
where C; € Q"(U;), By,i, € Q"1 (U;, NU;,), etc., such that
Ci, — Cs, = dBi,

and

Bigiy — Bigi, + Biyi, = dAigiyis
etc. This is a cocycle in Cech-Deligne cohomology. We may think of this as encoding a circle n-bundle with
connection. The forms (C;) are the local connection n-forms.

The definition of co-connections on G- principal oo-bundles for nonabelian G may be reduced to this
definition, by approzimating every G-cocylce X & C{U;}) - BG by abelian cocycles in all possible ways,
by postcomposing with all possible characteristic classes BG & BG —» B"WU (1) to extract a circle n-bundle
from it. This is what we turn to below in [[2.8

1.2.7.1.5 Holonomy and canonical action functionals We had started out with motivating dif-
ferential refinements of bundles and higher bundles by the notion of higher parallel transport. Here we
discuss aspects of this for the circle n-bundles

Let ¥ be a compact smooth manifold of dimension n. For every smooth function ¥ — X there is a
corresponding pullback operation

Hih! (X) — Hif (D)

that sends circle n-connections on X to circle n-connections on Y. But due to its dimension, the curvature
(n 4+ 1)-form of any circle n-connection on ¥ is necessarily trivial. From the definition of homotopy pullback
one can show that this implies that every circle n-connection on ¥ is equivalent to one which is given by a
Cech-Deligne cocycle that involves a globally defined connection n-form w. The integral of this form over
3 produces a real number. One finds that this is well-defined up to integral shifts. This gives an n-volume
holonomy map

/ L H(S,B"U(1)eomn) — U(1).
>

For instance for n = 1 this is the map that sense an ordinary connection on an ordinary circle bundle over
3 to its ordinary parallel transport along 3, its line holonomy.
For G any smooth (higher) group, any morphism

é . BGconn — BnU(l)conn
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from the moduli stack of G-connections to that of circle n-connections therefore induces a canonical functional

Is

H(Z,e

exp(iS’c(—)) : H(ZvBGconn)) H(ZanU(l)conn) U(D

from the oo-groupoid of G-connections on ¥ to U(1).

1.2.7.2 Differential cohomology We now indicate how the combination of the intrinsic cohomology
and the geometric homotopy in a locally co-connected oco-topos yields a good notion of differential cohomology
n an oo-topos.

Using the defining adjoint oco-functors (II H Disc 4 I') we may reflect the fundamental oo-groupoid
II: H — coGrpd from Top back into H by considering the composite endo-edjunction

(f—lb) := (Discoll 41Discol’): H=—_H .

The (I 4 Disc)-unit X — [(X) may be thought of as the inclusion of X into its fundamental oo-groupoid
as the collection of constant paths in X.

As always, the boldface [ is to indicate that we are dealing with a cohesive refinement of the topological
structure II. The symbol “b” (“flat”) is to be suggestive of the meaning of this construction:

For X € H any cohesive object, we may think of II(X) as its cohesive fundamental co-groupoid. A
morphism

V: [(X)— BG
(hence a G-valued cocycle on [(X)) may be interpreted as assigning:

e to each point = € X the fiber of the corresponding G-principal co-bundle classified by the composite
g: X — [(X) > BG;

e to each path in X an equivalence between the fibers over its endpoints;
e to each homotopy of paths in X an equivalence between these equivalences;
e and so on.

This in turn we may think as being the flat higher parallel transport of an co-connection on the bundle
classified by g : X — [(X) > BG.

The adjunction equivalence allows us to identify bBG as the coefficient object for this flat differential
G-valued cohomology on X:

Hiyoe (X, G) 1= moH(X,bBG) ~ mH([(X), BG)..

In H = SmoothooGrpd and with G € H an ordinary Lie group and X € H an ordinary smooth manifold,
we have that Hg.t(X,G) is the set of equivalence classes of ordinary G-principal bundles on X with flat
connections.

The (Disc 4 T')-counit P BG — BG provides the forgetful morphism

Hupat(X,G) = H(X,G)

form G-principal co-bundles with flat connection to their underlying principal co-bundles. Not every G-
principal co-bundle admits a flat connection. The failure of this to be true - the obstruction to the existence
of flat lifts - is measured by the homotopy fiber of the counit, which we shall denote bgg BG, defined by the
fact that we have a fiber sequence

bdRBG — bhBG — BG.

As the notation suggests, it turns out that baqg BG may be thought of as the coefficient object for nonabelian
generalized de Rham cohomology. For instance for G an odinary Lie group regarded as an object in H =
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SmoothooGrpd, we have that bqr BG is presented by the sheaf Qf ,(—, g) of Lie algebra valued differential
forms with vanishing curvature 2-form. And for the circle Lie n-group B"~1U(1) we find that byr B"U (1) is
presented by the complex of sheaves whose abelian sheaf cohomology is de Rham cohomology in degree n.
(More precisely, this is true for n > 2. For n = 1 we get just the sheaf of closed 1-forms. This is due to the
obstruction-theoretic nature of bqr: as we shall see, in degree 1 it computes 1-form curvatures of groupoid
principal bundles, and these are not quotiented by exact 1-forms.) Moreover, in this case our fiber sequence
extends not just to the left but also to the right

barB"U (1) — bB"U(1) — B"U(1) = bggB" T U(1) .

The induced morphism
curvy : H(X,B"U(1)) — H(X,bqr B"T'U(1))

we may think of as equipping an B"~1U(1)-principal n-bundle (equivalently an (n — 1)-bundle gerbe) with
a connection, and then sending it to the higher curvature class of this connection. The homotopy fibers

Hyg (X, B"U(1)) — H(X,B"U(1)) “® H(X,bqgk B" U (1))

of this map therefore have the interpretation of being the cocycle co-groupoids of circle n-bundles with con-
nection. This is the realization in SmoothooGrpd of our general definition of ordinary differential cohomology
in an co-topos.

All these definitions make sense in full generality for any locally co-connected co-topos. We used nothing
but the existence of the triple of adjoint co-functors (II 4 Disc 4 T') : H — coGrpd. We shall show for
the special case that H = SmoothooGrpd and X an ordinary smooth manifold, that this general abstract
definition reproduces ordinary differential cohomology over smooth manifolds as traditionally considered.

The advantage of the general abstract reformulation is that it generalizes the ordinary notion naturally
to base objects that may be arbitrary smooth oco-groupoids. This gives in particular the oo-Chern-Weil
homomorphism in an almost tautological form:

for G € H any oo-group object and BG € H its delooping, we may think of a morphism

c:BG — B"U(1)
as a representative of a characteristic class on G, in that this induces a morphism
[c(—)]: H(X,G) - H"(X,U(1))

from G-principal co-bundles to degree-n cohomology-classes. Since the classification of G-principal oco-
bundles by cocycles is entirely general, we may equivalently think of this as the B"~1U(1)-principal oo-
bundle P — BG given as the homotopy fiber of c. A famous example is the Chern-Simons circle 3-bundle
(bundle 2-gerbe) for G a simply connected Lie group.

By postcomposing further with the canonical morphism curv : B"U(1) — bqrB"T*U(1) this gives in
total a differential characteristic class

car : BG 5 B"U(1) B bgrB" T U(1)
that sends a G-principal co-bundle to a class in de Rham cohomology
[car] : H(X,G) — HITH(X).

This is the generalization of the plain Chern-Weil homomorphism.associated with the characteristic class
c. In cases accessible by traditional theory, it is well known that this may be refined to what are called
the assignment of secondary characteristic classes to G-principal bundles with connection, taking values in
ordinary differential cohomology

[€] : Heonn (X, G) — HEN(X).
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We will discuss that in the general formulation this corresponds to finding objects BGeonn that lift all
curvature characteristic classes to their corresponding circle n-bundles with connection, in that it fits into
the diagram

H(~ BGeonn) — [I; Hain (. B"U(1)) IT: Hig™ ()

| | |

H(-,BG) ———[[; H(~,B"U(1)) —=[I; H(~,0arB"*'U(1))

The cocycles in Heonn (X, BG) := H(X,BGconn) we may identify with oo-connections on the underlying
principal co-bundles. Specifically for G an ordinary Lie group this captures the ordinary notion of connection
on a bundle, for G Lie 2-group it captures the notion of connection on a 2-bundle/gerbe.

1.2.7.3 Higher geometric prequantization Observation. There is a canonical co-action v of Auty 5, (9)
on the space of co-sections I'x (P x¢ V).
Claim. Since Shy,(SmoothMfd) is cohesive, there is a notion of differential refinement of the above discus-
sion, yielding connections on co-bundles.
Example. Let C — C//U(1) — BU(1) be the canonical complex-linear circle action. Then
® geonn : X — BU(1)conn classifies a circle bundle with connection, a prequantum line bundle of its
curvature 2-form;
e I'x (P xy() C) is the corresponding space of smooth sections;
e 7 is the exp(Poisson bracket)-group action of preqantum operators, containing the Heisenberg group
action.

Example. Let BU — BPU — B2U(1) be the canonical 2-circle action. Then
® Jeonn : X — B2U (1)conn classifies a circle 2-bundle with connection, a prequantum line 2-bundle of its
curvature 3-form;
e I'x (P xpy(1) BU) is the corresponding groupoid of smooth sections = twisted bundles;
e 7 is the exp(2-plectic bracket)-2-group action of 2-plectic geometry, containing the Heisenberg 2-group
action.

1.2.8 Characteristic classes

We discuss explicit presentations of characteristic classes of principal n-bundles for low values of n and for
low degree of the characteristic class.

e General concept
e Examples

— example — First Chern class of unitary 1-bundles

— example — Dixmier-Douady class of circle 2-bundles (of bundle gerbes)

— example [[.2.1744) - Obstruction class of central extension

— example — First Stiefel-Whitney class of an O-principal bundle

— example — Second Stiefel-Whitney class of an SO-principal bundle

— example — Bockstein homomorphism

— example [[.2.148 — Third integral Stiefel-Whitney class

— example [[.2.149 - First Pontryagin class of Spin-1-bundles and twisted string-2-bundles
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In the context of higher (smooth) groupoids the notion of characteristic class is conceptually very simple:
for G some n-group and BG the corresponding one-object n-groupoid, a characteristic class of degree k € N
with coefficients in some abelian (Lie-)group A is presented simply by a morphism

c:BG —- B"A4

of cohesive co-groupoids. For instance if A = Z such a morphism represents a universal integral characteristic
class on BG. Then for
g: X —-BG

any morphism of (smooth) co-groupoids that classifies a given G-principal n-bundle P — X, as discussed
above in the corresponding characteristic class of P (equivalently of g) is the class of the composite

oP): X —2~BG—~B¥A |

in the cohomology group H*(X, A) of the ambient co-topos.

In other words, in the abstract language of cohesive oo-toposes the notion of characteristic classes of
cohesive principal co-bundles is verbatim that of principal fibrations in ordinary homotopy theory. The
crucial difference, though, is in the implementation of this abstract formalism.

Namely, as we have discussed previously, all the abstract morphisms f : A — B of cohesive oo-
groupoids here are presented by oco-anafunctors, hence by spans of genuine morphisms of Kan-complex
valued presheaves, whose left leg is a weak equivalence that exhibits a resolution of the source object.

This means that the characteristic map itself is presented by a span

BG —~BFA ,

|-

BG

as is of course the cocycle for the principal n-bundle

cU;) =BG

ig

X

and the characteristic class [¢(P)] of the corresponding principal n-bundle is presented by a (any) span
composite

OT) 2~ BG —~BkA |

T

where C(T;) is, if necessary, a refinement of the cover C'(U;) over which the BG-cocycle g lifts to a BG-cocycle
as indicated.

Notice the similarity of this situation to that of the discussion of twisted bundles in example [1.2.95]
This is not a coincidence: every characteristic class induces a corresponding notion of twisted n-bundles
and, conversely, every notion of twisted n-bundles can be understood as arising from the failure of a certain
characteristic class to vanish.

We discuss now a list of examples.
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Example 1.2.142 (first Chern class). Let N € N. Consider the unitary group U(n). By its definition as a
matrix Lie group, this comes canonically equipped with the determinant function

det : U(n) = U(1)

and by the standard properties of the determinant, this is in fact a group homomorphism. Therefore this
has a delooping to a morphism of Lie groupoids

Bdet : BU(n) — BU(1).
Under geometric realization this maps to a morphism
|Bdet| : BU(n) — BU(1) ~ K(Z,2)

of topological spaces. This is a characteristic class on the classifying space BU(n): the ordinary first Chern
class. Hence the morphism Bdet on Lie groupoids is a smooth refinement of the ordinary first Chern class.

This smooth refinement acts on smooth U(n)-principal bundles as follows. Postcomposition of a Cech
cocycle

P ciuy) 2 BUm)

lN

X

for a U(n)-principal bundle on a smooth manifold X with this characteristic class yields the cocycle

detP : c({u.}) 225 BU(n) B BU(1)
X

for a circle bundle (or its associated line bundle) with transition functions (det(g;;)): the determinant line
bundle of P.
We may easily pass to the differential refinement of the first Chern class along similar lines. By prop.

1.2.114) the differential refinement BU (n)conn — BU(n) of the moduli stack of U(n)-principal bundles is
given by the groupoid-valued presheaf which over a test manifold U assigns

BU (1)conn : U {A 9 A9 A€ QYU un)); g € (U, U(n))} .

One checks that Bdet uniquely extends to a morphism of groupoid-valued presheaves Bdetconn

BU (1) eonn " 2"BU (1) conn

l |

BU(n) —22 ~ BU(1)

by sending A +— tr(A). Here the trace operation on the matrix Lie algebra u(n) is a unary invariant
polynomial {(—) : u(n) — u(l) ~ R.

Therefore, over a 1-dimensional compact manifold 3 (a disjoint union of circles) the canonical action
functional, induced by the first Chern class is

H(Z,Bdeteonn
EBdeteom) 13, BU(1)eom) I

exp(iSe,) : H(X,BU(n)conn) U(1)
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sending

A exp(i/ tr(A)).

b
This is the action functional of 1-dimensional U (n)-Chern-Simons theory, discussed below in

It is a basic fact that the cohomology class of line bundles can be identified within the second integral
cohomology of X. For our purposes here it is instructive to rederive this fact in terms of anafunctors, lifting
gerbes and twisted bundles.

To that end, consider from example the equivalence of the 2-group (Z — R) with the ordinary
circle group, which supports the 2-anafunctor

B(Z — R) —> B(Z — 1) =—— B2Z .
BU(1)

We see now that this presents an integral characteristic class in degree 2 on BU(1). Given a cocycle
{hij € C>*(U;;,U(1))} for any circle bundle, the postcomposition with this 2-anafunctor amounts to the
following:

1. refine the cover, if necessary, to a good open cover (where all non-empty Uj, ... ;, are contractible) —
we shall still write {U;} now for this good cover;

2. choose on each U;; a (any) lift of the circle-valued functor h;; : U;; — U(1) through the quotient map
R — U(1) to a function h;; : U;; — R — this is always possible over the contractible U;;;

3. compute the failures of the lifts thus chosen to constitute the cocycle for an R-principal bundle: these
are the elements o
Aijk = hikhi_jlhj_kl € C*(Uijr. Z) ,

which are indeed Z-valued (hence constant) smooth functions due to the fact that the original {h;;}
satisfied its cocycle law;

4. notice that by observation [1.2.90| this yields the construction of the cocycle for a (Z — R)-principal
2-bundle A
{hij € C(Usj,R), Aiji, € C= (Ui, Z)}
which by example [1.2.95 we may also read as the cocycle for a twisted R-1-bundle, with respect to the
central extension Z — R — U(1);

5. finally project out the cocycle for the “lifting Z-gerbe” encoded by this, which is the BZ-principal
2-bundle given by the BZ cocycle
{Xijr € C*®(Uiji, 2) }

This last cocycle is manifestly in degree-2 integral Cech cohomology, and hence indeed represents a class
in H?(X,Z). This is the first Chern class of the circle bundle given by {h;;}. If here h;; = detg;; is the
determinant circle bundle of some unitary bundle, the this is also the first Chern class of that unitary bundle.

Example 1.2.143 (Dixmier-Douady class). The discussion in example of the first Chern class of
a circle 1-bundle has an immediate generalization to an analogous canonical class of circle 2-bundles, def.
hence, by observation [I.2.80] to bundle gerbes. As before, while this amounts to a standard and basic
fact, for our purposes it shall be instructive to spell this out in terms of co-anafunctors and twisted principal
2-bundles.
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To that end, notice that by delooping the equivalence B(Z — R) = BU(1) yields
B%(Z - R) 5 B2U(1).

This says that BU(1)-principal 2-bundles/bundle gerbes are equivalent to B(Z — R)-principal 3-bundles,
def. [L2.99
As before, this supports a canonical integral characteristic class, now in degree 3, presented by the
oo-anafunctor
B}(Z—+R)——=B*(Z—1)=——B(Z—~1—1) .

iz
B2U(1)

The corresponding class in H3(BU(1),Z) is the (smooth lift of) the universal Dizmier-Douady class.
Explicitly, for {g;jx € C*(Uijx,U(1))} the Cech cocycle for a circle-2-bundle, def. |1.2.79] this class is
computed as the composite of spans

cw) —YB2z 5 R) — > BZ |

-}

g

c(U;) —L~B2U(1)

lz

X

where we assume for simplicity of notation that the cover {U; — X} already has be chosen (possibly after
refining another cover) such that all patches and their non-empty intersections are contractible.

Here the lifted cocycle data {g;jx : Uijrx — U(1)} is through the quotient map R — U(1) to real valued
functions. These lifts will, in general, not satisfy the condition of a cocycle for a BR-principal 2-bundle. The
failure is uniquely picked up by the functions

Aijhl = ijlgszlcgijlgﬁj € C*(Uijn, Z) .

By example(1.2.101{this data constitutes the cocycle for a (Z — R — 1)-principal 3-bundle or, by def. [1.2.102
that of a twisted BR-principal 2-bundle.
The above composite of spans projects out the integral cocycle

Xijrr € C°Uijni, Z) ,

which manifestly gives a class in H3(X,Z). This is the Dixmier-Douady class of the original circle 3-bundle,
the higher analog of the Chern-class of a circle bundle.

Example 1.2.144 (obstruction class of central extension). For A — G — G a central extension of Lie
groups, there is a long sequence of (deloopings of) Lie 2-groups

BA — BG — BG S B%4,

where the characteristic class ¢ is presented by the co-anafunctor

B(A— () ——=B(A -+ 1)—=B?%4

lz

BG
with (4 — G’) the crossed module from example
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The proof of this is discussed below in prop.

Example 1.2.145 (first Stiefel-Whitney class). The morphism of groups
O(’Il) — ZQ

which sends every element in the connected component of the unit element of O(n) to the unit element of
Zo and every other element to the non-trivial element of Zs induces a morphism of delooping Lie groupoids

w1 : BO(n) — BZ,.
This represents the universal smooth first Stiefel- Whitney class.

The relation of wy to orientation structure is discussed below in [7.1.2.2

Example 1.2.146 (second Stiefel-Whitney class). The exact sequence that characterizes the Spin-group is
Zo — Spin — SO
induces, by example a long fiber sequence
BZ; — BSpin — BSO % B?Z, .
Here the morphism wy is presented by the co-anafunctor

B(Zg — Spln) —— B(ZQ — 1) _— BZZQ .
BSO

This is a smooth incarnation of the universal second Stiefel-Whitney class. The BZo-principal 2-bundle
associated by wy to any SO(n)-principal bundles is dicussed in [MuSi03] in terms of the corresponding
bundle gerbe, via. observation |1.2.80)

Example 1.2.147 (Bockstein homomorphism). The exact sequence
73717,
induces, by example for each n € N a characteristic class
By : B"Zy — B"T17Z.
This is the Bockstein homomorphism.

Example 1.2.148 (third integral Stiefel-Whitney class). The composite of the second Stiefel-Whitney class
from example [1.2.146| with the Bockstein homomorphism from example [1.2.147]is the third integral Stiefel-
Whitney class

W5 : BSO ™3 B2Z, 5 B%Z.
This has a refined factorization through the universal Dixmier-Douady class from example [1.2.143]
W3 : BSO — B2U(1).

This is discussed in lemma [7.1.97 below.
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Example 1.2.149 (first Pontryagin class). Let G be a compact and simply connected simple Lie group. Then
the resolution from example [1.2.106] naturally supports a characteristic class presented by the 3-anafunctor

B(U(1) =» QG — PG) —=B(U(1) - 1 — 1) =——=B3U(1) .

l~

BG

For G = Spin the spin group, this presents one half of the universal first Pontryagin class. This we dicuss
in detail in [Z.1.2

Composition with this class sends G-principal bundles to circle 2-bundles, [[.2.79] hence by [[.2.100] to
bundle 2-gerbes. Our discussion in S that these are the Chern-Simons 2-gerbes.

The canonical action functional, |1.2.7.1.5 induced by %pl over a compact 3-dimensional X

H(Z,1p
*zp1) H(Z, BU(1)eomn) i

u()

GXp(iS%pl) . H(27 BSpinconn)

is the action functional of ordinary 3-dimensional Chern-Simons theory, refined to the moduli stack of field
configurations. This we discuss in
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1.2.9 Lie algebras

A Lie algebra is, in a precise sense, the infinitesimal approximation to a Lie group. This statement generalizes
to smooth n-groups (the strict case of which we had seen in definition ; their infinitesimal approxi-
mation are Lie n-algebras which for arbitrary n are known as L.,-algebras. The statement also generalizes
to Lie groupoids (discussed in ; their infinitesimal approximation are Lie algeboids. Both these are
special cases of a joint generalization; where smooth n-groupoids have L.,-algebroids as their infinitesimal
approximation.

The following is an exposition of basic Ly,-algebraic structures, their relation to smooth n-groupoids and
the notion of connection data with coefficients in L..-algebras.

The following discussion proceeds by these topics:

o [ .-algebroids;

Lie integration;

Characteristic cocycles from Lie integration;

L.-algebra valued connections;

Curvature characteristics and Chern-Simons forms;

e oo-Connections from Lie integration;

1.2.9.1 L-algebroids There is a precise sense in which one may think of a Lie algebra g as the in-
finitesimal sub-object of the delooping groupoid BG of the corresponding Lie group G. Without here going
into the details, which are discussed in detail below in [6.5.2] we want to build certain smooth co-groupoids
from the knowledge of their infinitesimal subobjects: these subobjects are L., -algebroids and specifically
Loo-algebras.

For g an N-graded vector space, write g[1] for the same underlying vector space with all degrees shifted
up by one. (Often this is denoted g[—1] instead). Then

A*g = Sym*(g[1])
is the Grassmann algebra on g; the free graded-commutative algebra on g[1].

Definition 1.2.150. An L, -algebra structure on an N-graded vector space g is a family of multilinear maps

[~ =] : Sym*(g[1]) — g[1]

of degree -1, for all k£ € N, such that the higher Jacobi identities

Z Z (_1)Uta1"" 7taz]7taz+17"' ’tak+z—1] =0

k+l=n+1o€UnSh(l,k—1)
are satisfied for all n € N and all {¢,, € g}.
See [SSS094] for a review and for references.

Example 1.2.151. If g is concentrated in degree 0, then an L.-algebra structure on g is the same as an
ordinary Lie algebra structure. The only non-trivial bracket is [—, =]z : g ® g — g and the higher Jacobi
identities reduce to the ordinary Jacobi identity.

We will see many other examples of L..-algebras. For identifying these, it turns out to be useful to have
the following dual formulation of L..-algebras.
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Proposition 1.2.152. Let g be a N-graded vector space that is degreewise finite dimensional. Write g* for
the degreewise dual, also N-graded.
Then dg-algebra structures on the Grassmann algebra A*g* = Sym®g[1]* are in canonical bijection with

Loo-algebra structures on g, def. [1.2.150

Here the sum is over all (I, k — 1)unshuffles, which means all permutations o € ;4,1 that preserves the
order within the first  and within the last £ — 1 arguments, respectively, and (—1)%8" is the Koszul-sign of
the permutation: the sign picked up by “unshuffling” ¢ A --. | At**+-1 according to o.

Proof. Let {t,} be a basis of g[1]. Write {¢t*} for the dual basis of g[1]*, where ¢* is taken to be in the same
degree as t,.

A derivation d : A®g* — A®g* of the Grassmann algebra is fixed by its value on generators, where it

determines and is determined by a sequence of brackets graded-symmetric multilinear maps {[—,--- , =] }72,

by
d:t“H—Z
k=1

where a sum over repeated indices is understood. This derivation is of degree +1 precisely if all the k-ary
maps are of degree -1. It is straightforward to check that the condition d o d = 0 is equivalent to the higher
Jacobi identities. O

tars oo o tag ] £ Ao AL

=

Definition 1.2.153. The dg-algebra corresponding to an L..,-algebra g by prop. [1.2.152] we call the
Chevalley-Eilenberg algebra CE(g) of g.

Example 1.2.154. For g an ordinary Lie algebra, as in example [1.2.151] the notion of Chevalley-Eilenberg
algebra from def. coincides with the traditional notion.

Examples 1.2.155. o A strict Loo-algebra algebra is a dg-Lie algebra (g,d,[—,—]) with (g*,0*) a
cochain complex in non-negative degree. With g* denoting the degreewise dual, the corresponding
CE-algebra is CE(g) = (A*g*,dcg = [—, —|" + 0.

e We had already seen above the infinitesimal approximation of a Lie 2-group: this is a Lie 2-algebra. If
the Lie 2-group is a smooth strict 2-group it is encoded equivalently by a crossed module of ordinary
Lie groups, and the corresponding Lie 2-algebra is given by a differential crossed module of ordinary
Lie algebras.

e For n € N, n > 1, the Lie n-algebra b" 'R is the infinitesimal approximation to B"U(R) and B"R.
Its CE-algebra is the dg-algebra on a single generators in degree n, with vanishing differential.

e For any oo-Lie algebra g there is an L..-algebra inn(g) defined by the fact that its CE-algebra is the
Weil algebra of g:
CE(inn(g)) = W(g) = (A*(g" @ ¢"[1]), dw

where o : g* — g*[1] is the grading shift isomorphism, extended as a derivation.

g* :dCE+J),

Example 1.2.156. For g an L.-algebra, its automorphism L -algebra der(g) is the dg-Lie algebra whose
elements in degree k are the derivations
¢ : CE(g) — CE(g)

of degree —k, whose differential is given by the graded commutator [dcg(g), —] and whose Lie bracket is the
commutator bracket of derivations.

In the context of rational homotopy theory, this is discussed on p. 312 of [Su77].
One advantage of describing an L.-algebra in terms of its dual Chevalley-Eilenberg algebra is that in
this form the correct notion of morphism is manifest.
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Definition 1.2.157. A morphism of L..-algebras g — b is a morphism of dg-algebras CE(g) «+ CE(h).
The category LooAlg of L..-algebras is therefore the full subcategory of the opposite category of dg-
algebras on those whose underlying graded algebra is free:

LooAlg 257 dgAlgl? .

Replacing in this characterization the ground field R by an algebra of smooth functions on a manifold ay,
we obtain the notion of an L, -algebroid g over ag. Morphisms a — b of such oco-Lie algebroids are dually
precisely morphisms of dg-algebras CE(a) « CE(b).

Definition 1.2.158. The category of L, -algebroids is the opposite category of the full subcategory of dgAlg
ooLieAlgbd C dgAlg®

on graded-commutative cochain dg-algebras in non-negative degree whose underlying graded algebra is an
exterior algebra over its degree-0 algebra, and this degree-0 algebra is the algebra of smooth functions on a
smooth manifold.

Remark 1.2.159. More precisely the above definition is that of affine C'*°-L,-algebroids. There are various
ways to refine this to something more encompassing, but for the purposes of this introductory discussion the
above is convenient and sufficient. A more comprehensive discussion is in below.

Example 1.2.160. e The tangent Lie algebroid TX of a smooth manifold X is the infinitesimal ap-
proximation to its fundamental co-groupoid. Its CE-algebra is the de Rham complex

CE(TX) = Q°(X).

1.2.9.2 Lie integration We discusss Lie integration: a construction that sends an L,-algebroid to a
smooth co-groupoid of which it is the infinitesimal approximation.

The construction we want to describe may be understood as a generalization of the following proposition.
This is classical, even if maybe not reflected in the standard textbook literature to the extent it deserves to
be.

Definition 1.2.161. For g a (finite-dimensional) Lie algebra, let exp(g) € [CartSp°P, sSet] be the simplicial
presheaf given by the assignment

exp(g) : U — Homgga1s(CE(g), Q*(U x A®)vert) ,

in degree k of dg-algebra homomorphisms from the Chevalley-Eilenberg algebra of g to the dg-algebra of
vertical differential forms with respect to the trivial bundle U x A*¥ — U,

Shortly we will be considering variations of such assignments that are best thought about when writing
out the hom-sets on the right here as sets of arrows; as in

exp(a) : (U, [k]) = { Q0ere (U x AF) = CE(g) })

For g an ordinary Lie algebra it is an ancient and simple but important observation that dg-algebra morphisms
Q*(AF) - CE(g) are in natural bijection with Lie-algebra valued 1-forms that are flat in that their curvature
2-forms vanish: the 1-form itself determines precisely a morphism of the underlying graded algebras, and the
respect for the differentials is exactly the flatness condition. It is this elementary but similarly important
observation that historically led Eli Cartan to Cartan calculus and the algebraic formulation of Chern-Weil
theory.

One finds that it makes good sense to generally, for g any co-Lie algebra or even oo-Lie algebroid, think
of Homgga14(CE(g), 2°(A*)) as the set of co-Lie algebroid valued differential forms whose curvature forms
(generally a whole tower of them) vanishes.

145



Proposition 1.2.162. Let G be the simply-connected Lie group integrating g according to Lie’s three the-
orems and BG € [CartSp°?, Grpd] its delooping Lie groupoid regarded as a groupoid-valued presheaf on
CartSp. Write 71(—) for the truncation operation that quotients out 2-morphisms in a simplicial presheaf to
obtain a presheaf of groupoids.
We have an isomorphism
BG = i exp(g) .

To see this, observe that the presheaf exp(g) has as 1-morphisms U-parameterized families of g-valued
1-forms Ayet on the interval, and as 2-morphisms U-parameterized families of flat 1-forms on the disk,
interpolating between these. By identifying these 1-forms with the pullback of the Maurer-Cartan form on
G, we may equivalently think of the 1-morphisms as based smooth paths in G and 2-morphisms smooth
homotopies relative endpoints between them. Since G is simply-connected this means that after dividing
out 2-morphisms only the endpoints of these paths remain, which identify with the points in G.

The following proposition establishes the Lie integration of the shifted 1-dimensional abelian L..-algebras
" IR.

Proposition 1.2.163. Forn € N, n > 1. Write
B "R, := ER[n]

for the simplicial presheaf on CartSp that is the image of the sheaf of chain complexes represented by R in
degree n and 0 in other degrees, under the Dold-Kan correspondence = : Chy — sAb — sSet.
Then there is a canonical morphism

/ cexp(b"IR) = B"R,y,

given by fiber integration of differential forms along U x A™ — U and this is an equivalence (a global
equivalence in the model structure on simplicial presheaves).

The proof of this statement is discussed in
This statement will make an appearance repeatedly in the following discussion. Whenever we translate
a construction given in terms exp(—) into a more convenient chain complex representation.

1.2.9.3 Characteristic cocycles from Lie integration We now describe characteristic classes and
curvature characteristic forms on G-bundles in terms of these simplicial presheaves. For that purpose it is
useful for a moment to ignore the truncation issue — to come back to it later — and consider these simplicial
presheaves untruncated.

To see characteristic classes in this picture, write CE(b"'R) for the commutative real dg-algebra on
a single generator in degree n with vanishing differential. As our notation suggests, this we may think as
the Chevalley-Eilenberg algebra of a higher Lie algebra — the oo-Lie algebra " 'R — which is an Eilenberg-
MacLane object in the homotopy theory of co-Lie algebras, representing oo-Lie algebra cohomology in degree
n with coefficients in R.

Restating this in elementary terms, this just says that dg-algebra homomorphisms

CE(g) «+ CE(0"'R) : p

are in natural bijection with elements p € CE(g) of degree n, that are closed, dcggyp = 0. This is the
classical description of a cocycle in the Lie algebra cohomology of g.

Definition 1.2.164. Every such oco-Lie algebra cocycle p induces a morphism of simplicial presheaves

exp(p) : exp(g) — exp(b"R)

given by postcomposition

Q8. (U x Ab) 2= OE(g) <"~ CE(b"R).

vert
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Example 1.2.165. Assume g to be a semisimple Lie algebra, let (—, —) be the Killing form and p =
(—, [, —]) the corresponding 3-cocycle in Lie algebra cohomology. We may assume without restriction that
this cocycle is normalized such that its left-invariant continuation to a 3-form on G has integral periods.
Observe that since m2(G) is trivial we have that the 3-coskeleton (see around def. for details on
coskeleta) of exp(g) is equivalent to BG. By the inegrality of p, the operation of exp(u) on exp(g) followed
by integration over simplices descends to an oo-anafunctor from BG to B3U(1), as indicated on the right of
this diagram in [CartSp°?, sSet]

exp(n)

exp(b"'R) .

P’
)

B3R/Z

exp(g)

|

c(V) _ 4 cosk; exp(g)
g

Jae cosks exp(u

1

| -

c(U) —2—~BG
iN
X

Precomposing this — as indicated on the left of the diagram — with another oo-anafunctor X & C U) 4% BG
for a G-principal bundle, hence a collection of transition functions {g;; : U; NU; — G} amounts to choosing
(possibly on a refinement V' of the cover U of X)

-

e on each V; NV a lift g;; of gi; to a familly of smooth based paths in G — g;; : (V; NV;) x Al = G -
with endpoints g;;;

e on each V; N'V; NV, a smooth family g;;x : (V; NV; NVy) x A?2 — G of disks interpolating between
these paths;

e on each V;NV; NV, NV, a a smooth family g, : (ViNV; NV, NV;) x A®> — G of 3-balls interpolating
between these disks.

On this data the morphism [ As €XD(12) acts by sending each 3-cell to the number

Gijkl — / Gijr(p) mod Z,
A3
where p is regarded in this formula as a closed 3-form on G.

We say this is Lie integration of Lie algebra cocycles.

Proposition 1.2.166. For G = Spin, the Cech cohomology cocycle obtained this way is the first fractional
Pontryagin class of the G-bundle classified by G.

We shall show this below, as part of our L,-algebraic reconstruction of the above motivating example.
In order to do so, we now add differential refinement to this Lie integration of characteristic classes.

1.2.9.4 L.-algebra valued connections In[[.2.6|we described ordinary connections on bundles as well
as connections on 2-bundles in terms of parallel transport over paths and surfaces, and showed how such
is equivalently given by cocycles with coeflicients in Lie-algebra valued differential forms and Lie 2-algebra
valued differential forms, respectively.
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Notably we saw for the case of ordinary U(1)-principal bundles, that the connection and curvature data
on these is encoded in presheaves of diagrams that over a given test space U € CartSp look like

U BU(1) transition function
J(U)——=BINN(U(1)) connection
J(©) B2U(1) curvature

together with a constraint on the bottom morphism.

It is in the form of such a kind of diagram that the general notion of connections on co-bundles may be
modeled. In the full theory in[4] this follows from first principles, but for our present introductory purpose we
shall be content with taking this simple situation of U(1)-bundles together with the notion of Lie integration
as sufficient motivation for the constructions considered now.

So we pass now to what is to some extent the reverse construction of the one considered before: we define
a notion of L,-algebra valued differential forms and show how by a variant of Lie integration these integrate
to coefficient objects for connections on oo-bundles.

1.2.9.5 Curvature characteristics and Chern-Simons forms For G a Lie group, we have described
above connections on G-principal bundles in terms of cocycles with coefficients in the Lie-groupoid of Lie-
algebra valued forms BG onn

BGeonn connection

pseudo-connection

transition function

In this context we had derived Lie-algebra valued forms from the parallel transport description BGeonn =
[P1(—),BG]. We now turn this around and use Lie integration to construct parallel transport from Lie-
algebra valued forms. The construction is such that it generalizes verbatim to co-Lie algebra valued forms.
For that purpose notice that another classical dg-algebra associated with g is its Weil algebra W(g).

Proposition 1.2.167. The Weil algebra W(g) is the free dg-algebra on the graded vector space g*, meaning
that there is a natural bijection

Homggaig (W (g), A) ~ Homveet, (97, A4),

which is singled out among the isomorphism class of dg-algebras with this property by the fact that the
projection of graded vector spaces g* @ g*[1] — g* extends to a dg-algebra homomorphism

CE(g) + W(g) : i".

(Notice that general the dg-algebras that we are dealing with are semi-free dg-algebras in that only their
underlying graded algebra is free, but not the differential).
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The most obvious realization of the free dg-algebra on g* is A*(g* @ g*[1]) equipped with the differential
that is precisely the degree shift isomorphism o : g* — g*[1] extended as a derivation. This is not the Weil
algebra on the nose, but is of course isomorphic to it. The differential of the Weil algebra on A®(g* @ g*[1])
is given on the unshifted generators by the sum of the CE-differential with the shift isomorphism

dw (g)lg* = dcp(g) +0-

This uniquely fixes the differential on the shifted generators — a phenomenon known (at least after mapping
this to differential forms, as we discuss below) as the Bianchi identity.
Using this, we can express also the presheaf BGgg from above in diagrammatic fashion

Remark 1.2.168. For GG a simply connected Lie group, the presheaf BG ;g € [CartSp°?, Grpd] is isomorphic

08, (U x AF) 2 CE(g)
BGuir = 11 | exp(@)ais : (U, [K]) — T T
Q*(U x AF) <2~ W(qg)

where on the right we have the 1-truncation of the simplicial presheaf of diagrams as indicated, where the
vertical morphisms are the canonical ones.

Here over a given U the bottom morphism in such a diagram is an arbitrary g-valued 1-form A on U x AF.
This we can decompose as A = Ay + Ayert, where Ay vanishes on tangents to AF and A.e¢ on tangents
to U. The commutativity of the diagram asserts that A, has to be such that the curvature 2-form Fy
vanishes when both its arguments are tangent to A,

On the other hand, there is in the above no further constraint on Ay. Accordingly, as we pass to the
1-truncation of exp(g)gig we find that morphisms are of the form (Ay); % (Ay)s with (Ay)? arbitrary. This
is the definition of BGy;sg.

We see below that it is not a coincidence that this is reminiscent to the first condition on an Ehresmann
connection on a G-principal bundle, which asserts that restricted to the fibers a connection 1-form on the
total space of the bundle has to be flat. Indeed, the simplicial presheaf BGg;g may be thought of as the
oo-sheaf of pseudo-connections on trivial co-bundles. Imposing on this also the second Ehresmann condition
will force the pseudo-connection to be a genuine connection.

We now want to lift the above construction exp(u) of characteristic classes by Lie integration of Lie
algebra cocycles p from plain bundles classified by BG to bundles with (pseudo-)connection classified by
BGaig. By what we just said we therefore need to extend exp(u) from a map on just exp(g) to a map on
exp(g)aig- This is evidently achieved by completing a square in dgAlg of the form

vert

CE(g)u <— CE(5"~'R)

| |

W(g) <—— WO 'R)

and defining exp(u)aig : exp(g)aig — exp(b” 'R)qig to be the operation of forming pasting composites with
this.

Here W(b"~'R) is the Weil algebra of the Lie n-algebra " ~'R. This is the dg-algebra on two generators
c and k, respectively, in degree n and (n + 1) with the differential given by dw@n-1r) : ¢ — k. The
commutativity of this diagram says that the bottom morphism takes the degree-n generator ¢ to an element
cs € W(g) whose restriction to the unshifted generators is the given cocycle p.

As we shall see below, any such choice cs will extend the characteristic cocycle obtained from exp(u)
to a characteristic differential cocycle, exhibiting the co-Chern-Weil homomorphism. But only for special
nice choices of cs will this take genuine oco-connections to genuine oco-connections — instead of to pseudo-
connections. As we discuss in the full co-Chern-Weil theory, this makes no difference in cohomology. But
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in practice it is useful to fine-tune the construction such as to produce nice models of the oo-Chern-Weil
homomorphism given by genuine oo-connections. This is achieved by imposing the following additional
constraint on the choice of extension cs of pu:

Definition 1.2.169. For u € CE(g) a cocycle and c¢s € W(g) a lift of p through W(g) « CE(g), we say
that dy(g) is an invariant polynomial in transgression with p if dyy(g4) sits entirely in the shifted generators,
in that dywg) € A°g*[1] — W (g).

Definition 1.2.170. Write inv(g) C W(g) (or W(g)basic) for the sub-dg-algebra on invariant polynomials.
Example 1.2.171. We have inn(b""'R) ~ CE(b"R).

Using this, we can now encode the two conditions on the extension cs of the cocycle p as the commutativity
of this double square diagram

CE(g) < CE(b""'R) cocycle
W(g) <—= W(H"R) Chern-Simons element
inv(g) <—— inv(b"'R) invariant polynomial

Definition 1.2.172. In such a diagram, we call cs the Chern-Simons element that exhibits the transgression
between p and (—).

We shall see below that under the oco-Chern-Weil homomorphism, Chern-Simons elements give rise to
the familiar Chern-Simons forms — as well as their generalizations — as local connection data of secondary
characteristic classes realized as circle nn-bundles with connection.

Remark 1.2.173. What this diagram encodes is the construction of the connecting homomorphism for the
long exact sequence in cohomology that is induced from the short exact sequence

ker(i*) — W(g) — CE(g)
subject to the extra constraint of basic elements.
(=) =——()

:

[ <———cCS

-

CE(g) <— W(g) <— inv(g)

To appreciate the construction so far, recall the following classical fact

Fact 1.2.174. For G a compact Lie group, the rationalization BG ® k of the classifying space BG is the
rational space whose Sullivan model is given by the algebra inv(g) of invariant polynomials on the Lie algebra

g.
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So we have obtained the following picture:

delooped oco-group BG g CE(yg) Chevalley-Eilenberg algebra

delooped groupal

universal oo-bundle BEG inn(g) W(g) = CE(inn(g)) Weil algebra

algebra of
invariant polynomials

rationalized

Uz n;—1 .
classifying space [ B*R J[;p™R inv(g)

Lie integration

et
Example 1.2.175. For g a semisimple Lie algebra, (—, —) the Killing form invariant polynomial, there is
a Chern-Simons element cs € W(g) witnessing the transgression to the cocycle p = —¢(—,[—, —]). Under a

g-valued form Q°*(X) < W(g) : A this maps to the ordinary degree 3 Chern-Simons form

cs(A) = (AAdA) + (AAN[ANA]).

1
3

1.2.9.6 oo-Connections from Lie integration For g an L..-algebroid we have seen above the object
exp(g)aig that represents pseudo-connections on exp(g)-principal co-bundles and serves to support the co-
Chern-Weil homomorphism. We now discuss the genuine oco-connections among these pseudo-connections.
A derivation from first principles of the following construction is given below in

This construction is due to [SSS09¢| and [FSSI0].

Definition 1.2.176. Let X be a smooth manifold and g an L..-algebra algebra or more generally an
L.-algebroid.
An L, -algebroid valued differential form on X is a morphism of dg-algebras

Q*(X) «— W(g): A

from the Weil algebra of g, examples [1.2.155] to the de Rham complex of X. Dually this is a morphism of
L-algebroids
A:TX — inn(g)

from the inner automorphism oco-Lie algebra.
Its curvature is the composite of morphisms of graded vector spaces

0% (X) - W(g) €2 g*[1] : Fa.

Precisely if the curvatures vanish does the morphism factor through the Chevalley-FEilenberg algebra

in which case we call A flat.
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Remark 1.2.177. For {2°} a coordinate chart of an L.-algebroid a and
A% = A(z?) € Q@) (X))
the differential form assigned to the generator x® by the a-valued form A, we have the curvature components
F4 = A(dz®) € Qdesl=)+(X)
Since dw = dcg + d, this can be equivalently written as
F} = A(dwz® — degz?),

so the curvature of A precisely measures the “lack of flatness” of A. Also notice that, since A is required to
be a dg-algebra homomorphism, we have

Adw(ayr") = darA”,

so that
A(dCE(a)x“) = ddRAa — FK .

Assume now A is a degree 1 a-valued differential form on the smooth manifold X, and that cs is a Chern-
Simons element transgressing an invariant polynomial (—) of a to some cocycle p, by def. We can
then consider the image A(cs) of the Chern-Simons element cs in Q°(X). Equivalently, we can look at cs as
a map from degree 1 a-valued differential forms on X to ordinary (real valued) differential forms on X.

Definition 1.2.178. In the notations above, we write

0 (X) <2 W(a) <=— WO IR) : cs(A)

for the differential form associated by the Chern-Simons element cs to the degree 1 a-valued differential form
A, and call this the Chern-Simons differential form associated with A.
Similarly, for (=) an invariant polynomial on a, we write (F4) for the evaluation

A

Qe W (a) “ inv(b"TIR) : (Fy4).

closed

(X)

We call this the curvature characteristic forms of A.

Definition 1.2.179. For U a smooth manifold, the co-groupoid of g-valued forms is the Kan complex
exp(g)conn (U) : [K] — {Q’(U % A%) A W(g) | Yo € T(TAF) : 1y Fs = o}

whose k-morphisms are g-valued forms A on U x A* with sitting instants, and with the property that their
curvature vanishes on vertical vectors.
The canonical morphism
exp(@)conn — exp(g)

to the untruncated Lie integration of g is given by restriction of A to vertical differential forms (see below).

Here we are thinking of U x A¥ — U as a trivial bundle.
The first Ehresmann condition can be identified with the conditions on lifts V in co-anafunctors

exp(8)conn
-
c(U) exp(g)
iz
X

that define connections on co-bundles.
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1.2.9.6.1 Curvature characteristics

Proposition 1.2.180. For A € exp(g)conn(U, [k]) a g-valued form on U x A* and for (=) € W(g) any
invariant polynomial, the corresponding curvature characteristic form (Fa) € Q®*(U x AF) descends down to
U.

To see this, it is sufficient to show that for all v € I'(TA¥) we have
1. 1, (F4) =0;
2. L,(Fa)=0.

The first condition is evidently satisfied if already ¢,F'4 = 0. The second condition follows with Cartan
calculus and using that dqr(F4) = 0:

£U<FA> = dLU<FA> + [/'Ud<FA> =0.

Notice that for a general co-Lie algebra g the curvature forms F4 themselves are not generally closed
(rather they satisfy the more Bianchi identity), hence requiring them to have no component along the simplex
does not imply that they descend. This is different for abelian co-Lie algebras: for them the curvature forms
themselves are already closed, and hence are themselves already curvature characteristics that do descent.

It is useful to organize the g-valued form A, together with its restriction Aye¢ to vertical differential
forms and with its curvature characteristic forms in the commuting diagram

Q*(U x Ak)vcrt _Av& CE(g)

T |

QU x AF) <2 W(q)

| ]

Q*(U) <——— inv(g)

gauge transformation

g-valued form

curvature characteristic forms
in dgAlg. The commutativity of this diagram is implied by ¢, F4 = 0.
Definition 1.2.181. Write exp(g)cw (U) for the oco-groupoid of g-valued forms fitting into such diagrams.

Avert

Q* (U x AF)yers =— CE(g)

exp(g)ew (U) : [k] —

|

Q*(U x AF)

T

Q(U)

A

(Fa)

|

Wi(g)

|

inv(g)

We call this the coeflicient for g-valued co-connections

1.2.9.6.2 1-Morphisms: integration of infinitesimal gauge transformations The 1-morphisms
in exp(g)(U) may be thought of as gauge transformations between g-valued forms. We unwind what these
look like concretely.

Definition 1.2.182. Given a 1-morphism in exp(g)(X), represented by g-valued forms
QU x AY) «+— W(g): A
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consider the unique decomposition
A=Ay + (Avert := AAdL)

with Ay the horizonal differential form component and ¢ : A = [0,1] — R the canonical coordinate.
We call \ the gauge parameter. This is a function on Al with values in O-forms on U for g an ordinary
Lie algebra, plus 1-forms on U for g a Lie 2-algebra, plus 2-forms for a Lie 3-algebra, and so forth.

We describe now how this encodes a gauge transformation
Ag(s =0) 2 Ap(s=1).

Observation 1.2.183. By the nature of the Weil algebra we have

d
£AUZdU)\—l—[)\/\A]+[)\/\A/\A]+~-~+L5FA,

where the sum is over all higher brackets of the co-Lie algebra g.

In the Cartan calculus for the case that g an ordinary one writes the corresponding second Ehremsnn
condition 1p,F4a = 0 equivalently
Lo A=ad)A.

Definition 1.2.184. Define the covariant derivative of the gauge parameter to be
VAX:i=dA+[AANN+[ANAANNA+---.
Remark 1.2.185. In this notation we have
e the general identity J

Ay =V Fa)s
2 Av VA4 (Fa)

e the horizontality constraint or second Fhresmann condition tg, Fa = 0, the differential equation

da

Ay =VA.
dSUV

This is known as the equation for infinitesimal gauge transformations of an oo-Lie algebra valued form.

Observation 1.2.186. By Lie integration we have that Ayers — and hence A — defines an element exp(A) in
the oo-Lie group that integrates g.

The unique solution Ay (s = 1) of the above differential equation at s = 1 for the initial values Ay (s = 0)
we may think of as the result of acting on Ay (0) with the gauge transformation exp(\).
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1.2.9.7 Examples of oco-connections We discuss some examples of co-groupoids of oco-connections
obtained by Lie integration, as discussed in [1.2.9.6] above.

o — Connections on ordinary principal bundles
e [1.2.9.7.2] - string-2-connections

1.2.9.7.1 Connections on ordinary principal bundles Let g be an ordinary Lie algebra and write
G for the simply connected Lie group integrating it. Write BG o, the groupoid of Lie algebra-valued forms
from prop. [1.2.114

Proposition 1.2.187. The I-truncation of the object exp(g)conn from def. |1.2.179 is equivalent to the
coefficient object for G-principal connections from prop. [1.2.114] We have an equivalence

T1 eXp(g)conn = BGconn

Proof. To see this, first note that the sheaves of objects on both sides are manifestly isomorphic, both
are the sheaf of Q!(—,g). For morphisms, observe that for a form Q*(U x A!) <~ W(g) : A which we may
decompose into a horizontal and a verical piece as A = Ay + A A dt the condition tg, Fi4 = 0 is equivalent to
the differential equation

B
A= dud+ AL

For any initial value A(0) this has the unique solution
A(t) = g(t) (A +du)g(t)

where g : [0,1] — G is the parallel transport of A:

2 (o) (A + du)(r)

=g(t) " (A+du)rg(t) — g(t) " MA + du)g(t)

(where for ease of notation we write actions as if G were a matrix Lie group).
In particular this implies that the endpoints of the path of g-valued 1-forms are related by the usual
cocycle condition in BG opnp

A1) =g(1) " (A +dy)g(1).

In the same fashion one sees that given 2-cell in exp(g)(U) and any 1-form on U at one vertex, there is
a unique lift to a 2-cell in exp(g)conn, obtained by parallel transporting the form around. The claim then
follows from the previous statement of Lie integration that 71 exp(g) = BG. ]

1.2.9.7.2 string-2-connections We discuss the string Lie 2-algebra and local differential form data
for string-2-connections. A detailed discussion of the corresponding String-principal 2-bundles is below in
more discussion of the 2-connections and their twisted generalization is in[7.1.6.3

Let g be a semisimple Lie algebra. Write (—, —) : g®2 — R for its Killing form and
p=(=1=-1:a® >R

for the canonical 3-cocycle.
We discuss two very different looking, but nevertheless equivalent Lie 2-algebras.
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Definition 1.2.188 (skeletal version of string). Write g, for the Lie 2-algebra whose underlying graded
vector space is
9 =9D R[_l] ’

and whose nonvanishing brackets are defined as follows.

e The binary bracket is that of g when both arguments are from g and 0 otherwise.
e The trinary bracket is the 3-cocycle
[ = o, = (=[] : ¢®° = R.
Definition 1.2.189 (strict version of string). Write (Qg — P,g) for the Lie 2-algebra coming from the
differential crossed module, def. whose underlying vector space is
(g = Pg) = P.g @ (o R)[-1],

where P,g is the vector space of smooth maps v : [0,1] — g such that v(0) = 0, and where (g is the subspace
for which also (1) = 0, and whose non-vanishing brackets are defined as follows

e [-]1=0:=Q88R — Qg — P.g;

e [—,—]: P.g® P.g — P.g is given by the pointwise Lie bracket on g as
1,72] = (0= [11(0),72(0)]) 5

o [—,—]: Pg®(QgdR) = Qg dR is given by pairs

1
0= (1t 2 [ (o), G o) (15)

where the first term is again pointwise the Lie bracket in g.
Proposition 1.2.190. The linear map
Pg® (QgeR)[-1] - g R[-1],
which in degree 0 is evaluation at the endpoint
v (1)
and which in degree 1 is projection onto the R-summand, induces a weak equivalence of Lo, algebras
string ~ (Qg — P.g) ~ 9,

Proof. This is theorem 30 in [BCSS07]. O

Definition 1.2.191. We write string for the string Lie 2-algebra if we do not mean to specify a specific
presentation such as so,, or (Qso0 — P,s0).

In more technical language we would say that string is defined to be the homotopy fiber of the morphism
of L.o-algebras i3 : s0 — b?R, well defined up to weak equivalence.

Remark 1.2.192. Proposition says that the two Lie 2-algebras (Qg — P,g) and g, which look
quite different, are actually equivalent. Therefore also the local data for a String-2 connection can take two
very different looking but nevertheless equivalent forms.

Let U be a smooth manifold. The data of (Qg — P,g)-valued forms on X is a triple
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1. A€ QY(U, Pyg);
2. B € Q*(U,Qg);
3. Be Q*(U,R) .

consisting of a 1-form with values in the path Lie algebra of g, a 2-form with values in the loop Lie algebra
of g, and an ordinary real-valued 2-form that contains the central part of Qg = Qg @® R. The curvature data
of this is

1. F=dA+ J[ANA]+ B € Q*(U, Pg);

2. H=d(B+ B)+[AA(B+B) € B*(U,Qg®R), ,
where in the last term we have the bracket from (1.5)). Notice that if we choose a basis {t,} of g such that
we have structure constant [tp,t.] = f*pcta, then for instance the first equation is

Fo) =dA% o) + %fabcAb(J) N A(o) 4+ B% (o).

On the other hand, the data of forms on U is a tuple
1. Ae QYU yg);
2. Be Q*U,R),
consisting of a g-valued form and a real-valued 2-form. The curvature data of this is
1. F=dA+[ANAA] € Q%(g);
2. H=dB+ (AN[AA A]) € B3(U).

While these two sets of data look very different, proposition implies that under their respective
higher gauge transformations they are in fact equivalent.

Notice that in the first case the 2-form is valued in a nonabelian Lie algebra, whereas in the second case
the 2-form is abelian, but, to compensate this, a trilinear term appears in the formula for the curvatures.
By the discussion in section this means that a g,-2-connection looks simpler on a single patch than
an (Qg — P.g)-2-connection, it has relatively more complicated behavious on double intersections.

Moreover, notice that in the second case we see that one part of Chern-Simons term for A occurs, namely
(AN[ANA]) . The rest of the Chern-Simons term appears in this local formula after passing to yet another
equivalent version of string, one which is well-adapted to the discussion of twisted String 2-connections. This
we discuss in the next section.

The equivalence of the skeletal and the strict presentation for string corresponds under Lie integration
to two different but equivalent models of the smooth String-2-group.

Proposition 1.2.193. The degeewise Lie integration of Qso — P,so yields the strict Lie 2-group (QSpin —
P,Spin), where QSpin is the level-1 Kac-Moody central extension of the smooth loop group of Spin.

Proof. The nontrivial part to check is that the action of P.so on Qso lifts to a compatible action of
P.Spin on QSpin. This is shown in [BCSS07]. |
Below in we show that there is an equivalence of smooth n-stacks

B(QSpin — P,Spin) ~ 1 exp(gy,) -
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1.2.10 The Chern-Weil homomorphism

We now come to the discussion the Chern-Weil homomorphism and its generalization to the co-Chern-Weil
homomorphism.

We have seen in G-principal oco-bundles for general smooth oo-groups G and in particular for
abelian groups G. Naturally, the abelian case is easier and more powerful statements are known about this
case. A general strategy for studying nonabelian oo-bundles therefore is to approzimate them by abelian
bundles. This is achieved by considering characteristic classes. Roughly, a characteristic class is a map that
functorially sends G-principal co-bundles to B™ K-principal co-bundles, for some n and some abelian group
K. In some cases such an assignment may be obtained by integration of infinitesimal data. If so, then the
assignment refines to one of co-bundles with connection. For G an ordinary Lie group this is then what is
called the Chern-Weil homomorphism. For general G we call it the co-Chern-Weil homomorphism.

The material of this section is due to [SSS09a] and [FSS10].

1.2.10.1 Motivating examples A simple motivating example for characteristic classes and the Chern-
Weil homomorphism is the construction of determinant line bundles from example This construction
directly extends to the case where the bundles carry connections. We give an exposition of this differential
refinement of the universal first Chern class, example A more formal discussion of this situation is
below in [ T.6.11

For N € N We may canonically identify the Lie algebra u(N) with the matrix Lie algebra of skew-
hermitian matrices on which we have the trace operation

tr:u(N) — u(l) =R.

This is the differential version of the determinant in that when regarding the Lie algebra as the infinitesimal
neighbourhood of the neutral element in U(N) the determinant becomes the trace under the exponential
map

det(l1+€A) =1+ etr(A)

for €2 = 0. Tt follows that for tray : P1(U;) — BU(N) the parallel transport of a connection on P locally
given by a 1-forms A € QY (U;, u(N)) by

tray (y) = Pexp/ v A
[0,1]

the determinant parallel transport
det(tray =: P1(U;) "% BU(N) & BU(1)

is locally given by the formula

det(tray (7)) = P exp / YA,
[0,1]

which means that the local connection forms on the determinant line bundle are obtained from those of the
unitary bundle by tracing.

(det, tr) : {(gi;), (Ai)} = {(detgs;), (trA;)}.
This construction extends to a functor

(€1) := (det, tr) : U(N)Bundconn (X) — U(1)Bundconn (X)

natural in X, that sends U (n)-principal bundles with connection to circle bundles with connection, hence to
cocycles in degree-2 ordinary differential cohomology.
This assignment remembers of a unitary bundle one inegral class and its differential refinement:
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e the integral class of the determinant bundle is the first Chern class the U(NV)-principal bundle

e the curvature 2-form of its connection is a representative in de Rham cohomology of this class

[Fvél(P)} = c1(P)ar -

Hc2hff
H( X)
Equivalently this assignment is given by postcomposition of cocycles with a morphism of smooth co-groupoids
¢1: BU(N)conn — BU(1)conn -

We say that ¢; is a differential characteristic class, the differential refinement of the first Chern class.

In [BrMc96b| an algorithm is given for contructing differential characteristic classes on Cech cocycles in
this fashion for more general Lie algebra cocycles. For instance these authors give the following construction
for the diffrential refinement of the first Pontryagin class [BrMc93].

Let N € N, write Spin(/N) for the Spin group and consider the canonical Lie algebra cohomology 3-cocycle

p={(=[=-]) 1 s0(N) = b’R

on semisimple Lie algebras, where (—, —) is the Killing form invariant polynomial. Let (P — X, V) be a
Spin(N)-principal bundle with connection. Let A € Q!(P,s0(N)) be the Ehresmann connection 1-form on
the total space of the bundle.

Then construct a Cech cocycle for Deligne cohomology in degree 4 as follows:

1. pick an open cover {U; — X} such that there is a choice of local sections o; : U; — P. Write
(9i5, Ai) = (U 0j,0;A)
for the induced Cech cocycle.
2. Choose a lift of this cocycle to an assignment
e of based paths in Spin(/N) to double intersections
Gij : Uij x A' — Spin(N),

with gij (0) = ¢ and gij(l) = Gij;
e of based 2-simplices between these paths to triple intersections

Gijk : Uije x A% — Spin(N) ;

restricting to these paths in the obvious way;

e similarly of based 3-simplices between these paths to quadruple intersections
gijkl : Uijkl X A3 — Spin(N) .

Such lifts always exists, because the Spin group is connected (because already SO(N) i ), simply
connected (because Spin(/N) is the universal cover of SO(NNV)) and also has w3 (Spin(N)) = 0 (because
this is the case for every compact Lie group).
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3. Define from this a Deligne-cochain by setting

1.
§p1(P) = (Gijkt, Aijk, Bij, Cs) := fN

AR

where cs(A) = (A A Fa) + ¢(A A [A A A]) is the Chern-Simons form of the connection form A with
respect to the cocyle pu(A) = (AN [A A A]).

They then prove:
1. This is indeed a Deligne cohomology cocycle;

2. it represents the differential refinement of the first fractional Pontryagin class of P.
Hélff /ﬁ \
HY( X) 3 (P des(A

In the form in which we have (re)stated this result here the second statement amounts, in view of the first
statement, to the observation that the curvature 4-form of the Deligne cocycle is proportional to

des(A) o< (Fa A Fy) € Q4(X)

which represents the first Pontryagin class in de Rham cohomology. Therefore the key observation is that
we have a Deligne cocycle at all. This can be checked directly, if somewhat tediously, by hand.

But then the question remains: where does this successful Ansatz come from? And is it natural? For
instance: does this construction extend to a morphism of smooth oco-groupoids

—P1 BSpiIl(N)Conn — BgU(l)conn

from Spin-principal bundles with connection to circle 3-bundles with connection?

In the following we give a natural presentation of the co-Chern-Weil homomorphism by means of Lie
integration of L.,-algebraic data to simplicial presheaves. Among other things, this construction yields an
understanding of why this construction is what it is and does what it does.

The construction proceeds in the following broad steps

1. The infinitesimal analog of a characteristic class ¢ : BG — B"U(1) is an L.-algebra cocycle
pig—b"IR.
2. There is a formal procedure of universal Lie integration which sends this to a morphism of smooth

oo-groupoids
exp(p) : exp(g) — exp(b"'R) ~ B"R

presented by a morphism of simplicial presheaves on CartSp.

3. By finding a Chern-Simons element cs that witnesses the transgression of p to an invariant polynomial
on g this construction has a differential refinement to a morphism

exp (i, ¢s) : exp(@)conn — B"Reonn

that sends L.-algebra valued connections to line n-bundles with connection.
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4. The n-truncation cosk,+1 exp(g) of the object on the left produces the smooth co-groups on interest
— cosk, 11 exp(g) ~ BG — and the corresponding truncation of exp((u, cs)) carves out the lattice T' of
periods in G of the cocycle p inside R. The result is the differential characteristic class

exp(i, ¢s) : BGeonn — B"R/Teonn -
Typically we have I' ~ Z such that this then reads

exp(p, ¢s) : BGeonn — B"U(1)conn -

1.2.10.2 The oco-Chern-Weil homomorphism In the full co-Chern-Weil theory the oo-Chern-Weil
homomorphism is conceptually very simple: for every n there is canonically a morphism of smooth oco-
groupoids B"U(1) — bqrB"1U(1) where the object on the right classifies ordinary de Rham cohomology
in degree n + 1. For G any oo-group and any characteristic class ¢ : BG — B"*1U(1), the oo-Chern-Weil
homomorphism is the operation that takes a G-principal co-bundle X — BG to the composite X — BG —
BnU(l) — bdRBn+1U(1).

All the constructions that we consider here in this introduction serve to model this abstract operation.
The oo-connections that we considered yield resolutions of B"U(1) and BG in terms of which the abstract
morphisms are modeled as co-anafunctors.

1.2.10.2.1 oo-Chern-Simons functionals If we express G by Lie integration of an co-Lie algebra
g, then the basic co-Chern-Weil homomorphism is modeled by composing an oo-connection (Avyert, 4, (Fa))
with the transgression of an invariant polynomial (u,cs, (—)) as follows

Q* (U x A’C)Vﬁx“« CE(g) Cech cocycle CE(g) «”CE(b”’lR) cocycle
. k\A . Q;
Q*(U x A")'<— W(g) connection o W(g) <SW(b"~'R) Chern-Simons
element
o (Fa) . curvature

(V) <—— inv(g) characteristic forms . (=) 1 invariant
inv(g) < inv(b"'R) .

polynomial

Q* (U x Ak)vcfévm CE(g) 2 CE(®"'R) s w(Ayert) characteristic class

B Q*(U x AF) A W(g) E W — 1R) tesu(A) Chern-Simons form

. (Fa) . (=) . n—1 ) curvature
@) inv(g) v (6" R) ) characteristic forms

This clearly yields a morphism of simplicial presheaves

eXp(M)COHH : exp(g)COnn — exp(bn_lR)conn
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and, upon restriction to the top two horizontal layers, a morphism
exp () aisr : exp(@)aig — exp(0” 'R)aig -
Projection onto the third horizontal component gives the map to the curvature classes
eXp(bn_lR)diff — bar exp(b"R)gimp »
In total, this constitutes an oco-anafunctor

exp(9)aift Mdg(p(bnill&)diff — barb"R

lN
exp(g)

Postcomposition with this is the simple co-Chern-Weil homomorphism: it sends a cocycle

C(U) —— exp(g)

lw

X
for an exp(g)-principal bundle to the curvature form represented by

cv) ﬂe}(p(g)diﬁ Md&p(b"ﬂ[@)diﬁ —barb0"R .

-,k

cw) exp(g)

lz

X

R

g

Proposition 1.2.194. For g an ordinary Lie algebra with simply connected Lie group G, the image under
71(—) of this diagram constitutes the ordinary Chern-Weil homomorphism in that:

for g the cocycle for a G-principal bundle, any ordinary connection on a bundle constitutes a lift (g, V)
to the tip of the anafunctor and the morphism represented by that is the Cech-hypercohomology cocycle on
X with values in the truncated de Rham complex given by the globally defined curvature characteristic form
(Fg N~ N Fy).

But evidently we have more information available here. The ordinary Chern-Weil homomorphism refines
from a map that assigns curvature characteristic forms, to a map that assigns secondary characteristic classes
in the sense that it assigns circle n-bundles with connection whose curvature is this curvature characteristic
form. The local connection forms of these circle bundles are given by the middle horizontal morphisms.
These are the Chern-Simons forms

Q*(U) & W(g) & WOH"'R) : cs(A).

1.2.10.2.2 Secondary characteristic classes So far we discussed the untruncated coefficient object
exp(g)conn Of g-valued oco-connections. The real object of interest is the k-truncated version 7y exp(g)conn
where k € N is such that 7, exp(g) ~ BG is the delooping of the co-Lie group in question.
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Under such a truncation, the integrated oo-Lie algebra cocycle exp(u) : exp(g) — exp(b” 'R) will no
longer be a simplicial map. Instead, the periods of p will cut out a lattice I' in R, and exp(u) does descent

to the quotient of R by that lattice

exp(u) : 7 exp(g) = B"R/T".
We now say this again in more detail.
Suppose g is such that the (n + 1)-coskeleton cosk,, ;1 exp(g) = BG for the desired G. Then the periods

of p over (n + 1)-balls cut out a lattice I' C R and thus we get an oo-anafunctor

cosk,, 11 exp(g)ait —= B"R/Tqig — parB"H'R/T

lN

BG

This is curvature characteristic class. We may always restrict to genuine co-connections and refine

cOSkn—Q—l eXp(g)conn - BnR/Fconn

BnR/Fdiﬁ‘ ——— bdRBnJrlR/F

cosk,, 1 exp(g)dift
BG

which models the refined co-Chern-Weil homomorphism with values in ordinary differential cohomology

Heonn(X,G) — HIML (X, R/T) .
Example 1.2.195. Applying this to the discussion of the Chern-Simons circle 3-bundle above, we find a

differential refinement

exp(g)aigexp(p)ais —= exp(b" ' R)aier -

| -
(4,V)

——> coskz exp(g)aig —— B3U (1) qigr

| |

v
(9,V) BGan

Chasing components through this composite one finds that this descibes the cocycle in Deligne cohomology
given by

sV, [ sV, / CS(GEY), / Gt
Al A2 A3

This is the cocycle for the circle n-bundle with connection.

This is precisely the form of the Cech-Deligne cocycle for the first Pontryagin class given in [BrMc96bh],
only that here it comes out automatically normalized such as to represent the fractional generator %pl.

163



By feeding in more general transgressive co-Lie algebra cocycles through this machine, we obtain cocy-
cles for more general differential characteristic classes. For instance the next one is the second fractional
Pontryagin class of String-2-bundles with connection [FSSI0]. Moreover, these constructions naturally yield
the full cocycle oo-groupoids, not just their cohomology sets. This allows us to form the homotopy fibers of
the oco-Chern-Weil homomorphism and thus define differential string structures etc. and twisted differential

string structures etc. [SSS09¢].

1.3 Physics

This section is an introduction to and review of aspects of modern mathematical physics, formulated mostly
in traditional terms but with an eye towards the developments below.

° — Classical local Lagrangian field theory

° — Hamilton-Jacobi mechanics via Prequantized Hamiltonian correspondences
e [1.3.3] - Hamilton-de Donder-Weyl field theory via Higher correspondences

° — Higher pre-quantum gauge fields

o [1.3.5] - Higher geometric pre-quantum theory

1.3.1 Classical local Lagrangian Field theory

We give here a self-contained account of the basic definitions and facts in modern variational calculus for
classical local Lagrangian field theories in terms of jet geometry [OI93] [And89]. While nothing in this section
is new, our review puts an emphasis on certain aspects that will be crucial below in section and that
are somewhat hidden in the standard literature. These aspects include:

e the comonadicity of the category of partial differential equations due to [Marv86];

e the functoriality of the Euler-Lagrange complex over the site of differential operators, implicit in
[Andg9).

This section draws from [KhaSc| and owes a lot to Igor Khavkine.

e [.3.1.7]— Jet bundles, Differential operators and PDEs
. — Horizontal de Rham complex;

. — Variational bicomplex;

. — Euler-Lagrange complex;

. — Equations of motion and Lagrangians;

e [[.3.1.6] - Action functional and covariant phase space;

e [1.3.1.7]- Symmetries and conserved currents.
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1.3.1.1 Jet bundles, Differential operators and PDEs Throughout, let
e pcN;
e X be a (p+ 1)-dimensional manifold, regarded as the spacetime/worldvolume of the field theory,

e F — ¥ be a smooth bundle, called the field bundle, whose smooth sections ¢ € T'(E) are the field
configurations of the field theory.

Definition 1.3.1. Any smooth bundle may be extended to a sequence of k-jet bundles J*E — J*~1E, each
an affine bundle over the preceding one, with J°E = E. The projective limit

JOFE = @J'E,
regarded as a bundle over ¥, is the (co-)jet bundle of E.

Remark 1.3.2. The intuition is that a section of J*(E) over a point 2 € ¥ is equivalently a section of £
over the order-k infinitesimal neighbourhood D™ (k) of x:

JHE)

E
/1l ~ /4\L
Ve - Ve
/ v
E Ve

D" (k) ——s *——> 3

This intuition becomes a precise statement [Kock80, section 2] after embedding smooth manifolds into
a model for synthetic differential geometry, such as [Dub79b, ?], where formal manifolds such as D" (k)
genuinely exist. We come back to this below in section [6.5.10] The synthetic formulation has models also in
algebraic geometry, where the construction of jet bundles is known in the language of “crystals of schemes”
or “D-geometry,” see for instance [?].

Remark 1.3.3. While J°°F is not finite dimensional, it is nearly so, because any smooth function on it
must depend only on a finite number of coordinates, with the number bounded at least locally. Technically
this means that J°°FE is defined a projective limit of a tower of affine bundles over E. It follows in particular
that J2° has the same de Rham cohomology as E, HP(J*E) = HP(E).

By remark it is clear that we have the following (see e.g. [Marv86]):
Definition 1.3.4. The jet bundle construction of def. extends to a functor

Js° : SmoothMfd s, — SmoothMfd s .

Notice the following degenerate case.

Example 1.3.5. If we regard 45 canonically as a bundle over itself, then it coincides with its jet bundle:
JR(E) ~ X,

Simple as this is, it induces the following key construction.

Definition 1.3.6. Given a section ¢: ¥ — E, ¢ € I's(E), its jet prolongation is its image under the jet
functor, def. [[:3:4] regarded as a section of the jet bundle via the equivalence of example [[.3.5}

F0) = S g(D) — =D pe(E)

Remark 1.3.7. In terms of remark the jet extension of def. is the result of restricting ¢ to all
order-k infinitesimal neighbourhoods of its domain.
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It turns out that the construction of jet bundles has some excellent abstract properties that are useful
in the classical theory and indispensable in the prequantum theory which we turn to in [?]. Before stating
them, we briefly recall the pertinent definitions.

Proposition 1.3.8 ([Marv86]). The jet bundle endofunctor of def. together with the canonical pro-
jection map JXE — ¥ as well as with the natural transformation Jet(E) — Jet(Jet(E)) induced from the
jet prolongation operation j>°, def. i$ a co-monad.

Proposition 1.3.9 ([Marv86, section 1.1]). For Ey, Ey € SmoothMfd s, two bundles over ¥, then a dif-
ferential operator D: I's(Eq) — I's(FEs) is equivalently a map between their spaces of sections of the form
¢ D 0 (@), where j*° is the jet prolongation of def. and where D is a morphism of bundles over
3 of the form

D : JX(E)) — Es.

The composite Dy o D1 of two differential operators is given by

—~— (D
DyoDy: J(B) — P | jeo(py) — 22 g,

In other words, the category DiffOpy, of smooth bundles over ¥ with morphisms the differential operators
between their sections is equivalently the Kleisli category, def. ??, of the jet comonad of prop. [I.3.8

Remark 1.3.10. Prop. says in particular that the jet extension of a bundle E itself is the universal
differential operator j°: I's(F) — I'n(J*(E)). with j>° = id.

Definition 1.3.11. In the situation of prop. [1.3.9] the composition

p(D): J(Ey) — I () — D po(By)

is called the prolongation of the map D.

Below in prop. [[.3:16] we give the co-monadic interpretation of p°°, using the following generalization of
prop. [L.3.9]

Theorem 1.3.12 ([Marv8&6]). The category of co-algebras EM(J®) (def. ??) over the jet comonad over
3 (prop. is equivalently the category PDEyx, of (non-singular) partial differential equations with free
variables ranging in X, and with solution-preserving differential operators between these [?]:

EM(JZ) ~ PDEy, .

Remark 1.3.13. The identification of objects £ € PDEy in theorem with (non-singular) partial
differential equations works as follows. First of all, one finds that every £ € PDEy is the equalizer of a
pair of morphisms |E| D;,D, : E — F in DiffOpy, — PDEjy, hence, by prop. of two differential
operators acting on sections of a bundle E over ¥. By the universal property of equalizers, this means

that the morphisms X Peol g i PDEsy are in bijection with those morphisms X %l B such that the two

107t is here where the non-singularity condition comes in: If the equalizer of Dl, D, : J®°E — F is not a smooth submanifold,
then de facto it does not exist in PDEy; as defined here. This is a minor point. To deal with this one passes to an improved
category of smooth manifolds where all fiber products exists. This is preferably achieved by a category of “derived” manifolds,
whose formal duals are not just plain function algebras, but simplicial function algebras. In the physics literature these are
known as BV-complexes. It is fairly straightforward to lift the entire discussion here from smooth manifolds to derived smooth
manifolds, and once one does so the non-singular-clauses above may be omitted.
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Dy,
composites X Yol g 2% agree.

¢sol / € PDEE .

Now by example [1.3.15| the morphisms ¢ here are equivalently sections ¢ € I's(E), and by prop. these
equalize the morphisms D;, D, precisely if the action of these as differential operators acting on sections
agrees

Dy(¢) = Dr(9) -

This is the explicit traditional incarnation of the differential equation embodied by the object £ € PDEy.
Yet another way to say this is that the monomorphism £ — E in PDEy maps under U : PDEy —
SmoothMfd s, to a submanifold inclusion
UE)— J°E

of the jet bundle of F, and that the solutions ¢ to the differential equation are those sections ¢ € I'(FE)
whose jet prolongation, def. factors through this inclusion

U(€)
7
7/
i (beot) € SmoothMfd s .
//
7/
2 ) __ Dy
12 xE F

It is common to notationally suppress the underlying-bundle functor U and just write & — JE if the
context is clear. One then also says that £ C JE is the dynamical shell of the PDE.

Remark 1.3.14. In summary, prop. [[.3:9and theorem[I:3.12]say, via prop. ?7?, that jet geometry constitutes
the following comonadic situation:

19)
SmoothMfd, PDEy, ~ EM(J)

\/

DiffOpy, ~ KI(JgP)

The category of PDEs over ¥ (equivalently the Eilenberg-Moore category of Jg°-coalgebras) has a forgetful
functor to the category of pro-finite dimensional smooth bundles over ¥. This functor has a right adjoint,
sending any bundle E to the “co-free” differential equation it defines, namely the trivial differential equation
on smooth sections of F, for which every section is a solution. Even though these are trivial as differential
equations, the morphism between bundles when regarded as cofree differential equations are interesting,
they are precisely the differential operators. Hence the cofree functor from bundles to PDEs factors through
the full inclusion of the category DiffOpy, of bundles with differential operators between them, which is
equivalently the Kleisli category, def. 77, of J&°. Finally

J¥ ~UoF
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Due to the nature of the factorization through the Kleisli category, it makes sense and is convenient to
leave F' notationally implicit.

Example 1.3.15. We have
DiffOpy (%, E) ~ PDEy, ~ I'(E) .

Proposition 1.3.16. Given a morphism D in DiffOpy, represented as a _co-Kleisli morphism_(remark 77)
D : JXE, — Ej, then its underlying bundle map is the prolongation p> (D) according to def. [1.3.11}:

U(D) ~ p>(D).

Proof. ~ The morphism D is identified with a morphism in PDEx of the form D : F(E;) — F(Es).
The morphism D is the adjunct of this under (U 4 F), and conversely, hence, by the formula prop. ?? for
adjuncts ,

D:F(E) "5 FUF(E)) "2 F(E,).

Therefore

(77F_(E>1)) U(ifg))

U(D) : U(R(Ey)) U(F(U(F(EY)))) U(F(Ey)).

Via Jg° ~ UoF (prop. ??) and the formula for the coproduct via the adjunction counit (prop. ??) the right
hand is indeed the formula for p>° from def. [1.3.11

1.3.1.2 Horizontal de Rham complex A key fact of variational calculus is that the de Rham complex
of a jet bundle naturally splits into a bicomplex of horizontal and vertical differentials, with the latter
encoding the Euler-Lagrange variation of fields. In terms of the characterization of differential operators due
to prop. the horizontal subcomplex has the following neat formulation.

Definition 1.3.17 (e.g. [?, def. 3.27]). A horizontal n-form o on a jet bundle J°(E) is a differential
operator of the form
a: B — A"T*X%. (1.6)

With the de Rham differential d: Q" (X) — Q"*t1(X) on ¥ regarded as a differential operator
d: N"T*X — A" X (1.7)
then the horizontal differential of a horizontal n-form « is the composite of differential operators
dyo: F =% ATy -4 AnHITe x| (1.8)
The resulting cochain complex (2% (E),d) is the horizontal de Rham complex of the jet bundle of E.

Remark 1.3.18. By prop. a horizontal n-form as in def. is equivalently a bundle morphism
of the form &: J°(E) — A"T*XE. Composed with the canonical bundle morphism A"T*Y — A"T*JX(E)
induced from the bundle projection J(FE) — %, this becomes an actual n-form & € Q" (J(E)) on the jet
bundle, whence the name. On the other hand, composed with a jet prolongation j°(¢): ¥ — Jg°(E), def.

5.3.79] then

I (¢) &

JX(E) ANT*Y.

JF0@)a s B—=Jx(%)

is a horizontal n-form on ¥, hence, by example[1.3.5] just a plain n-form on ¥. We use this interpretation to
identify horizontal forms with a subset Q% (E) C Q°*(J>°(E)). Moreover, we can actually extend the action of
dy to arbitrary forms in Q®(J°°(FE)) as follows. As a graded commutative algebra, Q®(J°°(FE)) is generated
by Q°(J*®(E)) and dQ°(J>°(E)). The action of dy on Q°(J*(FE)), since any 0-form is automatically a
horizontal form. Further, let dgdf = —ddg f, for any f € Q°(J>°(E)). Having defined dz on the generators,
we extend it to all of Q*(J°(E)) as a graded differential. Note that this definition implies the identity
dyd+ ddg.
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The formulation of jet prolongation in def. and of the horizontal complex in def in terms
of the jet comonad structure of prop. makes the following key property of the horizontal differential
follow from general abstract reasoning that holds in general models of jet geometry as in remark

Proposition 1.3.19. Pullback of horizontal forms along jet prolongations intertwines the horizontal differ-
ential with the de Rham differential on X: for ¢ € Ts(E) and a € Qu(E), we have a natural identification

Proof. Unwinding the definitions, the right hand is the form given by the composite
) = 70 IS () 700 00 [ TOO IS oo/ nrps ds n—+1mx
=S JX(X) = JX(E) = JX(JX(E)) =" JX(A"T'E) —= AT
Since the Jg°-coproduct is a natural transformation, we may pass J2°(¢) through the coproduct from the
left to the right to obtain the equivalent morphism
25 E) 3 IxueE) FYED jo e (g) B gz arrrs) 22 antires
By functoriality of J3° we may compose this as
23 JE(E) 3 Ixuz®) T OB jeonprs) do antipry

This is the co-Kleisli morphism (remark ??) expressing the left hand side of the equation to be established.

1.3.1.3 Variational bicomplex

Definition 1.3.20. Write Q% (E) — Q°*(Jg°(E)) for the joint kernel of the pullback maps along jet prolon-

gations, def.
J=(@)": (I (E)) — Q*(%) (1.9)

along all section ¢ € I's(E). These are called the vertical differential forms (sometimes also contact forms)
on the jet bundle. The vertical forms constitute a differential ideal of (Q*(J>°(E)),d), known as the contact
or Cartan ideal. The vertical differential

dy: Q*(J®(E)) — Q% (E)

is

d\/::dde.

Proposition 1.3.21. The complex of differential forms on the jet bundle is a direct sum of the horizontal

forms from def. remark [1.5.18 with the vertical forms of def.
0 (JEE) ~ O%(E) ® O (E) . (1.10)

In fact, the quotient of the de Rham complex (2°(J*°(E)),d) by the differential ideal Qv (E) gives precisely
the horizontal de Rham complex (Y (E),dn).

Considering the above decomposition on 1-forms, Q' (J*®(E)) = QL (E)® Q1. (E), we assign to elements of
QL (E) horizontal degree 1 and vertical degree 0, while to elements of i, (E) horizontal degree 0 and vertical
degree 1. Also, we assign both horizontal and vertical degree 0 to elements of Q°(J>°(E)). Obviously, the
sum of the horizontal and vertical degrees is the total form degree. Since all forms are generated as a graded
algebra by forms of total degrees 0 and 1, we have just defined a bigrading on the forms on J*°(E), which
we denote as Q°(J*(E)) = D, , Q"v(E), where h stands for the horizontal and v for vertical degrees.
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Proposition 1.3.22. The horizontal-vertical bigrading and the operators dg, dy turns the de Rham complex
on J®(E) into a bicomplex, called the variational bicomplex (Q**(E),dy,dy), where dg is of horizontal
degree 1 and vertical degree 0, while dy is of horizontal degree 0 and vertical degree 1.

QY (E) —2> 0l (B) — > 02 (B) —> ... 1 o qr T outl(p)

dv dv dv du dy

0— = QOL(E) Y quip) o g2y o gea gy 9 gerli(p)

dv dv dv dV dV
0 — Q02(E) —2 12(p) 2, g22(p) o .. ge2 T gpii2(p)
dv dV dV dV dV

Here the horizontal rows (Q*"='(E),dy) are exact, except at QPTHV(E), and also the vertical columns
(Q"*(E),dv) are ezact, except at Q"O(E).

Proposition 1.3.23. The total complex of the variational bicomplex is isomorphic to the de Rham complex

(Q*(J>(E)), d).

Remark 1.3.24. By the above proposition, the variational bicomplex must fail to be exact in some places
whenever its total complex (Q*(J°°(E)), d) has non-trivial cohomology, which is isomorphic to H*(FE), since
J°(E) is contractible to E. In the bicomplex, these de Rham classes are concentrated in the v = 0 horizontal
row and, in a way to be described below, in the A = p 4+ 1 vertical column. In fact, all of these cohomology
classes are controlled precisely by H3 (E). This is captured by the Euler-Lagrange complez, to which we
turn below in def. [L3.341

The bigraded forms in the variational bicomplex may naturally be identified with certain differential
operators. This is particularly important for the (p + 1, 1)-forms where the following operation will serve
to identify the variational derivative of a Lagrangian with the differential operator that embodies the corre-
sponding Euler-Lagrange equations of motion.

Definition 1.3.25. For n,k € N write

(=): Q"*(E) — DiffOpy, (A%(VE), A"T*%) (1.11)

for the map from (n, k)-bigraded differential forms as in prop. [1.3.22} to differential operators, which sends
B € QF(E) to the differential operator 3 whose value on any (¢;ug A --- Aug) € D(AL(VE)) is

Bldsur A= Nuk) = (G%0) (tpoour nonpur ) (1.12)

where the vector fields u; have been prolonged to the evolutionary vector fields p™wu;, as discussed in Re-
mark ?77.

Notice that the bundle VE — E — ¥, or a tensor power of it, is a vector bundle over F, but may not
be linear over ¥ if F itself is not a vector bundle. Write DiffOpg ™ (Ak(V E), A"T*X) for those differential
operators which are linear over E.

Proposition 1.3.26. The construction in def. [1.3.2] constitutes a linear isomorphism onto those differential
operators that are linear over E:

(=): QUF(E) =5 DiffOpE ™ (AL (VE), AnT*Y) (1.13)
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Definition 1.3.27. For k > 1, there is a map (formal adjoint)
(=)*: DiffOpE ™™ (AL (VE), APFIT*Y) — DiffOpE "™ (R x ALYV E), APTIT*Y @5 VX E) (1.14)

which is uniquely characterized [?, Sec.5.2.3] by the condition that for every differential operator D €
DiffOpE™ ™ (Ak (VE), APFIT*S) there is an

wp € DIffOpE™™(R x AL (VE), APT*) (1.15)
such that for every f € C°°(X) and every (¢;u; A --- Auy) € T(AL(VE)) we have

fD[p;ur A -+ ANug] — D¥[@; fyur A Aug—1] - up = dswpld; fyur A - up—1, ug) . (1.16)

1.3.1.4 Euler-Lagrange complex Recall from prop. [1.3.22|that any 1-form on J*°(E) can be uniquely
decomposed into its horizontal and vertical parts.

Definition 1.3.28. The subspace of order-0 vertical 1-forms
Qyo(B) € Qy(E)

is the image of the projection of the forms (72)*[Q'(E)] onto their vertical parts, where we take the pullback
along the natural projection 7% : J*(E) — E.

Definition 1.3.29. For k& > 1, the subspace of (k-vertical) source forms is
QEHHH(E) = TR E) A Qo (B) .

Remark 1.3.30. The 1-vertical source forms of def[l.3.29] are also known as dynamical form or Euler-
Lagrange forms, while 2-vertical source forms are known as Helmholtz forms [?].

Source forms are a subspace of QP*1:*(E) forms, but can also be obtained by means of an idempotent
projection Z: QPTL*(E) — QPFL*(E), called the interior Euler operator.

Definition 1.3.31. The interior Euler map [And89) Sec.2.B] is the map
T: QPYLR(E) — QPFLR(E) (1.17)
defined on any [ through the equivalent differential operator representation

—_—

k
Z(B)[piur A~ Ay : EZ OB [ L ug ATy - Aug] - u (1.18)

—_

(where on the right we have the formal adjoint of def. [1.3.27] applied to the differential operator of def.
1.3.25)). The higher Fuler operator is the composite

Sy i=Tody: QPTIR(E) - QPELETL(E) (1.19)

Remark 1.3.32. For k = 0 then Jy is better known as the Fuler-Lagrange derivative and for k = 1 and
restricted to source forms, def. [I.3:29] then dy is better known as the Helmholtz operator.

Proposition 1.3.33. The higher Euler operator is a projection, T oZ = T. Its image is the space of source
forms, def. and its kernel is the space of horizontally exact forms

im(7) = Q5FR(R), (1.20)
ker(Z) = im(dg). (1.21)

171



In particular prop. [1.3.33] means that the Euler operators continue the complex of horizontal forms, def.
11.3.17] by source forms, def. [1.3.29

Definition 1.3.34. The FEuler-Lagrange complex of E is the chain complex
Oy (E) = 0 — Q% (B) 25 ok (B) 28 ... 21, gril gy vy gpetlt 2v, gpit2 v, (1.22)
built from the horizontal derivatives dg of def. and the Euler operators &y of def.
Proposition 1.3.35. For k > 1 we have an exact sequence
0 — QOF 21, quk du, i gnk T, ognk (1.23)
formed by the horizontal differentials di of def. and the interior Euler operator T of def. [1.3.31}

Hence the variational bicomplex in prop. [1.3.29 is augmented to double complex as follows, with exact rows

as shown below. The dashed morphisms indicate how the Euler-Lagrange complex (def. |1.8.34)) sits in this
bicomplex.

00 (B) —2 QL (B) —2+ 02(B) s ... 21, b (B) —2 pt(B)
dv dy dy dy dy ~ \6‘/\
A
0 —— QVI(E) M ul(p) M g21(p) . 4 g (py 4 grita(g) L R
~ < b
dv dv dy dy v Y sy
A
00— 0%2(E) _du QL2(E) _du_ 022(E) _du__dm r2(E) dy QP2 () z jﬂgﬂ’l(E) 0
dy dy dv dy dy 5y

(For k = 0 we instead have theorem [1.3.38| below.)

Proposition 1.3.36. The definition of the variational bicomplex, prop. and of the Euler-Lagrange
complezx, prop. of a jet bundle is contravariantly functorial in differential operators mapping via their
prolongation, def. [[.3.11}, between jet bundles.

For E,F,F' € SmoothMfd s, and D : E — F, D' : F — F’ differential operators, then:

(i) [And89, Prop.1.6] The prolongation p®D: J®E — J®F of def. |1.3.11| preserves both the horizontal
and vertical forms (Definitions|1.3.17 and [1.3.20, Proposition (1.3.21

(D) Q3 (F) € Q4 (E) and (5D)*Q}(F) € Q(E). (1.24)

(ii) [And89, Thm.3.15] The pullback along the prolongation p®D: J*E — J*F (def.|1.3.11) is a cochain
map for the variational bicomplex (Prop. , respecting both degrees and both differentials,

(p=D)*: (A(F),dg,dy) — (Q"°(E),dy, dv). (1.25)

(iii) Considering the differential operators D and D', the composition of the pullbacks along prolongations
is equal to the pullback along the composition of the prolongations, which is also equal to the pullback
along the prolongation of the composition of the differential operators,

(p®D)* o (p®D')* = (D' 0 p™D)* = (D' o D)". (1.26)
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(iv) The interior Euler projected pullback along the prolongation pOOD maps source forms into source forms

(def. [L3.29),
Zo (p™D)*QLTF(F) C QLR (R). (1.27)

(v) [And89, Thm.3.21] The map between the Euler-Lagrange complexes
Ly (F) — Qpr, (E) (1.28)

defined by the pullback (p>D)* on the horizontal forms Q*°(—=) and by the interior Euler projected
pullback T o (p>°D)* on source forms Qg+1’°(—) is a cochain map, respecting all the gradings and
differentials.

(vi) The composition of the interior Euler projected pullbacks along the prolongations of the differential
operators D and D’ is equal to the interior Euler projected pullback along the composition of the
differential operators,

Zo (pOOD)* oZo (p‘X’D/)* =To (poolﬂ_/D). (1.29)

Proof. [Sketch of proof] Statement (i) is a fundamental property of horizontal and vertical forms. For
horizontal forms, it follows straight from the definitions. For vertical forms, the simplest proof follows from
an elementary calculation in local coordinates, which can be found in the cited reference.

Essentially, all other statements follow from (i) and basic properties of pullbacks of forms and of differen-
tial operators. For (ii), it suffices to combine with (i) the known property that pullbacks commute with the
de Rham differential. For (iii), it suffices to recall the composition property of pullbacks and of prolongations
of differential operators (Proposition [[.3.9). For (iv), it suffices to combine (ii) with the fact that source
forms are defined as the image of Z. For (v), the horizontal part of EL® is already taken care of by (ii).
Also, since source forms can be thought of as canonical representatives of equivalence classes modulo dg,
which by (ii) are preserved by the pullback, the rest of EL® is also covered. The same argument based on
equivalence classes also covers (vi).

Applying the desired statements to 1-parameter families of differential operators, we can obtain obvious
corresponding infinitesimal versions, applicable to vector fields that preserve vertical forms. However, since
some of these vector fields do not come from linearizing such 1-parameter families of differential operators,
they could also be proven directly by in infinitesimal form, as for example in [And89, Prop.3.17] and [And89l
Thm.3.21].

Remark 1.3.37. The statements in prop. [L.3.36/have obvious infinitesimal versions that apply to any vector
field from Xp(E) 4+ Xev(X) (Definition ?? and the remarks following it).

Theorem 1.3.38 (e.g. [And89l Thm.5.9]). For E a bundle over X, there is a chain map, given degreewise
by projection on horizontal forms and on vertical source forms, respectively from the Euler-Lagrange complex

of £, def. |1.3.34), to the de Rham complex of J*E:
Q4 (E) =% Q3 (JFE) 25 0y (B).
This is a quasi-isomorphism, i.e. it induces isomorphism on all cohomology groups:
H* (Qur(E)) ~ H* Qe (E)) (1.30)

Moreover, this chain map is a natural transformation with respect to the functoriality in prop. [1.3.30.

1.3.1.5 Equations of motion and Lagrangians

Definition 1.3.39. For w € QgH’I(E) a source form, def. |1.3.29] then the partial differential equation on
sections ¢ € I's(E) it induces is

vV  i%(P) t,w =0,
vEF(VE)] (9)" e

saying that for all vertical tangent vectors v, the pullback of the contracted form ¢,w along the jet prolon-

gation, def. of ¢ vanishes.
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Proposition 1.3.40. As an object of PDEy;, via theorem and remark|1.5.153. the differential equation
in def. is the equalizer of

1. the differential operator
01 E— ANPTIT*S xg VFE

that corresponds to w under the isomorphism of prop. |1.3.20];

2. the “0-morphism” R
0:E— ANPTIT*S xg V*E

which sends any point (o,e,j) € J®FE to the pair consisting of 0 € APTIT*Y and 0 € VXYE — (V*E),.
Proof. By direct comparison of def. [1.3.25| with def. [1.3.39

Remark 1.3.41. Prop. suggests that the differential equation induced by the source form w should
be thought of the kernel or fiber of @. However, a kernel or fiber of D would be the pullback of a point
inclusion into its codomain, and preferably of the zero point in an object with abelian group structure. But
this is not the case here. However, when below in section [6.5.11] we broaden the perspective from PDEy, to
the sheaf topos over it, then source forms w are given equivalently by maps into an abelian “moduli space”
Qgﬂ’l, and then indeed the differential equation in question turns out to be precisely the kernel of these
representing maps. This is the content of prop. below.

Definition 1.3.42. Given a (p + 1)-dimensional smooth manifold ¥ and a field bundle E — X, then

1. a globally defined local Lagrangian is a horizontal (p 4+ 1)-form
L e QYFY(E)

according to def. [I.3.17}
2. the Euler-Lagrange form of L is its image under the Euler operator, def.

EL:=d6yL e Q5 Y(E),

3. the Euler-Lagrage equation £ of L is the differential equation induced by EL via prop.
(The prequantum-analog of this definition we give in def. [6.5.101| below.)

Remark 1.3.43. Unwinding the definitions, the concise concepts in def. reproduce more common
expression found in the literature as follows.

1. The vertical derivative, def. [1.3.20] of the Lagrangian form L, splits uniquely into the sum of a source
form EL, def. [[.3:29] and a horizontally exact form

dyL =EL —dgf.
The source form is indeed dyL = EL, by prop. [1.3.33] This decomposition is known as the first

variation formulae in the geometric literature on the calculus of variations.

In components, EL is obtained from dy L by a formal integration by parts, def. [1.3.27] that removes
all the vertical differentials of jet coordinates involving derivatives. The boundary term picked up in
this operation is dg 6. This is the classical recipe for obtaining Euler-Lagrange equations.

Notice that EL is unaffected by a change to the Lagrangian of the form L — L+d gy K, for any horizontal
p-form K (though 0 is affected).
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2. The submanifold inclusion
E— JE
that characterizes the Euler-Lagrange equation in def. [1.3.42| via remark [1.3.13| (notationally suppress-
ing the underlying bundle functor U) is also called the dynamical shell or just shell for short.

There exist situations when, even though the equations of motion are given by a globally defined source
form EL € Q?‘Ll (E), def. and for any contractible open U C J*° F there exists a local Lagrangian Ly,
according to def. such that éy Ly = EL|y, there may not exist any globally defined local Lagrangian
L € Q"Y(E) such that the same formula holds on all of J*E. Examples include the charged point particle
in an external non-exact electromagnetic field, also the usual 2-dimensional and higher-dimensional WZW
models [[gawedzki?]], and higher dimensional Chern-Simons models [[XXX]]. Such equations are locally but
not globally variational.

To decide whether a source form EL is locally variational, we use the local exactness of the Euler-Lagrange
complex (Thm. [1.3.38)):

Definition 1.3.44. A 1-vertical source form EL € Q’;H’l(E)7 def. [1.3.28] is called locally variational if
the identity dy EL = 0 (which is known as the Helmholtz condition). The source form EL is called globally
variational if there exists a local Lagrangian L € QP*1.9(E) such that EL = §y L.

1.3.1.6 Action functional and covariant phase space We review now the integration of the local
Lagrangian form data over submanifolds of ¥ of codimension k. This gives

e k=0 — The action functional, section [L.3.1.6.1}
e k=1 — The covariant phase space, section |1.3.1.6.2

Remark 1.3.45. In the classical theory this looks somewhat unsystematic, as in one case one is integrating
the Lagrangian form, in the other case one is fiber integrating the form 6 appearing in its variational
derivative. That this actually does follow a unified pattern is revealed by the prequantum theory which we
turn to below in section [6.5.111

1.3.1.6.1 Action functional

Definition 1.3.46. Given a smooth bundle E over X, write 'y, (E) for its space of smooth sections regarded
as a diffeological space.

Then jet prolongation of sections (def. [5.3.79) followed by evaluation of sections gives a smooth function

evi® : 8 x Tn(E) "5 5 x T (JFE) =% JSE.

Notice that the space ¥ x I's(FE), being a Cartesian product, has a canonical bicomplex structure on its de

Rham complex, coming simply from the de Rham differential along ¥ and along I's;(E), separately.
Proposition 1.3.47 ([Zu87]). Pullback of differential forms along evj™

(evj™®): Q*(JXE) — Q* (X x T'n(E))
constitutes an inclusion of bicomplexes

(evi®) : Q% (E) = 2 (X x Tx(E)) = Q% (X x Ts(E))

loc

from the variational bicomplex, prop. into the canonical bicomplex on the Cartesian product,
The image of the inclusion is the called the bicomplex of local differential forms on 3 x T's(FE)
This implies that there is a well defined action functional associated with a horizontal (p + 1)-form:
Definition 1.3.48. For compact ¥ the action functional is the smooth function
(evi®)
fﬁ

Js

Sy(=) : QUPHE) x T'sy(E) * QPTLO(S x Ty(E)) x T'g(E) =5 QPFH(E) = R.
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1.3.1.6.2 Covariant phase space Given a local Lagrangian L € Q%H(E), a choice of § € QP'1(E)
from remark is called a choice of presymplectic potential current. Its vertical derivative

w:=dy0

is called the presymplectic current.
Given the a choice of compact p-dimensional submanifold ¥, < X, the diffeological space I's (E)
equipped with the differential form 2-form

/E ()" (w) € 93(Ts, (E))

is the presymplectic off-shell covariant phase space. Its restriction to the shell is the on-shell presymplectic
covariant phase space. A good source is [Zu87].

The quotient of this by the kernel of w is the reduced symlectic covariant phase space.

Generally fzp J°(—)*0 won’t pass to this quotient as a globally defined form, but only as a connection
on a principal bundle. This is what we get to in section

1.3.1.7 Symmetries and conserved currents

Definition 1.3.49 ([Marv86, 3.2]). Given £ € PDEy, corresponding under theorem to a J° coalgebra
given by a morphism in SmoothMfd s of the form e : & — JR°E, its vertical tangent bundle PDE is the
object VE € PDE, V& € PDEy, for coalgebra given by the image of e under the vertical tangent bundle
functor:

Ve: VE —=VIFE = JTVE.

An infinitesimal symmetry v on & is a section

in PDEy, of the canonical projection morphism.

Definition 1.3.50. Given a globally defined local Lagrangian L € Q%'H(E), def. |1.3.42| then an infinitesimal
variational symmetry is an infinitesimal symmetry v of F, def. [1.3.49] hence just a vertical vector field on
the bundle E with its jet extension j*v, such that there is A, € QF, (E) with

L,L=dgA,.

Definition 1.3.51. Given a globally defined local Lagrangian L € QIF’?'I(E)7 def. |1.3.42} then an on-shell
consered current for its dynamics is a horizontal p-form

J € Q5 (E)

ker(EL(L
such that it is horizontally closed when restricted to the shell £ ((—>( ) E:

(dgJ)|e = 0.

Proposition 1.3.52 (Noether’s first variational theorem). Given a variational symmetry as in def. [1.3.50
then
Jy = 1,0 — A, €QL(E)

with 0 from remark[1.3.43, is an on-shell conserved current, def. [1.5.51}, called a Noether current for v.
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Proof. By Cartan’s formula for Lie derivatives on J*E
LyL = 1,dL + di, L,
~—~—
=0

where the second summand vanishes due to v being vertical and L being horizontal. By remark the
first term is
L,L=1,EL+dget,0,

where we used that the vertical contraction ¢, anti-commutes with the horizontal differential dg. In summary
this gives
dH(Lve — Av) = LvEL.

The claim follows since El|g = 0 by the very definition of &.

1.3.2 Hamilton-Jacobi-Lagrange mechanics via prequantized Lagrangian correspondences

Above in section we saw how the covariant phase space arises from local Lagrangians. We now
show how classical phase space mechanics — Hamiltonian mechanics, Hamilton-Jacobi theory, see e.g. [Ar89]
— naturally arises from and is accurately captured by “pre-quantized Lagrangian correspondences”. Since
field theory is a refinement of classical mechanics, this serves also as a blueprint for the discussion of De
Donder-Weyl-style classical field theory by higher correspondences below in and more generally for the
discussion of local prequantum field theory in [FRST3al [Nuil3, [Sc13b].

The reader unfamiliar with classical mechanics may take the following to be a brief introduction to and
indeed a systematic derivation of the central concepts of classical mechanics from the notion of correspon-
dences in slice toposes. Conversely, the reader familiar with classical mechanics may take the translation
of classical mechanics into correspondences in slice toposes as the motivating example for the formalization
of prequantum field theory in [ScI3b]. The translation is summarized as a diagramatic dictionary below in

L3211

The following sections all follow, in their titles, the pattern
Physical concept and mathematical formalization

and each first recalls a naive physical concept, then motivates its mathematical formalization, then discusses
this formalization and how it reflects back on the understanding of the physics.

° — Phase spaces and symplectic manifolds;

° — Coordinate systems and the topos of smooth spaces;

e [1.3:2.3 - Coordinate transformations and symplectomorphisms;

e [1.3:2.4] - Trajectories and Lagrangian correspondences;

° — Observables, symmetries, and the Poisson bracket Lie algebra;

. — Hamiltonian (time evolution) correspondence and Hamiltonian correspondence;

° — Noether symmetries and equivariant structure;

e [1.3.2.8 - Gauge symmetry, smooth groupoids and higher toposes;

° — The kinetic action, prequantization and differential cohomology;

e [1.3:2.10] - The classical action, the Legendre transform and Hamiltonian flows;

e [1.3.2.11]— The classical action functional pre-quantizes Lagrangian correspondences;
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e [1.3.2.12] - Quantization, the Heisenberg group and slice automorphism groups;
e |1.3.2.13|— Integrable systems, moment maps, and maps into the Poisson bracket;
e [1.3.2.14]— Classical anomalies and projective symplectic reduction;

Historical comment. Much of the discussion here is induced by just the notion of pre-quantized Lagrangian
correspondences. The notion of plain Lagrangian correspondences (not pre-quantized) has been observed
already in the early 1970s to usefully capture central aspects of Fourier transformation theory [H671] and
of classical mechanics [WeTl], notably to unify the notion of Lagrangian subspaces of phase spaces with
that of “canonical transformations”, hence symplectomorphisms, between them. This observation has since
been particularly advertized by Weinstein (e.g [We83]), who proposed that some kind of symplectic category
of symplectic manifolds with Lagrangian correspondences between them should be a good domain for a
formalization of quantization along the lines of geometric quantization. Several authors have since discussed
aspects of this idea. A recent review in the context of field theory is in [CMR12b].

But geometric quantization proper proceeds not from plain symplectic manifolds but from a lift of their
symplectic form to a cocycle in differential cohomology, called a pre-quantization of the symplectic manifold.
Therefore it is to be expected that some notion of pre-quantized Lagrangian correspondences, which put
into correspondence these prequantum bundles and not just their underlying symplectic manifolds, is a more
natural domain for geometric quantization, hence a more accurate formalization of pre-quantum geometry.

There is an evident such notion of prequantization of Lagrangian correspondences, and this is what we
introduce and discuss in the following. While evident, it seems that it has previously found little attention in
the literature, certainly not attention comparable to the fame enjoyed by Lagrangian correspondences. But
it should. As we show now, classical mechanics globally done right is effectively identified with the study of
prequantized Lagrangian correspondences.

1.3.2.1 Phase spaces and symplectic manifolds Given a physical system, one says that its phase
space is the space of its possible (“classical”) histories or trajectories. Newton’s second law of mechanics
says that trajectories of physical systems are (typically) determined by differential equations of second order,
and therefore these spaces of trajectories are (typically) equivalent to initial value data of Oth and of 1st
derivatives. In physics this data (or rather its linear dual) is referred to as the canonical coordinates and
the canonical momenta, respectively, traditionally denoted by the symbols “¢” and “p”. Being coordinates,
these are actually far from being canonical in the mathematical sense; all that has invariant meaning is,
locally, the surface element dp A dg spanned by a change of coordinates and momenta.

Made precise, this says that a physical phase space is a sufficiently smooth manifold X which is equipped
with a closed and non-degenerate differential 2-form w € QEI(X ), hence that phase spaces are symplectic
manifolds (X,w).

Example 1.3.53. The simplest nontrivial example is the phase space R? ~ T*R of a single particle prop-
agating on the real line. The standard coordinates on the plane are traditionally written ¢,p : R? — R
and the symplectic form is the canonical volume form dg A dp.

This is a special case of the following general and fundamental definition of covariant phase spaces (section
1.3.1.6.2)) (whose history is long and convoluted, two original references being [Zu87, [CrWig7], see [Kh14]

for a review).

Example 1.3.54 (covariant phase space). Let F' be a smooth manifold — to be called the field fiber — and
write [X1, F] for the manifold of smooth maps from the closed interval ¥; := [0,1] < R into F' (an infinite-
dimensional Fréchet manifold). We think of F' as a space of spatial field configurations and of [31, F] as the
space of trajectories or histories of spatial field configurations. Specifically, we may think of [Xq, F] as the
space of trajectories of a particle propagating in a space(-time) F'.
A smooth function
L : 2, F] — QY(%)
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to the space of differential 1-forms on ¥ is called a local Lagrangian of fields in F if for all ¢ € ¥ the
assignment vy — L. (t) is a smooth function of y(t),4(t),¥(t),--- (hence of the value of a curve v : ¥; — F
at t and of the values of all its derivatives at t). One traditionally writes

L W'_)L(’ya’%’%)/\dt
to indicate this. In cases of interest typically only first derivatives appear
L :~vy—= Ly, y)Adt

and we concentrate on this case now for notational simplicity. Given such a local Lagrangian, the induced local
action functional S : [X1, F] — R is the smooth function on trajectory space which is given by integrating
the local Lagrangian over the interval:

s= [ L:m, 5o LR,
3

The wvariational derivative of the local Lagrangian is the smooth differential 2-form
SL € QYH([81, F] x Xy)

on the product of trajectory space and parameter space, which is given by the expression

oL oL d
0L, = — ANdt A — Adt A =6
= oy Tt '

oL 0 0L d (OL
(L% atnoy+ L ([ nsy)ar
(67 0755#) " ”*dt(awA ”)
—_—— —_——
=:EL, =:0

One says that EL, = 0 (for all ¢ € I) is the Euler-Lagrange equation of motion induced by the local
Lagrangian L, and that the 0-locus

X :={y€ [, F]||EL, =0} = [¥¢, F]
(also called the “shell”) equipped with the 2-form
w =486
is the unreduced covariant phase space (X,w) induced by L.
See [Kh14] for a review of the concept of covariant phase space.
Example 1.3.55. Consider the case that F' = R and that the Lagrangian is of the form
L= Ly, — Lpot
= (342 - V(7)) Adt’
hence is a quadratic form on the first derivatives of the trajectory — called the kinetic energy density — plus
any smooth function V' of the trajectory position itself — called (minus) the potential energy density. Then
the corresponding phase space is equivalent to R? ~ T*R with the canonical coordinates identified with the
initial value data
q:=7(0), p=+
and with
0 =pAdg
and hence
w=dgANdp.
This is the phase space of example [1.3.53] Notice that the symplectic form here is a reflection entirely only
of the kinetic action, independent of the potential action. This we come back to below in [1.3.3.2
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Remark 1.3.56. The differential 2-form w on an unreduced covariant phase space in example is
closed, even exact, but in general far from non-degenerate, hence far from being symplectic. We may say
that (X,w) is a pre-symplectic manifold. This is because this differential form measures the reaction of the
Lagrangian/action functional to variations of the fields, but the action functional may be invariant under
some variation of the fields; one says that it has (gauge-)symmetries. To obtain a genuine symplectic form
one needs to quotient out the flow of these symmetries from unreduced covariant phase space to obtain the
reduced covariant phase space. This we turn to below in

Remark 1.3.57. In the description of the mechanics of just particles, the Lagrangian L above has no
further more fundamental description, it is just what it is. But in applications to n-dimensional field theory
the differential 1-forms L and 6 in example [[.3.54] arise themselves from integration of differential n-forms
over space (Cauchy surfaces), hence from transgression of higher-degree data in higher codimension. This
we describe in example below. Since transgression in general loses some information, one should
really work locally instead of integrating over Cauchy surfaces, hence work with the de-transgressed data
and develop classical field theory for that. This we turn to below in for classical field theory and then
more generally for local prequantum field theory in [ScI3b].

1.3.2.2 Coordinate systems and the topos of smooth spaces When dealing with spaces X that
are equipped with extra structure, such as a closed differential 2-form w € le (X), then it is useful to have a
universal moduli space for these structures, and this will be central for our developments here. So we need a
“smooth space” le of sorts, characterized by the property that there is a natural bijection between smooth
closed differential 2-forms w € Q%(X) and smooth maps X ——= Q2 . Of course such a universal moduli

spaces of closed 2-forms does not exist in the category of smooth manifolds. But it does exist canonically if
we slightly generalize the notion of “smooth space” suitably (the following is discussed in more detail below

n[[23).

Definition 1.3.58. A smooth space or smooth 0-type X is

1. an assignment to each n € N of a set, to be written X (R™) and to be called the set of smooth maps
from R™ into X,

2. an assignment to each ordinary smooth function f : R™ — R"2 between Cartesian spaces of a function
of sets X(f) : X(R™2) — X(R™), to be called the pullback of smooth functions into X along f;

such that
1. this assignment respects composition of smooth functions;

2. this assignment respect the covering of Cartesian spaces by open disks: for every good open cover
{R" ~ U; — R"};, the set X(R™) of smooth functions out of R into X is in natural bijection with
the set {(¢:); € [[; X(U;) | Vi; dilvinu, = ¢jlu.nu, } of tuples of smooth functions out of the patches
of the cover which agree on all intersections of two patches.

Remark 1.3.59. One may think of definition as a formalization of the common idea in physics that
we understand spaces by charting them with coordinate systems. A Cartesian space R" is nothing but
the standard n-dimensional coordinate system and one may think of the set X (R™) above as the set of all
possible ways (including all degenerate ways) of laying out this coordinate system in the would-be space X.
Moreover, a function f : R™ — R™2 is nothing but a coordinate transformation (possibly degenerate), and
hence the corresponding functions X (f) : X (R"2) — X (R™) describe how the probes of X by coordinate
systems change under coordinate transformations. Definition takes the idea that any space in physics
should be probe-able by coordinate systems in this way to the extreme, in that it defines a smooth spaces
as a collection of probes by coordinate systems equipped with information about all possible coordinate
transformations.
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The notion of smooth spaces is maybe more familiar with one little axiom added:

Definition 1.3.60. A smooth space X is called concrete if there exists a set Xgjsc € Set such that for each
n € N the set X (R") of smooth functions from R™ to X is a subset of the set of all functions from the
underlying set of R™ to the set Xgisc € Set.

This definition of concrete smooth spaces goes back to [Chen77] in various slight variants, see [St08] for
a comparative discussion. A comprehensive textbook account of differential geometry formulated with this
definition of smooth spaces (called “diffeological spaces” there) is in [Ig-Z13].

While the formulation of def. is designed to make transparent its geometric meaning, of course
equivalently but more abstractly this says the following:

Definition 1.3.61. Write CartSp for the category of Cartesian spaces with smooth functions between them,
and counsider it equipped with the coverage (Grothendieck pre-topology) of good open covers. A smooth space
or smooth O-type is a sheaf on this site. The topos of smooth 0-types is the sheaf category

Smooth0Type := PSh(CartSp)[{covering maps} ~'].
In the following we will abbreviate the notation to
H := Smooth0Type.
For the discussion of pre-symplectic manifolds, we need the following two examples.
Example 1.3.62. Every smooth manifold X € SmoothManifold becomes a smooth 0-type by the assignment
X :n— C®R" X).

(This defines in fact a concrete smooth space, def. |1.3.60} the underlying set Xgisc being just the underlying
set of points of the given manifold.) This construction extends to a full and faithful embedding of smooth

manifolds into smooth O-types
SmoothManifold—— H .

The other main example is in a sense at an opposite extreme in the space of all examples. It is given by
smooth moduli space of differential forms, see the discussion in |1.2.3]

Example 1.3.63. For p € N, write Q) for the smooth space given by the assignment
QY in o QLR

and by the evident pullback maps of differential forms. These smooth spaces 27, are not concrete, def.
1.3.60] In fact they are maximally non-concrete in that there is only a single smooth map * — Q) from

the point into them. Hence the underlying point set of the smooth space Q7 looks like a singleton, and yet

these smooth spaces are far from being the trivial smooth space: they admit many smooth maps X — Q7
from smooth manifolds of dimension at least n, as the following prop. shows.
This solves the moduli problem for closed smooth differential forms:

Proposition 1.3.64. For p € N and X € SmoothManifold — SmoothOType, there is a natural bijection

H(X, Q) ~ Q5 (X).

So a pre-symplectic manifold (X,w) is equivalently a map of smooth spaces of the form

w: X—>le.
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1.3.2.3 Canonical transformations and Symplectomorphisms An equivalence between two phase
spaces, hence a re-expression of the “canonical” coordinates and momenta, is called a canonical transforma-
tion in physics. Mathematically this is a symplectomorphism:

Definition 1.3.65. Given two (pre-)symplectic manifolds (X1, w;) and (X2, ws) a symplectomorphism
[ (Xpwi) — (Xz,w2)

is a diffeomorphism f : X; — X5 of the underlying smooth spaces, which respects the differential forms in
that
ffwe = wy -

The formulation above in [[.3:2.2] of pre-symplectic manifolds as maps into a moduli space of closed 2-
forms yields the following equivalent re-formulation of symplectomorphisms, which is very simple in itself,
but contains in it the seed of an important phenomenon:

Proposition 1.3.66. Given two symplectic manifolds (X1,w;) and (Xa,w2), a symplectomorphism ¢ :
(X1,w1) = (Xa,ws) is equivalently a commuting diagram of smooth spaces of the following form:

Q3
Situations like this are naturally interpreted in the slice topos:

Definition 1.3.67. For A € H any smooth space, the slice topos H/, is the category whose objects are
objects X € H equipped with maps X — A, and whose morphisms are commuting diagrams in H of the

form
X— =Y

N

Hence if we write SymplManifold for the category of smooth pre-symplectic manifolds and symplecto-
morphisms betwen them, then we have the following.

Proposition 1.3.68. The construction of prop. constitutes a full embedding
SymplManifold—— H /92,

of pre-symplectic manifolds with symplectomorphisms between them into the slice topos of smooth spaces over
the smooth moduli space of closed differential 2-forms.

1.3.2.4 Trajectories and Lagrangian correspondences A symplectomorphism clearly puts two sym-
plectic manifolds “in relation” to each other. It turns out to be useful to say this formally. Recall:

Definition 1.3.69. For X,Y € Set two sets, a relation R between elements of X and elements of YV is a

subset of the Cartesian product set
R—XxY.

More generally, for X, Y € H two objects of a topos (such as the topos of smooth spaces), then a relation R
between them is a subobject of their Cartesian product

R—XxY.
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In particular any function induces the relation “y is the image of z”:

Example 1.3.70. For f : X — Y a function, its induced relation is the relation which is exhibited by
graph of f
graph(f) == {(z,y) € X x Y | f(z) =y}

canonically regarded as a subobject
graph(f) =& X x Y.

Hence in the context of classical mechanics, in particular any symplectomorphism f : (Xj,w1) —

(X2,wsq) induces the relation
graph(f) — X1 x Xs.

Since we are going to think of f as a kind of“physical process”, it is useful to think of the smooth space
graph(f) here as the space of trajectories of that process. To make this clearer, notice that we may equiva-
lently rewrite every relation R < X x Y as a diagram of the following form:

R
’ i
/ \ - XxY
X Y y K
X Y
reflecting the fact that every element (x ~ y) € R defines an element x = px(z ~ y) € X and an element
y=pylx~y)eyY.

Then if we think of the space R = graph(f) of example[1.3.70| as being a space of trajectories starting in

X, and ending in X5, then we may read the relation as “there is a trajectory from an incoming configuration
x1 to an outgoing configuration xy”:

graph(f) :
incy wng
X1 X2

Notice here that the defining property of a relation as a subset/subobject translates into the property of
classical physics that there is at most one trajectory from some incoming configuration x; to some outgoing
trajectory xzo (for a fixed and small enough parameter time interval at least, we will formulate this precisely
in the next section when we genuinely consider Hamiltonian correspondences).

In a more general context one could consider there to be several such trajectories, and even a whole
smooth space of such trajectories between given incoming and outgoing configurations. Each such trajectory
would “relate” 1 to xs, but each in a possible different way. We can also say that each trajectory makes x
correspond to o in a different way, and that is the mathematical term usually used:

Definition 1.3.71. For XY € H two spaces, a correspondence between them is a diagram in H of the
form

Z

/N

X Y

with no further restrictions. Here Z is also called the correspondence space.
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Observe that the graph of a function f: X — Y is, while defined differently, in fact equivalent to just
the space X, the equivalence being induced by the map = — (z, f(z))

X =5 graph(f).

In fact the relation/correspondence which expresses “y is the image of f under 2”7 may just as well be

exhibited by the diagram
X .
N
X Y

It is clear that this correspondence with correspondence space X should be regarded as being equivalent to
the one with correspondence space graph(f). We may formalize this as follows

Definition 1.3.72. Given two correspondences X <—— 77 ——=Y and X =<—— Z5 ——=Y between

the same objects in H, then an equivalence between them is an equivalence Z; — Z, in H which fits
into a commuting diagram of the form

Al

AN
NS

Zy

Example 1.3.73. Given an function f: X — Y we have the commuting diagram

graph(f)
exhibiting an equivalence of the correspondence at the top with that at the bottom.

Correspondences between X any Y with such equivalences between them form a groupoid. Hence we
write

Corr (H) (X,Y) € Grpd.

Moreover, if we think of correspondences as modelling spaces of trajectories, then it is clear that their should
be a notion of composition:

Y, Y Yiox, Y5
X; X5 X3 X1 X3

Heuristically, the composite space of trajectories Y7 0x, Y2 should consist precisely of those pairs of trajectories
(f,g9) € Y1 x Y3 such that the endpoint of f is the starting point of g. The space with this property is
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precisely the fiber product of Y7 with Y3 over X5, denoted Y7 X Y3 (also called the pullback of Yo — X5
X2

along Y1 — XQZ

Yl OX2 YQ / \
/ \ = A Zo
X1 X3

Hence given a topos H, correspondences between its objects form a category which composition the fiber

product operation, where however the collection of morphisms between any two objects is not just a set, but

is a groupoid (the groupoid of correspondences between two given objects and equivalences between them).
One says that correspondences form a (2, 1)-category

Corr(H) € (2,1)Cat.

One reason for formalizing this notion of correspondences so much in the present context that it is useful
now to apply it not just to the ambient topos H of smooth spaces, but also to its slice topos H /q2, over the
universal moduli space of closed differential 2-forms.

To see how this is useful in the present context, notice the following

Proposition 1.3.74. Let ¢ : (X1,w1) — (Xao,w2) be a symplectomorphism. Write
(i1,12) : graph(¢) = X1 x X

for the graph of the underlying diffeomorphsm. This fits into a commuting diagram in H of the form

graph(¢)

T
\/2

Conversely, a smooth function ¢ : X1 — Xo is a symplectomorphism precisely if its graph makes the above
diagram commute.

AN

Traditionally this is formalized as follows.

Definition 1.3.75. Given a symplectic manifold (X,w), a submanifold L — X is called a Lagrangian
submanifold if w|r, = 0 and if L has dimension dim(L) = dim(X)/2.

Definition 1.3.76. For (X;,w) and (X3, ws) two symplectic manifolds, a correspondence X3 LA Y N X5
of the underlying manifolds is a Lagrangian correspondence if the map Y — X; x X5 exhibits a Lagrangian
submanifold of the symplectic manifold given by (X; x Xs, pjws — piwi).

Given two Lagrangian correspondence which intersect transversally over one adjacent leg, then their
composition is the correspondence given by the intersection.

But comparison with def. [1.3.67]shows that Lagrangian correspondences are in fact plain correspondences,
just not in smooth spaces, but in the slice H /2, of all smooth spaces over the universal smooth moduli space
of closed differential 2-forms:
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Proposition 1.3.77. Under the identification of prop. the construction of the diagrams in prop.
1.3.7)] constitutes an injection of Lagrangian correspondence between (Xi,w1) and (Xa,ws) into the Hom-

space Corr (H/Qzl ((X1,w1), (X2,wa)). Moreover, composition of Lagrangian correspondence, when defined,

coincides under this identification with the composition of the respective correspondences.

Remark 1.3.78. The composition of correspondences in the slice topos is always defined. It may just happen
the composite is given by a correspondence space which is a smooth space but not a smooth manifold. Or
better, one may replace in the entire discussion the topos of smooth spaces with a topos of “derived” smooth
spaces, modeled not on Cartesian spaces but on Cartesian dg-manifolds. This will then automatically make
composition of Lagrangian correspondences take care of “transversal perturbations”. Here we will not further
dwell on this possibility. In fact, the formulation of Lagrangian correspondences and later of prequantum
field theory by correspondences in toposes implies a great freedom in the choice of type of geometry in which
set up everything. (The bare minimum condition on the topos H which we need to require is that it be

differentially cohesive, .

It is also useful to make the following phenomenon explicit, which is the first incarnation of a recurring
theme in the following discussions.

Proposition 1.3.79. The category Corr(H/Qzl) 18 naturally a symmetric monoidal category, where the
tensor product is given by

(Xl,wl) X (XQ,(UQ) = (Xl X X27wl —|—CLJ2) .
The tensor unit is (x,0). With respect to this tensor product, every object is dualizable, with dual object given

by
(X,w)' = (X, —w).

Remark 1.3.80. Duality induces natural equivalences of the form
Corr (H/Qa) (X1,w1), (Xa,ws),) = Corr (ngl) ((%,0), (X1 x Xa,ws — w1),) -

Under this equivalence an isotropic (Lagrangian) correspondences which in H is given by a diagram as in
prop. maps to the diagram of the form

graph(¢)

* / X1><X2

2
ch

This makes the condition that the pullback of the difference wy — wy vanishes on the correspondence space
more manifest. It is also the blueprint of a phenomenon that is important in the generalization to field
theory in the sections to follow, where trajectories map to boundary conditions, and vice versa.

1.3.2.5 Observables, symmetries and the Poisson bracket Lie algebra Given a phase space (X, w)
of some physical system, then a function O : X — R is an assignment of a value to every possible state
(phase of motion) of that system. For instance it might assign to every phase of motion its position (measured
in some units with respect to some reference frame), or its momentum, or its energy. The premise of classical
physics is that all of these quantitites may in principle be observed in experiment, and therefore functions
on phase space are traditionally called classical observables. Often this is abbreviated to just observables if
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the context is understood (the notion of observable in quantum mechanics and quantum field theory is more
subtle, for a formalization of quantum observables in terms of correspondences in cohesive homotopy types
see [Nuil3]).

While this is the immediate physics heuristics about what functions on phase space are are, it turns out
that a central characteristic of mechanics and of field theory is an intimiate relation between the observables
of a mechanical system and its infinitesimal symmetry transformations: an infinitesimal symmetry transfor-
mation of a phase space characterizes that observable of the system which is invariant under the symmetry
transformation. Mathematically this relation is captured by a the structure of a Lie algebra on the vector
space of all observables after relating them them to their Hamiltonian vector fields.

Definition 1.3.81. Given a symplectic manifold (X,w) and a function H : X — R, its Hamiltonian vector
field is the unique v € T'(T'X) which satisfies Hamilton’s equation of motion

dH = ,w.

Example 1.3.82. For (X,w) = (R?,dg A dp) the 2-dimensional phase space form example [1.3.53] and for
t— (q(t), p(t)) € X acurve, it is a Hamiltonian flow line if its tangent vectors (G(t), p(t)) € T(g(t),p(t)R? ~ R?
satisfy Hamilton’s equations in the classical form:

. OH . o0H
§= .

Proposition 1.3.83. Given a symplectic manifold (X,w), every Hamiltonian vector field v is an infinitesi-
mal symmetry of (X,w) — an infinitesimal symplectomorphism — in that the Lie derivative of the symplectic
form along v vanishes

L,w=0.

Proof. Using Cartan’s formula for the Lie derivative
L,y=dot,+1,0d

and the defining condition that the symplectic form is closed and that there is a function H with dH = ,w,
one finds that the Lie derivative of w along v is given by

Low = diyw + t,dw = d2H = 0.

Since infinitesimal symmetries should form a Lie algebra, this motivates the following definition.

Definition 1.3.84 (Poisson bracket for symplectic manifolds). Let (X,w) be a symplectic manifold. Given
two functions f, g € C°°(X) with Hamiltonian vector fields v and w, def. [1.3.81} respectively, their Poisson
bracket is the function obtained by evaluating the symplectic form on these two vector fields

{f,9} = twtow.

This operation
{—,-}:C(X)®C®(X) — C*(X)

is skew symmetric and satisfies the Jacobi identity. Therefore
pois(X,w) := (C*(X), {—-,—-})
is a Lie algebra (infinite dimensional in general), called the Poisson bracket Lie algebra of classical observables

of the symplectic manifold X.
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Remark 1.3.85. Below in[[.3.2.12] we indicate a general abstract characerization of the Poisson bracket Lie
algebra (which is discussed in moreo detail below in [5.2.17.5): it is the Lie algebra of “the automorphism
group of any prequantization of (X,w) in the higher slice topos over the moduli stack of circle-principal
connections” [FRS13a]. To state this we first need the notion of pre-quantization which we come to below
in In the notation introduced there we will discuss in that the Poisson bracket is given as

X

X ~
. . =
pois(X,w) = Lie (Aut /gy)..., (V)) = x < :
BU(1)

conn

where V denotes a pre-quantization of (X, w).

This general abstract construction makes sense also for pre-symplectic manifolds and shows that the
following slight generalization of the above traditonal definition is good and useful.

Definition 1.3.86 (Poisson bracket for pre-symplectic manifolds). For (X,w) a pre-symplectic manifold,
denote by pois(X,w) the Lie algebra whose underlying vector space is the space of pairs of Hamiltonians H
with a choice of Hamiltonian vector field v

{(v, H) eT(TX)® C*(X) | tow =dH} ,
and whose Lie bracket is given by

[(UhHl) ) (U27H2)] = ([U17U2]’ LU1/\U2W) :

Remark 1.3.87. On a smooth manifold X there is a bijection between smooth vector fields and derivations
of the algebra C°°(X) of smooth functions, given by identifying a vector field v with the operation v(—) of
differentiating functions along v. Under this identification the Hamiltonian vector field v corresponding to a
Hamiltonian H is identified with the derivation given by forming the Poisson bracket with H:

v(=)={H,-} : C°(X) — C>®(X).

In applications in physics, given a phase space (X,w) typically one smooth function H : X — R, inter-
preted as the energy observable, is singled out and called the Hamiltonian. Its corresponding Hamiltonian
vector field is then interpreted as giving the infinitesimal time evolution of the system, and this is where
Hamilton’s equations in def. originate.

Definition 1.3.88. Given a phase space with Hamiltonian ((X,w), H), then any other classical O € C*°(X),
it is called an infinitesimal symmetry of ((X,w), H) if the Hamiltonian vector field vp of O preserves not
just the symplectic form (as it automatically does by prop. [1.3.83] ) but also the given Hamiltonian, in that
lyodH = 0.

Proposition 1.3.89 (symplectic Noether theorem). If a Hamiltonian vector field vo is an infinitesimal
symmetry of a phase space (X,w) with time evolution H according to def. then the corresponding
Hamiltonian function O € C*(X) is a conserved quantity along the time evolution, in that

lyydO =0.

Conversely, if a function O € C*(X) is preserved by the time evolution of a Hamiltonian H in this way,
then its Hamiltonian vector field vo is an infinitesimal symmetry of (X,w), H).
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Proof. This is immediate from the definition [[.3.81}

by dO = Ly Lyow
= —lyolygW .

= Ly dH
O

Remark 1.3.90. The utter simplicity of the proof of prop. is to be taken as a sign of the power of
the symplectic formalism in the formalization of physics, not as a sign that the statement itself is shallow.
On the contrary, under a Legendre transform and passage from “Hamiltonian mechanics” to “Lagrangian
mechanics” that we come to below in the identification of symmetries with preserved observables
in prop. becomes the seminal first Noether theorem. See for instance [Buld] for a review of the
Lagrangian Noether theorem and its symplectic version in the context of classical mechanics. Below in
[1.3:3:3] we observe that the same holds true also in the full context of classical field theory, if only one refines
Hamiltonian mechanics to its localization by Hamilton-de Donder-Weyl field theory. The full n-plectic
Noether theorem (for all field theory dimensions n) is prop. below.

In the next section we pass from infinitesimal Hamiltonian flows to their finite version, the Hamiltonian
symplectomorphism.

1.3.2.6 Hamiltonian (time evolution) trajectories and Hamiltonian correspondences We have
seen so far transformations of phase space given by “canonical transformations”, hence symplectomorphisms.
Of central importance in physics are of course those transformations that are part of a smooth evolution
group, notably for time evolution. These are the “canonical transformations” coming from a generating
function, hence the symplectomorphisms which come from a Hamiltonian function (the energy function, for
time evolution), the Hamiltonian symplectomorphisms. Below in we see that this notion is implied
by prequantizing Lagrangian correspondences, but here it is good to recall the traditional definition.

Definition 1.3.91. The flow of a Hamiltonian vector field is called the corresponding Hamiltonian flow.
Notice that by prop. [1.3.83| we have
Proposition 1.3.92. Every Hamiltonian flow is a symplectomorphism.

Those symplectomorphisms arising this way are called the Hamiltonian symplectomorphisms. Notice that
the Hamiltonian symplectomorphism depends on the Hamiltonian only up to addition of a locally constant
function.

Using the Poisson bracket {—, —} induced by the symplectic form w, identifying the derivation {H, —} :
C®(X) — C°°(X) with the corresponding Hamiltonian vector field v by remark and the expo-
nent notation exp(t{H,—}) with the Hamiltonian flow for parameter “time” ¢ € R, we may write these
Hamiltonian symplectomorphisms as

exp(t{H,-}) : (X,w) — (X,w).
It then makes sense to say that

Definition 1.3.93. A Lagrangian correspondence, def. which is induced from a Hamiltonian sym-
plectomorphism is a Hamiltonian correspondences

graph exp (t {H, }

X
X X
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Remark 1.3.94. The smooth correspondence space of a Hamiltonian correspondence is naturally identified
with the space of classical trajectories

Fieldsl55* (1) = graph (exp(t) {1, )

in that

1. every point in the space corresponds uniquely to a trajectory of parameter time length ¢ characterized
as satisfying the equations of motion as given by Hamilton’s equations for H;

2. the two projection maps to X send a trajectory to its initial and to its final configuration, respectively.
group structure is

Remark 1.3.95. By construction, Hamiltonian flows form a 1-parameter Lie group. By prop. this
group structure is preserved by the composition of the induced Hamiltonian correspondences.

It is useful to highlight this formally as follows.

Definition 1.3.96. Write Bordlfiem for the category of 1-dimensional cobordisms equipped with Rieman-
nian structure (hence with a real, non-negative length which is additive under composition), regarded as a
symmetric monoidal category under disjoint union of cobordisms.

Then:

Proposition 1.3.97. The Hamiltonian correspondences induced by a Hamiltonian function H : X — R
are equivalently encoded in a smooth monoidal functor of the form

exp((—){H, —}) : Bord{"™ — Corr;(H/q:),
where on the right we use the monoidal structure on correspondence of prop. [1.3.79.

Below the general discussion of prequantum field theory, such monoidal functors from cobordisms to
correspondences of spaces of field configurations serve as the fundamental means of axiomatization. Whenever
one is faced with such a functor, it is of particular interest to consider its value on closed cobordisms. Here
in the 1-dimensional case this is the circle, and the value of such a functor on the circle would be called its
(pre-quantum) partition function.

Proposition 1.3.98. Given a phase space symplectic manifold (X,w) and a Hamiltonian H : X — R,
them the prequantum evolution functor of prop. [I.3.97 sends the circle of circumference t, regarded as a
cobordism from the empty 0-manifold to itself

VN

0 0

and equipped with the constant Riemannian metric of 1-volume t, to the correspondence

{z € X|exp(t{H, -})(z) = z}

T

* *

which is the smooth space of H-Hamiltonian trajectories of (time) length t that are closed, hence that come
back to their initial value, regarded canonically as a correspondence form the point to itself.
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Proof. We can decompose the circle of length ¢ as the compositon of

1. The coevaluation map on the point, regarded as a dualizable object Bordllncm;
2. the interval of length ¢;
3. the evaluation map on the point.

The monoidal functor accordingly takes this to the composition of correspondences of
1. the coevaluation map on X, regarded as a dualizable object in Corr(H);
2. the Hamiltonian correspondence induced by exp(t{ H, —});

3. the evaluation map on X.

As a diagram in H, this is the following:

graph(exp(t{H, —}))

/\/\f\

X x X X x X

By the definition of composition in Corr(H), the resulting composite correspondence space is the joint fiber
product in H over these maps. This is essentially verbatim the diagrammatic definition of the space of closed
trajectories of parameter length t. (Il

1.3.2.7 Noether symmetries and equivariant structure So far we have considered smooth spaces
equipped with differential forms, and correspondences between these. To find genuine classical mechanics
and in particular find the notion of prequantization, we need to bring the notion of gauge symmetry into the
picture. We introduce here symmetries in classical field theory following Noether’s seminal analysis and then
point out the crucial notion of equivariance of symplectic potentials necessary to give this global meaning.
Below in [1.3:2.8 we see how building the reduced phase space by taking the symmetries into account makes
the first little bit of “higher differential geometry” appear in classical field theory.

Definition 1.3.99. Given a local Lagrangian as in example [1.3.54] A symmetry of L is a vector field
v € I'(TPX) such that ¢,0L = 0. It is called a Hamiltonian symmetry if restricted to phase space v is a
Hamiltonian vector field, in that the contraction ¢,w is exact.

By definition of # and EL in example it follows that for v a symmetry, the 0-form
Jyp 1= 1,0
is closed with respect to the time differential
d;J, =0.
Definition 1.3.100. The function J, induced by a symmetry v is called the conserved Noether charge of v.

Example 1.3.101. For Y = R and L = 342dt the vector field v tangent to the flow v — y((—) + a) is a
symmetry. This is such that +,6y = 4. Hence the conserved quantity is E := .J, = 42, the energy of the
system. It is also a Hamiltonian symmetry.
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Let then G be the group of Hamiltonian symmetries acting on ({EL = 0},w = §0). Write g = Lie(G)
for the Lie algebra of the Lie group. Given v € g = Lie(G) identify it with the corresponding Hamiltonian
vector field. Then it follows that the Lie derivative of # is exact, hence that for every v one can find an h
such that

L,0=dh.

The choice of h here is a choice of identification that relates the phase space potential 6 to itself under a
different but equivalent perspective of what the phase space points are. Such choices of “gauge equivalences”
are necessary in order to give the (pre-)symplectic form on the unreduced phase space an physical meaning
in view of the symmetries of the system. Moreover, what is really necessary for this is a coherent choice of
such gauge equivalences also for the “global” or “large” gauge transformations that may not be reached by
exponentiating Lie algebra elements of the symmetry group G. Such a coherent choice of gauge equivalences
on 0 reflecting the symmetry of the physical system is mathematically called a G-equivariant structure.

Definition 1.3.102. Given a smooth space X equipped with the action p : X x G — X of a smooth group,
and given a differential 1-form 6 € Q!(X), and finally given a discrete subgroup I' < R, then a G-equivariant
structure on 6 regarded as a (R/I')-principal connection is

o for each g € G' an equivalence

ng: 0 ——p(g)*0

between 6 and the pullback of ¢ along the action of g, hence a smooth function 7, € C*(X,R/T") with
p(g)*0 — 0 = dn,

such that
1. the assignment g — 7, is smooth;

2. for all pairs (g1,92) € G X G there is an equality

Ng2Mgr = Mgagr -

Remark 1.3.103. Notice that the condition p(g)*0 — 6§ = dn, depends on 7, only modulo elements in
the discrete group I' < R, while the second condition 74,74, = 74,4, crucially depends on the actual
representatives in C*°(X,R/T"). For T' the trivial group there is no difference, but in general it is unlikely
that in this case the second condition may be satisfied. The second condition can in general only be satisfied
modulo some subgroup of R. Essentially the only such which yields a regular quotient is Z < R (or any
non-zero rescaling of this), in which case

R/Z ~U(1)

is the circle group. This is the origin of the central role of circle principal bundles in field theory (“prequantum

bundles”), to which we come below in [1.3.3.2

The point of G-equivariant structure is that it makes the (pre-)symplectic potential 8 “descend” to the
quotient of X by G (the “correct quotient”, in fact), which is the reduced phase space. To say precisely what
this means, we now introduce the concept of smooth groupoids in [1.3.2.8

Remark 1.3.104. This equivariance on local Lagrangian is one of the motivations for refining the discussion
here to local prequantum field theory in [ScI13b]: By remark for a genuine n-dimensional field theory,
the Lagrangian 1-form L above is the transgression of an n-form Lagrangian on a moduli space of fields.
In local prequantum field theory we impose an equivariant structure already on this de-transgressed n-form
Lagrangian such that under transgression it then induces equivariant structures in codimension 1, and hence
consistent phase spaces, in fact consistent prequantized phase spaces.
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1.3.2.8 Gauge theory, smooth groupoids and higher toposes As we mentioned in ?? gauge prin-
ciple is a deep principle of modern physics, which says that in general two configurations of a physical system
may be nominally different and still be identified by a gauge equivalence between them. In homotopy type
theory precisely this principle is what is captured by intensional identity types (see remark . One class
of example of such gauge equivalences in physics are the Noether symmetries induced by local Lagrangians
which we considered above in Gauge equivalences can be composed (and associatively so) and can be
inverted. All physical statements respect this gauge equivalence, but it is wrong to identify gauge equivalent
field configurations and pass to their sets of equivalence classes, as some properties depend on non-trivial
auto-gauge transformations.

In mathematical terms what this says is precisely that field configurations and gauge transformations
between them form what is called a groupoid or homotopy 1-type.

Definition 1.3.105. A groupoid G, is a set Gy — to be called its set of of objects or configurations — and a
set G1 =< (a1 N xg) |x1, 22 € QO} — to be called the set of morphisms or gauge transformations — between

these objects, together with a partial composition operation of morphisms over common objects

feofi: $1i>$2i>$3

which is associative, and for which every object has a unit (the identity morphism id, : z — z) and such
that every morphism has an inverse.

The two extreme examples are:

Example 1.3.106. For X any set, it becomes a groupoid by considering for each object an identity morphism
and no other morphisms.

Example 1.3.107. For GG a group, there is a groupoid which we denote BG defined to have a single object
*, one morphism from that object to itself for each element of the group

(BG)lz{*iwqgeG}

and where composition is given by the product operation in G.
The combination of these two examples which is of central interest here is the following.

Example 1.3.108. For X a set and G a group with an action p : X x G — X on X, the corresponding
action groupoid or homotopy quotient, denoted X //G, is the groupoid whose objects are the elements of X,
and whose morphisms are of the form

g
x1 — (22 = p(g)(21))
with composition given by the composition in G.

Remark 1.3.109. The homotopy quotient is a refinement of the actual quotient X/G in which those
elements of X which are related by the G-action are actually identified. In contrast to that, the homotopy
quotient makes element which are related by the action of the “gauge” group G be equivalent without being
equal. Moreover it remember how two elements are equivalent, hence which “gauge transformation” relates
them. This is most striking in example which is in fact the special case of the homotopy quotient
construction for the case that G acts on a single element:

BG ~ x//G.
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Therefore given an unreduced phase space X as in [1.3.2.1] and equipped with an action of a gauge
symmetry group as in then the corresponding reduced phase space should be the homotopy quotient
X//G, hence the space of fields with gauge equivalences between them. But crucially for physics, this is not
just a discrete set of points with a discrete set of morphisms between them, as in the above definition, but in
addition to the information about field configurations and gauge equivalences between them carries a smooth
structure.

We therefore need a definition of smooth groupoids, hence of homotopy types which carry differential geo-
metric structure. Luckily, the definition in of smooth spaces immediately generalizes to an analogous
definition of smooth groupoids.

First we need the following obvious notion.

Definition 1.3.110. Given two groupoids G, and K,, a homomorphism F, : G, — K, between them
(called a functor) is a function Fy : G; — K; between the sets of morphisms such that identity-morphisms
are sent to identity morphisms and such that composition is respected.

Groupoids themselves are subject to a notion of gauge equivalence:

Definition 1.3.111. A functor F, is called an equivalence of groupoids if its image hits every equivalence
class of objects in K4 and if for all z1, x5 € Gy the map F} restricts to a bijection between the morphisms
from x1 to x5 in G, and the morphisms between Fy(x1) and Fy(zs) in KC,.

With that notion we can express coordinate transformations between smooth groupoids and arrive at the
following generalization of def. [I.3.58]

Definition 1.3.112. A smooth groupoid or smooth homotopy 1-type X, is

1. an assignment to each n € N of a groupoid, to be written X,(R™) and to be called the groupoid of
smooth maps from R™ into X and gauge transformations between these,

2. an assignment to each ordinary smooth function f : R™* — R™2 between Cartesian spaces of a functor
of groupoids X (f) : X¢(R"2) — X¢(R™), to be called the pullback of smooth functions into X along

[
such that both the components Xy and X; form a smooth space according to def[1.3.58

With this definition in hand we can now form the reduced phase space in a way that reflects both its
smooth structure as well as its gauge-theoretic structure:

Example 1.3.113. Given a smooth space X and a smooth group G with a smooth action p: X x G — X,
then the smooth homotopy quotient of this action is the smooth groupoid, def. which on each
coordinate chart is the homotopy quotient, def. [6.4.45] of the coordinates of G acting on the coordinates of
X, hence the assignment

X//G:R" = (X (R")) // (G (R™)) .

Remark 1.3.114. In most of the physics literature only the infinitesimal approximation to the smooth
homotopy quotient X//G is considered, that however is famous: it is the BRST complezx of gauge theory
[HeTe92]. More in detail, to any Lie group G is associated a Lie algebra g, which is its “infinitesiamal
approximation” in that it consists of the first order neightbourhood of the neutral element in G, equipped
with the first linearized group structure, incarnated as the Lie bracket. In direct analogy to this, a smooth
grouppoid such as X//G has an infinitesimal approximation given by a Lie algebroid, a vector bundle on X
whose fibers form the first order neighbourhood of the smooth space of morphisms at the identity morphisms.
Moreover, Lie algebroids can equivalently be encoded dually by the algebras of functions on these first order
neighbourhoods. These are differential graded-commutative algebras and the dgc-algebra associated this
way to the smooth groupoid X//G is what in the physics literature is known as the BRST complex.
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To correctly capture the interplay between the differential geometric structure and the homotopy theoretic
structure in this definition we have to in addition declare the following

Definition 1.3.115. A homomorphism f, : X — Y, of smooth groupoids is called a local equivalence if
it is a stalkwise equivalence of groupoids, hence if for each Cartesian space R™ and for each point xz € R™,
there is an open neighbourhood R"™ ~ U, — R"™ such that F, restricted to this open neighbourhood is an
equivalence of groupoids according to def.

Definition 1.3.116. The (2, 1)-topos of smooth groupoids is the homotopy theory obtained from the category
Sh(CartSp, Grpd) of smooth groupoids by universally turning the local equivalences into actual equivalences,

via theorem B.1.19

This refines the construction of the topos of smooth spaces form before, and hence we find it convenient
to use the same symbol for it:

H := Sh(CartSp, Grpd)[{local equivalences} !].

1.3.2.9 The kinetic action, pre-quantization and differential cohomology The refinement of
gauge transformations of differential 1-forms to coherent U(1)-valued functions which we have seen in the
construction of the reduced phase space above in [1.3.2.7] also appears in physics from another angle, which
is not explicitly gauge theoretic, but related to the global definition of the exponentiated action functional.

Given a pre-symplectic form w € Q% (X), by the Poincaré lemma there is a good cover {U; < X}; and
smooth 1-forms 6; € Q' (U;) such that df; = wy,. Physically such a 1-form is (up to a factor of 2) a choice
of kinetic energy density called a kinetic Lagrangian Lyy:

0; = 2Lyin,; -

Example 1.3.117. Consider the phase space (R?, w = dgAdp) of example Since R? is a contractible
topological space we consider the trivial covering (R? covering itself) since this is already a good covering
in this case. Then all the {g;;} are trivial and the data of a prequantization consists simply of a choice of
1-form 6 € Q'(R?) such that

df =dgAdp.

A standard such choice is
0=—-pAdg.

Then given a trajectory v: [0,1] — X which satisfies Hamilton’s equation for a standard kinetic energy
term, then (pdq)(%) is this kinetic energy of the particle which traces out this trajectory.

Given a path v : [0,1] — X in phase space, its kinetic action Sk, is supposed to be the integral of Ly,
along this trajectory. In order to make sense of this in generality with the above locally defined kinetic
Lagrangians {6;};, there are to be transition functions g;; € C*°(U; N U;,R) such that

0jlu; — Oilu, = dgi; -
If on triple intersections these functions satisfy
9ij + 9jk = gir on U; NU; NUk
then there is a well defined action functional
Skin(y7) € R

obtained by dividing v into small pieces that each map to a single patch U;, integrating 6; along this piece,
and adding the contribution of g;; at the point where one switches from using 6; to using 6;.
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However, requiring this condition on triple overlaps as an equation between R-valued functions makes the
local patch structure trivial: if this holds then one can find a single § € Q!'(X) and functions h; € C*(U;, R)
such that superficially pleasant effect that the action is 6; = 6|y, + dh;. This has the simply the integral
against this globally defined 1-form, Sy, = f[O,l] v* Lyin, but it also means that the pre-symplectic form w is
exact, which is not the case in many important examples.

On the other hand, what really matters in physics is not the action functional Sy;, € R itself, but the
exponentiated action

exp (%S) eR/(2mh)Z.

For this to be well defined, one only needs that the equation g;; + g;x = gir holds modulo addtion of an
integral multiple of h = 27h, which is Planck’s constant, def. [6.4.156] If this is the case, then one says that
the data ({6;}, {gi;}) defines equivalently

e a U(1)-principal connection;
e a degree-2 cocycle in ordinary differential cohomology

on X, with curvature the given symplectic 2-form w.

Such data is called a pre-quantization of the symplectic manifold (X,w). Since it is the exponentiated
action functional exp(%S ) that enters the quantization of the given mechanical system (for instance as the
integrand of a path integral), the prequantization of a symplectic manifold is indeed precisely the data
necessary before quantization.

Therefore, in the spirit of the above discussion of pre-symplectic structures, we would like to refine the
smooth moduli space of closed differential 2-forms to a moduli space of prequantized differential 2-forms.

Again this does naturally exist if only we allow for a good notion of “space”. An additional phenomenon
to be taken care of now is that while pre-symplectic forms are either equal or not, their pre-quantizations
can be different and yet be equivalent:

because there is still a remaining freedom to change this data without changing the exponentiated action
along a closed path: we say that a choice of functions h; € C*°(U;, R/(27h)Z) defines an equivalence between
({0:}.{gi;}) and ({6:},{3i;}) if 6; — 6; = dh; and Gij — gij = h; — hi.

This means that the space of prequantizations of (X,w) is similar to an orbifold: it has points which are
connected by gauge equivalences: there is a groupoid of pre-quantum structures on a manifold X. Otherwise
this space of prequantizations is similar to the spaces le of differential forms, in that for each smooth
manifold there is a collection of smooth such data and it may consistently be pullback back along smooth
functions of smooth manifolds.

As before for the pre-symplectic differential forms in it will be useful to find a moduli space
for such prequantum structures. This certainly cannot exist as a smooth manifold, but due to the gauge
transformations between prequantizations it can also not exist as a more general smooth space. However, it

does exist as a smooth groupoid, def. [1.3.116

Definition 1.3.118. For X = R" a Cartesian space, wrrite 2!(X) for the set of smooth differential 1-forms
on X and write C*°(X,U(1)) for the set of smooth circle-group valued function on X. There is an action

p:C™(X,U(1)) x Q'R") — QY(X,U(1))
of functions on 1-forms A by gauge transformation g, given by the formula
p(9)(A) :== A+ dlogg .

Hence if g = exp(ik) is given by the exponential of a smooth real valued function (which is always the case
on R™) then this is
p(9)(4) = A+dk.
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Definition 1.3.119. Write
BU(1)conn € H,

for the smooth groupoid, def. [1.3.112] which for Cartesian space R™ has as groupoid of coordinate charts
the homotopy quotient, def. of the smooth functions on the coordinate chart acting on the smooth
1-forms on the coordinate chart.

BU(D)conn : R™ = Q'R)//C>®(R™,U(1)).

Equivalently this is the smooth homotopy quotient, def. [1.3.113] of the smooth group U(1) € H acting on
the universal smooth moduli space Q' of smooth differential 1-forms:

BU(1)conn =~ Q//U(1).

We call this the universal moduli stack of prequantizations or universal moduli stack of U(1)-principal con-
nections.

Remark 1.3.120. This smooth groupoid BU(1)conn =~ $2'//U(1) is equivalently characterized by the fol-
lowing properties.

1. For X any smooth manifold, smooth functions
X ——=BU(1)conn

are equivalent to prequantum structures ({6;},{g;;}) on X,

2. a homotopy
T
X U BU(1)conn
\_/

between two such maps is equivalently a gauge transformation ({h;}) between these prequantizations.

Proposition 1.3.121. There is then in H a morphism
F: BU(1)copn — le

from this universal moduli stack of prequantizations back to the universal smooth moduli space of closed
differential 2-form. This is the universal curvature map in that for V: X — BU(1)conn @ prequantization
datum ({0;},{g:;}), the composite

F(_
Fy: X —Y>BU(1)com —> Q3

is the closed differential 2-form on X characterized by w|y, = d6;, for every patch U;. Again, this property

characterizes the map F(_y and may be taken as its definition.

Using this language of the (2, 1)-topos H of smooth groupoids, we may then formally capture the above
discussion of prequantization as follows:

Definition 1.3.122. Given a symplectic manifold (X,w), regarded by prop. |1.3.68 as an object (X —
2) e H g2 , then a prequantization of (X,w) is a lift V in the diagram

X - ¥Y>BU1)comn

Ny

2
ch
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in H, hence is a lift of (X,w) through the base change functor (see prop. for this terminology) or
dependent sum functor (see def. [2.1.3)

> H/Bu()ew. — Hjoz,
Feo

that goes from the slice over the universal moduli stack of prequantizations to the slice over the universal
smooth moduli space of closed differential 2-forms.

Moreover, in this language of geometric homotopy theory we then also find a conceptual re-statement of
the descent of the (pre-)symplectic potential to the reduced phase space, from [1.3.2.7

Proposition 1.3.123. Given a covariant phase space X with (pre-)symplectic potential 0 and gauge group
action p: G x X — X, a G-equivariant structure on 0, def. is equivalently an extension Vieq of 0
along the map to the smooth homotopy quotient X//G as a (R/T)-principal connection, hence a diagram in
H of the form

X —2 - BU1)com

-
7
b
< Vred
Ve

X//G

1.3.2.10 The classical action, the Legendre transform and Hamiltonian flows The reason to
consider Hamiltonian symplectomorphisms, prop. [1.3.92] instead of general symplectomorphisms, is really
because these give homomorphisms not just between plain symplectic manifolds, but between their prequan-

tizations, def. To these we turn now.

Consider a morphism

X

X @
“
BU(1)

conn

hence a morphism in the slice topos H/gy (1),,,,,.- This has been discussed in detail in [FRS13a].
One finds that infinitesimally such morphisms are given by a Hamiltonian and its Legendre transform.

Proposition 1.3.124. Consider the phase space (R?, w = dq A dp) of ezample equipped with its
canonical prequantization by 0 = pdq from example|1.3.117. Then for H: R? — R a Hamiltonian, and for
t € R a parameter ("time”), a lift of the Hamiltonian symplectomorphism exp(t{H,—}) from H to the slice
topos H/BU (1)on, 5 given by
X exp(t{H,-}) X
\Zf/p(isf,) / ’
0 0
BU(1)

conn

where
o S, : RZ — R is the action functional of the classical trajectories induced by H,
e which is the integral Sy = f(f Ldt of the Lagrangian L dt induced by H,

e which is the Legendre transform
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In particular, this induces a functor
exp(iS) : BordMem — H/Bu)en, -

Conversely, a symplectomorphism, being a morphism in H/Qzl is a Hamiltonian symplectomorphism precisely
if it admits such a lift to H;gy(1),.,., - R

This is a special case of the discussion in [FRS13a]. Proof. The canonical prequantization of (R?,dgAdp)
is the globally defined connection on a bundle—connection 1-form

0 :=pdq.
We have to check that on graph(exp(t{H,—})) we have the equation
p2 Adgz =p1 Adg; +dS.
Or rather, given the setup, it is more natural to change notation to
pe ANdgs =pAdg+dS.
Notice here that by the nature of graph(exp(t{H, —})) we can identify
graph(exp(t{H, —})) ~ R?

and under this identification

g = exp(t{H, —})q
and

pe = exp(t{H, —})p.

It is sufficient to check the claim infinitesimally. So let ¢t = € be an infinitesimal, hence such that € = 0.
Then the above is Hamilton’s equations and reads equivalently

n oOH
e = —€
q q op
and
oH
e =P — —¢
Pe=Dp g

Using this we compute
0. — 0 =p. Ndge —p ANdg

0 0
OH oOH OH
‘E(d(pap)‘apAdp‘andQ)

Remark 1.3.125. When one speaks of symplectomorphisms as “canonical transformations” (see e.g. [Ar89],
p. 206), then the function S in prop. [1.3.124]is also known as the “generating function of the canonical
transformation”, see [Ar89], chapter 48.
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Remark 1.3.126. Proposition says that the slice topos H /gy (1),,,, unifies classical mechanics in
its two incarnations as Hamiltonian mechanics and as Lagrangian mechanics. A morphism here is a diagram
in H of the form

X Y

N 7

BU(l)conn

and which may be regarded as having two components: the top horizontal 1-morphism as well as the
homotopy/2-morphism filling the slice. Given a smooth flow of these, the horizontal morphism is the flow
of a Hamiltonian vector field for some Hamiltonian function H, and the 2-morphism is a U(1)-gauge trans-
formation given (locally) by a U(1)-valued function which is the exponentiated action functional that is the
integral of the Lagrangian L which is the Legendre transform of H.

So in a sense the prequantization lift through the base change/dependent sum along the universal cur-
vature map

Y HBu()en — Hjoz,
o

is the Legendre transform which connects Hamiltonian mechanics with Lagrangian mechanics.

1.3.2.11 The classical action functional pre-quantizes Lagrangian correspondences We may
sum up these observations as follows.

Definition 1.3.127. Given a Lagrangian correspondence

graph(¢)

e
\/2

as in prop. a prequantization of it is a lift of this diagram in H to a diagram of the form

AN

graph(¢)

Xll// i2 Xs
\1 Vz/

~N
BU(]-)conn

/

w1 w2

Remark 1.3.128. This means that a prequantization of a Lagrangian correspondence is a prequantization
of the source and target symplectic manifolds by prequantum circle bundles as in def. together with
a choice of (gauge) equivalence between thes respective pullback of these two bundles to the correspondence
space. More abstractly, such a prequantization is a lift through the base change/dependent sum map along
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the universal curvature morphism

Corr Z : Corr (H/BU(I)conn) — Corr (H/le) .
Fo

From prop. and under the equivalence of example[I.3.73]it follows that smooth 1-parameter groups
of prequantized Lagrangian correspondences are equivalently Hamiltonian flows, and that the prequantizaton
of the underlying Hamiltonian correspondences is given by the classical action funtional.

In summary, the description of classical mechanics here identifies prequantized Lagrangian correspon-
dences schematically as follows:

graph (exp (t{H, —})) space of

initial trajectories Hamiltonian
/ vj]uy Xolition

/t incoming action outgoing
exp ;1 =exp( £ [, Ldt X . . .
configurations /functlonal configurations
\ / prequantum %Htum
bundle 2-group bundle
Jeonn of phases

This picture of classical mechanics as the theory of correspondences in higher slices topos is what allows
a seamless generalization to a local discussion of prequantum field theory in [Sc13b].

1.3.2.12 Quantization, the Heisenberg group, and slice automorphism groups While we do not
discussion genuine quantization here (in a way adapted to the perspective here this is discussed in [Nuil3])
it is worthwhile to notice that the perspective of classical mechanics by correspondences in slice toposes
seamlessly leads over to quantization by recognizing that the slice automorphism groups of the prequantized
phase spaces are nothing but the “quantomorphisms groups” containing the famous Heisenberg groups of
quantum operators. This has been developed for higher prequantum field theory in [FRS13a], see
below. Here we give an exposition, which re-amplifies some of the structures already found above.

Quantization of course was and is motivated by experiment, hence by observation of the observable
universe: it just so happens that quantum mechanics and quantum field theory correctly account for experi-
mental observations where classical mechanics and classical field theory gives no answer or incorrect answers
(see for instance [Di87]). A historically important example is the phenomenon called the ”ultraviolet catas-
trophe”, a paradox predicted by classical statistical mechanics which is mot observed in nature, and which
is corrected by quantum mechanics.

But one may also ask, independently of experimental input, if there are good formal mathematical
reasons and motivations to pass from classical mechanics to quantum mechanics. Could one have been led
to quantum mechanics by just pondering the mathematical formalism of classical mechanics? (Hence more
precisely: is there a natural “Synthetic quantum field theory” [Sc13d]).

The following spells out an argument to this effect.

So to briefly recall, a system of classical mechanics/prequantum field theory—prequantum mechanics
is a phase space, formalized as a symplectic manifold (X,w). A symplectic manifold is in particular a
Poisson manifold, which means that the algebra of functions on phase space X, hence the algebra of classical
observables, is canonically equipped with a compatible Lie bracket: the Poisson bracket. This Lie bracket is
what controls dynamics in classical mechanics. For instance if H € C°°(X) is the function on phase space
which is interpreted as assigning to each configuration of the system its energy — the Hamiltonian function
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— then the Poisson bracket with H yields the infinitesimal time evolution of the system: the differential
equation famous as Hamilton’s equations.

Something to take notice of here is the infinitesimal nature of the Poisson bracket. Generally, whenever
one has a Lie algebra g, then it is to be regarded as the infinitesimal approximation to a globally defined
object, the corresponding Lie group (or generally smooth group) G. One also says that G is a Lie integration
of g and that g is the Lie differentiation of G.

Therefore a natural question to ask is: Since the observables in classical mechanics form a Lie algebra
under Poisson bracket, what then is the corresponding Lie group?

The answer to this is of course "well known” in the literature, in the sense that there are relevant
monographs which state the answer. But, maybe surprisingly, the answer to this question is not (at time
of this writing) a widely advertized fact that has found its way into the basic educational textbooks. The
answer is that this Lie group which integrates the Poisson bracket is the ”quantomorphism group”, an object
that seamlessly leads to the quantum mechanics of the system.

Before we spell this out in more detail, we need a brief technical aside: of course Lie integration is not
quite unique. There may be different global Lie group objects with the same Lie algebra.

The simplest example of this is already one of central importance for the issue of quantization, namely,
the Lie integration of the abelian line Lie algebra R. This has essentially two different Lie groups associated
with it: the simply connected topological space—simply connected translation group, which is just R itself
again, equipped with its canonical additive abelian group structure, and the discrete space—discrete quotient
of this by the group of integers, which is the circle group

U(l) =R/Z.

Notice that it is the discrete and hence ” quantized” nature of the integers that makes the real line become
a circle here. This is not entirely a coincidence of terminology, but can be traced back to the heart of what
is ”quantized” about quantum mechanics.

Namely, one finds that the Poisson bracket Lie algebra poiss(X,w) of the classical observables on phase
space is (for X a connected topological space—connected manifold) a Lie algebra extension of the Lie algebra
ham(X) of Hamiltonian vector fields on X by the line Lie algebra:

R — poiss(X, w) — ham(X).

This means that under Lie integration the Poisson bracket turns into an central extension of the group
of Hamiltonian symplectomorphisms of (X, w). And either it is the fairly trivial non-compact extension by
R, or it is the interesting central extension by the circle group U(1). For this non-trivial Lie integration to
exist, (X,w) needs to satisfy a quantization condition which says that it admits a prequantum line bundle.
If so, then this U(1)-central extension of the group Ham(X,w) of Hamiltonian symplectomorphisms exists
and is called... the “quantomorphism group” QuantMorph(X,w):

U(1) — QuantMorph(X,w) — HamSympl(X,w).
More precisely, this group is just the slice automorphism group:

Proposition 1.3.129. Let (X,w) be a symplectic manifold with prequantization V : X — BU(1)conn,
according to def. [1.3.12%, then the smooth automorphism group of V regarded as an object in the higher slice
topos H By (1)..,, is the quantomorphism group QuantMorph(X,w)

QuantMorph(X,w) ~ Autu (... (V)

= AUtCOI‘I‘(H/BU(l)conn ) (V)

X ¢ X
\ - /
N
BU(1)

conn

R
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in that
1. The Lie algebra of QuantMorph(X,w) is the Poisson bracket Lie algebra of (X,w);

2. This group constitutes a U(1)-central extension of the group of Hamiltonian symplectomorphisms.

While important, for some reason this group is not very well known, which is striking because it contains
a small subgroup which is famous in quantum mechanics: the Heisenberg group.

More precisely, whenever (X, w) itself has a Hamiltonian action—compatible group structure, notably
if (X,w) is just a symplectic vector space (regarded as a group under addition of vectors), then we may
ask for the subgroup of the quantomorphism group which covers the (left) action of phase space (X,w) on
itself. This is the corresponding Heisenberg group Heis(X,w), which in turn is a U(1)-central extension of
the group X itself:

U(1) — Heis(X,w) — X .

Proposition 1.3.130. If (X,w) is a symplectic manifold that at the same time is a group which acts on
itself by Hamiltonian diffeomorphisms, then the Heisenberg group of (X,w) is the pullback Heis(X,w) of
smooth groups in the following diagram in H

Heis(X, w) — QuantMorph(X, w)

| |

X ——— HamSympl(X, w)

Remark 1.3.131. In other words this exhibits QuantMorph(X,w) as a universal U(1)-central extension
characteristic of quantum mechanics from which various other U(1)-extension in QM are obtained by pull-
back/restriction. In particular all classical anomalies arise this way, discussed below in [1.3.2.14

At this point it is worth pausing for a second to note how the hallmark of quantum mechanics has
appeared as if out of nowhere simply by applying Lie integration to the Lie algebra—Lie algebraic structures
in classical mechanics:

if we think of Lie integration—Lie integrating R to the interesting circle group U(1) instead of to the
uninteresting translation group R, then the name of its canonical basis element 1 € R is canonically ”7”, the
imaginary unit. Therefore one often writes the above central extension instead as follows:

iR — poiss(X,w) — ham(X,w)

in order to amplify this. But now consider the simple special case where (X,w) = (R?,dp A dq) is the
2-dimensional symplectic vector space which is for instance the phase space of the particle propagating on
the line. Then a canonical set of generators for the corresponding Poisson bracket Lie algebra consists of the
linear functions p and g of classical mechanics textbook fame, together with the constant function. Under the
above Lie theoretic identification, this constant function is the canonical basis element of iR, hence purely
Lie theoretically it is to be called ”7”.

With this notation then the Poisson bracket, written in the form that makes its Lie integration manifest,
indeed reads

lg,p] =1i.

Since the choice of basis element of ¢R is arbitrary, we may rescale here the ¢ by any non-vanishing real
number without changing this statement. If we write ”%” for this element, then the Poisson bracket instead
reads
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lq,p] = ih.

This is of course the hallmark equation for quantum physics, if we interpret A here indeed as Planck’s
constant, def. We see it arises here merely by considering the non-trivial (the interesting, the
non-simply connected) Lie integration of the Poisson bracket.

This is only the beginning of the story of quantization, naturally understood and indeed ”derived” from
applying Lie theory to classical mechanics. From here the story continues. It is called the story of geometric
quantization. We close this motivation section here by some brief outlook.

The quantomorphism group which is the non-trivial Lie integration of the Poisson bracket is naturally
constructed as follows: given the symplectic form w, it is natural to ask if it is the curvature 2-form of a
U(1)-principal connection V on complex line bundle L over X (this is directly analogous to Dirac charge
quantization when instead of a symplectic form on phase space we consider the the field strength 2-form
of electromagnetism on spacetime). If so, such a connection (L, V) is called a prequantum line bundle of
the phase space (X,w). The quantomorphism group is simply the automorphism group of the prequantum
line bundle, covering diffeomorphisms of the phase space (the Hamiltonian symplectomorphisms mentioned
above).

As such, the quantomorphism group naturally acts on the space of sections of L. Such a section is like
a wavefunction, except that it depends on all of phase space, instead of just on the “canonical coordinates”.
For purely abstract mathematical reasons (which we won’t discuss here, but see at motivic quantization for
more) it is indeed natural to choose a ”polarization” of phase space into canonical coordinates and canonical
momenta and consider only those sections of the prequantum line bundle which depend only on the former.
These are the actual wavefunctions of quantum mechanics, hence the quantum states. And the subgroup of
the quantomorphism group which preserves these polarized sections is the group of exponentiated quantum
observables. For instance in the simple case mentioned before where (X, w) is the 2-dimensional symplec-
tic vector space, this is the Heisenberg group with its famous action by multiplication and differentiation
operators on the space of complex-valued functions on the real line.

1.3.2.13 Integrable systems, moment maps and maps into the Poisson bracket

Remark 1.3.132. Given a phase space (pre-)symplectic manifold (X, w), and given n € N, then Lie algebra
homomorphisms
R™ — pois(X, w)

from the abelian Lie algebra on n generators into the Poisson bracket Lie algebra, def. are equivalently
choices of n-tuples of Hamiltonians {H;}? ; (and corresponding Hamiltonian vector fields v;) that pairwise
commute with each other under the Poisson bracket, V; ;{H;, H;} = 0. If the set {H;}; is maximal with this
property and one of the H; is regarded the time evolution Hamiltonian of a physical system, then one calls
this system integrable.

By the discussion in the Lie integration of the Lie algebra homomorphism R” — pois(X,w) is
a morphism of smooth groupoids

B(Rn) — BAUt/BU(l)CDnn (V) — H/BU(l)

conn

from the smooth delooping groupoid (def. [1.3.107) of R™, now regarded as the translation group of n-
dimensional Euclidean space, to the automorphism group of any pre-quantization of the phase space (its
quantomoprhism group).

Remark 1.3.133. Below in[1.3.3.4] we re-encounter this situation, but in a more refined context. There we
find that n-dimensional classical field theory is encoded by a homomorphism of the form

R" — pois(X,w),
where however now w is a closed differential form of degree (n + 1) and where pois(X,w) is a homotopy-

theoretic refinement of the Poisson bracket Lie algebra (a Lie n-algebra or (n — 1)-type in homotopy Lie
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algebras). In that context such a homomorphism does not encode a set of strictly Poisson-commuting
Hamiltonians, but a of Hamiltonian flows in the n spacetime directions of the field theory which commute
under an n-ary higher bracket only up to a specified homotopy. That specified homotopy is the de Donder-
Weyl-Hamiltonian of classical field theory.

Remark 1.3.134. For g any Lie algebra and (X,w) a (pre-)symplectic manifold, a Lie algebra homomor-
phism
g — pois(X, w)

is called a moment map. Equivalently this is an actin of g by Hamiltonian vector fields with chosen Hamil-
tonians. The Lie integration of this is a homomorphism of smooth groups

G — Aut gy, =~ QuantMorph(X,w)

conn

from a Lie group integrating g to the quantomorphism group. This is called a Hamiltonian G-action.

1.3.2.14 Classical anomalies and projective symplectic reduction Above in we saw that
for a gauge symmetry to act consistently on a phase space, it needs to act by Hamiltonian diffeomorphisms,
because this is the data necessary to put a gauge-equivariant structure on the symplectic potential (hence
on the pre-quantization of the phase space).

Under mild conditions every single infinitesimal gauge transformation comes from a Hamiltonian. But
these Hamiltonians may not combine to a genuine Hamiltonian action, remark but may be specified
only up to addition of a locally constant function, and it may happen that these locally constant “gauges” may
not be chose globally for the whole gauge group such as to make the whole gauge group act by Hamiltonians.
This is the lifting problem of pre-quantization discussed above in

But if the failure of the local Hamiltonians to combine to a global Hamiltonian is sufficiently coherent in
that it is given by a group 2-cocycle, then one can at least find a Hamiltonian action by a central extension
of the gauge group. This phenomenon is known as a classical anomaly in field theory:

Definition 1.3.135. Let (X, w) be a phase space symplectic manifold and let p : G x X — X be a smooth
action of a Lie group G on the underlying smooth manifold by Hamiltonian symplectomorphisms, hence a
group homomorphism

G —— HamSympl(X,w) .

Then we say this system has a classical anomaly if this morphism lifts to the quantomorphism group, prop.
5.2.17.5 only up to a central extension G — G, hence if it fits into the following diagram of smooth group,
without the dashed diagonal morphism existing:

G—— QuantMorph (X, w)

7
-
-
-
-
-

[N HamSympl(X, w)
This is the Lie-integrated version of the Lie-algebraic definition in appendix 5 of [Ar89]. For a list of
examples of classical anomalies in field theories see [TopO1].
Remark 1.3.136. Comparison with prop. [5.2.17.5[ above shows that for (X,w) a symplectic group acting
on itself by Hamiltonian symplectomorphism, then its Heisenberg group is the “universal classical anomaly”.
1.3.3 Hamilton-De Donder-Weyl field theory via Higher correspondences

We now turn attention from just classical mechanics (hence of dynamics along a single parameter, such
as the Hamiltonian time parameter in [1.3.2.6] above) to, more generally, classical field theory, which is
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dynamics parameterized by higher dimensional manifolds (“spacetimes” or “worldvolumes”). Or rather, we
turn attention to the local description of classical field theory. See also section below.

Namely, the situation of example above, where a trajectory of a physical system is given by a
1-dimensional curve [0,1] — Y in a space Y of fields can — and traditionally is — also be applied to field
theory, if only we allow Y to be a smooth space more general than a finite-dimensional manifold. Specifically,
for a field theory on a parameter manifold ¥,, of some dimension n (to be thought of as spacetime or as the
“worldvolume of a brane”), and for Fields a smooth moduli space of of fields, a local field configuration is
a map

¢ : X, — Fields.

If however ¥; ~ X1 x ¥ is a cylinder with 3; = [0, 1] over a base manifold 41 (a Cauchy surface if we
think of ¥ as spacetime), then such a map is equivalently a map out of the interval into the mapping space
of ¥4_1 into Fields:

¢2d71 : 21 — [Zd_l,FieldS} .

This brings the field theory into the form of example but at the cost of making it “spatially non-
local”: for instance the energy of the system, as discussed in would at each point of ¥; be the
energy contained in the fields over all of ¥;_1, while the information that this energy arises from integrating
contributions localized along ¥;_1 is lost.

In more mathematical terms this means that by transgression to codimension 1 classical field theory
takes the form of classical mechanics as discussed above in To “localize” the field theory again (make
it “extended” or “multi-tiered”) we have to undo this process and “de-transgress” classical mechanics to full
codimension.

At the level of Hamilton’s differential equations, def. such a localization is “well known”, but
much less famous than Hamilton’s equations: it is the multivariable variational calculus of Carathéodory,
de Donder, and Weyl, as reviewed for instance in section 2 of [HHéEI02]. Below in we show that the
de Donder-Weyl equation secretly describes the Lie integration of a higher Poisson bracket Lie algebra in
direct but higher analogy to how in we saw that the ordinary Hamilton equations exhibit the Lie
integration of the ordinary Poisson bracket Lie algebra.

From this one finds that an n-dimensional local classical field theory is described not by a symplectic
2-form as a system of classical mechanics is, but by a differential (n + 1)-form which transgresses to the
2-form after passing to mapping spaces. This point of view has been explored under the name of “covariant
mechanics” or “multisymplectic geometry” (see [FoRo05| for a review) and “n-plectic geometry”, see
below. Here we show, based on the results in [FRS13a], how both of these approaches are unified and “pre-
quantized” to a global description of local classical field theory by systems of higher correspondences in higher
slices toposes, in higher generalization to the picture which we found in for classical mechanics.

° — Local field theory Lagrangians and n-plectic smooth spaces
e [1.3.3.2| — The kinetic action, higher prequantization and higher differential cohomology;
e |1.3.3.3|— Local observables, conserved currents and their higher Poisson brackets

° — Field equations of motion and Higher Poisson-Maurer-Cartan elements
° — Source terms, off-shell Poisson bracket and Poisson holography

1.3.3.1 Local field theory Lagrangians and n-plectic smooth spaces Traditionally, a classical field
over a spacetime Y is encoded by a fiber bundle E — X, the field bundle. The fields on X are the sections
of F.

Example 1.3.137. Let d € N and let ¥ = R 1! be the d-dimensional real vector space, regarded as
a pseudo-Riemannian manifold with the Minkowski metric n (Minkowski spacetime). Let moreover F' be
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a finite dimensional real vector space — the field fiber — eqipped with a positive definite bilinear form k.
Consider the bundle ¥ x F' — 3, to be called the field bundle, and write

(X =)= (J'(ExF) =5

for its first jet bundle.

If we denote the canonical coordinates of ¥ by 0¢ : ¥ — R for i € {0,--- ,n — 1}, and choose a dual basis
p*:F =R
of F (hence with a € {1,--- ,dim(V)}) then X is the vector space with canonical dual basis elements labeled

by _

{o'}, {o"} {00}
and equipped with bilinear form (n® k® (n® k)). While all of these are coordinates on X, traditionally one
says that

1. the functions 4
o X —R

are the spacetime coordinates;

2. the functions
¢*: X — R

are are the canonical coordinates of the F-field

3. the functions
i ij b,
Dy = n]kabqb’j : X —R

are the canonical momenta of the free F-field.

Definition 1.3.138. Given a field jet bundle X = J}(X x F) — X as in example [1.3.137} the free field
theory local kinetic Lagrangian is the horizontal differential n-form

Ligi € Q"(X)

given by
LIS := (V¢, V) A vols

= (3kan ¢%0%) Adot A -+ A do?

(where a sum over repeated indices is understood). Here we regard the volume form of ¥ canonically as a
horizontal differential form on the first jet bundle

volg :=do' A---Ado® € Q%O(X>.

The localized analog of example [1.3.54]is now the following.

Definition 1.3.139. Given a free field bundle as in example [1.3.137] and given a horizontal n-form
Lloc c QTL,O(X)

on its first jet bundle, regarded as a local Lagrangian as in def. [1.3.138] then the associated Lagrangian
current is the n-form
0100 c anl,l(X)
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given by the formula

09

(where again a sum over repeated indices is understood). We say that the corresponding pre-symplectic
current or pre-n-plectic form [FRS13b] is

9100 = 1, ( 0 Lloe) Ad¢a

wloc = deloc .

Remark 1.3.140. The formula in def. is effectively that for the pre-symplectic current as it arises
in the discussion of covariant phase spaces in [Zu87, [CrWig7]. In the coordinates of example the
Lagrangian current reads

0'°¢ = pi A dé™ A 1p,volx

and hence the pre-symplectic current reads
W' = dpl A dg® A 1, vols

In this form this is manifestly the (n — 1,1)-component of the canonical “multisymplectic form” that is
considered in multisymplectic geometry, see for instance section 2 of [HHéE02].

This direct relation between the covariant phase space formulation and the multisymplectic description
of local classical field theory seems not to have been highlighted much in the literature. It essentially appears
in section 3.2 of [FoRo05] and in section 2.1 of [Rom05].

Example 1.3.141. Consider the simple case d = 1 hence ¥ = R, and F = R, both equipped with the
canonical bilinear form on R (given by multiplication). Jet prolongation followed by evaluation yields the

smooth function o
Voo : [B, F] x £ V= o (X) x B 2% X

Then the pullback of the local free field Lagrangian of def. [1.3.138| along this map is the kinetic Lagrangian
of example [1.3.55

_ * 7loc
Lyin = evi LGy -

The pullback of the corresponding Lagrangian current according to def. is the pre-symplectic poten-

tial 6 in example [[.3.54]

_ * ploc
0 =ev, 0°°.

Definition 1.3.142. For d € N, write ¥ = 31 x X4_1 for the decomposition of Minkowski spacetime into a
time axis 31 and a spatial slice 3;_1, hence with ¥; = R the real line. Restrict attention to sections of the
field bundle which are periodic in all spatial directions, hence pass to the (d — 1)-torus 341 := R%/Z9 (in
order to have a compact spatial slice). Then given a free field local Lagrangian as in def. say that
its transgression to codimension 1 is the pullback of the local Lagrangian n-form along

Voo : [0, [But, F X 2y x Sga]] 5 [, F] x 8 =4 pp(x) x 2 <% x

followed by fiber integration fzd—l over space Y41, to be denoted

— * loc
Lkin = / evooLkin .
Yag-1

Similarly the transgression to codimension 1 of the Lagrangian current, def. is

— * ploc
0 := / evi 0.
Ya-1

208



Remark 1.3.143. This is the standard way in which the kinetic Lagrangians in example arise by
transgression of local data.

It is useful to combine this data as follows.
Definition 1.3.144. Given a first jet bundle X := J*(¥ x F) as in example |1.3.137, we write

1. JYZ x F)* — ¥ x F for its fiberwise linear densitized dual, as a bundle over the field bundle, to be
called the dual first jet bundle;

2. JHE x F)Y — Y x F for the fiberwise affine densitized dual, to be called the affine dual first jet bundle.

Remark 1.3.145. With respect to the canonical coordinates in example the canonical coordinates
of the dual first jet bundle are {o*, ¢*,p}} (spacetime coordinates, fields and canonical field momenta) and
the canonical coordinates of the affine dual first jet bundle are {o?, ¢*, p!,, e} with one more coordinate e.

Definition 1.3.146. 1. The canonical pre-d-plectic form on the affine dual first jet bundle, def.
is
We 1= de® Adp’, A Lo ;volg +de Avoly, € QL JHE x F)Y).

2. Given a function H € C*(JY(X x X)*) on the linear dual first jet bundle, def. [1.3.144] then the
corresponding HDW pre-d-plectic form is

wy = d¢* Adpl, Ay volg +dH Avoly € QU (JH(E x F)*)
and the corresponding HDW Lagrangian current is
O == —pldo® At ,vols + H Avolg € Q¥ (J'(S x F)*)

Remark 1.3.147. For the case d = 1 the form 6y of def. appears as —Opy in [AzIz95] (8.1.20)].
There it is highlighted that with mechanics phrased in this form, every Lagrangian looks like a WZW-term
(on the (dual) jet bundle). Here we mean to amplify this perspective further, refining it in two ways: on the
one hand we allow 8 to be a higher degree differential form for higher dimensional field theory, and secondly
we will again pass from just a plain globally defined d-form to a pre-quantization by a higher prequantum
bundle.

Definition 1.3.148 (local Legendre transform). Given a local Lagrangian as in def. [1.3.138] hence a
horizontal n-form L'°¢ € Q0 (J'(E)) on the jets of the field bundle E — X, its local Legendre transform
is the function

Frc: JH(X) — (JYX))Y
from jets to the affine dual jet bundle, def. [1.3.144| which is the first order Taylor series of L!°°.

This definition was suggested in [FoRo05] section 2.5]. It conceptualizes the traditional notion of local
Legendre transform:

Example 1.3.149. In the local coordinates of example[1.3.137] the Legendre transform of a local Lagrangian
L'°¢, def. |1.3.148| has affine dual jet bundle coordinates given by

; aLloc
pa = a
¢
and .
oLloc
_ Lloc _ a

The latter expression is what is traditionally taken to be the local Legendre transform of L'°°.
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The following observation relates the canonical pre-n-plectic form w, on the affine dual jet bundle to the
central ingredients of the covariant phase space formalism.

Proposition 1.3.150. Given a local Lagrangian L'°¢ € Q0 (JY(E)), then the pullback of the canonical
pre-n-plectic form we, def. along the local Legendre transform FL°C of def. is the sum

of the FEuler-Lagrange equation term ElLpi. € Q(”vl)(Jl(X)) and of the canonical pre-n-plectic current

d 00 € QUL (JH(X)) of def. [1.3.139

Wrloc i= (]FLIOC)*OJE
= ELj10c + dyfpioc

This follows with equation (54) and theorem 1 of [FOR005HE| In(1.3.3.4| below we see how using this the
equations of motion of the field theory are naturally expressed.

In conclusion, we find that where phase spaces in classical mechanics are given by smooth spaces equipped
with a closed 2-form, phase spaces in “de-transgressed” or “covariant” or “localized” classical field theory of
dimension n are given by smooth spaces equipped with a closed (n + 1)-form. To give this a name we say
[FRS13a):

Definition 1.3.151. For n € N, a pre-n-plectic smooth space is a smooth space X and a smooth closed
(n + 1)-forms, prop. [1.2.49

w: X — Qi
hence an object of the slice topos

(X,w) S H/in+1 .

1.3.3.2 The kinetic action, higher prequantization and higher differential cohomology Now
that we have de-transgressed the symplectic 2-forms of to d-plectic forms w € Q4*1(X) in the
same kind of arguments as in[1.3.3.2]show that in general it is too restrictive to assume that there is a globally
defined Larangian d-form 6 with df = w. Instead, given an cover {U; — X} of X by contractible open charts,
then we may find on each chart a 6; € Q4(U;) with df; = w|y,. As before, on double intersections of charts
U; )>§ U; these local Lagrangian forms must be glued together by gauge transformations, but now with d > 1

a gauge transformation is given itself by a (d — 1)-form 6;; € Q4=1(U; X Uj), satisfying
9J701:d01j on UZ XUj.
X

This being the case, the {6;;} themselves have gauge-of-gauge transformations between them, given now by
(d — 2)-forms 0,1, € Q4=2(U; x U; x Uy), and consistency requires that on triple intersections of charts they
x 'Xx

glue together by such:
Gik — Gij — ij = deijk on Uz' )); Uj )); Uk .

This pattern continues, until we reach (d — 1)-fold gauge transformations by 1-forms 6;,..;, € QY (U;, x

X

.-+ x U;,) which are to glue on (d + 1)-fold intersections of charts by a d-fold gauge transformation given by
X

e 0= (U, Ui, U(1)) by

td419

U(1)-valued functions g;, ...i,,, Ko

d
k —
kz—:l(_l) 9i1-<<{;€...id+1 o dloggil”'id‘*—l on Uil ;<( o ;<( Uid+1 .

11 This statement and its formulation in terms of notions in the variational bicomplex as given here has kindly been amplified
to us by Igor Khavkine.
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The collection of this data
0= {{Ui = X}, {0:},{0i;}, - {91 iuir }}

satisfying these compatibility conditions is a Cech-Deligne cocycle of degree d+ 1. For d = 1 this reduces to
the familiar cocycles for U(1)-principal 1-form connections. More in detail, given the cover {U; — X} then
the Cech-Deligne complex for Deligne cohomology in degree d+ 1 is the total complex of the double complex

&0 (Ui, U(1) ——> 0> (U; x Uj,U(1)

5,J
dqgrlog J{ddeOg
eQL(U;) d BQNU; x U;)
i iy X
dar lddn
eQ*(Us) d SO (U; o Uj)
[ 2,7
@QdUZ @Qd(Ul X Uj)
i ij X

(where the horizontal differentials form alternating sums of restrictions to higher order intersections of
patches, as in the above formulas) and a Cech-Deligne cocycle is a closed element in this total complex.
Under the Dold-Kan correspondence (see below in , the Cech-Deligne complex in degree (d + 1)
may be thought of as a d-groupoid, whose objects are d-form connections, whose 1-morphisms are gauge
transformations between these, whose 2-morphisms are gauge-of-gauge transformation between those, and
so on. Since this d-groupoid depends naturally and contravariantly on the the base manifold X, it naturally
has the structure of a smooth d-groupoid or smooth d-stack. This we denote as BdU(l)Conn. By its very
definition, this is characterized simply as being the generalized smooth space such that smooth functions

V:X— BdU(l)conn

are equivalently Cech-Deligne cocycles 0 of degree d+ 1, such that smooth homotopies between such smooth
functions

are gauge transformations between such d-form connections, and so forth. (We consider BiU (1)conn in detail

below in [6.4.16])

The operation of sending a d-form connection 6 to its globally defined curvature form w is natural and
respects pullback along smooth maps, hence defines a morphism of generalized smooth space

F_y : BYU (1) conn — Q.

In terms of this we may then succinctly say that a higher pre-quantization of a pre-d-plectic form w € Q4(X)
is a lift V of the form
BYU(1)conn

v
/ iF(i)
d+1
—Q
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(We will typically write V when considering pre-quantizations in this abstract form, and use notation such
as 6 to refer to an explicit Cech-Deligne cocycle representing it.)

Example 1.3.152. Whenever there happens to be a globally defined 6 € Q4(X) such that df = w, then
with respect to the trivial cover (or else after restriction to any given cover) 6 itself defines a Cech-Deligne
cocycle. The Deligne cocycles of this form are equivalently those whose underlying U(1)-d-bundle modulated
by the forgetful map

X — BWU(1)conn — BU(1)

is trivial. In this way a general Deligne cocycle § pre-quantizing w is seen to be a generalization of a
Lagrangian d-form, which is locally given by an actual d-form, and is globalized by gluing these local forms
together by gauge transformations and higher gauge transformations.

Hence for the following it is hence important to remember that pre-quantum d-bundles V are what naively
used to be the Lagrangians of field theories. They are the pre-quantized globally correct Lagrangians. (And
this need of “globally correcting” traditional classical field theory is the reason for our use of “pre-quantum
field theory” instead of “classical field theory”.)

1.3.3.3 Local observables, conserved currents and their higher Poisson brackets Above in
we discussed how functions on a phase space are interpreted as observables of states of the mechanical
system, for instance the energy of the system. Now in[I.3.3.1] above we saw that that notably the energy of
a d-dimensional field theory at some moment in time (over some spatial hyperslice of spacetime) is really the
integral over (d — 1)-dimensional space ¥4_1 of an energy density (d — 1)-form H'°, hence by def.
the transgression of a (d — 1)-form on the localized d-plectic phase space:

— * loc
H = evi H .
Ya-1

Therefore in analogy with the notion of observables on a symplectic manifold, given a d-plectic manifold, def.
its degree-(d — 1) differential forms may be called the local observables of the system. To motivate
from physics how exactly to formalize such local observables (which we do below in def]1.3.158| def. [1.3.159)),
we first survey how such local observables appear in the physics literature:

Example 1.3.153 (currents in physics as local observables). In the situation of example consider a
vector field j € I'(T'S,) on the d-dimensional Minkowski spacetime ¥4 = R¢~11. In physics this represents
a quantity which — for an inertial observer characterized by the coordinates chosen in example [[:3.137]— has
local density j° at each point in space and time, of a quantity that flows through space as given by the vector

(jlf"ajdil)
For instance in the description of electric sources distributed in spacetime, the component j° would be
an electric charge density and the vector (j',---,7971) would be the electric current density. To empha-

size that therefore j combines the information of a spatial current with the density of the substance that
flows, traditional physics textbooks call j a “d-current” — usually a “4-current” when identifying d with the
number of macroscopic spacetime dimensions of the observable universe. But once the spacetime context is
understood, one just speaks of j as a current.

The currents of interest in physics are those which satisfy a conservation law, a law which states that
the change in coordinate time o of the density j° is equal to the negative of the divergence of the spatial
current, hence that the spacetime divergence of j vanishes:

) ) ajO d—1 aji
RN =y E
1=1

If this is the case, one calls the current j a conserved current. (Beware that the “conserved” is so important
in applications that it is often taken to be implicit and notationally suppressed.)
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In order to formulate the notion of divergence of a vector field intrinsically (as opposed with respect to
a chosen coordinate system as above), one needs a specified volume form voly € Q9(X4) of spacetime. With
that given, the divergence div(j) € C*°(X4) of the vector field is defined by the equation

div(j) Avols, = L;voly, = d (¢;voly) .
In particular, a current j is a conserved current precisely if the degree-(n — 1) differential form
J = ;volg,
is a closed differential form
(j e T(T%,) is a conserved current) < (dJ =0) .

Due to this and related relations, one finds eventually that the degree-(d — 1) differential form J itself is
the more fundamental mathematical reflection of the physical current. But by the above introduction, this
is in turn the same as saying that a current is a local observable. Accordingly, we will often use the terms
“current” and “local observable” interchangeably.

If currents are local observables, then by the above discussion their integral over a spatial hyperslice of
spacetime is to be the corresponding global observable. In the special case of the electromagnetic current
Je1, the laws of electromagnetism in the form of Mazwell’s equation

Joo = dx Fe

say that this integral — assuming now that J, is spatially compactly supported — is the integral of the Hodge
dual electromagnetic field strength F,,, over the boundary of a 3-ball D? — ¥;_; enclosing the support of
the electromagnetic current. This is the total electric charge Qe in space:

C?d ::u/n *Fém ::J/ J;l::u/n Jéb
52 D3 Suo1

Based on this example, in physics one generally speaks of the integral of a spacetime current over space as
a charge. So charges are the global observables of the local observables, which are currents.

Notice that for a conserved current the corresponding charge is also conserved in that it does not change
with time or in fact under any isotopy of ¥;_1 inside ¥4, due to Stokes’ theorem:

dy, @ =dyx, / J

-1

:/ ds,J -
a1

=0

Therefore currents in physics are necessarily subject of higher gauge equivalences: if J is a conserved
current (d — 1)-form, then for any (d — 2)-form « the sum J + da is also a conserved current, which, by
Stokes’ theorem, has the same total charge as J in any (d — 1)-ball in space, and has the same flux as
J through the boundary of that (d — 1)-ball. This means that the conserved currents J and J + da are
physically equivalent, while nominally different, hence that « exhibits a gauge equivalence transformation
between currents

a:J = (J =J+da).

The analogous consideration holds for « itself: for any (d — 3)-form § also o + d/5 exhibits a gauge trans-
formation between the currents J and J' above. One says this is a gauge of gauge-transformation or a
higher gauge transformation of second order. This phenomenon continues up to the 0-forms (the smooth
functions), which therefore are (d — 1)-fold higher gauge transformations between consderved currents on a
d-dimensional spacetime.
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Finally notice that in a typical application to physics, a current form J is naturally defined also “off
shell”, hence for all field configurations (say of the electromagnetic field), but its conservation law only holds
“on shell”, hence when these field configurations satisfy their equations of motion (to which we come below
in . Since the d-plectic localized phase spaces in the discussion in above a priori contain all
field configurations, we are not to expect that a local observable (d — 1)-form J is a conserved current only
if its differential strictly vanishes, but already if its differential vanishes at least on those d-tuples of vector
fields vy V - - - V vg which are tangent to jets of those sections of the field bundle that satisfy their equations
of motion:

(J is conserved current) < ((v1 V - -+ V vq satisfies field equations of motion) = ty,v...ve,dJ = 0) .

This we formalize below by the “d-plectic Noether theorem”, prop. There we will see how such con-
served current (d—1)-forms arise from vector fields v that consitute infinitesimal symmetries of a Hamiltonian
function, by the evident higher degree generalizatin of Hamilton’s equations, namely dJ = ¢,w.

One traditional example of such higher conserved currents are the brane charges of super p-brane sigma-
models on supergravity backgrounds. This example we discuss below in [T.4.4]

We now consider the system of conserved currents more systematically. To that end, let X := J}(X x F)*
be a dual jet bundle of a field bundle, def. [1.3.144] let w € Q91 (X) be a DHW pre-d-plectic form as in def.

1.3.146 and let finally V be a higher pre-quantization of (X, w) as discussed in |1.3.3.2
Then following the discussion in in view of the higher pre-quantum refinement of [[.3.3.2] a sym-

metry of the local field theory defined by V is a symmetry of the field space

such that the Lagrangian is invariant up to an exact term under this transformation. Under the globalization
as in example [1.3.152] this means that V is invariant up to a gauge transformation

'V = V.

Definition 1.3.154. The d-group of symmetries of the Lagrangian V is the higher smooth group whose
elements are diagrams of the form

X
QuantMorph(V) = \1/2 /

[
BdU(l)conn

X

We consider the precise form of this definition below in [5.2.17.5] and [6.4.21}

Example 1.3.155. Consider the special case of example where the higher pre-quantization as in
given by a globally defined d-form § € Q¢(X). Then a diagram as in def. expresses equivalenty
a differential (d — 1)-form A such that

P —0=dA.

In the traditional context of the Noether theorem, this is sometimes called a “weak” symmetry of the
Lagrangian 0, a symmetry that leaves the Lagrangian invariant only up to the “divergence” dA.

Lie differentiating this, we find that an infinitesimal element of this d-group is given by a vector field v
on X (an infinitesimal diffeomorphism) together with a (d — 1)-form A, exhibiting an infinitesimal gauge
transformation between 6 and its pullback along the infinitesimal diffeomorphism v. This means that the
Lie derivative L,6 satisfies

L,0 =dA,.
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By Cartan’s magic formula and using that 6 is a pre-quantization of w, this means equivalently that
Low = —dJ

with
Jy = 1,0 — A, .

Below in we see that ¢..w vanishes on tangents to field trajectories which solve the equations of
motion. Therefore J, here is hence an on-shell conserved current, induced by the given symmetry. This is a
special case of the general d-plectic Noether theorem, prop. [1.3.170| below. Following def. [1.3.81] we say:

Definition 1.3.156. Given a pre-d-plectic manifold (X,w), then a vector field v for which there exists a J
with t,w = —dJ is a Hamiltonian vector field.

Vecham (X, w) < Vect(X)
for the subspace of Hamiltonian vector fields.

Notice that this is a sub-Lie algebra under the canonical Lie bracket of vector fields.
Proceeding in this way, one finds (this is due to [FRS13bl def./prop. 4.2.1], we discuss this in more detail
below in [6.4.21)) that the Lie bracket on these Hamiltonian pairs (v, A,) is given by

[(vla Avl)a (va sz)] = ([Ulv /02}7 ‘Clew - £U2Avl) :

Remark 1.3.157. Suppose that a potential A, ., for the divergence term has been chosen before hand to
define the current .Jp,, ,,), then this means that the Lie bracket of conserved currents is (see prop. [6.4.207)

[(Ulv Avl)v (027 Av2)] = ([vlv ’Ug], A[m,@z]) + (07 'Cv1 Avg - ‘Cv2Av1 - A[vl,w])

and hence that the Lie algebra of these currents is an extension of the Lie algebra of the symmetries which
they generate by the correction term as shown on the right. This formula appears in traditional literature
for instance as [AGIT89, equations (13), (14)].

But we see here two additional points which seem not to have been explicitly addressed in traditional
literature:

1. When d > 1 then QuantMorph(f) is a higher group, and hence in particular after Lie differentiation
then on top of the Lie bracket of conserved currents above, there are higher gauge transformations
between these currents. They may be most directly understood from the fact that the choice of A,
above is clearly only unique up to addition of exact terms, whose potentials in turn are themselves
only unique up to exact terms, and so forth. As a result, we find not just a Lie algebra, but a dg-Lie
algebra of currents, whose differential is the de Rham differential acting on higher order current forms.

2. In full generality the above discussion needs to be performed not just for globally defined 6, but for
higher prequantizations 6 which are given by Cech-Deligne cocycles with curvature (d + 1)-form w.

The resulting dg-Lie algebra has been given in [FRS13bl def./prop. 4.2.1]:

Definition 1.3.158. Let X be a smooth manifold, w € Q4FH(X) a closed differential (d + 1)-form, with
(X, w) regarded as a pre-d-plectic manifold. Let 6 be a higher pre-quantization of w given by a Cech-Deligne
cocycle with respect to a cover U of X. Then the Poisson bracket dg-Lie algebra

Pois,, (X, 0) € dgLieAlg — Lo Alg
is the dg-Lie algebra whose underlying chain complex has

Poisy, (X,0)° = {(v, A) € Vect(X) @ Tot L (U, Q*)| £, = dTotZ}
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and o 4
Poisy, (X,0)=" := Tot™ (U, Q°)

with differential dr.¢, and whose non-vanishing Lie brackets are
[(v1, A1), (v2, A2)] = ([v1,v2], Loy Ao — Lo, A1)

and

=
=
|
\s
3|

] = _[ﬁv (U7 A)] =L,

It turns out that there is a very different looking but equivalent incarnation of this L,-algebra, originally
considered in [Rogllal [Rogl0]:

Definition 1.3.159 (higher Poisson bracket of local observables). Given a pre-n-plectic manifold (X,w),
its vector space of local Hamiltonian observables is

QN X) = {(v,J) eNTX) BV HX) | Low=—dJ} .
We say that the de Rham complex ending in these Hamiltonian observables is the complez of local observables
of (X,w), denoted

08(X) = (COO(X) Aotx) 4 o x) O Qg*(X)) .

The binary higher Poisson bracket on local Hamiltonian observables is the linear map
{1 X)) e X) — 4THX)
given by the formula
[(Ulv ‘]1) ; (U27 Jl)] = [([’01, UQ] ) L'Ul\/U2w)] ;
and for k > 3 the k-ary higher Poisson bracket is the linear map

n— ®* el —
{— = ()T — R
given by the formula

[(Ulv Jl) PR (Ukv Jk)] = (71)L%J bop vV W e

The chain complex of local observables equipped with these linear maps for all k we call the higher Poisson
bracket homotopy Lie algebra of (X, w), denoted

mOiﬁoo(X’w) = (Q:;(X)?{fa7}7{77*a*}7"') :

Remark 1.3.160. What we call a homotopy Lie algebra in def. [I.3.159]is what originally was called a strong
homotopy Lie algebra and what these days is mostly called an L., -algebra or, since the above chain complex
is concentrated in the lowest n degrees, a Lie n-algebra. These are the structures that are to group-like
smooth homotopy types as Lie algebras are to smooth groups. The reader can find all further details which
we need not dwell on here as well as pointers to the standard literature in [FRSI3b].

Remark 1.3.161. For n = 2 definition [1.3.159] indeed reproduces the definition of the ordinary Poisson
bracket Lie algebra, def.
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Proposition 1.3.162. There is an equivalence of L., -algebras
Pois (X, w) — Pois g, (X, w)
between those of def. and def. which on the underlying currents is given by

d
T =Jy+ Y (=1) 1,04
i=0
hence which for the special case of globally defined pre-quantization forms 6 over a trivial cover (as in example

1.3.159) is given by
J—= —J+ 1,0 =A.

This is [FRS13bl theorem 4.2.2].

Proposition 1.3.163. The Poisson bracket Lie n-algebra Pois(X,w) is an extension of the Lie algebra
of Hamiltonian vector fields, def. |1.3.156, by the cocycle co-groupoid H(X,bBY~1R) of degree d — 1 real
cohomology of X, in that there is a homotopy fiber sequence of Lo, -algebras of the form

H(X,bB?1R) ——— Pois(X,w)

Vectiam (X, ) —° BH(X, B~ IR)
where the cocycle w(e], when realized explicitly on Pois (X, w), def. [1.3.159, is degreewise given by contrac-
tion of vector fields with w.

This is [FRS13D, theorem 3.3.1].

Corollary 1.3.164. The truncation of Pois(X,w) to a Lie 1-algebra (by quotienting out exact current forms)
is an extension of the Hamiltonian vector fields by Hgﬁl(X), in that there is a short exact sequence of Lie
algebras

0 — H{Z'(X) — 7%Pois(X,w) — Vectiam (X, w) — 0.

A shadow of this extension result appears in traditional literature in [AGIT89, p. 8], where this is
considered for the special case of super p-brane sigma-models (in which case the elements in Hg;{ LX) are
interpreted as the brane charges). This example we turn to below in m

1.3.3.4 Field equations of motion and Higher Poisson-Maurer-Cartan elements Where in clas-
sical mechanics the equations of motion that determine the physically realized trajectories are Hamilton’s
equations, def. in field theory the equations of motion are typically wave equations on spacetime.
But as we localize from (pre-)symplectic phase spaces to (pre-)n-plectic phase spaces as in above,
Hamilton’s equations also receive a localization to the Hamilton-de Donder- Weyl equation. This indeed co-
incides with the field-theoretic equations of motion. We briefly review the classical idea of de Donder-Weyl
formalism and then show how it naturally follows from a higher geometric version of Hamilton’s equations
in n-plectic geometry.

Definition 1.3.165. Let (X,w) be a pre-n-plectic smooth manifold, and let H € C°°(X) be a smooth
function, to be called the de Donder-Weyl Hamiltonian. Then for v; € T'(TX) with i € {1,--- ,n} an
n-tuple of vector fields, the Hamilton-de Donder-Weyl equation is

(Lo, =+ Loy ) w =dH .

Generally, for J € Q"~%(X) a smooth differential form for 1 < k < n, and for {v;} a k-tuple of vector fields,
the extended Hamilton-deDonder- Weyl equation is

by =+ bpyw =dJ .
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We now first show how this describes equations of motion of field theories. Then we discuss how this
de Donder-Weyl-Hamilton equation is naturally found in higher differential geometry. For simplicity of
exposition we stick with the simple local situation of example The ambitious reader can readily
generalize all of the following discussion to non-trivial and non-linear field bundles.

Definition 1.3.166. Let ¥ x F — ¥ be a field bundle as in example [1.3.137] For & := (¢%,p?) : ¥ —
JHE x X)* a section of the linear dual jet bundle, def. [1.3.144 write

s O 09¢° 0 opl 0

%" 80 T a0 96 Dot ol

for its canonical basis of tangent vector fields. Similarly for ® := (¢%,p?,e) : ¥ — j1(Z x X)V a section of
the affine dual jet bundle write
PR Y
! do*  0o" O¢* Do’ gp), 0o’ Oe

for its canonical basis of tangent vector fields.

Proposition 1.3.167. For (X x X) — X a field bundle as in example[1.3.137, let H € C=(J'(X x X)*) be
a function on the linear dual (and hence on the affine dual) first jet bundle, def. [1.3.144} Then for a section
O of the linear dual jet bundle, def. [1.3.144), the homogeneous (“relativistic”) de Donder-Weyl-Hamilton

equation, def. of the HDW pre-n-plectic form, def.

(ng---bv?)wH =0

has a unique lift, up to an additive constant, to a solution of the Hamilton-de Donder-Weyl equation on the

affine dual field bundle, def. of the form
(ng -~-Lv;1>) we=d(H +e).

Moreover, both these equations are equivalent to the following system of differential equations

_0H

. oH
- apz ) al

0;0" Pa =" gga -

The last system of differential equations is the form in which the de Donder-Weyl-Hamilton equation is
traditionally displayed, see for instance [Rom05l, theorem 2]. The inhomogeneous version on the affine dual
first jet bundle above has been highlighted in [HHéEI02, around equation (4)].

Example 1.3.168. For a field bundle as in example[1.3.137] the standard form of an energy density function
for a field theory on X is
HVOIE - Lkin + V({¢a})V01Z )

where the first summand is the kinetic energy density from example [[.3.138] and where the second is any
potential term as in example [1.3.55] More explicitly this means that

H = (V$,Vo) +V({¢"}) = k®ni;pip] + V({6"}) .

For this case the first component of the Hamilton-de Donder-Weyl equation in the form of prop. is
the equation _

0:9" = k" nijp} -
This identifies the canonical momentum with the actual momentum. More formally, this first equation
enforces the jet prolongation in that it forces the section of the dual first jet bundle to the field bundle to be
the actual dual jet of an actual section of the field bundle.

218



Using this, the second component of the HDW equation in the form of prop. [1.3.167]is equivalently the
wave equation
y ov
99,0 % = —
77 ]¢ a¢a
with inhomogeneity given by the gradient of the potential. These equations are the hallmark of classical
field theory.

In full generality we can express the Euler-Lagrange equations of motion of a local Lagrangian in
Hamilton-de Donder-Weyl form by prop. [1-3:150

In order for the Hamilton-de Donder-Weyl equation to qualify as a good “localization” or “de-transgression”
of non-covariant classical field theory as in example it should be true that it reduces to this under
transgression. This is indeed the casd

Proposition 1.3.169. With wrie as in prop. [1.5.150, we have that for any Cauchy surface ¥,_1 that
transgression of wre yields the covariant phase space pre-symplectic form of example [1.3.54).

Using the n-plectic formulation of the Hamilton-de Donder-Weyl equation, we naturally obtain now the
following n-plectic formulation of the refinement of the “symplectic Noether theorem”, def. form
mechanics to field theory:

Proposition 1.3.170 (n-plectic Noether theorem). Let (X,w) be a pre-n-plectic manifold equipped with a
function H € C*®(X), to be regarded as a de Donder-Weyl Hamiltonian, def. . If a vector field
v € INTX) is a symmetry of H in that

Lo dH =0,

then along any n-vector field vy V - - -V v, which solves the Hamilton-de Donder-Weyl equation, def. [1.3.16
the corresponding current J, := t,w is conserved, in that

Lvy e 7%)de =0.

Conwversely, if a current is conserved on solutions to the Hamilton-de Donder-Weyl equations of motion this
way, then it generates a symmetry of the de Donder- Weyl Hamiltonian.

Proof. By the various definitions and assumptions we have

Lvl\/~~~V1JndJU = Ly V. v, LoW
= (_)n[/val\/m\/UnW
=1, dH '
=0

O

This shows how the multisymplectic/n-plectic analog of the symplectic formulation of Hamilton’s equa-
tions, def. [1.3.81] serves to encode the equations of motion, the symmetries and the conserved currents of
classical field theory. But in [1.3.2.10] and [1.3.2.12] above we had seen that the symplectic formulation of

Hamilton’s equations in turn is equivalently just an infinitesimal characterization of the automorphisms of

a pre-quantized phase space X ~, BU(1)conn in the higher slice topos H,gy1),,,,- This suggests that
n-dimensional Hamilton-de Donder-Weyl flows should characterize n-fold homotopies in the higher auto-
morphism group of a higher prequantization, regarded as an object in a higher slice topos to be denoted
H/Bn0(1)e,- This we come to below in

Here we now first consider the infinitesimal aspect this statement. To see what this will look like, observe
that the statement for n = 1 is that the Lie algebra of slice automorphisms of V is the Poisson bracket

12 Again thanks go to Igor Khavkine for discussion of this point.
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Lie algebra pois(X,w) whose elements, by def. are precisely the pairs (v, H) that satisfy Hamilton’s
equation t,w = H. To say this more invariantly: Hamilton’s equations on (X,w) precisely characterize the
Lie algebra homomorphisms of the form

R — pois(X,w),

where on the left we have the abelian Lie algebra on a single generator. This suggests that for a (pre-)n-plectic
manifold, we consider homotopy Lie algebra homomorphism of the form

R" — pois(X,w),

where now on the left we have the abelian Lie algebra on n generators, regarded canonically as a homotopy
Lie algebra. In comparison with prop. this may be thought of as characterizing the infinitesimal
approximation to an evolution n-functor from Riemannian n-dimensional cobordisms into the (delooping of)
the higher Lie integration of pois(X,w) (recall remark above).

Such homomorphisms of homotopy Lie algebras are computed as follows.

Definition 1.3.171. Given a pre-n-plectic smooth space (X, w), write
pois(X,w) P 1= (A°R™) @ pois(X, w)

for the homotopy Lie algebra obtained from the Poisson bracket Lie n-algebra of def. [1.3.159| by tensoring
with the Grassmann algebra on n generators, hence the graded-symmetric algebra on n generators in degree
1.

Remark 1.3.172. A basic fact of homotopy Lie algebra theory implies that homomorphisms of the form
R™ — pois(X,w) are equivalent to elements J € pois(X,w)®" of degree 1, which satisfy the homotopy
Maurer-Cartan equation

Example 1.3.173. Write {do’}"_, for the generators of A°R™. Then a general element of degree 1 in
pois(X,w)") is of the form

J =do’ @ (v, J;) +do* Ado? @ J;; +do’ Ado? Ado* @ Ty 4+ (dot A---Ado™) @ H,
where
1. v; € T(TX) is a vector field and J; € Q"(X) is a differential n-foms such that ¢,,w = d.J;
2. Jiyip € QUELITR(XD);
3. H e C®(X).

From this we deduce the following.

Proposition 1.3.174. Given a pre-n-plectic smooth space (X,w), the extended Hamilton-de Donder- Weyl

equations, def. [1.3.164, characterize, under the identification of example [1.5.175, the homomorphims of
homotopy Lie algebras from R™ into the higher Poisson bracket Lie n-algebra of def. [1.53.159:

by, by w =dH

(T :R" — pois(X,w)) < {LW"'L%Lvilw:dJiligmik ViViy o i

Remark 1.3.175. The Lie integration of the Lie n-algebra pois(X,w) is the smooth n-groupoid whose
n-cells are Maurer-Cartan elements in
Q5(A") @ pois(X,w) ,

see [ESSI0] for details. The construction in def. [1.3.171| is a locally constant approximation to that. In
general there are further o-dependent terms.
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Due to [FRS13al, [FRS13b] we have that the Lie integration of pois(X,w) is the automorphism n-group
Aut gry1),,,.. (V) of any pre-quantization V of (X,w), see[5.2.17| This means that the above maps

R™ — pois(X, w)
are infinitesimal approximations to something lie n-functors of the form
«“ BOI‘dSiem N H/B"U(l)conn”

in higher dimensional analogy of prop. This we come to below.

1.3.3.5 Source terms, off-shell Poisson bracket and Poisson holography We connect now the
discussion of mechanics in [[:3:2] to that of higher Chern-Simons field theory in by showing that the space
of all trajectories of a mechanical system naturally carries a Poisson brakcet structure which is foliated by
symplectic leafs that are labled by source termleI The corresponding leaf space is naturally refined to
the symplectic groupoid that is the moduli stack of fields of the non-perturbative 2s Poisson-Chern-Simons
theory. This yields a precise implementation of the “holographic principle” where the 2d Poisson-Chern-
Simons theory in the bulk carries on its boundary a 1d field theory (mechanical system) such that fields in
the bulk correspond to sources on the boundary.

Let (X,w) be a symplectic manifold. We write
{= -1 C¥(X)®@ O™ (X) — CF(X)

for the Poisson bracket induced by the symplectic form w, hence by the Poisson bivector 7 := w™!.

For notational simplicity we will restrict attention to the special case that

X =R?>~T*R
with canonical coordinates
q,p : R?Z—R
and symplectic form
w=dgAdp.

The general case of the following discussion is a straightforward generalization of this, which is just nota-
tionally more inconvenient.
Write I := [0, 1] for the standard interval regarded as a smooth manifold manifold with boundary—with
boundary. The mapping space
PX :=1[I,X]

canonically exists as a smooth space, but since I is compact topological space—compact this structure
canonically refines to that of a Frchet manifold. This implies that there is a good notion of tangent space
TPX. The task now is to construct a certain Poisson bivector as a section m € T"\2(TPX).

Among the smooth functions on PX are the evaluation maps

ev: PXxI=[X]xI—X

whose components we denote, as usual, for t € I by

q(t):=qgoev; : PX — R

and

p(t):=poev, : PX — R.

13This phenomenon was kindly pointed out to by Igor Khavkine.
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Generally for f: X — R any smooth function, we write f(t) := f oev; € C®°(PX). This defines an
embedding

C®(X)x I — C>®(PX).
Similarly we have
g(t) : PX — R
and
q(t) : PX —R

obtained by differentiation of ¢ — ¢(t) and t — p(t).
Let now
H: XxI—R

be a smooth function, to be regarded as a time-dependent Hamiltonian. This induces a time-dependent
function on trajectory space, which we denote by the same symbol

H: PXxI“%xxx AR,

Hence for t € I we write
ev,id

Ht) : PX x{t} % x x (1 LR
for the function that assigns to a trajectors (¢(—),p(—)): I — X its energy at (time) parameter value ¢.
Define then the Euler-Lagrange equation—Euler-Lagrange density induced by H to be the functions
EL(t) : PX — R?

with components
I ROEE 20!
EL(H) = ( plt) + (1) ) '

The trajectories v: I — X on which EL(t) vanishes for all ¢ € I are equivalently those
o for which the tangent vector ¥ € T, X is a Hamiltonian vector field—Hamiltonian vector for H;
e which satisfy Hamilton’s equations equations of motion—of motion for H.

Since the differential equations EL = 0 have a unique solution for given initial data (¢(0),p(0)), the evaluation
map

{y € PX s BL,(t) = 0} "= x
is an equivalence (an isomorphism of smooth spaces).
Write
Poly(PX) — C*(PX)
for the subalgebra of smooth functions on path space which are polynomials of integrals over I, of the smooth

functions in the image of C*°(X) x I — C'*°(PX) and all their derivatives along I.
Define a bilinear function

{=,=}: Poly(PX)® Poly(PX) — Poly(PX)

as the unique function which is a derivation in both arguments and moreover is a solution to the differential

equations

o {ft)alta)} = {f(tn, %f(m)}
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- e p(e} =~ {10, 5 )}

subject to the initial conditions

{£(),a(t)} = {f,q}
{£(®),p(t)} = {/,p}

for all ¢t € I, where on the right we have the original Poisson bracket on X.

This bracket directly inherits skew-symmetry and the Jacobi identity from the Poisson bracket of (X, w),
hence equips the vector space Poly(PX) with the structure of a Lie bracket. Since it is by construction also
a derivation of Poly(PX) as an associative algebra, we have that

(Poly (PX), {—,—}) € PiAlg

is a Poisson algebra. This is the “off-shell Poisson algebra” on the space of trajectories in (X,w).
Observe that by construction of the off-shell Poisson bracket, specifically by the differential equations
defining it, the Euler-Lagrange equation—FEuler-Lagrange function EL generate a Poisson reduction—Poisson

ideal.
For instance

3%2 {f(t1).q(t2)}
3%2 {f(t1),p(t2)}

{0, (1)}

t1), EL(t)} =0) .
S e} | @ W B =0)

Moreover, since { EL(t) = 0} are equations of motion the Poisson reduction defined by this Poisson idea is the
subspace of those trajectories which are solutions of Hamilton’s equations, hence the ”on-shell trajectories”.

As remarked above, the initial value map canonically identifies this on-shell trajectory space with the
original phase space manifold X. Moreover, by the very construction of the off-shell Poisson bracket as being
the original Poisson bracket at equal times, hence in particular at time ¢ = 0, it follows that restricted to
the zero locus EL = 0 the off-shell Poisson bracket becomes symplectic manifold—symplectic.

All this clearly remains true with the function EL replaced by the function EL — J, for J € C*(I)
any function of the (time) parameter (since {J, —} = 0). Any such choice of J hence defines a symplectic
subspace

[y € PX | Vier L, (1) = J}

of the off-shell Poisson structure on trajectory space. Hence (OX, {—,—}) has a foliation by symplectic
leaves with the leaf space being the smooth space C*°(I) of smooth functions on the interval.
Notice that changing EL — EL — J corresponds changing the time-dependent Hamiltonian H as

Hw H—Jq.

Such a term linear in the canonical coordinates (the field (physics)—fields) is a source term. (The action
functionals with such source terms added serve as integrands of generating functions for correlators in
statistical mechanics and in quantum mechanics.)

Hence in conclusion we find the following statement:

The trajectory space (history space) of a mechanical system carries a natural Poisson manifold—Poisson
structure whose symplectic leaves are the subspaces of those trajectories which satisfy the equations of motion
with a fixed source term and hence whose symplectic leaf space is the space of possible sources.

Notice what becomes of this statement as we consider the 2d Chern-Simons theory induced by the
off-shell Poisson bracket (the non-perturbative field theory—non-pertrbative Poisson sigma-model) whose
moduli stack of field (physics)—fields is the symplectic groupoid SG (PX,{—, —}) induced by the Poisson
structure.
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By the discussion below in [7.6.2.1] the Poisson space (PX,{—,—}) defines a boundary field theory
(in the sense of local prequantum field theory) for this 2d Chern-Simons theory, exhibited by a boundary
correspondence of the form

B2U(1)

|

KUMod

Notice that the symplectic groupoid is a version of the symplectic leaf space of the given Poisson manifold
(its O-truncation is exactly the leaf space). Hence in the case of the off-shell Poisson bracket, the symplectic
groupoid is the space of sources of a mechanical system. At the same time it is the moduli space of fields of
the 2d Chern-Simons theory of which the mechanical system is the boundary field theory. Hence the fields
of the bulk field theory are identified with the sources of the boundary field theory. Hence conceptually the
above boundary correspondence diagram is of the following form

Sources

N

Phases

1.3.4 Higher pre-quantum gauge fields

We give an introduction and survey to some aspects of the formulation of higher prequantum field theory in
a cohesive oo-topos.

One of the pleasant consequences of formulating the geometry of (quantum) field theory in terms of higher
stacks, hence in terms of higher topos theory, is that a wealth of constructions find a natural and unified
formulation, which subsumes varied traditional constructions and generalizes them to higher geometry. In
this last part here we give an outlook of the scope of field theoretic phenomena that the theory naturally
captures or exhibits in the first place.

In the following we write H for the collection of higher stacks under consideration. The reader may want
to think of the special case that was discussed in the previous sections, where H = SmoothooGrpd is the
collection of smooth oco-groupoids, hence of higher stacks on the site of smooth manifolds, or, equivalently,
its dense subsite of Cartesian spaces. But one advantage of speaking in terms of higher topos theory is that
essentially every construction considered in the following makes sense much more generally if only H is any
higher topos that satisfies a small set of axioms called (differential) cohesion. This allows one to transport
all considerations across various kinds of geometries. Notably we can speak of higher supergeometry, hence
of fermionic quantum fields, simply by refining the site of definition to be that of supermanifolds: also the
higher topos H = SmoothSupercoGrpd is differentially cohesive.

Therefore we speak in the following in generality of cohesive maps when we refer to maps with geometric
structure, be it topological, smooth, analytic, supergeometric or otherwise. Throughout, this geometric
structure is higher geometric which we will sometimes highlight by adding the “oco-"-prefix as in cohesive
oo-group, but which we will often notationally suppress for brevity. Similarly, all of the diagrams appearing
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in the following are filled with homotopies, but only sometimes we explicitly display them (as double arrows)
for emphasis or in order to label them.

The special case of geometrically discrete cohesion is exhibited by the oo-topos ocoGrpd of bare oo-
groupoids or homotopy types. This is the context of traditional homotopy theory, presented by topological
spaces regarded up to weak homotopy equivalences (“whe”s): ocoGrpd ~ Lyne.Top. One of the axioms
satisfied by a cohesive co-topos H is that the inclusion Disc : coGrpd < H of bare co-groupoids as cohesive
oo-groupoids equipped with discrete cohesive structure has not only a right adjoint co-functor I' : H —
00Grpd — the functor that forgets the cohesive structure and remembers only the underlying bare co-groupoid
— but also a left adjoint | — | : H — coGrpd. This is the geometric realization of cohesive co-groupoids.

The following discussion is based on and in part reviews previous work such as [SSS09¢, [FSS12¢|. Lecture
notes that provide an exposition of this material with an emphasis on fields as twisted (differential) cocycles
are in [Sc12].

e [1.3:4.3] - Cocycles: generalized, parameterized, twisted;
e [1.3.4.2] - Fields of gravity: special and generalized geometry;
o [1.3:4.3] - Gauge fields: higher, twisted, non-abelian;

° — Gauge invariance, equivariance and general covariance.

We discuss now how a plethora of species of (quantum) fields are naturally and precisely expressed by
constructions in the higher topos H. In fact, it is the universal moduli stacks Fields of a given species of fields
which are naturally expressed: those objects such that maps ¢ : X — Fields into them are equivalently
quantum fields of the given species on X. This has three noteworthy effects on the formulation of the
corresponding field theory.

First of all it means that every quantum field theory thus expressed is formally analogous to a o-model
— the “target space” is a higher moduli stack — which brings about a unified treatment of varied types of
QFTs.

Second it means that a differential cocycle on Fields of degree (n + 1) — itself modulated by a map

L : Fields — BnU(l)conn

to the moduli stack n-form connections — serves as an extended Lagrangian of a field theory, in the sense
that it expresses a QFT fully locally by Lagrangian data in arbitrary codimenion: for every closed oriented
worldvolume ¥, of dimension k < n there is a transgressed Lagrangian

[Zk,L] exp(2mi [y, ()

2k, B"Coonn| ————= B""CZ,,

exp(2m'/ [Xk,L]) : Fields(Zg)
P
which itself is a differential (n — k)-form connection on the space of fields on Xi. In particular, when n = k
then BU(1)conn =~ U(1) and the transgressed Lagragian in codimension 0 is the (exponentiated) action
functional of the theory, exp(iS(—)) : Fields(X,,) — U(1). On the other hand, the (n — k)-connections in
higher codimension are higher (off-shell) prequantum bundles of the theory. This we discuss further below
in

Third, it means that the representation of fields by their higher moduli stacks in a higher topos identifies
the notion of quantum field entirely with that of cocycle in general cohomology. This we turn to now in

341

1.3.4.1 Cocycles: generalized, parameterized, twisted We discuss general aspects of cocycles and
cohomology in an oo-topos, as a general blueprint for all of the discussion to follow. The reader eager to
see explicit structure genuinely related to (quantum) physics may want, on first reading, to skip ahead to
1.3.4.2) and come back here only as need be.
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In higher topos theory the notion of cocycle ¢ on some space X with coefficients in some object A and with
some cohomology class [c] is identified simply with that of a map (a morphism) ¢ : X — A with equivalence
class

[c] € H(X,A) :=moH(X,A).

This is traditionally familiar for the case of discrete geometric structure hence bare homotopy theory H =
0oGrpd, where for any Eilenberg-Steenrod-generalized cohomology theory the object E is the corresponding
spectrum, as given by the Brown representability theorem. That over non-trivial sites the same simple
formulation subsumes all of sheaf cohomology (“parameterized cohomology”) is known since [Br73|, but it
appears in the literature mostly in a bit of disguise in terms of some explicit model of a derived global section
functor, computed by means of suitable projective/injective resolutions.)

If here A = Fields is interpreted as the moduli stack of certain fields, then such a cocycle is a field
configuration on X. This is familiar for the case that we think of A = X as the target space of a o-model.
But for instance for G € Grp(H) a (higher) group and A := BGconn a differential refinement of the universel
moduli stack of G-principal co-bundles, a map ¢ : X — BGonn is on the one hand a cocycle in (nonabelian)
differential G-cohomology on X, and on the other hand equivalently a G-gauge field on X. In particular this
means that in higher topos theory gauge field theories are unified with o-models: an (untwisted) gauge field
is a o-modelfield whose target space is a universal differential moduli stack BGconn-

Indeed, the kinds of fields which are identified as o-model fields in higher topos theory, hence with cocycles
in some geometric cohomology theory, is considerable richer, still. The reason for this is that with B € H
any object, the slice H,p is itself again a higher topos. This slice topos is the collection of morphisms of H
into B, where a map between two such morphisms fi2: X192 — B is

l.amapo: X7 - Xoin H

2. a homotopy 7 : f14§>f20¢,

X ¢ X,
: : z, : . :
hence a diagram in H of the form ; K f . We are particularly interested in the case that
1 2
B

B = BG is a moduli stack of G-principal co-bundles (or a differential refinement thereof). The fact that
H is cohesive implies in particular that every morphism ¢g : X — BG has a unique global homotopy fiber
P — X. This is the G-principal bundle over X modulated by g, sitting in a long homotopy fiber sequence
of the form

G——P

|

X - BaG

In particular this means that there is an action of G on P (precisely: a homotopy coherent or A..-action)
and that
P—P//G~=X

is the quotient map of this action. Moreover, conversely every action of G on any object V' € H arises this

way and is modulated by a morphism V//G -2 . BG , sitting in a homotopy fiber sequence of the form
V—V//G
lp
BG

(This and the following facts about G-principal co-bundles in oco-toposes and the representation theory
and twisted cohomology of cohesive co-groups is due to [NSS12a], an account in the present context is in
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section 3.6 here.) This fiber sequence exhibits V//G — BG as the universal V-fiber bundle which is p-
associated to the universal G-principal bundle over BG. For instance the fiber sequence G — * — BG
which defines the delooping of G corresponds to the action of G on itself by right (or left) multiplication;

the fiber sequence V——=V x BG 2 . BG corresponds to the trivial action on any V', and the fiber

sequence G LBG BG of the free loop space object of BG corresponds to the adjoint action of
G on itself.

Another case of special interest is that where V ~ BA and V///G ~ BG are themselves deloopings of
oo-groups. In this case the above fiber sequence reads

BA——>BG ——- BG

and exhibits an extension G of G by A. The implied action of G on BA via Aut(BG) ~ Autg,,(G)//ad is the
datum known from traditional Schreier theory of general (nonabelian) group extensions. Now the previous
discussion implies that if A is equipped with sufficient abelian structure in that also BA is equipped with
oo-group structure (a “braided oco-group”) and such that BG — BG is the quotient projection of a BA-

action, then the extension is classified by an co-group cocycle ¢ : BG ——= B2?A in co-group cohomology
[c] € HZ,(G, A). Notice that this is cohesive group cohomology in that it does respect and reflect the
geometric structure on G and A. Notably in smooth cohesion and for G a Lie group and A = B"K the
n-fold delooping of an abelian Lie group, this reproduces not the naive Lie group cohomology but the refined
Segal-Brylinski Lie group cohomology (this is shown in section 4.4.6.2 here). This implies that for G a

compact Lie group and A = B"U(1) we have an equivalence
HE,, (G, U(1) =~ H™(BG, Z)

between the refined cohesive group cohomology with coefficients in the circle group and the ordinary integral
cohomology of the clasifying space BG ~ |BG| in one degree higher. In other words this means that every

universal characteristic class ¢ : BG —— K(Z,n + 1) is cohesively refined essentially uniquely to (the

instanton sector of) a higher gauge field: a cohesive circle n-bundle (bundle (n — 1)-gerbe) on the universal
moduli stack BG. The “universality” of this higher gauge field is reflected in the fact that this is really the
(twisting structure underlying) an extended action function for higher Chern-Simons theory controld by the
given universal class. This we come back to below in [I.3.4.3]

From this higher bundle theory, higher group theory and higher representation theory, we obtain a finer
interpretation of maps in the slice H,g. First of all one finds that

H/BG ~ GAct

is indeed the oco-category of G-actions and G-action homomorphisms. In particular the base change func-
tors (G¢). and (B¢), along maps B¢ : BG — BG’ corresponds to the (co)induction functors from G-
representations to G’-representations along a group homomorphism ¢. Since all this is homotopy-theoretic
(“derived”) the space of maps in the slice from the trivial representation to any given representation (V, p)
(hence the derived invariants of (V, p)) is the cocycle oo-groupoid of the group cohomology of G with coeffi-
cients in V:

HGrp(G, V) =~ ﬁOH/BG(idBGa p) .

We are interested in the generalizations of this to the case where the univeral G-principal co-bundle mod-
ulated by idgg is replaced by any G-principal bundle modulated by a map gx : X — BG. To see what
general cocycles in H/gg(gx,p) are like, notice that every G-principal oo-bundle over a given X locally

trivializes over a cover U ——= X (an effective epimorphism in H) in that the modulating map becomes
null-homotopic on U: gx|u =~ ptge. But by the universal property of homotopy fibers this means that a
cocycle o : gx — p in H/gq is locally a cocycle o|y : U — V in H with coefficients in the given G-module
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V', as shown on the left of the following diagram:

U ol v Ve PxeV—>V/G

i |-
~ P

X i V)G U x4 . x % .BG

N

This means that o is a cocycle with local coefficients in V', which however globally vary as controlled by gx:
it is twisted by gx. On the right hand of the above diagram the same situation is displayed in an equivalent
alternative perspective: since p : V//G — BG is also the univeral p-associated V-fiber bundle, it follows
that the V-fiber bundle P xg V' — X associated to P — X is its pullback along gx and then using again
the universal property of the homotopy pullback it follows that ¢ is equivalently a section of this associated
bundle. This is the traditional perspective of gx-twisted V-cohomology as familiar notably from twisted
K-theory, as well as from modern formulations of ordinary cohomology with local coefficients.

The perspective of twisted cohomology as cohomology in slice oco-topos H g makes it manifest that
what acts on twisted cocycle spaces are twist homomorphisms, hence maps (¢,1) : gy — gx in H/pg. In
particular for gx and given twist its automorphism oo-group Aut,gg(gx) acts on the twisted cohomology
H/Bc(9x, p) by precomposition in the slice.

In conclusion we find that cocycles and fields in the slice slice co-topos H, g of a cohesive oo-topos over
the delooping of an co-group are structures with components as summarized in the following diagram:

U 1%
Y \ T V//G
BG
local
local cocycle local
cover coefficients
twisted local coefficient
Y X cocycle bundle

=
twi% trgnsf.

. twist - .
twist WJS Wlon

. on local coefficients
twist

coefficients

In the following we list a wide variety of classes of examples of this unified general abstract picture.

1.3.4.2 Fields of gravity: special and generalized geometry As special cases of the above general
discussion, we now discuss moduli oco-stacks of fields of gravity and their generalizations as found in higher
dimensional (super)gravity.

For X € Mfd,, — H a manifold of dimension n, we may naturally regard it as an object in the slice
H /BGr(n) by way of the canonical map 7x : X — BGL(n) that modulates its frame bundle, the principal
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GL(n)-bundle to which the tangent bundle T'X is associated. A map (¢,7) : 7x — 7y in H/gar(n) between
two manifolds X,Y embedded in this way is equivalently a smooth function ¢ : X — Y equipped with an
explicit choice 1 : ¢*1y =~ 7x of identification of the pullback tangent bundle with that of X. In particular
every local diffeomorphism between manifolds gives a morphism in the slice over BGL(n) this way.

The slice topos H /g1 (n) allows us to express physical fields which may not be restricted along arbitrary
morphisms of manifolds (or morphisms of whatever kind of test geometries H is modeled on), but along local
diffeomorphism, such as metric/vielbein fields or symplectic structures.

For let OrthStruc, : BO(n) — BGL(n) be the morphism of moduli stacks induced from the canon-
ical inclusion of the orthogonal group into the general linear group, regarded as an object of the slice,
OrthStruc, € H/ggr(n). Then a cocycle/field

(ox,e) : Tx — OrthStruc,
is equivalently

1. an orthogonal structure ox on X (a choice of Lorentz frame bundle);

2. a wvielbein field e : OrthStruc, c ox —— 7x which equips the frame bundle with that orthogonal
structure.

Together this is equivalently a Riemannian metric field on X, hence a field of Euclidean gravity, and
OrthStruc, € H/gqy, is the universal moduli stack of Riemannian metrics in dimension n. Notice that this
defines a notion of Riemannian metric for any object in H as soon as it is equipped with a GL(n)-principal
bundle. We obtain actual pseudo-Riemannian metrics by considering instead the delooped inclusion of
O(n —1,1) into GL(n) and obtain dS-geometry, AdS-geometry etc. by further varying the signature.

This notion of OrthStruc,-structure in smooth stacks is of course closely related to the notion of
orthogonal structure as considered in traditional homotopy theory. But there is a crucial difference, which
we highlight now. First notice that there is a canonical co-functor

| —| : H— coGrpd ~ LyneTop

which sends every cohesive co-groupoid/oco-stack to its geometric realization. Under certain conditions on
the cohesive co-group G, in particular for Lie groups as considered here, this takes the moduli stack BG to
the traditional classifying space BG. So under this map a choice of vielbein turns into a homotopy lift as
shown on the right of

BO(n) BO(n)
A <
x £ BAL(n) x % parmn)

But since O(n) — GL(n) is the inclusion of a maximal compact subgroup, it is a homotopy equivalence of
the underlying topological spaces. Hence under | — | a choice of OrthStruc,-structure is no choice at all,
up to equivalence, there is no information encoded in this choice. This is of course the familiar statement
that every vector bundle admits an orthogonal structure. But only in the context of cohesive stacks is the
choice of this orthogonal structure actually equivalent to geometric data, to a choice of Riemannian metric.

Also notice that the homotopy fiber of OrthStruc,, is the cohesive coset GL(n)/O(n) (the coset equipped
with its smooth manifold structure) in that we have a fiber sequence

OrthStruc,,
_—

GL(n)/O(n) —— BO(n) BGL(n)

in H, and by the discussion in [1.3.4.1| above a metric field (ox,e) : 7x — OrthStruc,, is equivalently
a Tx -twisted GL(n)/O(n)-cocycle. is reproduces the traditional statement that the space of choices of
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vielbein fields is locally the space of maps into the coset GL(n)/O(n) and fails to be globally so to the extent
that the tangent bundle is non-trivial.

Moreover, by the general discussion in we find that a twist transformation that may act on
orthogonal structures is a morphism 7y — 7x in the slice H/ggr(n). This is equivalently a cohesive map

é:Y — X in H equipped with an equivalence 1 : ¢*7x — 7x from the pullback of the tangent bundle
on X to that on Y. But such an isomorphism witnesses the kind of extra structure provided by local
diffeomorphisms. Hence local diffeomorphisms act as twist morphisms on tangent bundles regarded as twists
for GL(n)/O(n)-structures. This statement of course reproduces the traditional fact that metrics pull back
along local diffeomorphisms (but not along general cohesive maps). Abstractly it is reflected in the fact that
the moduli stack OrthStruc, for metrics in n dimensions is an object not of the base co-topos H, but of
the slice H/BGL(n)-

In conclusion, the following diagram summarizes the components of the formulation of metric fields as
cocycles in the slice over BGL(n), displayed as a special case of the general diagram for twisted cocycles
that is discussed in [[L3.4.11

local
cover coset
orthogonal
diffeomorphism Struc%ure delooped
X orthogonal
tangent b group
bundle éin
tangent / /
bundle delooped
general linear
group

This discussion of metric structure and vielbein fields of gravity is but a special case of generalized vielbein
fields obtained from reduction of structure groups. If ¢ : K — G is any morphism of groups in H (typically
taken to be a subgroup inclusion if one is speaking of structure group reduction, but not necessarily so in
general, as for instance the example of the generalized tangent bundle, discussed in a moment, shows), and
if 7x : X — BG is the map modulating a given G-structure on X, then a map (¢,n) : 7x — ¢ in H/gg
is a generalized vielbein field on X which exhibits the reduction of the structure group from G to H along
c. These c-geometries are compatible with pullback along along twist transformations 7 : 7v — 7x, namely
along maps ¢ : Y — X in H which are generalized local diffeomorphisms in that they are equipped with an

equivalence 7 : ¢*c — Tx .
Of relevance in the T-duality covariant formulation of type II supergravity (“doubled field theory”) is the

reduction along the inclusion of the maximal compact subgroup into the orthogonal group O(n,n) (where
n = 10 for full type II supergravity), whose delooping in H we write

typell : B (O (n)xO (n)) —BO (n,n) .
A spacetime X that is to carry a typell-field accordingly must carry an O(n,n)-structure in the first place
in that it must be equipped with a lift of its tangent bundle 7x € H,pqr(n) in the slice over BGL(n), as

discussed above, to an object 7§ in the slice H/go(,,n). Since there is no suitable homomorphism from
O(n,n) to GL(n), this lift needs to be through a subgroup of O(n,n) that does map to GL(n). The maximal
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such group is called the geometric subgroup Ggeom(n)——= GL(n) . We write

BGgeom (1) B BO(n,n)

J{genTann
BGL(n)

in H. Then for X € Mfd — H a spacetime, a map (7% ,7) : 7x —genTan,, in H ggr(n), hence a

diagram
r8en
X-----= F — — > BGgeom(n)
n
X genTan,,
BGL(n)

in H, is called a choice of generalized tangent bundle for X. Given such, a map
(05", e5™) : Buo 7™ — typell

in the slice H/go(n,n) is equivalent to what is called a generalized vielbein field for type II geometry on
X. This is a model for the generalized fields of gravity in the T-duality-covariant formulation of type II
supergravity backgounds. (See for instance section 2 of [GMPWOS§| for a review and see section 4 here for
discussion in the present context.) So typell € H/go(n ) is the moduli stack for T-duality covariant type
II gravity fields.

Similarly, if X is a manifold of even dimension 2n equipped with a generalized tangent bundle, then a

gen

map Ty —— genComplStruc in the slice with coeflicients in the canonical morphism

genComplStruc : BU(n,n) —— BO(2n,2n)

in a generalized complex structures on Tx. Such genComplStruc-fields appear in compactifications of
supergravity on generalized Calabi- Yau manifolds, such that a global N = 1 supersymmetry is preserved.
Notice that the homotopy fiber sequence of the local coefficient bundle typell is

I
O(n)\O(n,n)/O(n) —= BO(n) x O(n) —2° BO(n,n)
in H. The coset fiber on the left is the familiar local moduli spaces of generalized geometries known from
the literature on T-duality and generalized geometry.

Notice also that the theory automatically determines what replaces the notion of local diffeomorphism
gen

in these generalized type II geometries: the generalized tangent bundles 7% now are the twists, and and a

twist transformation (¢,n) : 7¢°" = 7% in H/gg ) is therefore a cohesive map ¢ : Y — X equipped

geom (1

with an equivalence 1 : ¢*75" —— 7" in H between the pullback of the generalized tangent bundle of

Y and that of Y.

One can consider this setup for moduli objects being arbitrary group homomorphisms genGeom : BK —
BG regarded as objects in the slice H/gg. For instance the delooped inclusion

SuGraCompt,, : BK,, — BE,,)

of the maxiomal compact subgroup of the the exceptional Lie groups produces the moduli object for U-duality

gen

covariant fields of supergravity compactified on an n-dimensional fiber. A map 75— SuGraCompt,,
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is a generalized vielbein field in exceptional generalized geometry [Hull07]. Another type of exceptional
geometry, that we will come back to below in[1.3.5] is that induced by the delooping

G2 Struc : BG; —— BGL(7)

of the defining inclusion of the exceptional Lie group Gs as the subgroup of those linear transformations
of R” which preserves the “associative 3-form” (—, (=) x (=)). For X a manifold of dimension 7, a field
¢ : Tx — GoStruc is a Gy-structure on X.

So far all the groups in the examples have been ordinary cohesive (Lie) groups, hence 0-truncated cohesive
oo-group objects in H. More generally we have “reduction” of structure groups for general oo-groups
exhibited by “higher vielbein fields” which are maps into moduli objects in a slice co-topos.

One degree higher, the first example comes from central extensions

A—sG—=G

of ordinary groups. These induce long fiber sequences

A G G- BA BG BG —°>B24

in H. Here c is the (cohesive) group 2-cocycle that classifies the extension, exhibited as a BA-2-bundle
BG — BG. Generally an object (X,¢x) € H/p is an object X € H equipped with a BA-2-bundle (an
A-bundle gerbe) modulated by a map ¢x : X — B2A. A field (0,7) : ¢x — c in H/p: 4 is a choice o of a

G-principal bundle on X together with an equivalence 1 : o*c —= > ox .

Of particular relevance for physics is of course the example of this which is given by the Spin-extension
of the special orthogonal grouop

SpinStruc w2

BZ» BSpin BSO B2Z, ,

which is classified by the universal second Stiefel-Whitney class wy. (From now on we notationally suppress,
for convenience, the dimension n when displaying these groups.) For ox : X — BSO an orientation structure
on a manifold X, a map

ox — SpinStruc

in H,ggo is equivalently a choice of Spin-structure on ox. Alternatively, if ¢ : X —— B?Z, is the map

modulating a given Zo-2-bundle (Zo-bundle gerbe) over X, then a map ¢x ——= wa covering ox is a

@-twisted spin structure on ox. An important special case of this is where ¢ = c¢1(E)mod?2 is the mod-2
reduction of the Chern class of a given U(1)-principal bundle/complex line bundle on X: a c¢;(F)-twisted
spin structure is equivalently a Spin®-structure on X whose underlying U(1)-principal bundle is E. More
generally, F itself is taken to be part of the field content and so we consider the universal Chern-class

¢y : BU(1) ——= B2Z
of the universal U(1)-principal bundle. There is a diagram
BSpin® —— BU(1)
SpinCStruci \Lclmod2

BSO —~

B2Z,

in H which exhibits the moduli stack of Spin®-principal bundles as the homotopy fiber product of ¢; with
wo. With this, maps
ox — Spin°Struc
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in Hpso are equivalently Spin“-structures on X (for arbitrary underlying U(1)-principal bundle). Notice
that the formalism of twist transformations again tells us what the right kind of transformations is along
which Spin-structures and Spin“-structures may be pulled back: these are maps oy ——=ox in H ggo
and hence in particular those local diffeomorphisms which are orientation-preserving.

All of this is just a low-degree step in a whole tower of higher Spin-structures and higher Spin®-structure
that appear as fields in the effective higher supergravity theories underlying superstring theory. This tower
is the Whitehead tower of BO. Its smooth lift through | — | to a tower of higher moduli stacks has been
constructed in [FSS10] (an interpreted in physics as discussed now in [SSS09¢|, reviewed in the broader
context of cohesive co-toposes in section 4 here):

BFivebrane
FivebraneStruc
1
. 6 P2 7
BString —— = BU(1)
StringStruc
1
. 5P1 3
BSpin B°U(1)
SpinStruc
BSO Ll B2Z,
OrientStruc
BO L BZ,
OrthStruc
BGL

All of these structures can be further twisted. For instance we have the higher analog of Spin® given by the
delooping 2-group of the homotopy fiver product

BString® —— B(Es x Ejg)

C2
1
oP1

B3U(1)

String“2 Struc \L

BSpin

of 1p; with the smooth universal second Chern class ¢, : B(Es x Eg) — B?U(1) . On manifolds X
equipped with a Spin-structure sx : X — BSpin, a field

sy — String“*Struc

in H /Bspin is a choice of String®-structure, equivalently a choice of (Eg x Eg)-principal bundle and an equiv-
alence between its Chern-Simons circle 3-bundle and the Chern-Simons circle 3-bundle of the Spin-structure.
This is the quantum-anomaly-free instanton sector of a gauge field in the effective heterotic supergravity
underlying the heterotic string [SSS09¢]. Below in we discuss how the differential refinement of
String“?-structures capture the dynamical field of gravity and the gauge field in heterotic supergravity.

In summary, the specialization of the diagram of to the anomaly-free instanton-sector of heterotic
supergravity looks as follows.
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delooped
iﬁiﬁ String
2-group
local spi
diffeomorphism strulzzltlilre delOQPGd
Y X spin
G
vielbein ~ group
String® struc.
&
co(gauge field
delooped
general linear-
times circle-3-
group

There are further variants of all these examples and other further cases of gravity-like fields in physics
given by maps in slice toposes. But for the present discussion we leave it at this and now turn to the other
fundamental kind of fields in physics besides gravity: gauge fields.

1.3.4.3 Gauge fields: higher, twisted, non-abelian The other major kind of (quantum) fields besides
the (generalized) fields of gravity that we discussed above are of course gauge fields. A seminal result of Dirac’s
old argument about electric/magnetic charge quantization is that a configuration of the plain electromagnetic
field is mathematically a connection on a U(1)-principal bundle. Similarly the Yang-Mills field of quantum
chromodynamics is mathematically a connection on a G-principal bundle, where G is the corresponding
gauge group. The connection itself is locally the gauge potential traditonally denoted A, while the class of
the underlying global bundle is the magnetic background charge for the case of electromagnetism and is the
instanton sector for the case of G = SU(n).

Analogously, it has long been known that the background B-field to which the string couples is mathe-
matically a connection on a U(1)-principal 2-bundle (often presented as U(1)-bundle gerbe), hence a bundle
that is principal under the higher group (2-group) BU(1). Together with the case of ordinary U (1)-principal
bundles these are the first two (or three) degrees of what are known as cocycles in ordinary differential coho-
mology, a refinement of cocyles modulated in the coefficient stack B"U(1) by curvature twists controled by
smooth differential form data. A general formalization of this based on the underlying topological classifying
spaces K(Z,n+1) ~ |B*U(1)|, or in fact any infinite loop space |BG| representing a generalized cohomology
theory, has been given in [HoSi05]. Here we refine this construction to the cohesive higher topos case and
obtain higher cohesive moduli stacks BGeonn such that maps X — BGeon, with coefficients in these are
differential G-cocycles and hence equivalently (higher) gauge fields on X for the (higher, cohesive) gauge
group G.

An oo-group G € Grp(H) is abelian or Eo, if it is equipped with an n-fold delooping B"G € H for
all n € N. If it is equipped at least with a second delooping B2G, then we say it is a braided oco-group.
Equivalently this means that the single delooping object BG is itself equipped with the structure of an
oo-group. For example the full subcategory of any braided monoidal oco-category on the objects that are
invertible under the tensor product is a braided oo-group, hence the name.

For a braided oco-group G in a cohesive co-topos, the axioms of cohesion induce a canonical map

curvg : BG —— byrB%G

to the de Rham coefficient objects of the group BG. On the one hand this may be interpreted as the
Maurer-Cartan form on th cohesive group BG. Equivalently, one finds that this is the universal curvature
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characteristic of G-principal oo-bundles: the map can be seen to proceed by equipping a G-principal oco-
bundle with a pseudo-connection and then sending that to the coresponding curvature in the de Rham
hypercohomology with coefficients in the co-Lie algebra of G.

In order to pick among those (higher) pseudo-connections with curvature in hypercohomology those that
are genuine (higher) connections characterized by having globally well defined curvature differential form
data, let Qq(—,G) € H be a 0-truncated object equipped with a map Q¢(—,G) —= bgrB?G which has
the following property: for every manifold ¥ the induced map

(2, Qa(—, G)] — [, barB3G]

is a 1-epimorphism (an effective epimorphism, hence an epimorphism in the sheaf topos under 0-truncation).
This expresses the fact that Qg (—,G) is a sheaf of flat Lie(G)-valued differential forms, in that every de
Rham cohomology class over a manifold is represented by such a form.

(More generally one considers a suitable filtration Q%(—,G) — barB?G , hence a kind of universal
mized Hodge structure on G-cohomology).

Then the moduli object BGeony for differential G-cocycles is the homotopy pullback in

BGeonn (=)
BG —° > bz B2G

For example if G ~ B"~'U(1) in smooth oo-groupoids, then the object B"U(1)conn defined this way is
the n-stack which is presented under the Dold-Kan correspondence by the Deligne-complex of sheaves. It
modulates ordinary differential cohomology.

A configuration of the electromagnetic field on a space X is a map X — BU(1)conn. A configuration of
the B-field background gauge field of the bosonic string is a map X — B2U(1)conn. (For the superstring
the situation is a bit more refined, discussed below.) A configuration of the C-field background gauge field
of M-theory involves (among other data) a map X — B3U(1)conn-

Differential T-duality and B, -geometry

Above we have seen that the extended Lagrangian L : BGeonn — B2U(1)conn for G = Spin, SU-Chern-
Simons 3d gauge field theory also serves as the twist that defines the moduli stack BString:? = of Green-
Scharz anomaly-free heterotic background gauge field configurations. In view of this it is natural to ask:
does the extended Lagrangian of U(1)-Chern-Simons theory similarly play a role as part of the background
gauge field structure for superstrings? Indeed this turns out to be the case: the extended U(1)-Chern-Simons
Lagrangian encodes the twist that defines differential T-duality structures and B, -geometry.

To see this, we observe by direct inspection that what in [KaVal0] is called a differential T-duality
structure on a pair of circle-bundles ST — X, X5 — Y over some base Y and equipped with connections V;
and Vs, is a trivialization of the corresponding cup-product circle 3-bundle, hence of the extended Chern-
Simons Lagrangian of two-species U(1)-Chern-Simons theory pulled back along the map that modulates the
two circle bundles.

We now say this again in more detail. Let T" be a circle and T" := Hom(T"',U(1)) the dual circle, with
the canonical pairing denoted (—, —) : T* x T' — U(1). Then the first spacetime X; — Y is modulated by

amapc;: Y —— BT! and its T-dual & : X — Y by amap ¢; : Y — BT

conn ? conn-*
Now the pairing and the cup product together form a universal characteristic map of moduli stacks

(—U—=): B(T' xT") ——=B3U(1) .
By the above discussion, this has a differential refinement

(—U=): B(T" X T conn — B3U(1)conn
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which is the extended Lagrangian of U(1)-Chern-Simons theory in 3d. If instead we regard the same map
as a 3-cocycle, it modulates a higher group extension String(7T* x T1) — T' x T, sitting in a long fiber
sequence of higher moduli stacks of the form

.- —— BU(1) — String(T" x T") — (T" x T") — B2U(1) — BString(T* x T') — B(T* x T') — B*

One sees from this that a differential T-duality structure on (X1, X2) as considered in def. 2.1 of [KaVal()]
is equivalently — when refined to the context of smooth higher geometry — a lift of (cy,¢1) through the left
vertical projection in the homotopy pullback square

' N 4<e<3
BString(T" x T")conn ———————> Q"=

| |

B(Tl X Tl)conn e B3U(1)CODH

hence is a map in the slice over B3U (1)conn, hence is a differential String(T" x T)-structure on the given
data. Along the lines of the discussion in [FSS10] one finds, as for the twisted differential String-structures
discussed above, that such a lift locally corresponds to a choice of 3-form H satisfying

darH = <FA1 /\FA2>,

where A1, Ao are the local connection forms of the two circle bundles. This is the local structure that has
been referred to as By, -geometry, see the corresponding discussion and references given in [FSS12¢].
Observe that by the universal property of homotopy fibers, the underlying trivialization of the cup product
circle 3-bundle corresponds to a choice of factorization of (ci,¢1) as shown on the bottom of the following
diagram
X1 Xy XQ & BQU(l) *

| |

Y — = BString(T! x T') —= B(T* x T")

Forming the consecutive homotopy pullback of the point inclusion as given by these two squares, the map
X1 Xy Xo — B2U(1) induced by the universal property of the homotopy pullback modulates a circle 2-
bundle (U(1)-bundle gerbe) on the correspondence space. This is the bundle gerbe on the correspondence
space considered in 2.2, 2.3 of [KaVal(]. Notice that this is just a special case of the general phenomenon
of twisted higher bundles, as laid out in [NSS12a].

1.3.4.4 Gauge invariance, equivariance and general covariance The notion of gauge transforma-
tion and gauge invariance is built right into higher geometry. Any object X € H in general contains not
just (local) points, but also gauge equivalences between these, gauge-of-gauge equivalences between those,
and so on. A map exp(iS(—)) : Fields — U(1) is automatically a gauge invariant function with respect to
whatever gauge transformations the species of fields encoded by the moduli object Fields encodes.

Specifically, if an co-group G acts on some Y, then a G-equivariance structure on a map ¥ — A is an
extension

along the canonical quotient projection.
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If A here is a O-truncated object such that U(1), then the existence of such an extension is just a property.
But if A has itself gauge equivalences, say if A = B"U(1)conn for positive n-then a choice of such an extension
is genuine extra structure. For n = 1 this is the familiar structure on an equivariant bundle. For higher n it
is a suitable higher order generalization of this notion.

Equivariance is preserved by transgression. If L : Fields — B"U(1)conn is an extended Lagrangian, hence
equivalently a equivariant n-connection on the space of fields, then for ¥, any object the mapping space
[Xk, Fields] contains the gauge equivalences of the given field species on ¥ and accordingly the transgressed
Lagrangian

exp(27i / Yk, L)) @ [Zg, Fields] — B *U(1)conn
P

is gauge invariant (precisely: carries gauge-equivariant structure).
A particular kind of gauge equivalence/equivariance is the diffeomorphism equivariance of a generally
covariant field theory. In such a field theory two fields ¢1,¢2 : ¥ — Fields are to be regarded as gauge

equivalent if there is a diffeomorphism, hence an automorphism o : ¥ ———= ¥ in H, such that a*¢y ~ ¢1.

Formally this means that for generally covariant field theries the field space [, Fields] over a given
worldvolume ¥ is to be formed in the slice H/gau¢ () ~ Aut(X)Act, with 3 understood as equipped with
the defining Aut(X)-action and with Fields equipped with the trivial Aut(X)-action, we write

[¥, Fields]/Baut(s) € H/BAut()

for emphasis. To see this one observes that generally for (V7, p1), (Va, p2) € GAct two objects equipped with
G-action, their mapping space [V1, V2] g formed in the slice is the absolute mapping space [V1, V5] formed
in H and equipped with the conjugation action of G, under which an element g € G acts on an element
f: Vi — Vi by sending it to p2(g) = o f o p1(g).

Hence the mapping space [¥, Fields] /g aut(x) formed in the slice corresponds in H to the fiber sequence

Y —— Aut(X)\\[%, Fields]

|

BAut(Y)

and a generally covariant field theory for the given species of fields is one whose configuration spaces are
Aut(X)\\[X, Fields], the action groupoids of the co-groupoid of field configurations on ¥ by the diffeomor-
phism action on .

Ordinary 3d Chern-Simons theory is strictly speaking to be regared as a generally covarnat field theory,
but this is often not made explicit, due to a special property of 3d Chern-Simons theory: if two on-shell
field configurations are related by a diffeomorphism (connected to the identity), then they are already gauge
equivalent also by a gauge transformation in [3, BG onn|. This holds in fact also for all higher Chern-Simons
theories that come from binary invariant polynomials, but it does not hold fully generally. Even when this
is the case, supporessing the general covariance is a dubious move, since while the gauge equivalence classes
may coincide, 79[, Fields]onshen =~ 7oA ut(X)\\[X, Fields]onshen, the two full homotopy types still need not
be equivalent and hence the corresponding quantum field theories may not be equivalent.

1.3.5 Higher geometric prequantum theory

We had indicated in section how a single extended Lagrangian, given by a map of universal higher moduli
stacks L : BGconn — B"U(1)conn, induces, by transgression, circle (n — k)-bundles with connection

holy;, Maps(Zy, L) : Maps(Xx, BGeonn) — B" "U(1)conn

on moduli stacks of field configurations over each closed k-manifold ¥. In codimension 1, hence for k = n—1,
this reproduces the ordinary prequantum circle bundle of the n-dimensional Chern-Simons type theory, as
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discussed in section [1.4.1.3] The space of sections of the associated line bundle is the space of prequantum
states of the theory. This becomes the space of genuine quantum states after choosing a polarization (i.e., a
decomposition of the moduli space of fields into canonical coordinates and canonical momenta) and restricting
to polarized sections (i.e., those depending only on the canonical coordinates). But moreover, for each ¥
we may regard holy, Maps(Xy,L) as a higher prequantum bundle of the theory in higher codimension and
hence consider its prequantum geometry in higher codimension.

We discuss now some generalities of such a higher geometric prequantum theory and then show how this
perspective sheds a useful light on the gauge coupling of the open string, as part of the transgression of
prequantum 2-states of Chern-Simons theory in codimension 2 to prequantum states in codimension 1.

We indicate now the basic concepts of higher extended prequantum theory and how they reproduce
traditional prequantum theory.
Consider a (pre)-n-plectic form, given by a map

w:X — Q" (= R)y

in H. A n-plectomorphism of (X,w) is an auto-equivalence of w regarded as an object in the slice H JQrEts

X\ = /X
R)cl

Qmt(—

hence a diagram of the form

A prequantization of (X,w) is a choice of prequantum line bundle, hence a choice of lift V in

BnU(l)conn

/ lFH :

n+1
X w ch

modulating a circle n-bundle with connection on X. We write ¢(V) : X Y, B"U(1)conn — B"U(1) for the
underlying (B"~1U(1))-principal n-bundle. An autoequivalence

0:V-5vV
of the prequantum n-bundle regarded as an object in the slice H gn(1)..,,, hence a diagram in H of the
form
X = X
=
v v
BnU(l)conn

is an (exponentiated) prequantum operator or quantomorphism or regular contact transformation of the
prequantum geometry (X, V), forming an oo-group in H. The L..-algebra of this quantomorphism co-group
is the higher Poisson bracket Lie algebra of the system. If X is equipped with abelian group structure
then the quantomorphisms covering these translations form the Heisenberg oo-group. The homotopy labeled
O above diagram is the Hamiltonian of the prequantum operator. The image of the quantomorphisms in
the symplectomorphisms (given by composition the above diagram with the curvature morphism F_ :
B"U(1)conn — Q?{H) is the group of Hamiltonian n-plectomorphisms. A lift of an oco-group action G —

Aut(X) on X from automorphisms of X (diffecomorphism) to quantomorphisms is a Hamiltonian action,
infinitesimally (and dually) a momentum map.

238



To define higher prequantum states we fix a representation (V, p) of the circle n-group B"~1U(1). By
the general results in [NSS12a] this is equivalent to fixing a homotopy fiber sequence of the form

V——=V//B"U(1)

lp

B"U(1)

in H. The vertical morphism here is the universal p-associated V -fiber co-bundle and characterizes p itself.
Given such, a section of the V-fiber bundle which is p-associated to ¢(V) is equivalently a map

U:c(V)—p

in the slice H/gny(1). This is a higher prequantum state of the prequantum geometry (X, V). Since every
prequantum operator O as above in particular is an auto-equivalence of the underlying prequantum bundle
0 :¢c(V) = ¢(V) it canonically acts on prequantum states given by maps as above simply by precomposition

UisOoW.

Notice also that from the perspective of section all this has an equivalent interpretation in terms of
twisted cohomology: a preqantum state is a cocycle in twisted V-cohomology, with the twist being the
prequantum bundle. And a prequantum operator/quantomorphism is equivalently a twist automorphism
(or “generalized local diffeomorphism”).

For instance if n = 1 then w is an ordinary (pre)symplectic form and V is the connection on a circle
bundle. In this case the above notions of prequantum operators, quantomorphism group, Heisenberg group
and Poisson bracket Lie algebra reproduce exactly all the traditional notions if X is a smooth manifold, and
generalize them to the case that X is for instance an orbifold or even itself a higher moduli stack, as we have
seen. The canonical representation of the circle group U(1) on the complex numbers yields a homotopy fiber
sequence

C—=C//u(1)

l”’

BU(1)

where C//U(1) is the stack corresponding to the ordinary action groupoid of the action of U(1) on C, and
where the vertical map is the canonical functor forgetting the data of the local C-valued functions. This is
the universal complez line bundle associated to the universal U(1)-principal bundle. One readily checks that
a prequantum state ¥ : ¢(V) — p, hence a diagram of the form

C//u(1)

&/

in H is indeed equivalently a section of the complex line bundle canonically associated to ¢(V) and that
under this equivalence the pasting composite

C//u(n)

&()/
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is the result of the traditional formula for the action of the prequantum operator O on W.

Instead of forgetting the connection on the prequantum bundle in the above composite, one can equiv-
alently equip the prequantum state with a differential refinement, namely with its covariant derivative and
then exhibit the prequantum operator action directly. Explicitly, let C//U(1)conn denote the quotient stack
(C x QY(—,R))//U(1), with U(1) acting diagonally. This sits in a homotopy fiber sequence

Q — Q//Q(l)conn
pconn

BU(l)conn

which may be thought of as the differential refinement of the above fiber sequence C — C//U(1) — BU(1).
(Compare this to section where we had similarly seen the differential refinement of the fiber sequence
G/T, — BT\ — BG, which analogously characterizes the canonical action of G on the coset space G/T).)
Prequantum states are now equivalently maps

‘/I\’ : v — Pconn

in H/By(1).,,,- This formulation realizes a section of an associated line bundle equivalently as a connection

on what is sometimes called a groupoid bundle. As such, ¥ has not just a 2-form curvature (which is that
of the prequantum bundle) but also a 1-form curvature: this is the covariant derivative Vo of the section.

Such a relation between sections of higher associated bundles and higher covariant derivatives holds more
generally. In the next degree for n = 2 one finds that the quantomorphism 2-group is the Lie 2-group which
integrates the Poisson bracket Lie 2-algebra of the underlying 2-plectic geometry as introduced in [Roglla].
In the next section we look at an example for n = 2 in more detail and show how it interplays with the
above example under transgression.

The above higher prequantum theory becomes a genuine quantum theory after a suitable higher analog
of a choice of polarization. In particular, for L : X — B"U(1)conn an extended Lagrangian of an n-
dimensional quantum field theory as discussed in all our examples here, and for ¥ any closed manifold,
the polarized prequantum states of the transgressed prequantum bundle holy, Maps(Xy, L) should form the
(n — k)-vector spaces of higher quantum states in codimension k. These states would be assigned to X
by the extended quantum field theory, in the sense of [L-TFT], obtained from the extended Lagrangian L
by extended geometric quantization. There is an equivalent reformulation of this last step for n = 1 given
simply by the push-forward of the prequantum line bundle in K-theory (see section 6.8 of [GGKO02]) and
so one would expect that accordingly the last step of higher geometric quantization involves similarly a
push-forward of the associated V-fiber co-bundles above in some higher generalized cohomology theory. But
this remains to be investigated.

1.4 Examples and applications
We consider now some more or less traditional examples of pre-quantum field theories, indicating how they
are secretly more properly regarded as examples of the higher geometric prequantum field theory discussed
above.

° — Prequantum 3d Chern-Simons theory;

° — Prequantum higher Chern-Simons theory;

e [1.4.3] - The anomaly-free gauge coupling of the open string;

e [1.4.4] - Super p-branes sigma-models on supergravity backgrounds.
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1.4.1 Prequantum 3d Chern-Simons theory

For G a simply connected compact simple Lie group, the above construction of the refined Chern-Weil
homomorphism yields a differential characteristic map of moduli stacks

C: BGconn —— BSU(l)conn

which is the smooth and differential refinement of the universal characteristic class [¢] € H*(BG,Z).

We discuss now how this serves as the extended Lagrangian for 3d Chern-Simons theory in that its
transgression to mapping stacks out of k-dimensional manifolds yields all the “geometric prequantum” data
of Chern-Simons theory in the corresponding dimension, in the sense of geometric quantization. For the
purpose of this exposition we use terms such as “prequantum n-bundle” freely without formal definition.
We expect the reader can naturally see at least vaguely the higher prequantum picture alluded to here. A
more formal survey of these notions is in section [1.3.4]

The following paragraphs draw from [FSS13a].

If X is a compact oriented manifold without boundary, then there is a fiber integration in differential
cohomology lifting fiber integration in integral cohomology [HoSi05]:

Artdm X (x sy, 7) x H™(Y,Z)

|

Hrdm X (X Y, 7) e, H"(Y;Z) .

In [GoTe00] Gomi and Terashima describe an explicit lift of this at the level of Cech-Deligne cocycles. Such
a lift has a natural interpretation as a morphism

holx : Maps(X, B" T X7 (1) .00n) — B"U(1)conn

from the (n + dim X)-stack of moduli of U(1)-(n + dim X )-bundles with connection over X to the n-stack
of U(1)-n-bundles with connection, [6.4.16} Therefore, if ¥ is a compact oriented manifold of dimension &
with 0 < k < 3, we have a composition

& hol
Maps(Ex, BGeonn) —2P*C0, ©1aps(Se, B3 (Deonn) ——5 B3 U (1)eomn -

This is the canonical U(1)-(3 — k)-bundle with connection over the moduli space of principal G-bundles with
connection over Yy induced by ¢: the transgression of ¢ to the mapping space. Composing on the right with
the curvature morphism we get the underlying canonical closed (4 — k)-form

Maps(zkv BGconn) — 947’6(_; R)Cl

on this moduli space. In other words, the moduli stack of principal G-bundles with connection over ¥, carries
a canonical pre-(3 — k)-plectic structure (the higher order generalization of a symplectic structure, [Roglla))
and, moreover, this is equipped with a canonical geometric prequantization: the above U(1)-(3 — k)-bundle
with connection.

We now discuss in more detail the cases k =0,1, 2, 3.

e [[4.1.1- k = 0: the universal Chern-Simons 3-connection ¢&;

o [[.41.2]- k = 1: the Wess-Zumino-Witten gerbe;

o [[.4.1.3]- k = 2: Symplectic structure on the moduli of flat connections;
o [[4T4 - k = 3: the Chern-Simons action functional.
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1.4.1.1 k = 0: the universal Chern-Simons 3-connection ¢ The connected 0-manifold X is the
point and, by definition of Maps, one has a canonical identification

Maps(*,S) = S
for any (higher) stack S. Hence the morphism

Maps(*,&
(+,€)

Maps(*, BGconn) Maps(*, BBU(I)conn)

is nothing but the universal differential characteristic map ¢ : BGeonn — B3U(1)conn that refines the
universal characteristic class ¢. This map modulates a circle 3-bundle with connection (bundle 2-gerbe)
on the universal moduli stack of G-principal connections. For V : X — BGeon, any given G-principal
connection on some X, the pullback

&V): X —> BGeomn ——> B3U(1)comn

is a 3-bundle (bundle 2-gerbe) on X which is sometimes in the literature called the Chern-Simons 2-gerbe of
the given connection V. Accordingly, ¢ modulates the universal Chern-Simons bundle 2-gerbe with universal
3-connection. From the point of view of higher geometric quantization, this is the prequantum 3-bundle of
extended prequantum Chern-Simons theory.

This means that the prequantum U(1)-(3 — k)-bundles associated with k-dimensional manifolds are all
determined by the prequantum U(1)-3-bundle associated with the point, in agreement with the formulation
of fully extended topological field theories [FHLT09]. We will denote by the symbol w](;%wnn the pre-3-plectic
4-form induced on BGeonn by the curvature morphism.

1.4.1.2 k = 1: the Wess-Zumino-Witten gerbe We now come to the transgression of the extended
Chern-Simons Lagrangian to the closed connected 1-manifold, the circle £; = S'. Notice that, on the one
hand, we can think of the mapping stack Maps(21, BGconn) =~ Maps(S!, BGeonn) as a kind of moduli stack
of G-connections on the circle — up to the subtlety of differential concretification discussed in On
the other hand, we can think of that mapping stack as the free loop space of the universal moduli stack
BGCOnn~

The subtlety here is related to the differential refinement, so it is instructive to first discard the differential
refinement and consider just the smooth characteristic map ¢ : BG — B3U(1) which underlies the extended
Chern-Simons Lagrangian and which modulates the universal circle 3-bundle on BG (without connection).
Now, for every pointed stack x — S we have the corresponding (categorical) loop space QS := x xg *, which
is the homotopy pullback of the point inclusion along itself. Applied to the moduli stack BG this recovers
the Lie group G, identified with the sheaf (i.e, the O-stack) of smooth functions with target G: QBG ~ G.
This kind of looping/delooping equivalence is familiar from the homotopy theory of classifying spaces; but
notice that since we are working with smooth (higher) stacks, the loop space 2BG also knows the smooth
structure of the group G, i.e. it knows G as a Lie group. Similarly, we have

OB3U(1) ~ B2U(1)

and so forth in higher degrees. Since the looping operation is functorial, we may also apply it to the
characteristic map c itself to obtain a map

Qc: G — B*U(1)

which modulates a BU(1)-principal 2-bundle on the Lie group G. This is also known as the WZW-bundle
gerbe; see for instance [ScWa]. The reason, as discussed there and as we will see in a moment, is that this is the
2-bundle that underlies the 2-connection with surface holonomy over a worldsheet given by the Wess-Zumino-

Witten action functional. However, notice first that there is more structure implied here: by the discussion
in [6.4.5.2] for any pointed stack S there is a natural equivalence QS ~ Maps, (II1(S1),S), between the loop
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space object QS and the moduli stack of pointed maps from the categorical circle [(S') ~ BZ to S. On the
other hand, if we do not fix the base point then we obtain the free loop space object LS ~ Maps([(S*),S).
Since a map [(X) — BG is equivalently a map ¥ — bBG, i.e., a flat G-principal connection on X, the free
loop space LBG is equivalently the moduli stack of flat G-principal connections on S'. We will come back to
this perspective in section below. The homotopies that do not fix the base point act by conjugation
on loops and hence we have, for any smooth (higher) group, that

LBG ~ G// 2aG

is the (homotopy) quotient of the adjoint action of G on itself; see [NSS12a] for details on homotopy actions
of smooth higher groups. For G a Lie group this is the familiar adjoint action quotient stack. But the
expression holds fully generally. Notably, we also have

LB3U(1) ~ B2U(1)//aaB*U(1)

and so forth in higher degrees. However, in this case, since the smooth 3-group B2U(1) is abelian (it is a
groupal E.-algebra) the adjoint action splits off in a direct factor and we have a projection

LB3U(1) ~ B2U(1) x (x//B2U(1)) —2= B2U(1) .

In summary, this means that the map Q¢ modulating the WZW 2-bundle over G descends to the adjoint
quotient to the map
proLe:G//aaG — BQU(I) ,

and this means that the WZW 2-bundle is canonically equipped with the structure of an adg-equivariant
bundle gerbe, a crucial feature of the WZW bundle gerbe.

We emphasize that the derivation here is fully general and holds for any smooth (higher) group G and
any smooth characteristic map ¢ : BG — B"U(1). Each such pair induces a WZW-type (n — 1)-bundle
on the smooth (higher) group G modulated by Qc and equipped with G-equivariant structure exhibited by
p1oLc. We discuss such higher examples of higher Chern-Simons-type theories with their higher WZW-type
functionals further below in section [7.2.2]

We now turn to the differential refinement of this situation. In analogy to the above construction, but
taking care of the connection data in the extended Lagrangian ¢, we find a homotopy commutative diagram
in H of the form

Maps(S',¢
Maps(St; BGeonn) aps(5 ) Maps(S*; B?U(1)conn)

holl lhol

G//AdG = B2U(l)conn//AdeU(l)conn H]32[J(1)00nn 5

G

where the vertical maps are obtained by forming holonomies of (higher) connections along the circle. The
lower horizontal row is the differential refinement of Qc: it modulates the Wess-Zumino-Witten U (1)-bundle

gerbe with connection
wzw : G — B2U(1)Conn .

That wzw is indeed the correct differential refinement can be seen, for instance, by interpreting the construc-
tion by Carey-Johnson-Murray-Stevenson-Wang in [CIMSWO05, section 3] in terms of the above diagram.
There is constructed a G-principal connection

YVaniv : G % ST — BGeonn

on the manifold G x S* with the property that its holonomy around {g} x S! is g. By the Hom-adjunction
this is equivalently a morphism R
vuniv G — [Sla BGconn]
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which makes this diagram commute:
Maps(S*; BGeonn)
(Pag:Vay) lhol
G— G//adG ,
Correspondingly, we have a total homotopy commutative diagram of the form

L
Maps(S!; BGeonn) m Maps(S'; B3U (1) conn)

Py Va holg1
( 0 0 ) holl ihol \

CVV//AdC: hukdad BQU(l)conn//AdBQU(l)conn *)BQU(1>Conn .

G

Then Proposition 3.4 from [CIMSWO05| identifies the upper path (and hence also the lower path) from G to
B2U (1) conn with the Wess-Zumino-Witten bundle gerbe.

Passing to equivalence classes of global sections, we see that wzw induces, for any smooth manifold X, a
natural map C*(X;G) — I;TQ(X; Z). In particular, if X = 35 is a compact Riemann surface, we can further
integrate over X to get

wzw : C®(Xq; Q) — H*(X; Z) f2—2> U().

This is the topological term in the Wess-Zumino-Witten model; see [Ga88| [FrWi99, [CIMO02]. Notice how the
fact that wzw factors through G//aqG gives the conjugation invariance of the Wess-Zumino-Witten bundle
gerbe, and hence of the topological term in the Wess-Zumino-Witten model.

1.4.1.3 k = 2: Symplectic structure on the moduli of flat connections For Y5 a compact Riemann
surface, the transgression of the extended Lagrangian ¢ yields a map

Maps(5,¢&)
—

hol
MapS(Z% BGconn) MapS(E% B3U(1)c0nn) l> BU(l)conn )

modulating a circle-bundle with connection on the moduli space of gauge fields on ¥5. The underlying
curvature of this connection is the map obtained by composing this with

Feoy
BU(l)conn —_— 92(_; R)Cl )

which gives the canonical pre-symplectic 2-form
w: MapS(ZQ; BGconn) I 92(*; R)cl

on the moduli stack of principal G-bundles with connection on 5. Equivalently, this is the transgression
of the invariant polynomial (—) : BGeonn — Q4 to the mapping stack out of ¥3. The restriction of

this 2-form to the moduli stack GFlatConn(3;) of flat G-principal connectionﬂ on X9 induces a canonical

14 To see that the form indeed descends to that moduli stack one may use the component presentation from section [1.1.2.4
and compute for each plot U — [X2, BGconn] the Chern-Simons 3-form of a 1-form on ¥ x U as follows:

CS(Ay + As)u,s,s = kap AL A dy AS + kap AG A ds AL + ko A A dsAY + 1 Cape AG A A% A AS
N— ——

dsy(kqp Af AAY)
b
thopAfds AY

= kap A% N dy A% + ds(kap AY A AY) + 2k Af (ds A% + 2CP g A AL)

(FY)s,x

The first term is the symplectic pre-potential that should appear on the moduli stack of flat connections on a surface X. The
second term vanishes when integrated over a closed ¥. The third vanishes exactly when evaluated on flat connections.
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symplectic structure on the moduli space
HOIn(7T1 (22), G)/AdG

of flat G-bundles on 5. Such a symplectic structure was identified as the phase space structure of Chern-
Simons theory in [Wi98d].

To see more explicitly what this form w is, consider any test manifold U € CartSp. Over this the map of
stacks w is a function which sends a G-principal connection A € Q' (U x ¥3) (using that every G-principal
bundle over U x ¥, is trivializable) to the 2-form

/ (FANFy) e Q2(U).
Yo

Now if A represents a field in the phase space, hence an element in the concretification of the mapping stack,
then it has no “leg” |E| along U, and so it is a 1-form on Y5 that depends smoothly on the parameter U: it
is a U-parameterized variation of such a 1-form. Accordingly, its curvature 2-form splits as

Fa=F3 4+ dyA,

where F3? := dy, A+ 1[ANAA] is the U-parameterized collection of curvature forms on Xs. The other term is
the variational differential of the U-collection of forms. Since the fiber integration map fzz QMU x 8y) —
02(U) picks out the component of (F4 A Fa) with two legs along ¥5 and two along U, integrating over the
former we have that

W‘U = / <FA/\FA> :/ <dUA/\dUA> S QEI(U).
22 E2
In particular if we consider, without loss of generality, (U = R?)-parameterized variations and expand
dyA = (61A)du1 + (52A)du2 € QQ(EQ X U) s

then
w|U :/ <51A,52A>
P

In this form the symplectic structure appears, for instance, in prop. 3.17 of part I of [Fr95] (in [Wi96] this
corresponds to (3.2)).

In summary, this means that the circle bundle with connection obtained by transgression of the extended
Lagrangian ¢ is a geometric prequantization of the phase space of 3d Chern-Simons theory. Observe that
traditionally prequantization involves an arbitrary choice: the choice of prequantum bundle with connection
whose curvature is the given symplectic form. Here we see that in extended prequantization this choice is
eliminated, or at least reduced: while there may be many differential cocycles lifting a given curvature form,
only few of them arise by transgression from a higher differential cocycles in top codimension. In other words,
the restrictive choice of the single geometric prequantization of the invariant polynomial (—, —) : BGconn —
Qél by € : BGeonn — B2U(1)conn down in top codimension induces canonical choices of prequantization over
all Xy, in all lower codimensions (n — k).

1.4.1.4 k = 3: the Chern-Simons action functional Finally, for Y3 a compact oriented 3-manifold
without boundary, transgression of the extended Lagrangian ¢ produces the morphism

1’1012}3

Maps(Es.8), Maps(X3; B*U(1)conn) —>

MapS(ZS; BGConn) Q(l) .

Since the morphisms in Maps(X3; BGconn) are gauge transformations between field configurations, while
U(1) has no non-trivial morphisms, this map necessarily gives a gauge invariant U(1)-valued function on

15That is, when written in local coordinates (u,o) on U x g, then A = A;(u,0)du’ + A;(u,o)do? reduces to the second
summand.
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field configurations. Indeed, evaluating over the point and passing to isomorphism classes (and hence to
gauge equivalence classes), this induces the Chern-Simons action functional

Se : {G-bundles with connection on X3} /iso — U(1) .

It follows from the description of ¢ that if the principal G-bundle P — 33 is trivializable then

Sa(P, V) =exp2mi | CS3(4),
33

where A € Q1(X3, g) is the g-valued 1-form on Y3 representing the connection V in a chosen trivialization of
P. This is actually always the case, but notice two things: first, in the stacky description one does not need
to know a priori that every principal G-bundle on a 3-manifold is trivializable; second, the independence of
Se(P, V) on the trivialization chosen is automatic from the fact that Ss is a morphism of stacks read at the
level of equivalence classes.

Furthermore, if (P, V) can be extended to a principal G-bundle with connection (P, V) over a compact
4-manifold ¥4 bounding X3, one has

Sa(P, V) = exp 27ri/ gb*w](;%mnn = exp 27ri/ (Fg,Fg) ,
24 ) E4

where ¢ : ¥4 — BGconn is the morphism corresponding to the extended bundle (15, @) Notice that the
right hand side is independent of the extension chosen. Again, this is always the case, so one can actually
take the above equation as a definition of the Chern-Simons action functional, see, e.g., [Fr95]. However,
notice how in the stacky approach we do not need a priori to know that the oriented cobordism ring is
trivial in dimension 3. Even more remarkably, the stacky point of view tells us that there would be a natural
and well-defined 3d Chern-Simons action functional even if the oriented cobordism ring were nontrivial in
dimension 3 or that not every G-principal bundle on a 3-manifold were trivializable. An instance of checking
a nontrivial higher cobordism group vanishes can be found in [KS05], allowing for the application of the
construction of Hopkins-Singer [HoSi05].

1.4.1.5 The Chern-Simons action functional with Wilson loops To conclude our exposition of
the examples of 1d and 3d Chern-Simons theory in higher geometry, we now briefly discuss how both unify
into the theory of 3d Chern-Simons gauge fields with Wilson line defects. Namely, for every embedded knot

LSt Xy

in the closed 3d worldvolume and every complex linear representation R : G — Aut(V') one can consider
the Wilson loop observable W, r mapping a gauge field A : 3 — BGconn, to the corresponding “Wilson loop
holonomy”

W, r: A~ trr(hol(¢*A)) € C.

This is the trace, in the given representation, of the parallel transport defined by the connection A around
the loop ¢ (for any choice of base point). It is an old observationﬁ that this Wilson loop W(C, A, R) is
itself the partition function of a 1-dimensional topological o-model quantum field theory that describes the
topological sector of a particle charged under the nonabelian background gauge field A. In section 3.3 of
[Wi96] it was therefore emphasized that Chern-Simons theory with Wilson loops should really be thought
of as given by a single Lagrangian which is the sum of the 3d Chern-Simons Lagrangian for the gauge field
as above, plus that for this topologically charged particle.

We now briefly indicate how this picture is naturally captured by higher geometry and refined to a single
extended Lagrangian for coupled 1d and 3d Chern-Simons theory, given by maps on higher moduli stacks. In
doing this, we will also see how the ingredients of Kirillov’s orbit method and the Borel-Weil-Bott theorem

16 This can be traced back to [BBS78|; a nice modern review can be found in section 4 of [Be02].
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find a natural rephrasing in the context of smooth differential moduli stacks. The key observation is that
for (A, —) an integral weight for our simple, connected, simply connected and compact Lie group G, the
contraction of g-valued differential forms with A extends to a morphism of smooth moduli stacks of the form

(A=) e Ql(_79)//z>\ — BU(1)conn ,

where T — G is the maximal torus of G which is the stabilizer subgroup of (A, —) under the coadjoint
action of G on g*. Indeed, this is just the classical statement that exponentiation of (A, —) induces an
isomorphism between the integral weight lattice Iy (\) realtive to the maximal torus Ty and the Z-module
Homg,p(Th,U(1)) and that under this isomorphism a gauge transformation of a g-valued 1-form A turns
into that of the u(1)-valued 1-form (X, A).

This is the extended Lagrangian of a 1-dimensional Chern-Simons theory. In fact it is just a slight variant
of the trace-theory discussed there: if we realize g as a matrix Lie algebra and write (o, 8) = tr(a - 8) as the
matrix trace, then the above Chern-Simons 1-form is given by the “A-shifted trace”

CS\(A) :=tr(\- A) € Q' (—R).

Then, clearly, while the “plain” trace is invariant under the adjoint action of all of G, the A-shifted trace is
invariant only under the subgroup T of G that fixes A.
Notice that the domain of (A, —) naturally sits inside BG.onn by the canonical map

Ql(_vg)//z)\ - Ql(_’g)//G = BGconn .

One sees that the homotopy fiber of this map to be the coadjoint orbit Oy — g* of (A, =), equipped with
the map of stacks
0:0\=G//T, = Q' (~,9)//T,

which over a test manifold U sends g € C*°(U, @) to the pullback g*0g of the Maurer-Cartan form. Com-
posing this with the above extended Lagrangian (A, —) yields a map

<A,7>
<)‘7 0> : OA L’ Ql(fvg)//z)\ — BU(l)conn

which modulates a canonical U(1)-principal bundle with connection on the coadjoint orbit. One finds that
this is the canonical prequantum bundle used in the orbit method [Kir04]. In particular its curvature is the
canonical symplectic form on the coadjoint orbit.

So far this shows how the ingredients of the orbit method are incarnated in smooth moduli stacks. This
now immediately induces Chern-Simons theory with Wilson loops by considering the map Q'(—,g)//T, —
BGeonn itself as the targe@ for a field theory defined on knot inclusions ¢ : S' < 33. This means that a
field configuration is a diagram of smooth stacks of the form

(L"A)9
St Q= 9)//T

| = |

23 T BGconn )

i.e., that a field configuration consists of
e a gauge field A in the “bulk” Xs;

e a G-valued function g on the embedded knot

I7This means that here we are secretely moving from the topos of (higher) stacks on smooth manifolds to its arrow topos,

see section m below.
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such that the restriction of the ambient gauge field A to the knot is equivalent, via the gauge transforma-
tion g, to a g-valued connection on S' whose local g-valued 1-forms are related each other by local gauge
transformations taking values in the torus 7). Moreover, a gauge transformation between two such field
configurations (4, g) and (A’,¢’) is a pair (tg,,ts1) consisting of a G-gauge transformation ¢y, on X3 and
a Ty-gauge transformation tg1 on S*, intertwining the gauge transformations g and ¢’. In particular if the
bulk gauge field on X3 is held fixed, i.e., if A = A’, then tg: satisfies the equation ¢’ = gtg1. This means that
the Wilson-line components of gauge-equivalence classes of field configurations are naturally identified with
smooth functions S* — G/T), i.e., with smooth functions on the Wilson loop with values in the coadjoint
orbit. This is essentially a rephrasing of the above statement that G /T is the homotopy fiber of the inclusion
of the moduli stack of Wilson line field configurations into the moduli stack of bulk field configurations.
We may postcompose the two horizontal maps in this square with our two extended Lagrangians, that
for 1d and that for 3d Chern-Simons theory, to get the diagram
(L A)9

s! QN (—, 9)//T 2" BU(1) comn

|~ 1

E3 I BGconn

BgU(l)conn .

Therefore, writing Fieldscsw (Sl < 23) for the moduli stack of field configurations for Chern-Simons
theory with Wilson lines, we find two action functionals as the composite top and left morphisms in the
diagram

holx, Maps(X3,¢)

Fieldscs.sw (Sl &y 23) — ~ Maps(Z3, BGeonn) U(1)

|

Maps(Sl, Ql(_a g)//T)\) —— Maps(517 BGCOD)

holg1 Maps(S*,(\,—))

u(1)

in H, where the top left square is the homotopy pullback that characterizes maps in H®Y in terms of maps
in H. The product of these is the action functional

Fieldscs:w (S <5 X3 ) — Maps(Z3, B3U (1) conn) X Maps(S*, BU(1)conn
+

|

U(1) xu(1) ' u(1).

where the rightmost arrow is the multiplication in U(1). Evaluated on a field configuration with components
(4, g) as just discussed, this is

exp <27ri </2 CS?,(A)Jr/Sl()\, (L*A)g>>) .

This is indeed the action functional for Chern-Simons theory with Wilson loop ¢ in the representation R
correspponding to the integral weight (A, —) by the Borel-Weil-Bott theorem, as reviewed for instance in
Section 4 of [Be02].
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Apart from being an elegant and concise repackaging of this well-known action functional and the quanti-
zation conditions that go into it, the above reformulation in terms of stacks immediately leads to prequantum
line bundles in Chern-Simons theory with Wilson loops. Namely, by considering the codimension 1 case, one
finds the the symplectic structure and the canonical prequantization for the moduli stack of field configu-
rations on surfaces with specified singularities at specified punctures [Wi96]. Moreover, this is just the first
example in a general mechanism of (extended) action functionals with defect and/or boundary insertions.
Another example of the same mechanism is the gauge coupling action functional of the open string. This we
discuss in section [[.4.3] below.

1.4.2 Prequantum higher Chern-Simons theory
. — Classical Chern-Weil theory and its shortcomings;

. — Higher Chern-Weil theory;

e [1.4.2.3- Higher Chern-Simons-type Lagrangians;

° — Boundaries and long fiber sequences of characteristic classes;
° — Global effects and anomaly cancellation.

1.4.2.1 Classical Chern-Weil theory and its shortcomings Even in the space of all topological local
action functionals, those that typically appear in fundamental physics are special. The archetypical example
of a TQFT is 3-dimensional Chern-Simons theory (see [Fr95] for a detailed review). Its action functional
happens to arise from a natural construction in classical Chern-Weil theory. We now briefly summarize this
process, which already produces a large family of natural topological action functionals on gauge equivalence
classes of gauge fields. We then point out deficiencies of this classical theory, which are removed by higher
prequantization.

A classical problem in topology is the classification of vector bundles over some topological space X.
These are continuous maps F — X such that there is a vector space V, and an open cover {U; — X}, and
such that over each patch we have fiberwise linear identifications E|y, ~ U; x V. Examples include

e the tangent bundle T'X of a smooth manifold X;
e the canonical C-line bundle over the 2-sphere, S$3 x g1 C — S? which is associated to the Hopf fibration.

A classical tool for studying isomorphism classes of vector bundles is to assign to them simpler charac-
teristic classes in the ordinary integral cohomology of the base space. For vector bundles over the complex
numbers these are the Chern classes, which are maps

[c1] : VectBunde(X)/~ — H*(X,Z)

[ca] : VectBunde(X)/~ — H*(X,7Z)

etc. natural in X. If two bundles have differing characteristic classes, they must be non-isomorphic. For
instance for C-line bundles the first Chern-class [c1] is an isomorphism, hence provides a complete invariant
characterization.

In the context of differential geometry, where X and FE are taken to be smooth manifolds and the local
identifications are taken to be smooth maps, one wishes to obtain differential characteristic classes. To that
end, one can use the canonical inclusion Z — R of coefficients to obtain the map H""!(X,Z) — H"" (X, R)
from integral to real cohomology, and send any integral characteristic class [c] to its real image [c|g. Due to
the de Rham theorem, which identifies the real cohomology of a smooth manifold with the cohomology of

its complex of differential forms,
H" (X, R) ~ Hif ' (X),
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this means that for [c]g one has representatives given by closed differential (n + 1)-forms w € Q% (X),

[er ~ [w].-

But since the passage to real cohomology may lose topological information (all torsion group elements map
to zero), one wishes to keep the information both of the topological characteristic class [c] as well as of its
“differential refinement” w. This is accomplished by the notion of differential cohomology Hgigl (X) (see
[HoSi05] for a review). These are families of cohomology groups equipped with compatible projections both
to integral classes as well as to differential forms

H" (X, Z/ \
\ /

H"M(X,R) ~ HHH(X) [clw ~ [w]

Hiih' (X) [€]

Moreover, these differential cohomology groups come equipped with a notion of volume holonomy. For X,
an n-dimensional compact manifold, there is a canonical morphism

[ e - v

to the circle group.

For instance for n = 1, we have that H?(X,Z) classifies circle bundles / complex line bundles over X,
H3.5(X) classifies such bundles with connection V, and the map [i, : H5(X) — U(1) is the line holonomy
obtained from the parallel transport of V over the 1-dimensional manifold .

With such differential refinements of characteristic classes in hand, it is desirable to have them classify
differential refinements of vector bundles. These are known as wvector bundles with connection. We say a
differential refinement of a characteristic class [c] is a map [¢] fitting into a diagram

VectBundeomn (X)/ — 2 HIH(X)

| |

VectBund(X)/~ L g (X,7)

where the vertical maps forget the differential refinement. Such a [¢] contains information even when [¢] = 0.
Therefore one also calls [¢] a secondary characteristic class.
All of this has a direct interpretation in terms of quantum gauge field theory.

e the elements in VectBund onn(X)/~ are gauge equivalence classes of gauge fields on X (for instance
the electromagnetic field, or nuclear force fields);

e the differential class [¢] defines a canonical action functional S} on such fields, by composition with
the volume holonomy

exp(iS.(—)) : Conf(X)/~ := VectBundeonn (X)/~ 1, HIEN(E) g U(l).

The action functionals that arise this way are of Chern-Simons type. If we write A € Q'(,u(n)) for a
differential form representing locally the connection on a vector bundle, then we have
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o [sc1 i A exp(i [ tr(A));
o [y i A exp(i [y tr(AAdarA + 2tr(AA AN A)))
e etc.

Here the second expression, coming from the second Chern-class, is the standard action functional for
3-dimensional Chern-Simons theory. The first, coming from the first Chern-class, is a 1-dimensional Chern-
Simons type theory. Next in the series is an action functional for a 5-dimensional Chern-Simons theory.
Later we will see that by generalizing here from vector bundles to higher bundles of various kinds, a host of
known action functionals for quantum field theories arises this way.

Despite this nice story, this traditional Chern-Weil theory has several shortcomings.

1. Tt is not local, related to the fact that it deals with cohomology classes [c] instead of the cocycles ¢
themselves. This means that there is no good obstruction theory and no information about the locality
of the resulting QFTs.

2. It does not apply to higher topological structures, hence to higher gauge fields that take values in higher
covers of Lie groups which are not themselves compact Lie groups anymore.

3. Tt is restricted to ordinary differential geometry and does not apply to variants such as supergeometry,
infinitesimal geometry or derived geometry, all of which appear in examples of QFTs of interest.

1.4.2.2 Higher Chern-Weil theory We discuss now these problems in slightly more detail, together
with their solution in cohesive homotopy type theory.

The problem with the locality is that every vector bundle is, by definition, locally equivalent to a trivial
bundle. Also, locally on contractible patches U — X every integral cocycle becomes cohomologous to the
trivial cocycle. Therefore the restriction of a characteristic class to local patches retains no information at

all

VectBund(X) /.~ H™(X,Z) .

l()u l()u
1d

* *

Here we may think of the singleton * as the class of the trivial bundle over U. But even though on U every
bundle is equivalent to the trivial bundle, this has non-trivial gauge automorphisms

« L% geC®U,G:=GL(V)).

These are not seen by traditional Chern-Weil theory, as they are not visible after passing to equivalence
classes and to cohomology.
But by collecting this information over each U, it organizes into a presheaf of gauge groupoids. We shall

write
geC™(U,G)

BG:U — { * * } € Funct(SmoothMfd°? Grpd) .
In order to retain all this information, we may pass to the 2-category

H := Ly Func(SmoothMf{d°?, Grpd)

of such groupoid-valued functors, where we formally invert all those morphisms (natural transformations) in
the class W of stalkwise equivalences of groupoids. This is called the 2-topos of stacks on smooth manifolds.
For example we have

o H(UjBG)N{*M*}
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o ToH(X,BG) ~ VectBund(X)/~

and hence the object BG € H constitutes a genuine smooth refinement of the classifying space for rank
n-vector bundles, which sees not just their equivalence classes, but also their local smooth transformations.

The next problem of traditional Chern-Weil theory is that it cannot see beyond groupoids even in co-
homology. Namely, under the standard nerve operation, groupoids embed into simplicial sets (described in

more detail in [1.2.6.4] below)
N : Grpd < sSet .

But simplicial sets model homotopy theory.
e There is a notion of homotopy groups 7 of simplicial sets;

e and there is a notion of weak homotopy equivalences, morphisms f : X — Y which induce isomorphisms
on all homotopy groups.

Under the above embedding, groupoids yield only (and precisely) those simplicial sets, up to equivalence,
for which only 7y and 7; are nontrivial. One says that these are homotopy 1-types. A general simplicial set
presents what is called a homotopy type and may contain much more information.

Therefore we are led to refine the above construction and consider the simplicial category

H := Ly Func(SmoothMfd®P, sSet)

of functors that send smooth manifolds to simplicial sets, where now we formally invert those morphisms
that are stalkwise weak homotopy equivalences of simplicial sets.

This is called the co-topos of co-stacks on smooth manifolds.

For instance, there are objects B"U(1) in this context which are smooth refinements of higher integral

cohomology, in that
moH(X,B"U(1)) ~ H""Y(X,Z).

Finally, in this construction it is straightforward to change the geometry by changing the category of
geometric test spaces. For instance we many replace smooth manifolds here by supermanifolds or by formal
(synthetic) smooth manifolds. In all these cases H describes homotopy types with differential geometric
structure. One of our main statements below is the following theorem.

These H all satisfy a simple set of axioms for “cohesive homotopy types”, which were proposed for 0-types
by Lawvere. In the fully homotopical context these axioms canonically induce in H

e differential cohomology;

e higher Chern-Weil theory;

e higher Chern-Simons functionals;
e higher geometric prequantization.

This is such that it reproduces the traditional notions where they apply, and otherwise generalizes them
beyond the realm of classical applicability.

1.4.2.3 Higher Chern-Simons-type Lagrangians It has become a familiar fact, known from exam-
ples as those indicated above, that there should be an n-dimensional topological quantum field theory Z,
associated to the following data:

1. a gauge group G: a Lie group such as U(n); or more generally a higher smooth group, such as the smooth
circle n-group B"~*U(1) or the String 2-group or the smooth Fivebrane 6-group [SSS09¢c, [FSS10];

2. a universal characteristic class [¢] € H""1(BG,Z) and/or its image w in real/de Rham cohomology,
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where Z. is a G-gauge theory defined naturally over all closed oriented n-dimensional smooth manifolds ¥,
and such that whenever ¥, happens to be the boundary of some manifold 3,41 the action fuctional on a
field configuration ¢ is given by the integral of the pullback form (ﬁ*w (made precise below) over X, 1, for
some extension q/3 of ¢. These are Chern-Simons type gauge theories. See [Zan08] for a gentle introduction
to the general idea of Chern-Simons theories.

Notably for G' a connected and simply connected simple Lie group, for ¢ € H*(BG,Z) ~ Z any integer
— the “level” — and hence for w = (—, —) the Killing form on the Lie algebra g, this quantum field theory is
the original and standard Chern-Simons theory introduced in [Wi89)]. See [Fr95] for a comprehensive review.
Familiar as this theory is, there is an interesting aspect of it that has not yet found attention, and which is
an example of our constructions here.

To motivate this, it is helpful to look at the 3d Chern-Simons action functional as follows: if we write
H(X3,BGconn) for the set of gauge equivalence classes of G-principal connections V on X3, then the (expo-
nentiated) action functional of 3d Chern-Simons theory over 3 is a function of sets

exp(iS(~)) : H(Z3, BGeomn) — U(1).

Of course this function acts by picking a representative of the gauge equivalence class, given by a smooth
I-form A € Q'(33,9) and sending that to the element exp(27ik [, CS(A)) € U(1), where CS(A) € Q3 (23)
is the Chern-Simons 3-form of A [ChSi74], that gives the whole theory its name. That this is well defined
is the fact that for every gauge transformation g : A — A9, for g € C°(33,G), both A as well as its gauge
transform A9, are sent to the same element of U(1). A natural formal way to express this is to consider the
groupoid H(Xs3, BGeonn) whose objects are gauge fields A and whose morphisms are gauge transformations
g as above. Then the fact that the Chern-Simons action is defined on individual gauge field configurations
while being invariant under gauge transformations is equivalent the statement that it is a functor, hence a
morphism of groupoids,
exp(iS(—)) : H(X3, BGconn) — U(1),

where the set underlying U (1) is regarded as a groupoid with only identity morphisms. Hence the fact that
exp(2S(—)) has to send every morphism on the left to a morphism on the right is the gauge invariance of
the action.

Furthermore, the action functional has the property of being smooth. It takes any smooth family of
gauge fields, over some parameter space U, to a corresponding smooth family of elements of U(1) and such
that these assignmens are compatible with precomposition of smooth functions U; — Us between parameter
spaces. The formal language that expresses this concept is that of stacks on the site of smooth manifolds
(discussed in detail in below): to say that for every U there is a groupoid, as above, of smooth U-families
of gauge fields and smooth U-families of gauge transformations between them, in a consistent way, is to say
that there is a smooth moduli stack, denoted [E3, BGconn], of gauge fields on 3. Finally, the fact that the
Chern-Simons action functional is not only gauge invariant but also smooth is the fact that it refines to a
morphism of smooth stacks

exp(iS(—)) : [X3, BGeonn] = U(1),

where now U(1) is regarded as a smooth stack by declaring that a smooth family of elements is a smooth
function with values in U(1).

It is useful to think of a smooth stack simply as being a smooth groupoid. Lie groups and Lie groupoids are
examples (and are called “differentiable stacks” when regarded as special cases of smooth stacks) but there are
important smooth groupoids which are not Lie groupoids in that they have not a smooth manifold but a more
general smooth space of objects and of morphisms. Just as Lie groups have an infinitesimal approximation
given by Lie algebras, so smooth stacks/smooth groupoids have an infinitesimal approximation given by Lie
algebroids. The smooth moduli stack [3X3, BGconn| of gauge field configuration on X3 is best known in the
physics literature in the guise of its underlying Lie algebroid: this is the formal dual of the (off-shell) BRST
complez of the G-gauge theory on ¥3: in degree 0 this consists of the functions on the space of gauge fields
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on X3, and in degree 1 it consists of functions on infinitesimal gauge transformations between these: the
“ghost fields”.

The smooth structure on the action functional is of course crucial in field theory: in particular it allows
one to define the differential dexp(iS(—)) of the action functional and hence its critical locus, characterized
by the Euler-Lagrange equations of motion. This is the phase space of the theory, which is a substack

[227 bBG] — [227 BGconn]

equipped with a pre-symplectic 2-form. To formalize this, write Q2 (—) for the smooth stack of closed 2-forms
(without gauge transformations), hence the rule that sends a parameter manifold U to the set Q%(U) of
smooth closed 2-forms on U. This may be regarded as the smooth moduli 0-stack of closed 2-forms in that
for every smooth manifold X the set of morphisms X — Q2 (—) is in natural bijection to the set Q(X) of
closed 2-forms on X. This is an instance of the Yoneda lemma. Similarly, a smooth 2-form on the moduli
stack of field configurations is a morphism of smooth stacks of the form

(Y2, BGeonn] — Q34(—).

Explicitly, for Chern-Simons theory this morphism sends for each smooth parameter space U a given smooth
U-family of gauge fields A € Q' (35 x U, g) to the 2-form

/ <dUA N dUA> S QEI(U) .
P

Notice that if we restrict to genuine families A which are functions of U but vanish on vectors tangent to
U (technically these are elements in the concretification of the moduli stack) then this 2-form is the fiber
integral of the Poincaré 2-form (F4 A F4) along the projection o x U — U, where F4 := dA + %[A N A]is
the curvature 2-form of A. This is the first sign of a general pattern, which we highlight in a moment.

There is more fundamental smooth moduli stack equipped with a closed 2-form: the moduli stack
BU(1)conn of U(1)-gauge fields, hence of smooth circle bundles with connection. This is the rule that
sends a smooth parameter manifold U to the groupoid H(U, BU (1)conn) of U(1)-gauge fields V on U, which
we have already seen above. Since the curvature 2-form Fy € Q2 (U) of a U(1)-principal connection is gauge
invariant, the assignment V — Fy gives rise to a morphism of smooth stacks of the form

F(_) : BU(I)conn — le(f) :

In terms of this morphism the fact that every U(1)-gauge field V on some space X has an underlying field
strength 2-form w is expressed by the existence of a commuting diagram of smooth stacks of the form

BU(1)conn gauge field / differential cocycle
/ iFm
X —==02%(-) field strength / curvature .

Conversely, if we regard the bottom morphism w as given, and regard this closed 2-form as a (pre)symplectic
form, then a choice of lift V in this diagram is a choice of refinement of the 2-form by a circle bundle with
connection, hence the choice of a prequantum circle bundle in the language of geometric quantization (see
for instance section IT in [Bry00] for a review of geometric quantization).

Applied to the case of Chern-Simons theory this means that a smooth (off-shell) prequantization of the
theory is a choice of dashed morphism in a diagram of smooth stacks of the form

BU(1)conn
_ 7
-7 J/Fm

Y9, BGeonn] ————— Q0 (—
[ 2 co ]f%(F(_)’F(_)) cl( )

—
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Similar statements apply to on-shell geometric (pre)quantization of Chern-Simons theory, which has been
so successfully applied in the original article [Wi89]. In summary, this means that in the context of smooth
stacks the Chern-Simons action functional and its prequantization are as in the following table:

dimension moduli stack description
k=3 action functional (0-bundle) | exp(iS(—)) : [X3, BGconn] — U(1)
k=2 prequantum circle 1-bundle 32, BGeonn] = BU(1)conn

There is a precise sense, discussed in section below, in which a U(1)-valued function is a circle
k-bundle with connection for k = 0. If we furthermore regard an ordinary U(1)-principal bundle as a circle
1-bundle then this table says that in dimension k& Chern-Simons theory appears as a circle (3 — k)-bundle
with connection — at least for k = 3 and k = 2.

Formulated this way, it should remind one of what is called extended or multi-tiered topological quantum
field theory (formalized and classified in [L-TFT]) which is the full formalization of locality in the Schrodinger
picture of quantum field theory. This says that after quantization, an n-dimensional topological field theory
should be a rule that to a closed manifold of dimension & assigns an (n—k)-categorical analog of a vector space
of quantum states. Since ordinary geometric quantization of Chern-Simons theory assigns to a closed ¥
the vector space of polarized sections (holomorphic sections) of the line bundle associated to the above
circle 1-bundle, this suggests that there should be an extended or multi-tiered refinement of geometric
(pre)quantization of Chern-Simons theory, which to a closed oriented manifold of dimension 0 < k < n assigns
a prequantum circle (n — k)-bundle (bundle (n — k — 1)-gerbe) on the moduli stack of field configurations
over Y, modulated by a morphism [Xg, BGconn] — B(”*’C)U(l)Conn to a moduli (n — k)-stack of circle
(n — k)-bundles with connection.

In particular for £ = 0 and X connected, hence ¥y = * the point, we have that the moduli stack of fields
on X is the universal moduli stack itself, [¥, BGconn] =~ BGeonn, and so a fully extended prequantization of
3-dimensional G-Chern-Simons theory would have to involve a universal characteristic morphism

CCOIIH : BGCOI’IH _> BSU(l)COHH

of smooth moduli stacks, hence a smooth circle 3-bundle with connection on the universal moduli stack of
G-gauge fields. This indeed naturally exists: an explicit construction is given in [FSS10]. This morphism
of smooth higher stacks is a differential refinement of a smooth refinement of the level itself: forgetting
the connections and only remembering the underlying (higher) gauge bundles, we still have a morphism of
smooth higher stacks

c:BG — BU(1).

This expression should remind one of the continuous map of topological spaces
c: BG — B3U(1) ~ K(Z,4)

from the classifying space BG to the Eilenberg-MacLane space K (Z,4), which represents the level as a class
in integral cohomology H*(BG,7Z) ~ Z. Indeed, there is a canonical derived functor or co-functor

| —|:H — Top

from smooth higher stacks to topological spaces (one of the defining properties of a cohesive oco-topos),
derived left adjoint to the operation of forming locally constant higher stacks, and under this map we have

le| ~c.

In this sense c is a smooth refinement of [c] € H*(BG,Z) and then ceopny is a further differential refinement
of c.

255



However, more is true. Not only is there an extension of the prequantization of 3d G-Chern-Simons
theory to the point, but this also induces the extended prequantization in every other dimension by tracing:
for 0 < k < n and ¥ a closed and oriented smooth manifold, there is a canonical morphism of smooth
higher stacks of the form

exp(Qm'/Z (=) : [Zr, B"U(1)conn] = B *U(1)conn »

which refines the fiber integration of differential forms, that we have seen above, from curvature (n+1)-forms
to their entire prequantum circle n-bundles (we discuss this below in section . Since, furthermore,
the formation of mapping stacks [2j, —] is functorial, this means that from a morphism cconn as above we
get for every X a composite morphism as such:

: [Sk-Ceonn] exp(2mi [, (—))
exp(2ﬂ-l/ [Ek; Cconn]) : [Eka BGconn] I —— [Ek; BnU(l)conn] BnikU(l)conn .
Sk

For 3d G-Chern-Simons theory and k£ = n = 3 this composite is the action functional of the theory (down
on the set H(X3, BGconn) this is effectively the perspective on ordinary Chern-Simons theory amplified in
[CIMSWO05]). Therefore, for general k we may speak of this as the extended action functional, with values
not in U(1) but in B"*U(1)conn-

This way we find that the above table, containing the Chern-Simons action functional together with its
prequantum circle 1-bundle, extends to the following table that reaches all the way from dimension 3 down
to dimension 0.

dim. prequantum (3 — k)-bundle

=0 | Ol Com Bl B, s
k=1 backngiZVB-ﬁeld [S*, BGconn] (oL ccom] [S*, B*U(1)conn] wrenlaC) gy (Dconn

k=3 actior??ugcstional X3, BGeonn] o ceonn] (23, B*U(1)conn] M U(1) [ESS10]

For each entry of this table one may compute the total space object of the corresponding prequantum k-
bundle. This is now in general itself a higher moduli stack. In full codimension k& = 0 one finds that this
is the moduli 2-stack of String(G)-2-connections described in [SSS09¢, [FSS12b]. This we discuss in section
253 below.

It is clear now that this is just the first example of a general class of theories which we may call higher
extended prequantum Chern-Simons theories or just oo-Chern-Simons theories, for short. These are defined
by a choice of

1. a smooth higher group G;
2. a smooth universal characteristic map ¢ : BG — B"U(1);
3. a differential refinement Ceonn : BGeonn — B"U(1)conn-

An example of a 7-dimensional such theory on String-2-form gauge fields is discussed in [FSS12a], given by
a differential refinement of the second fractional Pontrjagin class to a morphism of smooth moduli 7-stacks

%(pg)conn : BString,,,, — BU(1)conn -
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We expect that these co-Chern-Simons theories are part of a general procedure of extended geometric quan-
tization (multi-tiered geometric quantization) which proceeds in two steps, as indicated in the following
table.

classical system geometric prequantization quantization

extended quantum field theory
polarized sections of
Tt S — prequantum (n — k)-bundle
exp(2mi fzk[Z}WCCOUDD

char. class c of deg. (n+ 1)
with de Rham image w:
invariant polynomial/
n-plectic form

prequantum circle n-bundle
on moduli co-stack of fields
cCOl’]I] : BGCOI’]I) % BnU(l)conn

Here we are concerned with the first step, the discussion of n-dimensional Chern-Simons gauge theories
(higher gauge theories) in their incarnation as prequantum circle n-bundles on their universal moduli co-
stack of fields. A dedicated discussion of higher geometric prequantization, including the discussion of higher
Heisenberg groups, higher quantomorphism groups, higher symplectomorphisms and higher Hamiltonian
vector fields, and their action on higher prequantum spaces of states by higher Heisenberg operators, is given
below. As shown there, plenty of interesting physical information turns out to be captured by extended
prequantum n-bundles. For instance, if one regards the B-field in type II superstring backgrounds as a
prequantum 2-bundle, then its extended prequantization knows all about twisted Chan-Paton bundles, the
Freed-Witten anomaly cancellation condition for type II superstrings on D-branes and the associated anomaly
line bundle on the string configuration space.

Generally, all higher Chern-Simons theories that arise from extended action functionals this way enjoy

a collection of very good formal properties. Effectively, they may be understood as constituting examples

of a fairly extensive generalization of the refined Chern-Weil homomorphism with coefficients in secondary

characteristic cocycles. Moreover, we have shown previously that the class of theories arising this way is

large and contains not only several familiar theories, some of which are not traditionally recognized to be of

this good form, but also contains various new QFTs that turn out to be of interest within known contexts,
g. [FSS12bl [FSS12Dh]. Here we further enlarge the pool of such examples.

Notably, here we are concerned with examples arising from cup product characteristic classes, hence of co-
Chern-Simons theories which are decomposable or non-primitive secondary characteristic cocyles, obtained
by cup-ing more elementary characteristic cocycles. The most familiar example of these is again ordinary
3-dimensional Chern-Simons theory, but now for the non-simply connected gauge group U(1l). In this
case a gauge field configuration in H(X3, BU(1)conn) is not necessarily given by a globally defined 1-form
A € Q'(X3), instead it may have a non-vanishing “instanton number”, the Chern-class of the underlying
circle bundle. Only if that happens to vanish is the value of the action functional again given by the simple
expression exp(2mik fz A A dgrA) as before. But in view of the above we are naturally led to ask: which
circle 3-bundle (bundle 2-gerbe) with connection over 33, depending naturally on the U(1)-gauge field, has
A N dgrA as its connection 3-form in this special case, so that the correct action functional in generality is
again the volume holonomy of this 3-bundle (see section[7.2.3|below)? The answer is that it is the differential
cup square of the gauge field with itself. As a fully extended action functional this is a natural morphism of
higher moduli stacks of the form

(_) conn BU( )conn — B3U(1)Conn .
This morphism of higher stacks is characterized by the fact that under forgetting the differential refinement
and then taking geometric realization as before, it is exhibited as a differential refinement of the ordinary

cup square on Eilenberg-MaclLane spaces

(—)"Y K (Z,2) —» K(Z,4)
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and hence on ordinary integral cohomology. By the above general procedure, we obtain a well-defined action
functional for 3d U(1)-Chern-Simons theory by the expression

exp(2ri / [, (=) %om]) & S5, BU Deom] — U(1)

and this is indeed the action functional of the familiar 3d U(1)-Chern-Simons theory, also on non-trivial
instanton sectors, see section below.

In terms of this general construction, there is nothing particular to the low degrees here, and we have
generally a differential cup square / extended action functional for a (4k + 3)-dimensional Chern-Simons
theory

(_)u?‘,onn : B2k+1U(1)c0nn — B4k+3U(1)conn

for all £ € N, which induces an ordinary action functional

2

eXp(Qﬁi/ [Sartss (=)o ]) ¢ [Bapyz, BFTPU(D)conn] = U(1)
X3

on the moduli (2k + 1)-stack of U(1)-(2k + 1)-form gauge fields, given by the fiber integration on differential
cocycles over the differential cup product of the fields. This is discussed in section [7.2.8.1] below.

Forgetting the smooth structure on [Y4543, B?**1U(1)conn] and passing to gauge equivalence classes of
fields yields the cohomology group H25+2(%,, 1 3). This is what is known as ordinary differential cohomology
and is equivalent to the group of Cheeger-Simons differential characters, a review with further pointers
is in [HoSi05]. That gauge equivalence classes of higher degree U(1)-gauge fields are to be regarded as
differential characters and that the (4k + 3)-dimensional U(1)-Chern-Simons action functional on these is
given by the fiber integration of the cup product is discussed in detail in [FP89], also mentioned notably
in [Wi96l (Wi98¢] and expanded on in [Fr00]. Effectively this observation led to the general development of
differential cohomology in [HoSi05]. Or rather, the main theorem there concerns a shifted version of the
functional of (4k + 3)-dimensional U(1)-Chern-Simons theory which allows one to further divide it by 2. We
have discussed the refinement of this to smooth moduli stacks of fields in [FSS12b]. These developments were
largely motivated from the relation of (4k 4 3)-dimensional U (1)-Chern-Simons theories as the holographic
duals to theories of self-dual forms in dimension (4k+2) (see [BeMoQ6] for survey and references): a choice of
conformal structure on a Y4512 naturally induces a polarization of the prequantum 1-bundle of the (4k + 3)-
dimensional theory, and for every choice the resulting space of quantum states is naturally identified with
the corresponding conformal blocks (correlators) of the (4k + 2)-dimensional theory.

Therefore we have that regarding the differential cup square on smooth higher moduli stacks as an
extended action functional yields the following table of familiar notions under extended geometric prequan-

tization.
dim. prequantum (4k + 3 — d)-bundle
d=0 differential cup square (—)Uzorm : B¥*TU (1) conn = B*F3U (1) conn
« 9 U2 exp(27i [ (=)
pre-conformal blocks” of 2kt 1 [Sap2,(—) conn] 2kl P Sypp2
= _— _—
d=4k+2 |t dual 2k-form field (Baxt2, BT U (1) conn] [Sarr2, B¥HU(1)conn] BU(1)conn
2 .
Cs . [Sapts,(—)eonn] _— P27 [ 15 ()
— R - s
d=4k+3 action functional (Bax+s, B U(1)conn] Pans, B U1)conn] va)

This fully extended prequantization of (4k+3)-dimensional U (1)-Chern-Simons theory allows for instance
to ask for and compute the total space of the prequantum circle (4k + 3)-bundle. This is now itself a higher
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smooth moduli stack. For k& = 0, hence in 3d-Chern-Simons theory it turns out to be the moduli 2-stack of
differential T-duality structures.

More generally, as the name suggests, the differential cup square is a specialization of a general differential
cup product. As a morphism of bare homotopy types this is the familiar cup product of Eilenberg-MacLane
spaces

(_) U (_) : K(Z,p+ 1) X K(ZvQ+ 1) - K(va+Q+2)

for all p, ¢ € N. Its smooth and then its further differential refinement is a morphism of smooth higher stacks

of the form
(*) Uconn (*) : BpU(l)conn X BIU(l)conn - Bp+q+1U(]~)conn .

By the above discussion this now defines a higher extended gauge theory in dimension p + ¢ + 1 of two
different species of higher U(1)-gauge fields. One example of this is the higher electric-magnetic coupling
anomaly in higher (Euclidean) U(1)-Yang-Mills theory, as explained in section 2 of [Fr00]. In this example
one considers on an oriented smooth manifold X (here assumed to be closed, for simplicity) an electric current
(p+1)-form Jg € Qflﬂ(X) and a magnetic current (¢+ 1)-form Jpag € ngrl(X)7 such that p+¢ = dim(X)
is the dimension of X. A prequantization of these current forms in our sense of higher geometric quantization

is a lift to differential cocycles

BPU(1)conn BYU(1)conn
a7 T =7
P \LF<) e iF<>
_ - Je 1 - - Jma, 1
X =0 (-), X — Q" (=)

and here this amounts to electric and magnetic charge quantization, respectively: the electric charge is the
universal integral cohomology class of the circle p-bundle underlying the electric charge cocycle: its higher
Dizmier-Doudy class [Jo] € Hf;tl(X, Z) (see section @ below); and similarly for the magnetic charge.
Accordingly, the higher mapping stack [X, BPU(1)comm X B?U(1)conn] is the smooth higher moduli stack of
charge-quantized electric and magnetic currents on X. Recall that this assigns to a smooth test manifold U
the higher groupoid whose objects are U-families of pairs of charge-quantized electric and magnetic currents,
namely such currents on X x U. As [Fr00] explains in terms of such families of fields, the U(1)-principal

bundle with connection that in the present formulation is the one modulated by the morphism

Von := exp(2mi /X X, (=) Ueomn (5)])  [X, BPU (Dcomm % BUU(1)conn] — BU(1)eomn

is the anomaly line bundle of (p — 1)-form electromagnetism on X, in the presence of electric and mag-
netic currents subject to charge quantization. In the language of co-Chern-Simons theory as above, this is
equivalently the off-shell prequantum 1-bundle of the higher cup product Chern-Simons theories on pairs of
U(1)-gauge p-form and g-form fields.

Regarded as an anomaly bundle, one calls its curvature the local anomaly and its holonomy the “global
anomaly”. In our contex the holonomy of V,, is (discussed again in section below) the morphism

hol(Van) = exp(2m'/ [SY, Van]) 1 [SY X, BPU (1) comm * BU(1)eonn — U(1)
Sl

from the loop space of the moduli stack of fields to U(1). By the characteristic universal propery of higher
mapping stacks, together with the “Fubini-theorem”-property of fiber integration, this is equivalently the
morphism

exp(27ri/XXSl[X % S (=) Uconn (—)]) : [X x S*,BPU(1) comm X BU(1)conn] — U(1).
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But from the point of view of co-Chern-Simons theory this is the action functional of the higher cup product
Chern-Simons field theory induced by Uconn. The situation is now summarized in the following table.

dim. prequantum (dim(X) + 1 — k)-bundle

k=0 differential cup product (—)Uionn : BPU (1) connBYU (1) conn = B 2U (1) conn

higher E/M-charge

k= dim(X) anomaly line bundle

exp(27i [ [X, (=) Uconn (—)]) : [X, BPU(1)conn X BIU(1)conn] — BU(1)conn

k=dim(X)+1 global anomaly exp(27mi [, g1 [X X S (=) Ueonn (5)]) = [X x SY, BPU(1)conn X BIU(1)conn] — U(1)

These higher electric-magnetic anomaly Chern-Simons theories are of particular interest when the higher
electric/magnetic currents are themselves induced by other gauge fields. Namely if we have any two oo-
Chern-Simons theories given by extended action functionals ¢!, : BGL ., — BPU(1)conn and c2 ,, :
BG?2,,, — B9U(1)conn, respectively, then composition of these with the differential cup product yields an
extended action functional of the form

c) c? (7)Uconn(7)

lonn Uconn Con © B(GY % G2)comn 2 BT (1) 0 % BLU(conn B U (1) o
which describes extended topological field theories in dimension p + ¢ + 1 on two species of (possibly non-
abelian, possibly higher) gauge fields, or equivalently describes the higher electric/magnetic anomaly for
higher electric fields induced by ¢! and higher magnetic fields induced by c2.

For instance for heterotic string backgrounds c2,, is the differential refinement of the first fractional

Pontrjagin class $p; € H*(BSpin, Z) [SSS09¢, [FSS10] of the form

Cgonn = j}r\gg = %(pl)conn : Bspiﬂconn — BgU(l)conn y
formalizing the magnetic NS5-brane charge needed to cancel the fermionic anomaly of the heterotic string by
way of the Green-Schwarz mechanism. It is curious to observe, going back to the very first example of this
introduction, that this J?ﬁg is at the same time the extended action functional for 3d Spin-Chern-Simons
theory.

Still more generally, we may differentially cup in this way more than two factors. Examples for such higher
order cup product theories appear in 11-dimensional supergravity. Notably plain classical 11d supergravity
contains an 11-dimensional cubic Chern-Simons term whose extended action functional in our sense is

(_)Ugom‘ : B3U(1)Conn — BHU(l)COHH .

Here for X the 11-dimensional spacetime, a field in [X, B3U(1)] is a first approximation to a model for the
supergravity C-field. If the differential cocycle happens to be given by a globally defined 3-form C, then
the induced action functional exp(27i [ [X, (—)Yeonn]) sends this to element in U(1) given by the familiar
expression

exp(27ri/ [X, (f)USCmH]) :C— exp(27ri/ C ANdgrC N darC) .
X X
More precisely this model receives quantum corrections from an 11-dimensional Green-Schwarz mechanism.

In [FSS12bl [FSS12h] we have discussed in detail relevant corrections to the above extended cubic cup-product
action functional on the moduli stack of flux-quantized C-field configurations.

1.4.2.4 Boundaries and long fiber sequences of characteristic classes It is a traditionally familiar
fact that short exact sequences of (discrete) groups give rise to long sequences in cohomology with coefficients
in these groups. In fact, before passing to cohomology, these long exact sequences are refined by corresponding
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long fiber sequences of the homotopy types obtained by the higher delooping of these groups: of the higher
classifying spaces of these groups.

An example for which these long fiber sequences are of interest in the context of quantum field theory
is the universal first fractional Pontryagin class %pl on the classifying space of Spin-principal bundles. The
following digram displays the first steps in the long fiber sequence that it induces, together with an actual
Spin-principal bundle P — X classified by a map X — BSpin. All squares are homotopy pullback squares
of bare homotopy types.

BU(1) ——— String P *
BU(1) BU(1)
bundle —bundle
* Spin P BQU(l) B

canonical
3—class

String
bundle Spin
bundle

x . .

*F——> X Qrmg —— = BSpin
classifies
Spin bundle

Pontryagin 1
class 3P1
* B3U(1)

The topological group String which appears here as the loop space object of the homotopy fiber of %pl is
the String group. We discuss this in detail below in It is a BU(1)-extension of the Spin-group.

If X happens to be equipped with the structure of a smooth manifold, then it is natural to also equip
the Spin-principal bundle P — X with the structure of a smooth bundle, and hence to lift the classifying
map X — BSpin to a morphism X — BSpin into the smooth moduli stack of smooth Spin-principal bundles
(the morphism that not just classifies but “modulates” P — X as a smooth structure). An evident question
then is: can the rest of the diagram be similarly lifted to a smooth context?

This indeed turns out to be the case, if we work in the context of higher smooth stacks. For instance there
is a smooth moduli 3-stack B2U (1) such that a morphism Spin — B2U (1) not just classifies a BU(1)-bundle
over Spin, but “modulates” a smooth circle 2-bundle or U(1)-bundle gerbe over Spin. One then gets the
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following diagram

BU(1) —— String P
WZW BU(1)
2—bundle 2—bundle

*
modulates
WZW
2—bundle
String
2—bundle Spin
bundle
x .
* X=——-—-- > BString

modulates
Chern—Simons
3—bundle

modulates
Spin bundle

\

f— =

where now all squares are homotopy pullbacks of smooth higher stacks.

With this smooth geometirc structure in hand, one can then go further and ask for differential refinements:
the smooth Spin-principal bundle P — X might be equipped with a principal connection V, and if so, this
into the smooth moduli stack of Spin-connections.

One of our central theorems below in [7.1.2] is that the universal first fractional Pontryagin class can
be lifted to this situation to a differential smooth universal morphism of higher moduli stacks, which we
write %f)l. Inserting this into the above diagram and then forming homotopy pullbacks as before yields
further differential refinements. It turns out that these now induce the Lagrangians of 3-dimensional Spin

will be “modulated” by a morphism X — BSpin

conn

Chern-Simons theory and of the WZW theory on Spin.

BU(1) String r
WZW BU(1)
2—bundle 2—bundle
: 2
* Spin P B-U(
_/
WZW
Lagrangian
String
2—bundle Spin
bundle
x
f— > X = — — — — >

\

Chern—Simon:
Lagrangian

*

One way to understand our developments here is as a means to formalize and then analyze this setup

and its variants and generalizations.
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BString,,,, —— > BSpin

Spin
connection

\

B2U(1) — =«

BSpin

1
o P1

B3U(1)

conn

BBU(l)conn



1.4.2.5 Global effects and anomaly cancellation One may wonder to which extent the higher gauge
fields of section [1.1.2.1.2) may be motivated within physics. It turns out that an important class of examples
is required already by consistency of the quantum mechanics of higher dimensional fermionic (“spinning”)
quantum objects.

We indicate now how the full description of this quantum anomaly cancellation forces one to go beyond
classical Chern-Weil theory to a more comprehensive theory of higher differential cohomology.

Consider a smooth manifold X. Its tangent bundle T'X is a real vector bundle of rank n = dimX. By the
classical theorem which identifies isomorphism classes of rank-n real vector bundles with homotopy classes
of continuous maps to the classifying space BO(n), for O(n) the orthogonal group,

VectBund(X)/. ~ [X, BO],
we have that T'X is classified by a continuous map which we shall denote by the same symbol
TX : X — BO(n).

Notice that this map takes place after passing from smooth spaces to just topological spaces. A central
theme of our discussion later on are first smooth and then differential refinements of such maps.

A standard question to inquire about X is whether it is orientable. If so, a choice of orienation is, in terms
of this classifying map, given by a lift through the canonical map BSO(n) — BO(n) from the classifying
space of the special orthogonal group. Further, we may ask if X admits a Spin-structure. If so, a choice
of Spin-structure corresponds to a further lift through the canonical map BSpin(n) — BO(n) from the
classifying space of the Spin-group, which is the universal simply connected cover of the special orthogonal
group. (Details on these basic notions are reviewed at the beginning of ?? below.)

These lifts of structure groups are just the first steps through a whole tower of higher group extensions,
called the Whitehead tower of BO(n), as shown in the following picture. Here String is a topological group
which is the universal 3-connected cover of Spin, and then Fivebrane is the universal 7-connected cover of
String.

BFivebrane fivebrane structure
1
/
/
/ . 6P2 .
,/ BString —— K(Z,8) string structure
71
ry
Ly
Iy : 3P .
/ ," BSpin ——— K(Z,4) spin structure
!y /4
rys o,
I/ / w2 . .
1,7 BSO ———— K(Z,2) orientation structure
1w, .7
11y P -
lir ~
2o x T . Bo s K(Zy,1) Riemannian structure

Here all subdiagrams of the form

BG —~K(A,n)
are homotopy fiber sequences. This means that BG is the homotopy fiber of the characteristic map ¢ and

G itself is the homotopy fiber of the looping Q¢ of ¢. By the universal property of the homotopy pullback,
this implies the obstruction theory for the existence of these lifts. The first two of these are classical. For
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instance the orientation structure exists if the first Stiefel-Whitney class [w1(TX)] € HY(X,Zs) is trivial.
Spin-structure exists if moreover the second Stiefel-Whitney class [wo(TX)] € H*(X,Zs) is trivial.

Analogously, a string structure exists on X if moreover the first fractional Pontryagin class [%pl (TX)) €
H*(X,7Z) is trivial, and if so, a fivebrane structure exists if moreover the second fractional Pontryagin class
[p2(TX)] € H¥(X,Z) is trivial.

The names of these structures indicate their role in quantum physics. Let ¥ be a d + 1-dimensional
manifold and assume now that also X is smooth. Then a smooth map ¢ : ¥ — X may be thought of as
modelling the trajectory of a d-dimensional object propagating through X. For instance for d = 0 this would
be the trajectory of a point particle, for d = 1 it would be the worldsheet of a string, and for d = 5 the
6-dimensional worldvolume of a 5-brane. The intrinsic “spin” of point particles and their higher dimensional
analogs is described by a spinor bundle S — X equipped for each ¢ : ¥ — X with a Dirac operator Dg-7x
that is twisted by the pullback of the tangent bundle of X along ¢. The fermionic part of the path integral
that gives the quantum dynamics of this setup computes the analog of the determinant of this Dirac operator,
which is an element in a complex line called the Pfaffian line of Dg~rx. As ¢ varies, these Pfaffian lines
arrange into a line bundle on the mapping space

{Pfaff (Dy-rx)}

|

{¢p:X— X}

SmthMaps(Z, X) 29 k(7. 2)

Since the result of the fermionic part of the path integral is therefore a section of this line bundle, the
resulting effective action functional can be a well defined function only if this line bundle is trivializable,
hence if its Chern class vanishes. Therefore the Chern class of the Pfaffian line bundle over the bosonic
configuration space is called the global quantum anomaly of the system. It is an obstruction to the existence
of quantum dynamics of d-dimensional objects with spin on X.

Now, it turns out that this Chern class is the transgression tgs,(c) of the corresponding class ¢ appearing
in the picture of the Whitehead tower above. Therefore the vanishing of these classes implies the vanishing
of the quantum anomaly.

For instance a choice of a spin structure on X cancels the global quantum anomaly of the quantum
spinning particle. Then a choice of string structure cancels the global quantum anomaly of the quantum
spinning string, and a choice of fivebrane structure cancels the global quantum anomaly of the quantum
spinning 5-brane.

However, the Pfaffian line bundle turns out to be canonically equipped with more refined differential
structure: it carries a connection. Moreover, in order to obtain a consistent quantum theory it needs to be
trivialized as a bundle with connection.

For the Pfaffian line bundle with connection still to be the transgression of the corresponding obstruction
class on X, evidently the entire story so far needs to be refined from cohomology to a differentially refined
notion of cohomology.

Classical Chern-Weil theory achieves this, in parts, for the first few steps through the Whitehead tower
(see [GHVT3| for a classical textbook reference and [HoSi05] for the refinement to differential cohomology
that we need here). For instance, since maps X — BSpin classify Spin-principal bundles on X, and since Spin
is a Lie group, it is clear that the corresponding differential refinement is given by Spin-principal connections.
Write H'(X, Spin)eonn for the equivalence classes of these structures on X.

For every n € N there is a notion of differential refinement of H"(X,Z) to the differential cohomology
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group H™(X,Z)conn- These groups fit into square diagrams as indicated on the right of the following diagram.

H&onn(X7 Spln) [ipl] H:iliff(X7 Z)
\
curyafure top. class
e I
HY(X,Z)

24(X)
\

Hiz (X) ~ HY(X,R)

As shown there, an element in H; (X, Z) involves an underlying ordinary integral class, but also a differential
n-form on X such that both structures represent the same class in real cohomology (using the de Rham
isomorphism between real cohomology and de Rham cohomology). The differential form here is to be thought
of as a higher curvature form on a higher line bundle corresponding to the given integral cohomology class.

Finally, the refined form of classical Chern-Weil theory provides differential refinements for instance of
the first fractional Pontryagin class [ip1] € H*(X,Z) to a differential class [$P1] as shown in the above
diagram. This is the differential refinement that under transgression produces the differential refinement of
our Pfaffian line bundles.

But this classical theory has two problems.

1. Beyond the Spin-group, the topological groups String, Fivebrane etc. do not admit the structure of
finite-dimensional Lie groups anymore, hence ordinary Chern-Weil theory fails to apply.

2. Even in the situation where it does apply, ordinary Chern-Weil theory only works on cohomology
classes, not on cocycles. Therefore the differential refinements cannot see the homotopy fiber sequences
anymore, that crucially characterized the obstruction problem of lifting through the Whitehead tower.

The source of the first problem may be thought to be the evident fact that the category Top of topological
spaces does not encode smooth structure. But the problem goes deeper, even. In homotopy theory, Top is
not even about topological structure. Rather, it is about homotopies and discrete geometric structure.

One way to make this precise is to say that there is a Quillen equivalence between the model category
structures on topological spaces and on simplicial sets.

-
Top =—_sSet  Ho(Top) ~ Ho(sSet) .
Sing

Here the singular simplicial complez functor Sing sends a topological space to the simplicial set whose k-cells
are maps from the topological k-simplex into X.
In more abstract modern language we may restate this as saying that there is an equivalence

Top %— ooGrpd
between the homotopy theory of topological spaces and that of oco-groupoids, exhibited by forming the
fundamental co-groupoid of X.
To break this down into a more basic statement, let Top.; be the subcategory of homotopy 1-types,

hence of these topological spaces for which only the Oth and the first homotopy groups may be nontrivial.
Then the above equivalence restricts to an equivalence

Topy % Grpd
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with ordinary groupoids. Restricting this even further to (pointed) connected 1-types, hence spaces for which
only the first homotopy group may be non-trivial, we obtain an equivalence

Topy by %> Grp

with the category of groups. Under this equivalence a connected 1-type topological space is simply identified
with its first fundamental group.

Manifestly, the groups on the right here are just bare groups with no geometric structure; or rather with
discrete geometric structure. Therefore, since the morphism IT is an equivalence, also Top; is about discrete
groups, Top.; is about discrete groupoids and Top is about discrete co-groupoids.

There is a natural solution to this problem. This solution and the differential cohomology theory that it
supports is the topic of this book.

The solution is to equip discrete oco-groupoids A with smooth structure by equipping them with infor-
mation about what the smooth families of k-morphisms in it are. In other words, to assign to each smooth
parameter space U an oco-groupoid of smoothly U-parameterized families of cells in A.

If we write A for A equipped with smooth structure, this means that we have an assignment

AU~ A(U) =: Maps(U, A)smooth € 0oGrpd

such that A(x) = A.

Notice that here the notion of smooth maps into A is not defined before we declare A, rather it is defined
by declaring A. A more detailed discussion of this idea is below in

We can then define the homotopy theory of smooth co-groupoids by writing

SmoothooGrpd := Ly Funct(SmoothM{d“P, sSet) .

Here on the right we have the category of contravariant functors on the category of smooth manifolds, such as
the A from above. In order for this to inform this simple construction about the local nature of smoothness,
we need to formally invert some of the morphisms between such functors, which is indicated by the symbol
Ly on the left. The set of morphisms W that are to be inverted are those natural transformation that are
stalkwise weak homotopy equivalences of simplicial sets.

We find that there is a canonical notion of geometric realization on smooth co-groupoids

| — | : SmoothooGrpd RS 0oGrpd 5 Top,
where II is the derived left adjoint to the embedding

Disc : coGrpd < SmoothooGrpd

of bare co-groupoids as discrete smooth oo-groupoids. We may therefore ask for smooth refinements of given
topological spaces X, by asking for smooth oco-groupoids X such that |X| ~ X.
A simple example is obtained from any Lie algebra g. Consider the functor exp(g) : SmoothM{d°? — sSet
given by the assignment
eXp(g) U= ([k] = Q%iat,vertU X Ak7g) ’

where on the right we have the set of differential forms on the parameter space times the smooth k-simplex
which are flat and vertical with respect to the projection U x A¥ — U.
We find that the 1-truncation of this smooth co-groupoid is the Lie groupoid

T1exp(g) = BG

that has a single object and whose morphisms form the simply connected Lie group G that integrates g. We
may think of this Lie groupoid also as the moduli stack of smooth G-principal bundles. In particular, this is
a smooth refinement of the classifying space for G-principal bundles in that

IBG| ~ BG.
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So far this is essentially what classical Chern-Weil theory can already see. But smooth co-groupoids now go
much further.
In the next step there is a Lie 2-algebra g = string such that its exponentiation

T2 exp(string) = BString

is a smooth 2-groupoid, which we may think of as the moduli 2-stack of String-principal which is a smooth
refinement of the String-classifying space

|BString| ~ BString .
Next there is a Lie 6-algebra fivebrane such that
Te exp(fivebrane) = BFivebrane

with
|BFivebrane| ~ BFivebrane .

Moreover, the characteristic maps that we have seen now refine first to smooth maps on these moduli

stacks, for instance

%pl : BSpin — B3*U(1),

and then further to differential refinement of these maps

1, .
ek BSpin,.,, — B*U(1)conn ;

where now on the left we have the moduli stack of smooth Spin-connections, and on the right the moduli
3-stack of circle n-bundles with connection.

A detailed discussion of these constructions is below in [[.1.2]

In addition to capturing smooth and differential refinements, these constructions have the property that
they work not just at the level of cohomology classes, but at the level of the full cocycle oo-groupoids. For
instance for X a smooth manifold, postcomposition with %f) may be regarded not only as inducing a function

H} .(X,Spin) — HZ

conn conn

(X)
on cohomology sets, but a morphism

%p(x) : H'(X, Spin) — H*(X, B*U(1)conn)
from the groupoid of smooth principal Spin-bundles with connection to the 3-groupoid of smooth circle
3-bundles with connection. Here the boldface H = SmoothooGrpd denotes the ambient co-topos of smooth
oo-groupoids and H(—, —) its hom-functor.

By this refinement to cocycle co-groupoids we have access to the homotopy fibers of the morphism %f)l.
Before differential refinement the homotopy fiber

H(X, BString) — H(X, BSpin) ——> H(X, B3U(1)) ,

is the 2-groupoid of smooth String-principal 2-bundles on X: smooth string structures on X. As we pass to
the differential refinement, we obtain differential string structures on X

H(X, BString,,, ) —= H(X, BSpin,,,,) —> H(X, B3U(1)conn) -

COHH)

A cocycle in the 2-groupoid H(X, BString,.,, , )is naturally identified with a tuple consisting of
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e a smooth Spin-principal bundle P — X with connection V;
e the Chern-Simons 2-gerbe with connection C'S(V) induced by this;
e a choice of trivialization of this Chern-Simons 2-gerbe and its connection.

We may think of this as a refinement of secondary characteristic classes: the first Pontryagin curvature
characteristic form (Fy A Fy) itself is constrained to vanish, and so the Chern-Simons form 3-connection
itself constitutes cohomological data.

More generally, we have access not only to the homotopy fiber over the 0-cocycle, but may pick one cocycle
in each cohomology class to a total morphism H3q(X) — H(X,B3U(1)conn) and consider the collection of
all homotopy fibers over all connected components as the homotopy pullback

1P1Struce, (X) ———— Hig(X)

T

H(X7 Bspinconn) - (Xa B3U(1)C0HD)
This yields the 2-groupoid of twisted differential string structure. These objects, and their higher analogs
given by twisted differential fivebrane structures, appear in background field structure of the heterotic string
and its magnetic dual, as discussed in [SSS09¢].

These are the kind of structures that co-Chern-Weil theory studies.

1.4.3 The anomaly-free gauge coupling of the open string

As another example of the general phenomena of higher prequantum field theory, we close by briefly indicating
how the higher prequantum states of 3d Chern-Simons theory in codimension 2 reproduce the twisted Chan-
Paton gauge bundles of open string backgrounds, and how their transgression to codimension 1 reproduces
the cancellation of the Freed-Witten-Kapustin anomaly of the open string. This section draws from [FSS13a].

By the above, the Wess-Zumino-Witten gerbe wzw : G — B2U(1)Conn as discussed in section
may be regarded as the prequantum 2-bundle of Chern-Simons theory in codimension 2 over the circle.
Equivalently, if we consider the WZW o-model for the string on G and take the limiting TQFT case obtained
by sending the kinetic term to 0 while keeping only the gauge coupling term in the action, then it is
the extended Lagrangian of the string o-model: its transgression to the mapping space out of a closed
worldvolume ¥, of the string is the topological piece of the exponentiated WZW o-model action. For ¥4
with boundary the situation is more interesting, and this we discuss now.

The canonical representation of the 2-group BU(1) is on the complex K-theory spectrum, whose smooth
(stacky) refinement is given by BU := hi>n BU(n) in H. On any component for fixed n the action of the

smooth 2-group BU(1) is exhibited by the 7llong homotopy fiber sequence

U(1) — U(n) — PU(n) — BU(1) — BU(n) — BPU(n) 2" B2U/(1)

in H, in that dd,, is the universal (BU(n))-fiber 2-bundle which is associated by this action to the universal
(BU (1))—2—bundlel§| Using the general higher representation theory in H as developed in [NSS12a), a local
section of the (BU(n))-fiber prequantum 2-bundle which is dd,-associated to the prequantum 2-bundle
wzw, hence a local prequantum 2-state, is, equivalently, a map

¥ : wzw|g — dd,

18 The notion of (BU(n))-fiber 2-bundle is equivalently that of nonabelian U(n)-gerbes in the original sense of Giraud,
see [NSS12a]. Notice that for n = 1 this is more general than then notion of U(1)-bundle gerbe: a G-gerbe has structure
2-group Aut(BG), but a U(1)-bundle gerbe has structure 2-group only in the left inlcusion of the fiber sequence BU (1) —
Aut(BU(1)) — Zs.

268



in the slice H/gz2(1), where 1 : Q — G is some subspace. Equivalently (compare with the general discussion
in section |7.1.1)), this is a map
(¥, wzw) : 1o —> dd,

in H(Al)7 hence a diagram in H of the form

kL BPU(n)

GTBQU(I) .

One finds that this equivalently modulates a unitary bundle on @ which is twisted by the restriction of wzw
to @ as in twisted K-theory (such a twisted bundle is also called a gerbe module if wzw is thought of in
terms of bundle gerbes [CBMMS02]). So

dd, € H/BzU(l)

is the moduli stack for twisted rank-n unitary bundles. As with the other moduli stacks before, one finds a
differential refinement of this moduli stack, which we write

(ddn)COHn : (BU(n)//BU(l))conn — B2U(1)c0nr17

and which modulates twisted unitary bundles with twisted connections (bundle gerbe modules with connec-
tion). Hence a differentially refined state is a map . wzw|g — (ddy)conn in H/p2p(1),,,,; and this is
precisely a twisted gauge field on a D-brane @) on which open strings in G may end. Hence these are the
prequantum 2-states of Chern-Simons theory in codimension 2. Precursors of this perspective of Chan-Paton
bundles over D-branes as extended prequantum 2-states can be found in [ScO7, RogIIb].

Notice that by the above discussion, together the discussion in section [7.1.1] an equivalence

O: wzw —> wzw
in H /B2y (1),.,, has two different, but equivalent, important interpretations:

1. it is an element of the quantomorphism 2-group (i.e. the possibly non-linear generalization of the
Heisenberg 2-group) of 2-prequantum operators;

2. it is a twist automorphism analogous to the generalized diffeomorphisms for the fields in gravity.

Moreover, such a transformation is locally a structure well familiar from the literature on D-branes: it is
locally (on some cover) given by a transformation of the B-field of the form B +— B + dqra for a local
1-form a (this is the Hamiltonian 1-form in the interpretation of this transformation in higher prequantum
geometry) and its prequantum operator action on prequantum 2-states, hence on Chan-Paton gauge fields
U wzw — (dd;,)conn (by precomposition) is given by shifting the connection on a twisted Chan-Paton

bundle (locally) by this local 1-form a. This local gauge transformation data
B+— B+da, A—A+a,

is familiar from string theory and D-brane gauge theory (see e.g. [Po01]). The 2-prequantum operator action
¥ — OV which we see here is the fully globalized refinement of this transformation.

The map U (g, wzw) — (dd;,,)conn above is the gauge-coupling part of the extended Lagrangian of
the open string on G in the presence of a D-brane @) < G. We indicate what this means and how it works.
Note that for all of the following the target space G and background gauge field wzw could be replaced by
any target space with any circle 2-bundle with connection on it.
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The object tg in H®Y s the target space for the open string. The worldvolume of that string is a

smooth compact manifold ¥ with boundary inclusion gy, : 03 — X, also regarded as an object in HAD. A
field configuration of the string o-model is then a map

@iy =g

in H(A‘l)7 hence a diagram
0N ——=(Q

Lox L\ \L\LQ
> ¢ G
in H, hence a smooth function ¢ : ¥ — G subject to the constraint that the boundary of ¥ lands on the
D-brane @. Postcomposition with the background gauge field ¥ yields the diagram

w

T T (BU(n)//U(1))conn
» ¢ Gz B?U(L)comn -

Comparison with the situation of Chern-Simons theory with Wilson lines in section [[.4.1.5] shows that the
total action functional for the open string should be the product of the fiber integration of the top composite
morphism with that of the bottom composite morphisms. Hence that functional is the product of the surface
parallel transport of the wzw B-field over ¥ with the line holonomy of the twisted Chan-Paton bundle over
ox.

This is indeed again true, but for more subtle reasons this time, since the fiber integrations here are
twisted (we discuss this in detail below in : since Y has a boundary, parallel transport over ¥ does
not yield a function on the mapping space out of 3, but rather a section of the line bundle on the mapping
space out of 9%, pulled back to this larger mapping space.

Furthermore, the connection on a twisted unitary bundle does not quite have a well-defined traced
holonomy in C, but rather a well defined traced holonomy up to a coherent twist. More precisely, the
transgression of the WZW 2-connection to maps out of the circle as in section [T4] fits into a diagram of
moduli stacks in H of the form

tr hol o1
Maps(Sl, (BU(n)//BU(1))conn) . C//U(1)conn
Maps(Sl,(ddn)conn)
holg1
Maps(Sl, B2U(1)conn) BU(]-)conn .

This is a transgression-compatibility of the form that we have already seen in section [[.4.1.2

In summary, we obtain the transgression of the extended Lagrangian of the open string in the background
of B-field and Chan-Paton bundles as the following pasting diagram of moduli stacks in H (all squares are
filled with homotopy 2-cells, which are notationally suppressed for readability)
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exp(2mi [¢[3,wzw])

FieldSOpcnString(LaE) MapS(E, G) Q//Q(]-)conn

Maps(tos,G)

Maps(St,i0)

Maps(S', Q) Maps(S', G)

Maps(S*,¥) Maps(S!,wzw)
v Maps(S*,(ddn)conn)

Maps(St, (BU(n)//BU(1))conn) Maps(St, B2U(1)conn)

‘ \h
tr holsl olsl
V \

Q//Q(l)conn BU(l)conn

Here

e the top left square is the homotopy pullback square that computes the mapping stack Maps(tss, Q)

in H(Al), which here is simply the smooth space of string configurations ¥ — G which are such that
the string boundary lands on the D-brane Q;

e the top right square is the twisted fiber integration of the wzw background 2-bundle with connection:
this exhibits the parallel transport of the 2-form connection over the worldvolume ¥ with boundary
S1 as a section of the pullback of the transgression line bundle on loop space to the space of maps out
of X;

e the bottom square is the above compatibility between the twisted traced holonomy of twisted unitary
bundles and the trangression of their twisting 2-bundles.

The total diagram obtained this way exhibits a difference between two section of a single complex line bundle
on Fieldsopenstring (tox) (at least one of them non-vanishing), hence a map

exp (2m’/[2,wzw]) - tr holsl([Sl7 \fl]) : Fieldsopenstring (tas) — C.
i

This is the well-defined action functional of the open string with endpoints on the D-brane ) — G, charged
under the background wzw B-field and under the twisted Chan-Paton gauge bundle V.

Unwinding the definitions, one finds that this phenomenon is precisely the twisted-bundle-part, due to
Kapustin [Ka99], of the Freed-Witten anomaly cancellation for open strings on D-branes, hence is the Freed-
Witten-Kapustin anomaly cancellation mechanism either for the open bosonic string or else for the open
type II superstring on Spin®-branes. Notice how in the traditional discussion the existence of twisted bundles
on the D-brane is identified just as some construction that happens to cancel the B-field anomaly. Here, in
the perspective of extended quantization, we see that this choice follows uniquely from the general theory of
extended prequantization, once we recognize that dd,, above is (the universal associated 2-bundle induced
by) the canonical representation of the circle 2-group BU(1), just as in one codimension up C is the canonical
representation of the circle 1-group U(1).

1.4.4 Super p-branes propagating on super-spacetimes

We consider aspects of the traditional formulation super p-brane sigma models in the light of higher geometric
prequantum theory, following [FSS13b] and the classical referecnes given there.
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The “old brane scan” (see below) contains all the branes of string/M-theory which do not have
tensor-multiplet fields on their worldvolume, equivalently those which may end on other brane, but do not
have themselves other branes ending on them. Below in B1.2] we consider the refinement of the theory
to higher geometry proper and find that here the old brane scan completes to the full “brane boquet” of
string/M-theory.

. — Super-Minkowski spacetimes;
e [1.4.4.2] - The old brane scan;
e [1.4:4.3] - Brane charges and Supergravity BPS-states.

1.4.4.1 Super-Minkowski spacetimes We set up some basic notation concerning the super-translation-
and the super-Poincaré super Lie algebras, following [dAFr82]. For more background see [Fr99) lecture 3]
and [Po01l appendix B].

Write o(d— 1, 1) for the Lie algebra of the Lorentz group in dimension d. If {w,’},5 is the canonical basis
of Lie algebra elements, then the Chevalley-Eilenberg algebra CE(o(d — 1,1)) is generated from elements
{wp}ep in degree (1,even) with the differential given bylﬂ dog w% = w%: A w. Next, write iso(d — 1,1)
for the Poincaré Lie algebra. Its Chevalley-Eilenberg algebra in turn is generated from the {w%,} as before
together with further generators {e®}, in degree (1,even) with differential given by dcg e® := w?, A e®. Now
for N denoting a real spinor representation of o(d — 1,1), also called the number of supersymmetries (see
for instance [Fr99, part 3]), write {I'*} for a representation of the Clifford algebra in this representation
and {¥,}, for the corresponding basis elements of the spinor representation. There is then an essentially
unique symmetric Spin(d — 1, 1)-equivariant bilinear map from two spinors to a vector, traditionally written
in components as

(Y1, 42)® := YT

This induces the super Poincaré Lie algebra sison(d — 1,1) whose Chevalley-Eilenberg super-dg-algebra is
generated from the generators as above together with generators {¢*} in degree (1, 0dd) with the differential

now defined as follows
depw® = w'e AW,

dcg e :wab/\6b+ %E/\Faw ,
decg ® = iwab AT .

Here and in the following I'****®» denotes the skew-symmetrized product of the Clifford matrices and in
the above matrix multiplication is understood whenever the corresponding indices are not displayed. In
summary, the degrees are

deg(e®) = (1,even), deg(w®) = (1,even), deg(y*) = (1,0dd), deg(dcgr) = (1,even).

Notice that this means that, for instance, e®* A e*2 = —e® A e and e® A Y@ = —p® A e® but Y* AyY*2 =
" A

Example 1.4.1. For ¥ a supermanifold of dimension (d; V), a flat siso(d — 1, 1)-valued differential form
A : CE(siso(d — 1,1) — Q3r(¥), according to Def. and subject to the constraint that the R%V-
component is induced from the tangent space of ¥ (this makes it a Cartan connection) is

1. a vielbein field E® := A(e®),
2. with a Levi-Civita connection Q% := A(w%) (graviton),

3. a spinor-valued 1-form field ¢ := A(¢*) (gravitino),

19Here and in all of the following a summation over repeated indices is understood.
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subject to the flatness constraints which here say that the torsion of of the Levi-Civita connection is the super-
torsion 7 = WAT*WAE, and that the Riemann curvature vanishes. This is the gravitational field content (for
vanishing field strength here, one can of course also consider non-flat fields) of supergravity on X, formulated
in first order formalism. By passing to Ly,-extensions of siso this is the fomulation of supergravity fields
which seamlessly generalizes to the higher gauge fields that higher supergravities contain, including their
correct higher gauge transformations. This is the perspective on supergravity originating around the article
[dAFr82] and expanded on in the textbook [CaDAFr91]. Recognizing the “FDA”-language used in this book
as secretly being about Lie n-algebra homotopy theory (the “FDA”s are really Chevalley-Eilenberg algebras
super-Loo-algebras) allows one to uncover some natural and powerful higher gauge theory and geometric
homotopy theory hidden in traditional supergravity literature.

The super translation Lie algebra corresponding to the above is the quotient
REN = siso(d — 1,1)/0(d — 1,1)

whose CE-algebra is as above but with the {w?,} discarded. We may think of the underlying super vector
space of R%N as N-super Minkowski spacetime of dimension d, i.e. with N supersymmetries. Regarded as a
supermanifold, it has canonical super-coordinates {z%, ¥*} and the CE-generators e® and %* above may be
identified under the general equivalence CE(g) ~ O (G) (for a (super-)Lie group G with (super-)Lie algebra
g) with the corresponding canonical left-invariant differential forms on this supermanifold:

e’ = dgr x* + 9re dar v ,
Y& = dgr 9° .
This defines a morphism 0 : CE(R%N) — Q¢I*(R%N) to super-differential forms on super Minkowski space,

and via def. this is the Maurer-Cartan form, example[7.3.7} on the supergroup R4 of supergranslations
As such {e®,1*} is the canonical super-vielbein on super-Minkowski spacetime.

Notice that the only non-trivial piece of the above CE-differential remaining on CE(R%Y) is
dCE(Rd?N) ea = E A\ Faﬂ} .

Dually this is the single non-trivial super-Lie bracket on R%" the one which pairs two spinors to a vector.
All the exceptional cocycles considered in the following exclusively are controled by just this equation and
Lorentz invariance.

1.4.4.2 The old brane scan As usual, we write N for a choice of number of irreducible real (Ma-~
jorana) representations of Spin(d — 1,1), and N = (N;, N_) if there are two inequivalent chiral minimal
representations. For instance, two important cases are

d=10 d=11
N=(1,00=16 | N=1=32

For 0 < p <9 consider the dual bispinor element
pp = €A A A (Y AT ) € CE(REY),

where here and in the following the parentheses are just to guide the reader’s eye. Observe that the differential
of this element is of the form

dep ftp < €™ A Ae=1 A (YT % Agh) A (3 ATP2)) .
This is zero precisely if after skew-symmetrization of the indices, the spinorial expression

Yrlerar Ay Ap ATleh =0
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vanishes identically (on all spinor components). The spinorial relations which control this are the Fierz iden-
tities. If this expression vanishes, then p, is a (p + 2)-cocycle on REN=1 Def. hence a homomorphism
of super Lie n-algebras of the form

pp: REN=I S R[p41] .

If this is the case then, by def. this defines a o-model p-brane propagating on REN=1,

The combinations of d and p for which this is the case had originally been worked out in [AETWS8T]. The
interpretation in terms of super-Lie algebra cohomology was clearly laid out in [AzTo89]. See [Bri0al [Br10bl
Br13] for a rigorous treatment and comprehensive classification for all N. The non-trivial cases (those where
Hp is closed but not itself a differential) correspond precisely to the non-empty entries in the following table.

0 I R N B N MR
1
1 m2(bt)ane
10 (1,0) (1,0)
stringy o nsbbranepet
9 (1)
(1)
7 (1)
6 [ittEelfzSt)ing (1,0)
5 (1)
4 (1) (1)
3 (1)

This table is known as the “old brane scan” for string/M-theory. Each non-empty entry corresponds
to a p-brane WZW-type o-model action functional of Green-Schwarz type. For (d = 10,p = 1) this is the
original Green-Schwarz action functional for the superstring [GrSch84] and, therefore, we write string, ., in
the respective entry of the table (similarly there are cocycles for type II strings, discussed in the following
sections), which at the same time is to denote the super Lie 2-algebra extension of R!®V=1 that is classified
by 1, in this dimension, according to Remark

stringy,q,
R10;N=(1,0) H1 R[2] )

This Lie 2-algebra has been highlighted in [BaH10].

Analogously we write m2btane for the super Lie 3-algebra extension of classified by the nontrivial
cocycle p2 in dimension 11 (this was called the supergravity Lie 3-algebra sugra,; in [SSS09a])

RILN=1

m2brane

RILN=1 H2 RB] ,

and so on.
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Remark 1.4.2. While it was a pleasant insight back then that so many of the extended objects of string/M-
theory do appear from just super-Lie algebra cohomology this way in the above table, it was perhaps just
as curious that not all of them appeared. Later other tabulations of string/M-branes were compiled, based
on less mathematically well defined physical principles [Duf08]. These “new brane scans” are what make
the above an “old brane scan”. But, following [FSS13b], we will discuss below in that if only we allow
ourselves to pass from (super-)Lie algebra theory to the higher homotopy theory of (super-) Lie n-algebra
theory, then the old brane scan turns out to be part of a brane bouquet that accurately incorporates all the
information of the “new brane scan”, all the branes of the new brane scan, altogether with their intersection
laws, with their tensor multiplet field content and its correct higher gauge transformation laws.

1.4.4.3 Brane charges and Supergravity BPS-states Let R 11N be a super-Minkowski spacetime
and (d, N,p) an item in the brane scan, i.e.

wwzw = ¥ A B Aty € Q4 (RHHN)

a cocycle. Let then X be a super-spacetime equipped with a definite globalization w\)z(vzw € Q%(X) of wwzw-

We may regard the pair (X, W\)}{vzw) as a pre-(p + 1)-plectic supermanifold. As such it induces the higher
Poisson bracket super Lie (p + 1)-algebra Pois(X, w,w) of def. [1.3.158] def. [1.3.159| prop. [1.3.162}

If X is equipped with super-vielbein field E and with further relevant fields that solve the equations of
motion of supergravity in the relevant dimension, then these equations imply the existence of such definite
wéf,ZW [BeSeTo86l, [BeSeTo87]. This means that isometries of X preserve o.)é(vzw, hence that their vector
fields (the Killing vectors and Killing spinors) are (p + 1)-plectomorphisms for w\)fvzw.

However, and this point is neglected in the literature, except for a brief indication in [Wi86, page 17],
definition of the WZW model globally on X requires a choice of prequantization of wix,y . This means that
the relevant symmetries are those isomeetries that are not just (p + 1)-plectomorphisms, but Hamiltonian
vector fields, in the sense of def. Write

Jsom(X) — Vectgam (X)

for the inclusion of these.

Definition 1.4.3. Write BPS(X, wiX,vw ) for the restriction of the current Lie (p+1)-algebra Pois(X, wixvzw)
(def. [1.3.158] def]1.3.159] prop. [1.3.162)) of wix;w to isometries, i.e. for the super Lo.-algebra in the homo-
topy pullback diagram

BPS(X, W\)i(vzw) — Pois(X, wé(vzw)

l |

Jsom(X) ———— Vectgam(X)

Proposition 1.4.4. The 0-truncation of the super Lie (p + 1)-algebra BPS (X, w) to a super-Lie algebra
ToBPS(X,w) is the central extension of the supersymmetry algebra of X by charges of p-branes wrapping
non-trivial cycles, as in [AGITS9)].

Proof. This follows via remark [1.3.157] by corollary [6.4.205] which gives an extension
HYL(X) = 10BPS(X,w) — Tsom(X)
classified by w(—, —). The elements in HY,(X) are the p-brane charges as on [AGIT89, p.8]. O

Remark 1.4.5. It follows that X is a supergravity 1/k BPS-state (see e.g. [CaSm07]) if the odd dimension
of o BPS(X,w) is 1/k times that of RI-LIN,

This concerns the charges of the branes in the old brane scan, [1.4.4.2l The refinement of this statement to
the full brane bouquet needs a more comprehensive formulation in higher differential geometry. We consider
this below in B2l
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2 Concept

We discuss here aspects of homotopy-type theory, the theory of locally cartesian closed oco-categories and of
oco-toposes, that we need in the following. We find it useful to think and speak of this without the hyphen,
due to theorem below.

Much of this is a review of material available in the literature, we just add some facts that we will need
and for which we did not find a citation. The reader at least roughly familiar with this theory should skip
ahead to our main content, the discussion of cohesive co-toposes in[d] We will refer back to these sections
here as needed.

e [2.1] - Categories
e 2.2 - The method

2.1 Categories

The natural joint generalization of the concept of category and of homotopy type is that of co-category: a
collection of objects, such that between any ordered pair of them there is a homotopy type of morphisms.
We briefly survey key definitions and properties in the theory of co-categories.

o — Dependent homotopy-types and Locally cartesian closed oo-categories;
° — Presentation by simplicial sets;

e 2.1.3] - Presentation by simplicially enriched categories.

2.1.1 Dependent homotopy-types and Locally cartesian closed co-categories

For the most basic notions of category theory see the first pages of [MacMoe92] or A.1 in [L-Topos].

Definition 2.1.1. A category C is called cartesian closed if it has Cartesian products X x Y of all objects
X,Y € C and if there is for each X € C a mapping space functor [X, —| : C — C, characterized by the fact
that there is a bijection of hom-sets

C(X x A,Y) ~C(A, X, Z])

natural in the objects A, X,Y € C. A category C is called locally cartesian closed if for each object X € C
the slice category C,x is a cartesian closed category.

The main example of locally cartesian closed categories of interest here are toposes, to which we come
below in def. It is useful to equivalently re-express local cartesian closure in terms of base change:

Proposition 2.1.2. If C is a locally cartesian closed category, def. then for f : X — Y any
morphism in C there exists an adjoint triple of functors between the slice categories over X and Y (called

base change functors)
—
Cpy~—F+——Cy
—f—
where f* is given by pullback along f, fi is its left adjoint and f its right adjoint. Conversely, if a category
C has pullbacks and has for every morphism f a left and right adjoint fi and f. to the pullback functor f*,

then it is locally cartesian closed.

It turns out that base change may usefully be captured syntactically such as to constitute a flavor of
formal logic called constructive set theory or type theory [MLT4]:

Definition 2.1.3. Given a locally cartesian closed category C, one says equivalently that

276



e its internal logic is a dependent type theory;
e it provides categorical semantics for dependent type theory

as follows:

the objects of C are called the types;

the objects in a slice C;r are called the types in context I' or dependent on I', denoted

I' = X :Type

e a morphism x — X (from the terminal object into any object X) in a slice Cr is called a term of type
X in context I', and denoted
'+ 2:X

or more explicitly
a:T F z(a): X(a);

e given a morphism f : I’y — I’y in C with its induced base change adjoint triple of functors between
slice categories from prop.

then

— given a morphism (* — X) in C/p,, hence a term I'y F 2 : X, then its pullback by f* is denoted
by substitution of variables

a:T1 F z(f(a): X(f(a)),

— given an object X € Cr, its image fi(X) € C/p, is called the dependent sum of X along f and is
denoted as
Iy ZX : Type,
f

— given an object X € Cr, its image f.(X) € Cr, is called the dependent product of X along f and
is denoted as

Iy b [[X : Type,
f

e the universal property of the adjoints (fi 4 f* - f.) translates to evident rules for introducing and
for transforming terms of these dependent sum/product types, called term introduction and term
elimination rules.

We consider bundles and base change in more detail below in [5.1.2
When this syntactic translation is properly formalized, it yields an equivalent description of locally
cartesian closed categories:

Proposition 2.1.4 ([See84| [CIDy11]). There is an equivalence of 2-categories between locally cartesian closed
categories and dependent type theories.

Remark 2.1.5. Given any object X € C/r, its diagonal X — X X X regarded as an object of C;(rx xxx)
serves as the identity type of X, denoted

T, (z1,22) : X x X F (z1 =22) : Type.
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Namely given two terms 1,22 : X, then a term I' + p: (x1 = z2) is as a morphism in C an element on
the diagonal of X x X and in the type theory is a proof of equality of 1 and x5. If there is such a proof of
equality then it is unique, since the diagonal is always a monomorphism.

But consider now the case that C in addition carries the structure of a model category (see A.2 in [L-Topos]
for a review). Then there is for each X a path space object X! — X x X. Using this as the categorical
semantics of identity types, instead of the plain diagonal X — X x X, means to make identity behave
instead like higher gauge equivalence in physics: there are then possibly many equivalences between two
terms of a given type, and many equivalences between equivalences, and so on. If C is moreover right proper
as a model category and such that its cofibrations are precisely its monomorphisms, then there exists a
variant of the dependent type theory of remark reflecting these homotopy-theoretic identity types.
This is called dependent type theory with intensional identity types or, more recently, homotopy type theory
[UFP13]. At the same time, such a model category is a presentation for the homotopy-theoretic analogy of
a locally cartesian closed category: a locally cartesian closed (0o, 1)-category (see A.3 of [L-Topos]).

The following was maybe first explicitly suggested by [Jo08a] and in its refinement to co-toposes (see
theorem below) in [Aw10]. A proof of the technical details involved appeared in [CiSh13|[Shull2a]. For
a survey in our context see [ScI14b].

Proposition 2.1.6. Up to equivalence, the internal type theory of a locally Cartesian closed (0o, 1)-category
is homotopy type theory (without necessarily univalence) and conversely homotopy type theory (without nec-
essarily univalence) has categorical semantics in locally cartesian closed (0o, 1)-categories.

We now turn to description such oco-categories “externally” in terms of simplicial sets and categories

enriched over simplicial sets. We briefly come back to the “inernal” perspective of homotopy type theory
below in

2.1.2 Presentation by simplicial sets

Definition 2.1.7. An quasi-category is a simplicial set C' such that all horns A¢[n] — C that are inner, in
that 0 < ¢ < m, have an extension to a simplex A[n] — C.

A vertex ¢ € Cy is an object, an edge f € Cy is a morphism in C.

An morphism of quasi-categories f : C' — D is a morphism of the underlying simplicial sets.

This definition is due [Jo08a]. Such quasi-categories turn out to have the right homotopy theory to qualify
as presentation of oco-categories and we will usually abuse terminology and speak of them as oco-categories
right away.

Remark 2.1.8. For C an oo-category, we think of Cj as its collection of objects, and of C as its collection
of morphisms and generally of C} as the collection of k-morphisms. The inner horn filling property can be
seen to encode the existence of composites of k-morphisms, well defined up to coherent (k + 1)-morphisms.
It also implies that for k£ > 1 these k-morphisms are invertible, up to higher morphisms. To emphasize this
fact one also says that C'is an (0o, 1)-category. (More generally an (0o, n)-category would have k morphisms
for all k such that for £ > n these are equivalences.)

The power of the notion of co-categories is that it supports the higher analogs of all the crucial facts of
ordinary category theory. This is a useful meta-theorem to keep in mind, originally emphasized by André
Joyal and Charles Rezk.

Fact 2.1.9. In general
e oco-Category theory parallels category theory;
e oo-Topos theory parallels topos theory.

More precisely, essentially all the standard constructions and theorems have their co-analogs if only we
replace isomorphism between objects and equalities between morphisms consistently by equivalences and
coherent higher equivalences in an oco-category.
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Proposition 2.1.10. For C and D two co-categories, the internal hom of simplicial sets sSet(C, D) € sSet
1§ an oo-cateqgory.

Definition 2.1.11. We write Func(C, D) for this co-category and speak of the oo-category of co-functors
between C and D.

Remark 2.1.12. The objects of Func(C, D) are indeed the oo-functors from def. The morphisms
may be called co-natural transformations.

Definition 2.1.13. The opposite C°P of an oo-category C' is the co-category corresponding to the opposite
of the corresponding sSet-category.

Definition 2.1.14. Let KanCplx C sSet be the full subcategory of sSet on the Kan complexes, regarded
naturally as an sSet-enriched category, in fact a Kan-complex enriched category. Below in we recall the
homotopy coherent nerve construction Ny that sends a Kan-complex enriched category to an oo-category.
We say that

ooGrpd := N KanCplx

is the co-category of co-groupoids.
Definition 2.1.15. For C' an oco-category, we write
PSho (C) := Func(C°P, coGrpd)
and speak of the co-category of co-presheaves on C.
The following is the co-category theory analog of the Yoneda lemma.

Proposition 2.1.16. For C an oc-category, U € C any object, j(U) ~ C(—,U) : C°? — ooGrpd an oco-
presheaf represented by U we have for every co-presheaf F' € PShoo(C) a natural equivalence of oo-groupoids

PSheo (C)(j(U), F) ~ F(U).

From this derives a notion of co-limits and of adjoint co-functors and they satisfy the expected properties.
This we discuss below in [B.1.11
2.1.3 Presentation by simplicially enriched categories

A convenient way of handling oco-categories is via sSet-enriched categories: categories which for each ordered
pair of objects has not just a set of morphisms, but a simplicial set of morphisms (see [Ke82] for enriched
category theory in general and section A of |[L-Topos| for sSet-enriched category theory in the context of
oo-category theory in particular):

Proposition 2.1.17. There exists an adjunction between simplicially enriched categories and simplicial sets

|-
(| = | 4 Np) : sSetCat sSet
Np
such that

e if S € sSetCat is such that for all objects X,Y € S the simplicial set S(X,Y) is a Kan complex, then
NL(S) is an co-category;

e the unit of the adjunction is an equivalence of co-categories (see def. below).

This is for instance prop. 1.1.5.10 in [L-Topos].
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Remark 2.1.18. In particular, for C' an ordinary category, regarded as an sSet-category with simplicially
constant hom-objects, N,C is an oo-category. A functor C' — D is precisely an oo-functor N,C' — N, D. In
this and similar cases we shall often notationally suppress the Nj-operation. This is justified by the following
statements.

Definition 2.1.19. For C an co-category, its homotopy category Ho(C') (or Ho¢) is the ordinary category
obtained from |C| by taking connected components of all simplicial hom-sets:

HOC(Xﬂ Y) = 70(‘0‘(*){’ Y)) .

A morphism f € C is called an equivalence if its image in Ho(C) is an isomorphism. Two objects in C
connected by an equivalence are called equivalent objects.

Definition 2.1.20. An oco-functor F': C — D is called an equivalence of co-categories if
1. Tt is essentially sujective in that the induced functor Ho(f) : Ho(C) — Ho(D) is essentially surjective;

2. and it is full and faithful in that for all objects X,Y the induced morphism fxy : |C|(X,Y) —
|D|(X,Y) is a weak homotopy equivalence of simplicial sets.

For C' an oco-category and X, Y two of its objects, we write
C(X,Y) :=[C(X,Y)

and call this Kan complex the hom-oco-groupoid of C' from X to Y.
The following assertion guarantees that sSet-categories are indeed a faithful presentation of co-categories.

Proposition 2.1.21. For every oco-category C the unit of the (| — | 4 Ny)-adjunction from prop. is
an equivalence of co-categories
C S Ny|C|.

This is for instance theorem 1.1.5.13 together with remark 1.1.5.17 in |[L-Topos].
Definition 2.1.22. An oco-groupoid is an oco-category in which all morphisms are equivalences.
Proposition 2.1.23. co-groupoids in this sense are precisely Kan complezes.

This is due to [Jo02]. See also prop. 1.2.5.1 in |[L-Topos]|.
A convenient way of constructing co-categories in terms of sSet-categories is via categories with weak
equivalences.

Definition 2.1.24. A category with weak equivalences (C, W) is a category C equipped with a subcategory
W C C which contains all objects of C' and such that W satsifies the 2-out-of-3 property: for every commuting

triangle
/ Y \
r———————z

in C' with two of the three morphisms in W, also the third one is in W.

Definition 2.1.25. The simplicial localization of a category with weak equivalences (C, W) is the sSet-
category
Ly C € sSetCat

(or LC for short, when W is understood) given as follows: the objects are those of C; and for X,Y € C
two objects, the simplicial hom-set LC(X,Y") is the inductive limit over n € N of the nerves of the following
categories:
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e objects are equivalence classes of zig-zags of length n of morphisms

~

X<—K; Ky<=— ... Yy

in C, such that the left-pointing morphisms are in W

e morphisms are equivalence classes of transformations of such zig-zags

K1*>K2-é-~-

N 4

such that the vertical morphisms are in W;

e subject to the equivalence relation that identifies two such (transformations of) zig-zags if one is
obtained from the other by discarding identity morphisms and then composing consecutive morphisms.

This simplicial “hammock localization” is due to [DwKa80a].

Proposition 2.1.26. Let (C,W) be a category with weak equivalences and LC' be its simplicial localization.
Then its homotopy category in the sense of def. 1 equivalent to the ordinary homotopy category
Ho(C, W) (the category obtained from C' by universally inverting the morphisms in W ):

HoLy C ~ Ho(C,W).

A convenient way of controlling simplicial localizations is via sSetquilen-enriched model category struc-
tures (see section A.2 of [L-Topos| for a good discussion of all related issues).

Definition 2.1.27. A model category is a category with weak equivalences (C, W) that has all limits and
colimits and is equipped with two further classes of morphisms, Fib, Cof C Mor(C) — the fibrations and
cofibrations — such that (Cof, Fib N W) and (Cof N W, Fib) are two weak factorization systems on C. Here
the elements in Fib N W are called acyclic fibrations and those in Cof N W are called acyclic cofibrations.
An object X € C is called cofibrant if the canonical morphism § — X is a cofibration. It is called fibrant if
the canonical morphism X — x is a fibration.

A Quillen adjunction between two model categories is a pair of adjoint functors between the underlying
categories, such that the right adjoint preserves fibrations and acyclic fibrations, which equivalently means
that the left adjoint preserves cofibrations and acyclic cofibrations.

Remark 2.1.28. The axioms on model categories directly imply that every object is weakly equivalent to
a fibrant object, and to a cofibrant objects and in fact to a fibrant and cofibrant objects.

Example 2.1.29. The category of simplicial sets carries a model category structure, here denoted sSetquitien,
whose weak equivalences are the weak homotopy equivalences, cofibrations are the monomorphisms, and
fibrations and the Kan fibrations.

Definition 2.1.30. Let A, B, C be model categories. Then a functor
F:AxB—C

is a left Quillen bifunctor if

1. it preserves colimits separately in each argument;
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2. fori:a — a and j : b — b two cofibrations in A and in B, respectively, the canonical induced
morphism
F(d',b) H F(a,b') — F(d',V)
F(a,b)

is a cofibration in C and is in addition a weak equivalence if 7 or j is.

Remark 2.1.31. In particular, for F': A x B — C' a left Quillen bifunctor, if a € A is cofibrant then
F(a,—):B—=C

is an ordinary left Quillen functor if F' is a left Quillen bifunctor, as is
F(—-,b):A—=C

for b cofibrant.

Definition 2.1.32. A monoidal model category is a category equipped both with the structure of a model
category and with the structure of a monoidal category, such that the tensor product functor of the monoidal
structure is a left Quillen bifunctor, def. [2.1.30] with respect to the model category structure.

Example 2.1.33. The model category sSetquilien is @ monoidal model category with respect to its Cartesian
monoidal structure.

Definition 2.1.34. For V a monoidal model category, an V-enriched model category is a model category
equipped with the structure of an V-enriched category which is also V-tensored and -cotensored, such that
the V-tensoring functor is a left Quillen bifunctor, def. [2.1.30]

Remark 2.1.35. An sSetquilien-enriched model category is often called a simplicial model category. Notice
that, while entirely standard, this use of terminology is imprecise: first, not every simplicial object in
categories is a sSet-enriched category, and second, there are other and inequivalent model category structure
on sSet that make it a monoidal model category with respect to its Cartesian monoidal structure.

Definition 2.1.36. For C an (sSetquillen-enriched) model category write
C° € sSetCat

for the full sSet-subcategory on the fibrant and cofibrant objects.

Proposition 2.1.37. Let C' be an sSetquillen-enriched model category. Then there is an equivalence of
oo-categories
C°~LC.

This is corollary 4.7 with prop. 4.8 in [DwKa80b].

Proposition 2.1.38. The hom-co-groupoids (N,C°)(X,Y) are already correctly given by the hom-objects
in C from a cofibrant to a fibrant representative of the weak equivalence class of X and Y, respectively.

In this way sSetquillen-enriched model category structures constitute particularly convenient extra struc-
ture on a category with weak equivalences for constructing the corresponding oo-category.

In terms of the presentation of co-categories by simplicial categories, [2.1.3} adjoint co-functors are pre-
sented by simplicial Quillen adjunctions, def. between simplicial model categories: the restriction
of a simplicial Quillen adjunction to fibrant-cofibrant objects is the sSet-enriched functor that presents the
oo-derived functor under the model of co-categories by simplicially enriched categories.
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Proposition 2.1.39. Let C and D be simplicial model categories and let

L
(L4R): C=—_D
R
be an sSet-enriched adjunction whose underlying ordinary adjunction is a Quillen adjunction. Let C° and
D° be the co-categories presented by C and D (the Kan complex-enriched full sSet-subcategories on fibrant-
cofibrant objects). Then the Quillen adjunction lifts to a pair of adjoint co-functors

(LLH4RR): C°=—_D°

On the decategorified level of the homotopy categories these are the total left and right derived functors,
respectively, of L and R.

This is [L-Topos], prop 5.2.4.6.
The following proposition states conditions under which a simplicial Quillen adjunction may be detected
already from knowing of the right adjoint only that it preserves fibrant objects (instead of all fibrations).

Proposition 2.1.40. If C and D are simplicial model categories and D is a left proper model category, then
for an sSet-enriched adjunction
(L4R): C=—_D

to be a Quillen adjunction it is already sufficient that L preserves cofibrations and R preserves fibrant objects.

This appears as [L-Topos, cor. A.3.7.2].

We will use this for finding simplicial Quillen adjunctions into left Bousfield localizations of left proper
model categories: the left Bousfield localization preserves the left properness, and the fibrant objects in the
Bousfield localized structure have a good characterization: they are the fibrant objects in the original model
structure that are also local objects with respect to the set of morphisms at which one localizes. Therefore
for D the left Bousfield localization of a simplicial left proper model category F at a class S of morphisms,
for checking the Quillen adjunction property of (L 4 R) it is sufficient to check that L preserves cofibrations,
and that R takes fibrant objects ¢ of C' to such fibrant objects of E that have the property that for all f € S
the derived hom-space map RHom(f, R(c)) is a weak equivalence.

2.2 The method

Based on the archetypical example of an co-category, the oo-category coGrpd of co-groupoids/homotopy
types (def. , it makes sense to think of an co-category generally as a system of homotopy types or type
system, for short.

The concept of type system H provides a setting for homotopy-types to be, but lacks as yet any deter-
mination of further qualities these types may have.

For instance while it is common to think of bare co-groupoids as being presented by topological spaces,
(via the famous equivalence coGrpd ~ Lypn.Top which we recall below in ) there is not actually any
intrinsic continuous topological quality left on objects X € coGrpd, whereas in a richer oo-topos such as
ETopooGrpd := Sho (TopM{d) there is (this we discuss below in . In the latter one has differing objects
such as on the one hand the topological circle S' € TopMfd — ETopocoGrpd as well as on the other hand the

homotopy-theoretic circle **Iﬂl** € 0oGrpd — ETopooGrpd. That the former has a topological geometric

quality which the latter lacks is reflected by the operation [ of forming the shape of a topological space. One

* ] * -
makes it equivalent to the homotopy-theoretic circle, which itself is already pure shape. Hence the existence
of a nontrivial shape operation on types is what reflects that types may carry a nontrivial topological (or
more generally: cohesive) quality in the first place.
We now discuss a general method of axiomatizing determinations of qualities on types along these lines.

has [S! ~ [ <* I+ o **g**, exhibiting that projecting out from S! all but its quality of pure shape
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. — Modality;

e 2:2.2] - Moments;

e [2:2.3] - Oppositions;

° — Determinate negation;

e [2:2.5] - Progression

2.2.1 Modality

A central insight of traditional formal logic is, when generalized from propositions to types, that such
modalities are formalized by monads on the type system [Law70al [Gol81l [Mog91], [Kob97, [Shull12bl, [LiSh15],
traditionally called modalities or modal operators:

Definition 2.2.1. A modality O on a type system H is a monad (an oo-monad) O : H — H. A co-
modality O is a co-monad (co-comonad) O : H — H. We say a ()-modal type (or O-co-modal type) is a
type equipped with the structure of a (co-)algebra over this monad.

(In practice we often suppress the “co-” terminologically, as it is determined by the context.)

Remark 2.2.2. The general theory of co-monads on co-categories is discussed in section 6.2 of [L-Alg] and in
[RiVeld]. By the homotopy monadicity theorem (theorem 6.2.2.5 of [L-Alg] and def. 6.1.15 with section 7 of
[RiVel3]) every co-monad O : H — H arises as the endomorphism monad () ~ Ro L of some co-adjunction
(L 4 R) : H < D for some oo-category D. By theorem 5.4.14 in [RiVel3] oo-adjunctions have the higher
coherence data of their unit (and counit) uniquely (up to a contractible homotopy type of choices) induced
from the underlying adjunction in the homotopy 2-categories. Therefore a choice of co-adjunction (L 4 R)
for OO re-encodes the coherence data of () as a homotopy coherent monoid in the monoidal co-category
End(H) equivalently as the choice of co-category D and the single datum of an co-adjunction unit, see also
remark 6.2.0.7 in |[L-Alg]. This allows to present co-monads as ordinary monads on the homotopical fibration
category underlying H, see [Hess10] for homotopy monadicity discussed in homotopical (model) categories
this way. All co-monads that we consider below arise as endomorphism monads of a given co-adjunction.

The concept of modality originates historically in the desire to equip propositional logic with extra struc-
ture that allows to formalize the informal idea of propositions being “possibly true” and being “necessarily
true” in all cases (“in all possible worlds”). Using type dependency we may accurately formalize this idea
as follows.

Example 2.2.3. For H a locally Cartesian closed co-category, def. 211} and for w : W — Wy any
morphism with induced base change adjoint triple (def. [2.1.3)

Zw
H/W <~—w"
I,

H/Wo

then we say that the induced pair of adjoint (co-)monads

o) =((5) ()

are the modalities of possibility and of necessity, respectively, with respect to w.

If here w is a 1-epimorphism, def. [5.1.64] then it exhibits an equivalence relation (by theorem [5.1.123)),
the relation for which wy ~ ws is given by w(wq) ~ w(ws). In this case we have in the internal language of
H that
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e (P isinhabited over w precisely if there exists w in the same equivalence class over which it is inhabited;
w

e [P is inhabited over w preciely if it is inhabited for all @ in the same equivalence class.
w

The standard model of this situation in sets is the traditional “possible worlds semantics” of modal logic
with relation on the “possible worlds”.

Remark 2.2.4. Conversely, when considering the system of these adjoint modalities ¢ 4 0 as w ranges
w w

over all morphisms in H, then we may think of this as providing a modal perspective on local Cartesian
closure. Following [Law91] we might hence speak of locally Cartesian closed co-categories as “categories of
necessity and possibility”. Or, if we feel poetic and declare that the union of the opposites of necessity and
possibility is actuality, then we might speak of “categories of actuality”. In we adopt this perspective
also for dependent linear homotopy-theory.

Another basic example that plays a key role is the following.

Definition 2.2.5. Given an oco-category C with terminal object * and coproducts, then its maybe-modality
/ is the co-monad given by
x/ 0 X — X Ux.

Here our notation reflects the following basic fact.

Proposition 2.2.6. The maybe-modal types, hence the algebras in C over the maybe-monad, def. [2.2.5, are
equivalently the pointed objects; the category of algebras over the maybe monad is the co-slice C*/ under the
point.

Proof. That these algebras are the pointed objects is already equivalent to the statement of the unit
axiom for algebras over the maybe-monad. Then action axiom is then automatically satisfied. (|

Proposition 2.2.7. Let C be a closed symmetric monoidal category with finite limits and colimits and
reflexive coequalizers. Write x € C for its terminal object and write C*/ for the category of maybe-modal

types, def. hence by prop. of pointed objects, prop. in C. The maybe monad */ is a

commutative monoidal monad [SelZ] and hence canonically induces the structure of a monoidal category on
c*/.

Proposition 2.2.8. The canonical tensor product induced on the maybe-modal types C*/ is the smash
product “A” of pointed objects. For Ey,Ey € C*/ this operation sends these to the following pushout of
coproducts and tensor products formed in C

E1 N Eg = % H (El ® EQ)
(B1®%) [1(x®E>2)

and this makes (C*/,A,x[[*) a closed symmetric monoidal category for the internal hom of pointed mor-
phisms.

Proof. The canonically induced monoidal structure on the category of algebras of a commutative monad
is often said to go back to [Kock86], where indeed the closed structure is discussed, from which the tensor
may be obtained as the adjunct in suitable circumstances. The monoidal structure appears in print ex-
plicitly in [Sel2] (section 2.2 and theorem 2.5.5). Inserting the maybe-monad into the coequalizer formula
there straightforwardly yields the pushout diagram defining the smash product as it appears for instance in
construction 4.19 and proposition 4.20 of [EMOT7]. O
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2.2.2 Moments

When a (co-)monad is idempotent in that applying it twice is equivalent to applying it just once, hence if
it behaves as a projection, then it may be thought of as projecting out from any type some pure quality or
moment that it has. Traditionally this is called a closure operator:
Definition 2.2.9. A moment () is an idempotent modality on H, def. a co-moment [Jis an idempotent
co-modality. Given a moment O or co-moment [ write H, Hg < H for the full subcategory of its modal
types.

See [Shull12b, [Shull5a] and section 7.7. of [UFP13] for modalities (moments) in homotopy type theory.
Notice that:

Proposition 2.2.10. For 0 a moment (O a co-moment), def. then its modal types X, defl2.2.1}, are
equivalently those for which the unit X — OX (the co-unit OX — X ) is an equivalence. Moreover, these
(co-)units exhibit the (co-)modal types as forming a reflective subcategory

Ho _H,

resp. co-reflective subcategory
Hp H .

Such operations on the global type system also induce moments relative to a base type:

Proposition 2.2.11. Let O be a moment, def. [2.2.9, which preserves homotopy fiber produces over O modal
types. Then for X € H there is a moment Ox on H,x given by sending (E RN X) to the left morphism in
the pullback diagram

OxEHOE

| o

X——0X
where the bottom morphism is the (-unit. Moreover, the universal factorization of p through this pullback

E-->0Ox(E)—=O0OF

\ J/ iop
X——0X
is by a O-equivalence E — (OxFE, and this decomposition exhibits an orthogonal factorization system

JL-Topos, 5.2.8] (O-equivalences / O x-modal morphisms) in H.

This is essentially observed in [CJKP97].
Proof. The factorization is as given in the statement. It remains to check orthogonality.
Let therefore
A——sX

|

B——=Y

be any commuting diagram in H, where the left morphism is a ()-equivalence and the right morphism is
(Ox-modal. Then, by assumption, there exists a pullback diagram on the right in

A—s X ——(0OX

Ny

B——Y —— (Y
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By the naturality of the (O-unit, the outer rectangle above is equivalent to the outer rectangle of

A 0OA OX

bbb

where now, again by assumption, the middle vertical morphism is an equivalence. Therefore there exists
an essentially unique lift in the right square of this diagram. This induces a lift in the outer rectangle.
By the universality of the [-unit, such lifts factor essentially uniquely through [B and hence this lift, too,
is essentially unique. Finally by the universal property of the pullback square on the right, this gives the
required essentially unique lift on the left of

A—s X ——(0OX

P

B——Y —— (Y

2.2.3 Opposition

One way of further determining a given pure quality is to assert an opposite pure quality, to contrast with. A
formalization of this is the concept of a reflection and a co-reflection of types of pure quality jointly existing
in two different ways, either as an adjoint triple of the form

O
- -
HO ~ HDQZ‘DE'L'Q% H

_

O

or of the form
in
Ho ~Hp<—O~0—-MH
. - 5
0
This is captured by the following
Definition 2.2.12. We say a moment () and co-moment [J are dual or opposite if they are adjoint

O-0O or mENQ)

such that their categories of modal types are canonically equivalent in a manner exhibited by the above
adjoint triples.

Remark 2.2.13. The perspective of def. [2.2.12 has been highlighted in [Law91], where it is proposed (p.
7) that adjunctions of this form usefully formalize “many instances of the Unity and Identity of Opposites”
that control Hegelian metaphysics [Hel841].

When we give such a duality a name D, we write

D:O+40 o D:O040

respectively and may call D the unity of the two opposites that it related by adjunction.
Given opposite moments () 40 or 0 4 ), every type X sits naturally in a transformation

0X — X — 0OX

between its two dual moments. This expresses how X is decomposed into these two moments.

287



2.2.4 Determinate negation
If OX is a pure moment found inside X, then it makes sense to ask for its complement or negative.

Definition 2.2.14. The negative O of a co-moment [J is the homotopy cofiber of its comparison morphism
0X := cofib (OX — X) .

The intuitive meaning suggests to ask whether this kind of negation of determinations is faithful in that
there is no [J-moment left in the negative [, hence whether

00X ~ x.

In general there is no reason for this to be the case. But if [J also has an opposite in the sense of def. 2:2.12]
then one of the two opposite moments is left adjoint, hence preserves cofibers, and then a little more may
be said.

Consider the case of an opposition of the form () - 0. Then both () and O express the same pure
moment, just opposite ways of projecting onto it. Therefore in this situation it makes sense to alternatively
ask that there is no ()-moment left in the O-moment:

Definition 2.2.15. Given a unity of opposite moments () - [, def. 2.2.12] we say that it has determinate
negation if O and O both restrict to homotopy O-types (def. [5.1.47) and such that on these

1. O > x;
2. O — (O is epi.

Proposition 2.2.16. For opposite moments O + O with determinate negation, def. then on homo-
topy O-type there is no (O)-moment left in the (J-moment, in that

OOX ~ *
naturally for all X € H.

Proof. Given that (), being a left adjoint, preserves colimits, hence cofibers, the first condition in def.
2.2.15| gives that -
OOX = Ocofib(dX — X) ~ cofib(0X — OX).

Now the second condition and the fact that epiness is preserved by pushout say that this result receives an
epimorphism from the terminal object. But this forces it to be the terminal obect itself. O

This proof of prop. 2.2.16] crucially depends on the restriction to O-types. At the other extreme, on stable
types the intuition that ()-moment is complementary to [J-moment is verified in the following sense.

Proposition 2.2.17. Given opposite moments () 40 as in def. then every type X naturally sits in

a hexagonal diagram of the form
ox
\ o
X

QDX/OX\ X
N

0x

(HD¢

O

and if X is stable, then this hexagon is homotopy exact in the following sense:
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1. both squares are homotopy Cartesian, hence are fracture squares;

2. the boundary sequences are long homotopy fiber sequences.

This was highlighted in [BNV13]. See below prop. |6.1.26

Remark 2.2.18. Since on stable types Cartesian product is direct sum, we may write the exactness of the

right square in prop. [2.2.17| as -
X~0OX o 0OX,
oox

making notationally manifest how X decomposes into its pure ()-moment and its pure CJ-moment.

2.2.5 Progression

The principle of further determining a moment by positing opposite (adjoint) moments may be iterated.
Given an opposition () 4 0O with O the left adjoint moment, we may ask that () also participates as the
right adjoint of another opposition ¢ 4 (), hence that there is a total adjoint tripe

o 4 0O
1 1L -
O 4 0O

We might think of this as a higher order opposition, where the unity of the opposite moments at the
bottom is itself opposed by the unity of the opposite moments on top.

In principle such progression of moments could be considered indefinitely, but the existence of each
opposition is a strong condition and one finds that there are hardly non-degenerate models of longer sequences
of oppositions.

But instead of finding further opposite moments directly, it happens that they appear after previous
oppositions are being lifted.

Definition 2.2.19. A resolution of an opposition ()1 - Oy, def. [2.2.12] is another opposition (g - Oy
such that the types of pure quality for the first are also types of pure quality for the latter in that there are
natural equivalences

02 Ol X ~ OIX
|:|2|:|1X ~ |:|1X,

as well as either
OngX ~ |:|1X

or

DgolXﬁolX.

We denote such a situation by inclusion signs as

OQ — |:|2 .
\% \%
O1 4 [

Again, this has been suggested by William Lawvere.
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Example 2.2.20. In a category with initial object () and terminal object * there exist canonical moments
given by the (co-)monads which are constant on these two objects. These are in opposition and this opposition
is lifted by the trivial opposition

id 4 id
v (VA
0 4 =«

Below in [ we see how by a sequence of intermediate resolutions and oppositions this develops to a rich
progression of modalities that are considerably expressive,
The negative of (), according to def. [2.2.14] is the maybe monad, def.

@z*/.

Thus, by prop. the negated-nothing modal types, according to def. are the pointed (thus
non-empty) objects. Below in we consider a generic pointed object and show, in that together
with the progression of cohesive modalities, this induces the theory of twisted differential generalized
cohomology.
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3 Essence

We discuss here those categories, which are reflected in themselves via a universe object. These are the
homotopy toposes or co-toposes. This is the essence of all further formalization. Our discussion merely serves
to review existing theory and establish our notation.

3.1 id 4 id — Reflection and Appearance

The natural context for discussing the geometry of spaces that are locally modeled on test spaces in some
category C' (and equipped with a notion of coverings) is the category called the sheaf topos Sh(C) over C
[Joh02]. Analogously, the natural context for discussing the higher geometry of such spaces is the co-category
called the co-sheaf topos H = Sho (C).

The theory of co-toposes has been given a general abstract formulation in [L-Topos|, using the co-category
theory introduced by [Jo08a] and building on [Re05] and [ToVe02]. One of the central results proven there
is that the old homotopy theory of simplicial presheaves, originating around [Br73] and developed notably
in [Jard87] and [Dug0I], is indeed a presentation of co-topos theory.

. — Abstract oo-category theoretic characterization
° — Homotopy-type theory with type universes

° — Presentation by simplicial (pre-)sheaves

° — Presentation by simplicial objects in the site

e B. 1.5 oo-Sheaves and descent
° — oo-Sheaves with values in chain complexes

3.1.1 Abstract co-category theoretic characterization
Following [L-Topos], for us “co-topos” means this:

Definition 3.1.1. An oco-topos is an accessible co-geometric embedding

L
H¢ Func(C°P, coGrpd)

into an co-category of co-presheaves, def. over some small oo-category C, hence a full and faithful
embedding functor which preserves filtered oo-colimits, and has a left adjoint oco-functor which preserves
finite oo-limits.

We say this is an co-category of co-sheaves (as opposed to a hypercompletion of such) if H is the reflective
localization at the covering sieves of a Grothendieck topology on the homotopy category of C' (a topological
localization), and then write H = Sh,(C) with the site structure on C understood.

As we discuss in some detail below, hom-spaces in co-toposes constitute a unification and generalization
of all kinds of cohomoloy theories. Therefore we adopt notation as follows.

Definition 3.1.2. For H an oco-topos we write H(X,Y) for its hom-oo-groupoid between objects X and YV
and write H(X,Y) = ngH(X,Y) for the hom-set in the homotopy category.

One of the aspects of co-toposes that makes their theory more interesting than that of 1-toposes beyond
what one might naively expect is referred to in the following terminology

Definition 3.1.3. An oco-topos H is n-localic if it has a site C, def. which is an (n, 1)-category with
finite oco-limits.

291



See [L-Topos|, lemma 6.4.5.6].

Remark 3.1.4. Where generally any oco-topos embodies some kind of higher geometry, those co-toposes
which are not 1-localic are often referred to as encoding derived geometry. The higher differential geometry
which we discuss below is axiomatically defined and applies generally also in such “derived” geometry. Just
a handful of the statements below will assume the oco-topos to be 1-localic for technical conditions used in
the proofs. But I expect that more general proofs not needing these technical assumptions should exist.

More intrinsically, co-toposes are characterized as follows (we review the ingredients of the following

statement in and below).

Proposition 3.1.5 (Giraud-Rezk-Lurie axioms). An oco-topos is a presentable co-category H that satisfies
the following properties.

1. Coproducts are disjoint. For every two objects A, B € H, the intersection of A and B in their
coproduct is the initial object: in other words the diagram

1

—— A][B

is a pullback.

2. Colimits are preserved by pullback. For all morphisms f: X — B in H and all small diagrams
A: I — H/p, there is an equivalence

li f*A; = f*(lim A;)

between the pullback of the colimit and the colimit over the pullbacks of its components.

3. Quotient maps are effective epimorphisms. Fvery simplicial object Ay : A°P — H that satisfies
the groupoidal Segal property (Definition|5.1.124) is the Cech nerve of its quotient projection:

A, ~ A Xl Ay A Xlig A, " Xl A, Ao (n factors).

This is theorem 6.1.0.6 in [L-Topos].

An ordinary topos is famously characterized by the existence of a classifier object for monomorphisms,
the subobject classifier. With hindsight, this statement already carries in it the seed of the close relation
between topos theory and bundle theory, for we may think of a monomorphism F < X as being a bundle
of (—1)-truncated fibers over X. The following axiomatizes the existence of arbitrary universal bundles

Proposition 3.1.6. An oco-topos H is a presentable co-category with the following properties.
1. Colimits are preserved by pullback.

2. There are universal k-small bundles. For every sufficiently large reqular cardinal k, there exists a
morphism Obj, — Obj,. in H which represents the core of the x-small codomain fibration in that for
every object X, there is an equivalence

name : Core(H, x) — H(X, Obj,.)
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between the oco-groupoid of bundles (morphisms) E — X which are relatively k-small over X and the
oo-groupoid of morphisms from X into Obj,, such that there are co-pullback squares

E Obj,

i name(E) J(

x 2 L Obj,

These two characterizations of co-toposes, prop. and prop. are equivalent; this is due to
Rezk and Lurie, appearing as Theorem 6.1.6.8 in [L-Topos]. We find below in prop. that the second
of these axioms gives the equivalence between V-fiber bundles and Awut(V)-principal co-bundles which is
crucial for differential geometry.

The theory of cohesive co-toposes revolves around situations where the following fact has a refinement:

Proposition 3.1.7. For every oco-topos H there is an essentially unique geometric morphism to the co-topos
0oGrpd.

A
(AHT): H=—_ coGrpd
r

This is prop 6.3.41 in [L-Topos].

Proposition 3.1.8. Here I forms global sections, in that I'(—) ~ H(x, —), and A forms constant co-sheaves
- A(—) ~ LConst(—).

Proof. By prop. it is sufficient to exhibit an co-adjunction (LConst(—) < H(x,—)) such that the
left adjoint preserves finite oo-limits. The latter follows since Const : coGrpd — PSh..(C) preserves all
limits (for C some oo-site of definition for H) and L : PSh(C) — H by definition preserves finite oo-limits.
To show the co-adjunction we use prop. which says that every oco-groupoid is the co-colimit over itself
of the oo-functor constant on the point: S ~ lim *. From this we obtain the natural hom-equivalence

— 5
H(LConstS, X) ~ PSh(ConstS, X)
~ PSh(Constlim x*, X)
— s

~ lim Psh(Constx*, X)
s

~ lim H(LConstx, X)
—S

~ lim H(x, X)
s

~ lim ocoGrpd(x, H(x, X))
s

~ coGrpd(lim *, H(x, X))

— 5
~ coGrpd(S, H(*, X)) .

Here and in the following “x” always denotes the terminal object in the corresponding oco-category. We used
that LConst preserves the terminal object (the empty oo-limit.) (Il

3.1.2 Syntax of homotopy type theory with type universes

Above in[2.1.] we indicated how locally cartesian closed co-categories have an internal homotopy type theory.
In locally cartesian closed oco-categories which are oo-toposes, the “object of small objects” of prop. [3.1.5
above is internally the type of types denoted Type [UFP13].

The following statement was originally conjectured in [AwI0]. For a survey in our context see [Scl14b].
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Theorem 3.1.9. FEvery oco-sheaf co-topos interprets homotopy type theory with higher inductive types and
with a univalent type-universe d laTarski.

For the underlying dependent type theory with intensional identity types this is the content of sections
3 in [Shull2a], using the coherence result of [LuWal4]. For the higher inductive types this is [ShLul2]. For
univalence one observes that this is precisely the universal property of the object classifier of co-toposes, if
the syntax of the type universe is taken to be “4 la Tarski”, this is summarized in [Shull4].

It is due to this theorem that we are entitled to write “homotopy type theory” in either of its meanings
(“homotopy-type theory” and “homotopy type-theory”).

In this context the type theoretic judgement “x : X F E(x) : Type” is interpreted in the oco-topos as the

name morphism X naﬂE) Obj,. of a morphism E — X in the oo-topos, according to prop. If here
we declare to abbreviate (- E) := name(FE) then this means we have the following disctionary between the
symbols used to talk about objects of slices in co-toposes and equivalently dependent types in homotopy
type theory.

morphisms to sequents:

’ notation in\for \ objects/types elements/terms
oo-topos theory X RN Obj,, X %X E
homotopy type theory | x: X FE(z) : Type | z:X +Ft(x) : E(z)

3.1.3 Presentation by simplicial (pre-)sheaves

For computations it is useful to employ a generators-and-relations presentation of presentable co-categories
in general and of co-toposes in particular, given by ordinary sSet-enriched categories equipped with the
structure of combinatorial simplicial model categories. These may be obtained by left Bousfield localization
of a model structure on simplicial presheaves (as reviewed in appendix 2 and 3 of |[L-Topos]).

We discuss these presentations and then discuss various constructions in terms of these presentations
that will be useful over and over again in the following. Much of this material is standard and our discussion
serves to briefly collect the relevant pieces. But we also highlight a few points that are not usually discussed
explicitly in the literature, but which we will need later on.

Definition 3.1.10. Let C be a small category.

e Write [C°P,sSet] for the category of functors C°P — sSet to the category of simplicial sets. This is
naturally equivalent to the category [A°P, [C°P, Set of simplicial objects in the category of presheaves
on C'. Therefore one speaks of the category of simplicial presheaves over C.

e For {U; — U} a covering family in the site C, write
[kKleA
C({Ui}) € [C°,sSet] 1=/ AR TT W) x50y - %) 3(Ua)
10, bk

for the corresponding Cech nerve simplicial presheaf. This is in degree k the disjoint union of the (k+1)-
fold intersections of patches of the cover. It is canonically equipped with a morphism C({U;}) — j(U).
(Here j : C' — [C°P, Set] is the Yoneda embedding.)

e The category [C°P,sSet] is naturally an sSet-enriched category. For any two objects X, A € [C°P, sSet]
write Maps(X, A) € sSet for the simplicial hom-set.

e Write [C°P,sSet]pro; for the category of simplicial presheaves equipped with the following choices of
classes of morphisms (which are natural transformations between sSet-valued functors):

— the fibrations are those morphisms whose component over each object U € C is a Kan fibration
of simplicial sets;
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— the weak equivalences are those morphisms whose component over each object is a weak equiva-
lence in the Quillen model structure on simplicial sets;

— the cofibrations are the morphisms having the right lifting property against th morphisms that
are both fibrations as well as weak equivalences.

This makes [C°P, sSet]pro; into a combinatorial simplicial model category.

e Write [C°P, sSet]proj 10c for model category structure on simplicial presheaves which is the left Bousfield
localization of [C°P, sSet]pro; at the set of morphisms of the form C'({U;}) — U for all covering families
{Ui = U} of C.

This is called the projective local model structure on simplicial presheaves [Dug0T].

Definition 3.1.11. The operation of forming objectwise simplicial homotopy groups extends to a functors
moSh L [C°P, sSet] — [C°P, Set]

and for n > 1
TR [COP, sSet], — [C°P, Set] .

These presheaves of homotopy groups may be sheafified. We write

PSh
To

o : [C°P,sSet] ™S [C°P, Set] — Sh(C)

and for n > 1

PSh

T+ [C°P,sSet], "™ [C°P,Set] — Sh(C).

Proposition 3.1.12. For X € [C°P,sSet]proj10c fibrant, the homotopy sheaves m,(X) from def. |3.1.11
coincide with the abstractly defined homotopy groups of X € Shoo(C) from [L-Topos|.

Proof. One may observe that the sSetquilen-powering of [C°P,sSet]proj10c does model the abstract
0oGrpd-powering of Sho,(C). O

Definition 3.1.13. A site C' has enough points if a morphism (A EN B) € Sh(C) in its sheaf topos is an
isomorphism precisely if for every topos point, hence for every geometric morphism

(" Ha,): Set Sh(C)

T

from the topos of sets we have that *(f) : #*A — z* B is an isomorphism.

Notice here that, by definition of geometric morphism, the functor ¢* is left adjoint to i, — hence preserves
all colimits — and in addition preserves all finite limits.

Example 3.1.14. The following sites have enough points.

e The categories Mfd (SmoothMfd) of (smooth) finite-dimensional, paracompact manifolds and smooth
functions between them;

e the category CartSp of Cartesian spaces R™ for n € N and continuous (smooth) functions between
them.

This is discussed in detail below in [6.3.21 We restrict from now on attention to this case.

Assumption 3.1.15. The site C' has enough points.
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Theorem 3.1.16. For C' a site with enough points, the weak equivalences in [C°P,sSet]proj10c are precisely
the stalkwise weak equivalences in sSetQuillen

Proof. By [Ja96, theorem 17] and using our assumption [3.1.15(the statement is true for the local injective
model structure. The weak equivalences there coincide with those of the local projective model structure. [J

Definition 3.1.17. We say that a morphism f : A — B in [C°P, sSet] is a local fibration or a local weak equiv-
alence precisely if for all topos points x the morphism x*f : *A — x*B is a fibration of weak equivalence,
respectively.

Warning. While by theorem [3.1.16| the local weak equivalences are indeed the weak equivalences in
[C°P, sSet]proj loc, it is not true that the fibrations in this model structure are the local fibrations of def.

BI17

Proposition 3.1.18. Pullbacks in [C°P,sSet] along local fibrations preserve local weak equivalences.

Proof. Let

A——C~—8B
A/ —_—> Cl < B/
be a diagram where the vertical morphisms are local weak equivalences. Since the inverse image z* of a
topos point x preserves finite limits and in particular pullbacks, we have
(A xc B ENYY Xcr B') = (2*A X 4o "B A Xyrcr T°B').

On the right the pullbacks are now by assumption pullbacks of simplicial sets along Kan fibrations. Since
sSetquillen 18 Tight proper, these are homotopy pullbacks and therefore preserve weak equivalences. So x* f
is a weak equivalence for all x and thus f is a local weak equivalence. O
The following characterization of oo-toposes is one of the central statements of [L-Topos]. For the purposes

of our discussion here the reader can take this to be the definition of co-toposes.

Theorem 3.1.19. For C a site with enough points, the co-topos over C is the simplicial localization, def.

[2.1.25,
Shoo (C) >~ L([COP, sSet]proj’loc

of the category of simplicial presheaves on C' at the local weak equivalences.

In view of prop. [3.1.21] this is prop. 6.5.2.14 in [L-Topos].

3.1.4 Presentation by simplicial objects in the site
We will have use of the following different presentation of Sho (C).

Definition 3.1.20. Let C be a small site with enough points. Write C' C [C°P, sSet] for the free coproduct
completion.

Let (C_'Aop, W) be the category of simplicial objects in C' equipped with the stalkwise weak equivalences
inherited from the canonical embedding

i: CA" < [C°P, sSet] .
Proposition 3.1.21. The induced oo-functor
NL,LCA” — N3, L[C°P, $Set] proj.loc

is an equivalence of co-categories.

296



This is due to [NSS12b]. We prove this after noticing the following fact.

Proposition 3.1.22. Let C be a category and C' its free coproduct completion.

Every simplicial presheaf over C is equivalent in [C°P,sSet|pro; to a simplicial object in C (after the
degreewise Yoneda embedding j2°° : CA™ — [CP,sSet] ).

If moreover C' has pullbacks and sequential colimits, then the simplicial object in C can be taken to be
globally Kan, hence fibrant in [C°P, sSet]pro;-

Proof. The first statement is prop. 2.8 in [Dug01], which says that for every X € [C°P, sSet] the canonical
morphism from the simplicial presheaf

(QX): [K] — I oo,

Up—-—=Up— Xy,

where the coproduct runs over all sequences of morphisms between representables U; as indicated and using
the evident face and degeneracy maps, is a global weak equivalence

QX S5 X.

The second statement follows by postcomposing with Kan’s fibrant replacement functor (see for instance
section 3 in [Jard87])
Ex® : sSet — KanCplx < sSet .

This functor forms new simplices by subdivision, which only involves forming iterated pullbacks over the
spaces of the original simplices. a

Example 3.1.23. Let C be a category of connected topological spaces with given extra structure and
properties (for instance smooth manifolds). Then C is the category of all such spaces (with arbitrary many
connected components).

Then the statement is that every co-stack over C has a presentation by a simplicial object in C. This is
true with respect to any Grothendieck topology on C, since the weak equivalences in the global projective
model structure that prop. refers to remain weak equivalences in any left Bousfield localization.

If moreover C has all pullbacks (for instance for connected topological spaces, but not for smooth mani-
folds) then every oo-stack over C even has a presentation by a globally Kan simplicial object in C.

Proof of theorem Let Q : [C°P,sSet] — C2™ be Dugger’s replacement functor from the proof of
prop. In [Dug01] it is shown that for all X the simplicial presheaf QX is cofibrant in [C°P, sSet]pro;
and that the natural morphism QX — X is a weak equivalence. Since left Bousfield localization does not
affect the cofibrations and only enlarges the weak equivalences, the same is still true in [C°P, sSet]proj,10c-

Therefore we have a natural transformation

ioQ — Id: [C°P,sSet] — [C°P,sSet]

whose components are weak equivalences. From this the claim follows by prop. 3.5 in [DwKa80a]. O

Remark 3.1.24. If the site C' is moreover equipped with the structure of a geometry as in [L-Geo] then
there is canonically the notion of a C'-manifold: a sheaf on C that is locally isomorphic to a representable
in C. Write

C — OMfd — [C°P, Set]

for the full subcategory of presheaves on the C-manifolds.
op
Then the above argument applies verbatim also to the category CMfd>™ of simplicial C-manifolds.
Therefore we find that the co-topos over C'is presented by the simplicial localization of simplicial C-manifolds

at the stalkwise weak equivalences: .
Shoo(C) ~ N, LOMEd®™ .
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Example 3.1.25. Let C' = SmoothCartSp be the full subcategory of the category SmoothMfd of smooth
manifolds on the Cartesian spaces, R™, for n € R. Then C' C SmoothMIfd is the full subcatgory on manifolds
that are disjoint unions of Cartesian spaces and CMfd ~ SmoothMfd. Therefore we have an equivalence of
oo-categories

Shoo (SmoothMfd) ~ Shy, (CartSp) ~ L SmoothMfd>" .

3.1.5 oo-Sheaves and descent

We discuss some details of the notion of co-sheaves from the point of view of the presentations discussed

above in [B.1.3

By def. we have, abstractly, that an co-sheaf over some site C' is an oo-presheaf that is in the
essential image of a given reflective inclusion Sho. (C) < PSh,(C). By prop. this reflective embedding
is presented by the Quillen adjunction that exhibits the left Bousfield localization of the model category of
simplicial presheaves at the Cech covers

LId
([C°P, sSet]proj,ioc)® = ([C°P,sSet]proj)° -

l RId i
L

Sheo (C)¢ PSho (X)

Since the Quillen adjunction that exhibits left Bousfield localization is given by identity-1-functors, as in-
dicated, the computation of oo-sheafification (co-stackification) L by deriving the left Quillen functor is all
in the cofibrant replacement in [C°P,sSet],0; followed by fibrant replacement in [C°P, sSet]proj 100 Since
the collection of cofibrations is preserved by left Bousfield localization, this simply amounts to cofibrant-
fibrant replacement in [C°P,sSet]projloc. Since, finally, the derived hom space She, (U, A) is computed in
[C°P, sSet]proj loc already on a fibrant resolution of A out of a cofibrant resolution of U, and since every
representable is necessarily cofibrant, one may effectively identify the oo-sheaf condition in PSh.(C) with
the fibrancy condition in [C°P, sSet]proj,1oc-
We discuss aspects of this fibrancy condition.

Definition 3.1.26. For C' a site, we say a covering family {U; — U} is a good cover if the corresponding
Cech nerve

[kleA
C(Us) 1=/ I i) i) -+ %50 3(Uk) € [CP, sSet]proj
ioyeee i

(where j : C — [C°P,sSet] is the Yoneda embedding) is degreewise a coproduct of representables, hence if
all non-empty finite intersections of the U; are again representable:

JWig,in) = Uig xu -+ xu Uiy, .
Proposition 3.1.27. The Cech nerve C(U;) of a good cover is cofibrant in [C°P,sSet]p0; as well as in
[C°P, sSet]proj,loc -

Proof. In the terminology of [DHS04] the good-ness condition on a cover makes its Cech nerve a split
hypercover. By the result of [Dug01] this is cofirant in [C°P,sSet],.5. Since left Bousfield localization
preserves cofibrations, it is also cofibrant in [C°P, sSet]proj,10c- |

Definition 3.1.28. For A a simplicial presheaf with values in Kan complexes and {U; — U} a good cover
in the site C', we say that
Desc({U;}, A) := [C°P,sSet](C(U;), A) ,

where on the right we have the sSet-enriched hom of simplicial presheaves, is the descent object of A over
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Remark 3.1.29. By assumption A is fibrant and C(U;) is cofibrant (by prop. in [C°P, sSet]proj-
Since this is a simplicial model category, it follows that Desc({U;}, A) is a Kan complex, an oco-groupoid.
We may also speak of the descent co-groupoid. Below we show that its objects have the interpretation of
gluing data or descent data for A. See [DHS04] for more details.

Proposition 3.1.30. For C a site whose topology is generated from good covers, a simplicial presheaf A is
fibrant in [C°P, sSet]|proj 10c precisely if it takes values in Kan complexes and if for each generating good cover
{U; = U} the canonical morphism

A(U) — Desc({U;}, A)
is a weak equivalence of Kan complezes.

Proof. By standard results recalled in A.3.7 of [L-Topos| the fibrant objects in the local model structure
are precisely those which are fibrant in the global model structure and which are local with respect to the
morphisms at which one localizes: such that the derived hom out of these morphisms into the given object

produces a weak equivalence.
By prop. [3.1.27| we have that C'(U;) is cofibrant for {U; — U} a good cover. Therefore the derived hom
is computed already by the enriched hom as in the above statement. |

Remark 3.1.31. The above condition manifestly generalizes the sheaf condition on an ordinary sheaf
[Joh02]. One finds that
(m°(C(U7) = m5 M (U)) = (S(U:) = U)

is the (subfunctor corresponding to the) sieve associated with the cover {U; — U}. Therefore when A is itself
just a presheaf of sets (of simplicially constant simplicial sets) the above condition reduces to the statement
that

A(U) — [C°P, Set](S(U;), A)

is an isomorphism. This is the standard sheaf condition.
We discuss the descent object, def. in more detail.

Definition 3.1.32. Write
coDesc({U;}, A) € sSet®

for the cosimlicial simplicial set that in degree k is given by the value of A on the k-fold intersections:

coDesc({U;}, A)x = H AUy, i) -
Proposition 3.1.33. The descent object from def. is the totalization of the codescent object:

Desc({U;}, A) = tot(coDesc({U;}), A)

— / sSet(A[k], coDesc({U;}, A)y)
[k]leA

Here and in the following equality signs denote isomorphism (such as to distinguish from just weak
equivalences of simplicial sets).
Proof. Using sSet-enriched category calculus for the sSet-enriched and sSet-tensored category of simplicial
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presheaves (for instance [Ke82] around (3.67)) we compute as follow
Desc({U;}, A) := [C°P,sSet](C(U;), A)

[kleA
—fowsset([ Al CUIA)
_ / [C°P, sSet](A[k] - C(Uy), A)
[k]leA
_ / sSet(A[k], [C°P, sSet] (C(Us)1,), A)
[keA]

_ / sSet(A[k], A(C(Uy)x))
[keA]

— tot(A(C(U;).))
= tot (coDesc({C(U;)}, 4)) .

Here we used in the first step that every simplicial set Y (hence every simplicial presheaf) is the realization

of itself, in that
[k]leA
Y = / Alk] - Yy,

which is effectively a variant of the Yoneda-lemma. O

Remark 3.1.34. This provides a fairly explicit description of the objects in Desc({U;}, A) by what is called
nonabelian Cech hypercohomology.

Notice that an element ¢ of the end f[k]eA sSet(Alk], coDesc({U;}, A)) is by definition of ends a collection
of morphisms

fer: Ak = T AW}

that makes commuting all parallel diagrams in the following:

Hzo 11,19 A Ulo,h,lz)

Afl] [Liyi, AlWUig.ir)
o
Afo] I, AUs)

This says in words that c is
1. a collection of objects a; € A(U;) on each patch;

2. a collection of morphisms {g;; € A1(U;;)} over each double intersection, such that these go between
the restrictions of the objects a; and a;, respectively

Gij
@ilUs; > 45U,
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3. a collection of 2-morphisms {hijk € AQ(Uijk)} over triple intersections, which go between the corre-
sponding 1-morphisms:

Aj|U;jk ;
9islU, ‘ 9iklU,
h:ijk
ailu,,, aklvijk
giklU, ;.
4. a collection of 3-morphisms {;jx € A3(Uijr)} of the form
9iklU 5 9iklU; s
Aj|U;jm Ak |U;jk iU, A5|U;
hijk‘uijkl
Nijkl hastl
9iilU; grlU, 5 9iilUs 1 Wikt Rkl i, grtluijp
lUy i
) -9 )
al|Uijkl al|Uz'jk:l a7/|Uijlcl al|Uijkl

5. and so on.

This recovers the cocycle diagrams that we have discussed more informally in and generalizes them to
arbitrary coefficient objects A.

3.1.6 oo-Sheaves with values in chain complexes

Many simplicial presheaves appearing in practice are (equivalent to) objects in sub-oo-categories of Sho, (C')
of co-sheaves with values in abelian or at least in “strict” oo-groupoids. These subcategories typically offer
convenient and desireable contexts for formulating and proving statements about special cases of general
simplicial presheaves.

One well-known such notion is given by the Dold-Kan correspondence (discussed for instance in [GoJa99]).
This identifies chain complexes of abelian groups with strict and strictly symmetric monoidal co-groupoids.

Proposition 3.1.35. Let Ch;rroj be the standard projective model structure on chain complexes of abelian

groups in non-negative degree and let sAbpyo; be the standard projective model structure on simplicial abelian
groups. Let C' be any small category. There is a composite Quillen adjunction

(Ne)« F,
((N.F)* _{ E) : [COP, Ch;—roj]proj i> [COP7 SAbproj]proj N [C«op’ SsetQuillen]proj )

* *

where the first is given by postcomposition with the Dold-Puppe-Kan correspondence and the second by post-
composition with the degreewise free-forgetful adjunction for abelian groups over sets.

We also write DK := = for this Dold-Kan map. Dropping the condition on symmetric monoidalness we
obtain a more general such inclusion, a kind of non-abelian Dold-Kan correspondence: the identification of
crossed complezes, def. [1.2.96] with strict co-groupoids (see [BrHiSilI][Por] for details).

Definition 3.1.36. A globular set X is a collection of sets {X, }nen equipped with functions {s,,t,
Xn+1 = X tnen such that Viuen(Sn © Snt1 = Sn © try1) and Vapen(tn © Snt1 = tn 0 tht1). (These relations
ensure that for every pair k; < ko € N there are uniquely defined functions s,t : X, — X, .) A strict

S
oo-groupoid is a globular set X, equipped for each k > 1 with the structure of a groupoid on Xy Z Xo
t

such that for all k; < ko € N this induces the structure of a strict 2-groupoid on

S s
—— —_—
Xk, ?Xkl T>X0 .
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Remark 3.1.37. We have a sequence of (non-full) inclusions

ChainComplex —— CrossedComplex —— KanComplex

StrAbStrooGrpd ——— StrooGrpd ———— coGrpd

of strict co-groupoids into all co-groupoids, where in the top row we list the explicit presentation and in the
bottom row the abstract notions.

We state a useful theorem for the computation of descent for presheaves, prop. with values in
strict co-groupoids.

Suppose that A : C°P — StrooGrpd is a presheaf with values in strict co-groupoids. In the context of
strict co-groupoids the standard n-simplex is given by the nth oriental O(n) [Stre04]. This allows us to
perform a construction that looks like a descent object in StrooGrpd:

Definition 3.1.38 (Street 04). The descent object for A € [C°P, StrooGrpd] relative to Y € [C°P, sSet] is
Descstrect (Y, A) ::/ StrooCat(O(n), A(Y,)) € StrooGrpd,
[n]eA
where the end is taken in StrooGrpd.

This object had been suggested by Ross Street to be the right descent object for strict co-category-valued
presheaves in [Stre04].
Canonically induced by the orientals is the w-nerve

N : StrwCat — sSet

Applying this to the descent object of prop. [3.1.38| yields the simplicial set NDesc(Y,.A). On the other
hand, applying the w-nerve componentwise to A yields a simplicial presheaf NA to which the ordinary
simplicial descent from def. applies. The following theorem asserts that under certain conditions the
oo-groupoids presented by both these simplicial sets are equivalent.

Proposition 3.1.39 (Verity 09). If A : C°P StrooGrpd and Y : C°P — sSet are such that NA(Y,) : A —
sSet is fibrant in the Reedy model structure [A, sSetquillen]Reedy, then

NDescstreet (Y, A) = Desc(Y, N.A)
is a weak homotopy equivalence of Kan complexes.

This is proven in [Veri09]. In our applications the assumptions of this theorem are usually satisfied:
Corollary 3.1.40. If Y € [C°P,sSet| is such that Yo : A — [C°P,Set] — [C°P,sSet] is cofibrant in
[A, [C°P, sSet|proj|Recdy then for A: C°P — StrooGrpd we have a weak equivalence

NDesc(Y,.A) = Desc(Y, NA).
Proof. If Y, is Reedy cofibrant, then by definition the canonical morphisms

lim(([n] 5 [k]) — Yz) — Yy,

—

are cofibrations in [C°P, sSet]proj. Since the latter is an sSetquinen-enriched model category and N A is fibrant
in [C°P,sSet]proj, it follows that the hom-functor [C°P, sSet](—, N.A) sends cofibrations to fibrations, so that

NA(Y,) = lim([n] 5 [k] » NA(Y))

<«

is a Kan fibration. But this says that NA(Y,) is Reedy fibrant, so that the assumption of prop. [3.1.39|is
met. O
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3.2 > AH()* 4]] — Actuality

Given a cohesive space X, then there is also the category EMod(X) of E-module bundles over X. For instance
if X is a physical phase space, then the prequantum line bundle is an invertible object in FMod(X). It
follows that quantization is to take place in dependent linear type theory, parameterized over the cartesian
types X of the pre-quantum geometry. According to Lawvere’s notion of categorical logic embodied in the
notion of hyperdoctrines as made precise in [See83|, this means, applied to linear logic, the following:

A dependent linear logic or linear hyperdoctrine is a category of contexts I'; a symmetric closed monoidal
category Cr for each such context and functorially for each morphism of contexts f : I'y — I's an adjoint

triple of functors
—fh—=

OORFARE | D¢ i
f f fa
such that f* is strong monoidal and satisfies Frobenius reciprocity, hence such that f* is a strong closed
monoidal functor. Typically one would also demand that consecutive such adjoint triples satisfy the Beck-
Chevalley condition.

The categorical semantics for such dependent linear type theory has been studied in [Shul08| [Shuli2a].
But it is noteworthy that in just slightly different guise these axioms are much older: they are a version
of Grothendieck’s “yoga of six functors” [May05], which were recognized as the abstract reason behind
Verdier duality. Specifically, an adjoint triple (fi 4 f* 4 f.) with f* strong closed monoidal is called a
Wirthmiiller context in [May05]. (The literature on Grothendieck’s six operations often considers (also) the
dual Grothendieck contexts, e.g. [Pol0§].)

This concept of a linear hyperdoctrine is a generalization (obtained by removing the axiom of the tensor
product being Cartesian) of the system of base change operations between the slices of an co-topos in prop.
Accordingly, following example we may think of the base change here as encoding linear the
generalization to linear logic of the modalities of possibility and necessity from example

(O ALp) = ((S"f) A (7)) -

We now state the concept more formally.

Definition 3.2.1. For C, D two closed symmetric monoidal categories, a Wirthmdiller context f : C — D
between them is a strong closed monoidal functor f* : D — C such that it has a left adjoint and right adjoint

(fr A1)
Often it is useful to equivalently reformulate closedness of f* in terms of the following condition.

Definition 3.2.2. Given an adjunction (fi 4 f*) between symmetric monoidal categories such that f* is a
strong monoidal functor, then the condition that the canonical natural transformation

7 fi((f*B)® A) — B® fi(A)

is a natural equivalence is called the projection formula. The existence of the left adjoint fy and the validity of
the projection formula is also referred to as Frobenius reciprocity in representation theory and in categorical
logic (“hyperdoctrines”), and often just called reciprocity, for short.

A basic fact is that:

Proposition 3.2.3. Given an adjoint pair (fi 4 f*) between closed monoidal categories with f* a strong
monoidal functor, then the condition that f* is strong closed is equivalent to Frobenius reciprocity, def.
hence to f satisfying its projection formula.

Remark 3.2.4. If in a Wirthmiiller context, def. not only fi but also f, satisfies its projection formula,
then [?] speaks of a “transfer context” (def. 4.9 there), because this turns out to be an abstract context
in which Becker-Gottlieb transfer exists (prop. 4.14 there). The abstract construction of Becker-Gottlieb
transfer is similar to the construction of Umkehr maps via fundamental classes in Wirthmiiller contexts
which we consider in [£.5.4] below.
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The central concept of interest here is now the following.

Definition 3.2.5. A model/semantics for linear homotopy-type theory is a locally Cartesian closed oo-
category H (“of non-linear homotopy-types”) and a Cartesian fibration

Mod

|

H
(“of dependent linear homotopy-types”) such that the co-functor
Mod : H°? — Caty

that classifies the fibration by the Grothendieck-Lurie construction ([L-Topos|, section 3.2) takes values in
Wirthmiiller contexts, def. hence sends objects X € H to closed symmetric monoidal oco-categories
Mod(X) and sends morphism f : X — Y to co-functors f* : Mod(Y') — Mod(X) which are strong monoidal,
have a left and right adjoint, and are strong closed, hence, by prop. satisfy Frobenius reciprocity.

Remark 3.2.6. Definition is the evident oco-categorical version of the closed monoidal fibrations con-
sidered in [Shul0§|] (def. 13.1) and [Shull2a] (theorem 2.14). Mike Shulman is working on developing formal
syntaz for linear homotopy-type theory similar to the formal syntax for non-linear homotopy-type theory
that is laid out in [UEP13]. This is to be such that def. provides the corresponding oo-categorical
semantics/models.

Example 3.2.7. Discussion of various classes of models for dependent linear type theory, def. is
below in In [7.6] we discuss how quantization of local prequantum field theory, [5.2.18 is realized in these
models.
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4 Substance

We consider now equipping homotopy toposes, with determinations of qualities of their objects, via
systems of modal operators as in [2.2] The resulting homotopy toposes behave like an abstract substance
exhibiting these qualities. Below in [5] we discuss how to mold out of such substance various structures of
relevance in mathematics and physics.

An oo-topos may be viewed both as an oo-category of generalized spaces — then also called a “gros
topos” — or as a generalized space itself — then also called a “petit topos”. The duality relation between
these two perspectives is given by prop. which says that every oco-topos regarded as a generalized
space is equivalent to the co-category of generalized étale spaces over it, while, conversely, every collection
of generalized spaces encoded by an oo-topos may be understood as being those generalized spaces equipped
with local equivalences to a fixed generalized model space.

From this description it is intuitively clear that the “smaller” an oo-topos is when regarded as a generalized
space, the “larger” is the collection of generalized spaces locally modeled on it, and vice versa. If by “size”
we mean “dimension”, there are two notions of dimension of an co-topos H that coincide with the ordinary
notion of dimension of a manifold X when H = Sh.,(X), but which may be different in general. These are

e homotopy dimension (see def. [5.1.107| below);

e cohomology dimension ([L-Topos|, section 7.2.2).

If by “size” we mean “nontriviality of homotopy groups”, hence nontriviality of the shape of a space, there
is the concept of

e shape of an co-topos (|L-Topos|, section 7.1.6);

which coincides with the topological shape of X in the case that H = Sh.(X), as above. Finally, if by
“small size” we just mean finite dimensional, then the property of co-toposes reflecting that is

e hypercompleteness ([L-Topos|, section 6.5.2).

For the description of higher geometry and higher differential geometry, we are interested in oo-toposes
that are “maximally gros” and“minimally petit”: regarded as generalized spaces they should look like fat
points or contractible blobs being the abstract blob of geometry that every object in them is supposed to be
locally modeled on, but that otherwise do not make these objects be parameterized over a nontrivial space.

The following concepts of local co-topos, co-connected co-topos, cohesive co-topos, and differential cohesive
oco-topos describe extra properties of the global section geometric morphism of an co-topos that imply that
some or all of the measures of “size” of the co-topos vanish, hence that make the co-topos be far from being
a non-trivial generalized space itself, and instead be genuinely a collection of generalized spaces modeled on
some notion of local geometry.

All these properties are equivalently encoded in terms of idempotent co-(co)monads on the oco-topos H

0,0 :H— H,

as discussed in Internally, on the homotopy type theory language of H, these are (higher) closure
operators or modalities on the type system (more on this is below in [4.1.1.2)). Externally, these structures
correspond to adjunctions

L
(L4R): H=—_B
R
such that L or R is a fully faithful co-functor, by 00 ~ Lo R and { ~ R o L, or the other way around.

L
Proposition 4.0.8. Let (L4 R): C ?; D be a pair of adjoint co-functors. Then
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1. The left adjoint co-functor L is fully faithful precisely if the adjunction unit is an equivalence idp —— Ro L .
2. The right adjoint co-functor R is fully faithful precisely if the adjunction counit is an equivalence
LoR-=+ ide .

Proof. This is [L-Topos], p. 308 or follows directly from it. |

For encoding “gros” geometry in the above sense, here the comonadic O is itself to be part of an adjunction
with the monadic ¢, as 0 4 or ¢ - . Such a situation corresponds externally to adjoint triples of co-
functors

- | i
(iAf AL HZSB or (ST AL AS): HE
f!

such that the middle functor or the two outer functors are fully faithful:
OAD) = (ffiAff) or O =(f*fu A1)

All that matters for the nature of the induced modalities is in which direction these functors go and
which of them are fully faithful. Moreover, both direction and fully faithfulness are necessarily alternating
through the adjoint triple, so what really matters is only which functor we regard as the direct image, the
number of adjoints it has to the left and to the right, and whether it is itself fully faithful or its adjoints
are. To bring that basic information out more clearly it may be helpful to introduce the following condensed
notation:

Let —_— stand for an adjoint pair where the direct image f. points from H to B, (this
is the bar on the dotted baseline) and such that it has a single left adjoint f* (the second bar on top).

L If
there is a further right adjoint f' then we draw a further bar on the bottom — . And so
forth: bars on top are left adjoint to bars below them, and the direction is left-to-right for the bar on the
base line and for every second bar next to it, while it is right-to-left for every other bar. Finally, we mark
the fully faithful functors by breaking the corresponding bar. For instance the notation —

e
H=_B,
fx

Accordingly, if there is a further left adjoint f; then we draw a further bar on top

means that the inverse image is fully faithful, hence is shorthand for an adjunction of the form

and so forth.
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The following table lists, in the above notation, the possibilities for adjoint higher modalities together
with the name of the corresponding attribute of H as an oco-topos over the base B.

Locality (b 44) (section [4.1]).

locally
l(l)callly local local discrete
oca embedded
oo-Connectedness ([ 4b) (section .
oo—(lz(c))file}c, ted oo-connected Ziﬁ%%g?llc}(}il discrete

Cohesion ([ b —f) (section [4.1)).

cohesive infinitesimally
embedded

Differential cohesion (R S - &) (section [4.2)).

infinitesimally
cohesive

differentially
cohesive
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41 [+ b 44 — Cohesion

We discuss now the definition and some basic properties of cohesive co-toposes.

4.1.1 General abstract

Definition 4.1.1. An oco-topos H is called locally local if the global section geometric morphism has a right
adjoint.
Disc
H —1— coGrpd .
=

coDisc

It is called local if that right adjoint is in addition fully faithful.

Definition is the immediate lift of the concept of local topos [JohMo89| from topos theory to co-topos
theory.

Proposition 4.1.2. A local co-topos

1. has homotopy dimension 0 (see def. |5.1.107 below);

2. has cohomological dimension 0 ([L-Topos], section 7.2.2).

Proof. The first statement is cor. [5.1.113| below. The second is a consequence of the first by [L-Topos|,
cor. 7.2.2.30. 0

The following definition is the direct generalization standard notion of a locally/globally connected topos
[Joh02]: a topos whose terminal geometric morphism has an extra left adjoint that computes geometric
connected components, hence a geometric notion of my. We will see in that as we pass to oco-toposes,
the extra left adjoint provides a good definition of all geometric homotopy groups.

Definition 4.1.3. An oo-topos H we call locally co-connected if the (essentially unique) global section co-
geometric morphism from prop. [3.1.7]is an essential co-geometric morphism in that it has a further left
adjoint II:

11
—_—

(IMT4AAT): H=2_ coGrpd .
Iy

If in addition A is fully faithful, then we say that H is in addition an oco-connected or globally co-connected
oo-topos.

Remark 4.1.4. Meanwhile, a locally co-connected oo-topos as above has been called an co-topos of constant
shape in [L-Alg], section A.1. Some of the following statements now overlap with the discussion there.

Proposition 4.1.5. For H a locally/globally oo-connected oo-topos, the underlying 1-topos T<oH of 0-
truncated objects (def. is a locally/globally connected topos (as in [Joh02] C1.5, C3.3).

Proof. By prop. and by the very definition of truncated objects I' takes O-truncated objects in H to
O-truncated objects in coGrpd, hence the restriction I'|,_ factors through the inclusion Set ~ 7<gooGrpd —
ooGrpd. -

Similarly the restriction A|<q factors through the inclusion 7<oH < H: by definition this is the case if
for all S € Set and all X € H the hom-oo-groupoid H(X, AS) € coGrpd is equivalently a set. But by the
defining right-adjointness of A this is equivalently

H(X,AS) ~ coGrpd(II(X), S) ~ Set(r<oII(X), S) € Set — ooGrpd,

which is a set by assumption that S is O-truncated.
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By uniqueness of adjoints and the fact that 7<p : coGrpd — Set is left adjoint to the inclusion, this
means that Al<g: Set“——= coGrpd 2~ H has a left adjoint
Iy := 1< o1I.

Finally 7<( preserves finite products by [L-Topos], lemma 6.5.1.2. and if II preserves the terminal object
then so does Ilj. O

Proposition 4.1.6. A locally oco-connected topos (I 4 A 4 T) : H — ooGrpd is globally oco-connected
precisely if the following equivalent conditions hold.

1. The inverse image A is a fully faithful co-functor.
2. The extra left adjoint 11 preserves the terminal object.

Proof. This follows verbatim the proof for the familiar statement about connected toposes, since all the
required properties have co-analogs: we have that

e A is fully faithful precisely if the (IT 4 A)-adjunction unit is an equivalence, by prop. 4.0.8

e every co-groupoid S is the co-colimit over itself of the oco-functor constant on the point, by prop. [p.1.1}

S~ lim * .
g

Therefore if A is fully faithful, then
II(*) ~ IIA(x)

~ ok

and hence II preserves the terminal object. Conversely, if II preserves the terminal object then for any
S € coGrpd we have that
ITIAS ~ ITAlim
- S

~ lim ITAx*

and hence A is fully faithful. O

Proposition 4.1.7. A locally co-connected oo-topos
1. has the shape of TI(*);
2. hence has the shape of the point if it is globally co-connected.
Proof. By inspection of the definitions. O
We give the definition and basic properties of cohesive co-toposes first externally, in in terms of

properties of the global section geometric morphism, and then internally, in the language of the internal type
theory of an oco-topos, in|4.1.1.2
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4.1.1.1 External formulation
Definition 4.1.8. A cohesive co-topos H is
1. a locally and globally co-connected topos H, def
2. which in addition is a local co-topos, def.
3. and such that the extra left adjoint preserves not just the terminal object, but all finite products.

Definition is the immediate lift of the main axioms in the definition of topos of cohesion in [Law(7]
from topos theory to co-topos theory.

Remark 4.1.9. The conditions in def. [{I.§ say in