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Abstract

We formulate differential cohomology and Chern-Weil theory – the theory of connections on fiber
bundles and of gauge fields – abstractly in homotopy toposes that we call cohesive. Cocycles in this
differential cohomology classify higher principal bundles equipped with cohesive structure (topological,
smooth, complex-analytic, formal, supergeometric, etc.) and equipped with connections, hence higher
gauge fields. Furthermore we formulate differential geometry abstractly in homotopy toposes that we
call differentially cohesive. The manifolds in this theory are higher étale stacks (orbifolds) equipped with
higher Cartan geometry (higher Riemannian-, complex, symplectic, conformal-, geometry) together with
partial differential equations on spaces of sections of higher bundles over them, and equipped with higher
pre-quantization of the resulting covariant phase spaces. We also formulate super-geometry abstractly
in homotopy toposes and lift all these constructions to include fermionic degrees of freedom. Finally
we indicate an abstract formulation of non-perturbative quantization of prequantum local field theory
by fiber integration in twisted generalized cohomology of spectral linearizations of higher prequantum
bundles.

We then construct models of the abstract theory in which traditional differential super-geometry is
recovered and promoted to higher (derived) differential super-geometry.

We show that the cohesive and differential refinement of universal characteristic cocycles constitutes
a higher Chern-Weil homomorphism refined from secondary characteristic classes to morphisms of higher
moduli stacks of higher gauge fields, and at the same time constitutes extended geometric prequantization
– in the sense of extended/multi-tiered quantum field theory – of hierarchies of higher dimensional Chern-
Simons-type field theories, their higher Wess-Zumino-Witten-type boundary field theories and all further
higher codimension defect field theories.

We find that in the Whitehead tower of superpoints in higher supergeometry one finds god given
such cocycles on higher supersymmetry-groups, reflecting the completed brane scan of string/M-theory.
We show that the induced higher super Cartan geometry is higher dimensional supergravity with super
p-brane charge corrections included. For the maximal case of 11-dimensional supergravity we find the
Einstein equations of motion with cancellation of the classical anomalies of the M-brane sigma-models
on these targets. Their higher Noether currents yield higher extensions of super-isometry groups by
M2/M5-brane BPS charges in twisted generalized cohomology.

We close with an outlook on the cohomological quantization of these higher boundary prequantum
field theories by a kind of cohesive motives.
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General Abstract

We formulate differential cohomology (e.g. [Bun12]) and Chern-Weil theory (e.g. [BoTo82]) – the theory of
connections on fiber bundles and of gauge fields – abstractly in the context of a certain class of ∞-toposes
([L-Topos]) that we call cohesive. Cocycles in this differential cohomology classify principal ∞-bundles
equipped with cohesive structure (topological, smooth, complex-analytic, formal, supergeometric etc.) and
equipped with ∞-connections, hence higher gauge fields (e.g. [Fr00]).

We construct the cohesive ∞-topos of smooth ∞-groupoids and ∞-Lie algebroids and show that in this
concrete context the general abstract theory reproduces ordinary differential cohomology (Deligne cohomol-
ogy/differential characters), ordinary Chern-Weil theory, the traditional notions of smooth principal bundles
with connection, abelian and nonabelian gerbes/bundle gerbes with connection, principal 2-bundles with
2-connection, connections on 3-bundles, etc. and generalizes these to higher degree and to base spaces that
are orbifolds and generally smooth ∞-groupoids, such as smooth realizations of classifying spaces/moduli
stacks for principal ∞-bundles and configuration spaces of gauge theories.

We exhibit a general abstract ∞-Chern-Weil homomorphism and observe that it generalizes the La-
grangian of Chern-Simons theory to ∞-Chern-Simons theory. For every invariant polynomial on an ∞-Lie
algebroid it sends principal ∞-connections to Chern-Simons circle (n+ 1)-bundles (n-gerbes) with connec-
tion, whose higher parallel transport is the corresponding higher Chern-Simons Lagrangian. There is a
general abstract formulation of the higher holonomy of this parallel transport and this provides the action
functional of ∞-Chern-Simons theory as a morphism on its cohesive configuration ∞-groupoid. Moreover,
to each of these higher Chern-Simons Lagrangian is canonically associated a differentially twisted looping,
which we identify with the corresponding higher Wess-Zumino-Witten Lagrangian.

We show that, when interpreted in smooth ∞-groupoids and their variants, these intrinsic constructions
reproduce the ordinary Chern-Weil homomorphism, hence ordinary Chern-Simons functionals and ordinary
Wess-Zumino-Witten functionals, provide their geometric prequantization in higher codimension (localized
down to the point) and generalize this to a fairly extensive list of action functionals of quantum field theories
and string theories, some of them new. All of these appear in their refinement from functionals on local
differential form data to global functionals defined on the full moduli ∞-stacks of field configurations/∞-
connections, where they represent higher prequantum line bundles. We show that these moduli ∞-stacks
naturally encode fermionic σ-model anomaly cancellation conditions, such as given by higher analogs of
Spin-structures and of Spinc-structures.

We moreover show that higher symplectic geometry is naturally subsumed in higher Chern-Weil theory,
such that the passage from the unrefined to the refined Chern-Weil homomorphism induced from higher
symplectic forms implements geometric prequantization of the above higher Chern-Simons and higher Wess-
Zumino-Witten functionals. We study the resulting formulation of local prequantum field theory, show how
it subsumes traditional classical field theory and how it illuminates the boundary and defect structure of
higher Chern-Simons-type field theories, their higher Wess-Zumino-Witten type theories, etc.

We close with an outlook on the “motivic quantization” of such local prequantum field theory of higher
moduli stacks of fields to genuine local quantum field theory with boundaries and defects, by pull-push in
twisted generalized cohomology of higher stacks and conclude that cohesive∞-toposes provide a “synthetic”
axiomatization of local quantum gauge field theories obtained from geometric Lagrangian data [Sc13d].

We think of these results as providing a further ingredient of the recent identification of the mathemat-
ical foundations of quantum field and perturbative string theory [SaSc11a]: while the cobordism theorem
[L-TFT] identifies topological quantum field theories and their boundary and defect theories with a univer-
sal construction in higher monoidal category theory, our results indicate that the geometric pre-qauntum
geometry that these arise from under geometric motivic quantization originate in a universal construction
in higher topos theory: cohesion.
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Outline
In 1 we motivate our discussion, give an informal introduction to the main concepts involved and survey
various of our constructions and applications in a more concrete, more traditional and more expository way
than in the sections to follow. This may be all that some readers ever want to see, while other readers may
want to skip it entirely.
In 2 we review relevant aspects of homotopy-type theory, the theory of∞-categories and∞-toposes, in terms
of which all of the following is formulated. This serves to introduce context and notation and to provide a
list of technical lemmas which we need in the following, some of which are not, or not as explicitly, stated in
existing literature.
In 4, 5 we introduce cohesive homotopy-type theory, a general abstract theory of differential geometry,
differential cohomology and Chern-Weil theory in terms of universal constructions in ∞-topos theory. This
is in the spirit of Lawvere’s proposals [Law07] for axiomatic characterizations of those gros toposes that
serve as contexts for abstract geometry in general and differential geometry in particular: cohesive toposes.
We claim that the decisive role of these axioms is realized when generalizing from topos theory to ∞-topos
theory and we discuss a fairly long list of geometric structures that is induced by the axioms in this case.
Notably we show that every ∞-topos satisfying the immediate analog of Lawvere’s axioms – every cohesive
∞-topos– comes with a good intrinsic notion of differential cohomology and Chern-Weil theory.

Then we add a further simple set of axioms to obtain a theory of what we call differential cohesion, a
refinement of cohesion that axiomatizes the explicit presence of infinitesimal objects. This is closely related
to Lawvere’s other proposal for axiomatizing toposes for differential geometry, called synthetic differential
geometry [Law97], but here formulated entirely in terms of higher closure modalities as for cohesion itself.
We find that these axioms also capture the modern synthetic-differential theory of D-geometry [L-DGeo]. In
particular a differential cohesive ∞-topos has an intrinsic notion of (formally) étale maps, which makes it
an axiomatic geometry in the sense of [L-Geo] and equips it with intrinsic manifold theory.
Finally we add axioms for linear homotopy-types that encode structure embodied by parameterized spectrum
objects and discuss how this serves to naturally encode secondary integral transforms parameterized by
correspondences of cohesive homotopy types. We show that these have the interpretation of cohomological
path integrals for topological field theory.

Where cohesive-homotopy theory axiomatizes Lagrangian pre-quantum geometry, linear homotopy-type
theory axiomatizes quantization.
In 6 we discuss models of the axioms, hence ∞-toposes of ∞-groupoids which are equipped with a geo-
metric structure (topology, smooth structure, supergeometric structure, etc.) in a way that all the abstract
differential geometry theory developed in the previous chapter can be realized. The main model of in-
terest for our applications is the cohesive ∞-topos Smooth∞Grpd as well as its infinitesimal thickening
FormalSmooth∞Grpd, which we construct. Then we go step-by-step through the list of general abstract
structures in cohesive ∞-toposes and unwind what these amount to in this model. We demonstrate that
these subsume traditional definitions and constructions and generalize them to higher differential geometry
and differential cohomology.
In 7 we discuss the application of the general theory in the context of smooth ∞-groupoids and their
synthetic-differential and super-geometric refinements to aspects of higher gauge prequantum field theory.
We present a fairly long list of higher Spin- and Spinc-structures, of classes of local action functionals on
higher moduli stacks of fields of higher Chern-Simons type and functionals of higher Wess-Zumino-Witten
type, that are all naturally induced by higher Chern-Weil theory. We exhibit a higher analog of geometric
prequantization that applies to these systems and show that it captures a wealth of structures, such as
notably the local boundary and higher codimension defect structure. Apart from the new constructions
and results, this shows that large parts of local prequantum gauge field theory are induced by axiomatic
cohesive homotopy-theory. In 7.6 we close this section with an outlook on how the quantization of the local
prequantum gauge field theory to genuine local quantum field theory proceeds via higher linear algebra in
linear cohesive ∞-toposes, namely via duality of cohesive linear homotopy-types.
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1 Introduction

In

• 1.1 – Motivation

we motivate the formulation of physics within higher differential geometry and informally survey some of
our key constructions and results. The sections

• 1.2 – Geometry;

• 1.3 – Physics;

are an introduction to and review of modern differential geometry and mathematical physics, in their tradi-
tional formulation but with an eye towards the formulation developed below in the main sections. Section

• 1.4 – Examples and Applications

is an exposition of some motivating examples and applications.

1.1 Motivation

In

• 1.1.1 – Prequantum field theory

we highlight the open problem of prequantizing local field theory in a local and gauge invariant way, and we
informally survey how a solution to this problem exists in higher differential geometry. In

• 1.1.2 – Examples of prequantum field theories

we survey examples and problems of interest. In

• 1.1.3 – Abstract prequantum field theory

we survey the abstract cohesive homotopy theory that serves to make all this precise and tractable. Combin-
ing this cohesive with linear homotopy theory should serve to non-perturbatively quantize higher prequantum
geometry, see section 7.6.

1.1.1 Prequantum field theory

The geometry that underlies the physics of Hamilton and Lagrange’s classical mechanics and classical field
theory has long been identified: this is symplectic geometry [Ar89] and variational calculus on jet bun-
dles [And89, Ol93]. In these theories, configuration spaces of physical systems are differentiable manifolds,
possibly infinite-dimensional, and the physical dynamics is all encoded by way of certain globally defined
differential forms on these spaces.

But fundamental physics is of course of quantum nature, to which classical physics is but an approximation
that applies at non-microscopic scales. Of what mathematical nature are systems of quantum physics?

• 1.1.1.1 – The need for prequantum geometry;

• 1.1.1.2 – The principle of extremal action – comonadically;

• 1.1.1.3 – The global action functional – cohomologically;

• 1.1.1.4 – The covariant phase space – transgressively;

• 1.1.1.5 – The local observables – Lie theoretically;

• 1.1.1.6 – The evolution – correspondingly.
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1.1.1.1 The need for higher prequantum geometry A sensible answer to this question is given
by algebraic deformation theory. One considers a deformation of classical physics to quantum physics by
deforming a Poisson bracket to the commutator in a non-commutative algebra, or by deforming a classical
measure to a quantum BV operator.

classical
physics

deformation
quantization //
oo

classical
limit

perturbative
quantum
physics

However, this tends to work only perturbatively, in the infinitesimal neighbourhood of classical physics,
expressed in terms of formal (possibly non-converging) power series in Planck’s constant ~.

There is a genuinely non-perturbative mathematical formalization of quantization, called geometric quan-
tization [So70, So74, Ko75, BaWe97]. A key insight of geometric quantization is that before genuine quan-
tization even applies, there is to be a pre-quantization step in which the classical geometry is supplemented
by global coherence data.

pre-quantum
physics

geometric
quantization //

disregard
global information

��

full
quantum
physics

classical
physics

For global gauge groups, this coherence data is also known as the cancellation of classical anomalies [Ar89,
5.A].

The archetypical example of pre-quantization is Dirac charge quantization [Di31], [Fra, 5.5], [Fr00]. The
classical mechanics of an electron propagating in an electromagnetic field on a spacetime X is all encoded in
a differential 2-form on X, called the Faraday tensor F , which encodes the classical Lorentz force that the
electromagnetic field exerts on the electron. But this data is insufficient for passing to the quantum theory
of the electron: locally, on a coordinate chart U , what the quantum electron really couples to is the “vector
potential”, a differential 1-form AU on U , such that dAU = F |U . But globally such a vector potential may
not exist. Dirac realized1 that what it takes to define the quantized electron globally is, in modern language,
a lift of the locally defined vector potentials to an (R/Z)-principal connection on a (R/Z)-principal bundle
over spacetime. The first Chern class of this principal bundle is quantized, and this is identified with the
quantization of the magnetic charge whose induced force the electron feels. This quantization effect, which
needs to be present before the quantization of the dynamics of the electron itself even makes sense globally,
is an example of pre-quantization.

A variant of this example occupies particle physics these days. As we pass attention from electrons to
quarks, these couple to the weak and strong nuclear force, and this coupling is, similarly, locally described
by a 1-form AU , but now with values in a Lie algebra su(n), from which the strength of the nuclear force
field is encoded by the 2-form F |U := dAU + 1

2 [AU ∧AU ]. For the consistency of the quantization of quarks,
notably for the consistent global definition of Wilson loop observables, this local data must be lifted to an
SU(n)-principal connection on a SU(n)-principal bundle over spacetime. The second Chern class of this

1Dirac considered this in the special case where spacetime is the complement in 4-dimensional Minkowski spacetime of
the worldline of a magnetic point charge. The homotopy type of this space is the 2-sphere and hence in this case principal
connections may be exhibited by what in algebraic topology is called a clutching construction, and this is what Dirac described.
What the physics literature knows as the “Dirac string” in this context is the ray whose complement gives one of the two
hemispheres in the clutching construction.
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bundle is quantized, and is physically interpreted as the number of instantons2. In the physics literature
instantons are expressed via Chern-Simons 3-forms, mathematically these constitute the pre-quantization of
the 4-form tr(F ∧ F ) to a 2-gerbe with 2-connection, more on this in a moment.

The vacuum which we inhabit is filled with such instantons at a density of the order of one instanton per
femtometer in every direction. (The precise quantitative theoretical predictions of this [ScSh98] suffer from
an infrared regularization ambiguity, but numerical simulations demonstrate the phenomenon [Gr13].) This
“instanton sea” that fills spacetime governs the mass of the η′-particle [Wi79, Ve79] as well as other non-
perturbative chromodynamical phenomena, such as the quark-gluon plasma seen in experiment [Shul01]. It
is also at the heart of the standard hypothesis for the mechanism of primordial baryogenesis [Sak67, ’tHo76,
RiTr99], the fundamental explanation of a universe filled with matter.

Passing beyond experimentally observed physics, one finds that the qualitative structure of the standard
model of particle physics coupled to gravity, namely the structure of Einstein-Maxwell-Yang-Mills-Dirac-
Higgs theory, follows naturally if one assumes that the 1-dimensional worldline theories of particles such as
electrons and quarks are, at very high energy, accompanied by higher dimensional worldvolume theories of
fundamental objects called strings, membranes and generally p-branes (e.g. [Duff99]). While these are hypo-
thetical as far as experimental physics goes, they are interesting examples of the mathematical formulation
of field theory, and hence their study is part of mathematical physics, just as the study of the Ising model or
φ4-theory. These p-branes are subject to a higher analog of the Lorentz force, and this is subject to a higher
analog of the Dirac charge quantization condition, again a prequantum effect for the worldvolume theory.

For instance the strong CP-problem of the standard model of particle physics has several hypothetical
solutions, one is the presence of particles called axions. The discrete shift symmetry (Peccei-Quinn symmetry)
that characterizes these may naturally be explained as the result of R/Z-brane charge quantization in the
hypothetical case that axions are wrapped membranes [SvWi06, section 6].

More generally, p-brane charges are not quantized in ordinary integral cohomology, but in generalized
cohomology theories. For instance 1-branes (strings) are by now well-known to carry charges whose quanti-
zation is in K-theory (see [Fr00]). While the physical existence of fundamental strings remains hypothetical,
since the boundaries of strings are particles this does impact on known physics, for instance on the quanti-
zation of phase spaces that are not symplectic but just Poisson [Nui13].

Finally, when we pass from fundamental physics to low energy effective physics such as solid state physics,
then prequantum effects control topological phases of matter. Indeed, symmetry protected topological phases
are described at low energy by higher dimensional WZW models [CGLW11], of the same kind as those
hypothetical fundamental super p-brane models.

worldvolume
field theory

prequantum effect

electron
Dirac charge quantization,
magnetic flux quantization

quark
instantons,

baryogenesis

p-brane
brane charge quantization,

axion shift symmetry

These examples show that pre-quantum geometry is at the heart of the description of fundamental and of
effective physical reality. Therefore, before rushing to discuss the mathematics of quantum geometry proper,
it behooves us to first carefully consider the mathematics of pre-quantum geometry. This is what we do here.

If the prequantization of the Lorentz force potential 1-form A for the electron is a connection on a (R/Z)-
principal bundle, what then is the prequantization of the Chern-Simons 3-form counting instantons, or of
the higher Lorentz force potential (p+ 1)-form of a p-brane for higher p?

2Strictly speaking, the term “instanton” refers to a principal connection that in addition to having non-trivial topological
charge also minimizes Euclidean energy. Here we are just concerned with the nontrivial topological charge, which in particular
is insensitive to and independent of any “Wick rotation”.
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This question has no answer in traditional differential geometry. It is customary to consider it only
after transgressing the (p + 1)-forms down to 1-forms by splitting spacetime/worldvolume as a product
Σ = Σp × [0, 1] of p-dimensional spacial slices with a time axis, and fiber integrating the (p+ 1)-forms over
Σp

global in space local in spacetime
1-form A1 (p+ 1)-form Ap+1∫

[0,1]

A1

A1:=
∫
Σp

Ap+1

fiber integration

∫
Σp×[0,1]

Ap+1

This transgression reduces (p+1)-dimensional field theory to 1-dimensional field theory, hence to mechanics,
on the moduli space of spatial field configurations. That 1-dimensional field theory may be subjected to the
traditional theory of prequantum mechanics.

But clearly this space/time decomposition is a brutal step for relativistic field theories. It destroys their
inherent symmetry and makes their analysis hard. In physics this is called the “non-covariant” description
of field theory, referring to covariance under application of diffeomorphisms.

We need prequantum geometry for spacetime local field theory where (p+ 1)-forms may be prequantized
by regarding them as connections on higher degree analogs of principal bundles. Where an ordinary principal
bundle is a smooth manifold, hence a smooth set, with certain extra structure, a higher principal bundle
needs to be a smooth homotopy type.

prequantum bundle
global in space local in spacetime

smooth set smooth homotopy type

The generalization of geometry to higher geometry, where sets – which may be thought of as homotopy
0-types – are generalized to homotopy p-types for higher p, had been envisioned in [Gr81] and a precise
general framework has eventually been obtained in [L-Topos]. This may be specialized to higher differential
geometry, as discussed in this book, which is what we are surveying here.

The description of pre-quantum field theory local in spacetime is related to the description of topological
quantum field theory local-to-the-point known as “extended” or “multi-tiered” field theory [L-TFT][Be10].

classical prequantum

global in space
symplectic geometry
classical mechanics

prequantum geometry
prequantum mechanics

local in spacetime
diffiety geometry

classical field theory
higher prequantum geometry

prequantum field theory

Once we are in a context of higher geometry where higher prequantum bundles exist, several other
subtleties fall into place.

ingredient of
variational calculus

new examples
available in

higher geometry
spacetime orbifolds

field bundle
instanton sectors of gauge fields,

integrated BRST complex

prequantum bundle global Lagrangians for WZW-type models

A well-kept secret of the traditional formulation of variational calculus on jet bundles is that it does not
in fact allow to properly formulate global aspects of local gauge theory. Namely the only way to make the
fields of gauge theory be sections of a traditional field bundle is to fix the instanton number (Chern class) of
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the gauge field configuration. The gauge fields then are taken to be connections on that fixed bundle. One
may easily see [Sc14f] that it is impossible to have a description of gauge fields as sections of a field bundle
that is both local and respects the gauge principle. However, this is possible with a higher field bundle.
Indeed, the natural choice of the field bundle for gauge fields has as typical fiber the smooth moduli stack
of principal connections. Formulated this way, not only does the space of all field configurations then span
all instanton sectors, but it also has the gauge transformations between gauge field configurations built into
it. In fact it is then the globalized (integrated) version of what in the physics literature is known as the
(off-shell) BRST complex of gauge theory.

Moreover, in a context of higher geometry also spacetime itself is allowed to be a smooth homotopy type.
This is relevant at least in some hypothetical models of fundamental physics, which require spacetime to be
an orbifold. Mathematically, an orbifold is a special kind of Lie groupoid, which in turn is a special kind of
smooth homotopy 1-type.

1.1.1.2 The principle of extremal action – comonadically Most field theories of relevance in theory
and in nature are local Lagrangian field theories (and those that are not tend to be holographic boundary
theories of those that are). This means that their equations of motion are partial differential equations
obtained as Euler-Lagrange equations of a local variational principle. This is the modern incarnation of the
time-honoured principle of least action (really: of extremal action).

We review how this is formalized, from a category-theoretic point of view that will point the way to
prequantum field theory below in section 1.1.1.4.

The kinematics of a field theory is specified by a smooth manifold Σ of dimension (p+ 1) and a smooth
bundle E over Σ. A field configuration is a smooth section of E. If we think of Σ as being spacetime, then
typical examples of fields are the electromagnetic field or the field of gravity. But we may also think of Σ as
being the worldvolume of a particle (such as the electron in the above examples) or of a higher dimensional
“brane” that propagates in a fixed background of such spacetime fields, in which case the fields are the maps
that encode a given trajectory.

The dynamics of a field theory is specified by an equation of motion, a partial differential equation for such
sections. Since differential equations are equations among all the derivatives of such sections, we consider
the spaces that these form: the jet bundle J∞Σ E is the bundle over Σ whose fiber over a point σ ∈ Σ is the
space of sections of E over the infinitesimal neighbourhood Dσ of that point:

J∞Σ E

��
∗

==

σ // Σ

 '


E

��
Dσ

>>

� � // Σ


Therefore every section φ of E yields a section j∞(φ) of the jet bundle, given by φ and all its higher order
derivatives.

jet bundle J∞Σ E

��
field bundle E

��spacetime /
worldvolume

Σ

φ field configuration

^^ j∞(φ) derivatives of
field configuration

cc
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Accordingly, for E,F any two smooth bundles over Σ, then a bundle map

J∞E

""

f // F

��
Σ

encodes a (non-linear) differential operator Df : ΓΣ(E) −→ ΓΣ(F ) by sending any section φ of E to the
section f◦j∞(φ) of F . Under this identification, the composition of differential operators Dg◦Df corresponds
to the Kleisli-composite of f and g, which is

J∞E //

**

J∞J∞E

%%

J∞f // J∞F
g //

��

G

||
Σ

.

Here the first map is given by re-shuffling derivatives and gives the jet bundle construction J∞Σ the structure
of a comonad – the jet comonad.

Differential operators are so ubiquitous in the present context that it is convenient to leave them nota-
tionally implicit and understand every morphism of bundles E −→ F to designate a differential operator
D : ΓΣ(E) −→ ΓΣ(F ). This is what we will do from now on. Mathematically this means that we are now in
the co-Kleisli category Kl(J∞Σ ) of the jet comonad

DiffOpΣ ' Kl(J∞Σ ) .

For example the de Rham differential is a differential operator from sections of ∧pT ∗Σ to sections of
∧p+1T ∗Σ and hence now appears as a morphism of the form

dH : ∧pT ∗Σ −→ ∧p+1T ∗Σ .

With this notation, a globally defined local Lagrangian for fields that are sections of some bundle E over
spacetime/worldvolume Σ is simply a morphism of the form

L : E −→ ∧p+1T ∗Σ .

Unwinding what this means, this is a function that at each point of Σ sends the value of field configurations
and all their spacetime/worldvolume derivatives at that point to a (p+ 1)-form on Σ at that point. It is this
pointwise local (in fact: infinitesimally local) dependence that the term local in local Lagrangian refers to.

Notice that this means that ∧p+1T ∗Σ serves the role of the moduli space of horizontal (p+ 1)-forms:

Ωp+1
H (E) = HomDiffOpΣ

(E,∧p+1T ∗Σ) .

Regarding such L for a moment as just a differential form on J∞Σ (E), we may apply the de Rham
differential to it. One finds that this uniquely decomposes as a sum of the form

dL = EL− dHΘ , (1.1)

for some Θ and for EL pointwise the pullback of a vertical 1-form on E; such a differential form is called a
source form:

EL ∈ Ωp+1,1
S (E) .

This particular source form is of paramount importance: the equation

∀
v∈Γ(V E)

j∞(φ)∗ιvEL = 0
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on sections φ ∈ ΓΣ(E) is a partial differential equation, and this is called the Euler-Lagrange equation of
motion induced by L. Differential equations arising this way from a local Lagrangian are called variational.

A little reflection reveals that this is indeed a re-statement of the traditional prescription of obtaining
the Euler-Lagrange equations by locally varying the integral over the Lagrangian and then applying partial
integration to turn all variation of derivatives (i.e. of jets) of fields into variation of the fields themselves.
Here we do not consider this under the integral, and hence the boundary terms arising from the would-be
partial integration show up as the contribution Θ.

We step back to say this more neatly. In general, a differential equation on sections of a bundle E is what
characterizes the kernel of a differential operator. Now such kernels do not in general exist in the Kleisli
category DiffOpΣ of the jet comonad that we have been using, but (as long as it is non-singular) it does exist
in the full Eilenberg-Moore category EM(J∞Σ ) of jet-coalgebras. In fact, that category turns out [Marv86]
to be equivalent to the category PDEΣ whose objects are differential equations on sections of bundles, and
whose morphisms are solution-preserving differential operators :

PDEΣ ' EM(J∞Σ ) .

Our original category of bundles with differential operators between them sits in PDEΣ as the full subcategory
on the trivial differential equations, those for which every section is a solution. This inclusion extends to
(pre-)sheaves via left Kan extension; so we are now in the sheaf topos

Sh(PDEΣ) .

And while source forms such as the Euler-Lagrange form EL are not representable in DiffOpΣ, it is still true
that for f : E −→ F any differential operator then the property of source forms is preserved by precompo-
sition with this map, hence we have the induced pullback operation on source forms: f∗ : Ωp+1,1

S (F ) −→
Ωp+1,1
S (E). This means that source forms do constitute a presheaf on DiffOpΣ, hence by left Kan extension

an object
Ωp+1,1
S ∈ Sh(PDEΣ) .

Therefore now the Yoneda lemma applies to say that Ωp+1,1
S is the moduli space for source forms in this

context: a source form on E is now just a morphism of the form E −→ Ωp+1,1
S . Similarly, the Euler variational

derivative is now incarnated as a morphism of moduli spaces of the form Ωp+1
H

δV−→ Ωp+1,1
S , and applying

the variational differential to a Lagrangian is now incarnated as the composition of the corresponding two
modulating morphisms

EL := δV L : E
L−→ Ωp+1

H
δV−→ Ωp+1,1

S

. Finally, and that is the beauty of it, the Euler-Lagrange differential equation E induced by the Lagrangian
L is now incarnated simply as the kernel of EL:3

E
ker(EL)
↪→ E .

In summary, from the perspective of the topos over partial differential equations, the traditional structure
of local Lagrangian variational field theory is captured by the following diagram:

classical variational local field theory
Euler−Lagrange

equation

E � s

ker(EL)

&&

Ωp+1
H

δV

variational
differential %%

spacetime/
worldvolume Σ

solution

88

φ

field configuration
// E

L

local
Lagrangian

;;

EL
// Ωp+1,1

S

3That kernel always exists in the topos Sh(PDEΣ), but it may not be representable by an actual submanifold of J∞Σ E if
there are singularities. Without any changes to the general discussion one may replace the underlying category of manifolds
by one of “derived manifolds” formally dual to “BV-complexes”, where algebras of smooth functions are replaced by higher
homotopy-theoretic algebras, for instance by graded algebras equipped with a differential dBV.
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So far, all this assumes that there is a globally defined Lagrangian form L in the first place, which is
not in fact the case for all field theories of interest. Notably it is in general not the case for field theories
of higher WZW type. However, as the above diagram makes manifest, for the purpose of identifying the
classical equations of motion, it is only the variational Euler differential EL := δV L that matters. But if that
is so, the variation being a local operation, then we should still call equations of motion E locally variational
if there is a cover {Ui → E} and Lagrangians on each patch of the cover L : Ui → Ωp+1

H , such that there is a
globally defined Euler-Lagrange form EL which restricts on each patch Ui to the variational Euler-derivative
of Li.

classical locally variational local field theory
Euler−Lagrange

equation

E

ker(EL)

''

∐
i∈I Ui

����

(Li)i∈I

locally defined
local Lagrangians

// Ωp+1
H

δV

variational
differential %%

spacetime/
worldvolume Σ

solution

88

φ

field configuration
// E

EL
// Ωp+1,1

S

.

Such locally variational classical field theory is discussed in [AnDu80, FPW11].
But when going beyond classical field theory, the Euler-Lagrange equations of motion E are not the end

of the story. As one passes to the quantization of a classical field theory, there are further global structures
on E and on E that are relevant. These are the action functional and the Kostant-Souriau prequantization
of the covariant phase space. For these one needs to promote a patchwise system of local Lagrangians to a
p-gerbe connection. This we turn to now.

1.1.1.3 The global action functional – cohomologically For a globally defined Lagrangian (p+ 1)-
form Lp+1 on the jet bundle of a given field bundle, then the value of the action functional on a compactly
supported field configuration φ is simply the integral

S(φ) :=

∫
Σ

j∞(φ)∗Lp+1

of the Lagrangian, evaluated on the field configuration, over the spacetime/worldvolume Σ.
But when Lagrangian forms are only defined patchwise on a cover {Ui → E}i as in the locally variational

field theories mentioned above in 1.1.1.2, then there is no way to globally make invariant sense of the action
functional! As soon as sections pass through several patches, then making invariant sense of such an integral
requires more data, in particular it requires more than just a compatibility condition of the locally defined
Lagrangian forms on double intersections.

The problem of what exactly it takes to define global integrals of locally defined forms has long found a
precise answer in mathematics, in the theory of ordinary differential cohomology. This has several equivalent
incarnations, the one closest to classical constructions in differential geometry involves Cech cocycles: one
first needs to choose on each intersection Uij of two patches Ui and Uj a differential form (κp)ij of degree
p, whose horizontal de Rham differential is the difference between the two Lagrangians restricted to that
intersection

(Lp+1)j − (Lp+1)i = dH(κp)ij on Uij .

Then further one needs to choose on each triple intersection Uijk a horizontal differential form (κp−1)ijk
of degree p − 1 whose horizontal differential is the alternating sum of the relevant three previously defined
forms:

(κp)jk − (κp)ik + (κp)ij = dH(κp−1)ijk on Uijk .

And so on. Finally on (p + 2)-fold intersections one needs to choose smooth functions (κ0)i0···ip+1 whose
horizontal differential is the alternating sum of (p + 2) of the previously chosen horizontal 1-forms, and,
moreover, on (p + 3)-fold intersections the alternating sum of these functions has to vanish. Such a tuple
({Ui}; {(Lp+1)i}, {(κp)ij}, · · · ) is a horizontal Cech-de Rham cocycle in degree (p+ 2).
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Given such, there is then a way to make sense of global integrals: one chooses a triangulation subordinate
to the given cover, then integrates the locally defined Lagrangians (Lp+1)i over the (p+ 1)-dimensional cells
of the triangulation, integrates the gluing forms (κp)ij over the p-dimensional faces of these cells, the higher
gluing forms (κp)ijk over the faces of these faces, etc., and sums all this up. This defines a global action
functional, which we may denote by

S(φ) :=

∫
Σ

j∞(φ)∗({Li}, {(κp)ij}, · · · ) .

This horizontal Cech-de Rham cocycle data is subject to fairly evident coboundary relations (gauge trans-
formations) that themselves are parameterized by systems (ρ•) of (p+ 1)− k-forms on k-fold intersections:

Li 7→ Li + dH(ρp)i

(κp)ij 7→ (κp)ij + dH(ρp−1)ij + (ρp)j − (ρp)i

...

The definition of the global integral as above is preserved by these gauge transformations. This is the point
of the construction: if we had only integrated the (Lp+1)i over the cells of the triangulation without the
contributions of the gluing forms (κ•), then the resulting sum would not be invariant under the operation
of shifting the Lagrangians by horizontally exact terms (“total derivatives”) Li 7→ Li + dHρi.

It might seem that this solves the problem. But there is one more subtlety: if the action functional
takes values in the real numbers, then the functions assigned to (p+ 2)-fold intersections of patches are real
valued, and then one may show that there exists a gauge transformation as above that collapses the whole
system of forms back to one globally defined Lagrangian form after all. In other words: requiring a globally
well-defined R-valued action functional forces the field theory to be globally variational, and hence rules out
all locally variational field theories, such as those of higher WZW-type.

But there is a simple way to relax the assumptions such that this restrictive conclusion is evaded. Namely
we may pick a discrete subgroup Γ ↪→ R and relax the condition on the functions (κ0)i0···ip+1

on (p+ 2)-fold
intersections to the demand that on (p+ 3)-fold intersections their alternating sum vanishes only modulo Γ.
A system of (p+ 2)− k-forms on k-fold intersections with functions regarded modulo Γ this way is called a
(horizontal) R/Γ-Cech-Deligne cocycle in degree (p+ 2).

For instance for field theories of WZW-type, as above, we may take Γ to be the discrete group of periods
of the closed form ω. Then one may show that a lift of ω to a Cech-Deligne cocycle of local Lagrangians
with gluing data always exists. Indeed in general more than one inequivalent lift exists. The choice of these
lifts is a choice of prequantization.

However, modding out a discrete subgroup Γ this ways also affects the induced global integral: that
integral itself is now only defined modulo the subgroup Γ:

S(φ) =

∫
Σ

j∞(φ)∗({(L(p+1))i}, {(κp)ij}, · · · ) ∈ R/Γ .

Now, there are not that many discrete subgroups of R. There are the subgroups isomorphic to the
integers, and then there are dense subgroups, which make the quotient R/Γ ill behaved. Hence we focus on
the subgroup of integers.

The space of group inclusions i : Z ↪→ R is parameterized by a non-vanishing real number 2π~ ∈ R−{0},
given by i : n 7→ 2π~n. The resulting quotient R/~Z is isomorphic to the circle group SO(2) ' U(1),
exhibited by the short exact exponential sequence

0 // Z �
� 2π~(−) // R

exp(
i
~ (−))

// // U(1) // 0 (1.2)

Hence in the case that we take Γ := Z, then we get locally variational field theories whose action functional
is well defined modulo 2π~. Equivalently the exponentiated action functional is well defined as a function
with values in U(1):

exp( i~S(φ)) ∈ U(1) ' R/~Z .
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The appearance of Planck’s constant ~ here signifies that requiring a locally variational classical field
theory to have a globally well-defined action functional is related to preparing it for quantization. Indeed,
if we consider the above discussion for p = 0, then the above construction reproduces equivalently Kostant-
Souriau’s concept of geometric pre-quantization. Accordingly we may think of the Cech-Deligne cocycle data
({Ui}; {(Lp+1)i}, {(κp)ij}, · · · ) for general p as encoding higher pre-quantum geometry.

Coming back to the formulation of variational calculus in terms of diagrammatics in the sheaf topos
Sh(PDEΣ) as in section 1.1.1.2 above, what we, therefore, are after is a context in which the moduli object
Ωp+1
H of globally defined horizontal (p+1)-forms may be promoted to an object which we are going to denote

Bp+1
H (R/~Z)conn and which modulates horizontal Cech-Deligne cocycles, as above.

Standard facts in homological algebra and sheaf cohomology say that in order to achieve this we are to
pass from the category of sheaves on PDEΣ to the “derived category” over PDEΣ. We may take this to be the
category of chain complexes of sheaves, regarded as a homotopy theory by understanding that a morphism
of sheaves of chain complexes that is locally a quasi-isomorphism counts as a weak equivalence. In fact we
may pass a bit further. Using the Dold-Kan correspondence to identify chain complexes in non-negative
degree with simplicial abelian groups, hence with group objects in Kan complexes, we think of sheaves of
chain complexes as special cases of sheaves of Kan complexes [Br73]:

Sh(PDEΣ,ChainCplx)
Dold−Kan // Sh(PDEΣ,KanCplx) ' Sh∞(PDEΣ) .

In such a homotopy-theoretically enlarged context we find the sheaf of chain complexes that is the (p+ 1)-
truncated de Rham complex with the integers included into the 0-forms:

Bp+1
H (R/~Z)conn := [Z 2π~

↪→ Ω0
H
dH→ Ω1

H
dH→ · · · dH→ Ωp+1

H ] .

This chain complex of sheaves is known as the (horizontal) Deligne complex in degree (p+2). The horizontal
Cech-Deligne cocycles that we saw before are exactly the cocycles in the sheaf hypercohomology with coef-
ficients in the horizontal Deligne complex. Diagrammatically in Sh∞(PDEΣ) these are simply morphisms
L : E → Bp+1(R/~Z) from the field bundle to the Deligne moduli:

{({Ui}, {(Lp+1)i}, {(κp)ij}, · · · )} '
{
E

L−→ Bp+1
H (R/~Z)conn

}
.

This is such that a smooth homotopy between two maps to the Deligne moduli is equivalently a coboundary
of Cech cocycles:

({Ui}, {(Lp+1)i}, {(κp)ij}, · · · )

({Ui},{(ρp)i},{(ρp−1)ij},··· )

��
({Ui}, {(Lp+1)i + dh(ρp)i}, {(κp)ij + dH(ρp−1)ij + (ρp)j − (ρp)i}, · · · )


'


E

L

""

L′

==
Bp+1
H (R/~Z)

��


Evidently, the diagrammatics serves as a considerable compression of data. In the following all diagrams we
displays are filled with homotopies as on the right above, even if we do not always make them notationally
explicit.

There is an evident morphism Ωp+1
H −→ Bp+1

H (R/~Z)conn which includes the globally defined horizontal
forms into the horizontal Cech-Deligne cocycles (regarding them as Cech-Deligne cocycles with all the gluing
data (κ•) vanishing). This morphism turns out to be the analog of a covering map in traditional differential
geometry, it is an atlas of smooth stacks:
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atlas of
a smooth manifold

atlas of
a smooth ∞-groupoid∐

i Ui

����
E

Ωp+1
H

����
Bp+1
H (R/~Z)conn

Via this atlas, the Euler variational differential δV on horizontal forms that we have seen in section 1.1.1.2
extends to horizontal Deligne coefficients to induce a curvature map on these coefficients.

Ω•≤p+1

)) ))

δV // Ωp+1
S,cl

Bp+1
H (R/~Z)conn

curv

55

A prequantization of a source form EL is a lift through this curvature map, hence a horizontal Cech-Deligne
cocycle of locally defined local Lagrangians for EL, equipped with gluing data:

Bp+1
H (R/~Z)conn

curv

��
E

EL
//

L

66

Ωp+1,1
S

.

Hence in conclusion we find that in the ∞-topos Sh∞(PDEΣ) the diagrammatic picture of prequantum
local field theory is this:

prequantum local field theory
Euler−Lagrange

equation

E

ker(EL)

''

∐
i∈I Ui

����

(Li)i∈I

locally defined
local Lagrangians

// Ωp+1
H

����

δV

((
spacetime/

worldvolume Σ

solution

88

φ

field configuration
// E L

Euler−Lagrange
p−gerbe //

EL

33Bp+1
H (R/~Z)conn

curv // Ωp+1,1
S

In summary, comparing this to the diagrammatics for variational and locally variational classical field the-
ory which we discussed in section 1.1.1.2, we have the following three levels of description of local Lagrangian
field theory:
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local Lagrangian field theory
classical pre-quantum

variational locally variational

Ωp+1
H

δV

##
E

L

>>

EL
// Ωp+1,1

S

∐
i∈I Ui

����

(Li)i∈I// Ωp+1
H

δV

##
E

EL
// Ωp+1,1

S

∐
i∈I Ui

����

(Li)i∈I // Ωp+1
H

����

δV

&&
E L //

EL

44Bp+1
H (R/~Z)conn

curv // Ωp+1,1
S

'

w�

L: Lagrangian horizontal form (integrand in locally defined action functional)
L: Euler-Lagrange horizontal p-gerbe connection (integrand in globally defined action functional)
δV : Euler variational differential
EL: Euler-Lagrange differential source form

E := ker(EL): Euler-Lagrange partial differential equations of motion

1.1.1.4 The covariant phase space – transgressively The Euler-Lagrange p-gerbes discussed above
are singled out as being exactly the right coherent refinement of locally defined local Lagrangians that may be
integrated over a (p+1)-dimensional spacetime/worldvolume to produce a function, the action functional. In
a corresponding manner there are further refinements of locally defined Lagrangians by differential cocycles
that are adapted to integration over submanifolds of Σp+1 of positive codimension. In codimesion k these
will yield not functions, but (p− k)-gerbes.

We consider this now for codimension 1 and find the covariant phase space of a locally variational
field theory equipped with its canonical (pre-)symplectic structure and equipped with a Kostant-Souriau
prequantization of that.

First consider the process of transgression in general codimension.
Given a smooth manifold Σ, then the mapping space [Σ,Ωp+2] into the smooth moduli space of (p+ 2)-

forms is the smooth space defined by the property that for any other smooth manifold U , there is a natural
identification {

U −→ [Σ,Ωp+2]
}
' Ωp+2(U × Σ)

of smooth maps into the mapping space with smooth (p+ 2)-forms on the product manifold U × Σ.
Now suppose that Σ = Σd is an oriented closed smooth manifold of dimension d. Then there is the fiber

integration of differential forms on U × Σ over Σ (e.g [BoTo82]), which gives a map∫
(U×Σd)/U

: Ωp+2(U × Σd) −→ Ωp+2−d(U) .

This map is natural in U , meaning that it is compatible with pullback of differential forms along any smooth
function U1 → U2. This property is precisely what is summarized by saying that the fiber integration map
constitutes a morphism in the sheaf topos of the form∫

Σ

: [Σd,Ω
p+2] −→ Ωp+2−d .

This provides an elegant means to speak about transgression. Namely given a differential form α ∈ Ωp+2(X)
(on any smooth space X) modulated by a morphism α : X −→ Ωp+2, then its transgression to the mapping
space [Σ, X] is simply the form in Ωp+2−d([Σ, X]) which is modulated by the composite∫

Σ

[Σ,−] : [Σ, X]
[Σ,α]−→ [Σ,Ωp+2]

∫
Σ−→ Ωp+2−d

of the fiber integration map above with the image of α under the functor [Σ,−] that forms mapping spaces
out of Σ.
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Moreover, this statement has a prequantization [FSS12c, 2.8]: the fiber integration of curvature forms
lifts to a morphism of differential cohomology coefficients∫

Σ

: [Σ,Bp+1(R/~Z)conn] −→ Bp+1−d(R/~Z)conn

and hence the transgression of a p-gerbe∇ : X −→ Bp+1(R/~Z)conn (on any smooth space X) to the mapping
space [Σ, X] is given by the composite

∫
Σ
◦[Σ,−]∫

Σ

[Σ,−] : [Σ, X]
[Σ,∇]−→ [Σ,Bp+1(R/~Z)conn]

∫
Σ−→ Bp+1−d(R/~Z)conn .

All this works verbatim also in the context of PDEs over Σ. For instance if L : E −→ Ωp+1
H is a local

Lagrangian on (the jet bundle of) a field bundle E over Σp+1 as before, then the action functional that it
induces, as in section 1.1.1.3, is the transgression to Σp+1:

S : [Σ, E]Σ
[Σ,L]Σ−→ [Σ,Ωp+1

H ]Σ

∫
Σ−→ Ω0 .

But now the point is that we have the analogous construction in higher codimension k, where the Lagrangian
does not integrate to a function (a differential 0-form) but to a differential k-form.

And all this goes along with passing from globally defined differential forms to Cech-Deligne cocycles.

To apply this for codimension k = 1, consider now p-dimensional submanifolds Σp ↪→ Σ of space-
time/worldvolume. We write N∞Σ Σp for the infinitesimal normal neighbourhood of Σp in Σ. In practice
one is often, but not necessarily, interested in Σp being a Cauchy surface, which means that the induced
restriction map

[Σp+1, E ] −→ [N∞Σ Σp, E ]

(from field configurations solving the equations of motion on all of Σ to normal jets of solutions on Σp) is
an equivalence. An element in the solution space [Σp+1, E ] is a classical state of the physical system that is
being described, a classical trajectory of a field configuration over all of spacetime. Its image in [Σp+1, E ] is
the restriction of that field configuration and of all its derivatives to Σp.

In many – but not in all – examples of interest, classical trajectories are fixed once their first order
derivatives over a Cauchy surface is known. In these cases the phase space may be identified with the
cotangent bundle of the space of field configurations on the Cauchy surface

[N∞Σ Σp, E ] ' T ∗[Σp, E] .

The expression on the right is often taken as the definition of phase spaces. But since the equivalence with
the left hand side does not hold generally, we will not restrict attention to this simplified case and instead
consider the solution space [Σ, E ]Σ as the phase space. To emphasize this more general point of view, one
sometimes speaks of the covariant phase space. Here “covariance” refers to invariance under the action of
the diffeomorphism group of Σ, meaning here that no space/time split in the form of a choice of Cauchy
surface is made (or necessary) to define the phase space, even if a choice of Cauchy surface is possible and
potentially useful for parameterizing phase space in terms of initial value data.

Now it is crucial that the covariant phase space [Σ, E ]Σ comes equipped with further geometric structure
which remembers that this is not just any old space, but the space of solutions of a locally variational
differential equation.

To see how this comes about, let us write (Ωp+1
cl )Σ for the moduli space of all closed p+1-forms on PDEs.

This is to mean that if E is a bundle over Σ, and regarded as representing the space of solutions of the trivial
PDE on sections of E, then morphisms E −→ (Ωp+1)Σ are equivalent to closed differential (p+ 2)-forms on
the jet bundle of E. {

E −→ (Ωp+1)Σ

}
' Ωp+1

cl (J∞Σ E) .
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The key now is that there is a natural filtration on these differential forms adapted to spacetime codimension.
This is part of a bigrading structure on differential forms on jet bundles known as the variational bicomplex
[And89]. In its low stages it looks as follows [FRS13a]:

(Ωp+1)Σ

��
...

��
Ωp+1,1
S ⊕Ωp,2

��
Ωp+1,1
S

The lowest item here is what had concerned us in section 1.1.1.2 and 1.1.1.3, it is the moduli of p+ 2-forms
which have p + 1 of their legs along spacetime/worldvolume Σ and whose remaining vertical leg along the
space of local field configurations depends only on the field value itself, not on any of its derivatives. This
was precisely the correct recipient of the variational curvature, hence the variational differential of horizontal
(p+ 1)-forms representing local Lagrangians.

But now that we are moving up in codimension, this coefficient will disappear, as these forms do not
contribute when integrating just over p-dimensional hypersurfaces. The correct coefficient for that case is
instead clearly Ωp,2, the moduli space of those (p+ 2)-forms on jet bundles which have p of their legs along
spacetime/worldvolume, and the remaining two along the space of local field configurations. (There is a
more abstract way to derive this filtration from first principles, and which explains why we have restriction
to “source forms” (not differentially depending on the jets), indicated by the subscript, only in the bottom
row. But for the moment we just take that little subtlety for granted.)

So Ωp,2 is precisely the space of those (p + 2)-forms on the jet bundle that become (pre-)symplectic
2-forms on the space of field configurations once evaluated on a p-dimensional spatial slice Σp of spacetime
Σp+1. We may think of this as a current on spacetime with values in 2-forms on fields.

Indeed, there is a canonical such presymplectic current for every locally variational field theory [Zu87][Kh14].
To see this, we ask for a lift of the purely horizontal locally defined Lagrangian Li through the variational
bicomplex to a (p+ 1)-form on the jet bundle whose curvature d(Li + Θi) coincides with the Euler-Lagrange
form EL = δV Li in vertical degree 1. Such a lift Li + Θi is known as a Lepage form for Li (e.g. [?, 2.1.2]).

Notice that it is precisely the restriction to the shell E that makes the Euler-Lagrange form ELi disappear,
by construction, so that only the new curvature component Ωi remains as the curvature of the Lepage form
on shell:

E|Ui

��

Ωi=dV Θi ,,
Ωp+1,1
S ⊕Ωp,2

��
E|Ui

d(Li+Θi)
66

ELi=δV Li

// Ωp+1,1
S

The condition means that the horizontal differential of Θi has to cancel against the horizontally exact part
that appears when decomposing the differential of Li as in equation 1.1. Hence, up to horizontal derivatives,
this Θi is in fact uniquely fixed by Li:

d(Li + Θi) = (ELi − dH(Θi + dH(· · · ))) + (dHΘi + dV Θi)

= ELi + dV Θi

=: ELi + Ωi

.
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The new curvature component
Ω ∈ Ωp,2(J∞Σ E)

whose restriction to patches is given this way

Ω|Ui := dV Θi

is known as the presymplectic current [Zu87], [Kh14]. Because, by the way we found its existence, this is such
that its transgression over a codimension-1 submanifold Σp ↪→ Σ yields a closed 2-form (a “presymplectic
2-form”) on the covariant phase space:

ω :=

∫
Σp

[Σp,Ω] ∈ Ω2([N∞Σ Σp, E ]) .

Since Ω is uniquely specified by the local Lagrangians Li, this gives the covariant phase space canonically
the structure of a presymplectic space ([Σ, E ], ω). This is the reason why phase spaces in classical mechanics
are given by (pre-)symplectic geometry as in [Ar89]. 3.

Since Ω is a conserved current, the canonical presymplectic form ω is indeed canonical, it does not
depend on the choice of (Cauchy-)surface: if ∂inΣ and ∂outΣ are the incoming and outgoing Cauchy surfaces,
respectively, in a piece of spacetime Σ, then the corresponding presymplectic forms agree4

ωout − ωin = 0 .

But by the discussion in 1.1.1.3, we do not just consider a locally variational field classical field theory
to start with, but a prequantum field theory. Hence in fact there is more data before transgression than just
the new curvature components dV Θi, there is also Cech cocycle coherence data that glues the locally defined
Θi to a globally consistent differential cocycle.

We write Bp+1
L (R/~Z) for the moduli space for such coefficients (with the subscript for “Lepage”), so

that morphisms E −→ Bp+1
L (R/~Z) are equivalent to properly prequantized globally defined Lepage lifts of

Euler-Lagrange p-gerbes.
In summary then, the refinement of an Euler-Lagrange p-gerbe L to a Lepage-p-gerbe Θ is given by the

following diagram

prequantum field theory
in codimension 1

Ωp,2

��
Cauchy
surface Σp

classical state //� q

##

E

ker(EL)

��

presymplectic
current

Ω ..

Bp+1
L (R/~Z)conn

��

curv // Ωp+1,1
S ⊕Ωp,2

��

Lepage

p-gerbe

spacetime/
worldvolume Σp+1

φsol

??

// E

Θ

66

L //

EL
Euler-Lagrange form

33Bp+1
H (R/~Z)conn

curv // Ωp+1,1
S

Euler-Lagrange

p-gerbe

And now higher prequantum geometry bears fruit: since transgression is a natural operation, and since
the differential coefficients Bp+1

H (R/~Z)conn and Bp+1
L (R/~Z) precisely yield the coherence data to make the

4If the shell E is taken to be resolved by a derived manifold/BV-complex as in footnote 3, then any on-shell vanishing condition
becomes vanishing up to a dBV-exact term, hence then there is a 2-form ωBV of BV-degreee -1 such that ωout−ωin = dBVωBV.
(In [CMR12] this appears as BV-BFV axiom (9).) The Poisson bracket induced from this “shifted symplectic form” ωBV is
known as the “BV-antibracket” (e.g. [HeTe92]).
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local integrals over the locally defined differential forms Li and Θi be globally well defined, we may now hit
this entire diagram with the transgression functor

∫
Σp

[N∞Σ Σp,−] to obtain this diagram:

transgression of Lepage p-gerbe on the shell
to Kostant-Souriau prequantum bundle

on the covariant phase space

[N∞Σ Σp,B
p+1
H (R/~Z)conn]

��

∫
Σp // B(R/~Z)conn

curv

��
covariant

phase-space
[N∞Σ Σp, E ]

Kostant-Souriau
prequantum bundle

θ

))

ω
canonical

presymplectic form

44
[Σp,dV Θ]

//

[Σp,Θ]
44

[N∞Σ Σp,Ω
p+1,1 ⊕Ωp,2

cl ]

∫
Σp // Ω2

cl

This exhibits the transgression

θ :=

∫
Σp

[N∞Σ Σp,Θ]

of the Lepage p-gerbe Θ as a (R/~Z)-connection whose curvature is the canonical presymplectic form.
But this ([Σ, E ]Σ, θ) is just the structure that Souriau originally called and demanded as a prequan-

tization of the (pre-)symplectic phase space ([Σ, E ]Σ, ω) [So70, So74, Ko75]. Conversely, we see that the
Lepage p-gerbe Θ is a “de-transgression” of the Kostant-Souriau prequantization of covariant phase space
in codimension-1 to a higher prequantization in full codimension. In particular, the higher prequantization
constituted by the Lepage p-gerbe constitutes a compatible choice of Kostant-Souriau prequantizations of
covariant phase space for all choices of codimension-1 hypersurfaces at once. This is a genuine reflection
of the fundamental locality of the field theory, even if we look at field configurations globally over all of a
(spatial) hypersurface Σp.

1.1.1.5 The local observables – Lie theoretically We discuss now how from the previous consid-
erations naturally follow the concepts of local observables of field theories and of the Poisson bracket on
them, as well as the concept of conserved currents and the variational Noether theorem relating them to
symmetries. At the same time all these concepts are promoted to prequantum local field theory.

In section 1.1.1.4 we have arrived at a perspective of prequantum local field theory where the input datum
is a partial differential equation of motion E on sections of a bundle E over spacetime/worldvolume Σ and

equipped with a prequantization exhibited by a factorization of the Euler-Lagrange form E
EL−→ Ωp+1,1

S and

of the presymplectic current form E Ω−→ Ωp,2 through higher Cech-Deligne cocycles for an Euler-Lagrange
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p-gerbe L and for a Lepage p-gerbe Θ:

shell
field

bundle

E
higher

prequantization

//

presymplectic
current

Ω

&&

Θ

��

E

EL Euler-Lagrange
form

xx

L

��
Bp+1
L (R/~Z)conn

curv

��

// Bp+1
H (R/~Z)conn

curv

��
Ωp,2

cl Ωp+1,1
S,cl

This local data then transgresses to spaces of field configurations over codimension-k submanifolds of Σ.
Transgressing to codimension-0 yields the globally defined exponentiated action functional

[Σ, E]Σ

exp(
i
~S) action functional

��

space of
field configurations

U(1)

and transgressing to a codimension-1 (Cauchy-)surface Σp ↪→ Σ yields the covariant phase space as a pre-
quantized pre-symplectic manifold

covariant
phase space

[N∞Σ Σp, E ]Σ

presymplectic
form

ω

''

θ prequantum
bundle

��
B(R/~Z)conn

curv

��
Ω2

cl

.

Given any space equipped with a map into some moduli space like this, an automorphism of this structure is
a diffeomorphism of the space together with a homotopy which which exhibits the preservation of the given
map into the moduli space.

We consider now the automorphisms of the prequantized covariant phase space and of the Euler-Lagrange
p-gerbe that it arises from via transgression, and find that these recover and make globally well-defined
the traditional concepts of symmetries and conserved currents, related by the Noether theorem, and of
observables equipped with their canonical Poisson bracket.

The correct automorphisms of presymplectic smooth spaces ([Σp, E ]Σ, ω) −→ ([Σp, E ]Σ, ω) are of course
diffeomorphisms φ : [Σp, E ]Σ −→ [Σp, E ]Σ such that the presymplectic form is preserved, φ∗ω = ω. In the
diagrammatics this means that φ fits into a triangle of this form:

[N∞Σ Σp, E ]Σ

ω
%%

φ
' // [N∞Σ Σp, E ]Σ

ω
yy

Ω2
cl

17



Viewed this way, there is an evident definition of an automorphism of a prequantization ([N∞Σ Σp, E ]Σ, θ)
of ([N∞Σ Σp, E ]Σ, ω). This must be a diagram of the following form

[N∞Σ Σp, E ]Σ
φ
' //

θ ''

[N∞Σ Σp, E ]Σ

θww
B(R/~Z)conn

ηqy

hence a diffeomorphism φ together with a homotopy η that relates the modulating morphism of the trans-
lated prequantum bundle back to the original prequantum bundle. By the discussion in section 1.1.1.3
such homotopies are equivalently coboundaries between the Cech-Deligne cocycles that correspond to the
maps that the homotopy goes between. Here this means that the homotopy in the above diagram is an

isomorphism η : φ∗θ
'−→ θ of circle bundles with connection. These pairs (φ, η) are what Souriau called

the quantomorphisms. Via their canonical action on the space of section of the prequantum bundle, these
become the quantum operators.

To see what this is in local data, consider the special case that θ is a globally defined 1-form and suppose
that φ = exp(tv) is the flow of a vector field v .

[N∞Σ Σp, E ]Σ

θ ''

exp(tv)
' // [N∞Σ Σp, E ]Σ

θww
B(R/~Z)conn

exp(
i
~ tα)

qy ,

Then the homotopy filling the previous diagram is given by a smooth function exp(itα) such that

exp(tv)∗θ − θ = tdα .

Infinitesimally, for t→ 0, this becomes
Lvθ = dα .

Using Cartan’s formula for the Lie derivative on the left, and the fact that dθ = ω, by prequantization, this
is equivalent to

d(α− ιvθ)︸ ︷︷ ︸
H

= ιvω . (1.3)

This is the classical formula [Ar89] which says that

H := α− ιvθ

is a Hamiltonian for the vector field v.
There is an evident smooth group structure on the homotopies as above, and one checks that the induced

Lie bracket on Hamiltonians H with Hamiltonian vector fields v is the following

[(v1, H1), (v2, H2)] = ([v1, v2], ιv2
ιv1
ω) .

Traditionally this is considered only in the special case that ω is symplectic, hence equivalently, in the case
that equation (1.3) uniquely associates a Hamiltonian vector field v with any Hamiltonian H. In that case
we may identify a pair (v,H) with just H and then the above Lie bracket becomes the Poisson bracket
on smooth functions induced by ω. Hence the Poisson bracket Lie algebra is secretly the infinitesimal
symmetries of the prequantum line bundle θ. This is noteworthy. For instance in the example of the phase
space (T ∗R = R2, ω = dp ∧ dq) and writing q, p : R2 → R for the two canonical coordinates (p being called
the “canonical momentum”), then the Poisson bracket, as above, between these two is
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[q, p] = i~ ∈ i~R ↪→ Pois(R2, dp ∧ dq)

This equation is often regarded as the hallmark of quantum theory. In fact it is a prequantum phenomenon.
Notice how the identification of the central term with i~ follows here from the first prequantization step back
around equation (1.2).
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From equation (1.3) it is clear that the Poisson bracket is a Lie extension of the Lie algebra of (Hamil-
tonian) vector fields by the locally constant Hamiltonians, hence by constant functions in the case that X
is connected. The non-trivial Lie integration of this statement is the Kostant-Souriau extension, which says
that the quantomorphism group of a connected phase space is a U(1)-extension of the diffeological group of
Hamiltonian symplectomorphisms.

Hence in summary the situation for observables on the covariant phase space in codimension 1 is as
follows:

Kostant-Souriau
extension

(connected phase space)

observables flows

in
fi
n
it

es
im

a
ll
y

i~R −→ Pois([N∞Σ Σp, E ]Σ, ω)

Poisson bracket

−→ Vect(X)

fi
n
it

el
y

U(1) −→ QuantMorph([N∞Σ Σp, E ]Σ, θ)

quantomorphism group

−→ Diff(X)

ab
st

ra
ct

ly



[N∞Σ Σp, E ]Σ

θ

||

θ

""
B(R/~Z)conn

locally
constant

Hamiltonian
y�


−→



[N∞Σ Σp, E ]Σ

ω

##

θ

$$

'flow // [N∞Σ Σp, E ]Σ

θ

zz

ω

{{

B(R/~Z)conn

curv

��
Ω2

cl

Hamiltonian

qy



−→
{

[N∞Σ Σp, E ] ' // [N∞Σ Σp, E ]Σ

}
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Generally the symmetries of a p-gerbe connection ∇ : X → Bp+1(R/~Z)conn form an extension of the
symmetry group of the underlying space by the higher group of flat (p− 1)-gerbe connections [FRS13a]:

higher
extension

symmetry of
p-gerbe

(p+ 1)-connection

automorphisms
of base space

in
fi

n
it

es
im

a
ll

y

Ch•≤pdR,cl(X) −→
symX(F )

stablizer L∞-algebra
−→ Vect(X)

fi
n

it
el

y

Ch•≤pcl (X,U(1)) −→ StabAut(X)(∇)

stabilizer ∞-group

−→ Aut(X)

ab
st

ra
ct

ly



X

∇

~~

∇

  
Bp+1(R/~Z)conn

'}�


−→



X

F

!!

∇
##

'
automorphism // X

∇
{{

F

}}

Bp+1(R/~Z)conn

curv

��
Ωp+2

cl

homotopy
stabilization

{�



−→
{
V ' // V

}
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Specifying this general phenomenon to the Lepage p-gerbes, it gives a Poisson bracket L∞-algebra on
higher currents (local observables) [FRS13b] and its higher Lie integration to a higher quantomorphism group
constituting a higher Kostant-Souriau extension of the differential automorphisms of the field bundle. This
is determined by the (pre-)symplectic current p+ 2-form Ω in analogy to how the ordinary Poisson bracket
is determined by the (pre-)symplectic 2-form ω, hence this is a Poisson L∞-bracket for what has been called
“multisymplectic geometry” (see [Rog10]):

higher
Kostant-Souriau

extension

symmetry of
Lepage p-gerbe

differential
automorphisms

of dynamical shell

in
fi

n
it

es
im

al
ly

Ch•≤pdR,cl(E) −→
Pois(E , Ω)

Poisson bracket L∞-algebra
−→ Vect(E)

fi
n

it
el

y

Ch•≤pcl (E , U(1)) −→ StabAut(E)(Θ)

quantomorphism ∞-group

−→ Aut(E)

ab
st

ra
ct

ly



E

Θ

~~

Θ

  
Bp+1
L (R/~Z)conn

topological
Hamiltonian

{�


−→



E

Ω

  

Θ

""

'
on-shell symmetry // E

Θ

||

Ω

~~

Bp+1
L (R/~Z)conn

curv

��
Ωp,2

cl

Hamiltonian
current

z�



−→
{
E '

on-shell symmetry// E
}
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So far this concerned the covariant phase space with its prequantization via the Lepage p-gerbe. In the
same way there are the higher symmetries of the field space with its prequantization via the Euler-Lagrange
p-gerbes L

E

L &&

φ
' // E

Lxx
Bp+1(R/~Z)conn

'rz .

To see what these are in components, consider again the special case that L is given by a globally defined
horizontal form, and consider a one-parameter flow of such symmetries

E

L &&

exp(tv)
' // E

Lxx
Bp+1
H (R/~Z)conn

exp(
i
~ t∆)

rz
.

In Cech-Deligne cochain components this diagram equivalently exhibits the equation

exp(tv)∗L− L = t dH∆

on differential forms on the jet bundle of E, where v is a vertical vector field. Infinitesimally for t→ 0 this
becomes

LvL = dH∆ .

Since L is horizontal while v is vertical, the left hand reduces, by equation 1.1, to

ιvdL = ιv(EL− dHΘ) ,

Therefore the infinitesimal symmetry of L is equivalent to

dH (∆− ιvΘ)︸ ︷︷ ︸
J

= ιvEL .

This says that associated to the symmetry v is a current

J := ∆− ιvΘ

which is conserved (horizontally closed) on shell (on the vanishing locus E of the Euler-Lagrange form EL).
This is precisely the statement of Noether’s theorem (the first variational theorem of Noether, to be precise).
Indeed, in its modern incarnation [?, Kh16], Noether’s theorem is understood as stating a Lie algebra
extension of the Lie algebra of symmetries by topological currents to the Lie-Dickey bracket on equivalence
classes of conserved currents (see [?, section 3]).

23



Hence the ∞-group extension of symmetries of the Euler-Lagrange p-gerbe promotes Noether’s theorem
to the statement that higher Noether currents form an L∞-algebra extension of the infinitesimal symmetries
by topological currents: 5

higher
topological charge

extension

symmetry of
Euler-Lagrange p-gerbe

differential
automorphisms
of field bundle

in
fi

n
it

es
im

a
ll

y

Ch•≤pdR,cl(E) −→
curr(E, EL)

Dickey bracket current L∞-algebra
−→ Vect(E)

fi
n

it
el

y

Ch•≤pcl (E,U(1)) −→ StabAut(E(L)

de-transgressed Kac-Moody ∞-group

−→ Aut(E)

ab
st

ra
ct

ly



E

L

~~

L

  
Bp+1
H (R/~Z)conn

topological
current

{�


−→



E

EL

  

L

""

'
variational symmetry // E

L

||

EL

~~

Bp+1
H (R/~Z)conn

curv

��
Ωp+1,1
S,cl

Noether
current

z�



−→
{
E '

symmetry // E

}

5That the currents above are indeed conserved follows purely abstractly as follows.
Let Σ have a boundary ∂Σ ↪→ Σ. Transgression with boundary works as follows: in the bulk one obtains a section of the

pullback of the boundary transgression. This is exibited by a diagram of the form

[Σ, E]Σ //

��

Ω1

��
[∂Σ, E]Σ // B(R/~Z)conn

w�

which is natural in E. Using this naturality, every symmetry of L given by a triangular diagram as above yields a prism diagram
when hit with the transgression operation. Cutting that prism open it is an equivalence of the following form:

[Σ, E]Σ

|| ��

' // [Σ, E]

""��
Ω1

--

[∂Σ, E]

θ &&

' // [∂Σ, E]

θxx

Ω1

qqB(R/~Z)conn

'rz

'

[Σ, E]

&&

' // [Σ, E]

xx
Ω1

��
B(R/~Z)conn

This says that if Σ = Σp × [0, 1], then the difference between the two incarnations of the conserved observable on the two
bounding surfaces, as measured via the identification of the underlying bundles canonically given by transgression, vanishes.
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In summary, physical local observables arise from symmetries of higher prequantum geometry as follows.

prequantum
geometry

automorphism
up to

homotopy

Lie derivative
up to

differential
equivalently physical quantity

prequantum
shell

E

Ω

$$

exp(tv) //

Θ $$

E

Ω

zz

Θzz
Bp+1
L (R/~Z)

curv

��
Ωp,2

cl

exp(
i
~ tα)

s{

LvΘ = dα d(α− ιvΘ)︸ ︷︷ ︸
H

= ιvΩ Hamiltonian

prequantum
field bundle

E

EL

##

exp(tv) //

L %%

E

EL

{{

Lyy
Bp+1
H (R/~Z)

curv

��
Ωp+1,1
S,cl

exp(
i
~ t∆)

s{

LvL = dH∆ dH(∆− ιvΘ)︸ ︷︷ ︸
J

= ιvEL conserved current

1.1.1.6 The evolution – correspondingly The transgression formula discussed in section 1.1.1.4 gen-
eralizes to compact oriented d-manifolds Σ, possibly with boundary ∂Σ ↪→ Σ. Here it becomes transgression
relative to the boundary transgression.

For curvature forms this is again classical: For ω ∈ Ωp+2(Σ× U) a closed differential form, then
∫

Σ
ω ∈

Ωp+2−d(U) is not in general a closed differential form anymore, but by Stokes’ theorem its differential equals
the boundary transgression:

dU

∫
Σ

ω =

∫
Σ

dUω

= −
∫

Σ

dΣω

= −
∫
∂Σ

ω .

This computation also shows that a sufficient condition for the bulk transgression of ω to be closed and for
the boundary transgression to vanish is that ω be also horizontally closed, i.e. closed with respect to dΣ.

Applied to the construction of the canonical presymplectic structure on phase spaces in 1.1.1.4 this has
the important implication that the canonical presymplectic form on phase space is indeed canonical.

Namely, by equation (1.1), the presymplectic current Ω ∈ Ωp,2(E) is horizontally closed on shell, hence
is indeed a conserved current:

dHΩ = dHdV Θ

= −dV dHΘ

= −dV (−dV L+ EL)

= −dV EL .

It follows that if Σ is a spacetime/worldcolume with, say, two boundary components ∂Σ = ∂inΣ t ∂outΣ,
then the presymplectic structures ωin :=

∫
∂inΣ

[∂inΣ, ω] and ωout :=
∫
∂outΣΣ

[∂outΣ, ω] agree on the covariant
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phase space:6

[Σ, E ]Σ
(−)|∂inΣ

xx

(−)|∂outΣ

''
[N∞Σ ∂inΣ, E ]Σ

ωin

&&

[N∞Σ ∂outΣ, E ]Σ

ωout

ww
Ω2

cl

.

This diagram may be thought of as expressing an isotropic correspondence between the two phase spaces,
where [Σ, E ]Σ is isotropic in the product of the two boundary phase spaces, regarded as equipped with the
presymplectic form ωout − ωin. In particular, when both ∂inΣ and ∂outΣ are Cauchy surfaces in Σ, so that
the two boundary restriction maps in the above diagram are in fact equivalences, then this is a Lagrangian
correspondence in the sense of [We71][We83].

All this needs to have and does have prequantization: The transgression of a p-gerbe ∇ : X →
Bp+1(R/~Z)conn to the bulk of a d-dimensional Σ is no longer quite a p − d-gerbe itself, but is a section
of the pullback of the p− d+ 1-gerbe that is the transgression to the boundary ∂Σ. Diagrammatically this
means that transgression to maps out of Σ is a homotopy filling a diagram of the following form

[Σ, X]
[Σ,∇] //

(−)|∂Σ

��

[Σ,Bp+1(R/~Z)conn]

∫
Σ

curv
//

(−)|∂Σ

��

Ωp+2−d

��
[∂Σ, X]

[∂Σ,∇]
// [∂Σ,Bp+1(R/~Z)conn] ∫

∂Σ

// Bp+2−d(R/~Z)conn

∫
Σ

s{

.

Here the appearance of the differential forms coefficients Ωp+2−d in the top right corner witnesses the fact
that the bulk term

∫
Σ

[Σ,∇] is a trivialization of the pullback of the boundary gerbe
∫
∂Σ

[∂Σ,∇] only as a
plain gerbe, not necessarily as a gerbe with connection: in general the curvature of the pullback of

∫
∂Σ

[∂Σ,∇]
will not vanish, but only be exact, as in the above discussion, and the form that it is the de Rham differential
of is expressed by the top horizontal morphism in the above diagram.

Hence in the particular case of the transgression of a Lepage p-gerbe to covariant phase space, this
formula yields a prequantization of the above Lagrangian correspondence, where now the globally defined
action functional

exp( i~S) =

∫
Σ

[Σ,Θ] =

∫
Σ

[Σ,L]

exhibits the the equivalence between the incoming and outgoing prequantum bundles

θin/out =

∫
∂in/outΣ

[∂in/outΣ, θ]

6If one uses a BV-resolution of the covariant phase space, then they agree up to the BVV-differential of a BV (-1)-shifted
2-form, we come back to this in section 1.1.2.2.
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on covariant phase space:

[Σ, E ]Σ

(−)|∂inΣ

zz

(−)|∂outΣ

$$

field
trajectoriesinitial

values

yy

Hamiltonian
evolution

%%

[N∞Σ ∂inΣ, E ]Σ

θin

$$

ωin

$$

[N∞Σ ∂outΣ, E ]Σ

θout

zz

ωout

zz

incoming
field

configurations

prequantum
bundle

%%

outgoing
field

configirations

prequantum
bundle

yy

B(R/~Z)conn

curv

��

2-group
of phases

Ω2
cl

action
functional

u}
exp(

i
~S)

u}

.

This prequantized Lagrangian correspondence hence reflects the prequantum evolution from fields on the
incoming piece ∂inΣ of spacetime/worldvolume to the outgoing piece ∂outΣ via trajectories of field configu-
rations along Σ.
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1.1.2 Examples of prequantum field theory

We survey classes of examples of prequantum field theory in the sense of section 1.1.1.

• 1.1.2.1 – Gauge fields;

• 1.1.2.3 – Sigma-model field theories;

• 1.1.2.4 – Chern-Simons-type field theory;

• 1.1.2.5 – Wess-Zumino-Witten-type field theory.

1.1.2.1 Gauge fields Modern physics rests on two fundamental principles. One is the locality principle;
its mathematical incarnation in terms of differential cocycles on PDEs was the content of section 1.1.1. The
other is the gauge principle.

In generality, the gauge principle says that given any two field configurations φ1 and φ2 – and everything
in nature is some field cofiguration – then it is physically meaningless to ask whether they are equal, instead
one has to ask whether they are equivalent via a gauge transformation

φ1

'
gauge

equivalence
''
φ2 .

There may be more than one gauge transformation between two field configurations, and hence there may
be auto-gauge equivalences that non-trivially re-identify a field configuration with itself. Hence a space of
physical field configurations does not really look like a set of points, it looks more like this cartoon:

φ1

' ,,

'

��

φ3

'

  

'

��

φ2 φ4

· · ·


.

Moreover, if there are two gauge transformations, it is again physically meaningless to ask whether they are
equal, instead one has to ask whether they are equivalent via a gauge-of-gauge transformation.

φ1

'

��

'

AAφ2'

��

And so on.

φ1

'

��

'

AAφ2
'⇐

�& x�

In this generality, the gauge principle of physics is the mathematical principle of homotopy theory : in
general it is meaningless to say that some objects form a set whose elements are either equal or not, instead
one has to consider the groupoid which they form, whose morphisms are the equivalences between these
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objects. Moreover, in general it is meaningless to assume that any two such morphisms are equal or not,
rather one has to consider the groupoid which these form, which then in total makes a 2-groupoid. But
in general it is also meaningless to ask whether two equivalences of two equivalences are equal or not, and
continuing this way one finds that objects in general form an ∞-groupoid, also called a homotopy type.

Of particular interest in physics are smooth gauge transformations that arise by integration of infinitesimal
gauge transformations. An infinitesimal smooth groupoid is a Lie algebroid and an infinitesimal smooth ∞-
groupoid is an L∞-algebroid. The importance of infinitesimal symmetry transformations in physics, together
with the simple fact that they are easier to handle than finite transformations, makes them appear more
prominently in the physics literature. In particular, the physics literature is secretly well familiar with smooth
∞-groupoids in their infinitesimal incarnation as L∞-algebroids: these are equivalently what in physics are
called BRST complexes. What are called ghosts in the BRST complex are the cotangents to the space of
equivalences between objects, and what are called higher order ghosts-of-ghosts are cotangents to spaces of
higher order equivalences-of-equivalences. We indicate in a moment how to see this.

While every species of fields in physics is subject to the gauge principle, one speaks specifically of gauge
fields for those fields which are locally given by differential forms A with values in a Lie algebra (for ordinary
gauge fields) or more generally with values in an L∞-algebroid (for higher gauge fields).

infinitesimal finite
by itself acting on fields by itself acting on fields

symmetry Lie algebra Lie algebroid Lie group Lie groupoid
symmetries

of
symmetries

Lie 2-algebra Lie 2-algebroid smooth 2-group smooth 2-groupoid

higher
order

symmetries
L∞-algebra L∞-algebroid smooth ∞-group smooth ∞-groupoid

physics
terminology FDA

(e.g. [CaDAFr91])
BRST complex
(e.g. [HeTe92])

gauge group —

We now indicate how such gauge fields and higher gauge fields come about.

• 1.1.2.1.1 – Ordinary gauge fields;

• 1.1.2.1.2 – Higher gauge fields.

1.1.2.1.1 Ordinary gauge fields. To start with, consider a plain group G. For the standard appli-
cations mentioned in section 1.1.1.1 we would take G = U(1) or G = SU(n) or products of these, and then
the gauge fields we are about to find would be those of electromagnetism and of the nuclear forces, as they
appear in the standard model of particle physics.

In order to highlight that we think of G as a group of symmetries acting on some (presently unspecified
object) ∗, we write

G =

 ∗
g

%% ∗

 .

In this vein, the product operation (−) · (−) : G × G → G in the group reflects the result of applying two
symmetry operations

G×G '


∗

g2

��
∗

g1

??

g1·g2

// ∗

 .
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Similarly, the associativity of the group product operation reflects the result of applying three symmetry
operations:

G×G×G '



∗
g2 // ∗

g3

��
∗

g1

OO

g1·g2

??

(g1·g2)·g3

// ∗

=

∗
g2 //

g2·g3

��

∗

g3

��
∗

g1

OO

g1·(g2·g3)
// ∗


Here the reader should think of the diagram on the right as a tetrahedron, hence a 3-simplex, that has been
cut open only for notational purposes.

Continuing in this way, k-tuples of symmetry transformations serve to label k-simplices whose edges and
faces reflect all the possible ways of consecutively applying the corresonding symmetry operations. This
forms a simplicial set, called the simplicial nerve of G, hence a system

BG : k 7→ G×k

of sets of k-simplices for all k, together with compatible maps between these that restrict k + 1-simplices to
their k-faces (the face maps) and those that regard k-simplices as degenerate k+1-simplices (the degeneracy
maps). From the above picture, the face maps of BG in low degree look as follows (where pi denotes
projection onto the ith factor in a Cartesian product):

BG :=

 G×G×G

(p1,p2) //
(id,(−)·(−)) //

((−)·(−),id) //

(p2,p3)
//
G×G

p1 //
(−)·(−) //

p2

//
G

//
// ∗


It is useful to remember the smooth structure on these spaces of k-fold symmetry operation by remem-

bering all possible ways of forming smoothly U -parameterized collections of k-fold symmetry operations, for
any abstract coordinate chart U = Rn. Now a smoothly U -parameterized collection of k-fold G-symmetries
is simply a smooth function from U to G×k , hence equivalently is k smooth functions from U to G. Hence
the symmetry group G together with its smooth structure is encoded in the system of assignments

BG : (U, k) 7→ C∞(U,G×k) = C∞(U,G)×k

which is contravariantly functorial in abstract coordinate charts U (with smooth functions between them)
and in abstract k-simplices (with cellular maps between them). This is the incarnation of BG as a smooth
simplicial presheaf.

Another basic example of a smooth simplicial presheaf is the nerve of an open cover. Let Σ be a
smooth manifold and let {Ui ↪→ Σ}i∈I be a cover of Σ by coordinate charts Ui ' Rn. Write Ui0···ik :=
Ui0 ×

X
Ui1 ×

X
· · · ×

X
Uik for the intersection of (k + 1) coordinate charts in X. These arrange into a simplicial

object like so

C({Ui}) =

 ∐
i0,i1,i2

Ui0,i1,i2
//
//
//
∐
i0,i1

Ui0,i1
//
//
∐
i0

Ui0

 .
A map of simplicial objects

C(Ui) −→ BG

is in degree 1 a collection of smooth G-valued functions gij : Uij −→ G and in degree 2 it is the condition
that on Uijk these functions satisfy the cocycle condition gij · gjk = gik. Hence this defines the transition
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functions for a G-principal bundle on Σ. In physics this may be called the instanton sector of a G-gauge
field. A G-gauge field itself is a connection on such a G-principal bundle, we come to this in a moment.

We may also think of the manifold Σ itself as a simplicial object, one that does not actually depend on the

simplicial degree. Then there is a canonical projection map C({Ui})
'−→ Σ. When restricted to arbitrarily

small open neighbourhoods (stalks) of points in Σ, then this projection becomes a weak homotopy equivalence
of simplicial sets. We are to regard smooth simplicial presheaves which are connected by morphisms that
are stalkwise weak homotopy equivalences as equivalent. With this understood, a smooth simplicial presheaf
is also called a higher smooth stack. Hence a G-principal bundle on Σ is equivalently a morphism of higher
smooth stacks of the form

Σ −→ BG .

For analysing smooth symmetries it is useful to focus on infinitesimal symmetries. To that end, consider
the (first order) infinitesimal neighbourhood De(−) of the neutral element in the simplicial nerve. Here
De(−) is the space around the neutral element that is “so small” that for any smooth function on it which
vanishes at e, the square of that function is “so very small” as to actually be equal to zero.

We denote the resulting system of k-fold infinitesimal G-symmetries by Bg:

Bg =

 De(G×G×G)

(p1,p2) //
(id,(−)·(−)) //

((−)·(−),id) //

(p2,p3)
//
De(G×G)

p1 //
(−)·(−) //

p2

//
De(G)

//
// ∗

 .
The alternating sum of pullbacks along the simplicial face maps shown above defines a differential dCE on
the spaces of functions on these infinitesimal neighbourhoods. The corresponding normalized chain complex
is the differential-graded algebra on those functions which vanish when at least one of their arguments is the
neutral element in G. One finds that this is the Chevalley-Eilenberg complex

CE(Bg) = (∧•g∗, dCE = [−,−]∗) ,

which is the Grassmann algebra on the linear dual of the Lie algebra g of G equipped with the differential
whose component ∧1g∗ → ∧2g∗ is given by the linear dual of the Lie bracket [−,−], and which hence extends
to all higher degrees by the graded Leibnitz rule.

For example, when we choose {ta} a linear basis for g, with structure constants of the Lie bracket denoted
[ta, tb] = Ccabtc, then with a dual basis {ta} of g∗ we have that

dCEt
a = 1

2C
a
bc t

b ∧ tc .

Given any structure constants for a skew bracket like this, then the condition (dCE)2 = 0 is equivalent to
the Jacobi identity, hence to the condition that the skew bracket indeed makes a Lie algebra.

Traditionally, the Chevalley-Eilenberg complex is introduced in order to define and to compute Lie algebra
cohomology: a dCE-closed element

µ ∈ ∧p+1g∗ ↪→ CE(Bg)

is equivalently a Lie algebra (p+ 1)-cocycle. This phenomenon will be crucial further below.
Thinking of CE(Bg) as the algebra of functions on the infinitesimal neighbourhood of the neutral element

inside BG makes it plausible that this is an equivalent incarnation of the Lie algebra of G. This is also easily
checked directly: sending finite dimensional Lie algebras to their Chevalley-Eilenberg algebra constitutes a
fully faithful inclusion

CE : LieAlg ↪→ dgcAlgop

of the category of Lie algebras into the opposite of the category of differential graded-commutative algebras.
This perspective turns out to be useful for computations in gauge theory and in higher gauge theory. There-
fore it serves to see how various familiar constructions on Lie algebras look when viewed in terms of their
Chevalley-Eilenberg algebras.
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Most importantly, for Σ a smooth manifold and Ω•(Σ) denoting its de Rham dg-algebra of differential
forms, then flat g-valued 1-forms on Σ are equivalent to dg-algebra homomorphisms like so:

Ω•flat(Σ, g) :=
{
A ∈ Ω1(Σ)⊗ g | FA := ddRA− 1

2 [A ∧A] = 0
}
' { Ω•(Σ)←− CE(Bg) } .

To see this, notice that the underlying homomorphism of graded algebras Ω•(Σ)←− ∧•g∗ is equivalently a
g-valued 1-form, and that the respect for the differential forces it to be flat:

Aa_

ddR

��

oo �
ta_

dCE

��

ddRA
a

1
2C

a
bcA

b ∧Ac oo � 1
2C

a
bct

b ∧ tc

The flat Lie algebra valued forms play a crucial role in recovering a Lie group from its Lie algebra as the
group of finite paths of infinitesimal symmetries. To that end, write ∆1 := [0, 1] for the abstract interval.
Then a g-valued differential form A ∈ Ω1

flat(∆
1, g) is at each point of ∆1 an infinitesimal symmetry, hence

it encodes the finite symmetry transformation that is given by applying the infinitesimal transformation
At at each t ∈ ∆1 and then “integrating these”. This integration is called the parallel transport of A and

is traditionally denoted by the symbols P exp(
∫ 1

0
A) ∈ G. Now of course different paths of infinitesimal

transformations may have the same integrated effect. But precisely if A1 and A2 have the same integrated
effect, then there is a flat g-valued 1-form on the disk which restricts to A1 on the upper semicircle and to
A2 on the lower semicircle.

In particular, the composition of two paths of infinitesimal gauge transformations is in general not equal
to any given such path with the same integrated effect, but there will always be a flat 1-form Â on the
2-simplex ∆2 which interpolates:

infinitesimal
symmetries

integration
finite

symmetries

A2A1

A1,2

Â 7→

∗
P exp(

∫ 1
0
A2)

��
∗

P exp(
∫ 1
0
A1)·P exp(

∫ 1
0
A2)

//

P exp(
∫ 1
0
A1)

??

∗

In order to remember how the group obtained this way is a Lie group, we simply need to remember how
the above composition works in smoothly U -parameterized collections of 1-forms. But a U -parameterized
collection of 1-forms on ∆k is simply a 1-form on U ×∆k which vanishes on vectors tangent to U , hence a
vertical 1-form on U ×∆k, regarded as a simplex bundle over U .

All this is captured by saying that there is a simplicial smooth presheaf exp(g) which assigns to an
abstract coordinate chart U and a simplicial degree k the set of flat vertical g-valued 1-forms on U ×∆k:

exp(g) := (U, k) 7→ Ω•flat
vert

(U ×∆k, g)

=
{

Ω•vert(U ×∆k)←− CE(Bg)
} .

By the above discussion, we do not care which of various possible flat 1-forms Â on 2-simplices are used to
exhibit the composition of finite gauge transformation. The technical term for retaining just the information
that there is any such 1-form on a 2-simplex at all is to form the 2-coskeleton cosk2(exp(g)). And one
finds that this indeed recovers the smooth gauge group G, in that there is a weak equivalence of simplicial
presheaves:

cosk3(exp(g)) ' BG .
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So far this produces the gauge group itself from the infinitesimal symmetries. We now discuss how
similarly its action on gauge fields is obtained. To that end, consider the Weil algebra of g, which is obtained
from the Chevalley-Eilenberg algebra by throwing in another copy of g, shifted up in degree

W (Bg) := (∧•(g∗ ⊕ g∗[1]), dW = dCE + d) ,

where d : ∧1g∗
'→ g∗[1] is the degree shift and we declare dCE and d to anticommute. So if {ta} is the dual

basis of g∗ from before, write {ra} for the same elements thought of in one degree higher as a basis of g∗[1];
then

dW : ta 7→ 1
2C

a
bct

b ∧ tc + ra

dW : ra 7→ Cabct
b ∧ rc

.

A key point of this construction is that dg-algebra homomorphisms out of the Weil algebra into a de Rham
algebra are equivalent to unconstrained g-valued differential forms:

Ω(Σ, g) :=
{
A ∈ Ω1(Σ)⊗ g

}
' { Ω•(Σ)←−W(Bg) } .

This is because now the extra generators ra pick up the failure of the respect for the dCE-differential, that
failure is precisely the curvature FA:

Aa_

ddR

��

oo � ta_

dW

��

ddRA
a

1
2C

a
bcA

b ∧Ac + F aA
oo � 1

2C
a
bct

b ∧ tc + ra

F aA_

ddR

��

oo � ra_

dW

��

ddRF
a
A

CabcA
b ∧ F cA oo

� Cabctb ∧ rc

.

Notice here that once ta 7→ Aa is chosen, then the diagram on the left uniquely specifies that ra 7→ F aA and
then the diagram on the right is already implied: its commutativity is the Bianchi idenity dFA = [A ∧ FA]
that is satisfied by curvature forms.

Traditionally, the Weil algebra is introduced in order to define and compute invariant polynomials on a
Lie algebra. A dW-closed element in the shifted generators

〈−,−, · · · 〉 ∈ ∧kg∗[1] ↪→W(Bg)

is equivalently a invariant polynomial of order k on the Lie algebra g. Therefore write

inv(Bg)

for the graded commutative algebra of invariant polynomials, thought of as a dg-algebra with vanishing
differential.

(For notational convenience we will later often abbreviate CE(g) for CE(Bg), etc. This is unambiguous
as long as no algebroids with nontrivial bases spaces appear.)

There is a canonical projection map from the Weil algebra to the Chevalley-Eilenberg algebra, given
simply by forgetting the shifted generators (ta 7→ ta; ra 7→ 0). And there is the defining inclusion inv(Bg) ↪→
W(Bg).

CE(Bg)

W(Bg)

OO

inv(Bg)

OO
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Cartan had introduced all these dg-algebras as algebraic models of the universal G-principal bundle. We
had seen above that homomorphisms Ω•vert(U ×∆k) ←− CE(Bg) constitute the gauge symmetry group G
as integration of the paths of infinitesimal symmetries. Here the vertical forms on U × ∆k are themselves
part of the sequence of differential forms on the trivial k-simplex bundle over the given coordinate chart U .
Hence consider compatible dg-algebra homomorphisms between these two sequences

Ω•vert(U ×∆k) CE(Bg)
κoo

Ω•(U ×∆k)

OO

W(Bg)

OO

Aoo

Ω•(U)

OO

inv(Bg)

OO

〈FA∧···∧FA〉
oo

We unwind what this means in components: The middle morphism is an unconstrained Lie algebra valued
form A ∈ Ω1(U ×∆k, g), hence is a sum

A = AU +A∆k

of a 1-form AU along U and 1-form A∆k along ∆k. The second summand A∆k is the vertical component of
A. The commutativity of the top square above says that as a vertical differential form, A∆k has to be flat.
By the previous discussion this means that A∆k encodes a k-tuple of G-gauge transformations. Now we will
see how these gauge transformations naturally act on the gauge field AU :

Consider this for the case k = 1, and write t for the canonical coordinate along ∆1 = [0, 1]. Then AU
is a smooth t-parameterized collection of 1-forms, hence of g-gauge fields, on U ; and A∆1 = κ dt for κ a
smooth Lie algebra valued function, called the gauge parameter. Now the equation for the t-component of
the total curvature FA of A says how the gauge parameter together with the mixed curvature component
causes infinitesimal transformations of the gauge field AU as t proceeds:

d

dt
AU = dUκ− [κ,A] + ι∂tFA .

But now the commutativity of the lower square above demands that the curvature forms evaluated in
invariant polynomials have vanishing contraction with ιt. In the case that g = R this means that ι∂tFA = 0,
while for nonabelian g this is still generically the necessary condition. So for vanishing t-component of the
curvature the above equation says that

d

dt
AU = dκ− [κ,A] .

This is the traditional formula for infinitesimal gauge transformations κ acting on a gauge field AU . Inte-

grating this up, κ integrates to a gauge group element g := P exp(
∫ 1

0
κdt) by the previous discussion, and

this equation becomes the formula for finite gauge transformations (where we abbreviate now At := AU (t)):

A1 = g−1A0g + g−1ddRg .

This gives the smooth groupoid BGconn of g-gauge fields with G-gauge transformations between them.

infinitesimal
gauge

transformations
integration

finite
gauge

transformations

A1

κ1,2

A0

κ0,1

κ0,2
A2

Â
7→

A1

P exp(
∫ 1
0
κ1,2dt)

  
A0 g

//

P exp(
∫ 1
0
κ0,1dt)

>>

A2
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Hence BGconn is the smooth groupoid such that for U an abstract coordinate chart, the smoothly U -
parameterized collections of its objects are g-valued differential forms A ∈ Ω(U, g) of, and whose U -
parameterized collections of gauge transformations are G-valued functions g acting by

U

g−1Ag+g−1dg

==

A

!!
BGconng

��
.

This dg-algebraic picture of gauge fields with gauge transformations between them now immediately
generalizes to higher gauge fields with higher gauge transformations between them. Moreover, this picture
allows to produce prequantized higher Chern-Simons-type Lagrangians by Lie integration of transgressive
L∞-cocycles.

1.1.2.1.2 Higher gauge fields. Ordinary gauge fields are characterized by the property that there
are no non-trivial gauge-of-gauge transformations, equivalently that their BRST complexes contain no higher
order ghosts. Mathematically, it is natural to generalize beyond this case to higher gauge fields, which do have
non-trivial higher gauge transformations. The simplest example is a “2-form field” (“B-field”), generalizing
the “vector potential” 1-form A of the electromagnetic field. Where such a 1-form has gauge transformations
given by 0-forms (functions) κ via

A

κ
**

A′ = A+ dκ ,

a 2-form B has gauge transformations given by 1-forms ρ1, which themselves then have gauge-of-gauge-
transformations given by 0-forms ρ0:

B

ρ′1=ρ1+dρ0

CC

ρ1

��
B′ = B + dρ1 = B + dρ′1ρ0

��

, .

Next a “3-form field” (“C-field”) has third order gauge transformations:

C

ρ′2=ρ2+dρ1
=ρ2+dρ′1

CC

ρ2

��
C ′ = C + dρ2 = C + dρ′2

ρ0⇐ ρ1

|�

ρ′1

�"

, .

Similarly “n-form fields” have order-n gauge-of-gauge transformations and hence have order-n ghost-of-ghosts
in their BRST complexes.

Higher gauge fields have not been experimentally observed, to date, as fundamental fields of nature, but
they appear by necessity and ubiquitously in higher dimensional supergravity and in the hypothetical physics
of strings and p-branes. The higher differential geometry which we develop is to a large extent motivated by
making precise and tractable the global structure of higher gauge fields in string and M-theory.

Generally, higher gauge fields are part of mathematical physics just as the Ising model and φ4-theory
are, and as such they do serve to illuminate the structure of experimentally verified physics. For instance
the Einstein equations of motion for ordinary (bosonic) general relativity on 11-dimensional spacetimes are
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equivalent to the full super-torsion constraint in 11-dimensional supergravity with its 3-form higher gauge
field [CaLe94]. (We come to this in section 8.2.1.) From this point of view one may regard the the 3-
form higher gauge field in supergravity, together with the gravitino, as auxiliary fields that serve to present
Einstein’s equations for the graviton in a particularly neat mathematical way.

We now use the above dg-algebraic formulation of ordinary gauge fields above in section 1.1.2.1.1 in order
to give a quick but accurate idea of the mathematical structure of higher gauge fields.

Above we saw that (finite dimensional) Lie algebras are equivalently the formal duals of those differential
graded-commutative algebras whose underlying graded commutative algebra is freely generated from a (finite
dimensional) vector space over the ground field. From this perspective, there are two evident generalizations
to be considered: we may take the underlying vector space to already have contributions in higher degrees
itself, and we may pass from vector spaces, being modules over the ground field R, to (finite rank) projective
modules over an algebra of smooth functions on a smooth manifold.

Hence we say that an L∞-algebroid (of finite type) is a smooth manifold X equipped with a N-graded
vector bundle (degreewise of finite rank), whose smooth sections hence form an N-graded projective C∞(X)-
module a•, and equipped with an R-linear differential dCE on the Grassmann algebra of the C∞(X)-dual a∗

modules
CE(a) :=

(
∧•C∞(X)(a

∗), dCE(a)

)
.

Accordingly, a homomorphism of L∞-algebroids we take to be a dg-algebra homomorphism (over R) of their
CE-algebras going the other way around. Hence the category of L∞-algebroids is the full subcategory of
the opposite of that of differential graded-commutative algebras over R on those whose underlying graded-
commutative algebra is free on graded locally free projective C∞(X)-modules:

L∞Algbd ↪→ dgcAlgop .

We say we have a Lie n-algebroid when a is concentrated in the lowest n-degrees. Here are some important
examples of L∞-algebroids:

When the base space is the point, X = ∗, and a is concentrated in degree 0, then we recover Lie
algebras, as above. Generally, when the base space is the point, then the N-graded module a is just an
N-graded vector space g. We write a = Bg to indicate this, and then g is an L∞-algebra. When in addition
g is concentrated in the lowest n degrees, then these are also called Lie n-algebras. With no constraint on
the grading but assuming that the differential sends single generators always to sums of wedge products of
at most two generators, then we get dg-Lie algebras.

The Weil algebra of a Lie algebra g hence exhibits a Lie 2-algebra. We may think of this as the Lie
2-algebra inn(g) of inner derivations of g. By the above discussion, it is suggestive to write Eg for this Lie
2-algebra, hence

W(Bg) = CE(BEg) .

If g = R[n] is concentrated in degree p on the real line (so that the CE-differential is necessarily trivial),
then we speak of the line Lie (p+ 1)-algebra BpR, which as an L∞-algebroid over the point is to be denoted

BBpR = Bp+1R .

All this goes through verbatim, up to additional signs, with all vector spaces generalized to super-vector
spaces. The Chevalley-Eilenberg algebras of the resulting super L∞-algebras are known in parts of the
supergravity literature as FDAs [dAFr82].

Passing now to L∞-algebroids over non-trivial base spaces, first of all every smooth manifold X may be
regarded as the L∞-algebroid over X, these are the Lie 0-algebroids. We just write a = X when the context
is clear.

For the tangent bundle TX over X then the graded algebra of its dual sections is the wedge product
algebra of differential forms, CE(TX) = Ω•(X) and hence the de Rham differential makes ∧•Γ(T ∗X) into
a dgc-algebra and hence makes TX into a Lie algebroid. This is called the tangent Lie algebroid of X.
We usually write a = TX for the tangent Lie algebroid (trusting that context makes it clear that we do
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not mean the Lie 0-algebroid over the underlying manifold of the tangent bundle itself). In particular this
means that for any other L∞-algebroid a then flat a-valued differential forms on some smooth manifold Σ
are equivalently homomorphisms of L∞-algebroids like so:

Ωflat(Σ, a) = { TΣ −→ a } .

In particular ordinary closed differential forms of degree n are equivalently flat BnR-valued differential forms:

Ωncl(Σ) ' { TΣ −→ BnR } .

More generally, for a any L∞-algebroid over some base manifold X, then we have its Weil dgc-algebra

W(a) :=
(
∧•C∞(X)(a

∗ ⊕ Γ(T ∗X)⊕ a∗[1]), dW = dCE + d)
)
,

where d acts as the degree shift isomorphism in the components ∧1
C∞(X)a

∗ −→ ∧1
C∞(X)a

∗[1] and as the de

Rham differential in the components ∧kΓ(T ∗X)→ ∧k+1Γ(T ∗X). This defines a new L∞-algebroid that may
be called the tangent L∞-algebroid Ta

CE(Ta) := W(a) .

We also write EBpR for the L∞-algebroid with

CE(EBpR) := W(BpR) .

In direct analogy with the discussion for Lie algebras, we then say that an unconstrained a-valued
differential form A on a manifold Σ is a dg-algebra homomorphism from the Weil algebra of a to the de
Rham dg-algebra on Σ:

Ω(Σ, a) := { Ω•(Σ)←−W(a) } .

For G a Lie group acting on X by diffeomorphisms, then there is the action Lie algebroid X/g over
X with a0 = ΓX(X × g) the g-valued smooth functions over X. Write ρ : g→ Vect for the linearized action.
With a choice of basis {ta} for g as before and assuming that X = Rn with canonical coordinates xi, then
ρ has components {ρµa} and the CE-differential on ∧•C∞(X)(ΓX(X × g∗)) is given on generators by

dCE : f 7→ taρµa∂µf

dCE : ta 7→ 1
2C

a
bct

b ∧ tc
.

In the physics literature this Chevalley-Eilenberg algebra CE(X/g) is known as the BRST complex of X
for infinitesimal symmetries g. If X is thought of as a space of fields, then the ta are called ghost fields.7

Given any L∞-algebroid, it induces further L∞-algebroids via its extension by higher cocycles. A p+ 1-
cocycle on an L∞-algebroid a is a closed element

µ ∈ (∧•C∞(X)a
∗)p+1 ↪→ CE(a) .

Notice that now cocycles are representable by the higher line L∞-algebras Bp+1R from above:

{µ ∈ CE(a)p+1 | dCEµ = 0} '
{

CE(a)
µ∗←− CE(Bp+1R)

}
=
{
a

µ−→ Bp+1R
} .

7More generally the base manifold X may be a derived manifold/BV-complex as in footnote 3. Then CE(X/g) is known as
the “BV-BRST complex”.
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It is a traditional fact that R-valued 2-cocycles on a Lie algebra induce central Lie algebra extensions. More
generally, higher cocycles µ on an L∞-algebroid induce L∞-extensions â, given by the pullback

â

(pb)

��

// EBpR

��
a

µ // Bp+1R

.

Equivalently this makes â be the homotopy fiber of µ in the homotopy theory of L∞-algebras, and induces
a long homotopy fiber sequence of the form

BpR // â

��
a

µ // Bp+1R

.

In components this means simply that CE(â) is obtained from CE(a) by adding one generator c in degre p
and extending the differential to it by the formula

dCE : c = µ .

This construction has a long tradition in the supergravity literature [dAFr82][FSS13b], we come to the
examples considered there below in section 1.1.2.5. Iterating this construction, out of every L∞-algebroid
their grows a whole bouquet of further L∞-algebroids

�� ��
ˆ̂a

��
â

��

µ2 // Bp2+2

a
µ1 // Bp1+2

For example for g a semisimple Lie algebra with binary invariant polynomial 〈−,−〉 (the Killing form),
then µ3 = 〈−, [−,−]〉 is a 3-cocycle. The L∞-extension by this cocycle is a Lie 2-algebra called the string
Lie 2-algebra stringg. If {ta} is a linear basis of g∗ as before write kab := 〈ta, tb〉 for the components of

the Killing form; the components of the 3-cocycle are µabc = kaa′C
a′
bc. The CE-algebra of the string Lie

2-algebra then is that of g with a generator b added and with CE-differential defined by

dCE(string) : ta 7→ 1
2C

a
bct

b ∧ tc

dCE(string) : b 7→ kaa′C
a′
cbt

a ∧ tb ∧ tc .

Hence a flat stringg-valued differential form on some Σ is a pair consisting of an ordinary flat g-valued 1-form
A and of a 2-form B whose differential has to equal the evaluation of A in the 3-cocoycle:

Ωflat(Σ, stringg) '
{

(A,B) ∈ Ω1(Σ, g)× Ω2(Σ) | FA = 0 , dB = 〈A ∧ [A ∧A]〉
}
.

38



Notice that since A is flat, the 3-form 〈A∧[A∧A]〉 is its Chern-Simons 3-form. More generally, Chern-Simons
forms are such that their differential is the evaluation of the curvature of A in an invariant polynomial.

An invariant polynomial 〈−〉 on an L∞-algebroid we may take to be a dW-closed element in the shifted
generators of its Weil algebra W(a)

〈−〉 ∈ ∧•C∞(X)(a
∗[1]) ↪→W(a) .

When one requires the invariant polynomial to be binary, i.e. in ∧2(a∗[1])→W(a) and non-degenerate, then
it is also called a shifted symplectic form and it makes a into a “symplectic Lie n-algebroid”. For n = 0 these
are the symplectic manifolds, for n = 1 these are called Poisson Lie algebroids, for n = 2 they are called
Courant Lie 2-algebroids [Roy02]. There are also plenty of non-binary invariant polynomials, we discuss
further examples below in section 1.1.2.4.

Being dW-closed, an invariant polynomial on a is represented by a dg-homomorphism:

W (a)←− CE(Bp+2R) : 〈−〉

This means that given an invariant polynomial 〈−〉 for an L∞-algebroid a, then it assigns to any a-valued
differential form A a plain closed (p+ 2)-form 〈FA〉 made up of the a-curvature forms, namely the composite

Ω•(Σ)
A←−W (a)

〈−〉←− CE(Bp+2R) : 〈FA〉 .

In other words, A may be regarded as a nonabelian pre-quantization of 〈FA〉.
Therefore we may consider now the ∞-groupoid of a-connections whose gauge transformations preserve

the specified invariant polynomial, such as to guarantee that it remains a globally well-defined differential
form. The smooth ∞-groupoid of a-valued connections with such gauge transformations between them we
write exp(a)conn. As a smooth simplicial presheaf, it is hence given by the following assignment:

exp(a)conn : (U, k) 7→



Ω•vert(U ×∆k) CE(a)oo

Ω•(U ×∆k)

OO

W(a)

OO

Aoo

Ω•(U)

OO

inv(a)

OO

〈FA〉
oo


Here on the right we have, for every U and k, the set of those A on U×∆k that induce gauge transformations
along the ∆k-direction (that is the commutativity of the top square) such that the given invariant polynomials
evaluated on the curvatures are preserved (that is the commutativity of the bottom square).

This exp(a)conn is the moduli stack of a-valued connections with gauge transformations and gauge-of-
gauge transformations between them that preserve the chosen invariant polynomials [FSS10][FRS11].

The key example is the moduli stack of (p+ 1)-form gauge fields

exp(Bp+1R)conn/Z ' B(R/~Z)conn

Generically we write
Aconn := coskn+1(exp(a)conn)

for the n-truncation of a higher smooth stack of a-valued gauge field connections obtained this way. If a = Bg
then we write BGconn for this.

Given such, then an a-gauge field on Σ (an A-principal connection) is equivalently a map of smooth
higher stacks

∇ : Σ −→ Aconn .

By the above discussion, a simple map like this subsumes all of the following component data:
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1. a choice of open cover {Ui → Σ};

2. a a-valued differential form Ai on each chart Ui;

3. on each intersection Uij of charts a path of infinitesimal gauge symmetries whose integrated finite
gauge symmetry gij takes Ai to Aj ;

4. on each triple intersection Uijk of charts a path-of-paths of infinitesimal gauge symmetries whose
integrated finite gauge-of-gauge symmetry takes the gauge transformation gij · gjk to the gauge trans-
formation gik

5. and so on.

Hence a a-gauge field is locally a-valued differential form data which are coherently glued together to a global
structure by gauge transformations and higher order gauge-of-gauge transformations.

Given two globally defined a-valued gauge fields this way, then a globally defined gauge transformation
them is equivalently a homotopy between maps of smooth higher stacks

Σ

∇1

��

∇2

@@Aconn'

��

.

Again, this concisely encodes a system of local data: this is on each chart Ui a path of inifinitesimal gauge
symmetries whose integrated gauge transformation transforms the local a-valued forms into each other,
together with various higher order gauge transformations and compatibilities on higher order intersections
of charts.

Then a gauge-of-gauge transformation is a homotopy of homotopies

Σ

∇1

��

∇2

@@Aconn

|��"

⇐

and again this encodes a recipe for how to extract the corresponding local differential form data.

1.1.2.2 The BV-BRST complex The category of partial differential equations that we referred to so
far, as in [Marv86], is modeled on the category of smooth manifolds. Accordingly, it really only contains
differential equations that are non-singular enough such as to guarantee that the shell locus E ↪→ J∞E
is itself a smooth manifold. This is not the case for all differential equations of interest. For some pairs
of differential operators, their equalizer E //

//
F does not actually exist in smooth bundles modeled on

manifolds.
This is no problem when working in the sheaf topos over PDEΣ, where all limits do exist as diffeological

bundles. However, even though all limits exist here, some do not interact properly with other construc-
tions of interest. For instance intersection products in cohomology will not properly count non-transversal
intersections, even if they do exist as diffeological spaces.

To fix this, we may pass to a category of “derived manifolds”. In generalization of how an ordinary
smooth manifold is the formal dual to its real algebra of smooth functions, via the faithful embedding

C∞ : SmoothMfd ↪→ CAlgop
R ,
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so a derived manifold is the formal dual to a differential graded-commutative algebra in non-positive degrees,
whose underlying graded algebra is of the form ∧•C∞(X)(Γ(V ∗)) for V a −N-graded smooth vector bundle
over X. In the physics literature these dg-algebras are known as BV-complexes.

For example, for X a smooth manifold and S ∈ C∞(X) a smooth function on it, then the vanishing locus
of S in X is represented by the derived manifold kerd(S) that is formally dual to the dg-algebra denoted
C∞(kerd(S)) which is spanned over C∞(X) by a single generator t of degree -1 and whose differential (linear
over R) is defined by

dBV : t 7→ S .

For Σ an ordinary smooth manifold, then morphisms Σ −→ kerd(Σ) are equivalently dg-algebra homo-
morphisms C∞(Σ) ←− C∞(kerd(Σ)), and these are equivalently algebra homomorphisms φ∗ : C∞(Σ) ←−
C∞(X) such that φ∗S = 0. These, finally, are equivalently smooth functions φ : Σ −→ X that land every-
where in the 0-locus of S. It is in this way that kerd(S) is a resolution of the possibly singular vanishing
locus by a complex of non-singular smooth bundles.

Notice that even if the kernel of S does exist as a smooth submanifold ker(S) ↪→ it need not be equivalent
to the derived kernel: for instance over X = R1 with its canonical coordinate function x, then ker(x) = {0}
but kerd(x

2) ' D(1)
0 is the infinitesimal interval around 0.

Given a derived manifold Xd this way, then for each k ∈ N the differential k-forms on Xd also inherit the
BV-differential, on top of the de Rham differential. We write Ωk;−s(Xd) to indicate the differential k-forms
of BV-degree −s. So in particular the 0-forms recover the BV dg-algebra itself Ω0,−•(Xd) = C∞(Xd).

Hence using underived manifolds, then the conservation of the presymplectic current, dHΩ = 0, implies
that over a spacetime/worldvolume Σ with two boundary components Σin = ∂inΣ and Σout = ∂outΣ then
the canonical pre-symplectic forms ωin and ωout agree

[Σ, E ]Σ
πin

xx

πout

&&
[N∞Σ Σin, E ]Σ

ωin

&&

[N∞Σ Σout, E ]Σ

ωout

ww
Ω2

π∗outωout − π∗inωin = 0

When the covariant phase space is resolved by a derived space ([Σ, E ]Σ)d, then this equation becomes a
homotopy which asserts the existence of a 2-form ωBV of BV-degree -1 which witnesses the invariance of the
canonical presymplectic form:

([Σ, E ]Σ)d
πin

ww

πout

''
[N∞Σ Σin, E ]Σ

ωin ''

[N∞Σ Σout, E ]Σ

ωoutww
Ω2;−•

ωBV

rz

π∗outωout − π∗inωin = dBVωBV .

The equation on the right appears in the BV-liteature as [CMR12, equation (9)]).
For the purpose of prequantum field theory, we again wish to de-transgress this phenomenon. Instead of

just modelling the covariant phase space by a derived space, we should model the dynamical shell E ↪→ J∞Σ E
itself by a derived bundle.

The derived shell kerd(EL) is the derived manifold bundle over Σ whose underlying manifold is J∞Σ E and
whose bundle of antifields is the pullback of V ∗E ⊗ ∧p+1T ∗Σ to the jet bundle (along the projection maps
to E).
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If φi are a choice of local vertical coordinates on E (the fields) and φ∗i denotes the corresponding local
antifield coordinates with respect to any chosen volume form on Σ, then this BV-differential looks like

dBV = ELi
∂

∂φ∗i
: φ∗i 7→ ELi .

When regarded as an odd graded vector field, this differential is traditionally denoted by Q.
In such coordinates there is then the following canonical differential form

ΩBV = dφ∗i ∧ dφi ∈ Ωp+1,2;−1(kerd(EL))

which, as indicated, is of BV-degree -1 and otherwise is a (p+ 3)-form with horizontal degree p+ 1 vertical
degree 2. More abstractly, this form is characterized by the property that

ιQΩBV = EL ∈ Ωp+1,1;0(kerd(EL)) .

As before, we write

ωBV :=

∫
Σ

ΩBV

for the transgression of this form to the covariant phase space. We now claim that there it satisfies the
above relation of witnessing the conservation of the presymplectic current up to BV-exact terms 8 In fact it
satisfies the following stronger relation

ιQωBV = dS + π∗θ (1.4)

which turns out to be the transgressed and BV-theoretic version of the fundamental variational equation
1.1:

dS = d

∫
Σ

L

=

∫
Σ

dL

=

∫
Σ

(EL− dHΘ)

=

∫
Σ

(ιQΩBV − dHΘ)

= ιQωBV − π∗θ .

Equation 1.4 has been postulated as the fundamental compatibility condition for BV-theory on spacetimes
Σs with boundary in [CMR12, equation (7)]. Applying d to both sides of this equation recovers the previous
dBVωBV = π∗ω.

Notice that equation 1.4 may be read as saying that the action functional is a Hamiltonian, not for the
ordinary presymplectic structure, but for the BV-symplectic structure.

8 This was first pointed out by us informally on the nLab in October 2011 http://ncatlab.org/nlab/revision/diff/phase+

space/29.
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concept in
classical field theory

local model in
BV-BRST formalism

[N∞Σ Σp, E ]Σ
phase space

dBV

BV-complex
of anti-fields

ωin = ωout

independence of presymplectic form
from choice of Cauchy surface

ωin '
ωBV // ωout

coboundary by
BV-bracket

[N∞Σ Σp, E ]Σ −→ [Σ,BGconn]
smooth groupoid

of gauge fields and gauge transformations

dBRST

BRST complex
of ghost fields

[Σp, E ]Σ −→ [Σ,BkU(1)conn]
higher smooth groupoid

of higher gauge fields
and higher gauge transformations

dBRST

BRST complex
of higher order ghost-of-ghost fields

1.1.2.3 Sigma-model field theories A sigma-model is a field theory whose field bundle (as in section
1.1.1) is of the simple form

Σ×X
p1

��
Σ

for some space X. This means that in this case field configurations, which by definition are sections of the
field bundle, are equivalently maps of the form

φ : Σ −→ X .

One naturally thinks of such a map as being a Σ-shaped trajectory of a p-dimensional object (a p-brane)
on the space X. Hence X is called the target space of the model. Specifically, if this models Σ-shaped
trajectories of p-dimensional relativistic branes, then X is the target spacetime. There are also famous
examples of sigma-models where X is a more abstract space, usually some moduli space of certain scalar
fields of a field theory that is itself defined on spacetime. Historically the first sigma-models were of this kind.
In fact in the first examples X was a linear space. For emphasis that this is not assumed one sometimes
speaks of non-linear sigma models for the sigma-models that we consider here. In fact we consider examples
where X is not even a manifold, but a smooth ∞-groupoid, a higher moduli stack.

Given a target space X, then every (p + 1)-form Ap+1 ∈ Ωp+1(X) on X induces a local Lagrangian for
sigma-model field theories with target X: we may simply pull back that form to the jet bundle J∞Σ (Σ×X)
and project out its horizontal component. Lagrangians that arise this way are known as topological terms.

The archetypical example of a sigma-model with topological term is that for describing the electron
propagating in a spacetime and subject to the background forces of gravity and of electromagnetism. In this
case p = 0 (a point particle, hence a “0-brane”), Σ is the interval [0, 1] or the circle S1, regarded as the abstract
worldline of an electron. Target space X is a spacetime manifold equipped with a pseudo-Riemannian metric
g (modelling the background field of gravity) and with a vector potential 1-form A ∈ Ω1(X) whose differential
is the Faraday tensor F = dA (modelling the electromagnetic background field). The local Lagrangian is

L = Lkin + q(AΣ)H︸ ︷︷ ︸
Lint

∈ Ωp+1
H (J∞Σ (Σ×X)) ,

where Lkin is the standard kinetic Lagrangian for (relativistic) point particles, q is some constant, the electric
charge of the electron, and (AΣ)H is the horizontal component of the pullback of A to the jet bundle. The
variation of Lint yields the Lorentz force that the charged electron experiences.
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Now, as in the the discussion in section 1.1.1, in general the Faraday tensor F is not globally exact, and
hence in general there does not exist a globally defined such 1-form on the jet bundle. But via the sigma-model
construction, the prequantization of the worldline field theory of the electron on its jet bundle is naturally
induced by a Dirac charge quantization of its background electromagnetic field on target spacetime: given

BU(1)conn

��
X

∇
::

F
// Ω2

cl

a circle-principal connection on target spacetime for the given field strength Faraday tensor F (hence with
local “vector potential” 1-forms {Ai} with respect to some cover {Ui → X}), then the horizontal projection
(∇Σ)H of the pullback of the whole circle-bundle with connection to the jet bundle constitutes a prequantum
field theory in the sense of sections 1.1.1.3. Similarly, the background electromagnetic field ∇ also serves
to prequantize the covariant phase space of the electron, according to section 1.1.1.4. This is related to the
familiar statement that in the presence of a magnetic background field the spatial coordinates of the electron
no longer Poisson-commute with each other.

This prequantization of sigma-models via (p + 1)-form connections on target space works generally: we
obtain examples of prequantum field theories of sigma-model type by adding to a globally defined kinetic
Lagrangian form a prequantum topological term given by the pullback of a (p+ 1)-form connection on target
space. The pullback of that target (p + 1)-form connection to target space serves to prequantize the entire
field theory in all codimensions

prequantum sigma-model topological terms

background field ∇ : X −→ Bp+1U(1)conn

prequantum
Lagrangian

(∇Σ)H : Σ×X −→ Bp+1
H U(1)conn

prequantized
phase space

(∇Σ)L : E −→ Bp+1
L U(1)conn

While sigma-models with topological terms are just a special class among all variational field theories,
in the context of higher differential geometry this class is considerably larger than in traditional differential
geometry. Namely we may regard any of the moduli stacks Aconn of gauge fields that we discuss in section
1.1.2.1 as target space, i.e. we may consider higher stacky field bundles of the form

Σ×Aconn

��
Σ

.

Everything goes through as before, in particular a field configuration now is a map Σ −→ Aconn from
worldvolume/spacetime Σ to this moduli stack. But by the discussion above in section 1.1.2.1, such maps
now are equivalent to gauge fields on Σ. These are, of course, the field configurations of gauge theories.
Hence, in higher differential geometry, the concepts of sigma-model field theories and of gauge field theories
are unified.

In particular both concepts may mix. Indeed, we find below that higher dimensional Wess-Zumino-
Witten-type models generally are “higher gauged”, this means that their field configurations are a pair
consisting of a map φ : Σ→ X to some target spacetime X, together with a φ-twisted higher gauge field on
Σ.
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prequantum
sigma-model

topological termstarget space
=

spacetime

yy

target space
=

moduli stack
of gauge fields

&&

higher
WZW terms

%%

higher
Chern-Simons

terms

xx
higher
gauged

WZW terms

Examples of a (higher) gauged WZW-type sigma model are the Green-Schwarz-type sigma-models of those
super p-branes on which other branes may end. This includes the D-branes and the M5-brane. The former
are gauged by a 1-form gauge field (the “Chan-Paton gauge field”) while the latter is gauged by a 2-form
gauge field. We say more about these examples below in 1.1.2.5.

We may construct examples of prequantized topological terms from functoriality of the Lie integration
process that already gave the (higher) gauge fields themselves in section 1.1.2.1. There we saw that a
(p+ 2)-cocycle on an L∞-algebroid is a homomorphism of L∞-algebroids of the form

µ : a −→ Bp+2R .

Moreover, the exp(−)-construction which sends L∞-algebroids to simplicial presheaves representing universal
higher moduli stacks of a-valued gauge fields is clearly functorial, hence it sends this cocycle to a morphism
of simplicial presheaves of the form

exp(µ) : exp(a) −→ Bp+2R .

One finds that this descends to the (p+2)-coskeleton A := coskp+2 exp(a) after quotienting out the subgroup
Γ ↪→ R of periods of µ [FSS10] (just as in the prequantization of the global action functional in section 1.1.1.3):

exp(a)

ηcoskp+2

����

exp(µ) // Bp+2R

��
A

c // Bp+2(R/Γ)

.

To get a feeling for what the resulting morphism c is, consider the case that A = BG for some group G.
There is a geometric realization operation π∞ which sends smooth ∞-groupoids to plain homotopy types
(homotopy types of topological spaces). Under this operation a map c as above becomes a map c of the form

BG

ηπ∞

��

c // Bp+2(R/Z)

ηπ∞

��
BG //c // K(Z, p+ 3) ,

where BG is the traditional classifying space of a (simplicial) topological group G, and where K(Z, p+ 3) =
Bp+3Z is the Eilenberg-MacLane space that classifies integral cohomology in degree (p + 3). What BG
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classifies are G-principal bundles, and hence for each space Σ the map c turns into a characteristic class of
equivalence classes of G-principal bundles:

cΣ : GBund(Σ)∼ −→ Hp+3(Σ,Z) .

Hence c itself is a universal characteristic class. Accordingly, c is a refinement of c that knows about
gauge transformations: it sends smooth G-bundles with smooth gauge transformations and gauge-of-gauge
transformations between these to integral cocycles and coboundaries and coboundaries-between-coboundaries
between these.

Equivalently, we may think of c as classifying a (p+1)-gerbe on the universal moduli stack of G-principal
bundles. This is equivalently its homotopy fiber (in direct analogy with the infinitesimal version of this
statement above in section 1.1.2.1.2) fitting into a long homotopy fiber sequence of the form

Bp+1(R/Z) // BĜ

��
BG

c // Bp+2(R/Z)

.

Yet another equivalent perspective is that this defines an ∞-group extension Ĝ of the ∞-group G by the
∞-group Bp(R/Z).

So far all this is without connection data, so far these are just higher instanton sectors without any actual
gauge fields inhabiting these instanton sectors. We now add connection data to the situation.
Adding connection data to c regarded as a higher prequantum bundle on the moduli stack BG yields

• 1.1.2.4 – Chern-Simons-type prequantum field theory.

Adding instead connection data to c regarded as a higher group extension yields

• 1.1.2.5 – Wess-Zumino-Witten-type prequantum field theories.

1.1.2.4 Chern-Simons-type field theories For g a semisimple Lie algebra with Killing form invariant
polynomial 〈−,−〉, classical 3-dimensional Chern-Simons theory [Fr95] has as fields the space of g-valued
differential 1-forms A, and the Lagrangian is the Chern-Simons 3-form

LCS(A) = CS(A) := 〈A ∧ dA〉 − 1
3 〈A ∧ [A ∧A]〉 .

This Chern-Simons form is characterized by two properties: for vanishing curvature it reduces to the value
of the 3-cocycle 〈−, [−,−]〉 on the connection 1-form A, and its differential is the value of the invariant
polynomial 〈−,−〉 on the curvature 2-form FA.

There is a slick way to express this in terms of the dg-algebraic description from section 1.1.2.1.2: there
is an element cs ∈W(Bg), which in terms of the chosen basis {ta} for ∧1g∗ is given by

cs : kab(dW t
a) ∧ tb − 1

3kaa′C
a′
bct

a ∧ tb ∧ tc .

Hence equivalently this is a dg-homomorphism of the form

W(Bg)
cs←−W(B3R)

and for A ∈ Ω1(Σ, g) = { Ω•(Σ)←−W(Bg) } then the Chern-Simons form of A is the composite

Ω•(Σ)
A←−W(Bg)

cs3←−: CS(A) .
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Now, the two characterizing properties satisfied by the Chern-Simons equivalently mean in terms of dg-
algebra that the map cs makes the following two squares commute:

CE(Bg) oo
〈−,[−,−]〉

CE(B3R)

W(Bg)

OO

oo cs
W(B3R)

OO

inv(Bg)

OO

oo 〈−,−〉
inv(B3R)

OO

This shows how to prequantize 3d Chern-Simons theory in codimension 3: the vertical sequences appearing
here are just the Lie algebraic data to which we apply differential Lie integration, as in section 1.1.2.1,
to obtain the moduli stacks of G-connections and of 3-form connections, resepctively. Moreover, by the
discussion at the end of section 1.1.2.3 and using that 〈−, [−,−]〉 represents an integral cohomology class on
G we get a map

(c2)conn := exp(cs) : BGconn −→ B3(R/Z)conn .

This is the background 3-connection which induces prequantum Chern-Simons field theory by the general
procedure indicated in section 1.1.2.3.

Notice that this map is a refinement of the traditional Chern-Weil homomorphism. More on this below
in section 1.4.2.3. This allows for instance to prequantize the Green-Schwarz anomaly cancellation condition
heterotic strings: the higher moduli stack of GS-anomaly free gauge fields is the homotopy fiber product of
the prequantum Chern-Simons Lagrangians for the simple groups Spin and SU [SSS09c].

This higher Lie theoretic formulation of prequantum 3-Chern-Simons theory now immediately generalizes
to produce higher (and lower) dimensional prequantum L∞-algebroid Chern-Simons theories.

For a any L∞-algebroid as in section 1.1.2.1.2, we say that a (p + 2)-cocycle µ on a is in transgression
with an invariant polynomial 〈−〉 on a if there is an element cs ∈W (a) such that dW cs = 〈−〉 and cs|CE = µ.
Equivalently this means that cs fits into a diagram of dg-algebras of the form

CE(a) oo
µ

CE(Bp+2R)

W(a)

OO

oo cs
W(Bp+2R)

OO

inv(a)

OO

oo 〈−〉
inv(Bp+2R)

OO

Applying exp(−) to this, this induces maps of smooth moduli stacks of the form

cconn : Aconn −→ Bp+2(R/Γ)conn .

This gives a prequantum Chern-Simons-type field theory whose field configurations locally are a-valued
differential forms, and whose Lagrangian is locally the Chern-Simons element cs evaluated on these forms.

For instance if (a, ω) is a symplectic Lie p-algebroid, then we obtain the prequantization of (p + 1)-
dimensional AKSZ-type field theories [FRS11]. For p = 1 this subsumes the topological string A- and
B-model [AKSZ97]. Generally, the prequantum moduli stack of fields for 2-dimensional prequantum AKSZ
theory is a differential refinement of the symplectic groupoid of a given Poisson manifold [Bon14]. The Poisson
manifold canonically defines a boundary condition for the corresponding prequantum 2d Poisson-Chern-
Simons theory, and the higher geometric boundary quantization of this 2d prequantum theory reproduces
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ordinary Kostant-Souriau geometric quantization of the symplectic leafs [Nui13]. This is a non-perturbative
improvement of the perturbative algebraic deformation quantization of the Poisson manifold as the boundary
of the perturbative 2d AKSZ field theory due to [CaFe99].

Generally one expects to find non-topological non-perturbative p-dimensional quantum field theories
arising this way as the higher geometric boundary quantization of (p + 1)-dimensional prequantum Chern-
Simons type field theories [Sc14d, Sc14a].

For instance for (B3R, ω) the line Lie 3-algebra equipped with its canonical binary invariant polynomial,
the corresponding prequantum Chern-Simons type field theory is 7-dimensional abelian cup-product Chern-
Simons theory [FSS12c]. This has been argued to induce on its boundary the conformal 6-dimensional field
theory of a self-dual 2-form field [Wi96] [HoSi05]. This 7-dimensional Chern-Simons theory is one summand
in the Chern-Simons term of 11-dimensional supergravity compactified on a 4-sphere. The AdS7/CFT6

correspondence predicts that this carries on its boundary the refinement of the self-dual 2-form to a 6-
dimensional superconformal field theory. There are also nonabelian summands in this 7d Chern-Simons
term. For instance for (Bstringg, 〈−,−,−,−〉) the string Lie 2-algebra equipped with its canonical degree-4
invariant polynomial, then the resulting prequantum field theory is 7-dimensional Chern-Simons field theory
on String 2-connection fields [FSS12b].

For more exposition of prequantum Chern-Simons-type field theories see also [FSS13a].

1.1.2.5 Wess-Zumino-Witten type field theory The traditional Wess-Zumino-Witten (WZW) field
theory [Ga88, Ga00] for a semisimple, simply-connected compact Lie group G is a 2-dimensional sigma-model
with target space G, in the sense of section 1.1.2.3, given by a canonical kinetic term, and with topological
term that is locally a potential for the left-invariant 3-form 〈θ ∧ [θ ∧ θ]〉 ∈ Ω3(G) cl

li
, where θ is the Maurer-

Cartan form on G. This means that for {Ui → G} a cover of G by coordinate charts Ui ' Rn, then the
classical WZW model is the locally variational classical field theory (in the sense discussed in section 1.1.1.2)
whose local Lagrangian Li is (in the notation introduced above in section 1.1.2.3) Li = (Lkin)i + ((Bi)Σ)H
for Bi ∈ Ω2(Ui) a 2-form such that dBi = 〈θ ∧ [θ ∧ θ]〉|Ui .

By the discussion in section 1.1.2.3, in order to prequantize this field theory it is sufficient that we
construct a U(1)-gerbe on G whose curvature 3-form is 〈θ∧ [θ∧ θ]〉. In fact we may ask for a little more: we
ask for the gerbe to be multiplicative in that it carries 2-group structure that covers the group structure on G,
hence that it is given by the 2-group extension classified by the smooth universal class c : BG −→ B3U(1).

An elegant construction of this prequantization, which will set the scene for the general construction of
higher WZW models, proceeds by making use of a universal property of the differential coefficients. Namely
one finds that for all p ∈ Z, then the moduli stack Bp+1(R/Z)conn of (p+1)-form connections is the homotopy
fiber product of Bp+1(R/Z) with Ωp+2

cl over [dRBp+2R.

Ωp+2
cl

$$
Bp+1(R/Z)conn (pb)

88

''

Bp+2[R

Bp+2Z

99

.

Here “[” indicates the discrete underlying group, and hence this homotopy pullback says that giving a (p+1)-
form connection is equivalent to giving an integral (p + 2)-class and a closed (p + 2)-form together with a
homotopy the identifies the two as cocycles in real cohomology.

In view of this, consider the following classical Lie theoretic data associated with the semisimple Lie
algebra g.
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g semisimple Lie algebra
G its simply-connected Lie group
θ ∈ Ω1(G, g) Maurer-Cartan form
〈−,−〉 Killing metric
µ3 = 〈−, [−,−]〉 Lie algebra 3-cocycle
k ∈ H3(G,Z) level

µ3(θ ∧ θ ∧ θ) q−→
'

kR prequantization condition

Diagrammatically, this data precisely corresponds to a diagram as shown on the left in the following, and
hence the universal property of the homotopy pullback uniquely associates a lift ∇WZW as on the right:

Ω3
cl

��
G

k
//

µ3(θ)

66

B3Z // B3[R
q
�	

⇔

B2(R/Z)conn

(pb)

��

curv // Ω3
cl

��
G

k
//

∇WZW

99

B3Z // B3[R
x�

This ∇WZW is the required prequantum topological term for the 2d WZW model. Hence the prequantum
2d WZW sigma-model field theory is the (p = 2)-dimensional prequantum field theory with target space the
group G and with local prequantum Lagrangian, i.e. with Euler-Lagrange gerbe given by

L := 〈θH ∧ ?θH〉︸ ︷︷ ︸
Lkin

+ (∇WZW)H︸ ︷︷ ︸
LWZW

: Σ×G −→ Bp+1
H (R/~Z)conn .

This prequantization is a de-transgression of a famous traditional construction. To see this, write Ω̂kG for
level-k Kac-Moody loop group extension of G. This has an adjoint action by the based path group PeG.
Write

String(G) := PeG//Ω̂kG

for the homotopy quotient. This is a differentiable group stack, called the string 2-group [BCSS07]. It turns
out to be the total space of the 2-bundle underlying ∇WZW

String(G)

��
(pb)

// ∗

��
G

∇WZW // B2(R/Z)conn
// B2(R/Z)

π∞ // K(Z, 3)

and it is a de-transgression of the Kac-Moody loop group extension L̂KG: transgressing to fields over the
circle gives:

L̂kG //

��
(pb)

∗

��
LG

∫ 1
S
∇WZW// B(R/Z)conn

// B(R/Z)

The string 2-group also appears again as the 2-group of Noether symmetries, in the sense of section 1.1.1.5,
of the prequantum 2d WZW model. The Noether homotopy fiber sequence for the prequantum 2d WZW
model looks as follows
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

G

∇WZW

~~

∇WZW

  
B2
H(R/~Z)conn

topological
current
}�


−→



G

∇WZW

""

'
symmetry // G

∇WZW

||
Bp+1
H (R/~Z)conn

Noether current

z�


−→

{
G '

point

symmetry
// G

}

BU(1) −→ String(G) −→ G

In fact, this extension is classified by the smooth universal characteristic class c : BG −→ B3U(1), whose
differential refinement gave 3d Chern-Simons theory in section 1.1.2.4.

Given a G-principal bundle P → X, the one may aks for a fiberwise parameterization of ∇WZW over P .
If such definite parameterization ∇ : P → B2(R/Z)conn exists, then it defines the prequantum topological
term for the parameterized WZW model with target space P .

G ' Px

(pb)

��

∇WZW

%%
// P ∇

definite
parameterization

//

��

B2(R/Z)conn

{x} �
� // X

'�


Such a parameterization is equivalent to a lift of a structure group of P through the above extension
String(G) −→ G. Accordingly, the obstruction to parameterizing ∇WZW over P is the universal extension
class c evaluated on P . Specifically for the case that G = Spin×SU, this is the sum of fractional Pontryagin
and second Chern class:

1
2p1 − c2 ∈ H4(X,Z) .

The vanishing of this class is the Green-Schwarz anomaly cancellation condition for the 2d field theory
describing propagation of the heterotic string on X. This perspective on the Green-Schwarz anomaly via
parameterized WZW models had been suggested in [DiSh07]. The prequantum field theory we present serves
to make this precise and to generalize it to higher dimensional parameterized WZW-type field theories.

Generally, given any L∞-cocycle µ : Bg −→ Bp+2R as in section 1.1.2.1.2 with induced smooth ∞-
group cocycle c : BG −→ Bp+2(R/Γ) as in section 1.1.2.3, then there is a higher analog of the universal
construction of the WZW-type topological term ∇WZW.

First of all, the homotopy pullback characterization of Bp+1(R/Z)conn refines to one that does not just
involve the geometrically discrete coefficients Bp+2Z, but the smooth coefficients Bp+1(R/R).

Ωp+2
cl

&&
Bp+1(R/Z)conn (pb)

curv

77

((

[dRBp+2R

Bp+1(R/Z)

77

.

Here [dR(−) denotes the homotopy fiber of the canonical map [(−) −→ (−) embedding the underlying
discrete smooth structure of any object into the given smooth object. A key aspect of the theory is that the
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further homotopy fiber of [dR(−) −→ [(−) has the interpretation of being the Maurer-Cartan form θ on the
given smooth ∞-groupoid.

G

θ
Maurer-Cartan

form

��
[dRBG // [BG

��
BG

Or rather, one finds that [dRBG ' Ω1≤•≤p+2
flat (−, g) is the coefficient for “hypercohomology” in flat g-valued

differential forms, hence for G a higher smooth group then its Maurer-Cartan form θ is not, in general, a
globally defined differential form, but instead a system of locally defined forms with higher coherent gluing
data.

But one may universally force θ to become globally defined, so to speak, by pulling it back along the
inclusion Ωflat(−, g) of the globally defined flat g-valued forms. This defines a differential extension G̃ of G
equipped with a globally defined Maurer-Cartan form θ̃, by the following homotopy pullback diagram

Ωflat(−, g)

&&
G̃ (pb)

$$

θ̃

::

[dRBG

G

θ

88

.

When G is an ordinary Lie group, then it so happens that [drBG ' Ωflat(−, g), and so in this case G̃ ' G
and θ̃ ' θ, so that nothing new happens.

At the other extreme, when G = Bp+1(R/Z), then θ ' curv as above, and so in this case one find that G̃
is Bp+1(R/Z)conn and that θ̃ ' F(−) is the map that sends an (p+ 1)-form connection to its globally defined
curvature (p+ 2)-form.

More generally these two extreme cases mix: when G is a Bp(R/Z)-extension of an ordinary Lie group,
then G̃ is a twisted product of G with Bp(R/Z)conn, hence then a single map

(φ,B) : Σ −→ G̃

is a pair consisting of an ordinary sigma-model field φ together with a φ-twisted p-form connection on Σ.
Hence the construction of G̃ is a twisted generalization of the construction of differential coefficients.

In particular, given an L∞-cocycle µ : Bg −→ Bp+2R Lie-integrating to an ∞-group cocycle c : BG →
Bp+2(R/Γ), then it Lie integrates to a prequantum topological term ∇WZW : G̃ −→ Bp+1(R/Γ)conn via the
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universal dashed map in the following induced diagram:

Ωflat(−, g)
µ

))

##

Ωp+2
cl

""

G̃

θ̃

>>

!!

∇WZW

((

[dRBG

[dRc
))

Bp+1(R/Γ)conn

curv

;;

$$

[dRBp+2R

G

θ

::

Ωc
**
Bp+1(R/Γ)

;;

This construction provides a large supply of prequantum Wess-Zumino-Witten type field theories. Indeed,
by the discussion in 1.1.2.1.2, from every L∞-algebroid there emanates a bouquet of L∞-extensions with
L∞-cocycles on them, hence for every WZW-type sigma model prequantum field theories we find a whole
bouquet of prequantum field theories emanating from it.

Therefore it is interesting to consider the simplest non-trivial L∞-algebroids and see which bouquets of
prequantum field theories they induce. The abelian line Lie algebra R is arguably the simplest non-vanishing
L∞-algebroid, but it is in fact a little too simple for this purpose, the bouquet it induces is not interesting.
But all of the above generalizes essentially verbatim to super-algebra and super-geometry, and in super-Lie-
algebra we have the odd lines R0|q. The bouquet which emanates from these turns out to be remarkably
rich [FSS13b], it gives the entire p-brane spectrum of string theory/M-theory.

D0brane

**

D2brane

%%

D4brane

��

D6brane

yy

D8brane

tt

KK

DD

sdstring

d=6
N=(2,0)

++

stringIIA

d=10
N=(1,1)

��

stringhet

d=10
N=1

tt

littlestringhet

d=6
N=1

ss

OO

T

��

m5brane // m2brane d=11
N=1

// Rd;N

ss

ns5branehet
d=10
N=1

oo

R0|N stringIIB

d=10
N=(2,0)

99

(p, q)stringIIB

d=10
N=(2,0)

OO

Dstring

d=10
N=(2,0)

ee

(p, q)1brane

::

d3brane

OO

(p, q)5brane

dd

oo
S

//

Each entry in this diagram denotes a super L∞-algebra extension of some super Minkowski spacetime
Rd−1,1|N (regarded as the corresponding supersymmetry super Lie algebra), and each arrow denotes a super-
L∞-extension classified by a p+2 cocycle for some p. By the above general construction, this cocycle induces
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a (p+ 1)-dimensional WZW-type sigma-model prequantum field theory with target space a higher extension
of super-Minkowski spacetime [FSS13b], and the names of the super L∞-algebras in the above diagram
correspond to the traditional names of these super p-branes.

As for the traditional WZW-models, all of this structure naturally generalizes to its parameterized ver-
sions: given any higher extended super Minkowski spacetime V equipped with a prequantum topological
term ∇WZW : V −→ Bp+1(R/Γ)conn for a super p-brane sigma model, we may ask for globalizations of ∇
over V -manifolds (V -étale stacks) X, hence for topological term ∇ on all of X that is suitably equivalent on
each infinitesimal disk DXx ' DVe to ∇WZW.

Dx(1)

(pb)

��

//

∇WZW

&&
T (1)X

��

∇
definite

globalization

// Bp+1(R/Γ)conn

{x} �
� // X

'��

Such globalizations serve as prequantum topological terms for WZW-type sigma-models describing the prop-
agation of super p-branes on V -manifolds X (e.g. [Duff99, sections 2,3]). One finds (this is proven with the
abstract theory surveyed below in section 1.1.3) that such globalizations equip the higher frame bundle of
X with a lift of its structure group through a canonical map StabGL(V )(∇) −→ GL(V ) from the homotopy
stabilizer group of the WZW term, in direct analogy to the previous examples. Apart from “cancelling the
classical anomalies” of making the super p-brane WZW-type sigma-model be globally defined on X, such a
lift induces metric structure on X:

Since the homotopy stabilization of ∇ in particular stabilizes its curvature form, there is a reduction of
the structure group of the V -manifold in direct analogy to how a globalization of the “associative” 3-form
α on R7 equips a 7-manifold with G2-structure. For the above super p-brane models the relevant stabilizer
is the spin-cover of the Lorentz group, and hence globalizing the prequantum p-brane model over X in
particular induces orthogonal structure on X, hence equips X with a field configuration of supergravity.

Given such a globalization of a topological term ∇ over a V -manifold X, it is natural to require it to be
infinitesimally integrable. In the present example this comes out to imply that the torsion of the orthogonal
structure on X vanishes. This is particularly interesting at the top end of the brane bouquet: for globalization
over over an 11-dimensional supermanifold, the vanishing of the torsion is equivalent to X satisfying the
equations of motion of 11-dimensional gravity [CaLe94]. The Noether charges of the corresponding WZW-
type prequantum field theory are the supergravity BPS-charges [SaSc15].

Here the relation to G2-structure is more than an analogy. We may naturally lift the topological term
for the M2-brane sigma-model from R/Z-coefficients to C/Z-coefficients by adding α : R10,1|32 → R7 → Ω3

cl.
Then a globalization of the complex linear combination

∇M2 + iα : R10,1|32 −→ B3(C/Γ)conn

over an 11-dimensional supermanifold X equips X with the structure of a G2-fibration over a 4-dimensional
N = 1 supergravity spacetime. The volume holonomy of ∇M2 + iα around supersymmetric 3-cycles are
the “M2-instanton contributions”. This setup of 11-dimensional supergravity Kaluza-Klein-compactified on
G2-manifolds to 4 spacetime dimensions and with the prequantum M2/M5-brane charges and instantons
included – known as M-theory on G2-manifolds [Ach02, ?] – comes at least close to capturing the qualitative
structure of experimentally observed fundamental physics.
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superpoint
Whitehead

tower // super p-brane
L∞-cocycles

Lie
integration // WZW-type

topological terms

definitie
globalization//

prequantum sigma-model
for super p-brane

on super-spacetimes

extremal
branch

��

M-theory
on G2-manifolds

This shows that there is some interesting physics encoded in those prequantum field theories that are
canonically induced from a minimum of input data. We continue in section 1.1.3 with indicating that the
concept of prequantum field theory itself arises from first principles.
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1.1.3 Abstract prequantum field theory

Above in section 1.1.1 we have surveyed mathematical structure that captures prequantum local field theory.
While the constructions and results proceed smoothly, the whole setup may still look somewhat intricate.
One needs a good abstract machinery to be practically able to analyze properties of, say, Euler-Lagrange
5-gerbes on 3-stacky jet super-bundles (as they do arise in the formulation of the M5-brane prequantum
sigma-model field theory as in section 1.1.2.5), because it is unfeasible to do so in components. Moreover,
if prequantum field theory is part of the fundamental description of nature, one may expect that its mathe-
matical formulation is indeed natural and neat. We now survey results from [?] showing that a good abstract
formalization of the differential super-geometry and of the differential cohomology and of the PDE-theory
necessary for formulating prequantum field theory does exist. For further exposition of the following see also
[Sc14b, Sc15a, Sc15b].

• 1.1.3.1 – Modal homotopy theory;

• 1.1.3.2 – Abstract differential cohomology;

• 1.1.3.3 – Abstract differential geometry;

• 1.1.3.4 – Abstract PDE theory.

For further exposition of the following see also [Sc14b, Sc15a, Sc15b].

1.1.3.1 Modal homotopy theory The homotopy theory in which all pre-quantum physics that has
been considered in section 1.1.2 naturally finds its place is that of super formal smooth higher stacks. We
briefly state the definition below. Then we claim that this homotopy theory carries a rich progression of
adjoint idempotent ∞-(co-)monads. Such idempotent (co-)monads equip the homotopy theory with what
in formal logic is known as modalities, hence we may speak of modal homotopy theory. The particular
system of modalities that we find and consider we call (super-)differential cohesive homotopy theory. Below
in sections 1.1.3.2 and 1.1.3.3 we survey the rich differential cohomology and differential geometry that is
implied formally from just this abstract modal homotopy theoretic structure.

Definition 1.1.1. The site of super formal smooth Cartesian spaces

SupFormCartSp ↪→ sCAlgop
R

is the full subcategory of that of super-commutative superalgebras over R on those which are tensor products

C∞(Rn × D) := C∞(Rn)⊗R (R⊕ V )

of the algebra of smooth real functions in n variables, for any n ∈ N, with a supercommutative superalgebra
(R ⊕ V ) for finite dimensional nilpotent V . Take this to be a site by equipping it with the coverage whose

coverings are of the form {Ui × D (φi,id)−→ X × D} for {Ui
φi−→ X} being an open cover of smooth manifolds.

• Mfd is the category of smooth manifolds;

• FormMfd is the category of formal smooth manifolds [Kock80] [Kock06, sections I.17 and I.19];

• DiffeolSp is the category of diffeological spaces [Ig-Z13], which is the category of concrete sheaves on
Mfd;

• Sh(FormMfd) is the “Cahiers topos” [Dub79b] that was introduced as a model for the Kock-Lawvere
axioms [Kock06, I.12] [Kock10, 1.3] for synthetic differential geometry.
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Proposition 1.1.2. The sheaf toposes and ∞-sheaf ∞-toposes [L-Topos] over the sites in def. 1.1.1 form
the following system of full inclusions of categories of geometric spaces.

discrete
geometry

cohesive
geometry

synthetic
differential
geometry

synthetic
supergeometry

relative
geometry

D-geometry

Set
� � // Mfd� _

��

kK

$$

� � // FormMfd� _

��

// SupFormMfd� _

��

Σ∗ // SupFormMfd/Σ� _

��

oo U

F
// EM(J∞Σ ) ' PDEΣ� _

��

p
o
in

t-set
g
eo

m
etry

Orbfldp�

��

FrechetMfd� _

��
DiffeologicalSp� _

��
Sh(∗)� _

��

� � // Sh(Mfd)
mM

  

� � // Sh(FormMfd)� _

��

// Sh(SupFormMfd)� _

��

// Sh(SupFormMfd/Σ)
oo
//� _

��

Sh(SupFormMfd/=Σ)
� _

��

to
p

o
s

th
eo

ry

LieGrpd/
GeomStack

� _

��

Grpd� _

��

� � // SmoothGrpd/
SmoothStack

� _

��
2Grpd� _

��

� � // Smooth2Grpd� _

��
Sh∞(∗) �

� // Sh∞(Mfd)
� � // Sh∞(FormMfd) // Sh∞(SupFormMfd) // Sh∞(SupFormMfd/Σ)

oo
// Sh∞(SupFormMfd/=Σ)

h
ig

h
er

to
p

o
s

th
eo

ry

∞Grpd
� � // H<

� � // H 
� � // H

Σ∗ // H/Σ
oo (η=Σ )∗

(η=Σ )∗

// H/=Σ
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p
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eory

discrete
geometry

cohesive
geometry

synthetic
differential
geometry

synthetic
supergeometry

relative
geometry

D-geometry
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The key now is that super formal smooth homotopy theory exhibits the following abstract structure.

Theorem 1.1.3. The homotopy theory H := Sh∞(SupFormMfd) over the site of def. 1.1.1 carries a system
of idempotent ∞-(co-)monads as follows:

id

∨

a id

∨

synthetic
supergeometry

⇒

⊥

a  

⊥

 

∨

a Rh

∨ ∨

' locR0|1

synthetic
differential
geometry

<
⊥

a =
⊥

' locD

locD ' =

∨

a &

∨

cohesive
geometry

locR1 '< π∞

⊥

a [

⊥

[

∨

a ]

∨∨

discrete
geometry

∅ a ∗

Here

• each © a � is an adjunction of idempotent ∞-(co-)monads arising from an adjoint triple;

• ©1 <©2 means that (©1X ' X)⇒ (©2X ' X).
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The existence of a progression of modal operators in theorem 1.1.3 is strong condition on an ∞-topos H.
This suggests that much of the differential geometry available in Sh∞(SupFormMfd) may be seen abstractly
from reasoning in the internal language of ∞-toposes with such a progression of modal operators added.
This abstract homotopy theory might be called super differential cohesive homotopy theory, or just cohesive
homotopy theory for short. In [?] it is shown that:

Claim 1.1.4. In super differential cohesive homotopy theory, fundamental physics is synthetically9 axiom-
atized

1. naturally – the formalization is elegant and meaningful;

2. faithfully – the formalization captures the deep nontrivial phenomena;

3. usefully – the formalization yields proofs and constructions that are unfeasible otherwise.

At the International Congress of Mathematics in Paris, 1900, David Hilbert stated his list of 23 central
open questions of mathematics [Hi1900]. Among them, the sixth problem has possibly received the least
attention from mathematicians [Cor04], but: “From all the problems in the list, the sixth is the only one
that continually engaged [Hilbert’s] efforts over a very long period, at least between 1894 and 1932.” [Cor06].
Hilbert stated the problem as follows:

Hilbert’s problem 6. To treat by means of axioms, those physical sciences in which mathematics plays an
important part [...] try first by a small number of axioms to include as large a class as possible of physical
phenomena, and then by adjoining new axioms to arrive gradually at the more special theories. [...] take
account not only of those theories coming near to reality, but also, as in geometry, all logically possible
theories .

Since then, various aspects of physics have been given a mathematical formulation. The following table,
necessarily incomplete, gives a broad idea of central concepts in theoretical physics and the mathematics
that captures them.

physics mathematics

prequantum physics differential geometry

18xx-19xx Lagrangian mechanics variational calculus
18xx-19xx Hamiltonian mechanics symplectic geometry
1910s gravity Riemannian geometry
1950s gauge theory Chern-Weil theory
2000s higher gauge theory differential cohomology

quantum physics noncommutative algebra

1920s quantum mechanics operator algebra
1960s local observables co-sheaf theory
1990s-2000s local field theory (∞, n)-category theory

These are traditional solutions to aspects of Hilbert’s sixth problem. Two points are noteworthy: on
the one hand the items in the list are crown jewels of mathematics; on the other hand their appearance is
somewhat unconnected and remains piecemeal.

9 A synthetic axiomatization specifies intended properties of an object, in contrast to an analytic axiomatization which
specifies how to build the intended object from more basic constituents. In synthetic formalization, a duck is what quacks like
a duck, whereas in analytic formalization a duck has to be built out of its molecules. Euclid’s plane geometry is synthetic,
Descartes’ plane geometry is analytic.
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Towards the end of the 20th century, William Lawvere, the founder of categorical logic [Shu16b], aimed
for a more encompassing answer that formulates the axiomatization of physics natively in a well-adapted
foundation of mathematics itself. He suggested to

1. rest the foundations of mathematics itself in topos theory [Law65];

2. build the foundations of physics synthetically inside topos theory by

(a) imposing properties on a topos which ensure that the objects have the structure of differential
geometric spaces [Law98, Kock06];

(b) formalizing classical mechanics on this basis by universal constructions
(“Categorical dynamics” [Law67], “Toposes of laws of motion” [Law97]);

3. use adjunctions on the topos to formalize dualities [Law69, Lam81] and in particular used adjoint
idempotent (co-)monads (adjoint closure operators) to formalize qualitative properties [Law91, Law07].

What makes toposes a good foundation for mathematics is that working inside them is essentially like
working inside sets. Technically, elementary toposes are (finitely complete) regular locally cartesian closed
categories with a subobject classifier; and the internal language of locally cartesian closed categories is
intuitionistic type theory [See84, ClDy11]. This means essentially that one handles objects as if they were
sets, but has to stick to using only intuitionistic logic in doing so (avoiding the law of excluded middle).

Moreover, the existence of (co-)monads on the topos means precisely that this intuitionistic logic is
equipped with modal operators [Mog91, Kob97], hence that the intuitionistic type theory is modal type
theory.

Hence, following Lawvere, we see categorical logic [Shu16b] as the natural formal backdrop on which to
approach Hilbert’s 6th problem:

Hilbert’s problem 6 (ITT). Find synthetic axioms for physics in modal type theory.

But with hindsight, this needs refinement in two ways:

1. modern mathematics naturally wants foundations not in topos theory, but in higher topos theory
[L-Topos, L-Alg];

2. modern physics needs to refine classical continuum mechanics to local quantum gauge field theory
(section 1.1.1).

Hence there is need for refining Lawvere’s synthetic approach on Hilbert’s sixth problem
from classical physics formalized in synthetic differential geometry axiomatized in topos theory
to high energy physics formalized in higher differential geometry axiomatized in higher topos theory.

The internal language of ∞-toposes is thought to be homotopy type theory [UFP13, ?] with univalent
universes and higher inductive types (HoTT+UV+HIT):

Theorem 1.1.5. Assuming the initiality theorem [?] then

• HoTT has semantics in locally presentable locally Cartesian closed ∞-categories [Shul12c];

• HoTT+UVstrict has semantics in the ∞-topos ∞Grpd [KLV12];

• HoTT+UVstrict has semantics in a few infinite classes of ∞-presheaf ∞-toposes [Shul13, Shul15a];

Remark 1.1.6.

• HoTT+UVweak is argued to have semantics in all ∞-toposes [Shul14];

• HoTT+UV+Modalities is developed in [LiSh15, Shul15, RSS15].
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Hilbert’s problem 6 (HoTT). Find synthetic axioms for physics in modal homotopy type theory.

Kock-Lawvere
synthetic

diff. geometry

.
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higher diff. geometry
model topos ∞-topos

internal
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type theory

homotopy
type theory

axioms
KL-axiom scheme

forcing
internal infinitesimals

progression of
adjoint modal operators

forcing super-differential cohesion

application
elementary

differential geometry
pre-quantum local
gauge field theory

In the following we will not reason fully formally in cohesive homotopy type theory, but instead proceed
in the familiar pseudocode formerly known as mathematics. But all constructions that follow are manifestly
such that they lend themselves to full formalization in cohesive homotopy type theory. The formal translation
is being worked out elsewhere ([Shul15]).

1.1.3.2 Abstract differential cohomology We now survey a list of abstract constuctions and theorems
that follow formally for every homotopy theory H which is equipped with the first stage of adjoint (co-
)monads in theorem 1.1.3. These we call cohesive homotopy theories.

Definition 1.1.7. For H an ∞-topos, write TH for the ∞-category of parameterized spectrum objects in
H.

Proposition 1.1.8 ([Jo08b, section 35]). TH is itself an∞-topos. The spectra Stab(H) ' T∗H are precisely
the stable (linear) objects.

Example 1.1.9. For H = ∞Grpd then an object E ∈ T∗∞Grpd is equivalently a spectrum, and for any
X ∈ ∞Grpd ↪→ T∞Grpd then

E•(X) ' [X,E]

is the E-cohomology spectrum of X. More generally, for τ ∈ TX∞Grpd a bundle of spectra whose fibers are
equivalent to E, then

E•+τ (X) ' [X, τ ]X

is the τ -twisted E-cohomology spectrum of X [ABGHR13].

Example 1.1.10. For S a site, let H := Sh∞(S) be the hypercomplete ∞-topos over that site. The
stable Dold-Kan correspondence turns a sheaf of chain complexes A ∈ Ch•(Sh(S)) into a spectrum object
HA ∈ T∗H ↪→ TH. Then

HA•(X) ' [X,HA]

is the sheaf hypercohomology of X with coefficients in A [Br73].

Proposition 1.1.11. For (π∞ a [ a ]) : H → H a cohesive ∞-topos then also its tangent ∞-topos is
cohesive

(Tπ∞ a T[ a T]) : TH→ TH .

Definition 1.1.12. For © an idempotent ∞-(co-)monad on TH, write © for the homotopy (co-)fiber of
its (co-unit).
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Proposition 1.1.13 ([BNV13]). For (π∞ a [ a ]) : H → H a cohesive ∞-topos, then for every A ∈ T∗H
the canonical hexagon

π∞A

  

d // [A

##
π∞[A

##

;;

A

>>

!!

π∞[A

[A

==

β
// π∞A

;;

is homotopy exact, in that in addition to the diagonals being homotopy fiber sequences, also

1. both squares are homotopy cartesian;

2. both outer sequences are homotopy fiber sequences.

Proof. Use that homotopy pullback of stable objects is detected on homotopy fibers. Then use cohesion
and idempotency to find that the squares are homotopy cartesian.

Example 1.1.14. Let H be as in theorem 1.1.3. Inside H the traditional Poincaré lemma is equivalent to
the statement that there is an equivalence

[R ' Ω• ∈ T∗H .

This induces for each p ∈ N an instance of the exact hexagon of prop. 1.1.13:

Ω•≤p+1 ddR //

''

Ωp+2
cl

de Rham
theorem

$$
[Bp+1R

Poincaré
lemma

88

&&

Bp+1(R/~Z)

curv

88

&&

[Bp+1R

[Bp+1(R/~Z)

77

Bockstein
// Bp+2Z

2π~

::

.

The object appearing the middle is the Deligne complex

Bp+1(R/~Z)conn ' H[Z 2π~
↪→ Ω0 ddR→ Ω1 ddR→ · · · → Ωp+1] .

For X ∈ H
0
↪→ T∗H then

Ĥp+2(X,Z) ' π0[X,Bp+1(R/~Z)]

is known equivalently as

1. the ordinary differential cohomology of X in degree (p+ 2);

2. the Deligne cohomology of X in degree (p+ 2);

3. the equivalence classes of p-gerbe connections for band (R/~Z);

4. the equivalence classes of Bp(R/~Z-principal bundles with connection.

Remark 1.1.15. In [?] it was observed that the natural hexagon that ordinary differential cohomology
sits in already characterizes it. The authors suggested that this may be true for generalized differential
cohomology theories. In view of this prop. 1.1.13 may be regarded as the lift of the Brown representability
theorem from generalized cohomology theories to generalized differential cohomology theories.
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Combining this observation with example 1.1.9, we find that as we vary the slices of the cohesive∞-topos,
it knows also about twisted differential cohomology:

cohomology differential cohomology

plain A ∈ T∗∞Grpd A ∈ T∗H
twisted τ ∈ TPic(A)∞Grpd τ ∈ TPic(A)H

Hence the hexagon in prop. 1.1.13 generally has the following interpretation:

connections
on trivial bundles de Rham differential //

regard as
''

curvature
forms

de Rham theorem
%%

closed
differential forms

regard as

77

regard as
''

connections on
geometric bundles

curvature

88

topol. class

&&

rationalized
bundle

flat
connections

regard as

77

comparison map // shape of
bundles

Chern character

99

Definition 1.1.16 ([BNV13]). Using that π∞ ' locR1 the universal property of π∞ induces for each linear
cohesive object A ∈ T∗H a canonical morphism of the form∫ 1

0

: [R1, [A] −→ π∞A .

Proposition 1.1.17 ([BNV13]). In the situation of example 1.1.14, the abstracty defined map
∫ 1

0
from def.

1.1.16 is equivalent to traditional fiber integration of differential forms.

Proposition 1.1.18 (fundamental theorem of calculus [BNV13]). For every linear object A ∈ T∗H we have∫ 1

0

◦d ' (−)|1 − (−)|0 ,

where d is the top morphism in prop. 1.1.13 and where
∫ 1

0
is the morphism from def. 1.1.16.

Remark 1.1.19. The statement of prop. 1.1.18 was long imposed as an extra axiom on differential coho-
mology theories (see [Bun12]).

In summary, this shows that (π∞ a [) synthetically axiomatizes the existence of differential cocycles.
The remaining monad ] turns out to give the moduli spaces of such cocycles:

Definition 1.1.20. For n ∈ N, write ]n for the n-image factorization of the unit id −→ ].

Proposition 1.1.21. For H as in theorem 1.1.3, the diffeological spaces are equivalently the reduced 0-
truncated objects which are in addition ]1-modal

DiffeologicalSp ' Hτ0,<,]1 ↪→ H .

Example 1.1.22. For H as in theorem 1.1.3, and Ωp+1 ∈ H the sheaf of differential forms and for Σ ∈ H any
smooth manifold, then the mapping space [Σ,Ωp+1] is not the diffeological space of differential (p+ 1)-forms
on Σ, but ]1[Σ,Ωp+1] is.
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For object which are not 0-truncated, concretification depends on a choice of co-filtration:

Definition 1.1.23. For X ∈ H equipped with a co-filtration F •X, we say that its concretification is the
iterated homotopy fiber product

Conc(F •X) := ]1F
0X ×

]1F 1X
]2F

1X ×
]2F 2X

· · · ,

with ]k from def. 1.1.20 or rather, is the canonical morphism

conc : X −→ Conc(F •X) .

Proposition 1.1.24. For Bp+1(R/~Z) ∈ H from prop. 1.1.14 and equipped with its canonical co-filtration
induced from the Hodge filtration on Ω•, then for Σ ∈ H a smooth manifold, the concretification

Bp(R/~Z)Conn(Σ) := Conc([Σ,Bp+1(R/~Z)])

is given by the diffeological (p+ 1)-groupoid of Deligne (p+ 2)-cocycles on Σ.

Using this there is an axiomatization of the higher groups of symmetries of p-gerbes as they appeared in
section 1.1.1.5:

Proposition 1.1.25. For any X ∈ H and give ∇ : X −→ Bp+1(R/~Z)conn, then there is a homotopy fiber
sequence of the form

Bp(R/~Z)FlatConn(X) // StabAut(X)(conc(∇))

��
HamAut(X,∇)

KS∇ // B(Bp(R/~Z)FlatConn(Σ))

,

where Stab(...) denotes the stabilizer ∞-group of ∇ in Bp(R/~Z)Conn(Σ) under the canonical ∞-action of
the automorphism ∞-group of Σ, and where HamAut(X,∇) is the 1-image of the canonical map from there
to Aut(X).

Example 1.1.26. In the case that ∇ is a U(1)-principal connection, KS∇ is the class of the traditioonal
Kostant-Souriau quantomorphism extension.

Proposition 1.1.27. With (X,∇) as in prop. 1.1.25, given an X fiber bundle E → Σ then definite
globalizations of ∇ over E are equivalent to lifts of the structure group of E through StabAut(X)(conc(∇))→
Aut(X). In particular KS∇(E) is the obstruction class to the existence of such a globalization.

1.1.3.3 Abstract differential geometry We now survey a list of abstract constructions and theorems
that follow formally for every homotopy theory H which is equipped with the first and the second stage of
adjoint (co-)monads in theorem 1.1.3. These we call differential cohesive homotopy theories.

Proposition 1.1.28. In the situation of theorem 1.1.3, for Σ ∈ SmoothMfd ↪→ H then there is a pullback
diagram

T∞Σ

(pb)p1

��

p2 // Σ

η=Σ����
Σ

η=Σ

// =Σ

where T∞Σ is the formal neighbourhood of the diagonal of Σ, and =Σ is the coequalizer of the two projections

T∞Σ
p2

//
p1 //

Σ
η=Σ // =Σ .
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Remark 1.1.29. Hence =Σ is what elsewhere is called the de Rham stack of Σ, also denoted XdR. Its sheaf
cohomology is crystalline cohomology.

Definition 1.1.30. For H a differential cohesive∞-topos, say that a morphism f : X → Y is formally étale
if the naturality square of its =-unit is a homotopy pullback

X

fet

��
(pb)

=ηΣ // =X

=f
��

Y
=ηΣ
// =Y

.

For V ∈ Grp(H) a group object, say that a V -manifold is an object X ∈ H equipped with a V -atlas, namely
with a correspondence of the form

U

et

��
et
    

V X

such that both maps are formally étale and such that the right map is in addition a 1-epimorphism.

Proposition 1.1.31. For H a differential cohesive ∞-topos and for V ∈ Grp(H) any group object, then its
formal disk bundle p1 : T∞V −→ V is canonically trivialized by left translation. Moreover, for X any V -
manifold, def. 1.1.30, then the formal disk bundle of X is associated to a uniquely defined GL∞(V )-principal
bundle

Fr(X) −→ X ,

its frame bundle, where
GL∞(V ) := Aut(DVe )

is the automorphism group of the formal disk around the neutral element in V .

Proposition 1.1.31 allows to abstractly speak of G-structure and torsion-free G-structure on V -manifolds,
in any differential cohesive∞-topos, hence to formalize Cartan geometry, which subsumes (pseudo-)Riemannian
geometry, complex geometry, symplectic geometry, conformal geometry, etc. Moreover, G-structures natu-
rally arise as follows.

Proposition 1.1.32. Given a differential cocycle ∇V : V −→ Bp+1(R/~Z) and a V -manifold X, then there

is an ∞-functor from definite globalizations of ∇V over X to StabGL(V )(conc∇DV ,E)-structures on the frame

bundle of X, where ∇DVe is the restriction of ∇ to the infinitesimal neighbourhood of e in V . In particular
the class KS∇DVe (Fr(X)) from prop. 1.1.27 is an obstruction to the existence of such a globalization.

1.1.3.4 Abstract PDE theory We survey more abstract constructions and theorems that follow for-
mally for every differential cohesive homotopy theory, H i.e. one equipped with the first and second stage
of adjoint (co-)monads in theorem 1.1.3.

Definition 1.1.33. For any Σ ∈ H, write(
T∞Σ a J∞Σ

)
:= ((ηΣ)∗ ◦ (ηΣ)! a (ηΣ)∗ ◦ (ηΣ)∗) : H/Σ −→ H/Σ

for the base change (co-)monad along the unit of the =-monad.

Proposition 1.1.34. For H from 1.1.3, then for E ∈ FormMfd/Σ ↪→ H/Σ the (co-)monads in def. 1.1.33
come out as follows:

1. T∞Σ Σ is the formal disk bundle of Σ [Kock80, above prop. 2.2];
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2. J∞Σ E is the jet bundle of E [Kock10, remark 7.3.1].

Proposition 1.1.35 ([Marv86],[Marv86, section 1.1]). In the situation of prop. 1.1.34, the Eilenberg-Moore
category of jet coalgebras over Σ is equivalent to Vinogradov’s category of partial differential equations with
free variables in Σ:

EM(J∞Σ ) ' PDEΣ .

In particular the co-Kleisli category of the jet comonad is that of bundles over Σ with differential operators
between them as morphisms.

Kl(J∞Σ ) ' DiffOpΣ .

Since prop. 1.1.33 gives the jet comonad by base change, the ∞-Beck monadicity theorem gives in
generality that

Proposition 1.1.36. There is an equivalence of ∞-categories

EM(J∞Σ ,H) ' H/=Σ .

Write then

H
Σ∗ //

(−)Σ

''
H/Σ

(η=Σ )∗ // H/=Σ

for the canonical map that regards objects of the differential cohesive ∞-topos as co-free homotopy partial
differential equations:

In the situation of example 1.1.14, consider the universal decomposition of the differential forms (Ω•≤p+1)Σ

regarded over =Σ this way into horizontal and vertical forms.

0

��

// Ωp+1
V

��
Σ

φ // E
L // (Ω•≤p+1)Σ

// Ω•≤p+1
H

Proposition 1.1.37. This induces a horizontal projection of the exact hexagon from example 1.1.14:

(Ω•≤p+1)Σ
ddR //

**

%%

(Ωp+2
cl )Σ

))

##

Ω•≤p+1
H

δV //

%% %%

Ωp+1,1
S

""

([Bp+1R)Σ

;;

##

(Bp+1(R/~Z)conn)Σ

curv

99

%%

H
**

([Bp+2R)Σ

([Bp+1R)Σ

99

%%

Bp+1
H (R/~Z)conn

curv

;;

$$

([Bp+2R)Σ

([Bp+1(R/~Z))Σ
βΣ

//

99

(Bp+2Z)Σ

;;

([Bp+1(R/~Z))Σ
βΣ

//

99

(Bp+2Z)Σ

<<
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This is the abstract characterization of the Euler-Lagrange p-gerbes of section 1.1.1.3. Hence the front
hexagon in prop. 1.1.37 now has the following interpretation.

globally defined
Lagrangians variational Euler differential //

regard as

&&

source
forms

de Rham theorem
$$

trivial
Lagrangians

regard as

99

regard as

$$

Euler-Lagrange
p-gerbes

curvature

99

topol. class

$$

rationalized
background

charge

flat
Euler-Lagrange

p-gerbes

regard as

99

//
background
topological

charge

Chern character

;;

Similarly there is a further filtration of horizontal projections which induces also the Lepage p-gerbes of
section 1.1.1.4.

Hence the abstract differential cohomology in cohesive homotopy theory combined with the abstract
manifold theory and abstract PDE theory of differential cohesive homotopy theory provides just the right
formal language for abstractly speaking about the prequantum field theory surveyed in section 1.1.1.
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1.2 Geometry

The following is an introduction to and review of some key aspects of differential geometry, connecting to
traditional formulations but with an eye towards the further developments below.

To some extent this is classical material, roughly along the lines of a textbook such as [Fra], but we
present it from a perspective that serves to motivate and prepare for the more general abstract developments
in section 4.

This section and the next has an online counterpart in [Sc13a] with more material and further pointers.

• 1.2.1 – Coordinate systems

• 1.2.2 – Smooth 0-types

• 1.2.3 – Differential forms

• 1.2.4 – Integration

• 1.2.5 – Smooth homotopy types

• 1.2.6 – Principal bundles

• 1.2.7 – Principal connections

• 1.2.8 – Characteristic classes

• 1.2.9 – Lie algebras

• 1.2.10 – Chern-Weil homomorphism

1.2.1 Coordinate systems

Every kind of geometry is modeled on a collection of archetypical basic spaces and geometric homomor-
phisms between them. In differential geometry the archetypical spaces are the abstract standard Cartesian
coordinate systems, denoted Rn, in every dimension n ∈ N, and the geometric homomorphism between them
are smooth functions Rn1 → Rn2 , hence smooth (and possibly degenerate) coordinate transformations.

Here we discuss the central aspects of the nature of such abstract coordinate systems in themselves. At
this point these are not yet coordinate systems on some other space. That is instead the topic of the next
section Smooth spaces.

1.2.1.1 The continuum real (world-)line The fundamental premise of differential geometry as a
model of geometry in physics is the following.

Premise. The abstract worldline of any particle is modeled by the continuum real line R.
This comes down to the following sequence of premises.

1. There is a linear ordering of the points on a worldline: in particular if we pick points at some intervals
on the worldline we may label these in an order-preserving way by integers

Z .

2. These intervals may each be subdivided into n smaller intervals, for each natural number n. Hence we
may label points on the worldline in an order-preserving way by the rational numbers

Q .

67



3. This labeling is dense: every point on the worldline is the supremum of an inhabited bounded subset
of such labels. This means that a worldline is the real line, the continuum of real numbers

R .

The adjective“real” in “real number” is a historical shadow of the old idea that real numbers are related
to observed reality, hence to physics in this way. The experimental success of this assumption shows that it
is valid at least to very good approximation.

Speculations are common that in a fully exact theory of quantum gravity, currently unavailable, this
assumption needs to be refined. For instance in p-adic physics one explores the hypothesis that the relevant
completion of the rational numbers as above is not the reals, but p-adic numbers Qp for some prime number
p ∈ N. Or for example in the study of QFT on non-commutative spacetime one explore the idea that at small
scales the smooth continuum is to be replaced by an object in noncommutative geometry. Combining these
two ideas leads to the notion of non-commutative analytic space as a potential model for space in physics.
And so forth.

For the time being all this remains speculation and differential geometry based on the continuum real line
remains the context of all fundamental model building in physics related to observed phenomenology. Often
it is argued that these speculations are necessitated by the very nature of quantum theory applied to gravity.
But, at least so far, such statements are not actually supported by the standard theory of quantization: we
discuss below in Geometric quantization how not just classical physics but also quantum theory, in the best
modern version available, is entirely rooted in differential geometry based on the continuum real line.

This is the motivation for studying models of physics in geometry modeled on the continuum real line.
On the other hand, in all of what follows our discussion is set up such as to be maximally independent of
this specific choice (this is what topos theory accomplishes for us). If we do desire to consider another choice
of archetypical spaces for the geometry of physics we can simply “change the site”, as discussed below and
many of the constructions, propositions and theorems in the following will continue to hold. This is notably
what we do below in Supergeometric coordinate systems when we generalize the present discussion to a flavor
of differential geometry that also formalizes the notion of fermion particles: “differential supergeometry”.

1.2.1.2 Cartesian spaces and smooth functions

Definition 1.2.1. A function of sets f : R→ R is called a smooth function if, coinductively:

1. the derivative df
dx : R→ R exists;

2. and is itself a smooth function.

Definition 1.2.2. For n ∈ N, the Cartesian space Rn is the set

Rn = {(x1, · · · , xn)|xi ∈ R}

of n-tuples of real numbers. For 1 ≤ k ≤ n write

ik : R→ Rn

for the function such that ik(x) = (0, · · · , 0, x, 0, · · · , 0) is the tuple whose kth entry is x and all whose other
entries are 0 ∈ R; and write

pk : Rn → R

for the function such that pk(x1, · · · , xn) = xk.
A homomorphism of Cartesian spaces is a smooth function

f : Rn1 → Rn2 ,

hence a function f : Rn1 → Rn2 such that all partial derivatives exist and are continuous.
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Example 1.2.3. Regarding Rn as an R-vector space, every linear function Rn1 → Rn2 is in particular a
smooth function.

Remark 1.2.4. But a homomorphism of Cartesian spaces in def. 1.2.2 is not required to be a linear map.
We do not regard the Cartesian spaces here as vector spaces.

Definition 1.2.5. A smooth function f : Rn1 → Rn2 is called a diffeomorphism if there exists another
smooth function Rn2 → Rn1 such that the underlying functions of sets are inverse to each other

f ◦ g = id

and

g ◦ f = id .

Proposition 1.2.6. There exists a diffeomorphism Rn1 → Rn2 precisely if n1 = n2.

Definition 1.2.7. We will also say equivalently that

1. a Cartesian space Rn is an abstract coordinate system;

2. a smooth function Rn1 → Rn2 is an abstract coordinate transformation;

3. the function pk : Rn → R is the kth coordinate of the coordinate system Rn. We will also write this
function as xk : Rn → R.

4. for f : Rn1 → Rn2 a smooth function, and 1 ≤ k ≤ n2 we write

(a) fk := pk ◦ f
(b) (f1, · · · , fn) := f .

Remark 1.2.8. It follows with this notation that

idRn = (x1, · · · , xn) : Rn → Rn .

Hence an abstract coordinate transformation

f : Rn1 → Rn2

may equivalently be written as the tuple(
f1
(
x1, · · · , xn1

)
, · · · , fn2

(
x1, · · · , xn1

))
.

Proposition 1.2.9. Abstract coordinate systems form a category – to be denoted CartSp – whose

• objects are the abstract coordinate systems Rn (the class of objects is the set N of natural numbers n);

• morphisms f : Rn1 → Rn2 are the abstract coordinate transformations = smooth functions.

Composition of morphisms is given by composition of functions.
We have that

1. The identity morphisms are precisely the identity functions.

2. The isomorphisms are precisely the diffeomorphisms.

Definition 1.2.10. Write CartSpop for the opposite category of CartSp.
This is the category with the same objects as CartSp, but where a morphism Rn1 → Rn2 in CartSpop is

given by a morphism Rn1 ← Rn2 in CartSp.
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We will be discussing below the idea of exploring smooth spaces by laying out abstract coordinate systems
in them in all possible ways. The reader should begin to think of the sets that appear in the following
definition as the set of ways of laying out a given abstract coordinate systems in a given space. This is the
content of definition 1.2.12 below.

Remark 1.2.11 (The fundamental theorems about smooth functions). The special properties of smooth
functions that make them play an important role, different from other classes of functions, are the following:

1. Milnor’s exercise [KoMiSl93, 35.8-35.10]: the functor that takes smooth manifolds (not necessarily
compact!) to their R-algebras of smooth functions is fully faithful

SmthMfd ↪→ CAlgop
R

2. Hadamard’s lemma: the remainder of the first order Taylor expansion of a smooth function R→ R
is x2g, where g is another smooth function.

3. Borel’s theorem: every formal power series in one variable is the Taylor expansion of some smooth
function

4. derivations of R-algebras of smooth functions on a smooth manifold X are equivalently vector fields:

DerR(C∞(X)) ' Vect(X) .

5. There exist bump functions such that every open cover of a smooth manifold admits a subordinate
partition of unity.

“Milnor’s exercise” says that smooth manifolds in differential geometry are much like affine schemes in
algebraic geometry. (Notice that a crucial difference is that the Kähler differentials of R-algebras of smooth
functions do not exhaust the smooth differential forms. )

With this, the Hadamard lemma implies that we may enlarge the category of smooth manifolds inside
CAlgop

R to a category of “infinitesimally thickened smooth manifolds” akin to formal schemes, containing
objects such as the first order infinitesimal interval D1(1). The fact that derivations of smooth functions are
equivalently vector fields then implies that morphisms of the form D1(1) −→ X in this larger category are
equivalently vectors on X. This is a key point of the standard models for “synthetic differentia geometry”
see section 6.5.

In summary this says that smooth functions share some key properties of function algebras in algebraic
geometry. The last point above says that in addition, and in stark contrast to function algebras in algebraic
geometry, they are still flexible enough to admit bump functions and partitions of unity subordinate to open
covers.

1.2.2 Smooth 0-types

We now discuss concretely the definition of smooth sets/smooth spaces and of homomorphisms between
them, together with basic examples and properties.

1.2.2.1 Plots of smooth spaces and their gluing The general kind of “smooth space” that we want
to consider is something that can be probed by laying out coordinate systems inside it, and that can be
obtained by gluing all the possible coordinate systems in it together.

At this point we want to impose no further conditions on a “space” than this. In particular we do not
assume that we know beforehand a set of points underlying X. Instead, we define smooth spaces X entirely
operationally as something about which we can ask “Which ways are there to lay out Rn inside X?” and
such that there is a self-consistent answer to this question. The following definitions make precise what we
mean by this.

For brevity we will refer “a way to lay out a coordinate system in X” as a plot of X. The first set of
consistency conditions on plots of a space is that they respect coordinate transformations. This is what the
following definition formalizes.
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Definition 1.2.12. A smooth pre-space X is

1. a collection of sets: for each Cartesian space Rn (hence for each natural number n) a set

X(Rn) ∈ Set

– to be thought of as the set of ways of laying out Rn inside X;

2. for each abstract coordinate transformation, hence for each smooth function f : Rn1 → Rn2 a function
between the corresponding sets

X(f) : X(Rn2)→ X(Rn1)

– to be thought of as the function that sends a plot of X by Rn2 to the correspondingly transformed
plot by Rn1 induced by laying out Rn1 inside Rn2 .

such that this is compatible with coordinate transformations:

1. the identity coordinate transformation does not change the plots:

X(idRn) = idX(Rn) ,

2. changing plots along two consecutive coordinate transformations f1 : Rn1 → Rn2 and f2 : Rn2 → Rn3

is the same as changing them along the composite coordinate transformation f2 ◦ f1:

X(f1) ◦X(f2) = X(f2 ◦ f1) .

But there is one more consistency condition for a collection of plots to really be probes of some space: it
must be true that if we glue small coordinate systems to larger ones, then the plots by the larger ones are
the same as the plots by the collection of smaller ones that agree where they overlap. We first formalize this
idea of “plots that agree where their coordinate systems overlap”.

Definition 1.2.13. Let X be a smooth pre-space, def. 1.2.12. For {Ui → Rn}i∈I a differentially good open
cover, def. 6.4.2, let

GluedPlots({Ui → Rn}, X) ∈ Set

be the set of I-tuples of Ui-plots of X which coincide on all double intersections

Ui ∩ Uj
ιi

{{

ιj

##
Ui

##

UJ

{{
Rn

(also called the matching families of X over the given cover):

GluedPlots({Ui → Rn}, X) :=
{

(pi ∈ X(Ui))i∈I | ∀i,j∈I : X(ιi)(pi) = X(ιj)(pj)
}
.

Remark 1.2.14. In def. 1.2.13 the equation

X(ιi)(pi) = X(ιj)(pj)

says in words:
“The plot pi of X by the coordinate system Ui inside the bigger coordinate system Rn coincides with the

plot pj of X by the other coordinate system Uj inside X when both are restricted to the intersection Ui∩Uj
of Ui with Uj inside Rn.”
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Remark 1.2.15. For each differentially good open cover {Ui → X}i∈I and each smooth pre-space X, def.
1.2.12, there is a canonical function

X(Rn)→ GluedPlots({Ui → Rn}, X)

from the set of Rn-plots of X to the set of tuples of glued plots, which sends a plot p ∈ X(Rn) to its
restriction to all the φi : Ui ↪→ Rn:

p 7→ (X(φi)(p))i∈I .

If X is supposed to be consistently probeable by coordinate systems, then it must be true that the set
of ways of laying out a coordinate system Rn inside it coincides with the set of ways of laying out tuples of
glued coordinate systems inside it, for each good cover {Ui → Rn} as above. Therefore:

Definition 1.2.16. A smooth pre-space X, def. 1.2.12 is a smooth space if for all differentially good open
covers {Ui → Rn}, def. 6.4.2, the canonical function of remark 1.2.15 from plots to glued plots is a bijection

X(Rn)
'→ GluedPlots({Ui → Rn}, X) .

Remark 1.2.17. We may think of a smooth space as being a kind of space whose local models (in the
general sense discussed at geometry) are Cartesian spaces:

While definition 1.2.16 explicitly says that a smooth space is something that is consistently probeable by
such local models; by a general abstract fact that is sometimes called the co-Yoneda lemma, it follows actially
that smooth spaces are precisely the objects that are obtained by gluing coordinate systems together.

For instance we will see that two open 2-balls R2 ' D2 along a common rim yields the smooth space
version of the sphere S2, a basic example of a smooth manifold. But before we examine such explicit
constructions, we discuss here for the moment more general properties of smooth spaces.

Example 1.2.18. For n ∈ Rn, there is a smooth space, def. 1.2.16, whose set of plots over the abstract
coordinate systems Rk is the set

CartSp(Rk,Rn) ∈ Set

of smooth functions from Rk to Rn.
Clearly this is the rule for plots that characterize Rn itself as a smooth space, and so we will just denote

this smooth space by the same symbols “Rn”:

Rn : Rk 7→ CartSp(Rk,Rn) .

In particular the real line R is this way itself a smooth space. In a moment we find a formal justification for
this slight abuse of notation.

Of course this is a special case of the general fact that smooth manifolds are smooth spaces. Further
below we find an intrinsic definition of smooth manifolds from withing the theory of smooth spaces, but for
readers already familiar with smooth manifolds, we should state the following:

Example 1.2.19. For X ∈ SmthMfd, then it defines a smooth space in the sense of def. 1.2.16, by taking
the set of plots over the abstract coordinate chart Rk to be the set of smooth functions C∞(Rk, X) between
smooth manifolds.

This construction constitutes a fully faithful functor

SmthMfd ↪→ Smooth0Type

embedding the category of smooth manifolds into that of smooth spaces.

Another basic class of examples of smooth spaces are the discrete smooth spaces:
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Definition 1.2.20. For S ∈ Set a set, write

DiscS ∈ Smooth0Type

for the smooth space whose set of U -plots for every U ∈ CartSp is always S.

DiscS : U 7→ S

and which sends every coordinate transformation f : Rn1 → Rn2 to the identity function on S.
A smooth space of this form we call a discrete smooth space.

More examples of smooth spaces can be built notably by intersecting images of two smooth spaces inside
a bigger one. In order to say this we first need a formalization of homomorphism of smooth spaces. This we
turn to now.

1.2.2.2 Homomorphisms of smooth spaces We discuss “functions” or “maps” between smooth
spaces, def. 1.2.16, which preserve the smooth space structure in a suitable sense. As with any notion
of function that preserves structure, we refer to them as homomorphisms.

The idea of the following definition is to say that whatever a homomorphism f : X → Y between two
smooth spaces is, it has to take the plots of X by Rn to a corresponding plot of Y , such that this respects
coordinate transformations.

Definition 1.2.21. Let X and Y be two smooth spaces, def. 1.2.16. Then a homomorphism f : X → Y is

• for each abstract coordinate system Rn (hence for each n ∈ N) a function fRn : X(Rn)→ Y (Rn) that
sends Rn-plots of X to Rn-plots of Y

such that

• for each smooth function φ : Rn1 → Rn2 we have

Y (φ) ◦ fRn1 = fRn2 ◦X(φ) ,

hence a commuting diagram

X(Rn1)
fRn1 //

X(φ)

��

Y (Rn1)

Y (φ)

��
X(Rn2)

fRn2 // Y (Rn1)

.

For f1 : X → Y and f2 : Y → Z two homomorphisms of smooth spaces, their composition f2 ◦ f1 : X → Z is
defined to be the homomorphism whose component over Rn is the composite of functions of the components
of f1 and f2:

(f2 ◦ f1)Rn := f2Rn ◦ f1Rn .

Definition 1.2.22. Write Smooth0Type for the category whose objects are smooth spaces, def. 1.2.16, and
whose morphisms are homomorphisms of smooth spaces, def. 1.2.21.

At this point it may seem that we have now two different notions for how to lay out a coordinate system
in a smooth space X: on the hand, X comes by definition with a rule for what the set X(Rn) of its Rn-plots
is. On the other hand, we can now regard the abstract coordinate system Rn itself as a smooth space, by
example 1.2.18, and then say that an Rn-plot of X should be a homomorphism of smooth spaces of the form
Rn → X.

The following proposition says that these two superficially different notions actually naturally coincide.
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Proposition 1.2.23. Let X be any smooth space, def. 1.2.16, and regard the abstract coordinate system Rn
as a smooth space, by example 1.2.18. There is a natural bijection

X(Rn) ' HomSmooth0Type(Rn, X)

between the postulated Rn-plots of X and the actual Rn-plots given by homomorphism of smooth spaces
Rn → X.

Proof. This is a special case of the Yoneda lemma. The reader unfamiliar with this should write out the
simple proof explicitly: use the defining commuting diagrams in def. 1.2.21 to deduce that a homomorphism
f : Rn → X is uniquely fixed by the image of the identity element in Rn(Rn) := CartSp(Rn,Rn) under the
component function fRn : Rn(Rn)→ X(Rn). �

Example 1.2.24. Let R ∈ Smooth0Type denote the real line, regarded as a smooth space by def. 1.2.18.
Then for X ∈ Smooth0Type any smooth space, a homomorphism of smooth spaces

f : X → R

is a smooth function on X. Proposition 1.2.23 says here that when X happens to be an abstract coordinate
system regarded as a smooth space by def. 1.2.18, then this general notion of smooth functions between
smooth spaces reproduces the basic notion of def. 1.2.2.

Definition 1.2.25. The 0-dimensional abstract coordinate system R0 we also call the point and regarded
as a smooth space we will often write it as

∗ ∈ Smooth0Type .

For any X ∈ Smooth0Type, we say that a homomorphism

x : ∗ → X

is a point of X.

Remark 1.2.26. By prop. 1.2.23 the points of a smooth space X are naturally identified with its 0-
dimensional plots, hence with the “ways of laying out a 0-dimensional coordinate system” in X:

Hom(∗, X) ' X(R0) .

1.2.2.3 Products and fiber products of smooth spaces

Definition 1.2.27. Let X,Y ∈ Smooth0Type by two smooth spaces. Their product is the smooth space
X × Y ∈ Smooth0Type whose plots are pairs of plots of X and Y :

(X × Y )(Rn) := X(Rn)× Y (Rn) ∈ Set .

The projection on the first factor is the homomorphism

p1 : X × Y → X

which sends Rn-plots of X × Y to those of X by forming the projection of the cartesian product of sets:

p1Rn : X(Rn)× Y (Rn)
p1→ X(Rn) .

Analogously for the projection to the second factor

p2 : X × Y → Y .
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Proposition 1.2.28. Let ∗ = R0 be the point, regarded as a smooth space, def. 1.2.25. Then for X ∈
Smooth0Type any smooth space the canonical projection homomorphism

X × ∗ → X

is an isomorphism.

Definition 1.2.29. Let f : X → Z and g : Y → Z be two homomorphisms of smooth spaces, def. 1.2.21.
There is then a new smooth space to be denoted

X ×Z Y ∈ Smooth0Type

(with f and g understood), called the fiber product of X and Y along f and g, and defined as follows:
the set of Rn-plots of X ×Z Y is the set of pairs of plots of X and Y which become the same plot of Z

under f and g, respectively:

(X ×Z Y )(Rn) = {(pX ∈ X(Rn), pY ∈ Y (Rn)) | fRn(pX) = gRn(pY )} .

1.2.2.4 Smooth mapping spaces and smooth moduli spaces

Definition 1.2.30. Let Σ, X ∈ Smooth0Type be two smooth spaces, def. 1.2.16. Then the smooth mapping
space

[Σ, X] ∈ Smooth0Type

is the smooth space defined by saying that its set of Rn-plots is

[Σ, X](Rn) := Hom(Σ× Rn, X) .

Here in Σ× Rn we first regard the abstract coordinate system Rn as a smooth space by example 1.2.18
and then we form the product smooth space by def. 1.2.27.

Remark 1.2.31. This means in words that an Rn-plot of the mapping space [Σ, X] is a smooth Rn-
parameterized collection of homomorphisms Σ→ X.

Proposition 1.2.32. There is a natural bijection

Hom(K, [Σ, X]) ' Hom(K × Σ, X)

for every smooth space K.

Proof. With a bit of work this is straightforward to check explicitly by unwinding the definitions. It
follows however from general abstract results once we realize that [−,−] is of course the internal hom of
smooth spaces. �

Remark 1.2.33. This says in words that a smooth function from any K into the mapping space [Σ, X] is
equivalently a smooth function from K × Σ to X. The latter we may regard as a K-parameterized smooth
collections of smooth functions Σ → X. Therefore in view of the previous remark 1.2.31 this says that
smooth mapping spaces have a universal property not just over abstract coordinate systems, but over all
smooth spaces.

We will therefore also say that [Σ, X] is the smooth moduli space of smooth functions from Σ → X,
because it is such that smooth maps K → [Σ, X] into it modulate, as we move around on K, a family of
smooth functions Σ→ X, depending on K.

Proposition 1.2.34. The set of points, def. 1.2.25, of a smooth mapping space [Σ, X] is the bare set of
homomorphisms Σ→ X: there is a natural isomorphism

Hom(∗, [Σ, X]) ' Hom(Σ, X) .
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Proof. Combine prop. 1.2.32 with prop. 1.2.28. �

Example 1.2.35. Given a smooth space X ∈ Smooth0Type, its smooth path space is the smooth mapping
space

PX := [R1, X] .

By prop. 1.2.34 the points of PX are indeed precisely the smooth trajectories R1 → X. But PX also knows
how to smoothly vary such smooth trajectories.

This is central for variational calculus which determines equations of motion in physics.

Remark 1.2.36. In physics, if X is a model for spacetime, then PX may notably be interpreted as the
smooth space of worldlines in X, hence as the smooth space of paths or trajectories of a particle in X.

Example 1.2.37. If in the above example 1.2.35 the path is constrained to be a loop in X, one obtains the
smooth loop space

LX := [S1, X]

(where the circle S1 is regarded as a smooth space by example 1.2.19).

1.2.2.5 The smooth moduli space of smooth functions In example 1.2.24 we saw that a smooth
function on a general smooth space X is a homomorphism of smooth spaces, def. 1.2.21

f : X → R .

The collection of these forms the hom-set HomSmooth0Type(X,R). But by the discussion in 1.2.2.4 such
hom-sets are naturally refined to smooth spaces themselves.

Definition 1.2.38. For X ∈ Smooth0Type a smooth space, we say that the moduli space of smooth functions
on X is the smooth mapping space (def. 1.2.30), from X into the standard real line R

[X,R] ∈ Smooth0Type .

We will also denote this by
C∞(X) := [X,R] ,

since in the special case that X is a Cartesian space this is the smooth refinement of the set C∞(X) of
smooth functions, def. 1.2.1, on X.

Remark 1.2.39. We call this a moduli space because by prop. 1.2.32 above and in the sense of remark
1.2.33 it is such that smooth functions into it modulate smooth functions X → R.

By prop. 1.2.34 a point ∗ → [X,R1] of the moduli space is equivalently a smooth function X → R1.

1.2.2.6 Outlook Later we define/see the following:

• A smooth manifold is a smooth space that is locally equivalent to a coordinate system;

• A diffeological space is a smooth space such that every coordinate labels a point in the space. In other
words, a diffeological space is a smooth space that has an underlying set Xs ∈ Set of points such that
the set of Rn-plots is a subset of the set of all functions:

X(Rn) ↪→ Functions(Rn, Ss) .

We discuss below a long sequence of faithful inclusions
{coordinate systems } ↪→ {smooth manifolds} ↪→ {diffeological spaces} ↪→ {smooth spaces} ↪→ {smooth

groupoids} ↪→ · · ·
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1.2.3 Differential forms

A fundamental concept in differential geometry is that of differential forms. We here introduce this in the
spirit of the topos of smooth spaces.

1.2.3.1 Differential forms on abstract coordinate systems We introduce the basic concept of a
smooth differential form on a Cartesian space Rn. Below in 1.2.68 we use this to define differential forms on
any smooth space.

Definition 1.2.40. For n ∈ N a smooth differential 1-form ω on the Cartesian space Rn is an n-tuple

(fi ∈ CartSp (Rn,R))
n
i=1

of smooth functions, which we think of equivalently as the coefficients of a formal linear combination

ω =

n∑
i=1

fidx
i

on a set {dx1,dx2, · · · ,dxn} of cardinality n.
Write

Ω1(Rk) ' CartSp(Rk,R)×k ∈ Set

for the set of smooth differential 1-forms on Rk.

Remark 1.2.41. We think of dxi as a measure for infinitesimal displacements along the xi-coordinate of a
Cartesian space. This idea is made precise by the notion of parallel transport.

If we have a measure of infintesimal displacement on some Rt and a smooth function f : Rs → Rt, then
this induces a measure for infinitesimal displacement on Rs: We may first send the displacement along f
from Rs to Rt and then measure it there. This is captured by the following definition.

Definition 1.2.42. For φ : Rs → Rt a smooth function, the pullback of differential 1-forms along φ is the
function

φ∗ : Ω1(Rt)→ Ω1(Rs)
between sets of differential 1-forms, def. 1.2.40, which is defined on basis-elements by

φ∗dxi :=

s∑
j=1

∂φi

∂x̃j
dx̃j

and then extended linearly by

φ∗ω = φ∗

(∑
i

ωidx
i

)

:=

t∑
i=1

(φ∗ω)i

k̃∑
j=1

∂φi

∂x̃j
dx̃j

=

t∑
i=1

k̃∑
j=1

(ωi ◦ φ) · ∂φ
i

∂x̃j
dx̃j

.

Remark 1.2.43. The term “pullback” in pullback of differential forms is not really related, certainly not
historically, to the term pullback in category theory. One can relate the pullback of differential forms to
categorical pullbacks, but this is not really essential here. The most immediate property that both concepts
share is that they take a morphism going in one direction to a map between structures over domain and
codomain of that morphism which goes in the other direction, and in this sense one is “pulling back structure
along a morphism” in both cases.
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Even if in the above definition we speak only about the set Ω1(Rk) of differential 1-forms, this set naturally
carries further structure.

Definition 1.2.44. The set Ω1(Rk) is naturally an abelian group with addition given by componentwise
addition

ω + λ =

k∑
i=1

ωidx
i +

k∑
j=1

λjdx
j

=

k∑
i=1

(ωi + λi)dx
j

,

Moreover, the abelian group Ω1(Rk) is naturally equipped with the structure of a module over the ring
C∞(Rk,R) = CartSp(Rk,R) of smooth functions, where the action C∞(Rk,R)×Ω1(Rk)→ Ω1(Rk) is given
by componentwise multiplication

f · ω =

k∑
i=1

(f · ωi)dxi .

Remark 1.2.45. More abstractly, this just says that Ω1(Rk) is the free module over C∞(Rk) on the set
{dxi}ki=1.

The following definition captures the idea that if dxi is a measure for displacement along the xi-
coordinate, and dxj a measure for displacement along the xj coordinate, then there should be a way to
get a measure, to be called dxi∧dxj , for infinitesimal surfaces (squares) in the xi-xj-plane. And this should
keep track of the orientation of these squares, with

dxj ∧ dxi = −dxi ∧ dxj

being the same infinitesimal measure with orientation reversed.

Definition 1.2.46. For k ∈ N, the smooth differential forms on Rk is the exterior algebra

Ω•(Rk) := ∧•C∞(Rk)Ω
1(Rk)

over the ring C∞(Rk) of smooth functions of the module Ω1(Rk) of smooth 1-forms, prop. 1.2.44.
For n ∈ N we write Ωn(Rk) for the sub-module of degree n and call its elements the smooth differential

n-forms.

Remark 1.2.47. Explicitly this means that a differential n-form ω ∈ Ωn(Rk) on Rk is a formal linear
combination over C∞(Rk) of basis elements of the form dxi1 ∧ · · · ∧ dxin for i1 < i2 < · · · < in:

ω =
∑

1≤i1<i2<···<in<k

ωi1,··· ,indxi1 ∧ · · · ∧ dxin .

Remark 1.2.48. The pullback of differential 1-forms of def. 1.2.40 extends as an C∞(Rk)-algebra homo-

morphism to Ωn(−), given for a smooth function f : Rk̃ → Rk on basis elements by

f∗
(
dxi1 ∧ · · · ∧ dxin

)
=
(
f∗dxi1 ∧ · · · ∧ f∗dxin

)
.
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1.2.3.2 Differential forms on smooth spaces Above we have defined differential n-forms on abstract
coordinate systems. Here we extend this definition to one of differential n-forms on arbitrary smooth spaces.
We start by observing that the space of all differential n-forms on coordinate systems is itself naturally a
smooth space.

Proposition 1.2.49. The assignment of differential n-forms

Ωn(−) : Rk 7→ Ωn(Rk)

of def. 1.2.46 together with the pullback of differential forms-functions of def. 1.2.48

Rk1 � // Ω1(Rk1)

f∗

��
Rk2

f

OO

� // Ω1(Rk2)

defines a smooth space in the sense of def. 1.2.16:

Ωn(−) ∈ Smooth0Type .

Definition 1.2.50. We call this
Ωn ∈ Smooth0Type

the universal smooth moduli space of differential n-forms.

The reason for this terminology is that homomorphisms of smooth spaces into Ω1 modulate differential
n-forms on their domain, by prop. 1.2.23 (and hence by the Yoneda lemma):

Example 1.2.51. For the Cartesian space Rk regarded as a smooth space by example 1.2.18, there is a
natural bijection

Ωn(Rk) ' Hom(Rk,Ωn)

between the set of smooth n-forms on Rn according to def. 1.2.40 and the set of homomorphism of smooth
spaces, Rk → Ωn, according to def. 1.2.21.

In view of this we have the following elegant definition of smooth n-forms on an arbitrary smooth space.

Definition 1.2.52. For X ∈ Smooth0Type a smooth space, def. 1.2.16, a differential n-form on X is a
homomorphism of smooth spaces of the form

ω : X → Ωn(−) .

Accordingly we write
Ωn(X) := Smooth0Type(X,Ωn)

for the set of smooth n-forms on X.

We may unwind this definition to a very explicit description of differential forms on smooth spaces. This
we do in a moment in remark 1.2.56.

Notice the following

Proposition 1.2.53. Differential 0-forms are equivalently smooth R-valued functions:

Ω0 ' R .
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Definition 1.2.54. For f : X → Y a homomorphism of smooth spaces, def. 1.2.21, the pullback of differential
forms along f is the function

f∗ : Ωn(Y )→ Ωn(X)

given by the hom-functor into the smooth space Ωn of def. 1.2.50:

f∗ := Hom(f,Ωn) .

This means that it sends an n-form ω ∈ Ωn(Y ) which is modulated by a homomorphism Y → Ωn to the

n-form f∗ω ∈ Ωn(X) which is modulated by the composite X
f→ Y → Ωn.

By the Yoneda lemma we find:

Proposition 1.2.55. For X = Rk̃ and Y = Rk definition 1.2.54 reproduces def. 1.2.48.

Remark 1.2.56. Using def. 1.2.54 for unwinding def. 1.2.52 yields the following explicit description:
a differential n-form ω ∈ Ωn(X) on a smooth space X is

1. for each way φ : Rk → X of laying out a coordinate system Rk in X a differential n-form

φ∗ω ∈ Ωn(Rk)

on the abstract coordinate system, as given by def. 1.2.46;

2. for each abstract coordinate transformation f : Rk2 → Rk1 a corresponding compatibility condition
between local differential forms φ1 : Rk1 → X and φ2 : Rk2 → X of the form

f∗φ∗1ω = φ∗2ω .

Hence a differential form on a smooth space is simply a collection of differential forms on all its coordinate
systems such that these glue along all possible coordinate transformations.

The following adds further explanation to the role of Ωn ∈ Smooth0Type as a moduli space. Notice that
since Ωn is itself a smooth space, we may speak about differential n-forms on Ωn itself.

Definition 1.2.57. The universal differential n-form is the differential n-form

ωnuniv ∈ Ωn(Ωn)

which is modulated by the identity homomorphism id: Ωn → Ωn.

With this definition we have:

Proposition 1.2.58. For X ∈ Smooth0Type any smooth space, every differential n-form on X, ω ∈ Ωn(X)
is the pullback of differential forms, def. 1.2.54, of the universal differential n-form, def. 1.2.57, along a
homomorphism f from X into the moduli space Ωn of differential n-forms:

ω = f∗ωnuniv .

Remark 1.2.59. This statement is of course a tautology. Nevertheless it is a very useful tautology to make
explicit. The whole concept of differential forms on smooth spaces here may be thought of as simply a
variation of the theme of the Yoneda lemma.
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1.2.3.3 Concrete smooth spaces The smooth universal moduli space of differential forms Ωn(−) from
def. 1.2.50 is noteworthy in that it has a property not shared by many smooth spaces that one might think
of more naively: while evidently being “large” (the space of all differential forms!) it has “very few points”
and“very few k-dimensional subspaces” for low k. In fact

Proposition 1.2.60. For k < n the smooth space Ωn (def. 1.2.50) admits only a unique probe by Rk:

Hom(Rk,Ωn) ' Ωn(Rk) = {0} .

So while Ωn is a large smooth space, it is “not supported on probes” in low dimensions in as much as
one might expect, from more naive notions of smooth spaces.

We now formalize this. The formal notion of a smooth space which is supported on its probes is that of a
concrete object. There is a universal map that sends any smooth space to its concretification. The universal
moduli spaces of differential forms turn out to be non-concrete in that their concretification is the point.

Definition 1.2.61. For X ∈ Smooth0Type a smooth space (definition 1.2.22), write

Γ(X) ∈ Set

for its underlying set of points which is equivalently

Γ(X) := X(R0) = HomSmooth0Type(∗, X) .

This extends to a functor
Γ : Smooth0Type −→ Set .

Remark 1.2.62. If thinking of the category of smooth spaces as a category of sheaves, then the functor Γ
in def. 1.2.61 is called its global section functor.

Definition 1.2.63. Let X ∈ Smooth0Type a smooth space (definition 1.2.22). We write ]X for the smooth
space whose plots are given by all maps of underlying sets

]X : Rn 7→ HomSet(Γ(Rn),Γ(X))

(where Γ is the functor from def. 1.2.61). Moreover, we define a natural morphism of smooth spaces

DeCohX : X −→ ]X

given on Rn-plots by the function

X(Rn)
'−→ HomSmooth0Type(Rn, X)

ΓRn,X→ Set(Γ(U),Γ(X)) ,

where the first function is the bijection from the Yoneda lemma (prop. 1.2.23) and the second function is
the components of the functor Γ from def. 1.2.61.

Definition 1.2.64. Let X ∈ Smooth0Type a smooth space (definition 1.2.22).

1. We call X concrete if the morphism
DeCohX : X → ]X

(from def. 1.2.63) is a monomorphism.

2. We say the concretification Conc(X) ∈ Smooth0Type of X is the image factorization of DeCohX ,
hence the factorization into an epimorphism followed by a monomorphism

DeCohX : X −→ Conc(X) ↪→ ]X .

Remark 1.2.65. Hence the concretification Conc(X) of a smooth space X is itself a concrete smooth space
and it is universal with this property.

Proposition 1.2.66. For n ≥ 1 we have
Conc(Ωn) ' ∗ .

In this sense the smooth moduli space of differential n-forms is maximally non-concrete.
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1.2.3.4 Smooth moduli spaces of differential forms on a smooth space We discuss the smooth
space of differential forms on a fixed smooth space X.

Remark 1.2.67. Let X ∈ Smooth0Type a smooth space (definition 1.2.22). Then the mapping space (def.
1.2.30)

[X,Ωn] ∈ Smooth0Type

is the smooth space whose Rk-plots are differential n-forms on the product X × Rk

[X,Ωn] : Rk 7→ Ωn(X × Rk) .

This is not quite what one usually wants to regard as an Rk-parameterized collection of differential forms on
X. That is instead usually meant to be a differential form ω on X×Rk which has “no leg along Rk”. Another
way to say this is that the family of forms on X that is represented by some ω on X ×Rk is that which over
a point v : ∗ → Rk has the value (idX , v)∗ω. Under this pullback of differential forms any components of ω
with “legs along Rk” are identified with the 0 differential form.

This is captured by the following definition.

Definition 1.2.68. For X ∈ Smooth0Type and n ∈ N, the smooth space of differential n-forms Ωn(X) on
X is the concretification, def. 1.2.64, of the smooth mapping space [X,Ωn], def. 1.2.30, into the smooth
moduli space of differential n-forms, def. 1.2.50:

Ωn(X) := Conc([X,Ωn]) .

Proposition 1.2.69. The Rk-plots of Ωn(Rk) (def. 1.2.68) are indeed smooth differential n-forms on X×Rk
which are such that their evaluation on vector fields tangent to Rk vanish.

Proof. By def. 1.2.64 and prop. 1.2.63 the set of plots of Ωn(X) over Rk is the image of the function

Ωn(X × Rk) ' HomSmooth0Type(Rk, [X,Ωn])
ΓRk,[X,Ωn]→ HomSet(Γ(Rk),Γ[X,Ωn]) ' HomSet(Rks ,Ωn(X)) ,

where on the right Rks denotes, just for emphasis, the underlying set of Rks . This function manifestly sends
a smooth differential form ω ∈ Ωn(X × Rk) to the function from points v of Rk to differential forms on X
given by

ω 7→ (v 7→ (idX , v)∗ω) .

Under this function all components of differential forms with a ”leg along” Rk are sent to the 0-form.
Hence the image of this function is the collection of smooth forms on X × Rk with “no leg along Rk”. �

Remark 1.2.70. For n = 0 we have (for any X ∈ Smooth0Type)

Ω0(X) := Conc[X,Ω0]

' Conc[X,R]

' [X,R] ,

by prop. 1.2.53.

1.2.4 Integration

We discuss the traditional concept of fiber integration and of transgression of differential forms, (e.g.
[BoTo82]) along the lines of 1.2.3.
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Definition 1.2.71. Given a closed oriented smooth manifold Σ of dimension k, and any smooth manifold
U , write ∫

Σ

(U) : Ωn+k(U × Σ)→ Ωn(U)

for the traditional operation of fiber integration of differential forms over Σ. For every smooth function
φ : U1 → U2 these operations form a commuting square of the form

Ωn+k(U1 × Σ)

∫
Σ

(U1)
// Ωn(U1)

Ωn+k(U2 × Σ)

∫
Σ

(U2)
//

(φ,id)∗

OO

Ωn(U2)

φ∗

OO

In view of the internal hom adjunction ((−) × Σ a [Σ,−]) in Smooth0Type and with the smooth set of
differential forms Ωn ∈ Smooth0Type as in def. 1.2.49, this means equivalently that fiber integration of
differential forms over Σ for arbitrary base manifolds U is a morphism in Smooth0Type the forms∫

Σ

: [Σ,Ωn+k] −→ Ωn .

Definition 1.2.72. With Σ a compact oriented smooth manifold, and X any smooth manifold, then the
traditional construction of transgression of differential forms on X to the smooth mapping space [Σ, X] is
the composite ∫

Σ

◦ ev∗ : Ωn+k(X) −→ Ωn([Σ, X]) ,

of pulling back along the canonical evaluation map

ev : [Σ, X]× Σ −→ X

followed by fiber integration over Σ (def 1.2.71).

We will have extensive use of the following equivalent re-formulation of this traditional definition:

Proposition 1.2.73. Under the natural identification Ω•(X) ' Smooth0Type(X,Ω•) of example 1.2.51,
def. 1.2.52, the traditional transgression morphism of def. 1.2.72 is given by sending a differential form
modulated by a morphism A : X → Ωn+k to the differential form modulated by the composite∫

Σ

[Σ, A] : [Σ, X]
[Σ,A] // [Σ,Ωn+k]

∫
Σ // Ωn .

Proof. We need to check that for all plots γ : U → [Σ, X] the pullbacks of the two forms to U coincide.
For the traditional formula we have, by def. 1.2.71,

γ∗
∫

Σ

ev∗A =

∫
Σ

(γ, idΣ)∗ev∗A ∈ Ωn(U)

Here we recognize in the integrand the pullback along the ((−) × Σ a [Σ,−])-adjunct γ̃ : U × Σ → Σ of γ,
which is given by applying the left adjoint (−)× Σ and then postcomposing with the adjunction counit ev:

U × Σ
(γ,idΣ) // [Σ, X]× Σ

ev // X

.

Hence the integral is now

· · · =
∫

Σ

γ̃∗A .
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This is the operation of the top horizontal composite in the following naturality square for adjuncts, and so
the claim follows by its commutativity:

γ̃ ∈ H(U × Σ, X)

'
��

H(U×Σ,A) // H(U × Σ,Ωn+k)

∫
Σ

(U)
//

'
��

Ωn(U)

'
��

γ ∈ H(U, [Σ, X])
H(U,[Σ,A]) // H(U, [Σ,Ωn+k])

H(U,
∫
Σ

)
// H(U,Ωn)

.

�

An application of transgression of differential forms as above is the following operation in def. 1.2.74,
which corresponds to a special case of what in physics is called “double dimensional reduction”, since it
reduces both the dimension of a manifold as well as the degree of the differential forms on it. We discuss
double dimensional reduction is more detail and in fully generality in 5.1.15, the following is a concrete
special case:

Definition 1.2.74. Given a closed oriented smooth manifold Σ of dimension k, and given any smooth space
X, then we say that double dimensional reduction of smooth differential forms is the map

Ωn+k(X × Σ) −→ Ωn(X)

given by sending a differential form
A : X × Σ −→ Ωn+k

to the pullback of its transgression to the mapping space [Σ, X × Σ], via prop. 1.2.73, along the canonical
smooth function X → [Σ, X × Σ] (the unit of the (−)× Σ a [Σ,−])-adjunction.

X // [Σ, X × Σ]
[Σ,A] // [Σ,Ωn+k]

∫
Σ // Ωn

1.2.5 Smooth homotopy types

Here we give an introduction to and a survey of the general theory of cohesive differential geometry that is
developed in detail in 4 below.

The framework of all our constructions is topos theory [Joh02] or rather, more generally, ∞-topos theory
[L-Topos]. In 1.2.5.1 and 1.2.5.2 below we recall and survey basic notions with an eye towards our central
example of an ∞-topos: that of smooth ∞-groupoids. In these sections the reader is assumed to be familiar
with basic notions of category theory (such as adjoint functors) and basic notions of homotopy theory (such
as weak homotopy equivalences). A brief introduction to relevant basic concepts (such as Kan complexes
and homotopy pullbacks) is given in section 1.2.5, which can be read independently of the discussion here.

Then in 1.2.5.3 and 1.2.5.4 we describe, similarly in a leisurely manner, the intrinsic notions of cohomology
and geometric homotopy in an∞-topos. Several aspects of the discussion are fairly well-known, we put them
in the general perspective of (cohesive) ∞-topos theory and then go beyond.

Finally in 1.2.7.2 we indicate how the combination of the intrinsic cohomology and geometric homotopy
in a locally ∞-connected ∞-topos yields an intrinsic notion of differential cohomology in an ∞-topos.

• 1.2.5.1 – Toposes;

• 1.2.5.2 – ∞-Toposes;

• 1.2.5.3 – Cohomology;

• 1.2.5.4 – Homotopy;

• 1.2.7.2 – Differential cohomology.

Each of these topics surveyed here are discussed in technical detail below in 4.
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1.2.5.1 Toposes There are several different perspectives on the notion of topos. One is that a topos is a
category that looks like a category of spaces that sit by local homeomorphisms over a given base space: all
spaces that are locally modeled on a given base space.

The archetypical class of examples are sheaf toposes over a topological space X denoted Sh(X). These
are equivalently categories of étale spaces over X: topological spaces Y that are equipped with a local
homeomorphism Y → X. When X = ∗ is the point, this is just the category Set of all sets: spaces that are
modeled on the point. This is the archetypical topos itself.

What makes the notion of toposes powerful is the following fact: even though the general topos contains
objects that are considerably different from and possibly considerably richer than plain sets and even richer
than étale spaces over a topological space, the general abstract category theoretic properties of every topos
are essentially the same as those of Set. For instance in every topos all small limits and colimits exist and
it is cartesian closed (even locally). This means that a large number of constructions in Set have immediate
analogs internal to every topos, and the analogs of the statements about these constructions that are true
in Set are true in every topos.

This may be thought of as saying that toposes are very nice categories of spaces in that whatever
construction on spaces one thinks of – for instance formation of quotients or of intersections or of mapping
spaces – the resulting space with the expected general abstract properties will exist in the topos. In this
sense toposes are convenient categories for geometry – as in: convenient category of topological spaces, but
even more convenient than that.

On the other hand, we can de-emphasize the role of the objects of the topos and instead treat the topos
itself as a generalized space (and in particular, a categorified space). We then consider the sheaf topos Sh(X)
as a representative of X itself, while toposes not of this form are “honestly generalized” spaces. This point
of view is supported by the fact that the assignment X 7→ Sh(X) is a full embedding of (sufficiently nice)
topological spaces into toposes, and that many topological properties of a space X can be detected at the
level of Sh(X).

Here we are mainly concerned with toposes that are far from being akin to sheaves over a topological
space, and instead behave like abstract fat points with geometric structure. This implies that the objects of
these toposes are in turn generalized spaces modeled locally on this geometric structure. Such toposes are
called gros toposes or big toposes. There is a formalization of the properties of a topos that make it behave
like a big topos of generalized spaces inside of which there is geometry: this is the notion of cohesive toposes.

1.2.5.1.1 Sheaves More concretely, the idea of sheaf toposes formalizes the idea that any notion of
space is typically modeled on a given collection of simple test spaces. For instance differential geometry
is the geometry that is modeled Cartesian spaces Rn, or rather on the category C = CartSp of Cartesian
spaces and smooth functions between them.

A presheaf on such C is a functor X : Cop → Set from the opposite category of C to the category of
sets. We think of this as a rule that assigns to each test space U ∈ C the set X(U) =: Maps(U,X) of
structure-preserving maps from the test space U into the would-be space X - the probes of X by the test
space U . This assignment defines the generalized space X modeled on C. Every category of presheaves
over a small category is an example of a topos. But these presheaf toposes, while encoding the geometry
of generalized spaces by means of probes by test spaces in C fail to correctly encode the topology of these
spaces. This is captured by restricting to sheaves among all presheaves.

Each test space V ∈ C itself specifies presheaf, by forming the hom-sets Maps(U, V ) := HomC(U, V ) in
C. This is called the Yoneda embedding of test spaces into the collection of all generalized spaces modeled
on them. Presheaves of this form are the representable presheaves. A bit more general than these are the
locally representable presheaves: for instance on C = CartSp this are the smooth manifolds X ∈ SmoothMfd,
whose presheaf-rule is Maps(U,X) := HomSmoothMfd(U,X). By definition, a manifold is locally isomorphic
to a Cartesian space, hence is locally representable as a presheaf on CartSp.

These examples of presheaves on C are special in that they are in fact sheaves: the value of X on a test
space U is entirely determined by the restrictions to each Ui in a cover {Ui → U}i∈I of the test space U by
other test spaces Ui. We think of the subcategory of sheaves Sh(C) ↪→ PSh(C) as consisting of those special

85



presheaves that are those rules of probe-assignments which respect a certain notion of ways in which test
spaces Ui ∈ C may glue into U ∈ C.

One may axiomatize this by declaring that the collections of all covers under consideration forms what
is called a Grothendieck topology on C that makes C a site. But of more intrinsic relevance is the equivalent
fact that categories of sheaves are precisely the subtoposes of presheaf toposes

Sh(C)
oo L
� � // PSh(C) [Cop,Set] ,

meaning that the embedding Sh(X) ↪→ PSh(X) has a left adjoint functor L that preserves finite limits.
This may be taken to be the definition of Grothendieck toposes. The left adjoint is called the sheafification
functor. It is determined by and determines a Grothendieck topology on C.

For the choice C = CartSp such is naturally given by the good open cover coverage, which says that a
bunch of maps {Ui → U} in C exhibit the test object U as being glued together from the test objects {Ui}
if these form a good open cover of U . With this notion of coverage every smooth manifold is a sheaf on
CartSp.

But there are important generalized spaces modeled on CartSp that are not smooth manifolds: topological
spaces for which one can consistently define which maps from Cartesian spaces into them count as smooth
in a way that makes this assignment a sheaf on CartSp, but which are not necessarily locally isomorphic
to a Cartesian space: these are called diffeological spaces. A central example of a space that is naturally
a diffeological space but not a finite dimensional manifold is a mapping space [Σ, X] of smooth functions
between smooth manifolds Σ and X: since the idea is that for U any Cartesian space the smooth U -
parameterized families of points in [Σ, X] are smooth U -parameterized families of smooth maps Σ→ X, we
can take the plot-assigning rule to be

[Σ, X] : U 7→ HomSmoothMfd(Σ× U,X) .

It is useful to relate all these phenomena in the topos Sh(C) to their image in the archetypical topos Set.
This is simply the category of sets, which however we should think of here as the category Set ' Sh(∗) of
sheaves on the category ∗ which contains only a single object and no nontrivial morphism: objects in here
are generalized spaces modeled on the point. All we know about them is how to map the point into them,
and as such they are just the sets of all possible such maps from the point.

Every category of sheaves Sh(C) comes canonically with an essentially unique topos morphism to the
topos of sets, given by a pair of adjoint functors

Sh(C)
Γ
//

oo Disc
Sh(∗) ' Set .

Here Γ is called the global sections functor. If C has a terminal object ∗, then it is given by evaluation
on that object: the functor Γ sends a plot-assigning rule X : Cop → Set to the set of plots by the point
Γ(X) = X(∗). For instance in C = CartSp the terminal object exists and is the ordinary point ∗ = R0. If
X ∈ Sh(C) is a smooth manifold or diffeological space as above, then Γ(X) ∈ Set is simply its underlying
set of points. So the functor Γ can be thought of as forgetting the cohesive structure that is given by the
fact that our generalized spaces are modeled on C. It remembers only the underlying point-set.

Conversely, its left adjoint functor Disc takes a set S to the sheafification Disc(S) = LConst(S) of the
constant presheaf Const : U 7→ S, which asserts that the set of its plots by any test space is always the
same set S. This is the plot-rule for the discrete space modeled on C given by the set S: a plot has to be a
constant map of the test space U to one of the elements s ∈ S. For the case C = CartSp this interpretation
is literally true in the familiar sense: the generalized smooth space Disc(S) is the discrete smooth manifold
or discrete diffeological space with point set S.

1.2.5.1.2 Concrete and non-concrete sheaves The examples for generalized spaces X modeled
on C that we considered so far all had the property that the collection of plots U → X into them was a
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subset of the set of maps of sets from U to their underlying set Γ(X) of points. These are called concrete
sheaves. Not every sheaf is concrete. The concrete sheaves form a subcategory inside the full topos which is
itself almost, but not quite a topos: it is the quasitopos of concrete objects.

Conc(C)
oo
� � // Sh(C) .

Non-concrete sheaves over C may be exotic as compared to smooth manifolds, but they are still usefully
regarded as generalized spaces modeled on C. For instance for n ∈ N there is the sheaf κ(n,R) given by
saying that plots by U ∈ CartSp are identified with closed differential n-forms on U :

κ(n,R) : U 7→ Ωncl(U) .

This sheaf describes a very non-classical space, which for n ≥ 1 has only a single point, Γ(κ(n,R)) = ∗ , only
a single curve, a single surface, etc., up to a single (n−1)-dimensional probe, but then it has a large number
of n-dimensional probes. Despite the fact that this sheaf is very far in nature from the test spaces that it is
modeled on, it plays a crucial and very natural role: it is in a sense a model for an Eilenberg-MacLane space
K(n,R). We shall see in 6.4.14 that these sheaves are part of an incarnation of the ∞-Lie-algebra bnR and
the sense in which it models an Eilenberg-MacLane space is that of Sullivan models in rational homotopy
theory. In any case, we want to allow ourselves to regard non-concrete objects such as κ(n,R) on the same
footing as diffeological spaces and smooth manifolds.

1.2.5.2 ∞-Toposes While therefore a general object in the sheaf topos Sh(C) may exhibit a considerable
generalization of the objects U ∈ C that it is modeled on, for many natural applications this is still not quite
general enough: if for instance X is a smooth orbifold (see for instance [MoPr97]), then there is not just a
set, but a groupoid of ways of probing it by a Cartesian test space U : if a probe γ : U → X is connected by
an orbifold transformation to another probe γ′ : U → X, then this constitutes a morphism in the groupoid
X(U) of probes of X by U .

Even more generally, there may be a genuine∞-groupoid of probes of the generalized space X by the test
space U : a set of probes with morphisms between different probes, 2-morphisms between these 1-morphisms,
and so on.

Such structures are described in ∞-category theory : where a category has a set of morphisms between
any two objects, an ∞-category has an ∞-groupoid of morphisms, whose compositions are defined up to
higher coherent homotopy. The theory of ∞-categories is effectively the combination of category theory
and homotopy theory. The main fact about it, emphasized originally by André Joyal and then further
developed in [L-Topos], is that it behaves formally entirely analogously to category theory: there are notions
of ∞-functors, ∞-limits, adjoint ∞-functors etc., that satisfy all the familiar relations from category theory.

1.2.5.2.1 ∞-Groupoids We first look at bare ∞-groupoids and then discuss how to equip these
with smooth structure.

An ∞-groupoid is first of all supposed to be a structure that has k-morphisms for all k ∈ N, which for
k ≥ 1 go between (k−1)-morphisms. A useful tool for organizing such collections of morphisms is the notion
of a simplicial set. This is a functor with valiues in sets on the opposite category of the simplex category
∆ (hence a presheaf on ∆), whose objects are the abstract cellular k-simplices, denoted [k] or ∆[k] for all
k ∈ N, and whose morphisms ∆[k1] → ∆[k2] are all ways of mapping these into each other. So we think of
such a simplicial set given by a functor

K : ∆op → Set

as specifying

• a set [0] 7→ K0 of objects;

• a set [1] 7→ K1 of morphisms;

• a set [2] 7→ K2 of 2-morphisms;
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• a set [3] 7→ K3 of 3-morphisms;

and generally

• a set [k] 7→ Kk of k-morphisms.

as well as specifying

• functions ([n] ↪→ [n+ 1]) 7→ (Kn+1 → Kn) that send n+ 1-morphisms to their boundary n-morphisms;

• functions ([n + 1] → [n]) 7→ (Kn → Kn+1) that send n-morphisms to identity (n + 1)-morphisms on
them.

The fact that K is supposed to be a functor enforces that these assignments of sets and functions satisfy
conditions that make consistent our interpretation of them as sets of k-morphisms and source and target
maps between these. These are called the simplicial identities. But apart from this source-target matching,
a generic simplicial set does not yet encode a notion of composition of these morphisms.

For instance for Λ1[2] the simplicial set consisting of two attached 1-cells

Λ1[2] =


1

��
0

@@

2


and for (f, g) : Λ1[2] → K an image of this situation in K, hence a pair x0

f→ x1
g→ x2 of two composable

1-morphisms in K, we want to demand that there exists a third 1-morphisms in K that may be thought of

as the composition x0
h→ x2 of f and g. But since we are working in higher category theory, we want to

identify this composite only up to a 2-morphism equivalence

x1

g

!!
x0

f
==

h
// x2

'��
.

From the picture it is clear that this is equivalent to demanding that for Λ1[2] ↪→ ∆[2] the obvious inclusion
of the two abstract composable 1-morphisms into the 2-simplex we have a diagram of morphisms of simplicial
sets

Λ1[2]
(f,g) //

��

K

∆[2]

∃h

== .

A simplicial set where for all such (f, g) a corresponding such h exists may be thought of as a collection of
higher morphisms that is equipped with a notion of composition of adjacent 1-morphisms.

For the purpose of describing groupoidal composition, we now want that this composition operation has
all inverses. For that purpose, notice that for

Λ2[2] =


1

g

��
0

h
// 2


the simplicial set consisting of two 1-morphisms that touch at their ends, hence for

(g, h) : Λ2[2]→ K
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two such 1-morphisms in K, then if g had an inverse g−1 we could use the above composition operation to
compose that with h and thereby find a morphism f connecting the sources of h and g. This being the case
is evidently equivalent to the existence of diagrams of morphisms of simplicial sets of the form

Λ2[2]
(g,h) //

��

K

∆[2]

∃f

== .

Demanding that all such diagrams exist is therefore demanding that we have on 1-morphisms a composition
operation with inverses in K.

In order for this to qualify as an∞-groupoid, this composition operation needs to satisfy an associativity
law up to 2-morphisms, which means that we can find the relevant tetrahedra in K. These in turn need to
be connected by pentagonators and ever so on. It is a nontrivial but true and powerful fact, that all these
coherence conditions are captured by generalizing the above conditions to all dimensions in the evident way:

Let Λi[n] ↪→ ∆[n] be the simplicial set – called the ith n-horn – that consists of all cells of the n-simplex
∆[n] except the interior n-morphism and the ith (n− 1)-morphism.

Then a simplicial set is called a Kan complex, if for all images f : Λi[n] → K of such horns in K, the
missing two cells can be found in K – in that we can always find a horn filler σ in the diagram

Λi[n]
f //

��

K

∆[n]

∃σ

== .

The basic example is the nerve N(C) ∈ sSet of an ordinary groupoid C, which is the simplicial set with
N(C)k being the set of sequences of k composable morphisms in C. The nerve operation is a full and faithful
functor from 1-groupoids into Kan complexes and hence may be thought of as embedding 1-groupoids in the
context of general ∞-groupoids.

Groupoids
I i

vv

� v

N

))
Categories� u

N

((

KanComplexes
hH

uu
QuasiCategories� _

��

' ∞-Categories

SimplicialSets

But we need a bit more than just bare ∞-groupoids. In generalization of Lie groupoids, hence of smooth
1-groupoids, we need smooth ∞-groupoids. A useful way to encode that an ∞-groupoid has extra structure
modeled on geometric test objects that themselves form a category C is to remember the rule which for each
test space U in C produces the ∞-groupoid (i.e. the Kan complex) of U -parameterized families of objects,
morphisms and higher morphisms in K. For instance for a smooth ∞-groupoid we could test with each
Cartesian space U = Rn and find the ∞-groupoids K(U) of smooth n-parameter families of k-morphisms in
K.

This data of U -families arranges itself into a presheaf with values in Kan complexes

K : Cop → KanCplx ↪→ sSet ,
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hence with values in simplicial sets. This is equivalently a simplicial presheaf of sets. The functor category
[Cop, sSet] on the opposite category of the category of test objects C serves as a model for the ∞-category
of ∞-groupoids with C-structure.

While there are no higher morphisms in this functor 1-category that could for instance witness that two
∞-groupoids are not isomorphic, but still equivalent, it turns out that all one needs in order to reconstruct
all these higher morphisms (up to equivalence!) is just the information of which morphisms of simplicial
presheaves would become invertible if we were keeping track of higher morphisms. These would-be invertible

morphisms are called weak equivalences and denoted K1
'→ K2.

For common choices of C there is a well-understood way to define the weak equivalencesW ⊂ Mor[Cop, sSet],
and equipped with this information the category of simplicial presheaves becomes a category with weak equiva-
lences. There is a well-developed but somewhat intricate theory of how exactly this 1-categorical data models
the full higher category of structured groupoids that we are after, but for our purposes here we essentially
only need to work inside the category of fibrant objects of a model structure on presheaves, which in practice
amounts to the fact that we use the following two basic constructions:

1. ∞-anafunctor A morphism X → Y between ∞-groupoids with C-structure is not just a morphism
X → Y in [Cop, sSet], but is a span of such ordinary morphisms

X̂ //

'
��

Y

X

,

where the left leg is a weak equivalence. This is sometimes called an ∞-anafunctor from X to Y .

2. homotopy pullback – For A → B
p← C a diagram, the ∞-pullback of it is the ordinary pullback in

[Cop, sSet] of a replacement diagram A → B
p̂← Ĉ, where p̂ is a good replacement of p in the sense of

the following factorization lemma.

Proposition 1.2.75 (factorization lemma). For p : C → B a morphism in [Cop, sSet], a good replacement
p̂ : Ĉ → B is given by the composite vertical morphism in the ordinary pullback diagram

Ĉ //

��

C

p

��
B∆[1] //

��

B

B

,

where B∆[1] is the path object of B: the presheaf that is over each U ∈ C the simplicial path space B(U)∆[1].

1.2.5.2.2 ∞-Sheaves / ∞-Stacks In particular, there is a notion of ∞-presheaves on a category
(or ∞-category) C: ∞-functors

X : Cop →∞Grpd

to the ∞-category ∞Grpd of ∞-groupoids – there is an ∞-Yoneda embedding, and so on. Accordingly,
∞-topos theory proceeds in its basic notions along the same lines as we sketched above for topos theory: An
∞-topos of ∞-sheaves is defined to be a reflective sub-∞-category

Sh(∞,1)(C)
oo L
� � // PSh(∞,1)(C)
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of an ∞-category of ∞-presheaves, such that the localization functor L preserves finite ∞-limits. As before,
such is essentially determined by and determines a Grothendieck topology or coverage on C. Since a 2-sheaf
with values in groupoids is usually called a stack, an ∞-sheaf is often also called an ∞-stack.

In the spirit of the above discussion, the objects of the ∞-topos of ∞-sheaves on C = CartSp we shall
think of as smooth ∞-groupoids. This is our main running example. We shall write Smooth∞Grpd :=
Sh∞(CartSp) for the ∞-topos of smooth ∞-groupoids.

Let

• C := SmoothMfd be the category of all smooth manifolds (or some other site, here assumed to have
enough points);

• gSh(C) be the category of groupoid-valued sheaves over C,

for instance X = { X //// X },BG = { G //// ∗ } ∈ gSh(C);

• HogSh(C) the homotopy category obtained by universally turning the stalkwise groupoid-equivalences
into isomorphisms.

Fact: H1(X,G) ' HogSh(C)(X,BG). Let

• sSet(C)lfib ↪→ Sh(C, sSet) be the stalkwise Kan simplicial sheaves;

• LW sSh(C)lfib the simplicial localization obtained by universally turning stalkwise homotopy equiva-
lences into homotopy equivalences.

Definition/Theorem. This is the ∞-category theory analog of the sheaf topos over C, the ∞-stack ∞-
topos: H := Sh∞(C) ' LW sSh(C)lfib.
Example. Smooth∞Grpd := Sh∞(SmoothMfd) is the ∞-topos of smooth ∞-groupoids.
Proposition. Every object in Smooth∞Grpd is presented by a simplicial manifold, but not necessarily by
a locally Kan simplicial manifold (see below).

But a crucial point of developing our theory in the language of ∞-toposes is that all constructions work
in great generality. By simply passing to another site C, all constructions apply to the theory of generalized
spaces modeled on the test objects in C. Indeed, to really capture all aspects of∞-Lie theory, we should and
will adjoin to our running example C = CartSp that of the slightly larger site C = FormalSmoothCartSp of
infinitesimally thickened Cartesian spaces. Ordinary sheaves on this site are the generalized spaces considered
in synthetic differential geometry : these are smooth spaces such as smooth loci that may have infinitesimal
extension. For instance the first order jet D ⊂ R of the origin in the real line exists as an infinitesimal space
in Sh(FormalSmoothCartSp). Accordingly, ∞-groupoids modeled on FormalSmoothCartSp are smooth ∞-
groupoids that may have k-morphisms of infinitesimal extension. We will see that a smooth ∞-groupoid
all whose morphisms has infinitesimal extension is a Lie algebra or Lie algebroid or generally an ∞-Lie
algebroid.

While ∞-category theory provides a good abstract definition and theory of ∞-groupoids modeled on
test objects in a category C in terms of the ∞-category of ∞-sheaves on C, for concrete manipulations it is
often useful to have a presentation of the ∞-categories in question in terms of generators and relations in
ordinary category theory. Such a generators-and-relations-presentation is provided by the notion of a model
category structure. Specifically, the ∞-toposes of ∞-presheaves that we are concerned with are presented in
this way by a model structure on simplicial presheaves, i.e. on the functor category [Cop, sSet] from C to the
category sSet of simplicial sets. In terms of this model, the corresponding ∞-category of ∞-sheaves is given
by another model structure on [Cop, sSet], called the left Bousfield localization at the set of covers in C.

These models for ∞-stack ∞-toposes have been proposed, known and studied since the 1970s and are
therefore quite well understood. The full description and proof of their abstract role in ∞-category theory
was established in [L-Topos].

As before for toposes, there is an archetypical∞-topos, which is∞Grpd = Sh(∞,1)(∗) itself: the collection
of generalized ∞-groupoids that are modeled on the point. All we know about these generalized spaces is
how to map a point into them and what the homotopies and higher homotopies of such maps are, but
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no further extra structure. So these are bare ∞-groupoids without extra structure. Also as before, every
∞-topos comes with an essentially unique geometric morphism to this archetypical ∞-topos given by a pair
of adjoint ∞-functors

Sh(∞,1)(C)DiscΓ�� OO ∞Grpd .

Again, if C happens to have a terminal object ∗, then Γ is the operation that evaluates an ∞-sheaf on
the point: it produces the bare ∞-groupoid underlying an ∞-groupoid modeled on C. For instance for
C = CartSp a smooth ∞-groupoid X ∈ Sh(∞,1)(C) is sent by Γ to to the underlying ∞-groupoid that
forgets the smooth structure on X.

Moreover, still in direct analogy to the 1-categorical case above, the left adjoint Disc is the ∞-functor
that sends a bare ∞-groupoid S to the ∞-stackification DiscS = LConstS of the constant ∞-presheaf on S.
This models the discretely structured∞-groupoid on S. For instance for C = CartSp we have that DiscS is a
smooth∞-groupoid with discrete smooth structure: all smooth families of points in it are actually constant.

1.2.5.2.3 Structured ∞-Groups It is clear that we may speak of group objects in any topos, (or
generally in any category with finite products): objects G equipped with a multiplication G×G→ G and a
neutral element ∗ → G such that the multiplication is unital, associative and has inverses for each element.
In a sheaf topos, such a G is equivalently a sheaf of groups. For instance every Lie group canonically becomes
a group object in Sh(CartSp).

As we pass to an ∞-topos the situation is essentially the same, only that the associativity condition is
replaced by associativity up to coherent homotopy (also called: up to strong homotopy), and similarly for
the unitalness and the existence of inverses. One way to formalize this is to say that a group object in an
∞-topos H is an A∞-algebra object G such that its 0-truncation τ0G is a group object in the underlying
1-topos. (This is discussed in [L-Alg].)

For instance in the ∞-topos over CartSp a Lie group still naturally is a group object, but also a Lie
2-group or differentiable group stack is. Moreover, every sheaf of simplicial groups presents a group object in
the ∞-topos, and we will see that all group objects here have a presentation by sheaves of simplicial groups.

A group object in ∞Grpd ' Top we will for emphasis call an ∞-group. In this vein a group object in
an ∞-topos over a non-trivial site is a structured ∞-group (for instance a topological ∞-group or a smooth
∞-group).

A classical source of ∞-groups are loop spaces, where the group multiplication is given by concatenation
of based loops in a given space, the homotopy-coherent associativity is given by reparameterizations of
concatenations of loops, and inverses are given by reversing the parameterization of a loop. A classical
result of Milnor says, in this language, that every ∞-group arises as a loop space this way. This statement
generalizes from discrete ∞-groups (group objects in ∞Grpd ' Top) to structured ∞-groups.
Theorem. (Milnor–Lurie) There is an equivalence

{ groups in H }
oo looping Ω

delooping B

' //

{
pointed connected

objects in H

}

This equivalence is a most convenient tool. In the following we will almost exclusively handle ∞-groups G
in terms of their pointed connected delooping objects BG. We discuss this in more detail below in 5.1.9.
This is all the more useful as the objects BG happen to be the moduli ∞-stacks of G-principal ∞-bundles.
We come to this in 1.2.6.5.

1.2.5.3 Cohomology Where the archetypical topos is the category Set, the archetypical ∞-topos is the
∞-category ∞Grpd of ∞-groupoids. This, in turn, is equivalent, by a classical result (see 6.2), to Top, the
category of topological spaces of CW-type, regarded as an ∞-category by taking the 2-morphisms to be
homotopies between continuous maps, 3-morphisms to be homotopies of homotopy, and so forth:

∞Grpd ' Top .
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In Top it is familiar – from the notion of classifying spaces and from the Brown representability theorem
(the reader in need of a review of such matter might try [May99]) – that the cohomology of a topological
space X may be identified as the set of homotopy classes of continuous maps from X to some coefficient
space A

H(X,A) := π0Top(X,A) .

For instance for A = K(n,Z) ' BnZ the topological space called the nth Eilenberg-MacLane space of the
additive group of integers, we have that

H(X,A) := π0Top(X,BnZ) ' Hn(X,Z)

is the ordinary integral (singular) cohomology of X. Also nonabelian cohomology is famously exhibited this
way: for G a (possibly nonabelian) topological group and A = BG its classifying space (we discuss this
construction and its generalization in detail in 6.3.5.1) we have that

H(X,A) := π0Top(X,BG) ' H1(X,G)

is the degree-1 nonabelian cohomology of X with coeffients in G, which classifies G-principal bundles over
X (more on that in a moment).

Since this only involves forming∞-categorical hom-spaces and since this is an entirely categorical opera-
tion, it makes sense to define for X, A any two objects in an arbitrary ∞-topos H the intrinsic cohomology
of X with coefficients in A to be

H(X,A) := π0H(X,A) ,

where H(X,A) denotes the ∞-groupoid of morphism from X to A in H. This general identification of
cohomology with hom-spaces in∞-toposes is central to our developments here. We indicate now two classes
of justification for this definition.

1. Essentially every notion of cohomology already considered in the literature is an example of this
definition. Moreover, those that are not are often improved on by fixing them to become an example.

2. The use of a good notion of G-cohomology on X should be that it classifies “G-structures over X” and
exhibits the obstruction theory for extensions or lifts of such structures. We find that it is precisely the
context of an ambient ∞-topos (precisely: the ∞-Giraud axioms that characterize an ∞-topos) that
makes such a classification and obstruction theory work.

We discuss now a list of examples of ∞-toposes H together with notions of cohomology whose cocycles
are given by morphisms c ∈ H(X,A) between a domain object X and coefficient object A in this ∞-topos.
Some of these examples are evident and classical, modulo our emphasis on the∞-topos theoretic perspective,
others are original. Even those cases that are classical receive new information from the ∞-topos theoretic
perspective. Details are below in the relevant parts of section 6..

In view of the unification that we discuss, some of the traditional names for notions of cohomology are a
bit suboptimal. For instance the term generalized cohomology for theories satisfying the Eilenberg-Steenrod
axioms does not well reflect that it is a generalization of ordinary cohomology of topological spaces (only)
which is, in a quite precise sense, orthogonal to the generalizations given by passage to sheaf cohomology or
to nonabelian cohomology, all of which are subsumed by cohomology in an ∞-topos. In order to usefully
distinguish the crucial aspects here we will use the following terminology

• We speak of structured cohomology to indicate that a given notion is realized in an∞-topos other than
the archetypical ∞Grpd ' Top (which representes “discrete strcuture” in the precise sense discussed
in 6.2). Hence traditional sheaf cohomology is “structured” in this sense, while ordinary cohomology
and Eilenberg-Steenrod cohomology is “unstructured”.
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• We speak of nonabelian cohomology when coefficient objects are not required to be abelian (groups) or
stable (spectra), but may generally be deloopings A := BG of arbitrary (structured) ∞-groups G.

More properly this might be called not-necessarily abelian cohomology, but following common practice
(as in “noncommutative geometry”) we stick with the slightly imprecise but shorter term. One point
that we will dwell on (see the discussion of examples in 7.1) is that the traditional notion of twisted
cohomology (already twisted abelian cohomology) is naturally a special case of nonabelian cohomology.

Notice that the “generalized” in “generalized cohomology” of Eilenberg-Steenrod type refers to allowing
coefficient objects which are abelian ∞-groups, def. 5.1.157, more general than Eilenberg-MacLane objects.
Hence this is in particular subsumed in nonabelian cohomology.

In this terminology, the notion of cohomology in∞-toposes that we are concerned with here is structured
nonabelian/twisted generalized cohomology.

Finally, not only is it natural to allow the coefficient objects A to be general objects in a general∞-topos,
but also there is no reason to restrict the nature of the domain objects X. For instance traditional sheaf
cohomology always takes X, in our language, to be the terminal object X = ∗ of the ambient∞-topos. This
is also called the (-2)-truncated object (see 5.1.3 below) of the ∞-topos, being the unique member of the
lowest class in a hierarchy of n-truncated objects for (−2) ≤ n ≤ ∞. As we increase n here, we find that the
domain object is generalized to

• n = −1: subspaces of X;

• n = 0: étale spaces over X;

• n = 1: orbifolds / orbispaces / groupoids over X;

• n ≥ 2: higher orbifolds / orbispaces / groupoids

One finds then that cohomology of an n-truncated object for n ≥ 1 reproduces the traditional notion
of equivariant cohomology. In particular this subsumes group cohomology : ordinary group cohomology in
the unstructured case (in H = ∞Grpd) and generally structured group cohomology such as Lie group
cohomology.

Therefore, strictly speaking, we are here concerned with equivariant structured nonabelian/twisted gener-
alized cohomology. All this is neatly encapsulated by just the fundamental notion of hom-spaces in∞-toposes.

Cochain cohomology
The origin and maybe the most elementary notion of cohomology is that appearing in homological algebra:

given a cochain complex of abelian groups

V • =

[
· · · oo d

2

V 2 oo d
1

V 1 oo d
0

V 0

]
,

its cohomology group in degree n is defined to be the quotient group

Hn(V ) := ker(dn)/im(dn−1) .

To see how this is a special case of cohomology in an∞-topos, consider a fixed abelian group A and suppose
that this cochain complex is the A-dual of a chain complex

V• =

[
· · · // V2

∂2 // V1
∂1 // V0

]
,

in that V • = HomAb(V•, A). For instance if A = Z and Vn is the free abelian group on the set of n-simplices
in some topological space, then V n is the group of singular n-cochains on X.

Write then A[n] (or A[−n], if preferred) for the chain complex concentrated in degree n on A. In terms
of this
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1. morphisms of chain complexes c : V• → A[n] are in natural bijection with closed elements in V n, hence
with ker(dn);

2. chain homotopies η : c1 → c2 between two such chain morphisms are in natural bijection with elements
in im(dn−1).

This way the cohomology group Hn(V •) is naturally identified with the homotopy classes of maps V• → A[n].
Consider then again an example as that of singular cochains as above, where V• is degreewise a free

abelian group on a simplicial set X. Then this cohomology is the group of connected components of a
hom-space in an ∞-topos. To see this, one observes that the category of chain complexes in non-negative
degree, Ch•≥0, is but a convenient presentation for the category of∞-groupoids that are equipped with strict
abelian group structure in their incarnation as Kan complexes: simplicial abelian groups. This equivalence
Ch•≥0 ' sAb is known as the Dold-Kan correspondence, to be discussed in more detail in 3.1.6. We write
Ξ(V•) for the Kan complex corresponding to a chain complex under this equivalence. Moreover, for chain
complexes of the form A[n] we write

BnA := Ξ(A[n]) .

With this notation, the ∞-groupoid of chain maps V• → A[n] is equivalently that of ∞-functors X → BnA
and hence the cochain cohomology of V • is

Hn(V •) ' π0H(X,BnA) .

Lie group cohomology
There are some definitions in the literature of cohomology theories that are not special cases of this

general concept, but in these cases it seems that the failure is with the traditional definition, not with the
above notion. We will be interested in particular in the group cohomology of Lie groups. Originally this was
defined using a naive direct generalization of the formula for bare group cohomology as

Hn
naive(G,A) = {smooth maps G×n → A}/ ∼ .

But this definition was eventually found to be too coarse: there are structures that ought to be cocycles on
Lie groups but do not show up in this definition. Graeme Segal therefore proposed a refined definition that
was later rediscovered by Jean-Luc Brylinski, called differentiable Lie group cohomology Hn

diffbl(G,A). This
refines the naive Lie group cohomology in that there is a natural morphism Hn

naive(G,A)→ Hn
diffbl(G,A).

But in the ∞-topos of smooth ∞-groupoids H = Sh∞(CartSp) we have the natural intrinsic definition
of Lie group cohomology as

Hn
Smooth(G,A) := π0H(BG,BnA)

and one finds that this naturally includes the Segal/Brylinski definition

Hn
naive(G,A)→ Hn

diffrbl(G,A)→ Hn
Smooth(G,A) := π0H(BG,BnA) .

and at least for A a discrete group, or the group of real numbers or a quotient of these such as U(1) = R/Z,
the notions coincide

Hn
diffrbl(G,A) ' Hn

Smooth(G,A) .

Details on this discussion about refined Lie group cohomology are below in 6.4.6.2.
For instance one of the crucial aspects of the notion of cohomology is that a cohomology class on X

classifies certain structures over X.
It is a classical fact that if G is a (discrete) group and BG its delooping in Top, then the structure

classified by a cocycle g : X → BG is the G-principal bundle over X obtained as the 1-categorical pullback
P → X

P //

��

EG

��
X

g // BG

95



of the universal G-principal bundle EG → BG. But one finds that this pullback construction is just a
1-categorical model for what intrinsically is something simpler: this is just the homotopy pullback in Top of
the point

P //

��

∗

��
X

g
// BG

'
|�

This form of the construction of the G-principal bundle classified by a cocycle makes sense in any ∞-topos
H:

We say that for G ∈ H a group object in H and BG its delooping and for g : X → BG a cocycle (any
morphism in H) that the G-principal ∞-bundle classified by g is the ∞-pullback/homotopy pullback

P //

��

∗

��
X

g
// BG

'
|�

in H. (Beware that usually we will notationally suppress the homotopy filling this square diagram.)
Let G be a Lie group and X a smooth manifold, both regarded naturally as objects in the ∞-topos of

smooth ∞-groupoids. Let g : X → BG be a morphism in H. One finds that in terms of the presentation
of Smooth∞Grpd by the model structure on simplicial presheaves this is a Čech 1-cocycle on X with values
in G. The corresponding ∞-pullback P is (up to equivalence or course) the smooth G-principal bundle
classified in the usual sense by this cocycle.

The analogous proposition holds for G a Lie 2-group and P a G-principal 2-bundle.
Generally, we can give a natural definition of G-principal∞-bundle in any∞-topos H over any∞-group

object G ∈ H. One finds that it is the Giraud axioms that characterize∞-toposes that ensure that these are
equivalently classified as the ∞-pullbacks of morphisms g : X → BG. Therefore the intrinsic cohomology

H(X,G) := π0H(X,BG)

in H classifies G-principal ∞-bundles over X. Notice that X here may itself be any object in H.

1.2.5.4 Homotopy Every ∞-sheaf ∞-topos H canonically comes equipped with a geometric morphism
given by pair of adjoint ∞-functors

(LConst a Γ) : H
oo LConst

Γ
// ∞Grpd

relating it to the archeytpical ∞-topos of ∞-groupoids. Here Γ produces the global sections of an ∞-sheaf
and LConst produces the constant ∞-sheaf on a given ∞-groupoid.

In the cases that we are interested in here H is a big topos of ∞-groupoids equipped with cohesive
structure, notably equipped with smooth structure in our motivating example. In this case Γ has the
interpretation of sending a cohesive ∞-groupoid X ∈ H to its underlying ∞-groupoid, after forgetting
the cohesive structure, and LConst has the interpretation of forming ∞-groupoids equipped with discrete
cohesive structure. We shall write Disc := LConst to indicate this.

But in these cases of cohesive ∞-toposes there are actually more adjoints to these two functors, and this
will be essentially the general abstract definition of cohesiveness. In particular there is a further left adjoint

Π : H→∞Grpd

to Disc: the fundamental ∞-groupoid functor on a locally ∞-connected ∞-topos. Following the standard
terminology of locally connected toposes in ordinary topos theory we shall say that H with such a property is a
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locally ∞-connected ∞-topos. This terminology reflects the fact that if X is a locally contractible topological
space then H = Sh∞(X) is a locally contractible ∞-topos. A classical result of Artin-Mazur implies, that
in this case the value of Π on X ∈ Sh∞(X) is, up to equivalence, the fundamental ∞-groupoid of X:

Π : (X ∈ Sh∞(X)) 7→ (SingX ∈ ∞Grpd) ,

which is the ∞-groupoid whose

• objects are the points of X;

• morphisms are the (continuous) paths in X;

• 2-morphisms are the continuous homotopies between such paths;

• k-morphisms are the higher order homotopies between (k − 1)-dimensional paths.

This is the object that encodes all the homotopy groups of X in a canonical fashion, without choice of fixed
base point.

Also the big ∞-topos Smooth∞Grpd = Sh∞(CartSp) turns out to be locally ∞-connected

(Π a Disc a Γ) : Smooth∞Grpd

Π //
oo Disc

Γ
// ∞Grpd

as a reflection of the fact that every Cartesian space Rn ∈ CartSp is contractible as a topological space. We
find that for X any smooth manifold, regarded as an object of Smooth∞Grpd, again Π(X) ∈ Smooth∞Grpd
is the corresponding fundamental ∞-groupoid. More in detail, under the homotopy-hypothesis-equivalence

(| − | a Sing) : Top
Sing

' //
oo |−| ∞Grpd we have that the composite

|Π(−)| : H
Π→∞Grpd

|−|→ Top

sends a smooth manifold X to its homotopy type: the underlying topological space of X, up to weak
homotopy equivalence.

Analogously, for a general object X ∈ H we may think of |Π(X)| as the generalized geometric realization
in Top. For instance we find that if X ∈ Smooth∞Grpd is presented by a simplicial paracompact smooth
manifold, then |Π(X)| is the ordinary geometric realization of the underlying simplicial topological space
of X. This means in particular that for X ∈ Smooth∞Grpd a Lie groupoid, Π(X) computes its homotopy
groups of a Lie groupoid as traditionally defined.

The ordinary homotopy groups of Π(X) or equivalently of |Π(X)| we call the geometric homotopy groups
of X ∈ H, because these are based on a notion of homotopy induced by an intrisic notion of geometric
paths in objects in X. This is to be contrasted with the categorical homotopy groups of X. These are the
homotopy groups of the underlying ∞-groupoid Γ(X) of X. For instance for X a smooth manifold we have
that

πn(Γ(X)) '
{
X ∈ Set |n = 0

0 |n > 0

but
πn(Π(X)) ' πn(X ∈ Top) .

This allows us to give a precise sense to what it means to have a cohesive refinement (continuous refinement,
smooth refinement, etc.) of an object in Top. Notably we are interested in smooth refinements of classifying
spaces BG ∈ Top for topological groups G by deloopings BG ∈ Smooth∞Grpd of ∞-Lie groups G and we
may interpret this as saying that

Π(BG) ' BG
in Top ' Smooth∞Grpd.
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1.2.6 Principal bundles

The following is an exposition of the notion of principal bundles in higher but low degree.
We assume here that the reader has a working knowledge of groupoids and at least a rough idea of

2-groupoids. For introductions see for instance [BrHiSi11] [Por]
Below in 1.2.6.4 a discussion of the formalization of∞-groupoids in terms of Kan complexes is given and

is used to present a systematic way to understand these constructions in all degrees.

1.2.6.1 Principal 1-bundles Let G be a Lie group and X a smooth manifold (all our smooth manifolds
are assumed to be finite dimensional and paracompact). We give a discussion of smooth G-principal bundles
on X in a manner that paves the way to a straightforward generalization to a description of principal
∞-bundles. From X and G are naturally induced certain Lie groupoids.

From the group G we canonically obtain a groupoid that we write BG and call the delooping groupoid
of G. Formally this groupoid is

BG = ( G
//
// ∗ )

with composition induced from the product in G. A useful depiction of this groupoid is

BG =


∗

g2

��
∗

g2·g1

//

g1

??

∗

 ,

where the gi ∈ G are elements in the group, and the bottom morphism is labeled by forming the product in
the group. (The order of the factors here is a convention whose choice, once and for all, does not matter up
to equivalence.)

But we get a bit more, even. Since G is a Lie group, there is smooth structure on BG that makes it a
Lie groupoid, an internal groupoid in the category SmoothMfd of smooth manifolds: its collection of objects
(trivially) and of morphisms each form a smooth manifold, and all structure maps (source, target, identity,
composition) are smooth functions. We shall write

BG ∈ LieGrpd

for BG regarded as equipped with this smooth structure. Here and in the following the boldface is to indicate
that we have an object equipped with a bit more structure – here: smooth structure – than present on the
object denoted by the same symbols, but without the boldface. Eventually we will make this precise by
having the boldface symbols denote objects in the ∞-topos Smooth∞Grpd which are taken by a suitable
functor to objects in ∞Grpd denoted by the corresponding non-boldface symbols.

Also the smooth manifoldX may be regarded as a Lie groupoid - a groupoid with only identity morphisms.
Its depiction is simply

X = { x Id // x }
for all x ∈ X But there are other groupoids associated with X: let {Ui → X}i∈I be an open cover of X. To
this is canonically associated the Čech-groupoid C({Ui}). Formally we may write this groupoid as

C({Ui}) =
{ ∐

i,j Ui ∩ Uj
//
//
∐
i Ui

}
.

A useful depiction of this groupoid is

C({Ui}) =


(x, j)

##
(x, i) //

;;

(x, k)

 ,
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This indicates that the objects of this groupoid are pairs (x, i) consisting of a point x ∈ X and a patch
Ui ⊂ X that contains x, and a morphism is a triple (x, i, j) consisting of a point and two patches, that both
contain the point, in that x ∈ Ui ∩ Uj . The triangle in the above depiction symbolizes the evident way in
which these morphisms compose. All this inherits a smooth structure from the fact that the Ui are smooth
manifolds and the inclusions Ui ↪→ X are smooth functions. Hence also C({Ui}) becomes a Lie groupoid.

There is a canonical projection functor

C({Ui})→ X : (x, i) 7→ x .

This functor is an internal functor in SmoothMfd and moreover it is evidently essentially surjective and full
and faithful. However, while essential surjectivity and full-and-faithfulness implies that the underlying bare
functor has a homotopy-inverse, that homotopy-inverse never has itself smooth component maps, unless X
itself is a Cartesian space and the chosen cover is trivial.

We do however want to think of C({Ui}) as being equivalent to X even as a Lie groupoid. One says
that a smooth functor whose underlying bare functor is an equivalence of groupoids is a weak equivalence of

Lie groupoids, which we write as C({Ui})
'→ X. Moreover, we shall think of C({Ui}) as a good equivalent

replacement of X if it comes from a cover that is in fact a good open cover in that all its non-empty finite
intersections Ui0,··· ,in := Ui0 ∩ · · · ∩ Uin are diffeomorphic to the Cartesian space RdimX .

We shall discuss later in which precise sense this condition makes C({Ui}) good in the sense that smooth
functors out of C({Ui}) model the correct notion of morphism out of X in the context of smooth groupoids
(namely it will mean that C({Ui}) is cofibrant in a suitable model category structure on the category of Lie
groupoids). The formalization of this statement is what ∞-topos theory is all about, to which we will come.
For the moment we shall be content with accepting this as an ad hoc statement.

Observe that a functor
g : C({Ui})→ BG

is given in components precisely by a collection of smooth functions

{gij : Uij → G}i,j∈I

such that on each Ui ∩ Uj ∩ Uk the equality gjkgij = gik of functions holds.
It is well known that such collections of functions characterize G-principal bundles on X. While this is a

classical fact, we shall now describe a way to derive it that is true to the Lie-groupoid-context and that will
make clear how smooth principal ∞-bundles work.

First observe that in total we have discussed so far spans of smooth functors of the form

C({Ui})
g //

'
��

BG

X

.

Such spans of functors, whose left leg is a weak equivalence, are sometimes known, essentially equivalently,
as Morita morphisms, as generalized morphisms of Lie groupoids, as Hilsum-Skandalis morphisms, or as
groupoid bibundles or as anafunctors. We are to think of these as concrete models for more intrinsically
defined direct morphisms X → BG in the ∞-topos of smooth ∞-groupoids.

Now consider yet another Lie groupoid canonically associated with G: we shall write EG for the groupoid
– the smooth universal G-bundle – whose formal description is

EG =

(
G×G

(−)·(−) //
p1

// G

)
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with the evident composition operation. The depiction of this groupoid is
g2

g3g
−1
2

  
g1

g3g
−1
1

//

g2g
−1
1

>>

g3


,

This again inherits an evident smooth structure from the smooth structure of G and hence becomes a Lie
groupoid.

There is an evident forgetful functor
EG→ BG

which sends

(g1 → g2) 7→ (•
g2g
−1
1→ •) .

Consider then the pullback diagram

P̃ //

��

EG

��
C({Ui})

g //

'
��

BG

X

in the category Grpd(SmoothMfd). The object P̃ is the Lie groupoid whose depiction is

P̃ =
{

(x, i, g1) // (x, j, g2 = gij(x)g1)
}

;

where there is a unique morphism as indicated, whenever the group labels match as indicated. Due to
this uniqueness, this Lie groupoid is weakly equivalent to one that comes just from a manifold P (it is
0-truncated)

P̃
'→ P .

This P is traditionally written as

P =

(∐
i

Ui ×G

)
/ ∼ ,

where the equivalence relation is precisely that exhibited by the morphisms in P̃ . This is the traditional
way to construct a G-principal bundle from cocycle functions {gij}. We may think of P̃ as being P . It is a
particular representative of P in the ∞-topos of Lie groupoids.

While it is easy to see in components that the P obtained this way does indeed have a principal G-action
on it, for later generalizations it is crucial that we can also recover this in a general abstract way. For notice
that there is a canonical action

(EG)×G→ EG ,
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given by the group action on the space of objects. Then consider the pasting diagram of pullbacks

P̃ ×G //

��

EG×G

��
P̃ //

��

EG

��
C(U)

g //

'
��

BG

X

.

Here the morphism P̃ ×G→ P̃ exhibits the principal G-action of G on P̃ .
In summary we find the following

Observation 1.2.76. For {Ui → X} a good open cover, there is an equivalence of categories

SmoothFunc(C({Ui}),BG) ' GBund(X)

between the functor category of smooth functors and smooth natural transformations, and the groupoid of
smooth G-principal bundles on X.

It is no coincidence that this statement looks akin to the maybe more familiar statement which says that
equivalence classes of G-principal bundles are classified by homotopy-classes of morphisms of topological
spaces

π0Top(X,BG) ' π0GBund(X) ,

where BG ∈ Top is the topological classifying space of G. What we are seeing here is a first indication of
how cohomology of bare ∞-groupoids is lifted inside a richer ∞-topos to cohomology of ∞-groupoids with
extra structure.

In fact, all of the statements that we considered so far becomes conceptually simpler in the∞-topos. We

had already remarked that the anafunctor span X
'← C({Ui})

g→ BG is really a model for what is simply a
direct morphism X → BG in the ∞-topos. But more is true: that pullback of EG which we considered is
just a model for the homotopy pullback of just the point

...
...

P̃ ×G //

��

EG×G

��
P̃ //

��

EG

��
C(U)

g //

'
��

BG

X

...
...

P ×G //

��

G

��
P //

��

∗

��
X

g
// BG

'
x�

'
x�

in the model category in the ∞-topos

.
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The traditional statement which identifies the classifying topological space BG as the quotient of the con-
tractible EG by the free G-action

BG ' EG/G

becomes afte the refinement to smooth groupoids the statement that BG is the homotopy quotient of G
acting on the point:

BG ' ∗//G .

Generally:

Definition 1.2.77. For V a smooth manifold equipped with a smooth action by G (not necessarily free),
the action groupoid V//G is the Lie groupoid whose space of objects is V , and whose morphisms are group
elements that connect two points (which may coincide) in V .

V//G =

{
v1

g // v2 |v2 = g(v1)

}
.

Such an action groupoid is canonically equipped with a morphism to BG ' ∗//G obtained by sending
all objects to the single object and acting as the identity on morphisms. Below in 5.1.14 we discuss that the
sequence

V → V//G→ BG

entirely encodes the action of G on V . Also we will see in 6.4.10.1 that the morphism V//G → BG is the
smooth refinement of the V -bundle which is associated to the universal G-bundle via the given action. If V
is a vector space acted on linearly, then this is an associated vector bundle. Its pullbacks along anafunctors
X → BG yield all V -vector bundles on X.

1.2.6.2 Principal 2-bundles and twisted 1-bundles The discussion above of G-principal bundles
was all based on the Lie groupoids BG and EG that are canonically induced by a Lie group G. We now
discuss the case where G is generalized to a Lie 2-group. The above discussion will go through essentially
verbatim, only that we pick up 2-morphisms everywhere. This is the first step towards higher Chern-Weil
theory. The resulting generalization of the notion of principal bundle is that of principal 2-bundle. For
historical reasons these are known in the literature often as gerbes or as bundle gerbes, even though strictly
speaking there are some conceptual differences.

Write U(1) = R/Z for the circle group. We have already seen above the groupoid BU(1) obtained from
this. But since U(1) is an abelian group this groupoid has the special property that it still has itself the
structure of a group object. This makes it what is called a 2-group. Accordingly, we may form its delooping
once more to arrive at a Lie 2-groupoid B2U(1). Its depiction is

B2U(1) =


∗

Id

��
∗

Id
//

Id

??

∗
g��


for g ∈ U(1). Both horizontal composition as well as vertical composition of the 2-morphisms is given by
the product in U(1).

Let again X be a smooth manifold with good open cover {Ui → X}. The corresponding Čech groupoid
we may also think of as a Lie 2-groupoid,

C(U) =
( ∐

i,j,k Ui ∩ Uj ∩ Uk
//
//
//
∐
i,j Ui ∩ Uj

//
//
∐
i Ui

)
.

What we see here are the first stages of the full Čech nerve of the cover. Eventually we will be looking at
this object in its entirety, since for all degrees this is always a good replacement of the manifold X, as long
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as {Ui → X} is a good open cover. So we look now at 2-anafunctors given by spans

C({Ui})
g //

'
��

B2U(1)

X

of internal 2-functors. These will model direct morphisms X → B2U(1) in the∞-topos. It is straightforward
to read off the following

Observation 1.2.78. A smooth 2-functor g : C({Ui})→ B2U(1) is given by the data of a 2-cocycle in the
Čech cohomology of X with coefficients in U(1).

Because on 2-morphisms it specifies an assignment

g :


(x, j)

##
(x, i) //

;;

(x, k)
��

 7→


∗

Id

��
∗

Id
//

Id

??

∗

gijk(x)

��


that is given by a collection of smooth functions

(gijk : Ui ∩ Uj ∩ Uk → U(1)) .

On 3-morphisms it gives a constraint on these functions, since there are only identity 3-morphisms in B2U(1):




(x, j) // (x, k)

��
(x, i) //

OO ;;

(x, l)

⇒


(x, j) //

##

(x, k)

��
(x, i) //

OO

(x, l)


 7→





∗ // ∗

��
∗ //

OO ??

∗

gijk(x)

�#

gikl(x)
�#

 =



∗ //

��

∗

��
∗ //

OO

∗

gjkl(x)
{�

gijl(x){�



 .

This relation
gijk · gikl = gijl · gjkl

defines degree-2 cocycles in Čech cohomology with coefficients in U(1).
In order to find the circle principal 2-bundle classified by such a cocycle by a pullback operation as before,

we need to construct the 2-functor EBU(1) → B2U(1) that exhibits the universal principal 2-bundle over
U(1). The right choice for EBU(1) – which we justify systematically in 1.2.6.4 – is indicated by

EBU(1) =


∗

c2

��
∗

c1

??

c3=gc2c1
// ∗

g��


for c1, c2, c3, g ∈ U(1), where all possible composition operations are given by forming the product of these
labels in U(1). The projection EBU(1)→ B2U(1) is the obvious one that simply forgets the labels ci of the
1-morphisms and just remembers the labels g of the 2-morphisms.
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Definition 1.2.79. With g : C({Ui}) → B2U(1) a Čech cocycle as above, the U(1)-principal 2-bundle or
circle 2-bundle that it defines is the pullback

P̃ //

��

EBU(1)

��
C({Ui})

g //

'
��

B2U(1)

X

.

Unwinding what this means, we see that P̃ is the 2-groupoid whose objects are that of C({Ui}), whose
morphisms are finite sequences of morphisms in C({Ui}), each equipped with a label c ∈ U(1), and whose
2-morphisms are generated from those that look like

(x, j)

c2

##
(x, i)

c3
//

c1

;;

(x, k)
gijk(x)��

subject to the condition that
c1 · c2 = c3 · gijk(x)

in U(1). As before for principal 1-bundles P , where we saw that the analogous pullback 1-groupoid P̃ was
equivalent to the 0-groupoid P , here we see that this 2-groupoid is equivalent to the 1-groupoid

P =
(
C(U)1 × U(1)

//
// C(U)

)
with composition law

((x, i)
c1→ (x, j)

c2→ (x, k)) = ((x, i)
(c1·c2·gijk(x))→ (x, k)) .

This is a groupoid central extension

BU(1)→ P → C({Ui}) ' X .

Centrally extended groupoids of this kind are known in the literature as bundle gerbes (over the surjective
submersion Y =

∐
i Ui → X ). They may equivalently be thought of as given by a line bundle

L

��
(C(U)1 =

∐
i,j Ui ∩ Uj)

// //
(C(U)0 =

∐
i Ui)

��
X

over the space C(U)1 of morphisms, and a line bundle morphism

µg : π∗1L⊗ π∗2L→ π∗1L

that satisfies an evident associativity law, equivalent to the cocycle codition on g. In summary we find that:
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Observation 1.2.80. Bundle gerbes are presentations of Lie groupoids that are total spaces of BU(1)-
principal 2-bundles, def. 1.2.79.

Notice that, even though there is a close relation, the notion of bundle gerbe is different from the original
notion of U(1)-gerbe. This point we discuss in more detail below in 1.2.92 and more abstractly in 6.3.10.

This discussion of circle 2-bundles has a generalization to 2-bundles that are principal over more general
2-groups.

Definition 1.2.81. 1. A smooth crossed module of Lie groups is a pair of homomorphisms ∂ : G1 → G0

and ρ : G0 → Aut(G1) of Lie groups, such that for all g ∈ G0 and h, h1, h2 ∈ G1 we have ρ(∂h1)(h2) =
h1h2h

−1
1 and ∂ρ(g)(h) = g∂(h)g−1.

2. For (G1 → G0) a smooth crossed module, the corresponding strict Lie 2-group is the smooth groupoid

G0 ×G1
//
// G0 , whose source map is given by projection on G0, whose target map is given by

applying ∂ to the second factor and then multiplying with the first in G0, and whose composition is
given by multiplying in G1.

This groupoid has a strict monoidal structure with strict inverses given by equipping G0×G1 with the
semidirect product group structure G0 nG1 induced by the action ρ of G0 on G1.

3. The corresponding one-object strict smooth 2-groupoid we write B(G1 → G0). As a simplicial object
(under the Duskin nerve of 2-categories) this is of the form

B(G1 → G0) = cosk3

(
G×3

0 ×G
×3
1 //

//
//
G×2

0 ×G1 //
//
G0

// ∗
)
.

The infinitesimal analog of a crossed module of groups is a differential crossed module.

Definition 1.2.82. A differential crossed module is a chain complex of vector space of length 2 V1 → V0

equipped with the structure of a dg-Lie algebra.

Example 1.2.83. For G1 → G0 a smooth crossed module of Lie groups, differentiation of all structure maps
yields a corresponding differential crossed module g1 → g0.

Observation 1.2.84. For G := [G1
δ→ G0] a crossed module, the 2-groupoid delooping a 2-group coming

from a crossed module is of the form

BG =


∗

g2

��
∗

δ(k)g2·g1

//

g1

??

∗
k��

| g1, g2 ∈ G0, k ∈ G1

 ,

where the 3-morphisms – the composition identities – are

∗
g2 // ∗

g3

��
∗ //

g1

OO ??

∗

h1

�#

h2
�#


h2·ρ(g3)(h1)=h4·h3 //



∗
g2 //

��

∗

g3

��
∗ //

g1

OO

∗

h3
{�

h4

{�


Remark 1.2.85. All ingredients here are functorial, so that the above statements hold for presheaves over
sites, hence in particular for cohesive 2-groups such as smooth 2-groups. Below in corollarly 5.1.172 it is
shown that every cohesive 2-group has a presentation by a crossed module this way.
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Notice that there are different equivalent conventions possible for how to present BG in terms of the
correspondiung crossed module, given by the choices of order in the group products. Here we are following
convention “LB” in [RoSc08].

Example 1.2.86 (shift of abelian Lie group). For K an abelian Lie group then BK is the delooping 2-group
coming from the crossed module [K → 1] and BBK is the 2-group coming from the complex [K → 1→ 1].

Example 1.2.87 (automorphism 2-group). For H any Lie group with automorphism Lie group Aut(H),

the morphism H
Ad→ Aut(H) that sends group elements to inner automorphisms, together with ρ = id, is a

crossed module. We write AUT(H) := (H → Aut(H)) and speak of the automorphism 2-group of H.

Example 1.2.88. The inclusion of any normal subgroup N ↪→ G with conjugation action of G on N is a
crossed module, with the canonical induced conjugation action of G on N .

Example 1.2.89 (string 2-group). For G a compact, simple and simply connected Lie group, write PG for
the smooth group of based paths in G and Ω̂G for the universal central extension of the smooth group of
based loops. Then the evident morphism (Ω̂G→ PG) equipped with a lift of the adjoint action of paths on
loops is a crossed module [BCSS07]. The corresponding strict 2-group is (a presentation of what is) called
the string 2-group extension of G. The string 2-group we discuss in detail in 7.1.10.

It follows immediately that

Observation 1.2.90. For G = (G1 → G0) a 2-group coming from a crossed module, a cocycle

X
'← C(Ui)

g→ BG

is given by data
{hij ∈ C∞(Uij , G0), gijk ∈ C∞(Uijk, G1)}

such that on each Uijk we have
hik = δ(hijk)hjkhij

and on each Uijkl we have
gikl · ρ(hjk)(gijk) = gijk · gjkl .

Because under the above correspondence between crossed modules and 2-groups, this is the data that
encodes assignments

g :


(x, j)

##
(x, i) //

;;

(x, k)
��

 7→


∗

hjk(x)

��
∗

hik(x)
//

hij(x)
??

∗

gijk(x)

��


that satisfy 

∗
hjk // ∗

hkl

��
∗ //

hij

OO ??

∗

gijk

�#

gikl �#


//



∗
hjk //

��

∗

hkl

��
∗ //

hij

OO

∗

gjkl
{�

gijl

{�


For the case of the crossed module (U(1)→ 1) this recovers the cocycles for circle 2-bundles from observation
1.2.78.

Apart from the notion of bundle gerbe, there is also the original notion of gerbe. The terminology is
somewhat unfortunate, since neither of these concepts is, in general, a special case of the other. But they
are of course closely related. We consider here the simple cocycle-characterization of gerbes and the relation
of these to cocycles for 2-bundles.
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Definition 1.2.91 (G-gerbe). Let G be a smooth group. Then a cocycle for a smooth G-gerbe over a
manifold X is a cocycle for a AUT(G)-principal 2-bundle, where AUT(G) is the automorphism 2-group from
example 1.2.87.

Observation 1.2.92. For every 2-group coming from a crossed module (G1
δ→ G0, ρ) there is a canonical

morphism of 2-groups
(G1 → G0)→ AUT(G1)

given by the commuting diagram of groups

G1
δ //

id

��

G0

ρ

��
G1

Ad // Aut(G0)

.

Accordingly, every (G1 → G0)-principal 2-bundle has an underlying G1-gerbe, def. 1.2.91. But in general
the passage to this underlying G1-gerbe discards information.

Example 1.2.93. For G a simply connected and compact simple Lie group, let String ' (Ω̂G → PG) be
the corresopnding String 2-group from example 1.2.89. Then by observation 1.2.92 every String-principal
2-bundle has an underlying Ω̂G-gerbe. But there is more information in the String-2-bundle than in this
gerbe underlying it.

Example 1.2.94. Let G = (Z ↪→ R) be the crossed module that includes the additive group of integers into
the additive group of real numbers, with trivial action. The canonical projection morphism

B(Z→ R)
'→ BU(1)

is a weak equivalence, by the fact that locally every smooth U(1)-valued function is the quotient of a smooth
R-valued function by a (constant) Z-valued function. This means in particular that up to equivalence,
(Z→ R)-2-bundles are the same as ordinary circle 1-bundles. But it means a bit more than that:

On a manifold X also BZ-principal 2-bundles have the same classification as U(1)-bundles. But the
morphisms of BZ-principal 2-bundles are essentially different from those of U(1)-bundles. This means that
the 2-groupoid BZBund(X) is not, in general equivalent to U(1)Bund(X). But we do have an equivalence
of 2-groupoids

(Z→ U(1))Bund(X) ' U(1)Bund(X) .

Example 1.2.95. Let Ĝ→ G be a central extension of Lie groups by an abelian group A. This induces the
crossed module (A→ Ĝ). There is a canonical 2-anafunctor

B(A→ Ĝ)
c //

'
��

B(A→ 1) = B2A

BG

from BG to B2A. This can be seen to be the characteristic class that classifies the extension (see 1.2.8
below): BĜ→ BG is the A-principal 2-bundle classified by this cocycle.

Accordingly, the collection of all (A→ Ĝ)-principal 2-bundles is, up to equivalence, the same as that of
plain G-1-bundles. But they exhibit the natural projection to BA-2-bundles. Fixing that projection gives
twisted G-1-bundles.

more in detail: the above 2-anafunctor indiuces a 2-anafunctor on cocycle 2-groupoid

(A→ Ĝ)Bund(X)
c //

'
��

BABund(X)

GBund(X)

.
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If we fix a BA-2-bundle g we can consider the fiber of the characteristic class c over g, hence the pullback
GBund[g](X) in

GBund[g](X)

��

// ∗

g

��
(A→ Ĝ)Bund(X)

c //

'
��

BABund(X)

GBund(X)

.

This is the groupoid of [g]-twisted G-bundles. The principal 2-bundle classfied by g is also called the lifting
gerbe of the G-principal bundles underlying the [g]-twisted Ĝ-bundle: because this is the obstruction to
lifting the former to a genuine Ĝ-principal bundle.

If g is given by a Čech cocycle {gijk ∈ C∞(Uijk, A)} then [g]-twisted G-bundles are given by data
{hij ∈ C∞(Uij , G)} which does not quite satisfy the usual cocycle condition, but instead a modification by
g:

hik = δ(gijk)hjkhij .

For instance for the extension U(1)→ U(n)→ PU(n) the corresponding twisted bundles are those that
model twisted K-theory with n-torsion twists (6.4.10).

1.2.6.3 Principal 3-bundles and twisted 2-bundles As one passes beyond (smooth) 2-groups and
their 2-principal bundles, one needs more sophisticated tools for presenting them. While the crossed modules
from def. 1.2.81 have convenient higher analogs – called crossed complexes – the higher analog of remark
1.2.85 does not hold for these: not every (smooth) 3-group is presented by them, much less every n-group for
n > 3. Therefore below in 1.2.6.4 we switch to a different tool for the general situation: simplicial groups.

However, it so happens that a wide range of relevant examples of (smooth) 3-groups and generally of
smooth n-groups does have a presentation by a crossed complex after all, as do the examples which we shall
discuss now.

Definition 1.2.96. A crossed complex of groupoids is a diagram

C• =


· · · δ // C3

δ //

��

C2
δ //

��

C1

δt //

δs

//

δs

��

C0

=

��
· · · =

// C0 =
// C0 =

// C0 =
// C0

 ,

where C1

δt //

δs

// C0 is equipped with the structure of a 1-groupoid, and where Ck // C0 , for all k ≥ 2,

are bundles of groups, abelian for k ≥ 2; and equipped with an action ρ of the groupoid C1, such that

1. the maps δk, k ≥ 2 are morphisms of groupoids over C0 compatible with the action by C1;

2. δk−1 ◦ δk = 0; k ≥ 3;

3. im(δ2) ⊂ C1 acts by conjugation on C2 and trivially on Ck, k ≥ 3.

Surveys of standard material on crossed complexes of groupoids are in [BrHiSi11][Por]. We discuss
sheaves of crossed complexes, hence cohesive crossed complexes in more detail below in 3.1.6. As mentioned
there, the key aspect of crossed complexes is that they provide an equivalent encoding of precisely those
∞-groupoids that are called strict.
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Definition 1.2.97. A crossed complex of groups is a crossed complex C• of groupoids with C0 = ∗. If the
complex of groups is constant on the trivial group beyond Cn, we say this is a strict n-group.

Explicitly, a crossed complex of groups is a complex of groups of the form

· · · δ2 // G2
δ1 // G1

δ0 // G0

with Gk≥2 abelian (but G1 and G0 not necessarily abelian), together with an action ρk of G0 on Gk for all
k ∈ N, such that

1. ρ0 is the adjoint action of G0 on itself;

2. ρ1 ◦ δ0 is the adjoint action of G1 on itself;

3. ρk ◦ δ0 is the trivial action of G1 on Gk for k > 1;

4. all δk respect the actions.

A morphism of crossed complexes of groups is a sequence of morphisms of component groups, respecting all
this structure.

For n = 2 this reproduces the notion of crossed module and strict 2-group, def. 1.2.81. If furthermore G1

and G0 here are abelian and the action of G0 is trivial, then this is an ordinary complex of abelian groups
as considered in homological algebra. Indeed, all of homological algebra may be thought of as the study of
this presentation of abelian ∞-groups, def. 5.1.157. (More on this in 3.1.6 below.)

We consider now examples of strict 3-groups and of the corresponding principal 3-bundles.

Example 1.2.98. For A an abelian group, the delooping of the 3-group given by the complex (A→ 1→ 1)
is the one-object 3-groupoid that looks like

B3A =



∗ id // ∗

id

��
∗ //

id

OO ??

∗

id
�#

id

��

a∈A //

∗ id //

��

∗

id

��
∗ //

id

OO

∗

id
{�

id

��


Therefore an ∞-anafunctor X

'← C({Ui})
g→ B3U(1) sends 3-simplices in the Čech groupoid

(x, j) // (x, k)

��
(x, i)

OO <<

// (x, l)

��

��

//

(x, j) //

""

(x, k)

��
(x, i)

OO

// (x, l)

��

��


to 3-morphisms in B3U(1) labeled by group elements gijkl(x) ∈ U(1)

• // •

��
•

OO ??

// •

� 

��

gijkl(x)//

• //

��

•

��
•

OO

// •

~�

��


(where all 1-morphisms and 2-morphisms in B3U(1) are necessarily identities).
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The 3-functoriality of this assignment is given by the following identity on all Čech 4-simplices (x,(h,i,j,k,l)):

•

!!

��

•

==

3

��
•

XX

//

KK

•

��

��

��

•

!!
•

==

•

��
•

XX

//

JJ

88

•

�� ��

�


•

!!

��

•

==

&&

•

��
•

XX

// •
��

	� �


•

!!
•

==

// •

��
•

XX

//

88

•
y�

��

��

•

!!
•

==

//

&&

•

��
•

XX

// •
�%
��

��

ghjkl(x)
$$

ghijl(x)

::

ghijk

JJ

ghikl //

gijkl

��

=

��

This means that the cocycle data {gijkl(x)} has to satisfy the equations

ghijk(x)ghikl(x)gijkl(x) = ghjkl(x)ghijl(x)

for all (h, i, j, k, l) and all x ∈ Uhijkl. Since U(1) is abelian this can equivalently be rearranged to

ghijk(x)ghijl(x)−1ghikl(x)ghjkl(x)−1gijkl(x) = 1 .

This is the usual form in which a Čech 3-cocycles with coefficients in U(1) are written.

Definition 1.2.99. Given a cocycle as above, the total space object P̃ given by the pullback

P̃ //

��

EB2U(1)

��
C(U)

g //

'
��

B3U(1)

X

is the corresponding circle principal 3-bundle.

In direct analogy to the argument that leads to observation 1.2.80 we find:

Observation 1.2.100. The structures known as bundle 2-gerbes [St01] are presentations of the 2-groupoids
that are total spaces of circle principal 2-bundles, as above.
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Again, notice that, despite a close relation, this is different from the original notion of 2-gerbe. More
discussion of this point is below in 6.3.10.

The next example is still abelian, but captures basics of the central mechanism of twistings of principal
2-bundles by principal 3-bundles.

Example 1.2.101. Consider a morphism δ : N → A of abelian groups and the corresponding shifted crossed
complex (N → A→ 1). The corresponding delooped 3-group looks like

B(N → A→ 1) =


• // •

��
•

OO ??

// •

a1

� 

a2��

δ(n)=a4a3a
−1
2 a−1

1//

• //

��

•

��
•

OO

// •

a3

~�

a4 ��

 .

A cocycle for a (N → A→ 1)-principal 3-bundle is given by data

{aijk ∈ C∞(Uijk, A), nijkl ∈ C∞(Uijkl, N)}

such that

1. ajkla
−1
ijkaijka

−1
ikl = δ(nijkl)

2. nhijk(x)nhikl(x)nijkl(x) = nhjkl(x)nhijl(x) .

The first equation on the left is the cocycle for a 2-bundle as in observation 1.2.78. But the extra term nijkl
on the right “twists” the cocycle. This twist itself satisfies a higher order cocycle condition.

Notice that there is a canonical projection

B(N → A→ 1)→ B(N → 1→ 1) = B3N .

Therefore we can consider the higher analog of the notion of twisted bundles in example 1.2.95:

Definition 1.2.102. Let N → A be an inclusion and consider a fixed B2N -principal 3-bundle with cocycle
g, let B(A/N)Bund[g](X) be the pullback in

B(A/N)Bund[g](X) //

��

∗

g

��
B(N → A)Bund(X) //

'
��

B2NBund(X)

B(A/N)Bund(X)

.

We say an object in this 2-groupoid is a [g]-twisted B(A/N)-principal 2-bundle.

Below in example 1.2.143 we discuss this and its relation to characteristic classes of 2-bundles in more
detail.

We now turn to the most general 3-group that is presented by a crossed complex.

Observation 1.2.103. For (L
δ→ H

δ→ G) an arbitrary strict 3-group, def. 1.2.97, the delooping 3-groupoid
looks like

B(L→ H → G) =



∗
g2 // ∗

g3

��
∗ //

g1

OO

δ(h1)g2g1

??

∗

h1

�#

h2
�#

λ∈L //

∗
g2 //

δ(h3)g2g3

��

∗

g3

��
∗ //

g1

OO

∗

h3
{�

h4{�
|

h4h3

=
δ(λ) · h2 · ρ(g3)(h1)


,
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with the 4-cells – the composition identities – being

•
g23

!!

��

•

g12

==

3

g34

��
•

g01

XX

//

KK

•

��

��

��

•
g23

!!
•

g12

==

•

g34

��
•

g01

XX

//

JJ

88

•

�� ��

�


•
g23

!!

��

•

g12

==

&&

•

g34

��
•

g01

XX

// •
��

	� �


•
g23

!!
•

g12

==

// •

g34

��
•

g01

XX

//

88

•
y�

��

��

•
g23

!!
•

g12

==

//

&&

•

g34

��
•

g01

XX

// •
�%
��

��

h0234 $$ ρ(g23)(λ0124)

::

ρ(g34)(λ0123)

JJ

λ0134 //

λ1234

��

=

��

If follows that a cocycle

X
'← C(Ui)

(λ,h,g)→ B(L→ H → G)

for a (L→ H → G)-principal 3-bundle is a collection of functions

{gij ∈ C∞(Uij , G), hijk ∈ C∞(Uijk, H), λijkl ∈ C∞(Uijkl, L)}

satisfying the cocycle conditions
gik = δ(hijk)gjkgij on Uijk

hijlhjkl = δ(λijkl) · hikl · ρ(g3)(hijk) on Uijkl

λijklλhiklρ(gkl)(λhijk) = ρ(gjk)λhijlλhjkl on Uhijkl .

Definition 1.2.104. Given such a cocycle, the pullback 3-groupoid P we call the corresponding principal
(L→ H → G)-3-bundle

P //

��

EB(L→ H → G)

��
C(Ui)

'
��

(λ,h,g) // B(L→ H → G)

X

We can now give the next higher analog of the notion of twisted bundles, def. 1.2.95.
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Definition 1.2.105. Given a 3-anafunctor

B(L→ H → G) //

'
��

B(L→ 1→ 1) B3L

B(H/L→ G)

then for g the cocycle for an B2L-principal 3-bundle we say that the pullback (H → G)Bundg(X) in

(H → G)Bundg(X) //

��

∗

g

��
(L→ H → G)Bund(X) // B3LBund(X)

is the 3-groupoid of g-twisted (H → G)-principal 2-bundles on X.

Example 1.2.106. Let G be a compact and simply connected simple Lie group. By example 1.2.89 we have
associated with this the string 2-group crossed module Ω̂G→ PG, where

U(1)→ Ω̂G→ ΩG

is the Kac-Moody central extension of level 1 of the based loop group of G. Accordingly, there is an evident
crossed complex

U(1)→ Ω̂G→ PG .

The evident projection

B(U(1)→ Ω̂G→ PG)
'→ BG

is a weak equivalence. This means that (U(1) → Ω̂G → PG)-principal 3-bundles are equivalent to G-1-
bundles. For fixed projection g to a B2U(1)-3-bundle a (U(1)→ Ω̂G→ PG)-principal 3-bundles may hence
be thought of as a g-twisted string-principal 2-bundle.

One finds that these serve as a resolution of G-1-bundles in attempts to lift to string-2-bundles (discussed
below in 7.1.2).

1.2.6.4 A model for principal ∞-bundles We have seen above that the theory of ordinary smooth
principal bundles is naturally situated within the context of Lie groupoids, and then that the theory of
smooth principal 2-bundles is naturally situated within the theory of Lie 2-groupoids. This is clearly the
beginning of a pattern in higher category theory where in the next step we see smooth 3-groupoids and so
on. Finally the general theory of principal ∞-bundles deals with smooth ∞-groupoids. A comprehensive
discussion of such smooth ∞-groupoids is given in section 6.4. In this introduction here we will just briefly
describe principal ∞-bundles in this model.

Recall the discussion of ∞-groupoids from 1.2.5.2.1, in terms of Kan simplicial sets. Consider an object
BG ∈ [Cop, sSet] which is an ∞-groupoid with a single object, so that we may think of it as the delooping
of an ∞-group G. Let ∗ be the point and ∗ → BG the unique inclusion map. The good replacement of this
inclusion morphism is the universal G-principal ∞-bundle EG→ BG given by the pullback diagram

EG //

��

∗

��
(BG)∆[1] //

��

BG

BG

.
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An ∞-anafunctor X
'← X̂ → BG we call a cocycle on X with coefficients in G, and the ∞-pullback P of

the point along this cocycle, which by the above discussion is the ordinary limit

P //

��

EG //

��

∗

��
BG∆[1] //

��

BG

X̂

'
��

g // BG

X

we call the principal ∞-bundle P → X classified by the cocycle.

Example 1.2.107. A detailed description of the 3-groupoid fibration that constitutes the universal principal
2-bundle EG for G any strict 2-group in given in [RoSc08].

It is now evident that our discussion of ordinary smooth principal bundles above is the special case of
this for BG the nerve of the one-object groupoid associated with the ordinary Lie group G. So we find
the complete generalization of the situation that we already indicated there, which is summarized in the
following diagram:

...
...

P̃ ×G //

��

EG×G

��
P̃ //

��

EG

��
C(U)

g //

'
��

BG

X

...
...

P ×G //

��

G

��
P //

��

∗

��
X

g
// BG

'

x�

'

x�

in the model category in the ∞-topos

1.2.6.5 Higher fiber bundles We indicate here the natural notion of principal bundle in an ∞-topos
and how it relates to the intrinsic notion of cohomology discussed above.

1.2.6.5.1 Ordinary principal bundles For G a group, a G-principal bundle over some space X
is, roughly, a space P → X over X, which is equipped with a G-action over X that is fiberwise free and
transitive (“principal”), hence which after a choice of basepoint in a fiber looks there like the canonical
action of G on itself. A central reason why the notion of G-principal bundles is relevant is that it consistutes
a “geometric incarnation” of the degree-1 (nonabelian) cohomology H1(X,G) of X with coefficients in G
(with G regarded as the sheaf of G-valued functions on G): G-principal bundles are classified by H1(X,G).
We will see that this classical statement is a special case of a natural and much more general fact, where
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principal ∞-bundles incarnate cocycles in the intrinsic cohomology of any ∞-topos. Before coming to that,
here we briefly review aspects of the classical theory to set the scene.

Let G be a topological group and let X be a topological space.

Definition 1.2.108. A topological G-principal bundle over X is a continuous map p : P → X equipped
with a continuous fiberwise G-action ρ : P ×G→ G

P ×G
p1 �� ρ��
P
p��

X

which is locally trivial : there exists a cover φ : U → X and an isomorphism of topological G-spaces

P |U ' U ×G

between the restriction (pullback) of P to U and the trivial bundle U ×G→ U equipped with the canonical
G-action given by multiplication in G.

Observation 1.2.109. Let P → X be a topological G-principal bundle. An immediate consequence of the
definition is

1. The base space X is isomorphic to the quotient of P by the G-action, and, moreover, under this
identitfication P → X is the quotient projection P → P/G.

2. The principality condition is satisfied: the shear map

(p1, ρ) : P ×G→ P ×X P

is an isomorphism.

Remark 1.2.110. Sometimes the quotient property of principal bundles has been taken to be the defining
property. For instance [Cart50a, Cart50b] calls every quotient map P → P/G of a free topological group
action a “G-principal bundle”, without requiring it to be locally trivial. This is a strictly weaker definition:
there are many examples of such quotient maps which are not locally trivial. To distinguish the notions,
[Pa61] refers to the weaker definition as that of a Cartan principal bundle. Also for instance the standard
textbook [Hus94] takes the definition via quotient maps as fundamental and explicitly adds the adjective
“locally trivial” when necessary.

For our purposes the following two points are relevant.

1. Local triviality is crucial for the classification of topological G-principal bundles by nonabelian sheaf
cohomology to work, and so from this perspective a Cartan principal bundle may be pathological.

2. On the other hand, we see below that this problem is an artefact of considering G-principal bundles
in the ill-suited context of the 1-category of topological spaces or manifolds. We find below that after
embedding into an ∞-topos (for instance that of Euclidean topological ∞-groupoids, discussed in 6.3)
both definitions in fact coincide.

The reason is that the Yoneda embedding into the higher categorical context of an ∞-topos “corrects
the quotients”: those quotients of G-actions that are not locally trivial get replaced, while the “good
quotients” are being preserved by the embedding. This statement we make precise in 5.1.11.4 below.
See also the discussion in 5.1.11.1 below.
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It is a classical fact that for X a manifold and G a topological or Lie group, regarded as a sheaf of groups
C(−, G) on X, there is an equivalence of the following kind

algebraic data on X geometric data on X{
degree-1 nonabelian
sheaf cohomology

}
'

{
isomorphism classes of

G-principal bundles over X

}
H1(X,G) GBund(X)

(x, j)

��

_

��

∗
gjk(x)

��
(x, i)

y

��

//

CC

(x, k)D

��

∗
gik(x)

//

gij(x)
HH

∗

x

� g //

X
g

cocycle
// BG


/∼

'



P ×G //

p1

��
ρ

��

EG×G

p1

��
ρ

��
G-actions

P //

��

EG

��

total spaces

pullback

X
|g|

// BG quotient spaces

G-principal
bundle classifying

map

universal
bundle


/∼

We give a detailed exposition of the construction indicated in this diagram below in 1.2.6.1.

1.2.6.5.2 Principal ∞-bundles Let now H be an ∞-topos, 1.2.5.2, and G a group object in H,
1.2.5.2.3. Up to the technical issue of formulating homotopy coherence, the formulation in H of the definition
of G-principal bundles, 1.2.6.5.1, in its version as Cartan G-principal bundle, remark 1.2.110, is immediate:
Definition. A G-principal bundle over X ∈ H is

• a morphism P → X; with an ∞-action ρ : P ×G→ P ;

• such that P → X is the ∞-quotient map P → P//G.

In 5.1.11 below we discuss a precise formulation of this definition and the details of the following central state-
ment about the relation between G-principal ∞-bundles and the intrinsic cohomology of H with coefficients
in the delooping object BG.

Theorem. There is equivalence of ∞-groupoids GBund(X)
lim
→

' //
oo hofib

H(X,BG) , where

1. hofib sends a cocycle X → BG to its homotopy fiber;

2. lim
−→

sends an ∞-bundle to the map on ∞-quotients X ' P//G→ ∗//G ' BG.

In particular, G-principal ∞-bundles are classified by the intrinsic cohomology of H

GBund(X)/∼ ' H1(X,G) := π0H(X,BG) .
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Idea of Proof. Repeatedly apply two of the
Giraud-Rezk-Lurie axioms, prop. 3.1.5,
that characterize ∞-toposes:

1. every ∞-quotient is effective;
2. ∞-colimits are preserved

by ∞-pullbacks. �

...
...

P ×G×G //

�� �� ��

G×G

�� �� ��
P ×G //

p1

��
ρ

��

G

�� ��
G-∞-actions

P //

��

∗

��

total objects

∞-pullback

X
g

// BG quotient objects

G-principal
∞-bundle cocycle

universal
∞-bundle

This gives a general abstract theory of principal∞-bundles in every∞-topos. We also have the following
explicit presentation. Definition For G ∈ Grp(sSh(C)), and X ∈ sSh(C)lfib, a weakly G-principal simplicial
bundle is a G-action ρ over X such that the principality morphism (ρ, p1) : P ×G→ P ×X P is a stalkwise
weak equivalence.

Below in 5.1.11.4 we discuss that this construction gives a presentation of the ∞-groupoid of G-principal
bundles as the nerve of the ordinary category of weakly G-principal simplicial bundles.

Nerve

 weakly G-principal
simplicial bundles

over X

 ' GBund(X) .

For the special case that X is the terminal object over the site C and when restricted from cocycle ∞-
groupoids to sets of cohomology classes, this reproduces the statement of [JaLu04]. For our applications in
??, in particular for applications in twisted cohomology, 5.1.13, it is important to have the general statement,
where the base space of a principal ∞-bundle may be an arbitrary ∞-stack, and where we remember the
∞-groupoids of gauge transformations between them, instead of passing to their sets of equivalence classes.

The special case where the site C is trivial, C = ∗, leads to the notion of principal ∞-bundles in ∞Grp.
These are presented by certain bundles of simplicial sets. This we discuss below in 6.2.5.

1.2.6.5.3 Associated and twisted ∞-bundles The notion of G-principal bundle is a very special
case of the following natural more general notion. For any F , an F -fiber bundle over some X is a space
E → X over X such that there is a cover U → X over which it becomes equivalent as a bundle to the trivial
F -bundle U × F → U .

Principal bundles themselves form but a small subclass of all possible fiber bundles over some space
X. Even among G-fiber bundles the G-principal bundles are special, due to the constraint that the local
trivialization has to respect the G-action on the fibers. However, every F -fiber bundle is associated to a
G-principal bundle.

Given a representation ρ : F × G → F , the ρ-associated F -fiber bundle is the quotient P ×G F of the
product P × F by the diagonal G-action. Conversely, using that the automorphism group Aut(F ) of F
canonically acts on F , it is immediate that every F -fiber bundle is associated to an Aut(F )-principal bundle
(a statement which, of course, crucially uses the local triviality clause).

All of these constructions and statements have their straightforward generalizations to higher bundles,
hence to associated ∞-bundles. Moreover, just as the theory of principal bundles improves in the context of
∞-toposes, as discussed above, so does the theory of associated bundles.

For notice that by the above classification theorem of G-principal ∞-bundles, every G-∞-action ρ :
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V ×G→ G has a classifying map, which we will denote by the same symbol:

V // V//G

ρ

��
BG

.

One may observe now that this map V//G→ BG is the universal ρ-associated V -∞-bundle: for every F -fiber
∞-bundle E → X there is a morphism X → BG such that E → X is the ∞-pullback of this map to X.

E

��

// V//G

ρ

��
X

g // BG

.

One implication of this is, by the universal property of the ∞-pullback, that sections σ of the associated
bundle

E

��
X

σ

@@

are equivalently lifts of its classifying map through the universal ρ-associated bundle

ΓX(P ×G V ) :=


V//G

ρ

��
X

g //

σ
<<

BG

 .

One observes that by local triviality and by the fact that V is, by the above, the homotopy fiber of V//G→
BG, it follows that locally over a cover U → X such a section is identified with a V -valued map U → V .
Conversely, globally a section of a ρ-associated bundle may be regarded as a twisted V -valued function.

While this is an elementary and familiar statement for ordinary associated bundles, this is where the
theory of associated ∞-bundles becomes considerably richer than that of ordinary ∞-bundles: because here
V itself may be a higher stack, notably it may be a moduli ∞-stack V = BA for A-principal ∞-bundles. If
so, maps U → V classify A-principal ∞-bundles locally over the cover U of X, and so conversely the section
σ itself may globally be regarded as exhibiting a twisted A-principal ∞-bundle over X.

We can refine this statement by furthermore observing that the space of all sections as above is itself the
hom-space in an∞-topos, namely in the slice∞-topos H/BG. This means that such sections are themselves
cocycles in a structured nonabelian cohomology theory:

ΓX(P ×G V ) := G/BG(g, ρ) .

This we may call the g-twisted cohomology of X relative to ρ. We discuss below in 7.1 how traditional notions
of twisted cohomology are special cases of this general notion, as are many further examples.

Now ρ, regarded as an object of the slice H/BG is not in general a connected object. This means that it
is not in general the moduli object for some principal ∞-bundles over the slice. But instead, we find that
we can naturally identify geometric incarnations of such cocycles in the form of twisted ∞-bundles.
Theorem. The g-twisted cohomology H/BG(g, ρ) classifies P -twisted ∞-bundles: twisted G-equivariant
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ΩV -∞-bundles on P :

Q

��

// ∗

��

P -twisted ΩV -principal ∞-bundle

P

��

// V //

��

∗

��

G-principal ∞-bundle

X
σ //

g

==V//G
ρ // BG section of ρ-associated V -∞-bundle

{
sections of

ρ-associated V -∞-bundle

}
'
{

g-twisted ΩV -cohomology
relative ρ

}
'
{

ΩV -∞-bundles
twisted by P

}
A survey of classes of examples of twisted ∞-bundles classified by twisted cohomology is below in 7.1.1.

Among them, in particular the classical notion of nonabelian gerbe [Gir71], and 2-gerbe [Br94] is a special
case.

Namely one see that a (nonabelian/Giraud-)gerbe on X is nothing but a connected and 1-truncated
object in H/X . Similarly, a (nonabelian/Breen) 2-gerbe over X is just a connected and 2-truncated object
in H/X . Accordingly we may call a general connecte object in H/X an nonabelian ∞-gerbe over X. We
say that it is a G-∞-gerbe if it is an Aut(BG)-associated ∞-bundle. We say its band is the underlying
Out(G)-principal ∞-bundle. For 1-gerbes and 2-gerbes this reproduces the classical notions.

In terms of this, the above says that G-∞-gerbes bound by a band are classified by (BAut(BG) →
BOut(G))-twisted cohomology. This is the generalization of Giraud’s original theorem. We discuss all this
in detail below in 5.1.19.

1.2.7 Principal connections

1.2.7.1 Parallel n-transport for low n With a decent handle on principal ∞-bundles as described
above, we now turn to the description of connections on ∞-bundles. It will turn out that the above cocycle-

description of G-principal ∞-bundles in terms of ∞-anafunctors X
'← X̂

g→ BG has, under mild conditions,
a natural generalization where BG is replaced by a (non-concrete) simplicial presheaf BGconn, which we may
think of as the∞-groupoid of∞-Lie algebra valued forms. This comes with a canonical map BGconn → BG
and an ∞-connection ∇ on the ∞-bundle classified by g is a lift ∇ of g in the diagram

BGconn

��
X̂

g //

'
��

∇
;;

BG

X

.

In the language of∞-stacks we may think of BG as the∞-stack (on CartSp) or∞-prestack (on SmoothMfd)
GTrivBund(−) of trivial G-principal bundles, and of BGconn correspondingly as the object GTrivBund∇(−)
of trivial G-principal bundles with (non-trivial) connection. In this sense the statement that ∞-connections
are cocycles with coefficients in some BGconn is a tautology. The real questions are:

1. What is BGconn in concrete formulas?
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2. Why are these formulas what they are? What is the general abstract concept of an ∞-connection?
What are its defining abstract properties?

A comprehensive answer to the second question is provided by the general abstract concepts discussed in
section 4. Here in this introduction we will not go into the full abstract theory, but using classical tools we
get pretty close. What we describe is a generalization of the concept of parallel transport to higher parallel
transport. As we shall see, this is naturally expressed in terms of ∞-anafunctors out of path n-groupoids.
This reflects how the full abstract theory arises in the context of an ∞-connected ∞-topos that comes
canonically with a notion of fundamental ∞-groupoid.

Below we begin the discussion of ∞-connections by reviewing the classical theory of connections on a
bundle in a way that will make its generalization to higher connections relatively straightforward. In an
analogous way we can then describe certain classes of connections on a 2-bundle – subsuming the notion
of connection on a bundle gerbe. With that in hand we then revisit the discussion of connections on
ordinary bundles. By associating to each bundle with connection its corresponding curvature 2-bundle with
connection we obtain a more refined description of connections on bundles, one that is naturally adapted
to the construction of curvature characteristic forms in the Chern-Weil homomorphism. This turns out to
be the kind of formulation of connections on an ∞-bundle that drops out of the general abstract theory.
In classical terms, its full formulation involves the description of circle n-bundles with connection in terms
of Deligne cohomology and the description of the ∞-groupoid of ∞-Lie algebra valued forms in terms of
dg-algebra homomorphisms. The combination of these two aspects yields naturally an explicit model for the
Chern-Weil homomorphism and its generalization to higher bundles.

Taken together, these constructions allow us to express a good deal of the general ∞-Chern-Weil theory
with classical tools. As an example, we describe how the classical Čech-Deligne cocycle construction of the
refined Chern-Weil homomorphism drops out from these constructions.

1.2.7.1.1 Connections on a principal bundle There are different equivalent definitions of the
classical notion of a connection. One that is useful for our purposes is that a connection ∇ on a G-principal
bundle P → X is a rule tra∇ for parallel transport along paths: a rule that assigns to each path γ : [0, 1]→ X
a morphism tra∇(γ) : Px → Py between the fibers of the bundle above the endpoints of these paths, in a
compatible way:

Px
tra∇(γ)// Py

tra∇(γ′)// Pz P

��
x

γ // y
γ′ // z X

In order to formalize this, we introduce a (diffeological) Lie groupoid to be called the path groupoid of X.
(Constructions and results in this section are from [ScWa07].

Definition 1.2.111. For X a smooth manifold let [I,X] be the set of smooth functions I = [0, 1] → X.
For U a Cartesian space, we say that a U -parameterized smooth family of points in [I,X] is a smooth map
U × I → X. (This makes [I,X] a diffeological space).

Say a path γ ∈ [I,X] has sitting instants if it is constant in a neighbourhood of the boundary ∂I. Let
[I, P ]si ⊂ [I, P ] be the subset of paths with sitting instants.

Let [I,X]si → [I,X]thsi be the projection to the set of equivalence classes where two paths are regarded
as equivalent if they are cobounded by a smooth thin homotopy.

Say a U -parameterized smooth family of points in [I,X]thsi is one that comes from a U -family of repre-
sentatives in [I,X]si under this projection. (This makes also [I,X]thsi a diffeological space.)

The passage to the subset and quotient [I,X]thsi of the set of all smooth paths in the above definition
is essentially the minimal adjustment to enforce that the concatenation of smooth paths at their endpoints
defines the composition operation in a groupoid.
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Definition 1.2.112. The path groupoid P1(X) is the groupoid

P1(X) = ([I,X]thsi
→→ X)

with source and target maps given by endpoint evaluation and composition given by concatenation of classes
[γ] of paths along any orientation preserving diffeomorphism [0, 1] → [0, 2] ' [0, 1]

∐
1,0[0, 1] of any of their

representatives

[γ2] ◦ [γ1] : [0, 1]
'→ [0, 1]

∐
1,0

[0, 1]
(γ2,γ1)→ X .

This becomes an internal groupoid in diffeological spaces with the above U -families of smooth paths. We
regard it as a groupoid-valued presheaf, an object in [CartSpop,Grpd]:

P1(X) : U 7→ (SmoothMfd(U × I,X)th
si
→→ SmoothMfd(U,X)) .

Observe now that for G a Lie group and BG its delooping Lie groupoid discussed above, a smooth functor
tra : P1(X)→ BG sends each (thin-homotopy class of a) path to an element of the group G

tra : (x
[γ]→ y) 7→ (• tra(γ)∈G→ •)

such that composite paths map to products of group elements :

tra :


y

[γ′]

��
x

[γ′◦γ]

//

[γ]
??

z

 7→


∗

tra(γ′)

��
∗

tra(γ′)tra(γ)

//

tra(γ)
??

∗

 .

and such that U -families of smooth paths induce smooth maps U → G of elements.
There is a classical construction that yields such an assignment: the parallel transport of a Lie-algebra

valued 1-form.

Definition 1.2.113. Suppose A ∈ Ω1(X, g) is a degree-1 differential form on X with values in the Lie
algebra g of G. Then its parallel transport is the smooth functor

traA : P1(X)→ BG

given by

[γ] 7→ P exp(

∫
[0,1]

γ∗A) ∈ G ,

where the group element on the right is defined to be the value at 1 of the unique solution f : [0, 1]→ G of
the differential equation

ddRf + γ∗A ∧ f = 0

for the boundary condition f(0) = e.

Proposition 1.2.114. This construction A 7→ traA induces an equivalence of categories

[CartSpop,Grpd](P1(X),BG) ' BGconn(X) ,

where on the left we have the hom-groupoid of groupoid-valued presheaves, and where on the right we have
the groupoid of Lie-algebra valued 1-forms, whose

• objects are 1-forms A ∈ Ω1(X, g),

• morphisms g : A1 → A2 are labeled by smooth functions g ∈ C∞(X,G) such that A2 = g−1Ag+g−1dg.
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This equivalence is natural in X, so that we obtain another smooth groupoid.

Definition 1.2.115. Define BGconn : CartSpop → Grpd to be the (generalized) Lie groupoid

BGconn : U 7→ [CartSpop,Grpd](P1(−),BG)

whose U -parameterized smooth families of groupoids form the groupoid of Lie-algebra valued 1-forms on U .

This equivalence in particular subsumes the classical facts that parallel transport γ 7→ P exp(
∫

[0,1]
γ∗A)

• is invariant under orientation preserving reparameterizations of paths;

• sends reversed paths to inverses of group elements.

Observation 1.2.116. There is an evident natural smooth functor X → P1(X) that includes points in X
as constant paths. This induces a natural morphism BGconn → BG that forgets the 1-forms.

Definition 1.2.117. Let P → X be a G-principal bundle that corresponds to a cocycle g : C(U) → BG
under the construction discussed above. Then a connection ∇ on P is a lift ∇ of the cocycle through
BGconn → BG.

BGconn

��
C(U)

g //

∇
::

BG

Observation 1.2.118. This is equivalent to the traditional definitions.

A morphism ∇ : C(U)→ BGconn is

• on each Ui a 1-form Ai ∈ Ω1(Ui, g);

• on each Ui ∩ Uj a function gij ∈ C∞(Ui ∩ Uj , G);

such that

• on each Ui ∩ Uj we have Aj = g−1
ij (A+ ddR)gij ;

• on each Ui ∩ Uj ∩ Uk we have gij · gjk = gik.

Definition 1.2.119. Let [I,X]thsi → [I,X]h the projection onto the full quotient by smooth homotopy classes

of paths. Write
∫

1
(X) = ([I,X]h

→→ X) for the smooth groupoid defined as P1(X), but where instead of
thin homotopies, all homotopies are divided out.

Proposition 1.2.120. The above restricts to a natural equivalence

[CartSpop,Grpd](
∫

1
(X),BG) ' [BG ,

where on the left we have the hom-groupoid of groupoid-valued presheaves, and on the right we have the full
sub-groupoid [BG ⊂ BGconn on those g-valued differential forms whose curvature 2-form FA = ddRA+[A∧A]
vanishes.

A connection ∇ is flat precisely if it factors through the inclusion [BG→ BGconn.

For the purposes of Chern-Weil theory we want a good way to extract the curvature 2-form in a general

abstract way from a cocycle ∇ : X
'← C(U) → BGconn. In order to do that, we first need to discuss

connections on 2-bundles.
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1.2.7.1.2 Connections on a principal 2-bundle There is an evident higher dimensional general-
ization of the definition of connections on 1-bundles in terms of functors out of the path groupoid discussed
above. This we discuss now. We will see that, however, the obvious generalization captures not quite all
2-connections. But we will also see a way to recode 1-connections in terms of flat 2-connections. And
that recoding then is the right general abstract perspective on connections, which generalizes to principal
∞-bundles and in fact which in the full theory follows from first principles.

(Constructions and results in this section are from [ScWa08], [ScWa08].)

Definition 1.2.121. The path path 2-groupoid P2(X) is the smooth strict 2-groupoid analogous to P1(X),
but with nontrivial 2-morphisms given by thin homotopy-classes of disks ∆2

Diff → X with sitting instants.

In analogy to the projection P1(X)→
∫

1
(X) there is a projection to P2(X)→

∫
2
(X) to the 2-groupoid

obtained by dividing out full homotopy of disks, relative boundary.

We want to consider 2-functors out of the path 2-groupoid into connected 2-groupoids of the form BG,
for G a 2-group, def. 1.2.81. A smooth 2-functor

∫
2
(X)→ BG now assigns information also to surfaces

tra :


y

[γ′]

��
x

[γ′◦γ]

//

[γ]
??

z
[Σ]��

 7→


∗

tra(γ′)

��
∗ //

tra(γ)
??

∗
tra(Σ)��


and thus encodes higher parallel transport.

Proposition 1.2.122. There is a natural equivalence of 2-groupoids

[CartSpop, 2Grpd](
∫

2
(X),BG) ' [BG

where on the right we have the 2-groupoid of Lie 2-algebra valued forms] whose

• objects are pairs A ∈ Ω1(X, g1), B ∈ Ω2(X, g2) such that the 2-form curvature

F2(A,B) := ddRA+ [A ∧A] + δ∗B

and the 3-form curvature
F3(A,B) := ddRB + [A ∧B]

vanish.

• morphisms (λ, a) : (A,B)→ (A′, B′) are pairs a ∈ Ω1(X, g2), λ ∈ C∞(X,G1) such that A′ = λAλ−1 +
λdλ−1 + δ∗a and B′ = λ(B) + ddRa+ [A ∧ a]

• The description of 2-morphisms we leave to the reader (see [ScWa08]).

As before, this is natural in X, so that we that we get a presheaf of 2-groupoids

[BG : U 7→ [CartSpop, 2Grpd](
∫

2
(U),BG) .

Proposition 1.2.123. If in the above definition we use P2(X) instead of
∫

2
(X), we obtain the same 2-

groupoid, except that the 3-form curvature F3(A,B) is not required to vanish.

Definition 1.2.124. Let P → X be a G-principal 2-bundle classified by a cocycle C(U) → BG. Then a
structure of a flat connection on a 2-bundle ∇ on it is a lift

[BG

��
C(U)

g //

∇flat

;;

BG

.

123



For G = BA, a connection on a 2-bundle (not necessarily flat) is a lift

[P2(−),B2A]

��
C(U)

g //

∇flat

88

BG

.

We do not state the last definition for general Lie 2-groups G. The reason is that for general G 2-
anafunctors out of P2(X) do not produce the fully general notion of 2-connections that we are after, but
yield a special case in between flatness and non-flatness: the case where precisely the 2-form curvature-
components vanish, while the 3-form curvature part is unrestricted. This case is important in itself and
discussed in detail below. Only for G of the form BA does the 2-form curvature necessarily vanish anyway,
so that in this case the definition by morphisms out of P2(X) happens to already coincide with the proper
general one. This serves in the following theorem as an illustration for the toolset that we are exposing,
but for the purposes of introducing the full notion of ∞-Chern-Weil theory we will rather focus on flat 2-
connections, and then show below how using these one does arrive at a functorial definition of 1-connections
that does generalize to the fully general definition of ∞-connections.

Proposition 1.2.125. Let {Ui → X} be a good open cover, a cocycle C(U)→ [P2(−),B2A] is a cocycle in
Čech-Deligne cohomology in degree 3.

Moreover, we have a natural equivalence of bicategories

[CartSpop, 2Grpd](C(U), [P2(−),B2U(1)]) ' U(1)Gerb∇(X) ,

where on the right we have the bicategory of U(1)-bundle gerbes with connection [Gaj97].
In particular the equivalence classes of cocycles form the degree-3 ordinary differential cohomology of X:

H3
diff(X,Z) ' π0([C(U), [P2(−),B2U(1)) .

A cocycle as above naturally corresponds to a 2-anafunctor

Q //

'
��

B2U(1)

P2(X)

The value of this on 2-morphisms in P2(X) is the higher parallel transport of the connection on the 2-bundle.
This appears for instance in the action functional of the sigma model that describes strings charged under
a Kalb-Ramond field.

The following example of a flat nonabelian 2-bundle is very degenerate as far as 2-bundles go, but does
contain in it the seed of a full understanding of connections on 1-bundles.

Definition 1.2.126. For G a Lie group, its inner automorphism 2-group INN(G) is as a groupoid the
universal G-bundle EG, but regarded as a 2-group with the group structure coming from the crossed module

[G
Id→ G].

The depiction of the delooping 2-groupoid BINN(G) is

BINN(G) =


∗

g2

��
∗

kg2g1

//

g1

??

∗
k��

| g1, g2 ∈ G, k ∈ G

 .

This is the Lie 2-group whose Lie 2-algebra inn(g) is the one whose Chevalley-Eilenberg algebra is the Weil
algebra of g.
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Example 1.2.127. By the above theorem we have that there is a bijection of sets

{
∫

2
(X)→ BINN(G)} ' Ω1(X, g)

of flat INN(G)-valued 2-connections and Lie-algebra valued 1-forms. Under the identifications of this theorem
this identification works as follows:

• the 1-form component of the 2-connection is A;

• the vanishing of the 2-form component of the 2-curvature F2(A,B) = FA + B identifies the 2-form
component of the 2-connection with the curvature 2-form, B = −FA;

• the vanishing of the 3-form component of the 3-curvature F3(A,B) = dB + [A∧B] = dA + [A∧FA] is
the Bianchi identity satisfied by any curvature 2-form.

This means that 2-connections with values in INN(G) actually model 1-connections and keep track of their
curvatures. Using this we see in the next section a general abstract definition of connections on 1-bundles
that naturally supports the Chern-Weil homomorphism.

1.2.7.1.3 Curvature characteristics of 1-bundles We now describe connections on 1-bundles in
terms of their flat curvature 2-bundles .

Throughout this section G is a Lie group, BG its delooping 2-groupoid and INN(G) its inner automor-
phism 2-group and BINN(G) the corresponding delooping Lie 2-groupoid.

Definition 1.2.128. Define the smooth groupoid BGdiff ∈ [CartSpop,Grpd] as the pullback

BGdiff = BG×BINN(G) [BINN(G) .

This is the groupoid-valued presheaf which assigns to U ∈ CartSp the groupoid whose objects are commuting
diagrams

U //

��

BG

��∫
2
(U) // BINN(G)

,

where the vertical morphisms are the canonical inclusions discussed above, and whose morphisms are com-
patible pairs of natural transformations

U
**
88

��

BG

��∫
2
(U)

--

66
BINN(G)

��

��

,

of the horizontal morphisms.

By the above theorems, we have over any U ∈ CartSp that

• an object in BGdiff(U) is a 1-form A ∈ Ω1(U, g);

• amorphism A1
(g,a)→ A2 is labeled by a function g ∈ C∞(U,G) and a 1-form a ∈ Ω1(U, g) such that

A2 = g−1A1g + g−1dg + a .

Notice that this can always be uniquely solved for a, so that the genuine information in this morphism
is just the data given by g.
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• ther are no nontrivial 2-morphisms, even though BINN(G) is a 2-groupoid: since BG is just a 1-
groupoid this is enforced by the commutativity of the above diagram.

From this it is clear that

Proposition 1.2.129. The projection BGdiff
'→ BG is a weak equivalence.

So BGdiff is a resolution of BG. We will see that it is the resoluton that supports 2-anafunctors out of
BG which represent curvature characteristic classes.

Definition 1.2.130. For X
'← C(U)→ BU(1) a cocycle for a U(1)-principal bundle P → X, we call a lift

∇ps in

BGdiff

��
C(U)

g //

∇ps

::

BG

a pseudo-connection on P .

Pseudo-connections in themselves are not very interesting. But notice that every ordinary connection is
in particular a pseudo-connection and we have an inclusion morphism of smooth groupoids

BGconn ↪→ BGdiff .

This inclusion plays a central role in the theory. The point is that while BGdiff is such a boring extension of
BG that it is actually equivalent to BG, there is no inclusion of BGconn into BG, but there is into BGdiff .
This is the kind of situation that resolutions are needed for.

It is useful to look at some details for the case that G is an abelian group such as the circle group U(1).
In this abelian case the 2-groupoids BU(1), B2U(1), BINN(U(1)), etc., that so far we noticed are given by
crossed complexes are actually given by ordinary chain complexes: we write

Ξ : Ch+
• → sAb→ KanCplx

for the Dold-Kan correspondence map that identifies chain complexes with simplicial abelian group and
then considers their underlying Kan complexes. Using this map we have the following identifications of our
2-groupoid valued presheaves with complexes of group-valued sheaves

BU(1) = Ξ[C∞(−, U(1))→ 0]

B2U(1) = Ξ[C∞(−, U(1))→ 0→ 0]

BINNU(1) = Ξ[C∞(−, U(1))
Id→ C∞(−, U(1))→ 0] .

Observation 1.2.131. For G = A an abelian group, in particular the circle group, there is a canonical
morphism BINN(U(1))→ BBU(1).

On the level of chain complexes this is the evident chain map

[C∞(−, U(1))
Id //

��

C∞(−, U(1)) //

��

0

��
[C∞(−, U(1)) // 0 // 0]

.
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On the level of 2-groupoids this is the map that forgets the labels on the 1-morphisms
∗

g2

��
∗

kg2g1

//

g1

??

∗
k��

 7→


∗

Id

��
∗

Id
//

Id

??

∗
k��


In terms of this map INN(U(1)) serves to interpolate between the single and the double delooping of U(1).
In fact the sequence of 2-functors

BU(1)→ BINN(U(1))→ B2U(1)

is a model for the universal BU(1)-principal 2-bundle

BU(1)→ EBU(1)→ B2U(1) .

This happens to be an exact sequence of 2-groupoids. Abstractly, what really matters is rather that it is a
fiber sequence, meaning that it is exact in the correct sense inside the ∞-category Smooth∞Grpd. For our
purposes it is however relevant that this particular model is exact also in the ordinary sense in that we have
an ordinary pullback diagram

BU(1) //

��

∗

��
BINN(U(1)) // B2U(1)

,

exhibitng BU(1) as the kernel of BINN(U(1))→ B2U(1).
We shall be interested in the pasting composite of this diagram with the one defining BGdiff over a

domain U :
U //

��

BU(1) //

��

∗

��∫
2
(U) // BINN(U(1)) // B2U(1)

,

The total outer diagram appearing this way is a component of the following (generalized) Lie 2-groupoid.

Definition 1.2.132. Set
[dRB2U(1) := ∗ ×B2U(1) [B

2U(1) .

Over any U ∈ CartSp this is the 2-groupoid whose objects are sets of diagrams

U //

��

∗

��∫
2
(U) // B2U(1)

.

This are equivalently just morphisms
∫

2
(U)→ B2U(1), which by the above theorems we may identify with

closed 2-forms B ∈ Ω2
cl(U).

The morphisms B1 → B2 in [dRB2U(1) over U are compatible pseudonatural transformations of the
horizontal morphisms

U ))
99

��

∗

��∫
2
(U)

--

66
BINN(G)

��

��

,
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which means that they are pseudonatural transformations of the bottom morphism whose components over
the points of U vanish. These identify with 1-forms λ ∈ Ω1(U) such that B2 = B1 + ddRλ. Finally the
2-morphisms would be modifications of these, but the commutativity of the above diagram constrais these
to be trivial.

In summary this shows that

Proposition 1.2.133. Under the Dold-Kan correspondence [dRB2U(1) is the sheaf of truncated de Rham
complexes

[dRB2U(1) = Ξ[Ω1(−)
ddR→ Ω2

cl(−)] .

Corollary 1.2.134. Equivalence classes of 2-anafunctors

X → [dRB2U(1)

are canonically in bijection with the degree 2 de Rham cohomology of X.

Notice that – while every globally defined closed 2-form B ∈ Ω2
cl(X) defines such a 2-anafunctor – not

every such 2-anafunctor comes from a globally defined closed 2-form. Some of them assign closed 2-forms
Bi to patches U1, that differ by differentials Bj − Bi = ddRλij of 1-forms λij on double overlaps, which
themselves satisfy on triple intersections the cocycle condition λij + λjk = λik. But (using a partition of
unity) these non-globally defined forms are always equivalent to globally defined ones.

This simple technical point turns out to play a role in the abstract definition of connections on∞-bundles:
generally, for all n ∈ N the cocycles given by globally defined forms in [dRBnU(1) constitute curvature char-
acteristic forms of genuine connections. The non-globally defined forms also constitute curvature invariants,
but of pseudo-connections. The way the abstract theory finds the genuine connections inside all pseudo-
connections is by the fact that we may find for each cocycle in [dRBnU(1) an equivalent one that does comes
from a globally defined form.

Observation 1.2.135. There is a canonical 2-anafunctor ĉdR
1 : BU(1)→ [dRB2U(1)

BU(1)diff
//

'
��

[dRB2U(1)

BU(1)

,

where the top morphism is given by forming the -composite with the universal BU(1)-principal 2-bundle, as
described above.

For emphasis, notice that this span is governed by a presheaf of diagrams that over U ∈ CartSp is of the
form

U //

��

BU(1)

��

transition function

∫
2
(U) //

��

BINN(U)

��

connection

∫
2
(U) // B2U(1) curvature

.

The top morphisms are the components of the presheaf BU(1). The top squares are those of BU(1)diff .
Forming the bottom square is forming the bottom morphism, which necessarily satifies the constraint that
makes it a components of [B2U(1).

The interpretation of the stages is as indicated in the diagram:

1. the top morphism is the transition function of the underlying bundle;
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2. the middle morphism is a choice of (pseudo-)connection on that bundle;

3. the bottom morphism picks up the curvature of this connection.

We will see that full∞-Chern-Weil theory is governed by a slight refinement of presheaves of essentially this
kind of diagram. We will also see that the three stage process here is really an incarnation of the computation
of a connecting homomorphism, reflecting the fact that behind the scenes the notion of curvature is exhibited
as the obstruction cocycle to lifts from bare bundles to flat bundles.

Observation 1.2.136. For X
'← C(U)

g→ BU(1) the cocycle for a U(1)-principal bundle as described above,
the composition of 2-anafunctors of g with ĉdR

1 yields a cocycle for a 2-form ĉdR
1 (g)

BU(1)conn

��
C(V )

∇
99

//

'
��

BU(1)diff
//

'
��

[dRB2U(1)

C(U)
g //

'
��

BU(1)

X

.

If we take {Ui → X} to be a good open cover, then we may assume V = U . We know we can always find
a pseudo-connection C(V )→ BU(1)diff that is actually a genuine connection on a bundle in that it factors
through the inclusion BU(1)conn → BU(1)diff as indicated.

The corresponding total map cdR
1 (g) represented by ĉdR

1 (∇) is the cocycle for the curvature 2-form of
this connection. This represents the first Chern class of the bundle in de Rham cohomology.

For X,A smooth 2-groupoids, write H(X,A) for the 2-groupoid of 2-anafunctors between them.

Corollary 1.2.137. Let H2
dR(X) → H(X, [dRB2U(1)) be a choice of one closed 2-form representative for

each degree-2 de Rham cohomology-class of X. Then the pullback groupoid Hdiff(X,BU(1)) in

Hconn(X,BU(1)) //

��

H2
dR(X)

��
H(X,BU(1)diff) //

'
��

H(X, [dRB2U(1))

H(X,BU(1)) ' U(1)Bund(X)

is equivalent to disjoint union of groupoids of U(1)-bundles with connection whose curvatures are the chosen
2-form representatives.

1.2.7.1.4 Circle n-bundles with connection For A an abelian group there is a straightforward
generalization of the above constructions to (G = Bn−1A)-principal n-bundles with connection for all n ∈ N.
We spell out the ingredients of the construction in a way analogous to the above discussion. A first-principles
derivation of the objects we consider here below in 6.4.16.

This is content that appeared partly in [SSS09c], [FSS10]. We restrict attention to the circle n-group
G = Bn−1U(1).
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There is a familiar traditional presentation of ordinary differential cohomology in terms of Cech-Deligne
cohomology. We briefly recall how this works and then indicate how this presentation can be derived along
the above lines as a presentation of circle n-bundles with connection.

Definition 1.2.138. For n ∈ N the Deligne-Beilinson complex is the chain complex of sheaves (on CartSp
for our purposes here) of abelian groups given as follows

Z(n+ 1)∞D =

 C∞(−,R/Z)
ddR // Ω1(−)

ddR // · · · ddR// Ωn−1(−)
ddR // Ωn(−)

n n− 1 · · · 1 0

 .
This definition goes back to [Del71] [Bel85]. The complex is similar to the n-fold shifted de Rham

complex, up to two important differences.

• In degree n we have the sheaf of U(1)-valued functions, not of R-valued functions (= 0-forms). The
action of the de Rham differential on this is often written dlog : C∞(−, U(1)) → Ω1(−). But if we
think of U(1) ' R/Z then it is just the ordinary de Rham differential applied to any representative in
C∞(−,R) of an element in C∞(−,R/Z).

• In degree 0 we do not have closed differential n-forms (as one would have for the de Rham complex
shifted into non-negative degree), but all n-forms.

As before, we may use of the Dold-Kan correspondence Ξ : Ch+
•
'→ sAb

U→ sSet to identify sheaves of chain
complexes with simplicial sheaves. We write

BnU(1)conn := ΞZ(n+ 1)∞D

for the simplicial presheaf corresponding to the Deligne complex.
Then for {Ui → X} a good open cover, the Deligne cohomology of X in degree (n+ 1) is

Hn+1
diff (X) = π0[CartSpop, sSet](C({Ui}),BnU(1)conn) .

Further using the Dold-Kan correspondence, this is equivalently the cohomology of the Čech-Deligne double
complex. A cocycle in degre (n+ 1) then is a tuple

(gi0,··· ,in , · · · , Aijk, Bij , Ci)

with

• Ci ∈ Ωn(Ui);

• Bij ∈ Ωn−1(Ui ∩ Uj);

• Aijk ∈ Ωn−2(Ui ∩ Uj ∩ Uk)

• and so on...

• gi0,··· ,in ∈ C∞(Ui0 ∩ · · · ∩ Uin , U(1))

satisfying the cocycle condition

(ddR + (−1)degδ)(gi0,··· ,in , · · · , Aijk, Bij , Ci) = 0 ,

where δ =
∑
i(−1)ip∗i is the alternating sum of the pullback of forms along the face maps of the Čech nerve.

This is a sequence of conditions of the form

• Ci − Cj = dBij ;
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• Bij −Bik +Bjk = dAijk;

• and so on

• (δg)i0,··· ,in+1
= 0.

For low n we have seen these conditions in the dicussion of line bundles and of line 2-bundles (bundle
gerbes) with connection above. Generally, for any n ∈ N, this is Čech-cocycle data for a circle n-bundle with
connection, where

• Ci are the local connection n-forms;

• gi0,··· ,in is the transition function of the circle n-bundle.

We now indicate how the Deligne complex may be derived from differential refinement of cocycles for circle
n-bundles along the lines of the above discussions. To that end, write

BnU(1)ch := ΞU(1)[n] ,

for the simplicial presheaf given under the Dold-Kan correspondence by the chain complex

U(1)[n] = (C∞(−, U(1))→ 0→ · · · → 0)

with the sheaf represented by U(1) in degree n.

Proposition 1.2.139. For {Ui → X} an open cover of a smooth manifold X and C({Ui}) its Čech nerve,
∞-anafunctors

C({Ui})
g //

'
��

BnU(1)

X

are in natural bijection with tuples of smooth functions

gi0···in : Ui0 ∩ · · · ∩ Uin → R/Z

satisfying

(∂g)i0···in+1
:=

n∑
k=0

gi0···ik−1ik·in = 0 ,

that is, with cocycles in degree-n Čech cohomology on U with values in U(1).
Natural transformations

C({Ui}) ·∆1
(g
λ→g′) //

'
��

BnU(1)

X ·∆1

are in natural bijection with tuples of smooth functions

λi0···in−1
: Ui0 ∩ · · · ∩ Uin−1

→ R/Z

such that
g′i0···in − gi0···in = (δλ)i0···in ,

that is, with Čech coboundaries.
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The ∞-bundle P → X classified by such a cocycle according to 1.2.6.4 we call a circle n-bundle. For
n = 1 this reproduces the ordinary U(1)-principal bundles that we considered before in 1.2.6.1, for n = 2
the bundle gerbes considered in 1.2.6.2 and for n = 3 the bundle 2-gerbes discussed in 1.2.6.3.

To equip these circle n-bundles with connections, we consider the differential refinements of BnU(1)ch to
be denoted BnU(1)diff , BnU(1)conn and [dRBn+1U(1).

Definition 1.2.140. Write

[dRBn+1U(1)chn := Ξ
(

Ω1(−)
ddR→ Ω2(−)

ddR→ · · · ddR→ Ωncl(−)
)

– the truncated de Rham complex – and

BnU(1)diff =


(−) //

��

BnU(1)

��∫
(−) // BnINN(U(1))

 = Ξ


C∞(−,R/Z) // Ω1(−)

ddR // · · · // Ωn(−)

⊕

Ω1(−)
Id

::

ddR

// · · · ddR// Ωn(−)
Id

==


and

BnU(1)conn = Ξ
(
C∞(−,R/Z)

ddR→ Ω1(−)
ddR→ Ω2(−)

ddR→ · · · ddR→ Ωn(−)
)

– the Deligne complex, def. 1.2.138.

Observation 1.2.141. We have a pullback diagram

BnU(1)conn
//

��

Ωn+1
cl (−)

��
BnU(1)diff

curv //

'
��

[dRBn−1U(1)

BnU(1)

in [CartSpop, sSet]. This models an ∞-pullback

BnU(1)conn
//

��

Ωn+1
cl (−)

��
BnU(1) // [dRBn−1U(1)

in the ∞-topos Smooth∞Grpd, and hence for each smooth manifold X (in particular) a homotopy pullback

H(X,BnU(1)conn) //

��

Ωn+1
cl (X)

��
H(X,BnU(1)) // H(X, [dRBn−1U(1))

.

We write
Hn

diff(X) := H(X,BnU(1)conn)
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for the group of cohomology classes on X with coefficients in BnU(1)conn. On these cohomology classes the
above homotopy pullback diagram reduces to the commutative diagram

Hn+1
diff (X)

uu ))
Hn+1(X,Z)

))

Ωn+1
cl (X)

uu
Hn+1(X,R) ' Hn+1

dR (X)

that had appeared above in 1.1.2.4. But notice that the homotopy pullback of the cocycle n-groupoids
contains more information than this projection to cohomology classes.

Objects in H(X,BnU(1)conn) are modeled by ∞-anafunctors X
'← C({Ui}) → BnU(1)conn, and these

are in natural bijection with tuples(
Ci, Bi0i1 , Ai0i1,i2 , · · ·Zi0···in−1 , gi0···in

)
,

where Ci ∈ Ωn(Ui), Bi0i1 ∈ Ωn−1(Ui0 ∩ Ui1), etc., such that

Ci0 − Ci1 = dBi0i1

and
Bi0i1 −Bi0i2 +Bi1i2 = dAi0i1i2 ,

etc. This is a cocycle in Čech-Deligne cohomology. We may think of this as encoding a circle n-bundle with
connection. The forms (Ci) are the local connection n-forms.

The definition of ∞-connections on G-principal ∞-bundles for nonabelian G may be reduced to this

definition, by approximating every G-cocylce X
'← C({Ui})→ BG by abelian cocycles in all possible ways,

by postcomposing with all possible characteristic classes BG
'← B̂G→ BnU(1) to extract a circle n-bundle

from it. This is what we turn to below in 1.2.8.

1.2.7.1.5 Holonomy and canonical action functionals We had started out with motivating dif-
ferential refinements of bundles and higher bundles by the notion of higher parallel transport. Here we
discuss aspects of this for the circle n-bundles

Let Σ be a compact smooth manifold of dimension n. For every smooth function Σ → X there is a
corresponding pullback operation

Hn+1
diff (X)→ Hn+1

diff (Σ)

that sends circle n-connections on X to circle n-connections on Σ. But due to its dimension, the curvature
(n+ 1)-form of any circle n-connection on Σ is necessarily trivial. From the definition of homotopy pullback
one can show that this implies that every circle n-connection on Σ is equivalent to one which is given by a
Cech-Deligne cocycle that involves a globally defined connection n-form ω. The integral of this form over
Σ produces a real number. One finds that this is well-defined up to integral shifts. This gives an n-volume
holonomy map ∫

Σ

: H(Σ,BnU(1)conn)→ U(1) .

For instance for n = 1 this is the map that sense an ordinary connection on an ordinary circle bundle over
Σ to its ordinary parallel transport along Σ, its line holonomy.

For G any smooth (higher) group, any morphism

ĉ : BGconn → BnU(1)conn
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from the moduli stack of G-connections to that of circle n-connections therefore induces a canonical functional

exp(iSc(−)) : H(Σ,BGconn))
H(Σ,ĉ // H(Σ,BnU(1)conn)

∫
Σ // U(1)

from the ∞-groupoid of G-connections on Σ to U(1).

1.2.7.2 Differential cohomology We now indicate how the combination of the intrinsic cohomology
and the geometric homotopy in a locally∞-connected∞-topos yields a good notion of differential cohomology
in an ∞-topos.

Using the defining adjoint ∞-functors (Π a Disc a Γ) we may reflect the fundamental ∞-groupoid
Π : H→∞Grpd from Top back into H by considering the composite endo-edjunction

(
∫
a [) := (Disc ◦Π a Disc ◦ Γ) : H //

oo
H .

The (Π a Disc)-unit X →
∫

(X) may be thought of as the inclusion of X into its fundamental ∞-groupoid
as the collection of constant paths in X.

As always, the boldface
∫

is to indicate that we are dealing with a cohesive refinement of the topological
structure Π. The symbol “[” (“flat”) is to be suggestive of the meaning of this construction:

For X ∈ H any cohesive object, we may think of Π(X) as its cohesive fundamental ∞-groupoid. A
morphism

∇ :
∫

(X)→ BG

(hence a G-valued cocycle on
∫

(X)) may be interpreted as assigning:

• to each point x ∈ X the fiber of the corresponding G-principal ∞-bundle classified by the composite

g : X →
∫

(X)
∇→ BG;

• to each path in X an equivalence between the fibers over its endpoints;

• to each homotopy of paths in X an equivalence between these equivalences;

• and so on.

This in turn we may think as being the flat higher parallel transport of an ∞-connection on the bundle

classified by g : X →
∫

(X)
∇→ BG.

The adjunction equivalence allows us to identify [BG as the coefficient object for this flat differential
G-valued cohomology on X:

Hflat(X,G) := π0H(X, [BG) ' π0H(
∫

(X),BG) .

In H = Smooth∞Grpd and with G ∈ H an ordinary Lie group and X ∈ H an ordinary smooth manifold,
we have that Hflat(X,G) is the set of equivalence classes of ordinary G-principal bundles on X with flat
connections.

The (Disc a Γ)-counit [BG→ BG provides the forgetful morphism

Hflat(X,G)→ H(X,G)

form G-principal ∞-bundles with flat connection to their underlying principal ∞-bundles. Not every G-
principal ∞-bundle admits a flat connection. The failure of this to be true - the obstruction to the existence
of flat lifts - is measured by the homotopy fiber of the counit, which we shall denote [dRBG, defined by the
fact that we have a fiber sequence

[dRBG→ [BG→ BG .

As the notation suggests, it turns out that [dRBG may be thought of as the coefficient object for nonabelian
generalized de Rham cohomology. For instance for G an odinary Lie group regarded as an object in H =
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Smooth∞Grpd, we have that [dRBG is presented by the sheaf Ω1
flat(−, g) of Lie algebra valued differential

forms with vanishing curvature 2-form. And for the circle Lie n-group Bn−1U(1) we find that [dRBnU(1) is
presented by the complex of sheaves whose abelian sheaf cohomology is de Rham cohomology in degree n.
(More precisely, this is true for n ≥ 2. For n = 1 we get just the sheaf of closed 1-forms. This is due to the
obstruction-theoretic nature of [dR: as we shall see, in degree 1 it computes 1-form curvatures of groupoid
principal bundles, and these are not quotiented by exact 1-forms.) Moreover, in this case our fiber sequence
extends not just to the left but also to the right

[dRBnU(1)→ [BnU(1)→ BnU(1)
curv→ [dRBn+1U(1) .

The induced morphism
curvX : H(X,BnU(1))→ H(X, [dRBn+1U(1))

we may think of as equipping an Bn−1U(1)-principal n-bundle (equivalently an (n− 1)-bundle gerbe) with
a connection, and then sending it to the higher curvature class of this connection. The homotopy fibers

Hdiff(X,BnU(1))→ H(X,BnU(1))
curv→ H(X, [dRBn+1U(1))

of this map therefore have the interpretation of being the cocycle ∞-groupoids of circle n-bundles with con-
nection. This is the realization in Smooth∞Grpd of our general definition of ordinary differential cohomology
in an ∞-topos.

All these definitions make sense in full generality for any locally∞-connected∞-topos. We used nothing
but the existence of the triple of adjoint ∞-functors (Π a Disc a Γ) : H → ∞Grpd. We shall show for
the special case that H = Smooth∞Grpd and X an ordinary smooth manifold, that this general abstract
definition reproduces ordinary differential cohomology over smooth manifolds as traditionally considered.

The advantage of the general abstract reformulation is that it generalizes the ordinary notion naturally
to base objects that may be arbitrary smooth ∞-groupoids. This gives in particular the ∞-Chern-Weil
homomorphism in an almost tautological form:

for G ∈ H any ∞-group object and BG ∈ H its delooping, we may think of a morphism

c : BG→ BnU(1)

as a representative of a characteristic class on G, in that this induces a morphism

[c(−)] : H(X,G)→ Hn(X,U(1))

from G-principal ∞-bundles to degree-n cohomology-classes. Since the classification of G-principal ∞-
bundles by cocycles is entirely general, we may equivalently think of this as the Bn−1U(1)-principal ∞-
bundle P → BG given as the homotopy fiber of c. A famous example is the Chern-Simons circle 3-bundle
(bundle 2-gerbe) for G a simply connected Lie group.

By postcomposing further with the canonical morphism curv : BnU(1) → [dRBn+1U(1) this gives in
total a differential characteristic class

cdR : BG
c→ BnU(1)

curv→ [dRBn+1U(1)

that sends a G-principal ∞-bundle to a class in de Rham cohomology

[cdR] : H(X,G)→ Hn+1
dR (X) .

This is the generalization of the plain Chern-Weil homomorphism.associated with the characteristic class
c. In cases accessible by traditional theory, it is well known that this may be refined to what are called
the assignment of secondary characteristic classes to G-principal bundles with connection, taking values in
ordinary differential cohomology

[ĉ] : Hconn(X,G)→ Hn+1
diff (X) .
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We will discuss that in the general formulation this corresponds to finding objects BGconn that lift all
curvature characteristic classes to their corresponding circle n-bundles with connection, in that it fits into
the diagram

H(−,BGconn) //

��

∏
i Hdiff(−,BniU(1)) //

��

∏
iH

ni+1
dR (−)

��
H(−,BG) // ∏

i H(−,BniU(1))
curv // ∏

i H(−, [dRBni+1U(1))

The cocycles in Hconn(X,BG) := H(X,BGconn) we may identify with ∞-connections on the underlying
principal∞-bundles. Specifically for G an ordinary Lie group this captures the ordinary notion of connection
on a bundle, for G Lie 2-group it captures the notion of connection on a 2-bundle/gerbe.

1.2.7.3 Higher geometric prequantization Observation. There is a canonical∞-action γ of AutH/BG
(g)

on the space of ∞-sections ΓX(P ×G V ).
Claim. Since Sh∞(SmoothMfd) is cohesive, there is a notion of differential refinement of the above discus-
sion, yielding connections on ∞-bundles.
Example. Let C→ C//U(1)→ BU(1) be the canonical complex-linear circle action. Then
• gconn : X → BU(1)conn classifies a circle bundle with connection, a prequantum line bundle of its

curvature 2-form;
• ΓX(P ×U(1) C) is the corresponding space of smooth sections;
• γ is the exp(Poisson bracket)-group action of preqantum operators, containing the Heisenberg group

action.

Example. Let BU → BPU→ B2U(1) be the canonical 2-circle action. Then
• gconn : X → B2U(1)conn classifies a circle 2-bundle with connection, a prequantum line 2-bundle of its

curvature 3-form;
• ΓX(P ×BU(1) BU) is the corresponding groupoid of smooth sections = twisted bundles;
• γ is the exp(2-plectic bracket)-2-group action of 2-plectic geometry, containing the Heisenberg 2-group

action.

1.2.8 Characteristic classes

We discuss explicit presentations of characteristic classes of principal n-bundles for low values of n and for
low degree of the characteristic class.

• General concept

• Examples

– example 1.2.142 – First Chern class of unitary 1-bundles

– example 1.2.143 – Dixmier-Douady class of circle 2-bundles (of bundle gerbes)

– example 1.2.144 – Obstruction class of central extension

– example 1.2.145 – First Stiefel-Whitney class of an O-principal bundle

– example 1.2.146 – Second Stiefel-Whitney class of an SO-principal bundle

– example 1.2.147 – Bockstein homomorphism

– example 1.2.148 – Third integral Stiefel-Whitney class

– example 1.2.149 – First Pontryagin class of Spin-1-bundles and twisted string-2-bundles
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In the context of higher (smooth) groupoids the notion of characteristic class is conceptually very simple:
for G some n-group and BG the corresponding one-object n-groupoid, a characteristic class of degree k ∈ N
with coefficients in some abelian (Lie-)group A is presented simply by a morphism

c : BG→ BnA

of cohesive∞-groupoids. For instance if A = Z such a morphism represents a universal integral characteristic
class on BG. Then for

g : X → BG

any morphism of (smooth) ∞-groupoids that classifies a given G-principal n-bundle P → X, as discussed
above in 1.2.6, the corresponding characteristic class of P (equivalently of g) is the class of the composite

c(P ) : X
g // BG

c // BKA ,

in the cohomology group Hk(X,A) of the ambient ∞-topos.
In other words, in the abstract language of cohesive ∞-toposes the notion of characteristic classes of

cohesive principal ∞-bundles is verbatim that of principal fibrations in ordinary homotopy theory. The
crucial difference, though, is in the implementation of this abstract formalism.

Namely, as we have discussed previously, all the abstract morphisms f : A → B of cohesive ∞-
groupoids here are presented by ∞-anafunctors, hence by spans of genuine morphisms of Kan-complex
valued presheaves, whose left leg is a weak equivalence that exhibits a resolution of the source object.

This means that the characteristic map itself is presented by a span

B̂G
c //

'
��

BkA

BG

,

as is of course the cocycle for the principal n-bundle

C(Ui)
g //

'
��

BG

X

and the characteristic class [c(P )] of the corresponding principal n-bundle is presented by a (any) span
composite

C(Ti)
ĝ //

'
��

B̂G
c //

'
��

BkA

C(Ui)
g //

'
��

BG

X

,

where C(Ti) is, if necessary, a refinement of the cover C(Ui) over which the BG-cocycle g lifts to a B̂G-cocycle
as indicated.

Notice the similarity of this situation to that of the discussion of twisted bundles in example 1.2.95.
This is not a coincidence: every characteristic class induces a corresponding notion of twisted n-bundles
and, conversely, every notion of twisted n-bundles can be understood as arising from the failure of a certain
characteristic class to vanish.

We discuss now a list of examples.
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Example 1.2.142 (first Chern class). Let N ∈ N. Consider the unitary group U(n). By its definition as a
matrix Lie group, this comes canonically equipped with the determinant function

det : U(n)→ U(1)

and by the standard properties of the determinant, this is in fact a group homomorphism. Therefore this
has a delooping to a morphism of Lie groupoids

Bdet : BU(n)→ BU(1) .

Under geometric realization this maps to a morphism

|Bdet| : BU(n)→ BU(1) ' K(Z, 2)

of topological spaces. This is a characteristic class on the classifying space BU(n): the ordinary first Chern
class. Hence the morphism Bdet on Lie groupoids is a smooth refinement of the ordinary first Chern class.

This smooth refinement acts on smooth U(n)-principal bundles as follows. Postcomposition of a Čech
cocycle

P : C({Ui})
(gij) //

'
��

BU(n)

X

for a U(n)-principal bundle on a smooth manifold X with this characteristic class yields the cocycle

detP : C({Ui})

'
��

(gij) //' // BU(n)
Bdet // BU(1)

X

for a circle bundle (or its associated line bundle) with transition functions (det(gij)): the determinant line
bundle of P .

We may easily pass to the differential refinement of the first Chern class along similar lines. By prop.
1.2.114 the differential refinement BU(n)conn → BU(n) of the moduli stack of U(n)-principal bundles is
given by the groupoid-valued presheaf which over a test manifold U assigns

BU(n)conn : U 7→
{
A

g→ Ag | A ∈ Ω1(U, u(n)); g ∈ C∞(U,U(n))
}
.

One checks that Bdet uniquely extends to a morphism of groupoid-valued presheaves Bdetconn

BU(n)conn
Bdetconn//

��

BU(1)conn

��
BU(n)

Bdet // BU(1)

by sending A 7→ tr(A). Here the trace operation on the matrix Lie algebra u(n) is a unary invariant
polynomial 〈−〉 : u(n)→ u(1) ' R.

Therefore, over a 1-dimensional compact manifold Σ (a disjoint union of circles) the canonical action
functional, 1.2.7.1.5, induced by the first Chern class is

exp(iSc1
) : H(Σ,BU(n)conn)

H(Σ,Bdetconn) // H(Σ,BU(1)conn)

∫
Σ // U(1)
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sending

A 7→ exp(i

∫
Σ

tr(A)) .

This is the action functional of 1-dimensional U(n)-Chern-Simons theory, discussed below in 7.2.4.

It is a basic fact that the cohomology class of line bundles can be identified within the second integral
cohomology of X. For our purposes here it is instructive to rederive this fact in terms of anafunctors, lifting
gerbes and twisted bundles.

To that end, consider from example 1.2.94 the equivalence of the 2-group (Z ↪→ R) with the ordinary
circle group, which supports the 2-anafunctor

B(Z→ R)
c1 //

'
��

B(Z→ 1) B2Z

BU(1)

.

We see now that this presents an integral characteristic class in degree 2 on BU(1). Given a cocycle
{hij ∈ C∞(Uij , U(1))} for any circle bundle, the postcomposition with this 2-anafunctor amounts to the
following:

1. refine the cover, if necessary, to a good open cover (where all non-empty Ui0,··· ,ik are contractible) –
we shall still write {Ui} now for this good cover;

2. choose on each Uij a (any) lift of the circle-valued functor hij : Uij → U(1) through the quotient map

R→ U(1) to a function ĥij : Uij → R – this is always possible over the contractible Uij ;

3. compute the failures of the lifts thus chosen to constitute the cocycle for an R-principal bundle: these
are the elements

λijk := ĥikĥ
−1
ij ĥ

−1
jk ∈ C

∞(Uijk,Z) ,

which are indeed Z-valued (hence constant) smooth functions due to the fact that the original {hij}
satisfied its cocycle law;

4. notice that by observation 1.2.90 this yields the construction of the cocycle for a (Z → R)-principal
2-bundle

{ĥij ∈ C∞(Uij ,R), λijk ∈ C∞(Uijk,Z)} ,

which by example 1.2.95 we may also read as the cocycle for a twisted R-1-bundle, with respect to the
central extension Z→ R→ U(1);

5. finally project out the cocycle for the “lifting Z-gerbe” encoded by this, which is the BZ-principal
2-bundle given by the BZ cocycle

{λijk ∈ C∞(Uijk,Z)} ,

This last cocycle is manifestly in degree-2 integral Čech cohomology, and hence indeed represents a class
in H2(X,Z). This is the first Chern class of the circle bundle given by {hij}. If here hij = detgij is the
determinant circle bundle of some unitary bundle, the this is also the first Chern class of that unitary bundle.

Example 1.2.143 (Dixmier-Douady class). The discussion in example 1.2.142 of the first Chern class of
a circle 1-bundle has an immediate generalization to an analogous canonical class of circle 2-bundles, def.
1.2.79, hence, by observation 1.2.80, to bundle gerbes. As before, while this amounts to a standard and basic
fact, for our purposes it shall be instructive to spell this out in terms of∞-anafunctors and twisted principal
2-bundles.
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To that end, notice that by delooping the equivalence B(Z→ R)
'→ BU(1) yields

B2(Z→ R)
'→ B2U(1) .

This says that BU(1)-principal 2-bundles/bundle gerbes are equivalent to B(Z → R)-principal 3-bundles,
def. 1.2.99.

As before, this supports a canonical integral characteristic class, now in degree 3, presented by the
∞-anafunctor

B2(Z→ R) //

'
��

B2(Z→ 1) B(Z→ 1→ 1)

B2U(1)

.

The corresponding class in H3(BU(1),Z) is the (smooth lift of) the universal Dixmier-Douady class.
Explicitly, for {gijk ∈ C∞(Uijk, U(1))} the Čech cocycle for a circle-2-bundle, def. 1.2.79, this class is

computed as the composite of spans

C(Ui)

'
��

(ĝ,λ)// B2(Z→ R) //

'
��

B3Z

C(Ui)
g //

'
��

B2U(1)

X

,

where we assume for simplicity of notation that the cover {Ui → X} already has be chosen (possibly after
refining another cover) such that all patches and their non-empty intersections are contractible.

Here the lifted cocycle data {ĝijk : Uijk → U(1)} is through the quotient map R → U(1) to real valued
functions. These lifts will, in general, not satisfy the condition of a cocycle for a BR-principal 2-bundle. The
failure is uniquely picked up by the functions

λijkl := ĝjklg
−1
ijkgijlg

−1
ikl ∈ C

∞(Uijkl,Z) .

By example 1.2.101 this data constitutes the cocycle for a (Z→ R→ 1)-principal 3-bundle or, by def. 1.2.102
that of a twisted BR-principal 2-bundle.

The above composite of spans projects out the integral cocycle

λijkl ∈ C∞(Uijkl,Z) ,

which manifestly gives a class in H3(X,Z). This is the Dixmier-Douady class of the original circle 3-bundle,
the higher analog of the Chern-class of a circle bundle.

Example 1.2.144 (obstruction class of central extension). For A → Ĝ → G a central extension of Lie
groups, there is a long sequence of (deloopings of) Lie 2-groups

BA→ BĜ→ BG
c→ B2A ,

where the characteristic class c is presented by the ∞-anafunctor

B(A→ Ĝ) //

'
��

B(A→ 1) B2A

BG

with (A→ Ĝ) the crossed module from example 1.2.88.
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The proof of this is discussed below in prop. 6.4.43.

Example 1.2.145 (first Stiefel-Whitney class). The morphism of groups

O(n)→ Z2

which sends every element in the connected component of the unit element of O(n) to the unit element of
Z2 and every other element to the non-trivial element of Z2 induces a morphism of delooping Lie groupoids

w1 : BO(n)→ BZ2 .

This represents the universal smooth first Stiefel-Whitney class.

The relation of w1 to orientation structure is discussed below in 7.1.2.2.

Example 1.2.146 (second Stiefel-Whitney class). The exact sequence that characterizes the Spin-group is

Z2 → Spin→ SO

induces, by example 1.2.144, a long fiber sequence

BZ2 → BSpin→ BSO
w2→ B2Z2 .

Here the morphism w2 is presented by the ∞-anafunctor

B(Z2 → Spin) //

'
��

B(Z2 → 1) B2Z2

BSO

.

This is a smooth incarnation of the universal second Stiefel-Whitney class. The BZ2-principal 2-bundle
associated by w2 to any SO(n)-principal bundles is dicussed in [MuSi03] in terms of the corresponding
bundle gerbe, via. observation 1.2.80.

Example 1.2.147 (Bockstein homomorphism). The exact sequence

Z ·2→ Z→ Z2

induces, by example 1.2.144, for each n ∈ N a characteristic class

β2 : BnZ2 → Bn+1Z .

This is the Bockstein homomorphism.

Example 1.2.148 (third integral Stiefel-Whitney class). The composite of the second Stiefel-Whitney class
from example 1.2.146 with the Bockstein homomorphism from example 1.2.147 is the third integral Stiefel-
Whitney class

W3 : BSO
w2→ B2Z2

β2→ B3Z .

This has a refined factorization through the universal Dixmier-Douady class from example 1.2.143:

W3 : BSO→ B2U(1) .

This is discussed in lemma 7.1.97 below.
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Example 1.2.149 (first Pontryagin class). LetG be a compact and simply connected simple Lie group. Then
the resolution from example 1.2.106 naturally supports a characteristic class presented by the 3-anafunctor

B(U(1)→ Ω̂G→ PG) //

'
��

B(U(1)→ 1→ 1) B3U(1)

BG

.

For G = Spin the spin group, this presents one half of the universal first Pontryagin class. This we dicuss
in detail in 7.1.2.

Composition with this class sends G-principal bundles to circle 2-bundles, 1.2.79, hence by 1.2.100 to
bundle 2-gerbes. Our discussion in 7.1.2 shows that these are the Chern-Simons 2-gerbes.

The canonical action functional, 1.2.7.1.5, induced by 1
2p1 over a compact 3-dimensional Σ

exp(iS 1
2 p1

) : H(Σ,BSpinconn)
H(Σ, 12 p̂1) // H(Σ,B3U(1)conn)

∫
Σ // U(1)

is the action functional of ordinary 3-dimensional Chern-Simons theory, refined to the moduli stack of field
configurations. This we discuss in 7.2.5.1.
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1.2.9 Lie algebras

A Lie algebra is, in a precise sense, the infinitesimal approximation to a Lie group. This statement generalizes
to smooth n-groups (the strict case of which we had seen in definition 1.2.96); their infinitesimal approxi-
mation are Lie n-algebras which for arbitrary n are known as L∞-algebras. The statement also generalizes
to Lie groupoids (discussed in 1.2.6); their infinitesimal approximation are Lie algeboids. Both these are
special cases of a joint generalization; where smooth n-groupoids have L∞-algebroids as their infinitesimal
approximation.

The following is an exposition of basic L∞-algebraic structures, their relation to smooth n-groupoids and
the notion of connection data with coefficients in L∞-algebras.

The following discussion proceeds by these topics:

• L∞-algebroids;

• Lie integration;

• Characteristic cocycles from Lie integration;

• L∞-algebra valued connections;

• Curvature characteristics and Chern-Simons forms;

• ∞-Connections from Lie integration;

1.2.9.1 L∞-algebroids There is a precise sense in which one may think of a Lie algebra g as the in-
finitesimal sub-object of the delooping groupoid BG of the corresponding Lie group G. Without here going
into the details, which are discussed in detail below in 6.5.2, we want to build certain smooth ∞-groupoids
from the knowledge of their infinitesimal subobjects: these subobjects are L∞-algebroids and specifically
L∞-algebras.

For g an N-graded vector space, write g[1] for the same underlying vector space with all degrees shifted
up by one. (Often this is denoted g[−1] instead). Then

∧•g = Sym•(g[1])

is the Grassmann algebra on g; the free graded-commutative algebra on g[1].

Definition 1.2.150. An L∞-algebra structure on an N-graded vector space g is a family of multilinear maps

[−, · · · ,−]k : Symk(g[1])→ g[1]

of degree -1, for all k ∈ N, such that the higher Jacobi identities∑
k+l=n+1

∑
σ∈UnSh(l,k−1)

(−1)σta1
, · · · , tal ], tal+1

, · · · , tak+l−1
] = 0

are satisfied for all n ∈ N and all {tai ∈ g}.

See [SSS09a] for a review and for references.

Example 1.2.151. If g is concentrated in degree 0, then an L∞-algebra structure on g is the same as an
ordinary Lie algebra structure. The only non-trivial bracket is [−,−]2 : g ⊗ g → g and the higher Jacobi
identities reduce to the ordinary Jacobi identity.

We will see many other examples of L∞-algebras. For identifying these, it turns out to be useful to have
the following dual formulation of L∞-algebras.
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Proposition 1.2.152. Let g be a N-graded vector space that is degreewise finite dimensional. Write g∗ for
the degreewise dual, also N-graded.

Then dg-algebra structures on the Grassmann algebra ∧•g∗ = Sym•g[1]∗ are in canonical bijection with
L∞-algebra structures on g, def. 1.2.150.

Here the sum is over all (l, k− 1)unshuffles, which means all permutations σ ∈ Σk+l−1 that preserves the
order within the first l and within the last k − 1 arguments, respectively, and (−1)sgn is the Koszul-sign of
the permutation: the sign picked up by “unshuffling” ta1 ∧ · · · ,∧tak+l−1 according to σ.
Proof. Let {ta} be a basis of g[1]. Write {ta} for the dual basis of g[1]∗, where ta is taken to be in the same
degree as ta.

A derivation d : ∧•g∗ → ∧•g∗ of the Grassmann algebra is fixed by its value on generators, where it
determines and is determined by a sequence of brackets graded-symmetric multilinear maps {[−, · · · ,−]k}∞k=1

by

d : ta 7→ −
∞∑
k=1

1

k!
[ta1

, · · · , tak ]a ta1 ∧ · · · ∧ tak ,

where a sum over repeated indices is understood. This derivation is of degree +1 precisely if all the k-ary
maps are of degree -1. It is straightforward to check that the condition d ◦ d = 0 is equivalent to the higher
Jacobi identities. �

Definition 1.2.153. The dg-algebra corresponding to an L∞-algebra g by prop. 1.2.152 we call the
Chevalley-Eilenberg algebra CE(g) of g.

Example 1.2.154. For g an ordinary Lie algebra, as in example 1.2.151, the notion of Chevalley-Eilenberg
algebra from def. 1.2.153 coincides with the traditional notion.

Examples 1.2.155. • A strict L∞-algebra algebra is a dg-Lie algebra (g, ∂, [−,−]) with (g∗, ∂∗) a
cochain complex in non-negative degree. With g∗ denoting the degreewise dual, the corresponding
CE-algebra is CE(g) = (∧•g∗, dCE = [−,−]∗ + ∂∗.

• We had already seen above the infinitesimal approximation of a Lie 2-group: this is a Lie 2-algebra. If
the Lie 2-group is a smooth strict 2-group it is encoded equivalently by a crossed module of ordinary
Lie groups, and the corresponding Lie 2-algebra is given by a differential crossed module of ordinary
Lie algebras.

• For n ∈ N, n ≥ 1, the Lie n-algebra bn−1R is the infinitesimal approximation to BnU(R) and BnR.
Its CE-algebra is the dg-algebra on a single generators in degree n, with vanishing differential.

• For any ∞-Lie algebra g there is an L∞-algebra inn(g) defined by the fact that its CE-algebra is the
Weil algebra of g:

CE(inn(g)) = W(g) = (∧•(g∗ ⊕ g∗[1]), dW|g∗ = dCE + σ) ,

where σ : g∗ → g∗[1] is the grading shift isomorphism, extended as a derivation.

Example 1.2.156. For g an L∞-algebra, its automorphism L∞-algebra der(g) is the dg-Lie algebra whose
elements in degree k are the derivations

ι : CE(g)→ CE(g)

of degree −k, whose differential is given by the graded commutator [dCE(g),−] and whose Lie bracket is the
commutator bracket of derivations.

In the context of rational homotopy theory, this is discussed on p. 312 of [Su77].
One advantage of describing an L∞-algebra in terms of its dual Chevalley-Eilenberg algebra is that in

this form the correct notion of morphism is manifest.
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Definition 1.2.157. A morphism of L∞-algebras g→ h is a morphism of dg-algebras CE(g)← CE(h).
The category L∞Alg of L∞-algebras is therefore the full subcategory of the opposite category of dg-

algebras on those whose underlying graded algebra is free:

L∞Alg
CE(−)−→ dgAlgop

R .

Replacing in this characterization the ground field R by an algebra of smooth functions on a manifold a0,
we obtain the notion of an L∞-algebroid g over a0. Morphisms a → b of such ∞-Lie algebroids are dually
precisely morphisms of dg-algebras CE(a)← CE(b).

Definition 1.2.158. The category of L∞-algebroids is the opposite category of the full subcategory of dgAlg

∞LieAlgbd ⊂ dgAlgop

on graded-commutative cochain dg-algebras in non-negative degree whose underlying graded algebra is an
exterior algebra over its degree-0 algebra, and this degree-0 algebra is the algebra of smooth functions on a
smooth manifold.

Remark 1.2.159. More precisely the above definition is that of affine C∞-L∞-algebroids. There are various
ways to refine this to something more encompassing, but for the purposes of this introductory discussion the
above is convenient and sufficient. A more comprehensive discussion is in 6.5.2 below.

Example 1.2.160. • The tangent Lie algebroid TX of a smooth manifold X is the infinitesimal ap-
proximation to its fundamental ∞-groupoid. Its CE-algebra is the de Rham complex

CE(TX) = Ω•(X).

1.2.9.2 Lie integration We discusss Lie integration: a construction that sends an L∞-algebroid to a
smooth ∞-groupoid of which it is the infinitesimal approximation.

The construction we want to describe may be understood as a generalization of the following proposition.
This is classical, even if maybe not reflected in the standard textbook literature to the extent it deserves to
be.

Definition 1.2.161. For g a (finite-dimensional) Lie algebra, let exp(g) ∈ [CartSpop, sSet] be the simplicial
presheaf given by the assignment

exp(g) : U 7→ HomdgAlg(CE(g),Ω•(U ×∆•)vert) ,

in degree k of dg-algebra homomorphisms from the Chevalley-Eilenberg algebra of g to the dg-algebra of
vertical differential forms with respect to the trivial bundle U ×∆k → U .

Shortly we will be considering variations of such assignments that are best thought about when writing
out the hom-sets on the right here as sets of arrows; as in

exp(g) : (U, [k]) 7→
{

Ω•vert(U ×∆k)
Avert←− CE(g)

}
) .

For g an ordinary Lie algebra it is an ancient and simple but important observation that dg-algebra morphisms
Ω•(∆k)← CE(g) are in natural bijection with Lie-algebra valued 1-forms that are flat in that their curvature
2-forms vanish: the 1-form itself determines precisely a morphism of the underlying graded algebras, and the
respect for the differentials is exactly the flatness condition. It is this elementary but similarly important
observation that historically led Eli Cartan to Cartan calculus and the algebraic formulation of Chern-Weil
theory.

One finds that it makes good sense to generally, for g any ∞-Lie algebra or even ∞-Lie algebroid, think
of HomdgAlg(CE(g),Ω•(∆k)) as the set of ∞-Lie algebroid valued differential forms whose curvature forms
(generally a whole tower of them) vanishes.
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Proposition 1.2.162. Let G be the simply-connected Lie group integrating g according to Lie’s three the-
orems and BG ∈ [CartSpop,Grpd] its delooping Lie groupoid regarded as a groupoid-valued presheaf on
CartSp. Write τ1(−) for the truncation operation that quotients out 2-morphisms in a simplicial presheaf to
obtain a presheaf of groupoids.

We have an isomorphism
BG = τ1 exp(g) .

To see this, observe that the presheaf exp(g) has as 1-morphisms U -parameterized families of g-valued
1-forms Avert on the interval, and as 2-morphisms U -parameterized families of flat 1-forms on the disk,
interpolating between these. By identifying these 1-forms with the pullback of the Maurer-Cartan form on
G, we may equivalently think of the 1-morphisms as based smooth paths in G and 2-morphisms smooth
homotopies relative endpoints between them. Since G is simply-connected this means that after dividing
out 2-morphisms only the endpoints of these paths remain, which identify with the points in G.

The following proposition establishes the Lie integration of the shifted 1-dimensional abelian L∞-algebras
bn−1R.

Proposition 1.2.163. For n ∈ N, n ≥ 1. Write

BnRch := ΞR[n]

for the simplicial presheaf on CartSp that is the image of the sheaf of chain complexes represented by R in
degree n and 0 in other degrees, under the Dold-Kan correspondence Ξ : Ch+

• → sAb→ sSet.
Then there is a canonical morphism∫

∆•
: exp(bn−1R)

'−→ BnRch

given by fiber integration of differential forms along U × ∆n → U and this is an equivalence (a global
equivalence in the model structure on simplicial presheaves).

The proof of this statement is discussed in 6.4.14.
This statement will make an appearance repeatedly in the following discussion. Whenever we translate

a construction given in terms exp(−) into a more convenient chain complex representation.

1.2.9.3 Characteristic cocycles from Lie integration We now describe characteristic classes and
curvature characteristic forms on G-bundles in terms of these simplicial presheaves. For that purpose it is
useful for a moment to ignore the truncation issue – to come back to it later – and consider these simplicial
presheaves untruncated.

To see characteristic classes in this picture, write CE(bn−1R) for the commutative real dg-algebra on
a single generator in degree n with vanishing differential. As our notation suggests, this we may think as
the Chevalley-Eilenberg algebra of a higher Lie algebra – the ∞-Lie algebra bn−1R – which is an Eilenberg-
MacLane object in the homotopy theory of∞-Lie algebras, representing∞-Lie algebra cohomology in degree
n with coefficients in R.

Restating this in elementary terms, this just says that dg-algebra homomorphisms

CE(g)← CE(bn−1R) : µ

are in natural bijection with elements µ ∈ CE(g) of degree n, that are closed, dCE(g)µ = 0. This is the
classical description of a cocycle in the Lie algebra cohomology of g.

Definition 1.2.164. Every such ∞-Lie algebra cocycle µ induces a morphism of simplicial presheaves

exp(µ) : exp(g) −→ exp(bnR)

given by postcomposition

Ω•vert(U ×∆l)
Avert←− CE(g)

µ←− CE(bnR) .
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Example 1.2.165. Assume g to be a semisimple Lie algebra, let 〈−,−〉 be the Killing form and µ =
〈−, [−,−]〉 the corresponding 3-cocycle in Lie algebra cohomology. We may assume without restriction that
this cocycle is normalized such that its left-invariant continuation to a 3-form on G has integral periods.
Observe that since π2(G) is trivial we have that the 3-coskeleton (see around def. 5.1.53 for details on
coskeleta) of exp(g) is equivalent to BG. By the inegrality of µ, the operation of exp(µ) on exp(g) followed
by integration over simplices descends to an ∞-anafunctor from BG to B3U(1), as indicated on the right of
this diagram in [CartSpop, sSet]

exp(g)
exp(µ) //

��

exp(bn−1R)

∫
∆•

��
C(V )

ĝ //

'
��

cosk3 exp(g)

∫
∆• cosk3 exp(µ)

//

'
��

B3R/Z

C(U)

'
��

g // BG

X

.

Precomposing this – as indicated on the left of the diagram – with another∞-anafunctor X
'← C(U)

g→ BG
for a G-principal bundle, hence a collection of transition functions {gij : Ui ∩Uj → G} amounts to choosing
(possibly on a refinement V of the cover U of X)

• on each Vi ∩ Vj a lift ĝij of gij to a familly of smooth based paths in G – ĝij : (Vi ∩ Vj) ×∆1 → G –
with endpoints gij ;

• on each Vi ∩ Vj ∩ Vk a smooth family ĝijk : (Vi ∩ Vj ∩ Vk) × ∆2 → G of disks interpolating between
these paths;

• on each Vi ∩ Vj ∩ Vk ∩ Vl a a smooth family ĝijkl : (Vi ∩ Vj ∩ Vk ∩ Vl)×∆3 → G of 3-balls interpolating
between these disks.

On this data the morphism
∫

∆•
exp(µ) acts by sending each 3-cell to the number

ĝijkl 7→
∫

∆3

ĝ∗ijkl(µ) mod Z ,

where µ is regarded in this formula as a closed 3-form on G.

We say this is Lie integration of Lie algebra cocycles.

Proposition 1.2.166. For G = Spin, the Čech cohomology cocycle obtained this way is the first fractional
Pontryagin class of the G-bundle classified by G.

We shall show this below, as part of our L∞-algebraic reconstruction of the above motivating example.
In order to do so, we now add differential refinement to this Lie integration of characteristic classes.

1.2.9.4 L∞-algebra valued connections In 1.2.6 we described ordinary connections on bundles as well
as connections on 2-bundles in terms of parallel transport over paths and surfaces, and showed how such
is equivalently given by cocycles with coefficients in Lie-algebra valued differential forms and Lie 2-algebra
valued differential forms, respectively.
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Notably we saw for the case of ordinary U(1)-principal bundles, that the connection and curvature data
on these is encoded in presheaves of diagrams that over a given test space U ∈ CartSp look like

U //

��

BU(1)

��

transition function

∫
(U) //

��

BINN(U(1))

��

connection

∫
(U) // B2U(1) curvature

together with a constraint on the bottom morphism.
It is in the form of such a kind of diagram that the general notion of connections on ∞-bundles may be

modeled. In the full theory in 4 this follows from first principles, but for our present introductory purpose we
shall be content with taking this simple situation of U(1)-bundles together with the notion of Lie integration
as sufficient motivation for the constructions considered now.

So we pass now to what is to some extent the reverse construction of the one considered before: we define
a notion of L∞-algebra valued differential forms and show how by a variant of Lie integration these integrate
to coefficient objects for connections on ∞-bundles.

1.2.9.5 Curvature characteristics and Chern-Simons forms For G a Lie group, we have described
above connections on G-principal bundles in terms of cocycles with coefficients in the Lie-groupoid of Lie-
algebra valued forms BGconn

BGconn� _

��

connection

BGdiff

'
��

pseudo-connection

C(U)g

∇ps

99
∇

BB

//

'
��

BG transition function

X

.

In this context we had derived Lie-algebra valued forms from the parallel transport description BGconn =
[P1(−),BG]. We now turn this around and use Lie integration to construct parallel transport from Lie-
algebra valued forms. The construction is such that it generalizes verbatim to ∞-Lie algebra valued forms.
For that purpose notice that another classical dg-algebra associated with g is its Weil algebra W(g).

Proposition 1.2.167. The Weil algebra W(g) is the free dg-algebra on the graded vector space g∗, meaning
that there is a natural bijection

HomdgAlg(W (g), A) ' HomVectZ(g∗, A) ,

which is singled out among the isomorphism class of dg-algebras with this property by the fact that the
projection of graded vector spaces g∗ ⊕ g∗[1]→ g∗ extends to a dg-algebra homomorphism

CE(g)←W (g) : i∗ .

(Notice that general the dg-algebras that we are dealing with are semi-free dg-algebras in that only their
underlying graded algebra is free, but not the differential).
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The most obvious realization of the free dg-algebra on g∗ is ∧•(g∗ ⊕ g∗[1]) equipped with the differential
that is precisely the degree shift isomorphism σ : g∗ → g∗[1] extended as a derivation. This is not the Weil
algebra on the nose, but is of course isomorphic to it. The differential of the Weil algebra on ∧•(g∗ ⊕ g∗[1])
is given on the unshifted generators by the sum of the CE-differential with the shift isomorphism

dW (g)|g∗ = dCE(g) + σ .

This uniquely fixes the differential on the shifted generators – a phenomenon known (at least after mapping
this to differential forms, as we discuss below) as the Bianchi identity .

Using this, we can express also the presheaf BGdiff from above in diagrammatic fashion

Remark 1.2.168. For G a simply connected Lie group, the presheaf BGdiff ∈ [CartSpop,Grpd] is isomorphic
to

BGdiff = τ1

exp(g)diff : (U, [k]) 7→


Ω•vert(U ×∆k) oo

Avert
CE(g)

Ω•(U ×∆k) oo
A //

OO

W(g)

OO




where on the right we have the 1-truncation of the simplicial presheaf of diagrams as indicated, where the
vertical morphisms are the canonical ones.

Here over a given U the bottom morphism in such a diagram is an arbitrary g-valued 1-form A on U×∆k.
This we can decompose as A = AU + Avert, where AU vanishes on tangents to ∆k and Avert on tangents
to U . The commutativity of the diagram asserts that Avert has to be such that the curvature 2-form FAvert

vanishes when both its arguments are tangent to ∆k.
On the other hand, there is in the above no further constraint on AU . Accordingly, as we pass to the

1-truncation of exp(g)diff we find that morphisms are of the form (AU )1
g→ (AU )2 with (AU )i arbitrary. This

is the definition of BGdiff .
We see below that it is not a coincidence that this is reminiscent to the first condition on an Ehresmann

connection on a G-principal bundle, which asserts that restricted to the fibers a connection 1-form on the
total space of the bundle has to be flat. Indeed, the simplicial presheaf BGdiff may be thought of as the
∞-sheaf of pseudo-connections on trivial ∞-bundles. Imposing on this also the second Ehresmann condition
will force the pseudo-connection to be a genuine connection.

We now want to lift the above construction exp(µ) of characteristic classes by Lie integration of Lie
algebra cocycles µ from plain bundles classified by BG to bundles with (pseudo-)connection classified by
BGdiff . By what we just said we therefore need to extend exp(µ) from a map on just exp(g) to a map on
exp(g)diff . This is evidently achieved by completing a square in dgAlg of the form

CE(g)µ oo CE(bn−1R)

W(g)

OO

oo cs
W(bn−1R)

OO

and defining exp(µ)diff : exp(g)diff → exp(bn−1R)diff to be the operation of forming pasting composites with
this.

Here W(bn−1R) is the Weil algebra of the Lie n-algebra bn−1R. This is the dg-algebra on two generators
c and k, respectively, in degree n and (n + 1) with the differential given by dW(bn−1R) : c 7→ k. The
commutativity of this diagram says that the bottom morphism takes the degree-n generator c to an element
cs ∈W(g) whose restriction to the unshifted generators is the given cocycle µ.

As we shall see below, any such choice cs will extend the characteristic cocycle obtained from exp(µ)
to a characteristic differential cocycle, exhibiting the ∞-Chern-Weil homomorphism. But only for special
nice choices of cs will this take genuine ∞-connections to genuine ∞-connections – instead of to pseudo-
connections. As we discuss in the full ∞-Chern-Weil theory, this makes no difference in cohomology. But
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in practice it is useful to fine-tune the construction such as to produce nice models of the ∞-Chern-Weil
homomorphism given by genuine ∞-connections. This is achieved by imposing the following additional
constraint on the choice of extension cs of µ:

Definition 1.2.169. For µ ∈ CE(g) a cocycle and cs ∈ W(g) a lift of µ through W(g) ← CE(g), we say
that dW(g) is an invariant polynomial in transgression with µ if dW(g) sits entirely in the shifted generators,
in that dW(g) ∈ ∧•g∗[1] ↪→W (g).

Definition 1.2.170. Write inv(g) ⊂W(g) (or W(g)basic) for the sub-dg-algebra on invariant polynomials.

Example 1.2.171. We have inn(bn−1R) ' CE(bnR).

Using this, we can now encode the two conditions on the extension cs of the cocycle µ as the commutativity
of this double square diagram

CE(g) oo
µ

CE(bn−1R) cocycle

W(g) oo
cs

OO

W(bn−1R)

OO

Chern-Simons element

inv(g) oo
〈−〉

OO

inv(bn−1R)

OO

invariant polynomial

.

Definition 1.2.172. In such a diagram, we call cs the Chern-Simons element that exhibits the transgression
between µ and 〈−〉.

We shall see below that under the ∞-Chern-Weil homomorphism, Chern-Simons elements give rise to
the familiar Chern-Simons forms – as well as their generalizations – as local connection data of secondary
characteristic classes realized as circle nn-bundles with connection.

Remark 1.2.173. What this diagram encodes is the construction of the connecting homomorphism for the
long exact sequence in cohomology that is induced from the short exact sequence

ker(i∗)→W(g)→ CE(g)

subject to the extra constraint of basic elements.

〈−〉 oo � 〈−〉

µ oo � cs
_

dW

OO

CE(g) oo
i∗

W(g) oo inv(g)

.

To appreciate the construction so far, recall the following classical fact

Fact 1.2.174. For G a compact Lie group, the rationalization BG ⊗ k of the classifying space BG is the
rational space whose Sullivan model is given by the algebra inv(g) of invariant polynomials on the Lie algebra
g.
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So we have obtained the following picture:

delooped ∞-group BG

��

g

��

CE(g) Chevalley-Eilenberg algebra

delooped groupal
universal ∞-bundle

BEG

��

inn(g)

��

W(g) = CE(inn(g))

OO

Weil algebra

rationalized
classifying space

∏
i B

niR
∏
i b
ni−1R inv(g)

OO

algebra of
invariant polynomials

ooLie integration

Example 1.2.175. For g a semisimple Lie algebra, 〈−,−〉 the Killing form invariant polynomial, there is
a Chern-Simons element cs ∈W(g) witnessing the transgression to the cocycle µ = − 1

6 〈−, [−,−]〉. Under a
g-valued form Ω•(X)←W (g) : A this maps to the ordinary degree 3 Chern-Simons form

cs(A) = 〈A ∧ dA〉+
1

3
〈A ∧ [A ∧A]〉 .

1.2.9.6 ∞-Connections from Lie integration For g an L∞-algebroid we have seen above the object
exp(g)diff that represents pseudo-connections on exp(g)-principal ∞-bundles and serves to support the ∞-
Chern-Weil homomorphism. We now discuss the genuine ∞-connections among these pseudo-connections.
A derivation from first principles of the following construction is given below in 6.4.17.

This construction is due to [SSS09c] and [FSS10].

Definition 1.2.176. Let X be a smooth manifold and g an L∞-algebra algebra or more generally an
L∞-algebroid.

An L∞-algebroid valued differential form on X is a morphism of dg-algebras

Ω•(X)←−W(g) : A

from the Weil algebra of g, examples 1.2.155, to the de Rham complex of X. Dually this is a morphism of
L∞-algebroids

A : TX → inn(g)

from the inner automorphism ∞-Lie algebra.
Its curvature is the composite of morphisms of graded vector spaces

Ω•(X)
A←−W(g)

F(−)←− g∗[1] : FA .

Precisely if the curvatures vanish does the morphism factor through the Chevalley-Eilenberg algebra

(FA = 0) ⇔


CE(g)

∃Aflat

zz
Ω•(X) oo

A
W (g)

OO


in which case we call A flat.
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Remark 1.2.177. For {xa} a coordinate chart of an L∞-algebroid a and

Aa := A(xa) ∈ Ωdeg(xa)(X)

the differential form assigned to the generator xa by the a-valued form A, we have the curvature components

F aA = A(dxa) ∈ Ωdeg(xa)+1(X) .

Since dW = dCE + d, this can be equivalently written as

F aA = A(dWx
a − dCEx

a) ,

so the curvature of A precisely measures the “lack of flatness” of A. Also notice that, since A is required to
be a dg-algebra homomorphism, we have

A(dW(a)x
a) = ddRA

a ,

so that
A(dCE(a)x

a) = ddRA
a − F aA .

Assume now A is a degree 1 a-valued differential form on the smooth manifold X, and that cs is a Chern-
Simons element transgressing an invariant polynomial 〈−〉 of a to some cocycle µ, by def. 1.2.169. We can
then consider the image A(cs) of the Chern-Simons element cs in Ω•(X). Equivalently, we can look at cs as
a map from degree 1 a-valued differential forms on X to ordinary (real valued) differential forms on X.

Definition 1.2.178. In the notations above, we write

Ω•(X) oo
A

W(a) oo
cs

W(bn+1R) : cs(A)

for the differential form associated by the Chern-Simons element cs to the degree 1 a-valued differential form
A, and call this the Chern-Simons differential form associated with A.

Similarly, for 〈−〉 an invariant polynomial on a, we write 〈FA〉 for the evaluation

Ω•closed(X) oo
A

W(a) oo
〈−〉

inv(bn+1R) : 〈FA〉 .

We call this the curvature characteristic forms of A.

Definition 1.2.179. For U a smooth manifold, the ∞-groupoid of g-valued forms is the Kan complex

exp(g)conn(U) : [k] 7→
{

Ω•(U ×∆k)
A←−W(g) | ∀v ∈ Γ(T∆k) : ιvFA = 0

}
whose k-morphisms are g-valued forms A on U ×∆k with sitting instants, and with the property that their
curvature vanishes on vertical vectors.

The canonical morphism
exp(g)conn −→ exp(g)

to the untruncated Lie integration of g is given by restriction of A to vertical differential forms (see below).

Here we are thinking of U ×∆k → U as a trivial bundle.
The first Ehresmann condition can be identified with the conditions on lifts ∇ in ∞-anafunctors

exp(g)conn

��
C(U)

'
��

∇
99

g // exp(g)

X

that define connections on ∞-bundles.
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1.2.9.6.1 Curvature characteristics

Proposition 1.2.180. For A ∈ exp(g)conn(U, [k]) a g-valued form on U × ∆k and for 〈−〉 ∈ W(g) any
invariant polynomial, the corresponding curvature characteristic form 〈FA〉 ∈ Ω•(U ×∆k) descends down to
U .

To see this, it is sufficient to show that for all v ∈ Γ(T∆k) we have

1. ιv〈FA〉 = 0;

2. Lv〈FA〉 = 0.

The first condition is evidently satisfied if already ιvFA = 0. The second condition follows with Cartan
calculus and using that ddR〈FA〉 = 0:

Lv〈FA〉 = dιv〈FA〉+ ιvd〈FA〉 = 0 .

Notice that for a general ∞-Lie algebra g the curvature forms FA themselves are not generally closed
(rather they satisfy the more Bianchi identity), hence requiring them to have no component along the simplex
does not imply that they descend. This is different for abelian∞-Lie algebras: for them the curvature forms
themselves are already closed, and hence are themselves already curvature characteristics that do descent.

It is useful to organize the g-valued form A, together with its restriction Avert to vertical differential
forms and with its curvature characteristic forms in the commuting diagram

Ω•(U ×∆k)vert
oo Avert

CE(g) gauge transformation

Ω•(U ×∆k) oo
A

OO

W(g)

OO

g-valued form

Ω•(U) oo
〈FA〉

OO

inv(g)

OO

curvature characteristic forms

in dgAlg. The commutativity of this diagram is implied by ιvFA = 0.

Definition 1.2.181. Write exp(g)CW(U) for the ∞-groupoid of g-valued forms fitting into such diagrams.

exp(g)CW (U) : [k] 7→



Ω•(U ×∆k)vert
oo Avert

CE(g)

Ω•(U ×∆k) oo
A

OO

W(g)

OO

Ω•(U) oo
〈FA〉

OO

inv(g)

OO


.

We call this the coefficient for g-valued ∞-connections

1.2.9.6.2 1-Morphisms: integration of infinitesimal gauge transformations The 1-morphisms
in exp(g)(U) may be thought of as gauge transformations between g-valued forms. We unwind what these
look like concretely.

Definition 1.2.182. Given a 1-morphism in exp(g)(X), represented by g-valued forms

Ω•(U ×∆1)←−W(g) : A
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consider the unique decomposition

A = AU + (Avert := λ ∧ dt) ,

with AU the horizonal differential form component and t : ∆1 = [0, 1]→ R the canonical coordinate.
We call λ the gauge parameter. This is a function on ∆1 with values in 0-forms on U for g an ordinary

Lie algebra, plus 1-forms on U for g a Lie 2-algebra, plus 2-forms for a Lie 3-algebra, and so forth.

We describe now how this encodes a gauge transformation

A0(s = 0)
λ−→ AU (s = 1) .

Observation 1.2.183. By the nature of the Weil algebra we have

d

ds
AU = dUλ+ [λ ∧A] + [λ ∧A ∧A] + · · ·+ ιsFA ,

where the sum is over all higher brackets of the ∞-Lie algebra g.

In the Cartan calculus for the case that g an ordinary one writes the corresponding second Ehremsnn
condition ι∂sFA = 0 equivalently

L∂sA = adλA .

Definition 1.2.184. Define the covariant derivative of the gauge parameter to be

∇λ := dλ+ [A ∧ λ] + [A ∧A ∧ λ] + · · · .

Remark 1.2.185. In this notation we have

• the general identity
d

ds
AU = ∇λ+ (FA)s

• the horizontality constraint or second Ehresmann condition ι∂sFA = 0, the differential equation

d

ds
AU = ∇λ .

This is known as the equation for infinitesimal gauge transformations of an ∞-Lie algebra valued form.

Observation 1.2.186. By Lie integration we have that Avert – and hence λ – defines an element exp(λ) in
the ∞-Lie group that integrates g.

The unique solution AU (s = 1) of the above differential equation at s = 1 for the initial values AU (s = 0)
we may think of as the result of acting on AU (0) with the gauge transformation exp(λ).
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1.2.9.7 Examples of ∞-connections We discuss some examples of ∞-groupoids of ∞-connections
obtained by Lie integration, as discussed in 1.2.9.6 above.

• 1.2.9.7.1 – Connections on ordinary principal bundles

• 1.2.9.7.2 – string-2-connections

1.2.9.7.1 Connections on ordinary principal bundles Let g be an ordinary Lie algebra and write
G for the simply connected Lie group integrating it. Write BGconn the groupoid of Lie algebra-valued forms
from prop. 1.2.114.

Proposition 1.2.187. The 1-truncation of the object exp(g)conn from def. 1.2.179 is equivalent to the
coefficient object for G-principal connections from prop. 1.2.114. We have an equivalence

τ1 exp(g)conn = BGconn

Proof. To see this, first note that the sheaves of objects on both sides are manifestly isomorphic, both
are the sheaf of Ω1(−, g). For morphisms, observe that for a form Ω•(U ×∆1) ← W(g) : A which we may
decompose into a horizontal and a verical piece as A = AU + λ∧ dt the condition ι∂tFA = 0 is equivalent to
the differential equation

∂

∂t
A = dUλ+ [λ,A] .

For any initial value A(0) this has the unique solution

A(t) = g(t)−1(A+ dU )g(t) ,

where g : [0, 1]→ G is the parallel transport of λ:

∂

∂t

(
g(t)
−1(A+ dU )g(t)

)
=g(t)−1(A+ dU )λg(t)− g(t)−1λ(A+ dU )g(t)

(where for ease of notation we write actions as if G were a matrix Lie group).
In particular this implies that the endpoints of the path of g-valued 1-forms are related by the usual

cocycle condition in BGconn
A(1) = g(1)−1(A+ dU )g(1) .

In the same fashion one sees that given 2-cell in exp(g)(U) and any 1-form on U at one vertex, there is
a unique lift to a 2-cell in exp(g)conn, obtained by parallel transporting the form around. The claim then
follows from the previous statement of Lie integration that τ1 exp(g) = BG. �

1.2.9.7.2 string-2-connections We discuss the string Lie 2-algebra and local differential form data
for string-2-connections. A detailed discussion of the corresponding String-principal 2-bundles is below in
7.1.2.4, more discussion of the 2-connections and their twisted generalization is in 7.1.6.3.

Let g be a semisimple Lie algebra. Write 〈−,−〉 : g⊗2 → R for its Killing form and

µ = 〈−, [−,−]〉 : g⊗3 → R

for the canonical 3-cocycle.
We discuss two very different looking, but nevertheless equivalent Lie 2-algebras.
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Definition 1.2.188 (skeletal version of string). Write gµ for the Lie 2-algebra whose underlying graded
vector space is

gµ = g⊕ R[−1] ,

and whose nonvanishing brackets are defined as follows.

• The binary bracket is that of g when both arguments are from g and 0 otherwise.

• The trinary bracket is the 3-cocycle

[−,−,−]gµ := 〈−, [−,−]〉 : g⊗3 → R .

Definition 1.2.189 (strict version of string). Write (Ω̂g → P∗g) for the Lie 2-algebra coming from the
differential crossed module, def. 1.2.82, whose underlying vector space is

(Ω̂g→ Pg) = P∗g⊕ (Ωg⊕ R)[−1] ,

where P∗g is the vector space of smooth maps γ : [0, 1]→ g such that γ(0) = 0, and where Ωg is the subspace
for which also γ(1) = 0, and whose non-vanishing brackets are defined as follows

• [−]1 = ∂ := Ωg⊕ R→ Ωg ↪→ P∗g;

• [−,−] : P∗g⊗ P∗g→ P∗g is given by the pointwise Lie bracket on g as

[γ1, γ2] = (σ 7→ [γ1(σ), γ2(σ)]) ;

• [−,−] : P∗g⊗ (Ωg⊕ R)→ Ωg⊕ R is given by pairs

[γ, (`, c)] :=

(
[γ, `], 2

∫ 1

0

〈γ(σ),
d`

dσ
(σ)〉dσ

)
, (1.5)

where the first term is again pointwise the Lie bracket in g.

Proposition 1.2.190. The linear map

P∗g⊕ (Ωg⊕ R)[−1]→ g⊕ R[−1] ,

which in degree 0 is evaluation at the endpoint

γ 7→ γ(1)

and which in degree 1 is projection onto the R-summand, induces a weak equivalence of L∞algebras

string ' (Ω̂g→ P∗g) ' gµ

Proof. This is theorem 30 in [BCSS07]. �

Definition 1.2.191. We write string for the string Lie 2-algebra if we do not mean to specify a specific
presentation such as soµ or (Ω̂so→ P∗so).

In more technical language we would say that string is defined to be the homotopy fiber of the morphism
of L∞-algebras µ3 : so→ b2R, well defined up to weak equivalence.

Remark 1.2.192. Proposition 1.2.190 says that the two Lie 2-algebras (Ω̂g → P∗g) and gµ, which look
quite different, are actually equivalent. Therefore also the local data for a String-2 connection can take two
very different looking but nevertheless equivalent forms.

Let U be a smooth manifold. The data of (Ω̂g→ P∗g)-valued forms on X is a triple
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1. A ∈ Ω1(U,Pg);

2. B ∈ Ω2(U,Ωg);

3. B̂ ∈ Ω2(U,R) .

consisting of a 1-form with values in the path Lie algebra of g, a 2-form with values in the loop Lie algebra
of g, and an ordinary real-valued 2-form that contains the central part of Ω̂g = Ωg⊕R. The curvature data
of this is

1. F = dA+ 1
2 [A ∧A] +B ∈ Ω2(U,Pg);

2. H = d(B + B̂) + [A ∧ (B + B̂)] ∈ Ω3(U,Ωg⊕ R), ,

where in the last term we have the bracket from (1.5). Notice that if we choose a basis {ta} of g such that
we have structure constant [tb, tc] = fabcta, then for instance the first equation is

F a(σ) = dAa(σ) +
1

2
fabcA

b(σ) ∧Ac(σ) +Ba(σ) .

On the other hand, the data of forms on U is a tuple

1. A ∈ Ω1(U, g);

2. B̂ ∈ Ω2(U,R),

consisting of a g-valued form and a real-valued 2-form. The curvature data of this is

1. F = dA+ [A ∧A] ∈ Ω2(g);

2. H = dB̂ + 〈A ∧ [A ∧A]〉 ∈ Ω3(U).

While these two sets of data look very different, proposition 1.2.190 implies that under their respective
higher gauge transformations they are in fact equivalent.

Notice that in the first case the 2-form is valued in a nonabelian Lie algebra, whereas in the second case
the 2-form is abelian, but, to compensate this, a trilinear term appears in the formula for the curvatures.
By the discussion in section 1.2.9.6 this means that a gµ-2-connection looks simpler on a single patch than

an (Ω̂g→ P∗g)-2-connection, it has relatively more complicated behavious on double intersections.
Moreover, notice that in the second case we see that one part of Chern-Simons term for A occurs, namely

〈A∧ [A∧A]〉 . The rest of the Chern-Simons term appears in this local formula after passing to yet another
equivalent version of string, one which is well-adapted to the discussion of twisted String 2-connections. This
we discuss in the next section.

The equivalence of the skeletal and the strict presentation for string corresponds under Lie integration
to two different but equivalent models of the smooth String-2-group.

Proposition 1.2.193. The degeewise Lie integration of Ω̂so→ P∗so yields the strict Lie 2-group (Ω̂Spin→
P∗Spin), where Ω̂Spin is the level-1 Kac-Moody central extension of the smooth loop group of Spin.

Proof. The nontrivial part to check is that the action of P∗so on Ω̂so lifts to a compatible action of
P∗Spin on Ω̂Spin. This is shown in [BCSS07]. �
Below in 7.1.2.4 we show that there is an equivalence of smooth n-stacks

B(Ω̂Spin→ P∗Spin) ' τ2 exp(gµ) .
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1.2.10 The Chern-Weil homomorphism

We now come to the discussion the Chern-Weil homomorphism and its generalization to the ∞-Chern-Weil
homomorphism.

We have seen in 1.2.6 G-principal ∞-bundles for general smooth ∞-groups G and in particular for
abelian groups G. Naturally, the abelian case is easier and more powerful statements are known about this
case. A general strategy for studying nonabelian ∞-bundles therefore is to approximate them by abelian
bundles. This is achieved by considering characteristic classes. Roughly, a characteristic class is a map that
functorially sends G-principal ∞-bundles to BnK-principal ∞-bundles, for some n and some abelian group
K. In some cases such an assignment may be obtained by integration of infinitesimal data. If so, then the
assignment refines to one of ∞-bundles with connection. For G an ordinary Lie group this is then what is
called the Chern-Weil homomorphism. For general G we call it the ∞-Chern-Weil homomorphism.

The material of this section is due to [SSS09a] and [FSS10].

1.2.10.1 Motivating examples A simple motivating example for characteristic classes and the Chern-
Weil homomorphism is the construction of determinant line bundles from example 1.2.142. This construction
directly extends to the case where the bundles carry connections. We give an exposition of this differential
refinement of the universal first Chern class, example 1.2.142. A more formal discussion of this situation is
below in 7.1.6.1.

For N ∈ N We may canonically identify the Lie algebra u(N) with the matrix Lie algebra of skew-
hermitian matrices on which we have the trace operation

tr : u(N)→ u(1) = iR .

This is the differential version of the determinant in that when regarding the Lie algebra as the infinitesimal
neighbourhood of the neutral element in U(N) the determinant becomes the trace under the exponential
map

det(1 + εA) = 1 + εtr(A)

for ε2 = 0. It follows that for tra∇ : P1(Ui) → BU(N) the parallel transport of a connection on P locally
given by a 1-forms A ∈ Ω1(Ui, u(N)) by

tra∇(γ) = P exp

∫
[0,1]

γ∗A

the determinant parallel transport

det(tra∇ =: P1(Ui)
tra∇→ BU(N)

det→ BU(1)

is locally given by the formula

det(tra∇(γ)) = P exp

∫
[0,1]

γ∗trA ,

which means that the local connection forms on the determinant line bundle are obtained from those of the
unitary bundle by tracing.

(det, tr) : {(gij), (Ai)} 7→ {(detgij), (trAi)} .

This construction extends to a functor

(ĉ1) := (det, tr) : U(N)Bundconn(X)→ U(1)Bundconn(X)

natural in X, that sends U(n)-principal bundles with connection to circle bundles with connection, hence to
cocycles in degree-2 ordinary differential cohomology.

This assignment remembers of a unitary bundle one inegral class and its differential refinement:
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• the integral class of the determinant bundle is the first Chern class the U(N)-principal bundle

[ĉ1(P )] = c1(P ) ;

• the curvature 2-form of its connection is a representative in de Rham cohomology of this class

[F∇ĉ1(P )
] = c1(P )dR .

H2
diff(X)

xx %%
H2(X,Z) Ω2

cl(X)

ĉ1(P )6

{{

	

$$
c1(P ) tr(F∇)

Equivalently this assignment is given by postcomposition of cocycles with a morphism of smooth∞-groupoids

ĉ1 : BU(N)conn → BU(1)conn .

We say that ĉ1 is a differential characteristic class, the differential refinement of the first Chern class.
In [BrMc96b] an algorithm is given for contructing differential characteristic classes on Čech cocycles in

this fashion for more general Lie algebra cocycles. For instance these authors give the following construction
for the diffrential refinement of the first Pontryagin class [BrMc93].

Let N ∈ N, write Spin(N) for the Spin group and consider the canonical Lie algebra cohomology 3-cocycle

µ = 〈−, [−,−]〉 : so(N)→ b2R

on semisimple Lie algebras, where 〈−,−〉 is the Killing form invariant polynomial. Let (P → X,∇) be a
Spin(N)-principal bundle with connection. Let A ∈ Ω1(P, so(N)) be the Ehresmann connection 1-form on
the total space of the bundle.

Then construct a Čech cocycle for Deligne cohomology in degree 4 as follows:

1. pick an open cover {Ui → X} such that there is a choice of local sections σi : Ui → P . Write

(gij , Ai) := (σ−1
i σj , σ

∗
iA)

for the induced Čech cocycle.

2. Choose a lift of this cocycle to an assignment

• of based paths in Spin(N) to double intersections

ĝij : Uij ×∆1 → Spin(N) ,

with ĝij(0) = e and ĝij(1) = gij ;

• of based 2-simplices between these paths to triple intersections

ĝijk : Uijk ×∆2 → Spin(N) ;

restricting to these paths in the obvious way;

• similarly of based 3-simplices between these paths to quadruple intersections

ĝijkl : Uijkl ×∆3 → Spin(N) .

Such lifts always exists, because the Spin group is connected (because already SO(N) is), simply
connected (because Spin(N) is the universal cover of SO(N)) and also has π2(Spin(N)) = 0 (because
this is the case for every compact Lie group).
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3. Define from this a Deligne-cochain by setting

1

2
p̂1(P ) := (gijkl, Aijk, Bij , Ci) :=


∫

∆3(σi · ĝijkl)∗µ(A)modZ,∫
∆2(σi · ĝijk)∗cs(A),∫
∆1(σi · ĝij)∗cs(A),
σ∗i µ(A)

 ,

where cs(A) = 〈A ∧ FA〉 + c〈A ∧ [A ∧ A]〉 is the Chern-Simons form of the connection form A with
respect to the cocyle µ(A) = 〈A ∧ [A ∧A]〉.

They then prove:

1. This is indeed a Deligne cohomology cocycle;

2. it represents the differential refinement of the first fractional Pontryagin class of P .

H4
diff(X)

xx %%
H4(X,Z) Ω4

cl(X)

1
2 p̂1(P )5

zz

	

$$
1
2p1(P ) dcs(A)

.

In the form in which we have (re)stated this result here the second statement amounts, in view of the first
statement, to the observation that the curvature 4-form of the Deligne cocycle is proportional to

dcs(A) ∝ 〈FA ∧ FA〉 ∈ Ω4
cl(X)

which represents the first Pontryagin class in de Rham cohomology. Therefore the key observation is that
we have a Deligne cocycle at all. This can be checked directly, if somewhat tediously, by hand.

But then the question remains: where does this successful Ansatz come from? And is it natural? For
instance: does this construction extend to a morphism of smooth ∞-groupoids

1

2
p̂1 : BSpin(N)conn → B3U(1)conn

from Spin-principal bundles with connection to circle 3-bundles with connection?
In the following we give a natural presentation of the ∞-Chern-Weil homomorphism by means of Lie

integration of L∞-algebraic data to simplicial presheaves. Among other things, this construction yields an
understanding of why this construction is what it is and does what it does.

The construction proceeds in the following broad steps

1. The infinitesimal analog of a characteristic class c : BG→ BnU(1) is an L∞-algebra cocycle

µ : g→ bn−1R .

2. There is a formal procedure of universal Lie integration which sends this to a morphism of smooth
∞-groupoids

exp(µ) : exp(g)→ exp(bn−1R) ' BnR

presented by a morphism of simplicial presheaves on CartSp.

3. By finding a Chern-Simons element cs that witnesses the transgression of µ to an invariant polynomial
on g this construction has a differential refinement to a morphism

exp(µ, cs) : exp(g)conn → BnRconn

that sends L∞-algebra valued connections to line n-bundles with connection.
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4. The n-truncation coskn+1 exp(g) of the object on the left produces the smooth ∞-groups on interest
– coskn+1 exp(g) ' BG – and the corresponding truncation of exp((µ, cs)) carves out the lattice Γ of
periods in G of the cocycle µ inside R. The result is the differential characteristic class

exp(µ, cs) : BGconn → BnR/Γconn .

Typically we have Γ ' Z such that this then reads

exp(µ, cs) : BGconn → BnU(1)conn .

1.2.10.2 The ∞-Chern-Weil homomorphism In the full ∞-Chern-Weil theory the ∞-Chern-Weil
homomorphism is conceptually very simple: for every n there is canonically a morphism of smooth ∞-
groupoids BnU(1) → [dRBn+1U(1) where the object on the right classifies ordinary de Rham cohomology
in degree n + 1. For G any ∞-group and any characteristic class c : BG → Bn+1U(1), the ∞-Chern-Weil
homomorphism is the operation that takes a G-principal ∞-bundle X → BG to the composite X → BG→
BnU(1)→ [dRBn+1U(1).

All the constructions that we consider here in this introduction serve to model this abstract operation.
The ∞-connections that we considered yield resolutions of BnU(1) and BG in terms of which the abstract
morphisms are modeled as ∞-anafunctors.

1.2.10.2.1 ∞-Chern-Simons functionals If we express G by Lie integration of an ∞-Lie algebra
g, then the basic ∞-Chern-Weil homomorphism is modeled by composing an ∞-connection (Avert, A, 〈FA〉)
with the transgression of an invariant polynomial (µ, cs, 〈−〉) as follows



Ω•(U ×∆k)vert
ooAvert

CE(g) Čech cocycle

Ω•(U ×∆k) oo
A

OO

W(g)

OO

connection

Ω•(U) oo
〈FA〉

OO

inv(g)

OO

curvature
characteristic forms


◦



CE(g) oo
µ
CE(bn−1R) cocycle

W(g) oo
cs

OO

W(bn−1R)

OO

Chern-Simons
element

inv(g) oo
〈−〉

OO

inv(bn−1R)

OO

invariant
polynomial



=



Ω•(U ×∆k)vert
ooAvert

CE(g) oo
µ

CE(bn−1R) : µ(Avert) characteristic class

Ω•(U ×∆k) oo
A

OO

W(g)

OO

oo cs
W(bn − 1R)

OO

: csµ(A) Chern-Simons form

Ω•(U) oo
〈FA〉

OO

inv(g)

OO

oo 〈−〉 inv(bn−1R)

OO

: 〈FA〉µ
curvature

characteristic forms


.

This clearly yields a morphism of simplicial presheaves

exp(µ)conn : exp(g)conn → exp(bn−1R)conn
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and, upon restriction to the top two horizontal layers, a morphism

exp(µ)diff : exp(g)diff → exp(bn−1R)diff .

Projection onto the third horizontal component gives the map to the curvature classes

exp(bn−1R)diff → [dR exp(bnR)simp ,

In total, this constitutes an ∞-anafunctor

exp(g)diff
exp(µ)diff//

'
��

exp(bn−1R)diff
// [dRb

nR

exp(g)

Postcomposition with this is the simple ∞-Chern-Weil homomorphism: it sends a cocycle

C(U) //

'
��

exp(g)

X

for an exp(g)-principal bundle to the curvature form represented by

C(V )
(g,∇)//

'
��

exp(g)diff

'
��

exp(µ)diff// exp(bn−1R)diff
// [dRb

nR

C(U)
g //

'
��

exp(g)

X

.

Proposition 1.2.194. For g an ordinary Lie algebra with simply connected Lie group G, the image under
τ1(−) of this diagram constitutes the ordinary Chern-Weil homomorphism in that:

for g the cocycle for a G-principal bundle, any ordinary connection on a bundle constitutes a lift (g,∇)
to the tip of the anafunctor and the morphism represented by that is the Čech-hypercohomology cocycle on
X with values in the truncated de Rham complex given by the globally defined curvature characteristic form
〈F∇ ∧ · · · ∧ F∇〉.

But evidently we have more information available here. The ordinary Chern-Weil homomorphism refines
from a map that assigns curvature characteristic forms, to a map that assigns secondary characteristic classes
in the sense that it assigns circle n-bundles with connection whose curvature is this curvature characteristic
form. The local connection forms of these circle bundles are given by the middle horizontal morphisms.
These are the Chern-Simons forms

Ω•(U)
A←W(g)

cs←W(bn−1R) : cs(A) .

1.2.10.2.2 Secondary characteristic classes So far we discussed the untruncated coefficient object
exp(g)conn of g-valued ∞-connections. The real object of interest is the k-truncated version τk exp(g)conn

where k ∈ N is such that τk exp(g) ' BG is the delooping of the ∞-Lie group in question.
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Under such a truncation, the integrated ∞-Lie algebra cocycle exp(µ) : exp(g) → exp(bn−1R) will no
longer be a simplicial map. Instead, the periods of µ will cut out a lattice Γ in R, and exp(µ) does descent
to the quotient of R by that lattice

exp(µ) : τk exp(g)→ BnR/Γ .

We now say this again in more detail.

Suppose g is such that the (n+ 1)-coskeleton coskn+1 exp(g)
'→ BG for the desired G. Then the periods

of µ over (n+ 1)-balls cut out a lattice Γ ⊂ R and thus we get an ∞-anafunctor

coskn+1 exp(g)diff
//

'
��

BnR/Γdiff
// [dRBn+1R/Γ

BG

This is curvature characteristic class. We may always restrict to genuine ∞-connections and refine

coskn+1 exp(g)conn
//

� _

��

BnR/Γconn� _

��
coskn+1 exp(g)diff

//

'
��

BnR/Γdiff
// [dRBn+1R/Γ

BG

which models the refined ∞-Chern-Weil homomorphism with values in ordinary differential cohomology

Hconn(X,G)→ Hn+1
conn(X,R/Γ) .

Example 1.2.195. Applying this to the discussion of the Chern-Simons circle 3-bundle above, we find a
differential refinement

exp(g)diffexp(µ)diff
//

��

exp(bn−1R)diff∫
∆•

��
C(V )

(ĝ,∇̂)//

'
��

cosk3 exp(g)diff
//

��

B3U(1)diff

C(U)
(g,∇) //

'
��

BGdiff

X

.

Chasing components through this composite one finds that this descibes the cocycle in Deligne cohomology
given by

(CS(σ∗i∇),

∫
∆1

CS(ĝ∗ij∇),

∫
∆2

CS(ĝ∗ijk∇),

∫
∆3

ĝ∗ijklµ) .

This is the cocycle for the circle n-bundle with connection.

This is precisely the form of the Čech-Deligne cocycle for the first Pontryagin class given in [BrMc96b],
only that here it comes out automatically normalized such as to represent the fractional generator 1

2p1.
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By feeding in more general transgressive ∞-Lie algebra cocycles through this machine, we obtain cocy-
cles for more general differential characteristic classes. For instance the next one is the second fractional
Pontryagin class of String-2-bundles with connection [FSS10]. Moreover, these constructions naturally yield
the full cocycle ∞-groupoids, not just their cohomology sets. This allows us to form the homotopy fibers of
the ∞-Chern-Weil homomorphism and thus define differential string structures etc. and twisted differential
string structures etc. [SSS09c].

1.3 Physics

This section is an introduction to and review of aspects of modern mathematical physics, formulated mostly
in traditional terms but with an eye towards the developments below.

• 1.3.1 – Classical local Lagrangian field theory

• 1.3.2 – Hamilton-Jacobi mechanics via Prequantized Hamiltonian correspondences

• 1.3.3 – Hamilton-de Donder-Weyl field theory via Higher correspondences

• 1.3.4 – Higher pre-quantum gauge fields

• 1.3.5 – Higher geometric pre-quantum theory

1.3.1 Classical local Lagrangian Field theory

We give here a self-contained account of the basic definitions and facts in modern variational calculus for
classical local Lagrangian field theories in terms of jet geometry [Ol93, And89]. While nothing in this section
is new, our review puts an emphasis on certain aspects that will be crucial below in section 6.5.11 and that
are somewhat hidden in the standard literature. These aspects include:

• the comonadicity of the category of partial differential equations due to [Marv86];

• the functoriality of the Euler-Lagrange complex over the site of differential operators, implicit in
[And89].

This section draws from [KhaSc] and owes a lot to Igor Khavkine.

• 1.3.1.1 – Jet bundles, Differential operators and PDEs

• 1.3.1.2 – Horizontal de Rham complex;

• 1.3.1.3 – Variational bicomplex;

• 1.3.34 – Euler-Lagrange complex;

• 1.3.1.5 – Equations of motion and Lagrangians;

• 1.3.1.6 – Action functional and covariant phase space;

• 1.3.1.7 – Symmetries and conserved currents.
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1.3.1.1 Jet bundles, Differential operators and PDEs Throughout, let

• p ∈ N;

• Σ be a (p+ 1)-dimensional manifold, regarded as the spacetime/worldvolume of the field theory,

• E → Σ be a smooth bundle, called the field bundle, whose smooth sections φ ∈ Γ(E) are the field
configurations of the field theory.

Definition 1.3.1. Any smooth bundle may be extended to a sequence of k-jet bundles JkE → Jk−1E, each
an affine bundle over the preceding one, with J0E = E. The projective limit

J∞E := lim←− J
•E ,

regarded as a bundle over Σ, is the (∞-)jet bundle of E.

Remark 1.3.2. The intuition is that a section of Jk(E) over a point x ∈ Σ is equivalently a section of E
over the order-k infinitesimal neighbourhood Dn(k) of x:

E

��
Dn(k)

<<

� � // Σ

'

Jk(E)

��
∗

==

// Σ

This intuition becomes a precise statement [Kock80, section 2] after embedding smooth manifolds into
a model for synthetic differential geometry, such as [Dub79b, ?], where formal manifolds such as Dn(k)
genuinely exist. We come back to this below in section 6.5.10. The synthetic formulation has models also in
algebraic geometry, where the construction of jet bundles is known in the language of “crystals of schemes”
or “D-geometry,” see for instance [?].

Remark 1.3.3. While J∞E is not finite dimensional, it is nearly so, because any smooth function on it
must depend only on a finite number of coordinates, with the number bounded at least locally. Technically
this means that J∞E is defined a projective limit of a tower of affine bundles over E. It follows in particular
that J∞Σ has the same de Rham cohomology as E, Hp(J∞E) ∼= Hp(E).

By remark 1.3.2 it is clear that we have the following (see e.g. [Marv86]):

Definition 1.3.4. The jet bundle construction of def. 5.3.8 extends to a functor

J∞Σ : SmoothMfd↓Σ −→ SmoothMfd↓Σ .

Notice the following degenerate case.

Example 1.3.5. If we regard Σ
id→ Σ canonically as a bundle over itself, then it coincides with its jet bundle:

J∞Σ (Σ) ' Σ.

Simple as this is, it induces the following key construction.

Definition 1.3.6. Given a section φ : Σ → E, φ ∈ ΓΣ(E), its jet prolongation is its image under the jet
functor, def. 1.3.4, regarded as a section of the jet bundle via the equivalence of example 1.3.5:

j∞(φ) := Σ
' // J∞Σ (Σ)

J∞Σ (φ) // J∞Σ (E) .

Remark 1.3.7. In terms of remark 1.3.2 the jet extension of def. 1.3.6 is the result of restricting φ to all
order-k infinitesimal neighbourhoods of its domain.
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It turns out that the construction of jet bundles has some excellent abstract properties that are useful
in the classical theory and indispensable in the prequantum theory which we turn to in [?]. Before stating
them, we briefly recall the pertinent definitions.

Proposition 1.3.8 ([Marv86]). The jet bundle endofunctor of def. 1.3.4, together with the canonical pro-
jection map J∞Σ E → Σ as well as with the natural transformation Jet(E) −→ Jet(Jet(E)) induced from the
jet prolongation operation j∞, def. 5.3.79, is a co-monad.

Proposition 1.3.9 ([Marv86, section 1.1]). For E1, E2 ∈ SmoothMfd/Σ two bundles over Σ, then a dif-
ferential operator D : ΓΣ(E1) −→ ΓΣ(E2) is equivalently a map between their spaces of sections of the form
φ 7→ D̃ ◦ j∞(φ), where j∞ is the jet prolongation of def. 1.3.6, and where D̃ is a morphism of bundles over
Σ of the form

D̃ : J∞Σ (E1) −→ E2 .

The composite D2 ◦D1 of two differential operators is given by

D̃2 ◦D1 : J∞Σ (E1)
p∞(D̃1) // J∞Σ (E2)

D̃2 // E3 .

In other words, the category DiffOpΣ of smooth bundles over Σ with morphisms the differential operators
between their sections is equivalently the Kleisli category, def. ??, of the jet comonad of prop. 1.3.8.

Remark 1.3.10. Prop. 1.3.9 says in particular that the jet extension of a bundle E itself is the universal
differential operator j∞ : ΓΣ(E)→ ΓΣ(J∞Σ (E)). with j̃∞ = id.

Definition 1.3.11. In the situation of prop. 1.3.9, the composition

p∞(D̃) : J∞(E1) // J∞(J∞(E1))
J∞(D̃) // J∞(E2)

is called the prolongation of the map D̃.

Below in prop. 1.3.16 we give the co-monadic interpretation of p∞, using the following generalization of
prop. 1.3.9.

Theorem 1.3.12 ([Marv86]). The category of co-algebras EM(J∞Σ ) (def. ??) over the jet comonad over
Σ (prop. 1.3.8) is equivalently the category PDEΣ of (non-singular) partial differential equations with free
variables ranging in Σ, and with solution-preserving differential operators between these [?]:

EM(J∞Σ ) ' PDEΣ .

Remark 1.3.13. The identification of objects E ∈ PDEΣ in theorem 1.3.12 with (non-singular) partial
differential equations works as follows. First of all, one finds that every E ∈ PDEΣ is the equalizer of a
pair of morphisms 10 Dl, Dr : E −→ F in DiffOpΣ ↪→ PDEΣ, hence, by prop. 1.3.9, of two differential
operators acting on sections of a bundle E over Σ. By the universal property of equalizers, this means

that the morphisms Σ
φsol−→ E in PDEΣ are in bijection with those morphisms Σ

φsol−→ E such that the two

10It is here where the non-singularity condition comes in: If the equalizer of D̃l, D̃r : J∞E → F is not a smooth submanifold,
then de facto it does not exist in PDEΣ as defined here. This is a minor point. To deal with this one passes to an improved
category of smooth manifolds where all fiber products exists. This is preferably achieved by a category of “derived” manifolds,
whose formal duals are not just plain function algebras, but simplicial function algebras. In the physics literature these are
known as BV-complexes. It is fairly straightforward to lift the entire discussion here from smooth manifolds to derived smooth
manifolds, and once one does so the non-singular-clauses above may be omitted.
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composites Σ
φsol−→ E

Dl,r−→ F agree.

E � _

equ(Dl,Dr)

�� ��
Σ

φ //

φsol

??

E
Dl //

Dr

// F

∈ PDEΣ .

Now by example 1.3.15 the morphisms φ here are equivalently sections φ ∈ ΓΣ(E), and by prop. 1.3.9 these
equalize the morphisms Dl, Dr precisely if the action of these as differential operators acting on sections
agrees

Dl(φ) = Dr(φ) .

This is the explicit traditional incarnation of the differential equation embodied by the object E ∈ PDEΣ.
Yet another way to say this is that the monomorphism E ↪→ E in PDEΣ maps under U : PDEΣ →

SmoothMfd↓Σ to a submanifold inclusion
U(E) ↪→ J∞E

of the jet bundle of E, and that the solutions φsol to the differential equation are those sections φ ∈ ΓΣ(E)
whose jet prolongation, def. 5.3.79 factors through this inclusion

U(E)� _

��   
Σ

j∞(φsol)

>>

j∞(φ) // J∞Σ E
D̃l //

D̃r

// F

∈ SmoothMfd↓Σ .

It is common to notationally suppress the underlying-bundle functor U and just write E ↪→ J∞Σ E if the
context is clear. One then also says that E ⊂ J∞Σ E is the dynamical shell of the PDE.

Remark 1.3.14. In summary, prop. 1.3.9 and theorem 1.3.12 say, via prop. ??, that jet geometry constitutes
the following comonadic situation:

SmoothMfd↓Σ
oo U

F

⊥ //

F )) ))

PDEΣ ' EM(J∞Σ )

DiffOpΣ ' Kl(J∞Σ )
( � i

55

The category of PDEs over Σ (equivalently the Eilenberg-Moore category of J∞Σ -coalgebras) has a forgetful
functor to the category of pro-finite dimensional smooth bundles over Σ. This functor has a right adjoint,
sending any bundle E to the “co-free” differential equation it defines, namely the trivial differential equation
on smooth sections of E, for which every section is a solution. Even though these are trivial as differential
equations, the morphism between bundles when regarded as cofree differential equations are interesting,
they are precisely the differential operators. Hence the cofree functor from bundles to PDEs factors through
the full inclusion of the category DiffOpΣ of bundles with differential operators between them, which is
equivalently the Kleisli category, def. ??, of J∞Σ . Finally

J∞Σ ' U ◦ F .
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Due to the nature of the factorization through the Kleisli category, it makes sense and is convenient to
leave F notationally implicit.

Example 1.3.15. We have
DiffOpΣ(Σ, E) ' PDEΣ ' ΓΣ(E) .

Proposition 1.3.16. Given a morphism D in DiffOpΣ represented as a co-Kleisli morphism (remark ??)
D̃ : J∞Σ E1 → E2, then its underlying bundle map is the prolongation p∞(D̃) according to def. 1.3.11:

U(D) ' p∞(D̃) .

Proof. The morphism D is identified with a morphism in PDEΣ of the form D : F(E1) → F(E2).
The morphism D̃ is the adjunct of this under (U a F), and conversely, hence, by the formula prop. ?? for
adjuncts ,

D : F(E1)
ηF(E1)−→ F(U(F(E1)))

F(D̃)−→ F(E2) .

Therefore

U(D) : U(F(E1))
U(ηF(E1))−→ U(F(U(F(E1))))

U(F(D̃))−→ U(F(E2)) .

Via J∞Σ ' U◦F (prop. ??) and the formula for the coproduct via the adjunction counit (prop. ??) the right
hand is indeed the formula for p∞ from def. 1.3.11.

1.3.1.2 Horizontal de Rham complex A key fact of variational calculus is that the de Rham complex
of a jet bundle naturally splits into a bicomplex of horizontal and vertical differentials, with the latter
encoding the Euler-Lagrange variation of fields. In terms of the characterization of differential operators due
to prop. 1.3.9, the horizontal subcomplex has the following neat formulation.

Definition 1.3.17 (e.g. [?, def. 3.27]). A horizontal n-form α on a jet bundle J∞Σ (E) is a differential
operator of the form

α : E → ∧nT ∗Σ . (1.6)

With the de Rham differential d : Ωn(Σ)→ Ωn+1(Σ) on Σ regarded as a differential operator

d : ∧n T ∗X → ∧n+1T ∗X , (1.7)

then the horizontal differential of a horizontal n-form α is the composite of differential operators

dHα : F
α−→ ∧nT ∗Σ d−→ ∧n+1T ∗X . (1.8)

The resulting cochain complex (Ω•H(E), dH) is the horizontal de Rham complex of the jet bundle of E.

Remark 1.3.18. By prop. 1.3.9 a horizontal n-form as in def. 1.3.17 is equivalently a bundle morphism
of the form α̃ : J∞Σ (E) → ∧nT ∗Σ. Composed with the canonical bundle morphism ∧nT ∗Σ → ∧nT ∗J∞Σ (E)
induced from the bundle projection J∞Σ (E)→ Σ, this becomes an actual n-form α̃ ∈ Ωn(J∞Σ (E)) on the jet
bundle, whence the name. On the other hand, composed with a jet prolongation j∞(φ) : Σ → J∞Σ (E), def.
5.3.79, then

j∞(φ)∗α̃ : Σ
' // J∞Σ (Σ)

J∞Σ (φ) // J∞Σ (E)
α̃ // ∧nT ∗Σ

is a horizontal n-form on Σ, hence, by example 1.3.5, just a plain n-form on Σ. We use this interpretation to
identify horizontal forms with a subset Ω•H(E) ⊂ Ω•(J∞(E)). Moreover, we can actually extend the action of
dH to arbitrary forms in Ω•(J∞(E)) as follows. As a graded commutative algebra, Ω•(J∞(E)) is generated
by Ω0(J∞(E)) and dΩ0(J∞(E)). The action of dH on Ω0(J∞(E)), since any 0-form is automatically a
horizontal form. Further, let dHdf = −ddHf , for any f ∈ Ω0(J∞(E)). Having defined dH on the generators,
we extend it to all of Ω•(J∞(E)) as a graded differential. Note that this definition implies the identity
dHd+ ddH .
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The formulation of jet prolongation in def. 5.3.79 and of the horizontal complex in def.1.3.17 in terms
of the jet comonad structure of prop. 1.3.8 makes the following key property of the horizontal differential
follow from general abstract reasoning that holds in general models of jet geometry as in remark 1.3.2.

Proposition 1.3.19. Pullback of horizontal forms along jet prolongations intertwines the horizontal differ-
ential with the de Rham differential on Σ: for φ ∈ ΓΣ(E) and α ∈ ΩH(E), we have a natural identification

dΣ(j∞(φ)∗α̃) = j∞(φ)∗(dH α̃) .

Proof. Unwinding the definitions, the right hand is the form given by the composite

Σ
'→ J∞Σ (Σ)

J∞Σ (φ)−→ J∞Σ (E)→ J∞Σ (J∞Σ (E))
J∞Σ (α̃)−→ J∞Σ (∧nT ∗Σ)

d̃Σ−→ ∧n+1T ∗Σ .

Since the J∞Σ -coproduct is a natural transformation, we may pass J∞Σ (φ) through the coproduct from the
left to the right to obtain the equivalent morphism

Σ
'→ J∞Σ (Σ)

'→ J∞Σ (J∞Σ (Σ))
J∞Σ (J∞Σ (φ))−→ J∞(J∞Σ (E))

J∞Σ (α̃)−→ J∞Σ (∧nT ∗Σ)
d̃Σ−→ ∧n+1T ∗Σ .

By functoriality of J∞Σ we may compose this as

Σ
'→ J∞Σ (Σ)

'→ J∞Σ (J∞Σ (Σ))
J∞Σ (α̃◦J∞Σ (φ))−→ J∞Σ (∧nT ∗Σ)

d̃Σ−→ ∧n+1T ∗Σ .

This is the co-Kleisli morphism (remark ??) expressing the left hand side of the equation to be established.

1.3.1.3 Variational bicomplex

Definition 1.3.20. Write Ω•V (E) ↪→ Ω•(J∞Σ (E)) for the joint kernel of the pullback maps along jet prolon-
gations, def. 5.3.79

j∞(φ)∗ : Ω•(J∞Σ (E)) −→ Ω•(Σ) (1.9)

along all section φ ∈ ΓΣ(E). These are called the vertical differential forms (sometimes also contact forms)
on the jet bundle. The vertical forms constitute a differential ideal of (Ω•(J∞(E)), d), known as the contact
or Cartan ideal. The vertical differential

dV : Ω•(J∞(E))→ Ω•V (E)

is
dV := d− dH .

Proposition 1.3.21. The complex of differential forms on the jet bundle is a direct sum of the horizontal
forms from def. 1.3.17, remark 1.3.18 with the vertical forms of def. 1.3.20

Ω•(J∞Σ E) ' Ω•H(E)⊕ Ω•V (E) . (1.10)

In fact, the quotient of the de Rham complex (Ω•(J∞(E)), d) by the differential ideal ΩV (E) gives precisely
the horizontal de Rham complex (Ω•H(E), dH).

Considering the above decomposition on 1-forms, Ω1(J∞(E)) = Ω1
H(E)⊕Ω1

V (E), we assign to elements of
Ω1
H(E) horizontal degree 1 and vertical degree 0, while to elements of Ω1

V (E) horizontal degree 0 and vertical
degree 1. Also, we assign both horizontal and vertical degree 0 to elements of Ω0(J∞(E)). Obviously, the
sum of the horizontal and vertical degrees is the total form degree. Since all forms are generated as a graded
algebra by forms of total degrees 0 and 1, we have just defined a bigrading on the forms on J∞(E), which
we denote as Ω•(J∞(E)) =

⊕
h,v Ωh,v(E), where h stands for the horizontal and v for vertical degrees.
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Proposition 1.3.22. The horizontal-vertical bigrading and the operators dH , dV turns the de Rham complex
on J∞(E) into a bicomplex, called the variational bicomplex (Ω•,•(E), dH , dV ), where dH is of horizontal
degree 1 and vertical degree 0, while dV is of horizontal degree 0 and vertical degree 1.

Ω0
H(E)

dH //

dV

��

Ω1
H(E)

dH //

dV

��

Ω2
H(E)

dH //

dV

��

· · · dH //

···

Ωp
dV //

dH

��

Ωp+1
H (E)

dV

��
0 // Ω0,1(E)

dH //

dV
��

Ω1,1(E)
dH //

dV
��

Ω2,1(E)
dH //

dV
��

· · · dH //

···

Ωp,1(E)

dV
��

dH // Ωp+1,1(E)

dV
��

0 // Ω0,2(E)
dH //

dV
��

Ω1,2(E)
dH //

dV
��

Ω2,2(E)
dH //

dV
��

· · · dH //

···

Ωp,2

dV��

dH // Ωp+1,2(E)

dV
��

...
...

...
...

...

Here the horizontal rows (Ω•,v≥1(E), dH) are exact, except at Ωp+1,v(E), and also the vertical columns
(Ωh,•(E), dV ) are exact, except at Ωh,0(E).

Proposition 1.3.23. The total complex of the variational bicomplex is isomorphic to the de Rham complex
(Ω•(J∞(E)), d).

Remark 1.3.24. By the above proposition, the variational bicomplex must fail to be exact in some places
whenever its total complex (Ω•(J∞(E)), d) has non-trivial cohomology, which is isomorphic to H•(E), since
J∞(E) is contractible to E. In the bicomplex, these de Rham classes are concentrated in the v = 0 horizontal
row and, in a way to be described below, in the h = p+ 1 vertical column. In fact, all of these cohomology
classes are controlled precisely by Hn

dR(E). This is captured by the Euler-Lagrange complex, to which we
turn below in def. 1.3.34.

The bigraded forms in the variational bicomplex may naturally be identified with certain differential
operators. This is particularly important for the (p + 1, 1)-forms where the following operation will serve
to identify the variational derivative of a Lagrangian with the differential operator that embodies the corre-
sponding Euler-Lagrange equations of motion.

Definition 1.3.25. For n, k ∈ N write

(̃−) : Ωn,k(E) −→ DiffOpΣ(∧kE(V E),∧nT ∗Σ) (1.11)

for the map from (n, k)-bigraded differential forms as in prop. 1.3.22, to differential operators, which sends
β ∈ Ωn,k(E) to the differential operator β̃ whose value on any (φ;u1 ∧ · · · ∧ uk) ∈ Γ(∧kE(V E)) is

β̃[φ;u1 ∧ · · · ∧ uk] := (j∞φ)∗(ιp∞u1∧···∧p∞ukβ) , (1.12)

where the vector fields ui have been prolonged to the evolutionary vector fields p∞ui, as discussed in Re-
mark ??.

Notice that the bundle V E → E → Σ, or a tensor power of it, is a vector bundle over E, but may not
be linear over Σ if E itself is not a vector bundle. Write DiffOpE-lin

Σ (∧kE(V E),∧nT ∗Σ) for those differential
operators which are linear over E.

Proposition 1.3.26. The construction in def. 1.3.25 constitutes a linear isomorphism onto those differential
operators that are linear over E:

(̃−) : Ωn,k(E)
'−→ DiffOpE-lin

Σ (∧kE(V E),∧nT ∗Σ) (1.13)
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Definition 1.3.27. For k ≥ 1, there is a map (formal adjoint)

(−)∗ : DiffOpE-lin
Σ (∧kE(V E),∧p+1T ∗Σ) −→ DiffOpE-lin

Σ (R× ∧k−1
E (V E),∧p+1T ∗Σ⊗E V ∗E) (1.14)

which is uniquely characterized [?, Sec.5.2.3] by the condition that for every differential operator D ∈
DiffOpE-lin

Σ (∧kE(V E),∧p+1T ∗Σ) there is an

ωD ∈ DiffOpE-lin
Σ (R× ∧kE(V E),∧pT ∗Σ) (1.15)

such that for every f ∈ C∞(Σ) and every (φ;u1 ∧ · · · ∧ uk) ∈ Γ(∧kE(V E)) we have

fD[φ;u1 ∧ · · · ∧ uk]−D∗[φ; f, u1 ∧ · · · ∧ uk−1] · uk = dΣωD[φ; f, u1 ∧ · · ·uk−1, uk] . (1.16)

1.3.1.4 Euler-Lagrange complex Recall from prop. 1.3.22 that any 1-form on J∞(E) can be uniquely
decomposed into its horizontal and vertical parts.

Definition 1.3.28. The subspace of order-0 vertical 1-forms

Ω1
V,0(E) ⊂ Ω1

V (E)

is the image of the projection of the forms (π0
∞)∗[Ω1(E)] onto their vertical parts, where we take the pullback

along the natural projection π0
∞ : J∞(E)→ E.

Definition 1.3.29. For k ≥ 1, the subspace of (k-vertical) source forms is

Ωp+1,k
S (E) := Ωp+1,k−1(E) ∧ Ω1

V,0(E) .

Remark 1.3.30. The 1-vertical source forms of def.1.3.29 are also known as dynamical form or Euler-
Lagrange forms, while 2-vertical source forms are known as Helmholtz forms [?].

Source forms are a subspace of Ωp+1,•(E) forms, but can also be obtained by means of an idempotent
projection I : Ωp+1,•(E)→ Ωp+1,•(E), called the interior Euler operator.

Definition 1.3.31. The interior Euler map [And89, Sec.2.B] is the map

I : Ωp+1,k(E)→ Ωp+1,k(E) (1.17)

defined on any β through the equivalent differential operator representation

Ĩ(β)[φ;u1 ∧ · · · ∧ uk] :=
1

k

k∑
a=1

(−)k−aβ̃∗[φ; 1, u1 ∧ · · · ûa · · · ∧ uk] · ua. (1.18)

(where on the right we have the formal adjoint of def. 1.3.27 applied to the differential operator of def.
1.3.25). The higher Euler operator is the composite

δV := I ◦ dV : Ωp+1,k(E)→ Ωp+1,k+1(E) . (1.19)

Remark 1.3.32. For k = 0 then δV is better known as the Euler-Lagrange derivative and for k = 1 and
restricted to source forms, def. 1.3.29, then δV is better known as the Helmholtz operator.

Proposition 1.3.33. The higher Euler operator is a projection, I ◦ I = I. Its image is the space of source
forms, def. 1.3.29, and its kernel is the space of horizontally exact forms

im(I) ∼= Ωp+1,k
S (E), (1.20)

ker(I) ∼= im(dH). (1.21)
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In particular prop. 1.3.33 means that the Euler operators continue the complex of horizontal forms, def.
1.3.17, by source forms, def. 1.3.29:

Definition 1.3.34. The Euler-Lagrange complex of E is the chain complex

Ω•ELΣ
(E) := 0→ Ω0

H(E)
dH−→ Ω1

H(E)
dH−→ · · · dH−→ Ωp+1

H (E)
δV−→ Ωp+1,1

S
δV−→ Ωp+1,2

S
δV−→ · · · (1.22)

built from the horizontal derivatives dH of def. 1.3.17 and the Euler operators δV of def. 1.3.31.

Proposition 1.3.35. For k ≥ 1 we have an exact sequence

0→ Ω0,k dH−→ Ω1,k dH−→ · · · dH−→ Ωn,k
I−→ Ωn,kS → 0 (1.23)

formed by the horizontal differentials dH of def. 1.3.17 and the interior Euler operator I of def. 1.3.31.
Hence the variational bicomplex in prop. 1.3.22 is augmented to double complex as follows, with exact rows
as shown below. The dashed morphisms indicate how the Euler-Lagrange complex (def. 1.3.34) sits in this
bicomplex.

Ω0
H(E)

dH //

dV

��

Ω1
H(E)

dH //

dV

��

Ω2
H(E)

dH //

dV

��

· · · dH //

···

ΩpH(E)

dV

��

dH // Ωp+1
H (E)

dV

��

δV

&&
0 // Ω0,1(E)

dH //

dV

��

Ω1,1(E)
dH //

dV

��

Ω2,1(E)
dH //

dV

��

· · · dH //

···

Ωp,1(E)

dV

��

dH // Ωp+1,1(E)

dV

��

I //

δV

&&

Ωp+1,1
S (E) //
_?

oo

δV
��

0

0 // Ω0,2(E)
dH //

dV
��

Ω1,2(E)
dH //

dV
��

Ω2,2(E)
dH //

dV
��

· · · dH //

···

Ωp,2(E)

dV��

dH // Ωp+1,2(E)

dV
��

I // Ωp+1,1
S (E)_?

oo //

δV��

0

...
...

...
...

...
...

(For k = 0 we instead have theorem 1.3.38 below.)

Proposition 1.3.36. The definition of the variational bicomplex, prop. 1.3.22, and of the Euler-Lagrange
complex, prop. 1.3.34 of a jet bundle is contravariantly functorial in differential operators mapping via their
prolongation, def. 1.3.11, between jet bundles.

For E,F, F ′ ∈ SmoothMfd↓Σ and D : E → F , D′ : F → F ′ differential operators, then:

(i) [And89, Prop.1.6] The prolongation p∞D̃ : J∞E → J∞F of def. 1.3.11 preserves both the horizontal
and vertical forms (Definitions 1.3.17 and 1.3.20, Proposition 1.3.21)

(p∞D̃)∗Ω•H(F ) ⊆ Ω•H(E) and (p∞D̃)∗Ω•V (F ) ⊆ Ω•V (E). (1.24)

(ii) [And89, Thm.3.15] The pullback along the prolongation p∞D̃ : J∞E → J∞F (def. 1.3.11) is a cochain
map for the variational bicomplex (Prop. 1.3.22), respecting both degrees and both differentials,

(p∞D̃)∗ : (Ωh,v(F ), dH , dV ) −→ (Ωh,v(E), dH , dV ). (1.25)

(iii) Considering the differential operators D and D′, the composition of the pullbacks along prolongations
is equal to the pullback along the composition of the prolongations, which is also equal to the pullback
along the prolongation of the composition of the differential operators,

(p∞D̃)∗ ◦ (p∞D̃′)∗ = (p∞D̃′ ◦ p∞D̃)∗ = (p∞D̃′ ◦D)∗. (1.26)
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(iv) The interior Euler projected pullback along the prolongation p∞D̃ maps source forms into source forms
(def. 1.3.29),

I ◦ (p∞D̃)∗Ωp+1,k
S (F ) ⊆ Ωp+1,k

S (E). (1.27)

(v) [And89, Thm.3.21] The map between the Euler-Lagrange complexes

Ω•ELΣ
(F ) −→ Ω•ELΣ

(E) (1.28)

defined by the pullback (p∞D̃)∗ on the horizontal forms Ω•,0(−) and by the interior Euler projected
pullback I ◦ (p∞D̃)∗ on source forms Ωp+1,•

S (−) is a cochain map, respecting all the gradings and
differentials.

(vi) The composition of the interior Euler projected pullbacks along the prolongations of the differential
operators D and D′ is equal to the interior Euler projected pullback along the composition of the
differential operators,

I ◦ (p∞D̃)∗ ◦ I ◦ (p∞D̃′)∗ = I ◦ (p∞D̃′ ◦D). (1.29)

Proof. [Sketch of proof] Statement (i) is a fundamental property of horizontal and vertical forms. For
horizontal forms, it follows straight from the definitions. For vertical forms, the simplest proof follows from
an elementary calculation in local coordinates, which can be found in the cited reference.

Essentially, all other statements follow from (i) and basic properties of pullbacks of forms and of differen-
tial operators. For (ii), it suffices to combine with (i) the known property that pullbacks commute with the
de Rham differential. For (iii), it suffices to recall the composition property of pullbacks and of prolongations
of differential operators (Proposition 1.3.9). For (iv), it suffices to combine (ii) with the fact that source
forms are defined as the image of I. For (v), the horizontal part of EL• is already taken care of by (ii).
Also, since source forms can be thought of as canonical representatives of equivalence classes modulo dH ,
which by (ii) are preserved by the pullback, the rest of EL• is also covered. The same argument based on
equivalence classes also covers (vi).

Applying the desired statements to 1-parameter families of differential operators, we can obtain obvious
corresponding infinitesimal versions, applicable to vector fields that preserve vertical forms. However, since
some of these vector fields do not come from linearizing such 1-parameter families of differential operators,
they could also be proven directly by in infinitesimal form, as for example in [And89, Prop.3.17] and [And89,
Thm.3.21].

Remark 1.3.37. The statements in prop. 1.3.36 have obvious infinitesimal versions that apply to any vector
field from XH(E) + Xev(X) (Definition ?? and the remarks following it).

Theorem 1.3.38 (e.g. [And89, Thm.5.9]). For E a bundle over Σ, there is a chain map, given degreewise
by projection on horizontal forms and on vertical source forms, respectively from the Euler-Lagrange complex
of E, def. 1.3.34, to the de Rham complex of J∞Σ E:

Ω•dR(E)
'qi−→ Ω•dR(J∞Σ E)

'qi−→ Ω•ELΣ
(E) .

This is a quasi-isomorphism, i.e. it induces isomorphism on all cohomology groups:

H•(ΩdR(E)) ' H•(ΩELΣ(E)) (1.30)

Moreover, this chain map is a natural transformation with respect to the functoriality in prop. 1.3.36.

1.3.1.5 Equations of motion and Lagrangians

Definition 1.3.39. For ω ∈ Ωp+1,1
S (E) a source form, def. 1.3.29, then the partial differential equation on

sections φ ∈ ΓΣ(E) it induces is
∀

v∈Γ(V E)
j∞(φ)∗ιvω = 0 ,

saying that for all vertical tangent vectors v, the pullback of the contracted form ιvω along the jet prolon-
gation, def. 5.3.79, of φ vanishes.
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Proposition 1.3.40. As an object of PDEΣ, via theorem 1.3.12 and remark 1.3.13. the differential equation
in def. 1.3.39 is the equalizer of

1. the differential operator
ω̃ : E −→ ∧p+1T ∗Σ×Σ V

∗E

that corresponds to ω under the isomorphism of prop. 1.3.26;

2. the “0-morphism”
0̃ : E −→ ∧p+1T ∗Σ×Σ V

∗E

which sends any point (σ, e, j) ∈ J∞E to the pair consisting of 0 ∈ ∧p+1T ∗σΣ and 0 ∈ V ∗e E ↪→ (V ∗E)σ.

Proof. By direct comparison of def. 1.3.25 with def. 1.3.39.

Remark 1.3.41. Prop. 1.3.40 suggests that the differential equation induced by the source form ω should
be thought of the kernel or fiber of ω̃. However, a kernel or fiber of D would be the pullback of a point
inclusion into its codomain, and preferably of the zero point in an object with abelian group structure. But
this is not the case here. However, when below in section 6.5.11 we broaden the perspective from PDEΣ to
the sheaf topos over it, then source forms ω are given equivalently by maps into an abelian “moduli space”
Ωp+1,1
S , and then indeed the differential equation in question turns out to be precisely the kernel of these

representing maps. This is the content of prop. 6.5.103 below.

Definition 1.3.42. Given a (p+ 1)-dimensional smooth manifold Σ and a field bundle E → Σ, then

1. a globally defined local Lagrangian is a horizontal (p+ 1)-form

L ∈ Ωp+1
H (E)

according to def. 1.3.17;

2. the Euler-Lagrange form of L is its image under the Euler operator, def. 1.3.31,

EL := δV L ∈ Ωp+1,1
S (E) ,

3. the Euler-Lagrage equation E of L is the differential equation induced by EL via prop. 1.3.40.

(The prequantum-analog of this definition we give in def. 6.5.101 below.)

Remark 1.3.43. Unwinding the definitions, the concise concepts in def. 1.3.42 reproduce more common
expression found in the literature as follows.

1. The vertical derivative, def. 1.3.20, of the Lagrangian form L, splits uniquely into the sum of a source
form EL, def. 1.3.29, and a horizontally exact form

dV L = EL− dHθ .

The source form is indeed δV L = EL, by prop. 1.3.33. This decomposition is known as the first
variation formula in the geometric literature on the calculus of variations.

In components, EL is obtained from dV L by a formal integration by parts, def. 1.3.27, that removes
all the vertical differentials of jet coordinates involving derivatives. The boundary term picked up in
this operation is dHθ. This is the classical recipe for obtaining Euler-Lagrange equations.

Notice that EL is unaffected by a change to the Lagrangian of the form L 7→ L+dHK, for any horizontal
p-form K (though θ is affected).
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2. The submanifold inclusion
E ↪→ J∞Σ E

that characterizes the Euler-Lagrange equation in def. 1.3.42 via remark 1.3.13 (notationally suppress-
ing the underlying bundle functor U) is also called the dynamical shell or just shell for short.

There exist situations when, even though the equations of motion are given by a globally defined source
form EL ∈ Ωp+1,1

S (E), def. 1.3.28, and for any contractible open U ⊂ J∞F there exists a local Lagrangian LU ,
according to def. 1.3.42, such that δV LU = EL|U , there may not exist any globally defined local Lagrangian
L ∈ Ωn,0(E) such that the same formula holds on all of J∞E. Examples include the charged point particle
in an external non-exact electromagnetic field, also the usual 2-dimensional and higher-dimensional WZW
models [[gawedzki?]], and higher dimensional Chern-Simons models [[XXX]]. Such equations are locally but
not globally variational.

To decide whether a source form EL is locally variational, we use the local exactness of the Euler-Lagrange
complex (Thm. 1.3.38):

Definition 1.3.44. A 1-vertical source form EL ∈ Ωp+1,1
S (E), def. 1.3.28, is called locally variational if

the identity δV EL = 0 (which is known as the Helmholtz condition). The source form EL is called globally
variational if there exists a local Lagrangian L ∈ Ωp+1,0(E) such that EL = δV L.

1.3.1.6 Action functional and covariant phase space We review now the integration of the local
Lagrangian form data over submanifolds of Σ of codimension k. This gives

• k = 0 – The action functional, section 1.3.1.6.1;

• k = 1 – The covariant phase space, section 1.3.1.6.2.

Remark 1.3.45. In the classical theory this looks somewhat unsystematic, as in one case one is integrating
the Lagrangian form, in the other case one is fiber integrating the form θ appearing in its variational
derivative. That this actually does follow a unified pattern is revealed by the prequantum theory which we
turn to below in section 6.5.11.

1.3.1.6.1 Action functional

Definition 1.3.46. Given a smooth bundle E over Σ, write ΓΣ(E) for its space of smooth sections regarded
as a diffeological space.

Then jet prolongation of sections (def. 5.3.79) followed by evaluation of sections gives a smooth function

evj∞ : Σ× ΓΣ(E)
(id,j∞)−→ Σ× ΓΣ(J∞Σ E)

ev−→ J∞Σ E .

Notice that the space Σ× ΓΣ(E), being a Cartesian product, has a canonical bicomplex structure on its de
Rham complex, coming simply from the de Rham differential along Σ and along ΓΣ(E), separately.

Proposition 1.3.47 ([Zu87]). Pullback of differential forms along evj∞

(evj∞) : Ω•(J∞Σ E) −→ Ω•(Σ× ΓΣ(E))

constitutes an inclusion of bicomplexes

(evj∞) : Ω•,•(E) ' Ω•,•loc(Σ× ΓΣ(E)) ↪→ Ω•,•(Σ× ΓΣ(E))

from the variational bicomplex, prop. 1.3.22, into the canonical bicomplex on the Cartesian product,
The image of the inclusion is the called the bicomplex of local differential forms on Σ× ΓΣ(E)

This implies that there is a well defined action functional associated with a horizontal (p+ 1)-form:

Definition 1.3.48. For compact Σ the action functional is the smooth function

S(−)(−) : Ωp+1
H (E)× ΓΣ(E)

(evj∞)∗

↪→ Ωp+1,0(Σ× ΓΣ(E))× ΓΣ(E)
ev−→ Ωp+1(Σ)

∫
Σ−→ R .
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1.3.1.6.2 Covariant phase space Given a local Lagrangian L ∈ Ωp+1
H (E), a choice of θ ∈ Ωp,1(E)

from remark 1.3.43 is called a choice of presymplectic potential current. Its vertical derivative

ω := dV θ

is called the presymplectic current.
Given the a choice of compact p-dimensional submanifold Σp ↪→ Σ, the diffeological space ΓΣp(E)

equipped with the differential form 2-form∫
Σp

j∞(−)∗(ω) ∈ Ω2(ΓΣp(E))

is the presymplectic off-shell covariant phase space. Its restriction to the shell is the on-shell presymplectic
covariant phase space. A good source is [Zu87].

The quotient of this by the kernel of ω is the reduced symlectic covariant phase space.
Generally

∫
Σp
j∞(−)∗θ won’t pass to this quotient as a globally defined form, but only as a connection

on a principal bundle. This is what we get to in section 6.5.11.1.

1.3.1.7 Symmetries and conserved currents

Definition 1.3.49 ([Marv86, 3.2]). Given E ∈ PDEΣ, corresponding under theorem 1.3.12 to a J∞Σ coalgebra
given by a morphism in SmoothMfd/Σ of the form e : E −→ J∞Σ E , its vertical tangent bundle PDE is the
object V E ∈ PDEσ V E ∈ PDEΣ for coalgebra given by the image of e under the vertical tangent bundle
functor:

V e : V E −→ V J∞Σ E ' J∞Σ V E .

An infinitesimal symmetry v on E is a section

V E

��
E

v

@@

in PDEΣ of the canonical projection morphism.

Definition 1.3.50. Given a globally defined local Lagrangian L ∈ Ωp+1
H (E), def. 1.3.42, then an infinitesimal

variational symmetry is an infinitesimal symmetry v of E, def. 1.3.49, hence just a vertical vector field on
the bundle E with its jet extension j∞v, such that there is ∆v ∈ ΩpH(E) with

LvL = dH∆v .

Definition 1.3.51. Given a globally defined local Lagrangian L ∈ Ωp+1
H (E), def. 1.3.42, then an on-shell

consered current for its dynamics is a horizontal p-form

J ∈ ΩPH(E)

such that it is horizontally closed when restricted to the shell E
ker(EL(L))

↪→ E:

(dHJ)|E = 0 .

Proposition 1.3.52 (Noether’s first variational theorem). Given a variational symmetry as in def. 1.3.50,
then

Jv := ιvθ −∆v ∈ ΩpH(E)

with θ from remark 1.3.43, is an on-shell conserved current, def. 1.3.51, called a Noether current for v.
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Proof. By Cartan’s formula for Lie derivatives on J∞Σ E

LvL = ιvdL+ dιvL︸︷︷︸
=0

,

where the second summand vanishes due to v being vertical and L being horizontal. By remark 1.3.43 the
first term is

LvL = ιvEL + dHιvθ ,

where we used that the vertical contraction ιv anti-commutes with the horizontal differential dH . In summary
this gives

dH(ιvθ −∆v) = ιvEL .

The claim follows since El|E = 0 by the very definition of E .

1.3.2 Hamilton-Jacobi-Lagrange mechanics via prequantized Lagrangian correspondences

Above in section 1.3.1.6.2 we saw how the covariant phase space arises from local Lagrangians. We now
show how classical phase space mechanics – Hamiltonian mechanics, Hamilton-Jacobi theory, see e.g. [Ar89]
– naturally arises from and is accurately captured by “pre-quantized Lagrangian correspondences”. Since
field theory is a refinement of classical mechanics, this serves also as a blueprint for the discussion of De
Donder-Weyl-style classical field theory by higher correspondences below in 1.3.3, and more generally for the
discussion of local prequantum field theory in [FRS13a, Nui13, Sc13b].

The reader unfamiliar with classical mechanics may take the following to be a brief introduction to and
indeed a systematic derivation of the central concepts of classical mechanics from the notion of correspon-
dences in slice toposes. Conversely, the reader familiar with classical mechanics may take the translation
of classical mechanics into correspondences in slice toposes as the motivating example for the formalization
of prequantum field theory in [Sc13b]. The translation is summarized as a diagramatic dictionary below in
1.3.2.11.

The following sections all follow, in their titles, the pattern

Physical concept and mathematical formalization

and each first recalls a naive physical concept, then motivates its mathematical formalization, then discusses
this formalization and how it reflects back on the understanding of the physics.

• 1.3.2.1 – Phase spaces and symplectic manifolds;

• 1.3.2.2 – Coordinate systems and the topos of smooth spaces;

• 1.3.2.3 – Coordinate transformations and symplectomorphisms;

• 1.3.2.4 – Trajectories and Lagrangian correspondences;

• 1.3.2.5 – Observables, symmetries, and the Poisson bracket Lie algebra;

• 1.3.2.6 – Hamiltonian (time evolution) correspondence and Hamiltonian correspondence;

• 1.3.2.7 – Noether symmetries and equivariant structure;

• 1.3.2.8 – Gauge symmetry, smooth groupoids and higher toposes;

• 1.3.3.2 – The kinetic action, prequantization and differential cohomology;

• 1.3.2.10 – The classical action, the Legendre transform and Hamiltonian flows;

• 1.3.2.11 – The classical action functional pre-quantizes Lagrangian correspondences;
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• 1.3.2.12 – Quantization, the Heisenberg group and slice automorphism groups;

• 1.3.2.13 – Integrable systems, moment maps, and maps into the Poisson bracket;

• 1.3.2.14 – Classical anomalies and projective symplectic reduction;

Historical comment. Much of the discussion here is induced by just the notion of pre-quantized Lagrangian
correspondences. The notion of plain Lagrangian correspondences (not pre-quantized) has been observed
already in the early 1970s to usefully capture central aspects of Fourier transformation theory [Hö71] and
of classical mechanics [We71], notably to unify the notion of Lagrangian subspaces of phase spaces with
that of “canonical transformations”, hence symplectomorphisms, between them. This observation has since
been particularly advertized by Weinstein (e.g [We83]), who proposed that some kind of symplectic category
of symplectic manifolds with Lagrangian correspondences between them should be a good domain for a
formalization of quantization along the lines of geometric quantization. Several authors have since discussed
aspects of this idea. A recent review in the context of field theory is in [CMR12b].

But geometric quantization proper proceeds not from plain symplectic manifolds but from a lift of their
symplectic form to a cocycle in differential cohomology, called a pre-quantization of the symplectic manifold.
Therefore it is to be expected that some notion of pre-quantized Lagrangian correspondences, which put
into correspondence these prequantum bundles and not just their underlying symplectic manifolds, is a more
natural domain for geometric quantization, hence a more accurate formalization of pre-quantum geometry.

There is an evident such notion of prequantization of Lagrangian correspondences, and this is what we
introduce and discuss in the following. While evident, it seems that it has previously found little attention in
the literature, certainly not attention comparable to the fame enjoyed by Lagrangian correspondences. But
it should. As we show now, classical mechanics globally done right is effectively identified with the study of
prequantized Lagrangian correspondences.

1.3.2.1 Phase spaces and symplectic manifolds Given a physical system, one says that its phase
space is the space of its possible (“classical”) histories or trajectories. Newton’s second law of mechanics
says that trajectories of physical systems are (typically) determined by differential equations of second order,
and therefore these spaces of trajectories are (typically) equivalent to initial value data of 0th and of 1st
derivatives. In physics this data (or rather its linear dual) is referred to as the canonical coordinates and
the canonical momenta, respectively, traditionally denoted by the symbols “q” and “p”. Being coordinates,
these are actually far from being canonical in the mathematical sense; all that has invariant meaning is,
locally, the surface element dp ∧ dq spanned by a change of coordinates and momenta.

Made precise, this says that a physical phase space is a sufficiently smooth manifold X which is equipped
with a closed and non-degenerate differential 2-form ω ∈ Ω2

cl(X), hence that phase spaces are symplectic
manifolds (X,ω).

Example 1.3.53. The simplest nontrivial example is the phase space R2 ' T ∗R of a single particle prop-
agating on the real line. The standard coordinates on the plane are traditionally written q, p : R2 −→ R
and the symplectic form is the canonical volume form dq ∧ dp.

This is a special case of the following general and fundamental definition of covariant phase spaces (section
1.3.1.6.2) (whose history is long and convoluted, two original references being [Zu87, CrWi87], see [Kh14]
for a review).

Example 1.3.54 (covariant phase space). Let F be a smooth manifold – to be called the field fiber – and
write [Σ1, F ] for the manifold of smooth maps from the closed interval Σ1 := [0, 1] ↪→ R into F (an infinite-
dimensional Fréchet manifold). We think of F as a space of spatial field configurations and of [Σ1, F ] as the
space of trajectories or histories of spatial field configurations. Specifically, we may think of [Σ1, F ] as the
space of trajectories of a particle propagating in a space(-time) F .

A smooth function
L : [Σ1, F ] −→ Ω1(Σ1)
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to the space of differential 1-forms on Σ1 is called a local Lagrangian of fields in F if for all t ∈ Σ1 the
assignment γ 7→ Lγ(t) is a smooth function of γ(t), γ̇(t), γ̈(t), · · · (hence of the value of a curve γ : Σ1 → F
at t and of the values of all its derivatives at t). One traditionally writes

L : γ 7→ L(γ, γ̇, γ̈, · · · ) ∧ dt

to indicate this. In cases of interest typically only first derivatives appear

L : γ 7→ L(γ, γ̇) ∧ dt

and we concentrate on this case now for notational simplicity. Given such a local Lagrangian, the induced local
action functional S : [Σ1, F ] → R is the smooth function on trajectory space which is given by integrating
the local Lagrangian over the interval:

S =

∫
Σ1

L : [Σ1, F ]
L−→ Ω1(Σ1)

∫
I−→ R .

The variational derivative of the local Lagrangian is the smooth differential 2-form

δL ∈ Ω1,1([Σ1, F ]× Σ1)

on the product of trajectory space and parameter space, which is given by the expression

δLγ =
∂L

∂γ
∧ dt ∧ δγ +

∂L

∂γ̇
∧ dt ∧ d

dt
δγ

=

(
∂L

∂γ
− ∂

∂t

∂L

∂γ̇

)
︸ ︷︷ ︸

=:ELγ

dt ∧ δγ +
d

dt

(
∂L

∂γ̇
∧ δγ

)
︸ ︷︷ ︸

=:θγ

dt .

One says that ELγ = 0 (for all t ∈ I) is the Euler-Lagrange equation of motion induced by the local
Lagrangian L, and that the 0-locus

X := {γ ∈ [Σ1, F ] | ELγ = 0} ↪→ [Σ1, F ]

(also called the “shell”) equipped with the 2-form

ω := δθ

is the unreduced covariant phase space (X,ω) induced by L.

See [Kh14] for a review of the concept of covariant phase space.

Example 1.3.55. Consider the case that F = R and that the Lagrangian is of the form

L := Lkin − Lpot

:=
(

1
2 γ̇

2 − V (γ)
)
∧ dt

,

hence is a quadratic form on the first derivatives of the trajectory – called the kinetic energy density – plus
any smooth function V of the trajectory position itself – called (minus) the potential energy density. Then
the corresponding phase space is equivalent to R2 ' T ∗R with the canonical coordinates identified with the
initial value data

q := γ(0) , p = γ̇

and with
θ = p ∧ dq

and hence
ω = dq ∧ dp .

This is the phase space of example 1.3.53. Notice that the symplectic form here is a reflection entirely only
of the kinetic action, independent of the potential action. This we come back to below in 1.3.3.2.
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Remark 1.3.56. The differential 2-form ω on an unreduced covariant phase space in example 1.3.54 is
closed, even exact, but in general far from non-degenerate, hence far from being symplectic. We may say
that (X,ω) is a pre-symplectic manifold. This is because this differential form measures the reaction of the
Lagrangian/action functional to variations of the fields, but the action functional may be invariant under
some variation of the fields; one says that it has (gauge-)symmetries. To obtain a genuine symplectic form
one needs to quotient out the flow of these symmetries from unreduced covariant phase space to obtain the
reduced covariant phase space. This we turn to below in 1.3.2.7.

Remark 1.3.57. In the description of the mechanics of just particles, the Lagrangian L above has no
further more fundamental description, it is just what it is. But in applications to n-dimensional field theory
the differential 1-forms L and θ in example 1.3.54 arise themselves from integration of differential n-forms
over space (Cauchy surfaces), hence from transgression of higher-degree data in higher codimension. This
we describe in example 1.3.143 below. Since transgression in general loses some information, one should
really work locally instead of integrating over Cauchy surfaces, hence work with the de-transgressed data
and develop classical field theory for that. This we turn to below in 1.3.3 for classical field theory and then
more generally for local prequantum field theory in [Sc13b].

1.3.2.2 Coordinate systems and the topos of smooth spaces When dealing with spaces X that
are equipped with extra structure, such as a closed differential 2-form ω ∈ Ω2

cl(X), then it is useful to have a
universal moduli space for these structures, and this will be central for our developments here. So we need a
“smooth space” Ω2

cl of sorts, characterized by the property that there is a natural bijection between smooth

closed differential 2-forms ω ∈ Ω2
cl(X) and smooth maps X // Ω2

cl . Of course such a universal moduli

spaces of closed 2-forms does not exist in the category of smooth manifolds. But it does exist canonically if
we slightly generalize the notion of “smooth space” suitably (the following is discussed in more detail below
in 1.2.2).

Definition 1.3.58. A smooth space or smooth 0-type X is

1. an assignment to each n ∈ N of a set, to be written X(Rn) and to be called the set of smooth maps
from Rn into X,

2. an assignment to each ordinary smooth function f : Rn1 → Rn2 between Cartesian spaces of a function
of sets X(f) : X(Rn2)→ X(Rn1), to be called the pullback of smooth functions into X along f ;

such that

1. this assignment respects composition of smooth functions;

2. this assignment respect the covering of Cartesian spaces by open disks: for every good open cover
{Rn ' Ui ↪→ Rn}i, the set X(Rn) of smooth functions out of Rn into X is in natural bijection with
the set

{
(φi)i ∈

∏
iX(Ui) | ∀i,j φi|Ui∩Uj = φj |Ui∩Uj

}
of tuples of smooth functions out of the patches

of the cover which agree on all intersections of two patches.

Remark 1.3.59. One may think of definition 1.3.58 as a formalization of the common idea in physics that
we understand spaces by charting them with coordinate systems. A Cartesian space Rn is nothing but
the standard n-dimensional coordinate system and one may think of the set X(Rn) above as the set of all
possible ways (including all degenerate ways) of laying out this coordinate system in the would-be space X.
Moreover, a function f : Rn1 −→ Rn2 is nothing but a coordinate transformation (possibly degenerate), and
hence the corresponding functions X(f) : X(Rn2) −→ X(Rn1) describe how the probes of X by coordinate
systems change under coordinate transformations. Definition 1.3.58 takes the idea that any space in physics
should be probe-able by coordinate systems in this way to the extreme, in that it defines a smooth spaces
as a collection of probes by coordinate systems equipped with information about all possible coordinate
transformations.
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The notion of smooth spaces is maybe more familiar with one little axiom added:

Definition 1.3.60. A smooth space X is called concrete if there exists a set Xdisc ∈ Set such that for each
n ∈ N the set X(Rn) of smooth functions from Rn to X is a subset of the set of all functions from the
underlying set of Rn to the set Xdisc ∈ Set.

This definition of concrete smooth spaces goes back to [Chen77] in various slight variants, see [St08] for
a comparative discussion. A comprehensive textbook account of differential geometry formulated with this
definition of smooth spaces (called “diffeological spaces” there) is in [Ig-Z13].

While the formulation of def. 1.3.58 is designed to make transparent its geometric meaning, of course
equivalently but more abstractly this says the following:

Definition 1.3.61. Write CartSp for the category of Cartesian spaces with smooth functions between them,
and consider it equipped with the coverage (Grothendieck pre-topology) of good open covers. A smooth space
or smooth 0-type is a sheaf on this site. The topos of smooth 0-types is the sheaf category

Smooth0Type := PSh(CartSp)[{covering maps}−1] .

In the following we will abbreviate the notation to

H := Smooth0Type .

For the discussion of pre-symplectic manifolds, we need the following two examples.

Example 1.3.62. Every smooth manifold X ∈ SmoothManifold becomes a smooth 0-type by the assignment

X : n 7→ C∞(Rn, X) .

(This defines in fact a concrete smooth space, def. 1.3.60, the underlying set Xdisc being just the underlying
set of points of the given manifold.) This construction extends to a full and faithful embedding of smooth
manifolds into smooth 0-types

SmoothManifold �
� // H .

The other main example is in a sense at an opposite extreme in the space of all examples. It is given by
smooth moduli space of differential forms, see the discussion in 1.2.3.

Example 1.3.63. For p ∈ N, write Ωp
cl for the smooth space given by the assignment

Ωp
cl : n 7→ Ωpcl(R

n)

and by the evident pullback maps of differential forms. These smooth spaces Ωn
cl are not concrete, def.

1.3.60. In fact they are maximally non-concrete in that there is only a single smooth map ∗ → Ωn
cl from

the point into them. Hence the underlying point set of the smooth space Ωn
cl looks like a singleton, and yet

these smooth spaces are far from being the trivial smooth space: they admit many smooth maps X −→ Ωn
cl

from smooth manifolds of dimension at least n, as the following prop. 1.3.64 shows.

This solves the moduli problem for closed smooth differential forms:

Proposition 1.3.64. For p ∈ N and X ∈ SmoothManifold ↪→ Smooth0Type, there is a natural bijection

H(X,Ωp
cl) ' Ωpcl(X) .

So a pre-symplectic manifold (X,ω) is equivalently a map of smooth spaces of the form

ω : X // Ω2
cl .
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1.3.2.3 Canonical transformations and Symplectomorphisms An equivalence between two phase
spaces, hence a re-expression of the “canonical” coordinates and momenta, is called a canonical transforma-
tion in physics. Mathematically this is a symplectomorphism:

Definition 1.3.65. Given two (pre-)symplectic manifolds (X1, ω1) and (X2, ω2) a symplectomorphism

f : (X1, ω1) −→ (X2, ω2)

is a diffeomorphism f : X1 −→ X2 of the underlying smooth spaces, which respects the differential forms in
that

f∗ω2 = ω1 .

The formulation above in 1.3.2.2 of pre-symplectic manifolds as maps into a moduli space of closed 2-
forms yields the following equivalent re-formulation of symplectomorphisms, which is very simple in itself,
but contains in it the seed of an important phenomenon:

Proposition 1.3.66. Given two symplectic manifolds (X1, ω1) and (X2, ω2), a symplectomorphism φ :
(X1, ω1)→ (X2, ω2) is equivalently a commuting diagram of smooth spaces of the following form:

X1

ω1   

φ // X2

ω2~~
Ω2

cl

.

Situations like this are naturally interpreted in the slice topos:

Definition 1.3.67. For A ∈ H any smooth space, the slice topos H/A is the category whose objects are
objects X ∈ H equipped with maps X → A, and whose morphisms are commuting diagrams in H of the
form

X //

  

Y

��
A

.

Hence if we write SymplManifold for the category of smooth pre-symplectic manifolds and symplecto-
morphisms betwen them, then we have the following.

Proposition 1.3.68. The construction of prop. 1.3.64 constitutes a full embedding

SymplManifold �
� // H/Ω2

cl

of pre-symplectic manifolds with symplectomorphisms between them into the slice topos of smooth spaces over
the smooth moduli space of closed differential 2-forms.

1.3.2.4 Trajectories and Lagrangian correspondences A symplectomorphism clearly puts two sym-
plectic manifolds “in relation” to each other. It turns out to be useful to say this formally. Recall:

Definition 1.3.69. For X,Y ∈ Set two sets, a relation R between elements of X and elements of Y is a
subset of the Cartesian product set

R ↪→ X × Y .

More generally, for X,Y ∈ H two objects of a topos (such as the topos of smooth spaces), then a relation R
between them is a subobject of their Cartesian product

R ↪→ X × Y .
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In particular any function induces the relation “y is the image of x”:

Example 1.3.70. For f : X −→ Y a function, its induced relation is the relation which is exhibited by
graph of f

graph(f) := {(x, y) ∈ X × Y | f(x) = y}

canonically regarded as a subobject
graph(f) ↪→ X × Y .

Hence in the context of classical mechanics, in particular any symplectomorphism f : (X1, ω1) −→
(X2, ω2) induces the relation

graph(f) ↪→ X1 ×X2 .

Since we are going to think of f as a kind of“physical process”, it is useful to think of the smooth space
graph(f) here as the space of trajectories of that process. To make this clearer, notice that we may equiva-
lently rewrite every relation R ↪→ X × Y as a diagram of the following form:

R

~~ ��
X Y

=

R

��
X × Y

pX

{{

pY

##
X Y

reflecting the fact that every element (x ∼ y) ∈ R defines an element x = pX(x ∼ y) ∈ X and an element
y = pY (x ∼ y) ∈ Y .

Then if we think of the space R = graph(f) of example 1.3.70 as being a space of trajectories starting in
X1 and ending in X2, then we may read the relation as “there is a trajectory from an incoming configuration
x1 to an outgoing configuration x2”:

graph(f)

incoming

zz

outgoing

$$
X1 X2

.

Notice here that the defining property of a relation as a subset/subobject translates into the property of
classical physics that there is at most one trajectory from some incoming configuration x1 to some outgoing
trajectory x2 (for a fixed and small enough parameter time interval at least, we will formulate this precisely
in the next section when we genuinely consider Hamiltonian correspondences).

In a more general context one could consider there to be several such trajectories, and even a whole
smooth space of such trajectories between given incoming and outgoing configurations. Each such trajectory
would “relate” x1 to x2, but each in a possible different way. We can also say that each trajectory makes x1

correspond to x2 in a different way, and that is the mathematical term usually used:

Definition 1.3.71. For X,Y ∈ H two spaces, a correspondence between them is a diagram in H of the
form

Z

~~ ��
X Y

with no further restrictions. Here Z is also called the correspondence space.
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Observe that the graph of a function f : X → Y is, while defined differently, in fact equivalent to just
the space X, the equivalence being induced by the map x 7→ (x, f(x))

X
'−→ graph(f) .

In fact the relation/correspondence which expresses “y is the image of f under x” may just as well be
exhibited by the diagram

X

id

~~

f

  
X Y

.

It is clear that this correspondence with correspondence space X should be regarded as being equivalent to
the one with correspondence space graph(f). We may formalize this as follows

Definition 1.3.72. Given two correspondences X Z1
oo // Y and X Z2

oo // Y between

the same objects in H, then an equivalence between them is an equivalence Z1
' // Z2 in H which fits

into a commuting diagram of the form

Z1

~~   
'

��

X Y

Z2

>>``

Example 1.3.73. Given an function f : X −→ Y we have the commuting diagram

X

id

zz

f

$$
'

��

X Y

graph(f)

iY

;;

iX

dd

exhibiting an equivalence of the correspondence at the top with that at the bottom.

Correspondences between X any Y with such equivalences between them form a groupoid. Hence we
write

Corr (H) (X,Y ) ∈ Grpd .

Moreover, if we think of correspondences as modelling spaces of trajectories, then it is clear that their should
be a notion of composition:

Y1

~~   

Y2

~~   
X1 X2 X3

 7→


Y1 ◦X2

Y2

zz $$
X1 X3

 .

Heuristically, the composite space of trajectories Y1◦X2
Y2 should consist precisely of those pairs of trajectories

(f, g) ∈ Y1 × Y2 such that the endpoint of f is the starting point of g. The space with this property is
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precisely the fiber product of Y1 with Y2 over X2, denoted Y1 ×
X2

Y2 (also called the pullback of Y2 −→ X2

along Y1 −→ X2:


Y1 ◦X2

Y2

zz $$
X1 X3

 =



Z1 ×
Y
Z2

|| ""
Z1

~~ ##

Z2

{{   
X1 X2 X3


.

Hence given a topos H, correspondences between its objects form a category which composition the fiber
product operation, where however the collection of morphisms between any two objects is not just a set, but
is a groupoid (the groupoid of correspondences between two given objects and equivalences between them).

One says that correspondences form a (2, 1)-category

Corr(H) ∈ (2, 1)Cat .

One reason for formalizing this notion of correspondences so much in the present context that it is useful
now to apply it not just to the ambient topos H of smooth spaces, but also to its slice topos H/Ω2

cl
over the

universal moduli space of closed differential 2-forms.
To see how this is useful in the present context, notice the following

Proposition 1.3.74. Let φ : (X1, ω1)→ (X2, ω2) be a symplectomorphism. Write

(i1, i2) : graph(φ) ↪→ X1 ×X2

for the graph of the underlying diffeomorphsm. This fits into a commuting diagram in H of the form

graph(φ)

i1

zz

i2

$$
X1

ω1
$$

X2

ω2
zz

Ω2
cl

.

Conversely, a smooth function φ : X1 → X2 is a symplectomorphism precisely if its graph makes the above
diagram commute.

Traditionally this is formalized as follows.

Definition 1.3.75. Given a symplectic manifold (X,ω), a submanifold L ↪→ X is called a Lagrangian
submanifold if ω|L = 0 and if L has dimension dim(L) = dim(X)/2.

Definition 1.3.76. For (X1, ω1) and (X2, ω2) two symplectic manifolds, a correspondence X1 Y
p1oo p2 // X2

of the underlying manifolds is a Lagrangian correspondence if the map Y → X1 ×X2 exhibits a Lagrangian
submanifold of the symplectic manifold given by (X1 ×X2, p

∗
2ω2 − p∗1ω1).

Given two Lagrangian correspondence which intersect transversally over one adjacent leg, then their
composition is the correspondence given by the intersection.

But comparison with def. 1.3.67 shows that Lagrangian correspondences are in fact plain correspondences,
just not in smooth spaces, but in the slice H/Ω2

cl
of all smooth spaces over the universal smooth moduli space

of closed differential 2-forms:
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Proposition 1.3.77. Under the identification of prop. 1.3.68 the construction of the diagrams in prop.
1.3.74 constitutes an injection of Lagrangian correspondence between (X1, ω1) and (X2, ω2) into the Hom-

space Corr
(
H/Ω2

cl

)
((X1, ω1) , (X2, ω2)). Moreover, composition of Lagrangian correspondence, when defined,

coincides under this identification with the composition of the respective correspondences.

Remark 1.3.78. The composition of correspondences in the slice topos is always defined. It may just happen
the composite is given by a correspondence space which is a smooth space but not a smooth manifold. Or
better, one may replace in the entire discussion the topos of smooth spaces with a topos of “derived” smooth
spaces, modeled not on Cartesian spaces but on Cartesian dg-manifolds. This will then automatically make
composition of Lagrangian correspondences take care of “transversal perturbations”. Here we will not further
dwell on this possibility. In fact, the formulation of Lagrangian correspondences and later of prequantum
field theory by correspondences in toposes implies a great freedom in the choice of type of geometry in which
set up everything. (The bare minimum condition on the topos H which we need to require is that it be
differentially cohesive, 4.2).

It is also useful to make the following phenomenon explicit, which is the first incarnation of a recurring
theme in the following discussions.

Proposition 1.3.79. The category Corr(H/Ω2
cl

) is naturally a symmetric monoidal category, where the
tensor product is given by

(X1, ω1)⊗ (X2, ω2) = (X1 ×X2, ω1 + ω2) .

The tensor unit is (∗, 0). With respect to this tensor product, every object is dualizable, with dual object given
by

(X,ω)v = (X,−ω) .

Remark 1.3.80. Duality induces natural equivalences of the form

Corr
(
H/Ω2

cl

)
((X1, ω1) , (X2, ω2) , )

'−→ Corr
(
H/Ω2

cl

)
((∗, 0) , (X1 ×X2, ω2 − ω1) , ) .

Under this equivalence an isotropic (Lagrangian) correspondences which in H is given by a diagram as in
prop. 1.3.74 maps to the diagram of the form

graph(φ)

{{

(i1,i2)

&&
∗

0 ##

X1 ×X2

ω2−ω1
xx

Ω2
cl

.

This makes the condition that the pullback of the difference ω2 − ω1 vanishes on the correspondence space
more manifest. It is also the blueprint of a phenomenon that is important in the generalization to field
theory in the sections to follow, where trajectories map to boundary conditions, and vice versa.

1.3.2.5 Observables, symmetries and the Poisson bracket Lie algebra Given a phase space (X,ω)
of some physical system, then a function O : X −→ R is an assignment of a value to every possible state
(phase of motion) of that system. For instance it might assign to every phase of motion its position (measured
in some units with respect to some reference frame), or its momentum, or its energy. The premise of classical
physics is that all of these quantitites may in principle be observed in experiment, and therefore functions
on phase space are traditionally called classical observables. Often this is abbreviated to just observables if
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the context is understood (the notion of observable in quantum mechanics and quantum field theory is more
subtle, for a formalization of quantum observables in terms of correspondences in cohesive homotopy types
see [Nui13]).

While this is the immediate physics heuristics about what functions on phase space are are, it turns out
that a central characteristic of mechanics and of field theory is an intimiate relation between the observables
of a mechanical system and its infinitesimal symmetry transformations: an infinitesimal symmetry transfor-
mation of a phase space characterizes that observable of the system which is invariant under the symmetry
transformation. Mathematically this relation is captured by a the structure of a Lie algebra on the vector
space of all observables after relating them them to their Hamiltonian vector fields.

Definition 1.3.81. Given a symplectic manifold (X,ω) and a function H : X → R, its Hamiltonian vector
field is the unique v ∈ Γ(TX) which satisfies Hamilton’s equation of motion

dH = ιvω .

Example 1.3.82. For (X,ω) = (R2,dq ∧ dp) the 2-dimensional phase space form example 1.3.53, and for
t 7→ (q(t), p(t)) ∈ X a curve, it is a Hamiltonian flow line if its tangent vectors (q̇(t), ṗ(t)) ∈ T(q(t),p(t))R2 ' R2

satisfy Hamilton’s equations in the classical form:

q̇ =
∂H

∂p
; ṗ = −∂H

∂q
.

Proposition 1.3.83. Given a symplectic manifold (X,ω), every Hamiltonian vector field v is an infinitesi-
mal symmetry of (X,ω) – an infinitesimal symplectomorphism – in that the Lie derivative of the symplectic
form along v vanishes

Lvω = 0 .

Proof. Using Cartan’s formula for the Lie derivative

Lv = d ◦ ιv + ιv ◦ d

and the defining condition that the symplectic form is closed and that there is a function H with dH = ιvω,
one finds that the Lie derivative of ω along v is given by

Lvω = dιvω + ιvdω = d2H = 0 .

�
Since infinitesimal symmetries should form a Lie algebra, this motivates the following definition.

Definition 1.3.84 (Poisson bracket for symplectic manifolds). Let (X,ω) be a symplectic manifold. Given
two functions f, g ∈ C∞(X) with Hamiltonian vector fields v and w, def. 1.3.81, respectively, their Poisson
bracket is the function obtained by evaluating the symplectic form on these two vector fields

{f, g} := ιwιvω .

This operation
{−,−} : C∞(X)⊗ C∞(X) −→ C∞(X)

is skew symmetric and satisfies the Jacobi identity. Therefore

pois(X,ω) := (C∞(X), {−,−})

is a Lie algebra (infinite dimensional in general), called the Poisson bracket Lie algebra of classical observables
of the symplectic manifold X.
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Remark 1.3.85. Below in 1.3.2.12 we indicate a general abstract characerization of the Poisson bracket Lie
algebra (which is discussed in moreo detail below in 5.2.17.5): it is the Lie algebra of “the automorphism
group of any prequantization of (X,ω) in the higher slice topos over the moduli stack of circle-principal
connections” [FRS13a]. To state this we first need the notion of pre-quantization which we come to below
in 1.3.3.2. In the notation introduced there we will discuss in 1.3.2.12 that the Poisson bracket is given as

pois(X,ω) = Lie
(
Aut/BU(1)conn

(∇)
)

=


X

' //

∇ $$

X

∇zz
BU(1)conn

s{

 ,

where ∇ denotes a pre-quantization of (X,ω).

This general abstract construction makes sense also for pre-symplectic manifolds and shows that the
following slight generalization of the above traditonal definition is good and useful.

Definition 1.3.86 (Poisson bracket for pre-symplectic manifolds). For (X,ω) a pre-symplectic manifold,
denote by pois(X,ω) the Lie algebra whose underlying vector space is the space of pairs of Hamiltonians H
with a choice of Hamiltonian vector field v

{(v,H) ∈ Γ(TX)⊗ C∞(X) | ιvω = dH} ,

and whose Lie bracket is given by

[(v1, H1) , (v2, H2)] = ([v1, v2] , ιv1∧v2
ω) .

Remark 1.3.87. On a smooth manifold X there is a bijection between smooth vector fields and derivations
of the algebra C∞(X) of smooth functions, given by identifying a vector field v with the operation v(−) of
differentiating functions along v. Under this identification the Hamiltonian vector field v corresponding to a
Hamiltonian H is identified with the derivation given by forming the Poisson bracket with H:

v(−) = {H,−} : C∞(X) −→ C∞(X) .

In applications in physics, given a phase space (X,ω) typically one smooth function H : X −→ R, inter-
preted as the energy observable, is singled out and called the Hamiltonian. Its corresponding Hamiltonian
vector field is then interpreted as giving the infinitesimal time evolution of the system, and this is where
Hamilton’s equations in def. 1.3.81 originate.

Definition 1.3.88. Given a phase space with Hamiltonian ((X,ω), H), then any other classical O ∈ C∞(X),
it is called an infinitesimal symmetry of ((X,ω), H) if the Hamiltonian vector field vO of O preserves not
just the symplectic form (as it automatically does by prop. 1.3.83 ) but also the given Hamiltonian, in that
ιvOdH = 0.

Proposition 1.3.89 (symplectic Noether theorem). If a Hamiltonian vector field vO is an infinitesimal
symmetry of a phase space (X,ω) with time evolution H according to def. 1.3.88, then the corresponding
Hamiltonian function O ∈ C∞(X) is a conserved quantity along the time evolution, in that

ιvHdO = 0 .

Conversely, if a function O ∈ C∞(X) is preserved by the time evolution of a Hamiltonian H in this way,
then its Hamiltonian vector field vO is an infinitesimal symmetry of ((X,ω), H).
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Proof. This is immediate from the definition 1.3.81:

ιvHdO = ιvH ιvOω

= −ιvO ιvHω
= ιvOdH

.

�

Remark 1.3.90. The utter simplicity of the proof of prop. 1.3.89 is to be taken as a sign of the power of
the symplectic formalism in the formalization of physics, not as a sign that the statement itself is shallow.
On the contrary, under a Legendre transform and passage from “Hamiltonian mechanics” to “Lagrangian
mechanics” that we come to below in 1.3.2.11, the identification of symmetries with preserved observables
in prop. 1.3.2.11 becomes the seminal first Noether theorem. See for instance [Bu14] for a review of the
Lagrangian Noether theorem and its symplectic version in the context of classical mechanics. Below in
1.3.3.3 we observe that the same holds true also in the full context of classical field theory, if only one refines
Hamiltonian mechanics to its localization by Hamilton-de Donder-Weyl field theory. The full n-plectic
Noether theorem (for all field theory dimensions n) is prop. 1.3.170 below.

In the next section we pass from infinitesimal Hamiltonian flows to their finite version, the Hamiltonian
symplectomorphism.

1.3.2.6 Hamiltonian (time evolution) trajectories and Hamiltonian correspondences We have
seen so far transformations of phase space given by “canonical transformations”, hence symplectomorphisms.
Of central importance in physics are of course those transformations that are part of a smooth evolution
group, notably for time evolution. These are the “canonical transformations” coming from a generating
function, hence the symplectomorphisms which come from a Hamiltonian function (the energy function, for
time evolution), the Hamiltonian symplectomorphisms. Below in 1.3.2.10 we see that this notion is implied
by prequantizing Lagrangian correspondences, but here it is good to recall the traditional definition.

Definition 1.3.91. The flow of a Hamiltonian vector field is called the corresponding Hamiltonian flow.

Notice that by prop. 1.3.83 we have

Proposition 1.3.92. Every Hamiltonian flow is a symplectomorphism.

Those symplectomorphisms arising this way are called the Hamiltonian symplectomorphisms. Notice that
the Hamiltonian symplectomorphism depends on the Hamiltonian only up to addition of a locally constant
function.

Using the Poisson bracket {−,−} induced by the symplectic form ω, identifying the derivation {H,−} :
C∞(X) −→ C∞(X) with the corresponding Hamiltonian vector field v by remark 1.3.87 and the expo-
nent notation exp(t{H,−}) with the Hamiltonian flow for parameter “time” t ∈ R, we may write these
Hamiltonian symplectomorphisms as

exp(t{H,−}) : (X,ω) −→ (X,ω) .

It then makes sense to say that

Definition 1.3.93. A Lagrangian correspondence, def. 1.3.76, which is induced from a Hamiltonian sym-
plectomorphism is a Hamiltonian correspondences

graph (exp (t {H,−}))
i1

vv

i2

((
X X

 '


X

=

~~

exp(t{H,−})

  
X X

 .
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Remark 1.3.94. The smooth correspondence space of a Hamiltonian correspondence is naturally identified
with the space of classical trajectories

Fieldsclass
traj (t) := graph (exp(t){H,−})

in that

1. every point in the space corresponds uniquely to a trajectory of parameter time length t characterized
as satisfying the equations of motion as given by Hamilton’s equations for H;

2. the two projection maps to X send a trajectory to its initial and to its final configuration, respectively.

group structure is

Remark 1.3.95. By construction, Hamiltonian flows form a 1-parameter Lie group. By prop. 1.3.77 this
group structure is preserved by the composition of the induced Hamiltonian correspondences.

It is useful to highlight this formally as follows.

Definition 1.3.96. Write BordRiem
1 for the category of 1-dimensional cobordisms equipped with Rieman-

nian structure (hence with a real, non-negative length which is additive under composition), regarded as a
symmetric monoidal category under disjoint union of cobordisms.

Then:

Proposition 1.3.97. The Hamiltonian correspondences induced by a Hamiltonian function H : X −→ R
are equivalently encoded in a smooth monoidal functor of the form

exp((−){H,−}) : BordRiem
1 −→ Corr1(H/Ω2) ,

where on the right we use the monoidal structure on correspondence of prop. 1.3.79.

Below the general discussion of prequantum field theory, such monoidal functors from cobordisms to
correspondences of spaces of field configurations serve as the fundamental means of axiomatization. Whenever
one is faced with such a functor, it is of particular interest to consider its value on closed cobordisms. Here
in the 1-dimensional case this is the circle, and the value of such a functor on the circle would be called its
(pre-quantum) partition function.

Proposition 1.3.98. Given a phase space symplectic manifold (X,ω) and a Hamiltonian H : X −→ R,
them the prequantum evolution functor of prop. 1.3.97 sends the circle of circumference t, regarded as a
cobordism from the empty 0-manifold to itself

S1

∅
/�

??

∅
/ O

__

and equipped with the constant Riemannian metric of 1-volume t, to the correspondence

{x ∈ X| exp(t{H,−})(x) = x}

uu ))∗ ∗

which is the smooth space of H-Hamiltonian trajectories of (time) length t that are closed, hence that come
back to their initial value, regarded canonically as a correspondence form the point to itself.
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Proof. We can decompose the circle of length t as the compositon of

1. The coevaluation map on the point, regarded as a dualizable object BordRiem
1 ;

2. the interval of length t;

3. the evaluation map on the point.

The monoidal functor accordingly takes this to the composition of correspondences of

1. the coevaluation map on X, regarded as a dualizable object in Corr(H);

2. the Hamiltonian correspondence induced by exp(t{H,−});

3. the evaluation map on X.

As a diagram in H, this is the following:

X

��
∆

##

graph(exp(t{H,−}))×X

uu ))

X

∆

|| ��
∗ X ×X X ×X ∗

.

By the definition of composition in Corr(H), the resulting composite correspondence space is the joint fiber
product in H over these maps. This is essentially verbatim the diagrammatic definition of the space of closed
trajectories of parameter length t. �

1.3.2.7 Noether symmetries and equivariant structure So far we have considered smooth spaces
equipped with differential forms, and correspondences between these. To find genuine classical mechanics
and in particular find the notion of prequantization, we need to bring the notion of gauge symmetry into the
picture. We introduce here symmetries in classical field theory following Noether’s seminal analysis and then
point out the crucial notion of equivariance of symplectic potentials necessary to give this global meaning.
Below in 1.3.2.8 we see how building the reduced phase space by taking the symmetries into account makes
the first little bit of “higher differential geometry” appear in classical field theory.

Definition 1.3.99. Given a local Lagrangian as in example 1.3.54 A symmetry of L is a vector field
v ∈ Γ(TPX) such that ιvδL = 0. It is called a Hamiltonian symmetry if restricted to phase space v is a
Hamiltonian vector field, in that the contraction ιvω is exact.

By definition of θ and EL in example 1.3.54, it follows that for v a symmetry, the 0-form

Jv := ιvθ

is closed with respect to the time differential

dtJv = 0 .

Definition 1.3.100. The function Jv induced by a symmetry v is called the conserved Noether charge of v.

Example 1.3.101. For Y = R and L = 1
2 γ̇

2dt the vector field v tangent to the flow γ 7→ γ((−) + a) is a
symmetry. This is such that ιvδγ = γ̇. Hence the conserved quantity is E := Jv = γ̇2, the energy of the
system. It is also a Hamiltonian symmetry.
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Let then G be the group of Hamiltonian symmetries acting on ({EL = 0}, ω = δθ). Write g = Lie(G)
for the Lie algebra of the Lie group. Given v ∈ g = Lie(G) identify it with the corresponding Hamiltonian
vector field. Then it follows that the Lie derivative of θ is exact, hence that for every v one can find an h
such that

Lvθ = dh .

The choice of h here is a choice of identification that relates the phase space potential θ to itself under a
different but equivalent perspective of what the phase space points are. Such choices of “gauge equivalences”
are necessary in order to give the (pre-)symplectic form on the unreduced phase space an physical meaning
in view of the symmetries of the system. Moreover, what is really necessary for this is a coherent choice of
such gauge equivalences also for the “global” or “large” gauge transformations that may not be reached by
exponentiating Lie algebra elements of the symmetry group G. Such a coherent choice of gauge equivalences
on θ reflecting the symmetry of the physical system is mathematically called a G-equivariant structure.

Definition 1.3.102. Given a smooth space X equipped with the action ρ : X×G −→ X of a smooth group,
and given a differential 1-form θ ∈ Ω1(X), and finally given a discrete subgroup Γ ↪→ R, then a G-equivariant
structure on θ regarded as a (R/Γ)-principal connection is

• for each g ∈ G an equivalence

ηg : θ
' // ρ(g)∗θ

between θ and the pullback of θ along the action of g, hence a smooth function ηg ∈ C∞(X,R/Γ) with

ρ(g)∗θ − θ = dηg

such that

1. the assignment g 7→ ηg is smooth;

2. for all pairs (g1, g2) ∈ G×G there is an equality

ηg2
ηg1

= ηg2g1
.

Remark 1.3.103. Notice that the condition ρ(g)∗θ − θ = dηg depends on ηg only modulo elements in
the discrete group Γ ↪→ R, while the second condition ηg2

ηg1
= ηg2g1

crucially depends on the actual
representatives in C∞(X,R/Γ). For Γ the trivial group there is no difference, but in general it is unlikely
that in this case the second condition may be satisfied. The second condition can in general only be satisfied
modulo some subgroup of R. Essentially the only such which yields a regular quotient is Z ↪→ R (or any
non-zero rescaling of this), in which case

R/Z ' U(1)

is the circle group. This is the origin of the central role of circle principal bundles in field theory (“prequantum
bundles”), to which we come below in 1.3.3.2.

The point of G-equivariant structure is that it makes the (pre-)symplectic potential θ “descend” to the
quotient of X by G (the “correct quotient”, in fact), which is the reduced phase space. To say precisely what
this means, we now introduce the concept of smooth groupoids in 1.3.2.8.

Remark 1.3.104. This equivariance on local Lagrangian is one of the motivations for refining the discussion
here to local prequantum field theory in [Sc13b]: By remark 1.3.57 for a genuine n-dimensional field theory,
the Lagrangian 1-form L above is the transgression of an n-form Lagrangian on a moduli space of fields.
In local prequantum field theory we impose an equivariant structure already on this de-transgressed n-form
Lagrangian such that under transgression it then induces equivariant structures in codimension 1, and hence
consistent phase spaces, in fact consistent prequantized phase spaces.
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1.3.2.8 Gauge theory, smooth groupoids and higher toposes As we mentioned in ?? gauge prin-
ciple is a deep principle of modern physics, which says that in general two configurations of a physical system
may be nominally different and still be identified by a gauge equivalence between them. In homotopy type
theory precisely this principle is what is captured by intensional identity types (see remark 2.1.5). One class
of example of such gauge equivalences in physics are the Noether symmetries induced by local Lagrangians
which we considered above in 1.3.2.7. Gauge equivalences can be composed (and associatively so) and can be
inverted. All physical statements respect this gauge equivalence, but it is wrong to identify gauge equivalent
field configurations and pass to their sets of equivalence classes, as some properties depend on non-trivial
auto-gauge transformations.

In mathematical terms what this says is precisely that field configurations and gauge transformations
between them form what is called a groupoid or homotopy 1-type.

Definition 1.3.105. A groupoid G• is a set G0 – to be called its set of of objects or configurations – and a

set G1 =
{(
x1

f−→ x2

)
|x1, x2 ∈ G0

}
– to be called the set of morphisms or gauge transformations – between

these objects, together with a partial composition operation of morphisms over common objects

f2 ◦ f1 : x1
f1 // x2

f2 // x3

which is associative, and for which every object has a unit (the identity morphism idx : x → x) and such
that every morphism has an inverse.

The two extreme examples are:

Example 1.3.106. ForX any set, it becomes a groupoid by considering for each object an identity morphism
and no other morphisms.

Example 1.3.107. For G a group, there is a groupoid which we denote BG defined to have a single object
∗, one morphism from that object to itself for each element of the group

(BG)1 =
{
∗ g−→ ∗ | g ∈ G

}
and where composition is given by the product operation in G.

The combination of these two examples which is of central interest here is the following.

Example 1.3.108. For X a set and G a group with an action ρ : X × G −→ X on X, the corresponding
action groupoid or homotopy quotient, denoted X//G, is the groupoid whose objects are the elements of X,
and whose morphisms are of the form

x1
g // (x2 = ρ(g)(x1))

with composition given by the composition in G.

Remark 1.3.109. The homotopy quotient is a refinement of the actual quotient X/G in which those
elements of X which are related by the G-action are actually identified. In contrast to that, the homotopy
quotient makes element which are related by the action of the “gauge” group G be equivalent without being
equal. Moreover it remember how two elements are equivalent, hence which “gauge transformation” relates
them. This is most striking in example 1.3.107, which is in fact the special case of the homotopy quotient
construction for the case that G acts on a single element:

BG ' ∗//G .
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Therefore given an unreduced phase space X as in 1.3.2.1 and equipped with an action of a gauge
symmetry group as in 1.3.2.7, then the corresponding reduced phase space should be the homotopy quotient
X//G, hence the space of fields with gauge equivalences between them. But crucially for physics, this is not
just a discrete set of points with a discrete set of morphisms between them, as in the above definition, but in
addition to the information about field configurations and gauge equivalences between them carries a smooth
structure.

We therefore need a definition of smooth groupoids, hence of homotopy types which carry differential geo-
metric structure. Luckily, the definition in 1.3.2.2 of smooth spaces immediately generalizes to an analogous
definition of smooth groupoids.

First we need the following obvious notion.

Definition 1.3.110. Given two groupoids G• and K•, a homomorphism F• : G• −→ K• between them
(called a functor) is a function F1 : G1 −→ K1 between the sets of morphisms such that identity-morphisms
are sent to identity morphisms and such that composition is respected.

Groupoids themselves are subject to a notion of gauge equivalence:

Definition 1.3.111. A functor F• is called an equivalence of groupoids if its image hits every equivalence
class of objects in K• and if for all x1, x2 ∈ G0 the map F1 restricts to a bijection between the morphisms
from x1 to x2 in G• and the morphisms between F0(x1) and F0(x2) in K•.

With that notion we can express coordinate transformations between smooth groupoids and arrive at the
following generalization of def. 1.3.58.

Definition 1.3.112. A smooth groupoid or smooth homotopy 1-type X• is

1. an assignment to each n ∈ N of a groupoid, to be written X•(Rn) and to be called the groupoid of
smooth maps from Rn into X and gauge transformations between these,

2. an assignment to each ordinary smooth function f : Rn1 → Rn2 between Cartesian spaces of a functor
of groupoids X(f) : X•(Rn2) → X•(Rn1), to be called the pullback of smooth functions into X along
f ;

such that both the components X0 and X1 form a smooth space according to def 1.3.58.

With this definition in hand we can now form the reduced phase space in a way that reflects both its
smooth structure as well as its gauge-theoretic structure:

Example 1.3.113. Given a smooth space X and a smooth group G with a smooth action ρ : X×G −→ X,
then the smooth homotopy quotient of this action is the smooth groupoid, def. 1.3.112. which on each
coordinate chart is the homotopy quotient, def. 6.4.45, of the coordinates of G acting on the coordinates of
X, hence the assignment

X//G : Rn 7→ (X (Rn)) // (G (Rn)) .

Remark 1.3.114. In most of the physics literature only the infinitesimal approximation to the smooth
homotopy quotient X//G is considered, that however is famous: it is the BRST complex of gauge theory
[HeTe92]. More in detail, to any Lie group G is associated a Lie algebra g, which is its “infinitesiamal
approximation” in that it consists of the first order neightbourhood of the neutral element in G, equipped
with the first linearized group structure, incarnated as the Lie bracket. In direct analogy to this, a smooth
grouppoid such as X//G has an infinitesimal approximation given by a Lie algebroid, a vector bundle on X
whose fibers form the first order neighbourhood of the smooth space of morphisms at the identity morphisms.
Moreover, Lie algebroids can equivalently be encoded dually by the algebras of functions on these first order
neighbourhoods. These are differential graded-commutative algebras and the dgc-algebra associated this
way to the smooth groupoid X//G is what in the physics literature is known as the BRST complex.
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To correctly capture the interplay between the differential geometric structure and the homotopy theoretic
structure in this definition we have to in addition declare the following

Definition 1.3.115. A homomorphism f• : X• −→ Y• of smooth groupoids is called a local equivalence if
it is a stalkwise equivalence of groupoids, hence if for each Cartesian space Rn and for each point x ∈ Rn,
there is an open neighbourhood Rn ' Ux ↪→ Rn such that F• restricted to this open neighbourhood is an
equivalence of groupoids according to def. 1.3.111.

Definition 1.3.116. The (2, 1)-topos of smooth groupoids is the homotopy theory obtained from the category
Sh(CartSp,Grpd) of smooth groupoids by universally turning the local equivalences into actual equivalences,
via theorem 3.1.19.

This refines the construction of the topos of smooth spaces form before, and hence we find it convenient
to use the same symbol for it:

H := Sh(CartSp,Grpd)[{local equivalences}−1] .

1.3.2.9 The kinetic action, pre-quantization and differential cohomology The refinement of
gauge transformations of differential 1-forms to coherent U(1)-valued functions which we have seen in the
construction of the reduced phase space above in 1.3.2.7 also appears in physics from another angle, which
is not explicitly gauge theoretic, but related to the global definition of the exponentiated action functional.

Given a pre-symplectic form ω ∈ Ω2
cl(X), by the Poincaré lemma there is a good cover {Ui ↪→ X}i and

smooth 1-forms θi ∈ Ω1(Ui) such that dθi = ω|Ui . Physically such a 1-form is (up to a factor of 2) a choice
of kinetic energy density called a kinetic Lagrangian Lkin:

θi = 2Lkin,i .

Example 1.3.117. Consider the phase space (R2, ω = dq∧dp) of example 1.3.53. Since R2 is a contractible
topological space we consider the trivial covering (R2 covering itself) since this is already a good covering
in this case. Then all the {gij} are trivial and the data of a prequantization consists simply of a choice of
1-form θ ∈ Ω1(R2) such that

dθ = dq ∧ dp .

A standard such choice is
θ = −p ∧ dq .

Then given a trajectory γ : [0, 1] −→ X which satisfies Hamilton’s equation for a standard kinetic energy
term, then (pdq)(γ̇) is this kinetic energy of the particle which traces out this trajectory.

Given a path γ : [0, 1]→ X in phase space, its kinetic action Skin is supposed to be the integral of Lkin

along this trajectory. In order to make sense of this in generality with the above locally defined kinetic
Lagrangians {θi}i, there are to be transition functions gij ∈ C∞(Ui ∩ Uj ,R) such that

θj |Uj − θi|Ui = dgij .

If on triple intersections these functions satisfy

gij + gjk = gik on Ui ∩ Uj ∩ UK

then there is a well defined action functional

Skin(γ) ∈ R

obtained by dividing γ into small pieces that each map to a single patch Ui, integrating θi along this piece,
and adding the contribution of gij at the point where one switches from using θi to using θj .
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However, requiring this condition on triple overlaps as an equation between R-valued functions makes the
local patch structure trivial: if this holds then one can find a single θ ∈ Ω1(X) and functions hi ∈ C∞(Ui,R)
such that superficially pleasant effect that the action is θi = θ|Ui + dhi. This has the simply the integral
against this globally defined 1-form, Skin =

∫
[0,1]

γ∗Lkin, but it also means that the pre-symplectic form ω is

exact, which is not the case in many important examples.
On the other hand, what really matters in physics is not the action functional Skin ∈ R itself, but the

exponentiated action
exp

(
i
~S
)
∈ R/(2π~)Z .

For this to be well defined, one only needs that the equation gij + gjk = gik holds modulo addtion of an
integral multiple of h = 2π~, which is Planck’s constant, def. 6.4.156. If this is the case, then one says that
the data ({θi}, {gij}) defines equivalently

• a U(1)-principal connection;

• a degree-2 cocycle in ordinary differential cohomology

on X, with curvature the given symplectic 2-form ω.
Such data is called a pre-quantization of the symplectic manifold (X,ω). Since it is the exponentiated

action functional exp( i~S) that enters the quantization of the given mechanical system (for instance as the
integrand of a path integral), the prequantization of a symplectic manifold is indeed precisely the data
necessary before quantization.

Therefore, in the spirit of the above discussion of pre-symplectic structures, we would like to refine the
smooth moduli space of closed differential 2-forms to a moduli space of prequantized differential 2-forms.

Again this does naturally exist if only we allow for a good notion of “space”. An additional phenomenon
to be taken care of now is that while pre-symplectic forms are either equal or not, their pre-quantizations
can be different and yet be equivalent :

because there is still a remaining freedom to change this data without changing the exponentiated action
along a closed path: we say that a choice of functions hi ∈ C∞(Ui,R/(2π~)Z) defines an equivalence between
({θi}, {gij}) and ({θ̃i}, {g̃ij}) if θ̃i − θi = dhi and g̃ij − gij = hj − hi.

This means that the space of prequantizations of (X,ω) is similar to an orbifold : it has points which are
connected by gauge equivalences: there is a groupoid of pre-quantum structures on a manifold X. Otherwise
this space of prequantizations is similar to the spaces Ω2

cl of differential forms, in that for each smooth
manifold there is a collection of smooth such data and it may consistently be pullback back along smooth
functions of smooth manifolds.

As before for the pre-symplectic differential forms in 1.3.2.2 it will be useful to find a moduli space
for such prequantum structures. This certainly cannot exist as a smooth manifold, but due to the gauge
transformations between prequantizations it can also not exist as a more general smooth space. However, it
does exist as a smooth groupoid, def. 1.3.116.

Definition 1.3.118. For X = Rn a Cartesian space, wrrite Ω1(X) for the set of smooth differential 1-forms
on X and write C∞(X,U(1)) for the set of smooth circle-group valued function on X. There is an action

ρ : C∞(X,U(1))× Ω1(Rn) −→ Ω1(X,U(1))

of functions on 1-forms A by gauge transformation g, given by the formula

ρ(g)(A) := A+ dlogg .

Hence if g = exp(iκ) is given by the exponential of a smooth real valued function (which is always the case
on Rn) then this is

ρ(g)(A) := A+ dκ .
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Definition 1.3.119. Write
BU(1)conn ∈ H ,

for the smooth groupoid, def. 1.3.112, which for Cartesian space Rn has as groupoid of coordinate charts
the homotopy quotient, def. 6.4.45, of the smooth functions on the coordinate chart acting on the smooth
1-forms on the coordinate chart.

BU(1)conn : Rn 7→ Ω1(R)//C∞(Rn, U(1)) .

Equivalently this is the smooth homotopy quotient, def. 1.3.113, of the smooth group U(1) ∈ H acting on
the universal smooth moduli space Ω1 of smooth differential 1-forms:

BU(1)conn ' Ω1//U(1) .

We call this the universal moduli stack of prequantizations or universal moduli stack of U(1)-principal con-
nections.

Remark 1.3.120. This smooth groupoid BU(1)conn ' Ω1//U(1) is equivalently characterized by the fol-
lowing properties.

1. For X any smooth manifold, smooth functions

X // BU(1)conn

are equivalent to prequantum structures ({θi}, {gij}) on X,

2. a homotopy

X
''

77
BU(1)conn��

between two such maps is equivalently a gauge transformation ({hi}) between these prequantizations.

Proposition 1.3.121. There is then in H a morphism

F : BU(1)conn
// Ω2

cl

from this universal moduli stack of prequantizations back to the universal smooth moduli space of closed
differential 2-form. This is the universal curvature map in that for ∇ : X −→ BU(1)conn a prequantization
datum ({θi}, {gij}), the composite

F(−) : X
∇ // BU(1)conn

F(−) // Ω2
cl

is the closed differential 2-form on X characterized by ω|Ui = dθi, for every patch Ui. Again, this property
characterizes the map F(−) and may be taken as its definition.

Using this language of the (2, 1)-topos H of smooth groupoids, we may then formally capture the above
discussion of prequantization as follows:

Definition 1.3.122. Given a symplectic manifold (X,ω), regarded by prop. 1.3.68 as an object (X
ω−→

Ω2
c) ∈ H/Ω2

cl
, then a prequantization of (X,ω) is a lift ∇ in the diagram

X

ω
$$

∇ // BU(1)conn

F(−)

��
Ω2

cl
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in H, hence is a lift of (X,ω) through the base change functor (see prop. 2.1.2 for this terminology) or
dependent sum functor (see def. 2.1.3) ∑

F(−)

: H/BU(1)conn
−→ H/Ω2

cl

that goes from the slice over the universal moduli stack of prequantizations to the slice over the universal
smooth moduli space of closed differential 2-forms.

Moreover, in this language of geometric homotopy theory we then also find a conceptual re-statement of
the descent of the (pre-)symplectic potential to the reduced phase space, from 1.3.2.7:

Proposition 1.3.123. Given a covariant phase space X with (pre-)symplectic potential θ and gauge group
action ρ : G×X −→ X, a G-equivariant structure on θ, def. 1.3.102, is equivalently an extension ∇red of θ
along the map to the smooth homotopy quotient X//G as a (R/Γ)-principal connection, hence a diagram in
H of the form

X

��

θ // BU(1)conn

X//G

∇red

99
.

1.3.2.10 The classical action, the Legendre transform and Hamiltonian flows The reason to
consider Hamiltonian symplectomorphisms, prop. 1.3.92 instead of general symplectomorphisms, is really
because these give homomorphisms not just between plain symplectic manifolds, but between their prequan-
tizations, def. 1.3.122. To these we turn now.

Consider a morphism

X
φ //

∇ $$

X

∇zz
BU(1)conn

s{
,

hence a morphism in the slice topos H/BU(1)conn . This has been discussed in detail in [FRS13a].
One finds that infinitesimally such morphisms are given by a Hamiltonian and its Legendre transform.

Proposition 1.3.124. Consider the phase space (R2, ω = dq ∧ dp) of example 1.3.53 equipped with its
canonical prequantization by θ = pdq from example 1.3.117. Then for H : R2 −→ R a Hamiltonian, and for
t ∈ R a parameter (”time”), a lift of the Hamiltonian symplectomorphism exp(t{H,−}) from H to the slice
topos H/BU(1)conn

is given by

X
exp(t{H,−}) //

θ $$

X

θzz
BU(1)conn

exp(iSt)
s{

,

where

• St : R2 −→ R is the action functional of the classical trajectories induced by H,

• which is the integral St =
∫ t

0
Ldt of the Lagrangian Ldt induced by H,

• which is the Legendre transform

L := p
∂H

∂p
−H : R2 −→ R .
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In particular, this induces a functor

exp(iS) : BordRiem
1 −→ H/BU(1)conn

.

Conversely, a symplectomorphism, being a morphism in H/Ω2
cl

is a Hamiltonian symplectomorphism precisely
if it admits such a lift to H/BU(1)conn .

This is a special case of the discussion in [FRS13a]. Proof. The canonical prequantization of (R2,dq∧dp)
is the globally defined connection on a bundle—connection 1-form

θ := pdq .

We have to check that on graph(exp(t{H,−})) we have the equation

p2 ∧ dq2 = p1 ∧ dq1 + dS .

Or rather, given the setup, it is more natural to change notation to

pt ∧ dqt = p ∧ dq + dS .

Notice here that by the nature of graph(exp(t{H,−})) we can identify

graph(exp(t{H,−})) ' R2

and under this identification
qt = exp(t{H,−})q

and
pt = exp(t{H,−})p .

It is sufficient to check the claim infinitesimally. So let t = ε be an infinitesimal, hence such that ε2 = 0.
Then the above is Hamilton’s equations and reads equivalently

qε = q +
∂H

∂p
ε

and

pε = p− ∂H

∂q
ε .

Using this we compute
θε − θ = pε ∧ dqε− p ∧ dq

=

(
p− ∂H

∂q
ε

)
∧ d

(
q +

∂H

∂p
ε

)
− p ∧ dq

= ε

(
p ∧ d

∂H

∂p
− ∂H

∂q
∧ dq

)
= ε

(
d

(
p
∂H

∂p

)
− ∂H

∂p
∧ dp− ∂H

∂q
∧ dq

)
= εd

(
p
∂H

∂p
−H

)
.

�

Remark 1.3.125. When one speaks of symplectomorphisms as “canonical transformations” (see e.g. [Ar89],
p. 206), then the function S in prop. 1.3.124 is also known as the “generating function of the canonical
transformation”, see [Ar89], chapter 48.
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Remark 1.3.126. Proposition 1.3.124 says that the slice topos H/BU(1)conn unifies classical mechanics in
its two incarnations as Hamiltonian mechanics and as Lagrangian mechanics. A morphism here is a diagram
in H of the form

X //

$$

Y

zz
BU(1)conn

and which may be regarded as having two components: the top horizontal 1-morphism as well as the
homotopy/2-morphism filling the slice. Given a smooth flow of these, the horizontal morphism is the flow
of a Hamiltonian vector field for some Hamiltonian function H, and the 2-morphism is a U(1)-gauge trans-
formation given (locally) by a U(1)-valued function which is the exponentiated action functional that is the
integral of the Lagrangian L which is the Legendre transform of H.

So in a sense the prequantization lift through the base change/dependent sum along the universal cur-
vature map ∑

F(−)

: H/BU(1)conn
−→ H/Ω2

cl

is the Legendre transform which connects Hamiltonian mechanics with Lagrangian mechanics.

1.3.2.11 The classical action functional pre-quantizes Lagrangian correspondences We may
sum up these observations as follows.

Definition 1.3.127. Given a Lagrangian correspondence

graph(φ)

i1

zz

i2

$$
X1

ω1
$$

X2

ω2
zz

Ω2
cl

as in prop. 1.3.74, a prequantization of it is a lift of this diagram in H to a diagram of the form

graph(φ)

i1

zz

i2

$$
X1

ω1

��

∇1

$$

X2

ω2

��

∇2

zz
BU(1)conn

F(−)

��
Ω2

cl

u}

Remark 1.3.128. This means that a prequantization of a Lagrangian correspondence is a prequantization
of the source and target symplectic manifolds by prequantum circle bundles as in def. 1.3.122, together with
a choice of (gauge) equivalence between thes respective pullback of these two bundles to the correspondence
space. More abstractly, such a prequantization is a lift through the base change/dependent sum map along
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the universal curvature morphism

Corr

∑
F(−)

 : Corr
(
H/BU(1)conn

)
−→ Corr

(
H/Ω2

cl

)
.

From prop. 1.3.124 and under the equivalence of example 1.3.73 it follows that smooth 1-parameter groups
of prequantized Lagrangian correspondences are equivalently Hamiltonian flows, and that the prequantizaton
of the underlying Hamiltonian correspondences is given by the classical action funtional.

In summary, the description of classical mechanics here identifies prequantized Lagrangian correspon-
dences schematically as follows:

graph (exp (t{H,−}))

zz $$

space of
trajectoriesinitial

values

xx

Hamiltonian
evolution

&&

X

∇in

$$

X

∇out

zz

incoming
configurations

prequantum
bundle

&&

outgoing
configurations

prequantum
bundle

xx

BU(1)conn
2-group

of phases

exp( i~St)=exp( i~
∫ t
0
Ldt)

u}

action
functional

s{

This picture of classical mechanics as the theory of correspondences in higher slices topos is what allows
a seamless generalization to a local discussion of prequantum field theory in [Sc13b].

1.3.2.12 Quantization, the Heisenberg group, and slice automorphism groups While we do not
discussion genuine quantization here (in a way adapted to the perspective here this is discussed in [Nui13])
it is worthwhile to notice that the perspective of classical mechanics by correspondences in slice toposes
seamlessly leads over to quantization by recognizing that the slice automorphism groups of the prequantized
phase spaces are nothing but the “quantomorphisms groups” containing the famous Heisenberg groups of
quantum operators. This has been developed for higher prequantum field theory in [FRS13a], see 5.2.17.5
below. Here we give an exposition, which re-amplifies some of the structures already found above.

Quantization of course was and is motivated by experiment, hence by observation of the observable
universe: it just so happens that quantum mechanics and quantum field theory correctly account for experi-
mental observations where classical mechanics and classical field theory gives no answer or incorrect answers
(see for instance [Di87]). A historically important example is the phenomenon called the ”ultraviolet catas-
trophe”, a paradox predicted by classical statistical mechanics which is not observed in nature, and which
is corrected by quantum mechanics.

But one may also ask, independently of experimental input, if there are good formal mathematical
reasons and motivations to pass from classical mechanics to quantum mechanics. Could one have been led
to quantum mechanics by just pondering the mathematical formalism of classical mechanics? (Hence more
precisely: is there a natural “Synthetic quantum field theory” [Sc13d]).

The following spells out an argument to this effect.
So to briefly recall, a system of classical mechanics/prequantum field theory—prequantum mechanics

is a phase space, formalized as a symplectic manifold (X,ω). A symplectic manifold is in particular a
Poisson manifold, which means that the algebra of functions on phase space X, hence the algebra of classical
observables, is canonically equipped with a compatible Lie bracket: the Poisson bracket. This Lie bracket is
what controls dynamics in classical mechanics. For instance if H ∈ C∞(X) is the function on phase space
which is interpreted as assigning to each configuration of the system its energy – the Hamiltonian function
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– then the Poisson bracket with H yields the infinitesimal time evolution of the system: the differential
equation famous as Hamilton’s equations.

Something to take notice of here is the infinitesimal nature of the Poisson bracket. Generally, whenever
one has a Lie algebra g, then it is to be regarded as the infinitesimal approximation to a globally defined
object, the corresponding Lie group (or generally smooth group) G. One also says that G is a Lie integration
of g and that g is the Lie differentiation of G.

Therefore a natural question to ask is: Since the observables in classical mechanics form a Lie algebra
under Poisson bracket, what then is the corresponding Lie group?

The answer to this is of course ”well known” in the literature, in the sense that there are relevant
monographs which state the answer. But, maybe surprisingly, the answer to this question is not (at time
of this writing) a widely advertized fact that has found its way into the basic educational textbooks. The
answer is that this Lie group which integrates the Poisson bracket is the ”quantomorphism group”, an object
that seamlessly leads to the quantum mechanics of the system.

Before we spell this out in more detail, we need a brief technical aside: of course Lie integration is not
quite unique. There may be different global Lie group objects with the same Lie algebra.

The simplest example of this is already one of central importance for the issue of quantization, namely,
the Lie integration of the abelian line Lie algebra R. This has essentially two different Lie groups associated
with it: the simply connected topological space—simply connected translation group, which is just R itself
again, equipped with its canonical additive abelian group structure, and the discrete space—discrete quotient
of this by the group of integers, which is the circle group

U(1) = R/Z .
Notice that it is the discrete and hence ”quantized” nature of the integers that makes the real line become

a circle here. This is not entirely a coincidence of terminology, but can be traced back to the heart of what
is ”quantized” about quantum mechanics.

Namely, one finds that the Poisson bracket Lie algebra poiss(X,ω) of the classical observables on phase
space is (for X a connected topological space—connected manifold) a Lie algebra extension of the Lie algebra
ham(X) of Hamiltonian vector fields on X by the line Lie algebra:

R −→ poiss(X,ω) −→ ham(X) .

This means that under Lie integration the Poisson bracket turns into an central extension of the group
of Hamiltonian symplectomorphisms of (X,ω). And either it is the fairly trivial non-compact extension by
R, or it is the interesting central extension by the circle group U(1). For this non-trivial Lie integration to
exist, (X,ω) needs to satisfy a quantization condition which says that it admits a prequantum line bundle.
If so, then this U(1)-central extension of the group Ham(X,ω) of Hamiltonian symplectomorphisms exists
and is called... the “quantomorphism group” QuantMorph(X,ω):

U(1) −→ QuantMorph(X,ω) −→ HamSympl(X,ω) .

More precisely, this group is just the slice automorphism group:

Proposition 1.3.129. Let (X,ω) be a symplectic manifold with prequantization ∇ : X −→ BU(1)conn,
according to def. 1.3.122, then the smooth automorphism group of ∇ regarded as an object in the higher slice
topos H/BU(1)conn

is the quantomorphism group QuantMorph(X,ω)

QuantMorph(X,ω) ' AutH/BU(1)conn
(∇)

' AutCorr(H/BU(1)conn)(∇)

'


X

φ

'
//

∇ $$

X

zz
BU(1)conn

'
ks


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in that

1. The Lie algebra of QuantMorph(X,ω) is the Poisson bracket Lie algebra of (X,ω);

2. This group constitutes a U(1)-central extension of the group of Hamiltonian symplectomorphisms.

While important, for some reason this group is not very well known, which is striking because it contains
a small subgroup which is famous in quantum mechanics: the Heisenberg group.

More precisely, whenever (X,ω) itself has a Hamiltonian action—compatible group structure, notably
if (X,ω) is just a symplectic vector space (regarded as a group under addition of vectors), then we may
ask for the subgroup of the quantomorphism group which covers the (left) action of phase space (X,ω) on
itself. This is the corresponding Heisenberg group Heis(X,ω), which in turn is a U(1)-central extension of
the group X itself:

U(1) −→ Heis(X,ω) −→ X .

Proposition 1.3.130. If (X,ω) is a symplectic manifold that at the same time is a group which acts on
itself by Hamiltonian diffeomorphisms, then the Heisenberg group of (X,ω) is the pullback Heis(X,ω) of
smooth groups in the following diagram in H

Heis(X,ω) //

��

QuantMorph(X,ω)

��
X // HamSympl(X,ω)

.

Remark 1.3.131. In other words this exhibits QuantMorph(X,ω) as a universal U(1)-central extension
characteristic of quantum mechanics from which various other U(1)-extension in QM are obtained by pull-
back/restriction. In particular all classical anomalies arise this way, discussed below in 1.3.2.14.

At this point it is worth pausing for a second to note how the hallmark of quantum mechanics has
appeared as if out of nowhere simply by applying Lie integration to the Lie algebra—Lie algebraic structures
in classical mechanics:

if we think of Lie integration—Lie integrating R to the interesting circle group U(1) instead of to the
uninteresting translation group R, then the name of its canonical basis element 1 ∈ R is canonically ”i”, the
imaginary unit. Therefore one often writes the above central extension instead as follows:

iR −→ poiss(X,ω) −→ ham(X,ω)

in order to amplify this. But now consider the simple special case where (X,ω) = (R2, dp ∧ dq) is the
2-dimensional symplectic vector space which is for instance the phase space of the particle propagating on
the line. Then a canonical set of generators for the corresponding Poisson bracket Lie algebra consists of the
linear functions p and q of classical mechanics textbook fame, together with the constant function. Under the
above Lie theoretic identification, this constant function is the canonical basis element of iR, hence purely
Lie theoretically it is to be called ”i”.

With this notation then the Poisson bracket, written in the form that makes its Lie integration manifest,
indeed reads

[q, p] = i .

Since the choice of basis element of iR is arbitrary, we may rescale here the i by any non-vanishing real
number without changing this statement. If we write ”~” for this element, then the Poisson bracket instead
reads
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[q, p] = i~ .

This is of course the hallmark equation for quantum physics, if we interpret ~ here indeed as Planck’s
constant, def. 6.4.156. We see it arises here merely by considering the non-trivial (the interesting, the
non-simply connected) Lie integration of the Poisson bracket.

This is only the beginning of the story of quantization, naturally understood and indeed ”derived” from
applying Lie theory to classical mechanics. From here the story continues. It is called the story of geometric
quantization. We close this motivation section here by some brief outlook.

The quantomorphism group which is the non-trivial Lie integration of the Poisson bracket is naturally
constructed as follows: given the symplectic form ω, it is natural to ask if it is the curvature 2-form of a
U(1)-principal connection ∇ on complex line bundle L over X (this is directly analogous to Dirac charge
quantization when instead of a symplectic form on phase space we consider the the field strength 2-form
of electromagnetism on spacetime). If so, such a connection (L,∇) is called a prequantum line bundle of
the phase space (X,ω). The quantomorphism group is simply the automorphism group of the prequantum
line bundle, covering diffeomorphisms of the phase space (the Hamiltonian symplectomorphisms mentioned
above).

As such, the quantomorphism group naturally acts on the space of sections of L. Such a section is like
a wavefunction, except that it depends on all of phase space, instead of just on the “canonical coordinates”.
For purely abstract mathematical reasons (which we won’t discuss here, but see at motivic quantization for
more) it is indeed natural to choose a ”polarization” of phase space into canonical coordinates and canonical
momenta and consider only those sections of the prequantum line bundle which depend only on the former.
These are the actual wavefunctions of quantum mechanics, hence the quantum states. And the subgroup of
the quantomorphism group which preserves these polarized sections is the group of exponentiated quantum
observables. For instance in the simple case mentioned before where (X,ω) is the 2-dimensional symplec-
tic vector space, this is the Heisenberg group with its famous action by multiplication and differentiation
operators on the space of complex-valued functions on the real line.

1.3.2.13 Integrable systems, moment maps and maps into the Poisson bracket

Remark 1.3.132. Given a phase space (pre-)symplectic manifold (X,ω), and given n ∈ N, then Lie algebra
homomorphisms

Rn −→ pois(X,ω)

from the abelian Lie algebra on n generators into the Poisson bracket Lie algebra, def. 1.3.86 are equivalently
choices of n-tuples of Hamiltonians {Hi}ni=1 (and corresponding Hamiltonian vector fields vi) that pairwise
commute with each other under the Poisson bracket, ∀i,j{Hi, Hj} = 0. If the set {Hi}i is maximal with this
property and one of the Hi is regarded the time evolution Hamiltonian of a physical system, then one calls
this system integrable.

By the discussion in 1.3.2.12, the Lie integration of the Lie algebra homomorphism Rn −→ pois(X,ω) is
a morphism of smooth groupoids

B(Rn) −→ BAut/BU(1)conn
(∇) ↪→ H/BU(1)conn

from the smooth delooping groupoid (def. 1.3.107) of Rn, now regarded as the translation group of n-
dimensional Euclidean space, to the automorphism group of any pre-quantization of the phase space (its
quantomoprhism group).

Remark 1.3.133. Below in 1.3.3.4 we re-encounter this situation, but in a more refined context. There we
find that n-dimensional classical field theory is encoded by a homomorphism of the form

Rn −→ pois(X,ω) ,

where however now ω is a closed differential form of degree (n + 1) and where pois(X,ω) is a homotopy-
theoretic refinement of the Poisson bracket Lie algebra (a Lie n-algebra or (n − 1)-type in homotopy Lie
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algebras). In that context such a homomorphism does not encode a set of strictly Poisson-commuting
Hamiltonians, but a of Hamiltonian flows in the n spacetime directions of the field theory which commute
under an n-ary higher bracket only up to a specified homotopy. That specified homotopy is the de Donder-
Weyl-Hamiltonian of classical field theory.

Remark 1.3.134. For g any Lie algebra and (X,ω) a (pre-)symplectic manifold, a Lie algebra homomor-
phism

g −→ pois(X,ω)

is called a moment map. Equivalently this is an actin of g by Hamiltonian vector fields with chosen Hamil-
tonians. The Lie integration of this is a homomorphism of smooth groups

G −→ Aut/BU(1)conn
' QuantMorph(X,ω)

from a Lie group integrating g to the quantomorphism group. This is called a Hamiltonian G-action.

1.3.2.14 Classical anomalies and projective symplectic reduction Above in 1.3.2.7 we saw that
for a gauge symmetry to act consistently on a phase space, it needs to act by Hamiltonian diffeomorphisms,
because this is the data necessary to put a gauge-equivariant structure on the symplectic potential (hence
on the pre-quantization of the phase space).

Under mild conditions every single infinitesimal gauge transformation comes from a Hamiltonian. But
these Hamiltonians may not combine to a genuine Hamiltonian action, remark 1.3.134, but may be specified
only up to addition of a locally constant function, and it may happen that these locally constant “gauges” may
not be chose globally for the whole gauge group such as to make the whole gauge group act by Hamiltonians.
This is the lifting problem of pre-quantization discussed above in 1.3.3.2.

But if the failure of the local Hamiltonians to combine to a global Hamiltonian is sufficiently coherent in
that it is given by a group 2-cocycle, then one can at least find a Hamiltonian action by a central extension
of the gauge group. This phenomenon is known as a classical anomaly in field theory:

Definition 1.3.135. Let (X,ω) be a phase space symplectic manifold and let ρ : G×X −→ X be a smooth
action of a Lie group G on the underlying smooth manifold by Hamiltonian symplectomorphisms, hence a
group homomorphism

G // HamSympl(X,ω) .

Then we say this system has a classical anomaly if this morphism lifts to the quantomorphism group, prop.
5.2.17.5, only up to a central extension Ĝ −→ G, hence if it fits into the following diagram of smooth group,
without the dashed diagonal morphism existing:

Ĝ

��

// QuantMorph(X,ω)

��
G

ρ //

88

HamSympl(X,ω)

.

This is the Lie-integrated version of the Lie-algebraic definition in appendix 5 of [Ar89]. For a list of
examples of classical anomalies in field theories see [Top01].

Remark 1.3.136. Comparison with prop. 5.2.17.5 above shows that for (X,ω) a symplectic group acting
on itself by Hamiltonian symplectomorphism, then its Heisenberg group is the “universal classical anomaly”.

1.3.3 Hamilton-De Donder-Weyl field theory via Higher correspondences

We now turn attention from just classical mechanics (hence of dynamics along a single parameter, such
as the Hamiltonian time parameter in 1.3.2.6 above) to, more generally, classical field theory, which is
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dynamics parameterized by higher dimensional manifolds (“spacetimes” or “worldvolumes”). Or rather, we
turn attention to the local description of classical field theory. See also section 5.2.18 below.

Namely, the situation of example 1.3.54 above, where a trajectory of a physical system is given by a
1-dimensional curve [0, 1] −→ Y in a space Y of fields can – and traditionally is – also be applied to field
theory, if only we allow Y to be a smooth space more general than a finite-dimensional manifold. Specifically,
for a field theory on a parameter manifold Σn of some dimension n (to be thought of as spacetime or as the
“worldvolume of a brane”), and for Fields a smooth moduli space of of fields, a local field configuration is
a map

φ : Σn −→ Fields .

If however Σd ' Σd−1 ×Σ1 is a cylinder with Σ1 = [0, 1] over a base manifold Σd−1 (a Cauchy surface if we
think of Σ as spacetime), then such a map is equivalently a map out of the interval into the mapping space
of Σd−1 into Fields:

φΣd−1
: Σ1 −→ [Σd−1,Fields] .

This brings the field theory into the form of example 1.3.54, but at the cost of making it “spatially non-
local”: for instance the energy of the system, as discussed in 1.3.2.6, would at each point of Σ1 be the
energy contained in the fields over all of Σd−1, while the information that this energy arises from integrating
contributions localized along Σd−1 is lost.

In more mathematical terms this means that by transgression to codimension 1 classical field theory
takes the form of classical mechanics as discussed above in 1.3.2.6. To “localize” the field theory again (make
it “extended” or “multi-tiered”) we have to undo this process and “de-transgress” classical mechanics to full
codimension.

At the level of Hamilton’s differential equations, def. 1.3.81, such a localization is “well known”, but
much less famous than Hamilton’s equations: it is the multivariable variational calculus of Carathéodory,
de Donder, and Weyl, as reviewed for instance in section 2 of [HHél02]. Below in 1.3.3.4 we show that the
de Donder-Weyl equation secretly describes the Lie integration of a higher Poisson bracket Lie algebra in
direct but higher analogy to how in 1.3.2.12 we saw that the ordinary Hamilton equations exhibit the Lie
integration of the ordinary Poisson bracket Lie algebra.

From this one finds that an n-dimensional local classical field theory is described not by a symplectic
2-form as a system of classical mechanics is, but by a differential (n + 1)-form which transgresses to the
2-form after passing to mapping spaces. This point of view has been explored under the name of “covariant
mechanics” or “multisymplectic geometry” (see [FoRo05] for a review) and “n-plectic geometry”, see 6.4.21
below. Here we show, based on the results in [FRS13a], how both of these approaches are unified and “pre-
quantized” to a global description of local classical field theory by systems of higher correspondences in higher
slices toposes, in higher generalization to the picture which we found in 1.3.2.11 for classical mechanics.

• 1.3.3.1 – Local field theory Lagrangians and n-plectic smooth spaces

• 1.3.3.2 – The kinetic action, higher prequantization and higher differential cohomology;

• 1.3.3.3 – Local observables, conserved currents and their higher Poisson brackets

• 1.3.3.4 – Field equations of motion and Higher Poisson-Maurer-Cartan elements

• 1.3.3.5 – Source terms, off-shell Poisson bracket and Poisson holography

1.3.3.1 Local field theory Lagrangians and n-plectic smooth spaces Traditionally, a classical field
over a spacetime Σ is encoded by a fiber bundle E → X, the field bundle. The fields on X are the sections
of E.

Example 1.3.137. Let d ∈ N and let Σ = Rd−1,1 be the d-dimensional real vector space, regarded as
a pseudo-Riemannian manifold with the Minkowski metric η (Minkowski spacetime). Let moreover F be
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a finite dimensional real vector space – the field fiber – eqipped with a positive definite bilinear form k.
Consider the bundle Σ× F → Σ, to be called the field bundle, and write

(X → Σ) :=
(
J1 (Σ× F )→ Σ

)
for its first jet bundle.

If we denote the canonical coordinates of Σ by σi : Σ→ R for i ∈ {0, · · · , n− 1}, and choose a dual basis

φa : F → R

of F (hence with a ∈ {1, · · · ,dim(V )}) then X is the vector space with canonical dual basis elements labeled
by

{σi}, {φa}, {φa,i}

and equipped with bilinear form (η⊕ k⊕ (η⊗ k)). While all of these are coordinates on X, traditionally one
says that

1. the functions
σi : X −→ R

are the spacetime coordinates;

2. the functions
φa : X −→ R

are are the canonical coordinates of the F -field

3. the functions
pia := ηijkabφ

b
,j : X −→ R

are the canonical momenta of the free F -field.

Definition 1.3.138. Given a field jet bundle X = J1(Σ × F ) → Σ as in example 1.3.137, the free field
theory local kinetic Lagrangian is the horizontal differential n-form

Lloc
kin ∈ Ωn,0(X)

given by
Lloc

kin := 〈∇φ,∇φ〉 ∧ volΣ

:=
(

1
2kabη

ijφa,iφ
b
,j

)
∧ dσ1 ∧ · · · ∧ dσd

(where a sum over repeated indices is understood). Here we regard the volume form of Σ canonically as a
horizontal differential form on the first jet bundle

volΣ := dσ1 ∧ · · · ∧ dσa ∈ Ωd,0Σ (X) .

The localized analog of example 1.3.54 is now the following.

Definition 1.3.139. Given a free field bundle as in example 1.3.137 and given a horizontal n-form

Lloc ∈ Ωn,0(X)

on its first jet bundle, regarded as a local Lagrangian as in def. 1.3.138, then the associated Lagrangian
current is the n-form

θloc ∈ Ωn−1,1(X)
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given by the formula

θloc := ι∂i

(
∂

∂φa,i
Lloc

)
∧ dφa

(where again a sum over repeated indices is understood). We say that the corresponding pre-symplectic
current or pre-n-plectic form [FRS13b] is

ωloc := dθloc .

Remark 1.3.140. The formula in def. 1.3.139 is effectively that for the pre-symplectic current as it arises
in the discussion of covariant phase spaces in [Zu87, CrWi87]. In the coordinates of example 1.3.137 the
Lagrangian current reads

θloc = pia ∧ dφa ∧ ι∂ivolΣ

and hence the pre-symplectic current reads

ωloc = dpia ∧ dφa ∧ ι∂ivolΣ

In this form this is manifestly the (n − 1, 1)-component of the canonical “multisymplectic form” that is
considered in multisymplectic geometry, see for instance section 2 of [HHél02].

This direct relation between the covariant phase space formulation and the multisymplectic description
of local classical field theory seems not to have been highlighted much in the literature. It essentially appears
in section 3.2 of [FoRo05] and in section 2.1 of [Rom05].

Example 1.3.141. Consider the simple case d = 1 hence Σ = R, and F = R, both equipped with the
canonical bilinear form on R (given by multiplication). Jet prolongation followed by evaluation yields the
smooth function

ev∞ : [Σ, F ]× Σ
(j∞,id)−→ ΓΣ(X)× Σ

ev−→ X .

Then the pullback of the local free field Lagrangian of def. 1.3.138 along this map is the kinetic Lagrangian
of example 1.3.55:

Lkin = ev∗∞L
loc
kin .

The pullback of the corresponding Lagrangian current according to def. 1.3.139 is the pre-symplectic poten-
tial θ in example 1.3.54

θ = ev∗∞θ
loc .

Definition 1.3.142. For d ∈ N, write Σ = Σ1 ×Σd−1 for the decomposition of Minkowski spacetime into a
time axis Σ1 and a spatial slice Σd−1, hence with Σ1 = R the real line. Restrict attention to sections of the
field bundle which are periodic in all spatial directions, hence pass to the (d − 1)-torus Σd−1 := Rd/Zd (in
order to have a compact spatial slice). Then given a free field local Lagrangian as in def. 1.3.138, say that
its transgression to codimension 1 is the pullback of the local Lagrangian n-form along

ev∞ : [Σ1, [Σd−1, F × Σ1 × Σd−1]]
'−→ [Σ, F ]× Σ

(j∞,id)−→ ΓΣ(X)× Σ
ev−→ X

followed by fiber integration
∫

Σd−1
over space Σd−1, to be denoted

Lkin :=

∫
Σd−1

ev∗∞L
loc
kin .

Similarly the transgression to codimension 1 of the Lagrangian current, def. 1.3.139 is

θ :=

∫
Σd−1

ev∗∞θ
loc .
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Remark 1.3.143. This is the standard way in which the kinetic Lagrangians in example 1.3.54 arise by
transgression of local data.

It is useful to combine this data as follows.

Definition 1.3.144. Given a first jet bundle X := J1(Σ× F ) as in example 1.3.137, we write

1. J1(Σ × F )∗ → Σ × F for its fiberwise linear densitized dual, as a bundle over the field bundle, to be
called the dual first jet bundle;

2. J1(Σ×F )∨ → Σ×F for the fiberwise affine densitized dual, to be called the affine dual first jet bundle.

Remark 1.3.145. With respect to the canonical coordinates in example 1.3.137, the canonical coordinates
of the dual first jet bundle are {σi, φa, pia} (spacetime coordinates, fields and canonical field momenta) and
the canonical coordinates of the affine dual first jet bundle are {σi, φa, pia, e} with one more coordinate e.

Definition 1.3.146. 1. The canonical pre-d-plectic form on the affine dual first jet bundle, def. 1.3.144,
is

ωe := dφa ∧ dpia ∧ ι∂σivolΣ + de ∧ volΣ ∈ Ωd+1(J1(Σ× F )∨) .

2. Given a function H ∈ C∞(J1(Σ × X)∗) on the linear dual first jet bundle, def. 1.3.144, then the
corresponding HDW pre-d-plectic form is

ωH := dφa ∧ dpia ∧ ι∂σivolΣ + dH ∧ volΣ ∈ Ωd+1(J1(Σ× F )∗)

and the corresponding HDW Lagrangian current is

θH := −piadφa ∧ ι∂σivolΣ +H ∧ volΣ ∈ Ωd(J1(Σ× F )∗)

Remark 1.3.147. For the case d = 1 the form θH of def. 1.3.146 appears as −ΘPV in [AzIz95, (8.1.20)].
There it is highlighted that with mechanics phrased in this form, every Lagrangian looks like a WZW-term
(on the (dual) jet bundle). Here we mean to amplify this perspective further, refining it in two ways: on the
one hand we allow θH to be a higher degree differential form for higher dimensional field theory, and secondly
we will again pass from just a plain globally defined d-form to a pre-quantization by a higher prequantum
bundle.

Definition 1.3.148 (local Legendre transform). Given a local Lagrangian as in def. 1.3.138, hence a
horizontal n-form Lloc ∈ Ω(n,0)(J1(E)) on the jets of the field bundle E → X, its local Legendre transform
is the function

FLloc : J1(X) −→ (J1(X))∨

from jets to the affine dual jet bundle, def. 1.3.144 which is the first order Taylor series of Lloc.

This definition was suggested in [FoRo05, section 2.5]. It conceptualizes the traditional notion of local
Legendre transform:

Example 1.3.149. In the local coordinates of example 1.3.137, the Legendre transform of a local Lagrangian
Lloc, def. 1.3.148 has affine dual jet bundle coordinates given by

pia =
∂Lloc

∂φa,i

and

e = Lloc − ∂Lloc

∂φa,i
φa,i .

The latter expression is what is traditionally taken to be the local Legendre transform of Lloc.
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The following observation relates the canonical pre-n-plectic form ωe on the affine dual jet bundle to the
central ingredients of the covariant phase space formalism.

Proposition 1.3.150. Given a local Lagrangian Lloc ∈ Ω(n,0)(J1(E)), then the pullback of the canonical
pre-n-plectic form ωe, def. 1.3.146, along the local Legendre transform FLloc of def. 1.3.148 is the sum
of the Euler-Lagrange equation term ELLloc ∈ Ω(n,1)(J1(X)) and of the canonical pre-n-plectic current
dvθLloc ∈ Ω(n−1,2)(J1(X)) of def. 1.3.139:

ωLloc := (FLloc)∗ωe

= ELLloc + dvθLloc

.

This follows with equation (54) and theorem 1 of [FoRo05].11 In 1.3.3.4 below we see how using this the
equations of motion of the field theory are naturally expressed.

In conclusion, we find that where phase spaces in classical mechanics are given by smooth spaces equipped
with a closed 2-form, phase spaces in “de-transgressed” or “covariant” or “localized” classical field theory of
dimension n are given by smooth spaces equipped with a closed (n + 1)-form. To give this a name we say
[FRS13a]:

Definition 1.3.151. For n ∈ N, a pre-n-plectic smooth space is a smooth space X and a smooth closed
(n+ 1)-forms, prop. 1.2.49,

ω : X −→ Ωn+1
cl ,

hence an object of the slice topos
(X,ω) ∈ H/Ωn+1

cl
.

1.3.3.2 The kinetic action, higher prequantization and higher differential cohomology Now
that we have de-transgressed the symplectic 2-forms of 1.3.2.1 to d-plectic forms ω ∈ Ωd+1(X) in 1.3.3.1 the
same kind of arguments as in 1.3.3.2 show that in general it is too restrictive to assume that there is a globally
defined Larangian d-form θ with dθ = ω. Instead, given an cover {Ui → X} of X by contractible open charts,
then we may find on each chart a θi ∈ Ωd(Ui) with dθi = ω|Ui . As before, on double intersections of charts
Ui ×

X
Uj these local Lagrangian forms must be glued together by gauge transformations, but now with d > 1

a gauge transformation is given itself by a (d− 1)-form θij ∈ Ωd−1(Ui ×
X
Uj), satisfying

θj − θi = dθij on Ui ×
X
Uj .

This being the case, the {θij} themselves have gauge-of-gauge transformations between them, given now by
(d− 2)-forms θijk ∈ Ωd−2(Ui ×

X
Uj ×

X
Uk), and consistency requires that on triple intersections of charts they

glue together by such:
θik − θij − θjk = dθijk on Ui ×

X
Uj ×

X
Uk .

This pattern continues, until we reach (d − 1)-fold gauge transformations by 1-forms θi1···id ∈ Ω1(Ui1 ×
X

· · · ×
X
Uid) which are to glue on (d+ 1)-fold intersections of charts by a d-fold gauge transformation given by

U(1)-valued functions gi1···id+1
∈ C∞(Ui1 ×

X
· · · ×

X
Uid+1

, U(1)) by

d∑
k=1

(−1)kθi1···îk···id+1
= dloggi1···id+1

on Ui1 ×
X
· · · ×

X
Uid+1

.

11 This statement and its formulation in terms of notions in the variational bicomplex as given here has kindly been amplified
to us by Igor Khavkine.
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The collection of this data

θ :=
{
{Ui → X}, {θi}, {θij}, · · · , {gi1,··· ,id+1

}
}

satisfying these compatibility conditions is a Cech-Deligne cocycle of degree d+ 1. For d = 1 this reduces to
the familiar cocycles for U(1)-principal 1-form connections. More in detail, given the cover {Ui → X} then
the Cech-Deligne complex for Deligne cohomology in degree d+1 is the total complex of the double complex

⊕
i
C∞(Ui, U(1))

ddRlog

��

δ // ⊕
i,j
C∞(Ui ×

X
Uj , U(1))

ddRlog

��
⊕
i
Ω1(Ui)

ddR

��

δ // ⊕
i,j

Ω1(Ui ×
X
Uj)

ddR

��
⊕
i
Ω2(Ui)

δ // ⊕
i,j

Ω2(Ui ×
X
Uj)

⊕
i
ΩdUi

δ // ⊕
i,j

Ωd(Ui ×
X
Uj)

(where the horizontal differentials form alternating sums of restrictions to higher order intersections of
patches, as in the above formulas) and a Cech-Deligne cocycle is a closed element in this total complex.

Under the Dold-Kan correspondence (see below in 3.1.6), the Cech-Deligne complex in degree (d + 1)
may be thought of as a d-groupoid, whose objects are d-form connections, whose 1-morphisms are gauge
transformations between these, whose 2-morphisms are gauge-of-gauge transformation between those, and
so on. Since this d-groupoid depends naturally and contravariantly on the the base manifold X, it naturally
has the structure of a smooth d-groupoid or smooth d-stack. This we denote as BdU(1)conn. By its very
definition, this is characterized simply as being the generalized smooth space such that smooth functions

∇ : X −→ BdU(1)conn

are equivalently Cech-Deligne cocycles θ of degree d+ 1, such that smooth homotopies between such smooth
functions

X

∇1

""

∇2

==
BdU(1)conn

��

are gauge transformations between such d-form connections, and so forth. (We consider BdU(1)conn in detail
below in 6.4.16.)

The operation of sending a d-form connection θ to its globally defined curvature form ω is natural and
respects pullback along smooth maps, hence defines a morphism of generalized smooth space

F(−) : BdU(1)conn −→ Ωd+1 .

In terms of this we may then succinctly say that a higher pre-quantization of a pre-d-plectic form ω ∈ Ωd(X)
is a lift ∇ of the form

BdU(1)conn

F(−)

��
X

∇
66

ω
// Ωd+1

.
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(We will typically write ∇ when considering pre-quantizations in this abstract form, and use notation such
as θ to refer to an explicit Cech-Deligne cocycle representing it.)

Example 1.3.152. Whenever there happens to be a globally defined θ ∈ Ωd(X) such that dθ = ω, then
with respect to the trivial cover (or else after restriction to any given cover) θ itself defines a Cech-Deligne
cocycle. The Deligne cocycles of this form are equivalently those whose underlying U(1)-d-bundle modulated
by the forgetful map

X −→ BdU(1)conn −→ BdU(1)

is trivial. In this way a general Deligne cocycle θ pre-quantizing ω is seen to be a generalization of a
Lagrangian d-form, which is locally given by an actual d-form, and is globalized by gluing these local forms
together by gauge transformations and higher gauge transformations.

Hence for the following it is hence important to remember that pre-quantum d-bundles∇ are what naively
used to be the Lagrangians of field theories. They are the pre-quantized globally correct Lagrangians. (And
this need of “globally correcting” traditional classical field theory is the reason for our use of “pre-quantum
field theory” instead of “classical field theory”.)

1.3.3.3 Local observables, conserved currents and their higher Poisson brackets Above in
1.3.2.5 we discussed how functions on a phase space are interpreted as observables of states of the mechanical
system, for instance the energy of the system. Now in 1.3.3.1 above we saw that that notably the energy of
a d-dimensional field theory at some moment in time (over some spatial hyperslice of spacetime) is really the
integral over (d − 1)-dimensional space Σd−1 of an energy density (d − 1)-form H loc, hence by def. 1.3.142
the transgression of a (d− 1)-form on the localized d-plectic phase space:

H =

∫
Σd−1

ev∗∞H
loc .

Therefore in analogy with the notion of observables on a symplectic manifold, given a d-plectic manifold, def.
1.3.151, its degree-(d− 1) differential forms may be called the local observables of the system. To motivate
from physics how exactly to formalize such local observables (which we do below in def.1.3.158, def. 1.3.159),
we first survey how such local observables appear in the physics literature:

Example 1.3.153 (currents in physics as local observables). In the situation of example 1.3.137, consider a
vector field j ∈ Γ(TΣd) on the d-dimensional Minkowski spacetime Σd = Rd−1,1. In physics this represents
a quantity which – for an inertial observer characterized by the coordinates chosen in example 1.3.137 – has
local density j0 at each point in space and time, of a quantity that flows through space as given by the vector
(j1, · · · , jd−1).

For instance in the description of electric sources distributed in spacetime, the component j0 would be
an electric charge density and the vector (j1, · · · , jd−1) would be the electric current density. To empha-
size that therefore j combines the information of a spatial current with the density of the substance that
flows, traditional physics textbooks call j a “d-current” – usually a “4-current” when identifying d with the
number of macroscopic spacetime dimensions of the observable universe. But once the spacetime context is
understood, one just speaks of j as a current.

The currents of interest in physics are those which satisfy a conservation law, a law which states that
the change in coordinate time σ0 of the density j0 is equal to the negative of the divergence of the spatial
current, hence that the spacetime divergence of j vanishes:

div(j) =
∂j0

∂σ0
+

d−1∑
i=1

∂ji

∂σi
= 0 .

If this is the case, one calls the current j a conserved current. (Beware that the “conserved” is so important
in applications that it is often taken to be implicit and notationally suppressed.)
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In order to formulate the notion of divergence of a vector field intrinsically (as opposed with respect to
a chosen coordinate system as above), one needs a specified volume form volΣ ∈ Ωd(Σd) of spacetime. With
that given, the divergence div(j) ∈ C∞(Σd) of the vector field is defined by the equation

div(j) ∧ volΣd := LjvolΣd = d (ιjvolΣ) .

In particular, a current j is a conserved current precisely if the degree-(n− 1) differential form

J := ιjvolΣd

is a closed differential form

(j ∈ Γ(TΣd) is a conserved current) ⇔ (dJ = 0) .

Due to this and related relations, one finds eventually that the degree-(d − 1) differential form J itself is
the more fundamental mathematical reflection of the physical current. But by the above introduction, this
is in turn the same as saying that a current is a local observable. Accordingly, we will often use the terms
“current” and “local observable” interchangeably.

If currents are local observables, then by the above discussion their integral over a spatial hyperslice of
spacetime is to be the corresponding global observable. In the special case of the electromagnetic current
Jel, the laws of electromagnetism in the form of Maxwell’s equation

Jel = d ? Fem

say that this integral – assuming now that Jel is spatially compactly supported – is the integral of the Hodge
dual electromagnetic field strength Fem over the boundary of a 3-ball D3 ↪→ Σd−1 enclosing the support of
the electromagnetic current. This is the total electric charge Qel in space:

Qel =

∫
S2

∗Fem =

∫
D3

Jel =

∫
Σd−1

Jel .

Based on this example, in physics one generally speaks of the integral of a spacetime current over space as
a charge. So charges are the global observables of the local observables, which are currents.

Notice that for a conserved current the corresponding charge is also conserved in that it does not change
with time or in fact under any isotopy of Σd−1 inside Σd, due to Stokes’ theorem:

dΣ1
Q = dΣ1

∫
Σd−1

J

=

∫
Σd−1

dΣdJ

= 0

.

Therefore currents in physics are necessarily subject of higher gauge equivalences: if J is a conserved
current (d − 1)-form, then for any (d − 2)-form α the sum J + dα is also a conserved current, which, by
Stokes’ theorem, has the same total charge as J in any (d − 1)-ball in space, and has the same flux as
J through the boundary of that (d − 1)-ball. This means that the conserved currents J and J + dα are
physically equivalent, while nominally different, hence that α exhibits a gauge equivalence transformation
between currents

α : J
'−→ (J ′ = J + dα) .

The analogous consideration holds for α itself: for any (d − 3)-form β also α + dβ exhibits a gauge trans-
formation between the currents J and J ′ above. One says this is a gauge of gauge-transformation or a
higher gauge transformation of second order. This phenomenon continues up to the 0-forms (the smooth
functions), which therefore are (d− 1)-fold higher gauge transformations between consderved currents on a
d-dimensional spacetime.
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Finally notice that in a typical application to physics, a current form J is naturally defined also “off
shell”, hence for all field configurations (say of the electromagnetic field), but its conservation law only holds
“on shell”, hence when these field configurations satisfy their equations of motion (to which we come below
in 1.3.3.4). Since the d-plectic localized phase spaces in the discussion in 1.3.3.1 above a priori contain all
field configurations, we are not to expect that a local observable (d− 1)-form J is a conserved current only
if its differential strictly vanishes, but already if its differential vanishes at least on those d-tuples of vector
fields v1 ∨ · · · ∨ vd which are tangent to jets of those sections of the field bundle that satisfy their equations
of motion:

(J is conserved current)⇔ ((v1 ∨ · · · ∨ vd satisfies field equations of motion)⇒ ιv1∨···∨vndJ = 0) .

This we formalize below by the “d-plectic Noether theorem”, prop. 1.3.170. There we will see how such con-
served current (d−1)-forms arise from vector fields v that consitute infinitesimal symmetries of a Hamiltonian
function, by the evident higher degree generalizatin of Hamilton’s equations, namely dJ = ιvω.

One traditional example of such higher conserved currents are the brane charges of super p-brane sigma-
models on supergravity backgrounds. This example we discuss below in 1.4.4.

We now consider the system of conserved currents more systematically. To that end, let X := J1(Σ×F )∗

be a dual jet bundle of a field bundle, def. 1.3.144, let ω ∈ Ωd+1(X) be a DHW pre-d-plectic form as in def.
1.3.146 and let finally ∇ be a higher pre-quantization of (X,ω) as discussed in 1.3.3.2.

Then following the discussion in 1.3.2.4 in view of the higher pre-quantum refinement of 1.3.3.2 a sym-
metry of the local field theory defined by ∇ is a symmetry of the field space

X
φ

'
// X

such that the Lagrangian is invariant up to an exact term under this transformation. Under the globalization
as in example 1.3.152 this means that ∇ is invariant up to a gauge transformation

φ∗∇ '−→ ∇ .

Definition 1.3.154. The d-group of symmetries of the Lagrangian ∇ is the higher smooth group whose
elements are diagrams of the form

QuantMorph(∇) =


X

φ //

∇ %%

X

∇yy
BdU(1)conn

's{


We consider the precise form of this definition below in 5.2.17.5 and 6.4.21.

Example 1.3.155. Consider the special case of example 1.3.152, where the higher pre-quantization as in
1.3.3.2 given by a globally defined d-form θ ∈ Ωd(X). Then a diagram as in def. 1.3.154 expresses equivalenty
a differential (d− 1)-form ∆ such that

φ∗θ − θ = d∆ .

In the traditional context of the Noether theorem, this is sometimes called a “weak” symmetry of the
Lagrangian θ, a symmetry that leaves the Lagrangian invariant only up to the “divergence” d∆.

Lie differentiating this, we find that an infinitesimal element of this d-group is given by a vector field v
on X (an infinitesimal diffeomorphism) together with a (d − 1)-form ∆v exhibiting an infinitesimal gauge
transformation between θ and its pullback along the infinitesimal diffeomorphism v. This means that the
Lie derivative Lvθ satisfies

Lvθ = d∆v .
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By Cartan’s magic formula and using that θ is a pre-quantization of ω, this means equivalently that

ιvω = −dJ

with
Jv := ιvθ −∆v .

Below in 1.3.3.4 we see that ι···ω vanishes on tangents to field trajectories which solve the equations of
motion. Therefore Jv here is hence an on-shell conserved current, induced by the given symmetry. This is a
special case of the general d-plectic Noether theorem, prop. 1.3.170 below. Following def. 1.3.81 we say:

Definition 1.3.156. Given a pre-d-plectic manifold (X,ω), then a vector field v for which there exists a J
with ιvω = −dJ is a Hamiltonian vector field.

VecHam(X,ω) ↪→ Vect(X)

for the subspace of Hamiltonian vector fields.

Notice that this is a sub-Lie algebra under the canonical Lie bracket of vector fields.
Proceeding in this way, one finds (this is due to [FRS13b, def./prop. 4.2.1], we discuss this in more detail

below in 6.4.21) that the Lie bracket on these Hamiltonian pairs (v,∆v) is given by

[(v1,∆v1), (v2,∆v2)] = ([v1, v2], Lv1∆v2 − Lv2∆v1) .

Remark 1.3.157. Suppose that a potential ∆[v1,v2] for the divergence term has been chosen before hand to
define the current J[v1,v2], then this means that the Lie bracket of conserved currents is (see prop. 6.4.207)

[(v1,∆v1
), (v2,∆v2

)] = ([v1, v2],∆[v1,v2]) + (0,Lv1
∆v2
− Lv2

∆v1
−∆[v1,v2])

and hence that the Lie algebra of these currents is an extension of the Lie algebra of the symmetries which
they generate by the correction term as shown on the right. This formula appears in traditional literature
for instance as [AGIT89, equations (13), (14)].

But we see here two additional points which seem not to have been explicitly addressed in traditional
literature:

1. When d > 1 then QuantMorph(θ) is a higher group, and hence in particular after Lie differentiation
then on top of the Lie bracket of conserved currents above, there are higher gauge transformations
between these currents. They may be most directly understood from the fact that the choice of ∆v

above is clearly only unique up to addition of exact terms, whose potentials in turn are themselves
only unique up to exact terms, and so forth. As a result, we find not just a Lie algebra, but a dg-Lie
algebra of currents, whose differential is the de Rham differential acting on higher order current forms.

2. In full generality the above discussion needs to be performed not just for globally defined θ, but for
higher prequantizations θ which are given by Cech-Deligne cocycles with curvature (d+ 1)-form ω.

The resulting dg-Lie algebra has been given in [FRS13b, def./prop. 4.2.1]:

Definition 1.3.158. Let X be a smooth manifold, ω ∈ Ωd+1
cl (X) a closed differential (d + 1)-form, with

(X,ω) regarded as a pre-d-plectic manifold. Let θ be a higher pre-quantization of ω given by a Cech-Deligne
cocycle with respect to a cover U of X. Then the Poisson bracket dg-Lie algebra

Poisdg(X, θ) ∈ dgLieAlg ↪→ L∞Alg

is the dg-Lie algebra whose underlying chain complex has

Poisdg(X, θ)0 :=
{

(v,∆) ∈ Vect(X)⊕ Totd−1(U ,Ω•)|Lvθ = dTot∆
}
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and
Poisdg(X, θ)i≥1 := Totd−1−i(U ,Ω•)

with differential dTot, and whose non-vanishing Lie brackets are

[(v1,∆1), (v2,∆2)] =
(
[v1, v2], Lv1

∆2 − Lv2
∆1

)
and

[(v,∆), η] = −[η, (v,∆)] = Lvη

.

It turns out that there is a very different looking but equivalent incarnation of this L∞-algebra, originally
considered in [Rog11a, Rog10]:

Definition 1.3.159 (higher Poisson bracket of local observables). Given a pre-n-plectic manifold (X,ω),
its vector space of local Hamiltonian observables is

Ωn−1
ω (X) :=

{
(v, J) ∈ Γ(TX)⊕ Ωn−1(X) | ιvω = −dJ

}
.

We say that the de Rham complex ending in these Hamiltonian observables is the complex of local observables
of (X,ω), denoted

Ω•ω(X) :=

(
C∞(X)

d−→ Ω1(X)
d−→ · · · d−→ Ωn−2(X)

(0,d)−→ Ωn−1
ω (X)

)
.

The binary higher Poisson bracket on local Hamiltonian observables is the linear map

{−,−} : Ωn−1
ω (X)⊗ Ωn−1

ω (X) −→ Ωn−1
ω (X)

given by the formula
[(v1, J1) , (v2, J1)] := [([v1, v2] , ιv1∨v2

ω)] ;

and for k ≥ 3 the k-ary higher Poisson bracket is the linear map

{−, · · · ,−} :
(
Ωn−1
ω (X)

)⊗k −→ Ωn+1−k(X)

given by the formula

[(v1, J1) , · · · , (vk, Jk)] := (−1)b
k−1

2 cιv1∨···∨vkω .

The chain complex of local observables equipped with these linear maps for all k we call the higher Poisson
bracket homotopy Lie algebra of (X,ω), denoted

Pois∞(X,ω) := (Ω•ω(X), {−,−} , {−,−,−} , · · · ) .

Remark 1.3.160. What we call a homotopy Lie algebra in def. 1.3.159 is what originally was called a strong
homotopy Lie algebra and what these days is mostly called an L∞-algebra or, since the above chain complex
is concentrated in the lowest n degrees, a Lie n-algebra. These are the structures that are to group-like
smooth homotopy types as Lie algebras are to smooth groups. The reader can find all further details which
we need not dwell on here as well as pointers to the standard literature in [FRS13b].

Remark 1.3.161. For n = 2 definition 1.3.159 indeed reproduces the definition of the ordinary Poisson
bracket Lie algebra, def. 1.3.86.
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Proposition 1.3.162. There is an equivalence of L∞-algebras

Pois∞(X,ω)
'−→ Poisdg(X,ω)

between those of def. 1.3.158 and def. 1.3.159 which on the underlying currents is given by

J 7→ −J |U +

d∑
i=0

(−1)iιvθ
d−i

hence which for the special case of globally defined pre-quantization forms θ over a trivial cover (as in example
1.3.152) is given by

J 7→ −J + ιvθ = ∆ .

This is [FRS13b, theorem 4.2.2].

Proposition 1.3.163. The Poisson bracket Lie n-algebra Pois(X,ω) is an extension of the Lie algebra
of Hamiltonian vector fields, def. 1.3.156, by the cocycle ∞-groupoid H(X, [Bd−1R) of degree d − 1 real
cohomology of X, in that there is a homotopy fiber sequence of L∞-algebras of the form

H(X, [Bd−1R) // Pois(X,ω)

��
VectHam(X,ω)

ω[•] // BH(X, [Bd−1R)

,

where the cocycle ω[•], when realized explicitly on Pois∞(X,ω), def. 1.3.159, is degreewise given by contrac-
tion of vector fields with ω.

This is [FRS13b, theorem 3.3.1].

Corollary 1.3.164. The truncation of Pois(X,ω) to a Lie 1-algebra (by quotienting out exact current forms)
is an extension of the Hamiltonian vector fields by Hd−1

dR (X), in that there is a short exact sequence of Lie
algebras

0→ Hd−1
dR (X) −→ τ0Pois(X,ω) −→ VectHam(X,ω)→ 0 .

A shadow of this extension result appears in traditional literature in [AGIT89, p. 8], where this is
considered for the special case of super p-brane sigma-models (in which case the elements in Hd−1

dR (X) are
interpreted as the brane charges). This example we turn to below in 1.4.4.

1.3.3.4 Field equations of motion and Higher Poisson-Maurer-Cartan elements Where in clas-
sical mechanics the equations of motion that determine the physically realized trajectories are Hamilton’s
equations, def. 1.3.81, in field theory the equations of motion are typically wave equations on spacetime.
But as we localize from (pre-)symplectic phase spaces to (pre-)n-plectic phase spaces as in 1.3.3.1 above,
Hamilton’s equations also receive a localization to the Hamilton-de Donder-Weyl equation. This indeed co-
incides with the field-theoretic equations of motion. We briefly review the classical idea of de Donder-Weyl
formalism and then show how it naturally follows from a higher geometric version of Hamilton’s equations
in n-plectic geometry.

Definition 1.3.165. Let (X,ω) be a pre-n-plectic smooth manifold, and let H ∈ C∞(X) be a smooth
function, to be called the de Donder-Weyl Hamiltonian. Then for vi ∈ Γ(TX) with i ∈ {1, · · · , n} an
n-tuple of vector fields, the Hamilton-de Donder-Weyl equation is

(ιvn · · · ιv1
)ω = dH .

Generally, for J ∈ Ωn−k(X) a smooth differential form for 1 ≤ k ≤ n, and for {vi} a k-tuple of vector fields,
the extended Hamilton-deDonder-Weyl equation is

ιvk · · · ιv1ω = dJ .
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We now first show how this describes equations of motion of field theories. Then we discuss how this
de Donder-Weyl-Hamilton equation is naturally found in higher differential geometry. For simplicity of
exposition we stick with the simple local situation of example 1.3.137. The ambitious reader can readily
generalize all of the following discussion to non-trivial and non-linear field bundles.

Definition 1.3.166. Let Σ × F → Σ be a field bundle as in example 1.3.137. For Φ := (φi, pai ) : Σ →
J1(Σ×X)∗ a section of the linear dual jet bundle, def. 1.3.144, write

vΦ
i =

∂

∂σi
+
∂φa

∂σi
∂

∂φa
+
∂pja
∂σi

∂

∂pja

for its canonical basis of tangent vector fields. Similarly for Φ := (φi, pai , e) : Σ → j1(Σ ×X)∨ a section of
the affine dual jet bundle write

vΦ
i =

∂

∂σi
+
∂φa

∂σi
∂

∂φa
+
∂pja
∂σi

∂

∂pja
+

∂e

∂σi
∂

∂e

for its canonical basis of tangent vector fields.

Proposition 1.3.167. For (Σ×X)→ Σ a field bundle as in example 1.3.137, let H ∈ C∞(J1(Σ×X)∗) be
a function on the linear dual (and hence on the affine dual) first jet bundle, def. 1.3.144. Then for a section
Φ of the linear dual jet bundle, def. 1.3.144, the homogeneous (“relativistic”) de Donder-Weyl-Hamilton
equation, def. 1.3.165, of the HDW pre-n-plectic form, def. 1.3.146,(

ιvΦ
n
· · · ιvΦ

1

)
ωH = 0

has a unique lift, up to an additive constant, to a solution of the Hamilton-de Donder-Weyl equation on the
affine dual field bundle, def. 1.3.144, of the form(

ιvΦ
n
· · · ιvΦ

1

)
ωe = d(H + e) .

Moreover, both these equations are equivalent to the following system of differential equations

∂iφ
a =

∂H

∂pia
; ∂ip

i
a = − ∂H

∂φa
.

The last system of differential equations is the form in which the de Donder-Weyl-Hamilton equation is
traditionally displayed, see for instance [Rom05, theorem 2]. The inhomogeneous version on the affine dual
first jet bundle above has been highlighted in [HHél02, around equation (4)].

Example 1.3.168. For a field bundle as in example 1.3.137, the standard form of an energy density function
for a field theory on Σ is

HvolΣ = Lkin + V ({φa})volΣ ,

where the first summand is the kinetic energy density from example 1.3.138 and where the second is any
potential term as in example 1.3.55. More explicitly this means that

H = 〈∇φ,∇φ〉+ V ({φa}) = kabηijp
i
ap
j
b + V ({φa}) .

For this case the first component of the Hamilton-de Donder-Weyl equation in the form of prop. 1.3.167 is
the equation

∂iφ
a = kabηijp

j
b .

This identifies the canonical momentum with the actual momentum. More formally, this first equation
enforces the jet prolongation in that it forces the section of the dual first jet bundle to the field bundle to be
the actual dual jet of an actual section of the field bundle.
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Using this, the second component of the HDW equation in the form of prop. 1.3.167 is equivalently the
wave equation

ηij∂i∂jφ
a = − ∂V

∂φa

with inhomogeneity given by the gradient of the potential. These equations are the hallmark of classical
field theory.

In full generality we can express the Euler-Lagrange equations of motion of a local Lagrangian in
Hamilton-de Donder-Weyl form by prop. 1.3.150.

In order for the Hamilton-de Donder-Weyl equation to qualify as a good “localization” or “de-transgression”
of non-covariant classical field theory as in example 1.3.54 it should be true that it reduces to this under
transgression. This is indeed the case12

Proposition 1.3.169. With ωLloc as in prop. 1.3.150, we have that for any Cauchy surface Σn−1 that
transgression of ωLloc yields the covariant phase space pre-symplectic form of example 1.3.54.

Using the n-plectic formulation of the Hamilton-de Donder-Weyl equation, we naturally obtain now the
following n-plectic formulation of the refinement of the “symplectic Noether theorem”, def. 1.3.89, form
mechanics to field theory:

Proposition 1.3.170 (n-plectic Noether theorem). Let (X,ω) be a pre-n-plectic manifold equipped with a
function H ∈ C∞(X), to be regarded as a de Donder-Weyl Hamiltonian, def. 1.3.165. If a vector field
v ∈ Γ(TX) is a symmetry of H in that

ιvdH = 0 ,

then along any n-vector field v1 ∨ · · · ∨ vn which solves the Hamilton-de Donder-Weyl equation, def. 1.3.165,
the corresponding current Jv := ιvω is conserved, in that

ι(v1,··· ,vn)dJv = 0 .

Conversely, if a current is conserved on solutions to the Hamilton-de Donder-Weyl equations of motion this
way, then it generates a symmetry of the de Donder-Weyl Hamiltonian.

Proof. By the various definitions and assumptions we have

ιv1∨···∨vndJv = ιv1∨···∨vnιvω

= (−)nιvιv1∨···∨vnω

= ιvdH

= 0

.

�

This shows how the multisymplectic/n-plectic analog of the symplectic formulation of Hamilton’s equa-
tions, def. 1.3.81, serves to encode the equations of motion, the symmetries and the conserved currents of
classical field theory. But in 1.3.2.10 and 1.3.2.12 above we had seen that the symplectic formulation of
Hamilton’s equations in turn is equivalently just an infinitesimal characterization of the automorphisms of

a pre-quantized phase space X
∇−→ BU(1)conn in the higher slice topos H/BU(1)conn

. This suggests that
n-dimensional Hamilton-de Donder-Weyl flows should characterize n-fold homotopies in the higher auto-
morphism group of a higher prequantization, regarded as an object in a higher slice topos to be denoted
H/BnU(1)conn

. This we come to below in 5.2.17.5.
Here we now first consider the infinitesimal aspect this statement. To see what this will look like, observe

that the statement for n = 1 is that the Lie algebra of slice automorphisms of ∇ is the Poisson bracket

12 Again thanks go to Igor Khavkine for discussion of this point.
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Lie algebra pois(X,ω) whose elements, by def. 1.3.86, are precisely the pairs (v,H) that satisfy Hamilton’s
equation ιvω = H. To say this more invariantly: Hamilton’s equations on (X,ω) precisely characterize the
Lie algebra homomorphisms of the form

R −→ pois(X,ω) ,

where on the left we have the abelian Lie algebra on a single generator. This suggests that for a (pre-)n-plectic
manifold, we consider homotopy Lie algebra homomorphism of the form

Rn −→ pois(X,ω) ,

where now on the left we have the abelian Lie algebra on n generators, regarded canonically as a homotopy
Lie algebra. In comparison with prop. 1.3.97, this may be thought of as characterizing the infinitesimal
approximation to an evolution n-functor from Riemannian n-dimensional cobordisms into the (delooping of)
the higher Lie integration of pois(X,ω) (recall remark 1.3.132 above).

Such homomorphisms of homotopy Lie algebras are computed as follows.

Definition 1.3.171. Given a pre-n-plectic smooth space (X,ω), write

pois(X,ω)(�n) := (∧•Rn)⊗ pois(X,ω)

for the homotopy Lie algebra obtained from the Poisson bracket Lie n-algebra of def. 1.3.159 by tensoring
with the Grassmann algebra on n generators, hence the graded-symmetric algebra on n generators in degree
1.

Remark 1.3.172. A basic fact of homotopy Lie algebra theory implies that homomorphisms of the form
Rn −→ pois(X,ω) are equivalent to elements J ∈ pois(X,ω)∆n

of degree 1, which satisfy the homotopy
Maurer-Cartan equation

dJ + 1
2{J ,J }+ 1

6{J ,J ,J }+ · · · = 0

Example 1.3.173. Write {dσi}ni=1 for the generators of ∧•Rn. Then a general element of degree 1 in
pois(X,ω)(�n) is of the form

J = dσi ⊗ (vi, Ji) + dσi ∧ dσj ⊗ Jij + dσi ∧ dσj ∧ dσk ⊗ Jijk + · · ·+ (dσ1 ∧ · · · ∧ dσn)⊗H ,

where

1. vi ∈ Γ(TX) is a vector field and Ji ∈ Ωn(X) is a differential n-foms such that ιviω = dJi

2. Ji1···ik ∈ Ωn+1−k(X);

3. H ∈ C∞(X).

From this we deduce the following.

Proposition 1.3.174. Given a pre-n-plectic smooth space (X,ω), the extended Hamilton-de Donder-Weyl
equations, def. 1.3.165, characterize, under the identification of example 1.3.173, the homomorphims of
homotopy Lie algebras from Rn into the higher Poisson bracket Lie n-algebra of def. 1.3.159:

(J : Rn −→ pois(X,ω)) ⇔
{
ιvn · · · ιv1

ω = dH
ιvik · · · ιvi2 ιvi1ω = dJi1i2···ik ∀k∀i1,··· ,ik

Remark 1.3.175. The Lie integration of the Lie n-algebra pois(X,ω) is the smooth n-groupoid whose
n-cells are Maurer-Cartan elements in

Ω•si(∆
n)⊗ pois(X,ω) ,

see [FSS10] for details. The construction in def. 1.3.171 is a locally constant approximation to that. In
general there are further σ-dependent terms.
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Due to [FRS13a, FRS13b] we have that the Lie integration of pois(X,ω) is the automorphism n-group
Aut/BnU(1)conn

(∇) of any pre-quantization ∇ of (X,ω), see 5.2.17. This means that the above maps

Rn −→ pois(X,ω)

are infinitesimal approximations to something lie n-functors of the form

“ BordRiem
n −→ H/BnU(1)conn

”

in higher dimensional analogy of prop. 1.3.97. This we come to below.

1.3.3.5 Source terms, off-shell Poisson bracket and Poisson holography We connect now the
discussion of mechanics in 1.3.2 to that of higher Chern-Simons field theory in by showing that the space
of all trajectories of a mechanical system naturally carries a Poisson brakcet structure which is foliated by
symplectic leafs that are labled by source terms.13 The corresponding leaf space is naturally refined to
the symplectic groupoid that is the moduli stack of fields of the non-perturbative 2s Poisson-Chern-Simons
theory. This yields a precise implementation of the “holographic principle” where the 2d Poisson-Chern-
Simons theory in the bulk carries on its boundary a 1d field theory (mechanical system) such that fields in
the bulk correspond to sources on the boundary.

Let (X,ω) be a symplectic manifold. We write

{−,−} : C∞(X)⊗ C∞(X) −→ C∞(X)

for the Poisson bracket induced by the symplectic form ω, hence by the Poisson bivector π := ω−1.
For notational simplicity we will restrict attention to the special case that

X = R2 ' T ∗R

with canonical coordinates
q, p : R2 −→ R

and symplectic form
ω = dq ∧ dp .

The general case of the following discussion is a straightforward generalization of this, which is just nota-
tionally more inconvenient.

Write I := [0, 1] for the standard interval regarded as a smooth manifold manifold with boundary—with
boundary. The mapping space

PX := [I,X]

canonically exists as a smooth space, but since I is compact topological space—compact this structure
canonically refines to that of a Frchet manifold. This implies that there is a good notion of tangent space
TPX. The task now is to construct a certain Poisson bivector as a section π ∈ Γ∧2(TPX).

Among the smooth functions on PX are the evaluation maps

ev : PX × I = [I,X]× I −→ X

whose components we denote, as usual, for t ∈ I by

q(t) := q ◦ evt : PX −→ R

and

p(t) := p ◦ evt : PX −→ R .
13This phenomenon was kindly pointed out to by Igor Khavkine.
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Generally for f : X → R any smooth function, we write f(t) := f ◦ evt ∈ C∞(PX). This defines an
embedding

C∞(X)× I ↪→ C∞(PX) .

Similarly we have
q̇(t) : PX −→ R

and
q̇(t) : PX −→ R

obtained by differentiation of t 7→ q(t) and t 7→ p(t).
Let now

H : X × I −→ R

be a smooth function, to be regarded as a time-dependent Hamiltonian. This induces a time-dependent
function on trajectory space, which we denote by the same symbol

H : PX × I (ev,id)−→ X ×X H−→ R .

Hence for t ∈ I we write

H(t) : PX × {t} (ev,id)−→ X × {t} H−→ R

for the function that assigns to a trajectors (q(−), p(−)) : I −→ X its energy at (time) parameter value t.
Define then the Euler-Lagrange equation—Euler-Lagrange density induced by H to be the functions

EL(t) : PX −→ R2

with components

EL(t) =

(
q̇(t)− ∂H

∂p (t)

ṗ(t) + ∂H
∂p (t)

)
.

The trajectories γ : I → X on which EL(t) vanishes for all t ∈ I are equivalently those

• for which the tangent vector γ̇ ∈ TγX is a Hamiltonian vector field—Hamiltonian vector for H;

• which satisfy Hamilton’s equations equations of motion—of motion for H.

Since the differential equations EL = 0 have a unique solution for given initial data (q(0), p(0)), the evaluation
map

{γ ∈ PX|∀t∈I ELγ(t) = 0} γ 7→γ(0)−→ X

is an equivalence (an isomorphism of smooth spaces).
Write

Poly(PX) ↪→ C∞(PX)

for the subalgebra of smooth functions on path space which are polynomials of integrals over I, of the smooth
functions in the image of C∞(X)× I ↪→ C∞(PX) and all their derivatives along I.

Define a bilinear function

{−,−} : Poly(PX)⊗ Poly(PX) −→ Poly(PX)

as the unique function which is a derivation in both arguments and moreover is a solution to the differential
equations

∂

∂t2
{f(t1), q(t2)} =

{
f(t1),

∂H

∂p
(t2)

}
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∂

∂t2
{f(t1), p(t2)} = −

{
f(t1),

∂H

∂q
(t2)

}
subject to the initial conditions

{f(t), q(t)} = {f, q}

{f(t), p(t)} = {f, p}

for all t ∈ I, where on the right we have the original Poisson bracket on X.
This bracket directly inherits skew-symmetry and the Jacobi identity from the Poisson bracket of (X,ω),

hence equips the vector space Poly(PX) with the structure of a Lie bracket. Since it is by construction also
a derivation of Poly(PX) as an associative algebra, we have that

(Poly (PX) , {−,−}) ∈ P1Alg

is a Poisson algebra. This is the “off-shell Poisson algebra” on the space of trajectories in (X,ω).
Observe that by construction of the off-shell Poisson bracket, specifically by the differential equations

defining it, the Euler-Lagrange equation—Euler-Lagrange function EL generate a Poisson reduction—Poisson
ideal.

For instance ∂
∂t2
{f(t1), q(t2)} =

{
f(t1), ∂H∂p (t2)

}
∂
∂t2
{f(t1), p(t2)} = −

{
f(t1), ∂H∂q (t2)

}  ⇔ ({f(t1), EL(t)} = 0) .

Moreover, since {EL(t) = 0} are equations of motion the Poisson reduction defined by this Poisson idea is the
subspace of those trajectories which are solutions of Hamilton’s equations, hence the ”on-shell trajectories”.

As remarked above, the initial value map canonically identifies this on-shell trajectory space with the
original phase space manifold X. Moreover, by the very construction of the off-shell Poisson bracket as being
the original Poisson bracket at equal times, hence in particular at time t = 0, it follows that restricted to
the zero locus EL = 0 the off-shell Poisson bracket becomes symplectic manifold—symplectic.

All this clearly remains true with the function EL replaced by the function EL − J , for J ∈ C∞(I)
any function of the (time) parameter (since {J,−} = 0). Any such choice of J hence defines a symplectic
subspace

{γ ∈ PX | ∀t∈I ELγ(t) = J}

of the off-shell Poisson structure on trajectory space. Hence (OX, {−,−}) has a foliation by symplectic
leaves with the leaf space being the smooth space C∞(I) of smooth functions on the interval.

Notice that changing EL 7→ EL− J corresponds changing the time-dependent Hamiltonian H as

H 7→ H − Jq .

Such a term linear in the canonical coordinates (the field (physics)—fields) is a source term. (The action
functionals with such source terms added serve as integrands of generating functions for correlators in
statistical mechanics and in quantum mechanics.)

Hence in conclusion we find the following statement:
The trajectory space (history space) of a mechanical system carries a natural Poisson manifold—Poisson

structure whose symplectic leaves are the subspaces of those trajectories which satisfy the equations of motion
with a fixed source term and hence whose symplectic leaf space is the space of possible sources.

Notice what becomes of this statement as we consider the 2d Chern-Simons theory induced by the
off-shell Poisson bracket (the non-perturbative field theory—non-pertrbative Poisson sigma-model) whose
moduli stack of field (physics)—fields is the symplectic groupoid SG (PX, {−,−}) induced by the Poisson
structure.
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By the discussion below in 7.6.2.1, the Poisson space (PX, {−,−}) defines a boundary field theory
(in the sense of local prequantum field theory) for this 2d Chern-Simons theory, exhibited by a boundary
correspondence of the form

PX

{{ ((
∗

""

SG (PX, {−,−})

ww
B2U(1)

��
KUMod

t|

.

Notice that the symplectic groupoid is a version of the symplectic leaf space of the given Poisson manifold
(its 0-truncation is exactly the leaf space). Hence in the case of the off-shell Poisson bracket, the symplectic
groupoid is the space of sources of a mechanical system. At the same time it is the moduli space of fields of
the 2d Chern-Simons theory of which the mechanical system is the boundary field theory. Hence the fields
of the bulk field theory are identified with the sources of the boundary field theory. Hence conceptually the
above boundary correspondence diagram is of the following form

Sources

{{ %%
∗

##

Fields

yy
Phases

u}

.

1.3.4 Higher pre-quantum gauge fields

We give an introduction and survey to some aspects of the formulation of higher prequantum field theory in
a cohesive ∞-topos.

One of the pleasant consequences of formulating the geometry of (quantum) field theory in terms of higher
stacks, hence in terms of higher topos theory, is that a wealth of constructions find a natural and unified
formulation, which subsumes varied traditional constructions and generalizes them to higher geometry. In
this last part here we give an outlook of the scope of field theoretic phenomena that the theory naturally
captures or exhibits in the first place.

In the following we write H for the collection of higher stacks under consideration. The reader may want
to think of the special case that was discussed in the previous sections, where H = Smooth∞Grpd is the
collection of smooth ∞-groupoids, hence of higher stacks on the site of smooth manifolds, or, equivalently,
its dense subsite of Cartesian spaces. But one advantage of speaking in terms of higher topos theory is that
essentially every construction considered in the following makes sense much more generally if only H is any
higher topos that satisfies a small set of axioms called (differential) cohesion. This allows one to transport
all considerations across various kinds of geometries. Notably we can speak of higher supergeometry, hence
of fermionic quantum fields, simply by refining the site of definition to be that of supermanifolds: also the
higher topos H = SmoothSuper∞Grpd is differentially cohesive.

Therefore we speak in the following in generality of cohesive maps when we refer to maps with geometric
structure, be it topological, smooth, analytic, supergeometric or otherwise. Throughout, this geometric
structure is higher geometric which we will sometimes highlight by adding the “∞-”-prefix as in cohesive
∞-group, but which we will often notationally suppress for brevity. Similarly, all of the diagrams appearing
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in the following are filled with homotopies, but only sometimes we explicitly display them (as double arrows)
for emphasis or in order to label them.

The special case of geometrically discrete cohesion is exhibited by the ∞-topos ∞Grpd of bare ∞-
groupoids or homotopy types. This is the context of traditional homotopy theory, presented by topological
spaces regarded up to weak homotopy equivalences (“whe”s): ∞Grpd ' LwheTop. One of the axioms
satisfied by a cohesive ∞-topos H is that the inclusion Disc :∞Grpd ↪→ H of bare ∞-groupoids as cohesive
∞-groupoids equipped with discrete cohesive structure has not only a right adjoint ∞-functor Γ : H →
∞Grpd – the functor that forgets the cohesive structure and remembers only the underlying bare∞-groupoid
– but also a left adjoint | − | : H→∞Grpd. This is the geometric realization of cohesive ∞-groupoids.

The following discussion is based on and in part reviews previous work such as [SSS09c, FSS12c]. Lecture
notes that provide an exposition of this material with an emphasis on fields as twisted (differential) cocycles
are in [Sc12].

• 1.3.4.1 – Cocycles: generalized, parameterized, twisted;

• 1.3.4.2 – Fields of gravity: special and generalized geometry;

• 1.3.4.3 – Gauge fields: higher, twisted, non-abelian;

• 1.3.4.4 – Gauge invariance, equivariance and general covariance.

We discuss now how a plethora of species of (quantum) fields are naturally and precisely expressed by
constructions in the higher topos H. In fact, it is the universal moduli stacks Fields of a given species of fields
which are naturally expressed: those objects such that maps φ : X → Fields into them are equivalently
quantum fields of the given species on X. This has three noteworthy effects on the formulation of the
corresponding field theory.

First of all it means that every quantum field theory thus expressed is formally analogous to a σ-model
– the “target space” is a higher moduli stack – which brings about a unified treatment of varied types of
QFTs.

Second it means that a differential cocycle on Fields of degree (n+ 1) – itself modulated by a map

L : Fields→ BnU(1)conn

to the moduli stack n-form connections – serves as an extended Lagrangian of a field theory, in the sense
that it expresses a QFT fully locally by Lagrangian data in arbitrary codimenion: for every closed oriented
worldvolume Σk of dimension k ≤ n there is a transgressed Lagrangian

exp(2πi

∫
Σk

[Σk,L]) : Fields(Σk)
[Σk,L] // [Σk,BnCconn]

exp(2πi
∫
Σk

(−))
// Bn−kC×conn

which itself is a differential (n− k)-form connection on the space of fields on Σk. In particular, when n = k
then B0U(1)conn ' U(1) and the transgressed Lagragian in codimension 0 is the (exponentiated) action
functional of the theory, exp(iS(−)) : Fields(Σn) → U(1). On the other hand, the (n − k)-connections in
higher codimension are higher (off-shell) prequantum bundles of the theory. This we discuss further below
in 1.3.5.

Third, it means that the representation of fields by their higher moduli stacks in a higher topos identifies
the notion of quantum field entirely with that of cocycle in general cohomology. This we turn to now in
1.3.4.1.

1.3.4.1 Cocycles: generalized, parameterized, twisted We discuss general aspects of cocycles and
cohomology in an ∞-topos, as a general blueprint for all of the discussion to follow. The reader eager to
see explicit structure genuinely related to (quantum) physics may want, on first reading, to skip ahead to
1.3.4.2 and come back here only as need be.
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In higher topos theory the notion of cocycle c on some space X with coefficients in some object A and with
some cohomology class [c] is identified simply with that of a map (a morphism) c : X → A with equivalence
class

[c] ∈ H(X,A) := π0H(X,A) .

This is traditionally familiar for the case of discrete geometric structure hence bare homotopy theory H =
∞Grpd, where for any Eilenberg-Steenrod-generalized cohomology theory the object E is the corresponding
spectrum, as given by the Brown representability theorem. That over non-trivial sites the same simple
formulation subsumes all of sheaf cohomology (“parameterized cohomology”) is known since [Br73], but it
appears in the literature mostly in a bit of disguise in terms of some explicit model of a derived global section
functor, computed by means of suitable projective/injective resolutions.)

If here A = Fields is interpreted as the moduli stack of certain fields, then such a cocycle is a field
configuration on X. This is familiar for the case that we think of A = X as the target space of a σ-model.
But for instance for G ∈ Grp(H) a (higher) group and A := BGconn a differential refinement of the universel
moduli stack of G-principal ∞-bundles, a map c : X → BGconn is on the one hand a cocycle in (nonabelian)
differential G-cohomology on X, and on the other hand equivalently a G-gauge field on X. In particular this
means that in higher topos theory gauge field theories are unified with σ-models: an (untwisted) gauge field
is a σ-modelfield whose target space is a universal differential moduli stack BGconn.

Indeed, the kinds of fields which are identified as σ-model fields in higher topos theory, hence with cocycles
in some geometric cohomology theory, is considerable richer, still. The reason for this is that with B ∈ H
any object, the slice H/B is itself again a higher topos. This slice topos is the collection of morphisms of H
into B, where a map between two such morphisms f1,2 : X1,2 → B is

1. a map φ : X1 → X2 in H

2. a homotopy η : f1
' // f2 ◦ φ ,

hence a diagram in H of the form

X1
φ //

f1   

X2

f2~~
B

ηx� . We are particularly interested in the case that

B = BG is a moduli stack of G-principal ∞-bundles (or a differential refinement thereof). The fact that
H is cohesive implies in particular that every morphism g : X → BG has a unique global homotopy fiber
P → X. This is the G-principal bundle over X modulated by g, sitting in a long homotopy fiber sequence
of the form

G // P

��
X

g // BG

.

In particular this means that there is an action of G on P (precisely: a homotopy coherent or A∞-action)
and that

P → P//G ' X
is the quotient map of this action. Moreover, conversely every action of G on any object V ∈ H arises this

way and is modulated by a morphism V//G
ρ // BG , sitting in a homotopy fiber sequence of the form

V // V//G

ρ

��
BG

.

(This and the following facts about G-principal ∞-bundles in ∞-toposes and the representation theory
and twisted cohomology of cohesive ∞-groups is due to [NSS12a], an account in the present context is in
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section 3.6 here.) This fiber sequence exhibits V//G → BG as the universal V -fiber bundle which is ρ-
associated to the universal G-principal bundle over BG. For instance the fiber sequence G → ∗ → BG
which defines the delooping of G corresponds to the action of G on itself by right (or left) multiplication;

the fiber sequence V // V ×BG
p2 // BG corresponds to the trivial action on any V , and the fiber

sequence G // LBG // BG of the free loop space object of BG corresponds to the adjoint action of
G on itself.

Another case of special interest is that where V ' BA and V///G ' BĜ are themselves deloopings of
∞-groups. In this case the above fiber sequence reads

BA // BĜ // BG

and exhibits an extension Ĝ ofG by A. The implied action of G on BA via Aut(BG) ' AutGrp(G)//ad is the
datum known from traditional Schreier theory of general (nonabelian) group extensions. Now the previous
discussion implies that if A is equipped with sufficient abelian structure in that also BA is equipped with
∞-group structure (a “braided ∞-group”) and such that BĜ → BG is the quotient projection of a BA-

action, then the extension is classified by an ∞-group cocycle c : BG // B2A in ∞-group cohomology
[c] ∈ H2

grp(G,A). Notice that this is cohesive group cohomology in that it does respect and reflect the
geometric structure on G and A. Notably in smooth cohesion and for G a Lie group and A = BnK the
n-fold delooping of an abelian Lie group, this reproduces not the naive Lie group cohomology but the refined
Segal-Brylinski Lie group cohomology (this is shown in section 4.4.6.2 here). This implies that for G a
compact Lie group and A = BnU(1) we have an equivalence

Hn
Grp(G,U(1)) ' Hn+1(BG,Z)

between the refined cohesive group cohomology with coefficients in the circle group and the ordinary integral
cohomology of the clasifying space BG ' |BG| in one degree higher. In other words this means that every

universal characteristic class c : BG // K(Z, n+ 1) is cohesively refined essentially uniquely to (the

instanton sector of) a higher gauge field: a cohesive circle n-bundle (bundle (n− 1)-gerbe) on the universal
moduli stack BG. The “universality” of this higher gauge field is reflected in the fact that this is really the
(twisting structure underlying) an extended action function for higher Chern-Simons theory controld by the
given universal class. This we come back to below in 1.3.4.3.

From this higher bundle theory, higher group theory and higher representation theory, we obtain a finer
interpretation of maps in the slice H/BG. First of all one finds that

H/BG ' GAct

is indeed the ∞-category of G-actions and G-action homomorphisms. In particular the base change func-
tors (Gφ)∗ and (Bφ)! along maps Bφ : BG → BG′ corresponds to the (co)induction functors from G-
representations to G′-representations along a group homomorphism φ. Since all this is homotopy-theoretic
(“derived”) the space of maps in the slice from the trivial representation to any given representation (V, ρ)
(hence the derived invariants of (V, ρ)) is the cocycle ∞-groupoid of the group cohomology of G with coeffi-
cients in V :

HGrp(G,V ) ' π0H/BG(idBG, ρ) .

We are interested in the generalizations of this to the case where the univeral G-principal ∞-bundle mod-
ulated by idBG is replaced by any G-principal bundle modulated by a map gX : X → BG. To see what
general cocycles in H/BG(gX , ρ) are like, notice that every G-principal ∞-bundle over a given X locally

trivializes over a cover U // // X (an effective epimorphism in H) in that the modulating map becomes
null-homotopic on U : gX |U ' ptBG. But by the universal property of homotopy fibers this means that a
cocycle σ : gX → ρ in H/BG is locally a cocycle σ|U : U → V in H with coefficients in the given G-module
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V , as shown on the left of the following diagram:

U

����

σ|U // V

��
X

gX !!

σ // V//G

ρ
{{

BG

'

V // P ×G V //

��

V//G

ρ

��
U // //

σ|U
??

X
id //

σ

;;

X
gX // BG

.

This means that σ is a cocycle with local coefficients in V , which however globally vary as controlled by gX :
it is twisted by gX . On the right hand of the above diagram the same situation is displayed in an equivalent
alternative perspective: since ρ : V//G → BG is also the univeral ρ-associated V -fiber bundle, it follows
that the V -fiber bundle P ×G V → X associated to P → X is its pullback along gX and then using again
the universal property of the homotopy pullback it follows that σ is equivalently a section of this associated
bundle. This is the traditional perspective of gX -twisted V -cohomology as familiar notably from twisted
K-theory, as well as from modern formulations of ordinary cohomology with local coefficients.

The perspective of twisted cohomology as cohomology in slice ∞-topos H/BG makes it manifest that
what acts on twisted cocycle spaces are twist homomorphisms, hence maps (φ, η) : gY → gX in H/BG. In
particular for gX and given twist its automorphism ∞-group Aut/BG(gX) acts on the twisted cohomology
H/BG(gX , ρ) by precomposition in the slice.

In conclusion we find that cocycles and fields in the slice slice ∞-topos H/BG of a cohesive ∞-topos over
the delooping of an ∞-group are structures with components as summarized in the following diagram:

U

����

// V

��
Y //

&&

X

��

// V//G

ww
BG

local
cover

����

local
cocycle // local

coefficients

��

Y //

twist &&

X

twist
��

twisted
cocycle

// local coefficient
bundle

twist-action
on local coefficientsvv

twist
coefficients

twist transf.u}

In the following we list a wide variety of classes of examples of this unified general abstract picture.

1.3.4.2 Fields of gravity: special and generalized geometry As special cases of the above general
discussion, we now discuss moduli ∞-stacks of fields of gravity and their generalizations as found in higher
dimensional (super)gravity.

For X ∈ Mfdn ↪→ H a manifold of dimension n, we may naturally regard it as an object in the slice
H/BGL(n) by way of the canonical map τX : X → BGL(n) that modulates its frame bundle, the principal
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GL(n)-bundle to which the tangent bundle TX is associated. A map (φ, η) : τX → τY in H/BGL(n) between
two manifolds X,Y embedded in this way is equivalently a smooth function φ : X → Y equipped with an
explicit choice η : φ∗τY ' τX of identification of the pullback tangent bundle with that of X. In particular
every local diffeomorphism between manifolds gives a morphism in the slice over BGL(n) this way.

The slice topos H/BGL(n) allows us to express physical fields which may not be restricted along arbitrary
morphisms of manifolds (or morphisms of whatever kind of test geometries H is modeled on), but along local
diffeomorphism, such as metric/vielbein fields or symplectic structures.

For let OrthStrucn : BO(n) → BGL(n) be the morphism of moduli stacks induced from the canon-
ical inclusion of the orthogonal group into the general linear group, regarded as an object of the slice,
OrthStrucn ∈ H/BGL(n). Then a cocycle/field

(oX , e) : τX → OrthStrucn

is equivalently

1. an orthogonal structure oX on X (a choice of Lorentz frame bundle);

2. a vielbein field e : OrthStrucn ◦ oX // τX which equips the frame bundle with that orthogonal
structure.

Together this is equivalently a Riemannian metric field on X, hence a field of Euclidean gravity, and
OrthStrucn ∈ H/BGLn is the universal moduli stack of Riemannian metrics in dimension n. Notice that this
defines a notion of Riemannian metric for any object in H as soon as it is equipped with a GL(n)-principal
bundle. We obtain actual pseudo-Riemannian metrics by considering instead the delooped inclusion of
O(n− 1, 1) into GL(n) and obtain dS-geometry, AdS-geometry etc. by further varying the signature.

This notion of OrthStrucn-structure in smooth stacks is of course closely related to the notion of
orthogonal structure as considered in traditional homotopy theory. But there is a crucial difference, which
we highlight now. First notice that there is a canonical ∞-functor

| − | : H→∞Grpd ' LwheTop

which sends every cohesive ∞-groupoid/∞-stack to its geometric realization. Under certain conditions on
the cohesive ∞-group G, in particular for Lie groups as considered here, this takes the moduli stack BG to
the traditional classifying space BG. So under this map a choice of vielbein turns into a homotopy lift as
shown on the right of

BO(n)

��
X

τX //

oX

;;

BGL(n)

� |−| //

BO(n)

'
��

X
|τX |//

|oX |
;;

BGL(n)

.

But since O(n) → GL(n) is the inclusion of a maximal compact subgroup, it is a homotopy equivalence of
the underlying topological spaces. Hence under | − | a choice of OrthStrucn-structure is no choice at all,
up to equivalence, there is no information encoded in this choice. This is of course the familiar statement
that every vector bundle admits an orthogonal structure. But only in the context of cohesive stacks is the
choice of this orthogonal structure actually equivalent to geometric data, to a choice of Riemannian metric.

Also notice that the homotopy fiber of OrthStrucn is the cohesive coset GL(n)/O(n) (the coset equipped
with its smooth manifold structure) in that we have a fiber sequence

GL(n)/O(n) // BO(n)
OrthStrucn // BGL(n)

.

in H, and by the discussion in 1.3.4.1 above a metric field (oX , e) : τX // OrthStrucn is equivalently
a τX-twisted GL(n)/O(n)-cocycle. This reproduces the traditional statement that the space of choices of
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vielbein fields is locally the space of maps into the coset GL(n)/O(n) and fails to be globally so to the extent
that the tangent bundle is non-trivial.

Moreover, by the general discussion in 1.3.4.1 we find that a twist transformation that may act on
orthogonal structures is a morphism τY → τX in the slice H/BGL(n). This is equivalently a cohesive map

φ : Y → X in H equipped with an equivalence η : φ∗τX
' // τX from the pullback of the tangent bundle

on X to that on Y . But such an isomorphism witnesses the kind of extra structure provided by local
diffeomorphisms. Hence local diffeomorphisms act as twist morphisms on tangent bundles regarded as twists
for GL(n)/O(n)-structures. This statement of course reproduces the traditional fact that metrics pull back
along local diffeomorphisms (but not along general cohesive maps). Abstractly it is reflected in the fact that
the moduli stack OrthStrucn for metrics in n dimensions is an object not of the base ∞-topos H, but of
the slice H/BGL(n).

In conclusion, the following diagram summarizes the components of the formulation of metric fields as
cocycles in the slice over BGL(n), displayed as a special case of the general diagram for twisted cocycles
that is discussed in 1.3.4.1.

local
cover

//

��

coset

��

Y

local
diffeomorphism //

tangent
bundle

$$

X

tangent
bundle

��

orthogonal
structure //

delooped
orthogonal

group

ww
delooped

general linear
group

w� vielbein
u}

This discussion of metric structure and vielbein fields of gravity is but a special case of generalized vielbein
fields obtained from reduction of structure groups. If c : K → G is any morphism of groups in H (typically
taken to be a subgroup inclusion if one is speaking of structure group reduction, but not necessarily so in
general, as for instance the example of the generalized tangent bundle, discussed in a moment, shows), and
if τX : X → BG is the map modulating a given G-structure on X, then a map (φ, η) : τX → c in H/BG

is a generalized vielbein field on X which exhibits the reduction of the structure group from G to H along
c. These c-geometries are compatible with pullback along along twist transformations η : τY → τX , namely
along maps φ : Y → X in H which are generalized local diffeomorphisms in that they are equipped with an

equivalence η : φ∗c
' // τX .

Of relevance in the T-duality covariant formulation of type II supergravity (“doubled field theory”) is the
reduction along the inclusion of the maximal compact subgroup into the orthogonal group O(n, n) (where
n = 10 for full type II supergravity), whose delooping in H we write

typeII : B (O (n)×O (n)) // BO (n, n) .

A spacetime X that is to carry a typeII-field accordingly must carry an O(n, n)-structure in the first place
in that it must be equipped with a lift of its tangent bundle τX ∈ H/BGL(n) in the slice over BGL(n), as
discussed above, to an object τgen

X in the slice H/BO(n,n). Since there is no suitable homomorphism from
O(n, n) to GL(n), this lift needs to be through a subgroup of O(n, n) that does map to GL(n). The maximal
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such group is called the geometric subgroup Ggeom(n) �
� ι // GL(n) . We write

BGgeom(n)
Bι //

genTann

��

BO(n, n)

BGL(n)

in H. Then for X ∈ Mfd ↪→ H a spacetime, a map (τgen
X , η) : τX // genTann in H/BGL(n), hence a

diagram

X

τX ##

τgen
X // BGgeom(n)

genTannxx
BGL(n)

ηrz

in H, is called a choice of generalized tangent bundle for X. Given such, a map

(ogen
X , egen) : Bι ◦ τgen

X → typeII

in the slice H/BO(n,n) is equivalent to what is called a generalized vielbein field for type II geometry on
X. This is a model for the generalized fields of gravity in the T-duality-covariant formulation of type II
supergravity backgounds. (See for instance section 2 of [GMPW08] for a review and see section 4 here for
discussion in the present context.) So typeII ∈ H/BO(n,n) is the moduli stack for T-duality covariant type
II gravity fields.

Similarly, if X is a manifold of even dimension 2n equipped with a generalized tangent bundle, then a

map τgen
X

// genComplStruc in the slice with coefficients in the canonical morphism

genComplStruc : BU(n, n) // BO(2n, 2n)

in a generalized complex structures on τX . Such genComplStruc-fields appear in compactifications of
supergravity on generalized Calabi-Yau manifolds, such that a global N = 1 supersymmetry is preserved.

Notice that the homotopy fiber sequence of the local coefficient bundle typeII is

O(n)\O(n, n)/O(n) // BO(n)×O(n)
typeII // BO(n, n)

in H. The coset fiber on the left is the familiar local moduli spaces of generalized geometries known from
the literature on T-duality and generalized geometry.

Notice also that the theory automatically determines what replaces the notion of local diffeomorphism
in these generalized type II geometries: the generalized tangent bundles τgen

X now are the twists, and and a
twist transformation (φ, η) : τgen

Y → τgen
X in H/BGgeom(n) is therefore a cohesive map φ : Y → X equipped

with an equivalence η : φ∗τgen
X

' // τgen
Y in H between the pullback of the generalized tangent bundle of

Y and that of Y .

One can consider this setup for moduli objects being arbitrary group homomorphisms genGeom : BK →
BG regarded as objects in the slice H/BG. For instance the delooped inclusion

SuGraComptn : BKn
// BEn(n)

of the maxiomal compact subgroup of the the exceptional Lie groups produces the moduli object for U -duality

covariant fields of supergravity compactified on an n-dimensional fiber. A map τgen
X

// SuGraComptn
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is a generalized vielbein field in exceptional generalized geometry [Hull07]. Another type of exceptional
geometry, that we will come back to below in 1.3.5, is that induced by the delooping

G2Struc : BG2
// BGL(7)

of the defining inclusion of the exceptional Lie group G2 as the subgroup of those linear transformations
of R7 which preserves the “associative 3-form” 〈−, (−) × (−)〉. For X a manifold of dimension 7, a field
φ : τX → G2Struc is a G2-structure on X.

So far all the groups in the examples have been ordinary cohesive (Lie) groups, hence 0-truncated cohesive
∞-group objects in H. More generally we have “reduction” of structure groups for general ∞-groups
exhibited by “higher vielbein fields” which are maps into moduli objects in a slice ∞-topos.

One degree higher, the first example comes from central extensions

A // Ĝ // G

of ordinary groups. These induce long fiber sequences

A // Ĝ // G
Ωc // BA // BĜ // BG

c // B2A

in H. Here c is the (cohesive) group 2-cocycle that classifies the extension, exhibited as a BA-2-bundle
BĜ → BG. Generally an object (X,φX) ∈ H/B is an object X ∈ H equipped with a BA-2-bundle (an
A-bundle gerbe) modulated by a map φX : X → B2A. A field (σ, η) : φX → c in H/B2A is a choice σ of a

G-principal bundle on X together with an equivalence η : σ∗c
' // φX .

Of particular relevance for physics is of course the example of this which is given by the Spin-extension
of the special orthogonal grouop

BZ2
// BSpin

SpinStruc // BSO
w2 // B2Z2 ,

which is classified by the universal second Stiefel-Whitney class w2. (From now on we notationally suppress,
for convenience, the dimension n when displaying these groups.) For oX : X → BSO an orientation structure
on a manifold X, a map

oX // SpinStruc

in H/BSO is equivalently a choice of Spin-structure on oX . Alternatively, if φ : X // B2Z2 is the map

modulating a given Z2-2-bundle (Z2-bundle gerbe) over X, then a map φX // w2 covering oX is a

φ-twisted spin structure on oX . An important special case of this is where φ = c1(E) mod 2 is the mod-2
reduction of the Chern class of a given U(1)-principal bundle/complex line bundle on X: a c1(E)-twisted
spin structure is equivalently a Spinc-structure on X whose underlying U(1)-principal bundle is E. More
generally, E itself is taken to be part of the field content and so we consider the universal Chern-class

c1 : BU(1) // B2Z

of the universal U(1)-principal bundle. There is a diagram

BSpinc //

SpincStruc

��

BU(1)

c1mod2

��
BSO

w2 // B2Z2

in H which exhibits the moduli stack of Spinc-principal bundles as the homotopy fiber product of c1 with
w2. With this, maps

oX // SpincStruc
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in HBSO are equivalently Spinc-structures on X (for arbitrary underlying U(1)-principal bundle). Notice
that the formalism of twist transformations again tells us what the right kind of transformations is along
which Spin-structures and Spinc-structures may be pulled back: these are maps oY // oX in H/BSO

and hence in particular those local diffeomorphisms which are orientation-preserving.

All of this is just a low-degree step in a whole tower of higher Spin-structures and higher Spinc-structure
that appear as fields in the effective higher supergravity theories underlying superstring theory. This tower
is the Whitehead tower of BO. Its smooth lift through | − | to a tower of higher moduli stacks has been
constructed in [FSS10] (an interpreted in physics as discussed now in [SSS09c], reviewed in the broader
context of cohesive ∞-toposes in section 4 here):

BFivebrane

FivebraneStruc

��
BString

1
6p2

//

StringStruc

��

B7U(1)

BSpin

1
2p1

//

SpinStruc

��

B3U(1)

BSO

OrientStruc

��

w2 // B2Z2

BO
w1 //

OrthStruc

��

BZ2

BGL

All of these structures can be further twisted. For instance we have the higher analog of Spinc given by the
delooping 2-group of the homotopy fiver product

BStringc2 //

Stringc2Struc

��

B(E8 × E8)

c2

��
BSpin

1
2p1

// B3U(1)

of 1
2p1 with the smooth universal second Chern class c2 : B(E8 × E8) // B3U(1) . On manifolds X

equipped with a Spin-structure sX : X → BSpin, a field

sX // Stringc2Struc

in H/BSpin is a choice of Stringc2-structure, equivalently a choice of (E8×E8)-principal bundle and an equiv-
alence between its Chern-Simons circle 3-bundle and the Chern-Simons circle 3-bundle of the Spin-structure.
This is the quantum-anomaly-free instanton sector of a gauge field in the effective heterotic supergravity
underlying the heterotic string [SSS09c]. Below in 1.3.4.3 we discuss how the differential refinement of
Stringc2-structures capture the dynamical field of gravity and the gauge field in heterotic supergravity.

In summary, the specialization of the diagram of 1.3.4.1 to the anomaly-free instanton-sector of heterotic
supergravity looks as follows.
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local
cover

//

��

delooped
String

2-group

��

Y

local
diffeomorphism //

c2(gauge field) $$

X

��

spin
structure //

delooped
spin

group

xx
delooped

general linear-
times circle-3-

group

x�
vielbein

Stringc struc.
u}

There are further variants of all these examples and other further cases of gravity-like fields in physics
given by maps in slice toposes. But for the present discussion we leave it at this and now turn to the other
fundamental kind of fields in physics besides gravity: gauge fields.

1.3.4.3 Gauge fields: higher, twisted, non-abelian The other major kind of (quantum) fields besides
the (generalized) fields of gravity that we discussed above are of course gauge fields. A seminal result of Dirac’s
old argument about electric/magnetic charge quantization is that a configuration of the plain electromagnetic
field is mathematically a connection on a U(1)-principal bundle. Similarly the Yang-Mills field of quantum
chromodynamics is mathematically a connection on a G-principal bundle, where G is the corresponding
gauge group. The connection itself is locally the gauge potential traditonally denoted A, while the class of
the underlying global bundle is the magnetic background charge for the case of electromagnetism and is the
instanton sector for the case of G = SU(n).

Analogously, it has long been known that the background B-field to which the string couples is mathe-
matically a connection on a U(1)-principal 2-bundle (often presented as U(1)-bundle gerbe), hence a bundle
that is principal under the higher group (2-group) BU(1). Together with the case of ordinary U(1)-principal
bundles these are the first two (or three) degrees of what are known as cocycles in ordinary differential coho-
mology, a refinement of cocyles modulated in the coefficient stack BnU(1) by curvature twists controled by
smooth differential form data. A general formalization of this based on the underlying topological classifying
spaces K(Z, n+1) ' |BnU(1)|, or in fact any infinite loop space |BG| representing a generalized cohomology
theory, has been given in [HoSi05]. Here we refine this construction to the cohesive higher topos case and
obtain higher cohesive moduli stacks BGconn such that maps X → BGconn with coefficients in these are
differential G-cocycles and hence equivalently (higher) gauge fields on X for the (higher, cohesive) gauge
group G.

An ∞-group G ∈ Grp(H) is abelian or E∞ if it is equipped with an n-fold delooping BnG ∈ H for
all n ∈ N. If it is equipped at least with a second delooping B2G, then we say it is a braided ∞-group.
Equivalently this means that the single delooping object BG is itself equipped with the structure of an
∞-group. For example the full subcategory of any braided monoidal ∞-category on the objects that are
invertible under the tensor product is a braided ∞-group, hence the name.

For a braided ∞-group G in a cohesive ∞-topos, the axioms of cohesion induce a canonical map

curvG : BG // [dRB2G

to the de Rham coefficient objects of the group BG. On the one hand this may be interpreted as the
Maurer-Cartan form on th cohesive group BG. Equivalently, one finds that this is the universal curvature
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characteristic of G-principal ∞-bundles: the map can be seen to proceed by equipping a G-principal ∞-
bundle with a pseudo-connection and then sending that to the coresponding curvature in the de Rham
hypercohomology with coefficients in the ∞-Lie algebra of G.

In order to pick among those (higher) pseudo-connections with curvature in hypercohomology those that
are genuine (higher) connections characterized by having globally well defined curvature differential form

data, let Ωcl(−,G) ∈ H be a 0-truncated object equipped with a map Ωcl(−,G) // [dRB2G which has

the following property: for every manifold Σ the induced map

[Σ,Ωcl(−,G)] // [Σ, [dRB2G]

is a 1-epimorphism (an effective epimorphism, hence an epimorphism in the sheaf topos under 0-truncation).
This expresses the fact that Ωcl(−,G) is a sheaf of flat Lie(G)-valued differential forms, in that every de
Rham cohomology class over a manifold is represented by such a form.

(More generally one considers a suitable filtration Ω•cl(−,G) // [dRB2G , hence a kind of universal

mixed Hodge structure on G-cohomology).
Then the moduli object BGconn for differential G-cocycles is the homotopy pullback in

BGconn
//

��

Ωncl(−)

��
BG curvG // [dRB2G

.

For example if G ' Bn−1U(1) in smooth ∞-groupoids, then the object BnU(1)conn defined this way is
the n-stack which is presented under the Dold-Kan correspondence by the Deligne-complex of sheaves. It
modulates ordinary differential cohomology.

A configuration of the electromagnetic field on a space X is a map X → BU(1)conn. A configuration of
the B-field background gauge field of the bosonic string is a map X → B2U(1)conn. (For the superstring
the situation is a bit more refined, discussed below.) A configuration of the C-field background gauge field
of M -theory involves (among other data) a map X → B3U(1)conn.

Differential T-duality and Bn-geometry
Above we have seen that the extended Lagrangian L : BGconn → B3U(1)conn for G = Spin,SU-Chern-

Simons 3d gauge field theory also serves as the twist that defines the moduli stack BStringc2conn of Green-
Scharz anomaly-free heterotic background gauge field configurations. In view of this it is natural to ask:
does the extended Lagrangian of U(1)-Chern-Simons theory similarly play a role as part of the background
gauge field structure for superstrings? Indeed this turns out to be the case: the extended U(1)-Chern-Simons
Lagrangian encodes the twist that defines differential T-duality structures and Bn-geometry.

To see this, we observe by direct inspection that what in [KaVa10] is called a differential T -duality
structure on a pair of circle-bundles S1 → X1, X2 → Y over some base Y and equipped with connections ∇1

and ∇2, is a trivialization of the corresponding cup-product circle 3-bundle, hence of the extended Chern-
Simons Lagrangian of two-species U(1)-Chern-Simons theory pulled back along the map that modulates the
two circle bundles.

We now say this again in more detail. Let T 1 be a circle and T̃ 1 := Hom(T 1, U(1)) the dual circle, with
the canonical pairing denoted 〈−,−〉 : T 1 × T̃ 1 → U(1). Then the first spacetime X1 → Y is modulated by

a map c1 : Y // BT 1
conn , and its T-dual c̃1 : X2 → Y by a map c̃1 : Y → BT̃ 1

conn.

Now the pairing and the cup product together form a universal characteristic map of moduli stacks

〈− ∪ −〉 : B(T 1 × T̃ 1) // B3U(1) .

By the above discussion, this has a differential refinement

〈− ∪ −〉 : B(T 1 × T̃ 1)conn
// B3U(1)conn
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which is the extended Lagrangian of U(1)-Chern-Simons theory in 3d. If instead we regard the same map
as a 3-cocycle, it modulates a higher group extension String(T 1 × T̃ 1) → T 1 × T̃ 1, sitting in a long fiber
sequence of higher moduli stacks of the form

· · · // BU(1) // String(T 1 × T̃ 1) // (T 1 × T̃ 1) // B2U(1) // BString(T 1 × T̃ 1) // B(T 1 × T̃ 1) // B3U(1) .

One sees from this that a differential T-duality structure on (X1, X2) as considered in def. 2.1 of [KaVa10]
is equivalently – when refined to the context of smooth higher geometry – a lift of (c1, c̃1) through the left
vertical projection in the homotopy pullback square

BString(T 1 × T̃ 1)conn

��

// Ω4≤•≤3
cl

��
B(T 1 × T̃ 1)conn

〈−∪−〉 // B3U(1)conn

,

hence is a map in the slice over B3U(1)conn, hence is a differential String(T 1 × T̃ 1)-structure on the given
data. Along the lines of the discussion in [FSS10] one finds, as for the twisted differential String-structures
discussed above, that such a lift locally corresponds to a choice of 3-form H satisfying

ddRH = 〈FA1 ∧ FA2〉 ,

where A1, A2 are the local connection forms of the two circle bundles. This is the local structure that has
been referred to as Bn-geometry, see the corresponding discussion and references given in [FSS12c].

Observe that by the universal property of homotopy fibers, the underlying trivialization of the cup product
circle 3-bundle corresponds to a choice of factorization of (c1, c̃1) as shown on the bottom of the following
diagram

X1 ×Y X2
κ //

��

B2U(1) //

��

∗

��
Y // BString(T 1 × T̃ 1) // B(T 1 × T̃ 1)

.

Forming the consecutive homotopy pullback of the point inclusion as given by these two squares, the map
X1 ×Y X2 → B2U(1) induced by the universal property of the homotopy pullback modulates a circle 2-
bundle (U(1)-bundle gerbe) on the correspondence space. This is the bundle gerbe on the correspondence
space considered in 2.2, 2.3 of [KaVa10]. Notice that this is just a special case of the general phenomenon
of twisted higher bundles, as laid out in [NSS12a].

1.3.4.4 Gauge invariance, equivariance and general covariance The notion of gauge transforma-
tion and gauge invariance is built right into higher geometry. Any object X ∈ H in general contains not
just (local) points, but also gauge equivalences between these, gauge-of-gauge equivalences between those,
and so on. A map exp(iS(−)) : Fields→ U(1) is automatically a gauge invariant function with respect to
whatever gauge transformations the species of fields encoded by the moduli object Fields encodes.

Specifically, if an ∞-group G acts on some Y , then a G-equivariance structure on a map Y → A is an
extension

Y //

��

A

Y//G

77

along the canonical quotient projection.
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If A here is a 0-truncated object such that U(1), then the existence of such an extension is just a property.
But if A has itself gauge equivalences, say if A = BnU(1)conn for positive n-then a choice of such an extension
is genuine extra structure. For n = 1 this is the familiar structure on an equivariant bundle. For higher n it
is a suitable higher order generalization of this notion.

Equivariance is preserved by transgression. If L : Fields→ BnU(1)conn is an extended Lagrangian, hence
equivalently a equivariant n-connection on the space of fields, then for Σk any object the mapping space
[Σk,Fields] contains the gauge equivalences of the given field species on Σ and accordingly the transgressed
Lagrangian

exp(2πi

∫
Σk

[Σk,L]) : [Σk,Fields]→ Bn−kU(1)conn

is gauge invariant (precisely: carries gauge-equivariant structure).
A particular kind of gauge equivalence/equivariance is the diffeomorphism equivariance of a generally

covariant field theory. In such a field theory two fields φ1, φ2 : Σ → Fields are to be regarded as gauge

equivalent if there is a diffeomorphism, hence an automorphism α : Σ
' // Σ in H, such that α∗φ2 ' φ1.

Formally this means that for generally covariant field theries the field space [Σ,Fields] over a given
worldvolume Σ is to be formed in the slice H/BAut(Σ) ' Aut(Σ)Act, with Σ understood as equipped with
the defining Aut(Σ)-action and with Fields equipped with the trivial Aut(Σ)-action, we write

[Σ,Fields]/BAut(Σ) ∈ H/BAut(Σ)

for emphasis. To see this one observes that generally for (V1, ρ1), (V2, ρ2) ∈ GAct two objects equipped with
G-action, their mapping space [V1, V2]/BG formed in the slice is the absolute mapping space [V1, V2] formed
in H and equipped with the conjugation action of G, under which an element g ∈ G acts on an element
f : V1 → V2 by sending it to ρ2(g)−1 ◦ f ◦ ρ1(g).

Hence the mapping space [Σ,Fields]/BAut(Σ) formed in the slice corresponds in H to the fiber sequence

Σ // Aut(Σ)\\[Σ,Fields]

��
BAut(Σ)

and a generally covariant field theory for the given species of fields is one whose configuration spaces are
Aut(Σ)\\[Σ,Fields], the action groupoids of the ∞-groupoid of field configurations on Σ by the diffeomor-
phism action on Σ.

Ordinary 3d Chern-Simons theory is strictly speaking to be regared as a generally covarnat field theory,
but this is often not made explicit, due to a special property of 3d Chern-Simons theory: if two on-shell
field configurations are related by a diffeomorphism (connected to the identity), then they are already gauge
equivalent also by a gauge transformation in [Σ,BGconn]. This holds in fact also for all higher Chern-Simons
theories that come from binary invariant polynomials, but it does not hold fully generally. Even when this
is the case, supporessing the general covariance is a dubious move, since while the gauge equivalence classes
may coincide, τ0[Σ,Fields]onshell ' τ0Aut(Σ)\\[Σ,Fields]onshell, the two full homotopy types still need not
be equivalent and hence the corresponding quantum field theories may not be equivalent.

1.3.5 Higher geometric prequantum theory

We had indicated in section 1.4 how a single extended Lagrangian, given by a map of universal higher moduli
stacks L : BGconn → BnU(1)conn, induces, by transgression, circle (n− k)-bundles with connection

holΣkMaps(Σk,L) : Maps(Σk,BGconn) −→ Bn−kU(1)conn

on moduli stacks of field configurations over each closed k-manifold Σk. In codimension 1, hence for k = n−1,
this reproduces the ordinary prequantum circle bundle of the n-dimensional Chern-Simons type theory, as
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discussed in section 1.4.1.3. The space of sections of the associated line bundle is the space of prequantum
states of the theory. This becomes the space of genuine quantum states after choosing a polarization (i.e., a
decomposition of the moduli space of fields into canonical coordinates and canonical momenta) and restricting
to polarized sections (i.e., those depending only on the canonical coordinates). But moreover, for each Σk
we may regard holΣkMaps(Σk,L) as a higher prequantum bundle of the theory in higher codimension and
hence consider its prequantum geometry in higher codimension.

We discuss now some generalities of such a higher geometric prequantum theory and then show how this
perspective sheds a useful light on the gauge coupling of the open string, as part of the transgression of
prequantum 2-states of Chern-Simons theory in codimension 2 to prequantum states in codimension 1.

We indicate now the basic concepts of higher extended prequantum theory and how they reproduce
traditional prequantum theory.

Consider a (pre)-n-plectic form, given by a map

ω : X −→ Ωn+1(−;R)cl

in H. A n-plectomorphism of (X,ω) is an auto-equivalence of ω regarded as an object in the slice H/Ωn+1
cl

,

hence a diagram of the form

X

ω %%

' // X

ωyy
Ωn+1(−;R)cl

.

A prequantization of (X,ω) is a choice of prequantum line bundle, hence a choice of lift ∇ in

BnU(1)conn

F(−)

��
X

ω
//

∇
::

Ωn+1
cl

,

modulating a circle n-bundle with connection on X. We write c(∇) : X
∇−→ BnU(1)conn → BnU(1) for the

underlying (Bn−1U(1))-principal n-bundle. An autoequivalence

Ô : ∇ '−→ ∇

of the prequantum n-bundle regarded as an object in the slice H/BnU(1)conn
, hence a diagram in H of the

form
X

' //

∇ %%

X

∇yy
BnU(1)conn

Os{

is an (exponentiated) prequantum operator or quantomorphism or regular contact transformation of the
prequantum geometry (X,∇), forming an ∞-group in H. The L∞-algebra of this quantomorphism ∞-group
is the higher Poisson bracket Lie algebra of the system. If X is equipped with abelian group structure
then the quantomorphisms covering these translations form the Heisenberg ∞-group. The homotopy labeled
O above diagram is the Hamiltonian of the prequantum operator. The image of the quantomorphisms in
the symplectomorphisms (given by composition the above diagram with the curvature morphism F(−) :

BnU(1)conn → Ωn+1
cl ) is the group of Hamiltonian n-plectomorphisms. A lift of an ∞-group action G →

Aut(X) on X from automorphisms of X (diffeomorphism) to quantomorphisms is a Hamiltonian action,
infinitesimally (and dually) a momentum map.
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To define higher prequantum states we fix a representation (V, ρ) of the circle n-group Bn−1U(1). By
the general results in [NSS12a] this is equivalent to fixing a homotopy fiber sequence of the form

V // V //Bn−1U(1)

ρ

��
BnU(1)

in H. The vertical morphism here is the universal ρ-associated V -fiber ∞-bundle and characterizes ρ itself.
Given such, a section of the V -fiber bundle which is ρ-associated to c(∇) is equivalently a map

Ψ : c(∇) −→ ρ

in the slice H/BnU(1). This is a higher prequantum state of the prequantum geometry (X,∇). Since every

prequantum operator Ô as above in particular is an auto-equivalence of the underlying prequantum bundle

Ô : c(∇)
'−→ c(∇) it canonically acts on prequantum states given by maps as above simply by precomposition

Ψ 7→ Ô ◦Ψ .

Notice also that from the perspective of section 7.1.1 all this has an equivalent interpretation in terms of
twisted cohomology: a preqantum state is a cocycle in twisted V -cohomology, with the twist being the
prequantum bundle. And a prequantum operator/quantomorphism is equivalently a twist automorphism
(or “generalized local diffeomorphism”).

For instance if n = 1 then ω is an ordinary (pre)symplectic form and ∇ is the connection on a circle
bundle. In this case the above notions of prequantum operators, quantomorphism group, Heisenberg group
and Poisson bracket Lie algebra reproduce exactly all the traditional notions if X is a smooth manifold, and
generalize them to the case that X is for instance an orbifold or even itself a higher moduli stack, as we have
seen. The canonical representation of the circle group U(1) on the complex numbers yields a homotopy fiber
sequence

C // C//U(1)

ρ

��
BU(1)

,

where C//U(1) is the stack corresponding to the ordinary action groupoid of the action of U(1) on C, and
where the vertical map is the canonical functor forgetting the data of the local C-valued functions. This is
the universal complex line bundle associated to the universal U(1)-principal bundle. One readily checks that
a prequantum state Ψ : c(∇)→ ρ, hence a diagram of the form

X
σ //

c(∇) ""

C//U(1)

ρ
yy

BU(1)

in H is indeed equivalently a section of the complex line bundle canonically associated to c(∇) and that
under this equivalence the pasting composite

X
' //

c(∇) ""

X //

c(∇)

��

C//U(1)

ρ
yy

BU(1)

O
|�
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is the result of the traditional formula for the action of the prequantum operator Ô on Ψ.
Instead of forgetting the connection on the prequantum bundle in the above composite, one can equiv-

alently equip the prequantum state with a differential refinement, namely with its covariant derivative and
then exhibit the prequantum operator action directly. Explicitly, let C//U(1)conn denote the quotient stack
(C× Ω1(−,R))//U(1) , with U(1) acting diagonally. This sits in a homotopy fiber sequence

C // C//U(1)conn

ρconn

��
BU(1)conn

which may be thought of as the differential refinement of the above fiber sequence C→ C//U(1)→ BU(1).
(Compare this to section 1.4.1.5, where we had similarly seen the differential refinement of the fiber sequence
G/Tλ → BTλ → BG, which analogously characterizes the canonical action of G on the coset space G/Tλ.)
Prequantum states are now equivalently maps

Ψ̂ : ∇ −→ ρconn

in H/BU(1)conn
. This formulation realizes a section of an associated line bundle equivalently as a connection

on what is sometimes called a groupoid bundle. As such, Ψ̂ has not just a 2-form curvature (which is that
of the prequantum bundle) but also a 1-form curvature: this is the covariant derivative ∇σ of the section.

Such a relation between sections of higher associated bundles and higher covariant derivatives holds more
generally. In the next degree for n = 2 one finds that the quantomorphism 2-group is the Lie 2-group which
integrates the Poisson bracket Lie 2-algebra of the underlying 2-plectic geometry as introduced in [Rog11a].
In the next section we look at an example for n = 2 in more detail and show how it interplays with the
above example under transgression.

The above higher prequantum theory becomes a genuine quantum theory after a suitable higher analog
of a choice of polarization. In particular, for L : X → BnU(1)conn an extended Lagrangian of an n-
dimensional quantum field theory as discussed in all our examples here, and for Σk any closed manifold,
the polarized prequantum states of the transgressed prequantum bundle holΣkMaps(Σk,L) should form the
(n − k)-vector spaces of higher quantum states in codimension k. These states would be assigned to Σk
by the extended quantum field theory, in the sense of [L-TFT], obtained from the extended Lagrangian L
by extended geometric quantization. There is an equivalent reformulation of this last step for n = 1 given
simply by the push-forward of the prequantum line bundle in K-theory (see section 6.8 of [GGK02]) and
so one would expect that accordingly the last step of higher geometric quantization involves similarly a
push-forward of the associated V -fiber∞-bundles above in some higher generalized cohomology theory. But
this remains to be investigated.

1.4 Examples and applications

We consider now some more or less traditional examples of pre-quantum field theories, indicating how they
are secretly more properly regarded as examples of the higher geometric prequantum field theory discussed
above.

• 1.4.1 – Prequantum 3d Chern-Simons theory;

• 1.4.2 – Prequantum higher Chern-Simons theory;

• 1.4.3 – The anomaly-free gauge coupling of the open string;

• 1.4.4 – Super p-branes sigma-models on supergravity backgrounds.
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1.4.1 Prequantum 3d Chern-Simons theory

For G a simply connected compact simple Lie group, the above construction of the refined Chern-Weil
homomorphism yields a differential characteristic map of moduli stacks

ĉ : BGconn
// B3U(1)conn

which is the smooth and differential refinement of the universal characteristic class [c] ∈ H4(BG,Z).
We discuss now how this serves as the extended Lagrangian for 3d Chern-Simons theory in that its

transgression to mapping stacks out of k-dimensional manifolds yields all the “geometric prequantum” data
of Chern-Simons theory in the corresponding dimension, in the sense of geometric quantization. For the
purpose of this exposition we use terms such as “prequantum n-bundle” freely without formal definition.
We expect the reader can naturally see at least vaguely the higher prequantum picture alluded to here. A
more formal survey of these notions is in section 1.3.4.

The following paragraphs draw from [FSS13a].

If X is a compact oriented manifold without boundary, then there is a fiber integration in differential
cohomology lifting fiber integration in integral cohomology [HoSi05]:

Ĥn+dimX(X × Y ;Z)

��

∫
X // Ĥn(Y ;Z)

��
Hn+dimX(X × Y ;Z)

∫
X // Hn(Y ;Z) .

In [GoTe00] Gomi and Terashima describe an explicit lift of this at the level of Čech-Deligne cocycles. Such
a lift has a natural interpretation as a morphism

holX : Maps(X,Bn+dimXU(1)conn)→ BnU(1)conn

from the (n + dimX)-stack of moduli of U(1)-(n + dimX)-bundles with connection over X to the n-stack
of U(1)-n-bundles with connection, 6.4.16. Therefore, if Σk is a compact oriented manifold of dimension k
with 0 ≤ k ≤ 3, we have a composition

Maps(Σk,BGconn)
Maps(Σk,ĉ)−−−−−−−−→Maps(Σk,B

3U(1)conn)
holΣk−−−−→ B3−kU(1)conn .

This is the canonical U(1)-(3−k)-bundle with connection over the moduli space of principal G-bundles with
connection over Σk induced by ĉ: the transgression of ĉ to the mapping space. Composing on the right with
the curvature morphism we get the underlying canonical closed (4− k)-form

Maps(Σk,BGconn)→ Ω4−k(−;R)cl

on this moduli space. In other words, the moduli stack of principal G-bundles with connection over Σk carries
a canonical pre-(3−k)-plectic structure (the higher order generalization of a symplectic structure, [Rog11a])
and, moreover, this is equipped with a canonical geometric prequantization: the above U(1)-(3− k)-bundle
with connection.

We now discuss in more detail the cases k = 0, 1, 2, 3.

• 1.4.1.1 – k = 0: the universal Chern-Simons 3-connection ĉ;

• 1.4.1.2 – k = 1: the Wess-Zumino-Witten gerbe;

• 1.4.1.3 – k = 2: Symplectic structure on the moduli of flat connections;

• 1.4.1.4 – k = 3: the Chern-Simons action functional.
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1.4.1.1 k = 0: the universal Chern-Simons 3-connection ĉ The connected 0-manifold Σ0 is the
point and, by definition of Maps, one has a canonical identification

Maps(∗,S) ∼= S

for any (higher) stack S. Hence the morphism

Maps(∗,BGconn)
Maps(∗,ĉ)−−−−−−−→Maps(∗,B3U(1)conn)

is nothing but the universal differential characteristic map ĉ : BGconn → B3U(1)conn that refines the
universal characteristic class c. This map modulates a circle 3-bundle with connection (bundle 2-gerbe)
on the universal moduli stack of G-principal connections. For ∇ : X −→ BGconn any given G-principal
connection on some X, the pullback

ĉ(∇) : X
∇ // BGconn

ĉ // B3U(1)conn

is a 3-bundle (bundle 2-gerbe) on X which is sometimes in the literature called the Chern-Simons 2-gerbe of
the given connection ∇. Accordingly, ĉ modulates the universal Chern-Simons bundle 2-gerbe with universal
3-connection. From the point of view of higher geometric quantization, this is the prequantum 3-bundle of
extended prequantum Chern-Simons theory.

This means that the prequantum U(1)-(3 − k)-bundles associated with k-dimensional manifolds are all
determined by the prequantum U(1)-3-bundle associated with the point, in agreement with the formulation

of fully extended topological field theories [FHLT09]. We will denote by the symbol ω
(4)
BGconn

the pre-3-plectic
4-form induced on BGconn by the curvature morphism.

1.4.1.2 k = 1: the Wess-Zumino-Witten gerbe We now come to the transgression of the extended
Chern-Simons Lagrangian to the closed connected 1-manifold, the circle Σ1 = S1. Notice that, on the one
hand, we can think of the mapping stack Maps(Σ1,BGconn) 'Maps(S1,BGconn) as a kind of moduli stack
of G-connections on the circle – up to the subtlety of differential concretification discussed in 5.2.13.4. On
the other hand, we can think of that mapping stack as the free loop space of the universal moduli stack
BGconn.

The subtlety here is related to the differential refinement, so it is instructive to first discard the differential
refinement and consider just the smooth characteristic map c : BG→ B3U(1) which underlies the extended
Chern-Simons Lagrangian and which modulates the universal circle 3-bundle on BG (without connection).
Now, for every pointed stack ∗ → S we have the corresponding (categorical) loop space ΩS := ∗×S ∗, which
is the homotopy pullback of the point inclusion along itself. Applied to the moduli stack BG this recovers
the Lie group G, identified with the sheaf (i.e, the 0-stack) of smooth functions with target G: ΩBG ' G.
This kind of looping/delooping equivalence is familiar from the homotopy theory of classifying spaces; but
notice that since we are working with smooth (higher) stacks, the loop space ΩBG also knows the smooth
structure of the group G, i.e. it knows G as a Lie group. Similarly, we have

ΩB3U(1) ' B2U(1)

and so forth in higher degrees. Since the looping operation is functorial, we may also apply it to the
characteristic map c itself to obtain a map

Ωc : G→ B2U(1)

which modulates a BU(1)-principal 2-bundle on the Lie group G. This is also known as the WZW-bundle
gerbe; see for instance [ScWa]. The reason, as discussed there and as we will see in a moment, is that this is the
2-bundle that underlies the 2-connection with surface holonomy over a worldsheet given by the Wess-Zumino-
Witten action functional. However, notice first that there is more structure implied here: by the discussion
in 6.4.5.2, for any pointed stack S there is a natural equivalence ΩS 'Maps∗(Π(S1),S), between the loop
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space object ΩS and the moduli stack of pointed maps from the categorical circle
∫

(S1) ' BZ to S. On the
other hand, if we do not fix the base point then we obtain the free loop space object LS 'Maps(

∫
(S1),S).

Since a map
∫

(Σ) → BG is equivalently a map Σ → [BG, i.e., a flat G-principal connection on Σ, the free
loop space LBG is equivalently the moduli stack of flat G-principal connections on S1. We will come back to
this perspective in section 5.2.13.4 below. The homotopies that do not fix the base point act by conjugation
on loops and hence we have, for any smooth (higher) group, that

LBG ' G//AdG

is the (homotopy) quotient of the adjoint action of G on itself; see [NSS12a] for details on homotopy actions
of smooth higher groups. For G a Lie group this is the familiar adjoint action quotient stack. But the
expression holds fully generally. Notably, we also have

LB3U(1) ' B2U(1)//AdB2U(1)

and so forth in higher degrees. However, in this case, since the smooth 3-group B2U(1) is abelian (it is a
groupal E∞-algebra) the adjoint action splits off in a direct factor and we have a projection

LB3U(1) ' B2U(1)× (∗//B2U(1))
p1 // B2U(1) .

In summary, this means that the map Ωc modulating the WZW 2-bundle over G descends to the adjoint
quotient to the map

p1 ◦ Lc : G//AdG→ B2U(1) ,

and this means that the WZW 2-bundle is canonically equipped with the structure of an adG-equivariant
bundle gerbe, a crucial feature of the WZW bundle gerbe.

We emphasize that the derivation here is fully general and holds for any smooth (higher) group G and
any smooth characteristic map c : BG→ BnU(1). Each such pair induces a WZW-type (n − 1)-bundle
on the smooth (higher) group G modulated by Ωc and equipped with G-equivariant structure exhibited by
p1 ◦Lc. We discuss such higher examples of higher Chern-Simons-type theories with their higher WZW-type
functionals further below in section 7.2.2.

We now turn to the differential refinement of this situation. In analogy to the above construction, but
taking care of the connection data in the extended Lagrangian ĉ, we find a homotopy commutative diagram
in H of the form

Maps(S1; BGconn)

hol

��

Maps(S1,ĉ) //Maps(S1; B3U(1)conn)

hol

��
G // G//AdG

wzw // B2U(1)conn//AdB2U(1)conn
// B2U(1)conn ,

where the vertical maps are obtained by forming holonomies of (higher) connections along the circle. The
lower horizontal row is the differential refinement of Ωc: it modulates the Wess-Zumino-Witten U(1)-bundle
gerbe with connection

wzw : G→ B2U(1)conn .

That wzw is indeed the correct differential refinement can be seen, for instance, by interpreting the construc-
tion by Carey-Johnson-Murray-Stevenson-Wang in [CJMSW05, section 3] in terms of the above diagram.
There is constructed a G-principal connection

∇univ : G× S1 −→ BGconn

on the manifold G× S1 with the property that its holonomy around {g} × S1 is g. By the Hom-adjunction
this is equivalently a morphism

∇̃univ : G −→ [S1,BGconn]
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which makes this diagram commute:

Maps(S1; BGconn)

hol

��
G //

(Px0
,∇x0

)

88

G//AdG ,

Correspondingly, we have a total homotopy commutative diagram of the form

Maps(S1; BGconn)

hol

��

Maps(S1,ĉ) //Maps(S1; B3U(1)conn)

hol

��

holS1

))
G

(Px0
,∇x0

)

88

// G//AdG
wzw // B2U(1)conn//AdB2U(1)conn

// B2U(1)conn .

Then Proposition 3.4 from [CJMSW05] identifies the upper path (and hence also the lower path) from G to
B2U(1)conn with the Wess-Zumino-Witten bundle gerbe.

Passing to equivalence classes of global sections, we see that wzw induces, for any smooth manifold X, a
natural map C∞(X;G)→ Ĥ2(X;Z). In particular, if X = Σ2 is a compact Riemann surface, we can further
integrate over X to get

wzw : C∞(Σ2;G)→ Ĥ2(X;Z)

∫
Σ2−−→ U(1) .

This is the topological term in the Wess-Zumino-Witten model; see [Ga88, FrWi99, CJM02]. Notice how the
fact that wzw factors through G//AdG gives the conjugation invariance of the Wess-Zumino-Witten bundle
gerbe, and hence of the topological term in the Wess-Zumino-Witten model.

1.4.1.3 k = 2: Symplectic structure on the moduli of flat connections For Σ2 a compact Riemann
surface, the transgression of the extended Lagrangian ĉ yields a map

Maps(Σ2; BGconn)
Maps(Σ2,ĉ)−−−−−−−−→Maps(Σ2; B3U(1)conn)

holΣ2−−−→ BU(1)conn ,

modulating a circle-bundle with connection on the moduli space of gauge fields on Σ2. The underlying
curvature of this connection is the map obtained by composing this with

BU(1)conn

F(−) // Ω2(−;R)cl ,

which gives the canonical pre-symplectic 2-form

ω : Maps(Σ2; BGconn) // Ω2(−;R)cl

on the moduli stack of principal G-bundles with connection on Σ2. Equivalently, this is the transgression

of the invariant polynomial 〈−〉 : BGconn
// Ω4

cl to the mapping stack out of Σ2. The restriction of

this 2-form to the moduli stack GFlatConn(Σ2) of flat G-principal connections14 on Σ2 induces a canonical

14 To see that the form indeed descends to that moduli stack one may use the component presentation from section 1.1.2.4
and compute for each plot U → [Σ2,BGconn] the Chern-Simons 3-form of a 1-form on Σ× U as follows:

CS(AU +AΣ)U,Σ,Σ = kabA
a
Σ ∧ dUA

b
Σ + kabA

a
U ∧ dΣA

b
Σ + kabA

a
Σ ∧ dΣA

b
U︸ ︷︷ ︸

dΣ(kabA
a
U
∧Ab

Σ
)

+kabA
a
U
dΣA

b
Σ

+ 1 · CabcAaU ∧A
b
Σ ∧A

c
Σ

= kabA
a
Σ ∧ dUA

b
Σ + dΣ(kabA

a
U ∧A

b
Σ) + 2kabA

a
U (dΣA

b
Σ + 1

2
CbcdA

c
ΣA

d
Σ)︸ ︷︷ ︸

(F b
A

)Σ,Σ

The first term is the symplectic pre-potential that should appear on the moduli stack of flat connections on a surface Σ. The
second term vanishes when integrated over a closed Σ. The third vanishes exactly when evaluated on flat connections.
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symplectic structure on the moduli space

Hom(π1(Σ2), G)/AdG

of flat G-bundles on Σ2. Such a symplectic structure was identified as the phase space structure of Chern-
Simons theory in [Wi98c].

To see more explicitly what this form ω is, consider any test manifold U ∈ CartSp. Over this the map of
stacks ω is a function which sends a G-principal connection A ∈ Ω1(U × Σ2) (using that every G-principal
bundle over U × Σ2 is trivializable) to the 2-form∫

Σ2

〈FA ∧ FA〉 ∈ Ω2(U) .

Now if A represents a field in the phase space, hence an element in the concretification of the mapping stack,
then it has no “leg” 15 along U , and so it is a 1-form on Σ2 that depends smoothly on the parameter U : it
is a U -parameterized variation of such a 1-form. Accordingly, its curvature 2-form splits as

FA = FΣ2

A + dUA ,

where FΣ2

A := dΣ2
A+ 1

2 [A∧A] is the U -parameterized collection of curvature forms on Σ2. The other term is
the variational differential of the U -collection of forms. Since the fiber integration map

∫
Σ2

: Ω4(U ×Σ2)→
Ω2(U) picks out the component of 〈FA ∧ FA〉 with two legs along Σ2 and two along U , integrating over the
former we have that

ω|U =

∫
Σ2

〈FA ∧ FA〉 =

∫
Σ2

〈dUA ∧ dUA〉 ∈ Ω2
cl(U) .

In particular if we consider, without loss of generality, (U = R2)-parameterized variations and expand

dUA = (δ1A)du1 + (δ2A)du2 ∈ Ω2(Σ2 × U) ,

then

ω|U =

∫
Σ2

〈δ1A, δ2A〉 .

In this form the symplectic structure appears, for instance, in prop. 3.17 of part I of [Fr95] (in [Wi96] this
corresponds to (3.2)).

In summary, this means that the circle bundle with connection obtained by transgression of the extended
Lagrangian ĉ is a geometric prequantization of the phase space of 3d Chern-Simons theory. Observe that
traditionally prequantization involves an arbitrary choice: the choice of prequantum bundle with connection
whose curvature is the given symplectic form. Here we see that in extended prequantization this choice is
eliminated, or at least reduced: while there may be many differential cocycles lifting a given curvature form,
only few of them arise by transgression from a higher differential cocycles in top codimension. In other words,
the restrictive choice of the single geometric prequantization of the invariant polynomial 〈−,−〉 : BGconn →
Ω4

cl by ĉ : BGconn → B3U(1)conn down in top codimension induces canonical choices of prequantization over
all Σk in all lower codimensions (n− k).

1.4.1.4 k = 3: the Chern-Simons action functional Finally, for Σ3 a compact oriented 3-manifold
without boundary, transgression of the extended Lagrangian ĉ produces the morphism

Maps(Σ3; BGconn)
Maps(Σ3,ĉ)−−−−−−−−→Maps(Σ3; B3U(1)conn)

holΣ3−−−→ U(1) .

Since the morphisms in Maps(Σ3; BGconn) are gauge transformations between field configurations, while
U(1) has no non-trivial morphisms, this map necessarily gives a gauge invariant U(1)-valued function on

15That is, when written in local coordinates (u, σ) on U × Σ2, then A = Ai(u, σ)dui + Aj(u, σ)dσj reduces to the second
summand.

245



field configurations. Indeed, evaluating over the point and passing to isomorphism classes (and hence to
gauge equivalence classes), this induces the Chern-Simons action functional

Sĉ : {G-bundles with connection on Σ3}/iso→ U(1) .

It follows from the description of ĉ that if the principal G-bundle P → Σ3 is trivializable then

Sĉ(P,∇) = exp 2πi

∫
Σ3

CS3(A) ,

where A ∈ Ω1(Σ3, g) is the g-valued 1-form on Σ3 representing the connection ∇ in a chosen trivialization of
P . This is actually always the case, but notice two things: first, in the stacky description one does not need
to know a priori that every principal G-bundle on a 3-manifold is trivializable; second, the independence of
Sĉ(P,∇) on the trivialization chosen is automatic from the fact that Sĉ is a morphism of stacks read at the
level of equivalence classes.

Furthermore, if (P,∇) can be extended to a principal G-bundle with connection (P̃ , ∇̃) over a compact
4-manifold Σ4 bounding Σ3, one has

Sĉ(P,∇) = exp 2πi

∫
Σ4

ϕ̃∗ω
(4)
BGconn

= exp 2πi

∫
Σ4

〈F∇̃, F∇̃〉 ,

where ϕ̃ : Σ4 → BGconn is the morphism corresponding to the extended bundle (P̃ , ∇̃). Notice that the
right hand side is independent of the extension chosen. Again, this is always the case, so one can actually
take the above equation as a definition of the Chern-Simons action functional, see, e.g., [Fr95]. However,
notice how in the stacky approach we do not need a priori to know that the oriented cobordism ring is
trivial in dimension 3. Even more remarkably, the stacky point of view tells us that there would be a natural
and well-defined 3d Chern-Simons action functional even if the oriented cobordism ring were nontrivial in
dimension 3 or that not every G-principal bundle on a 3-manifold were trivializable. An instance of checking
a nontrivial higher cobordism group vanishes can be found in [KS05], allowing for the application of the
construction of Hopkins-Singer [HoSi05].

1.4.1.5 The Chern-Simons action functional with Wilson loops To conclude our exposition of
the examples of 1d and 3d Chern-Simons theory in higher geometry, we now briefly discuss how both unify
into the theory of 3d Chern-Simons gauge fields with Wilson line defects. Namely, for every embedded knot

ι : S1 ↪→ Σ3

in the closed 3d worldvolume and every complex linear representation R : G → Aut(V ) one can consider
the Wilson loop observable Wι,R mapping a gauge field A : Σ→ BGconn, to the corresponding “Wilson loop
holonomy”

Wι,R : A 7→ trR(hol(ι∗A)) ∈ C .

This is the trace, in the given representation, of the parallel transport defined by the connection A around
the loop ι (for any choice of base point). It is an old observation16 that this Wilson loop W (C,A,R) is
itself the partition function of a 1-dimensional topological σ-model quantum field theory that describes the
topological sector of a particle charged under the nonabelian background gauge field A. In section 3.3 of
[Wi96] it was therefore emphasized that Chern-Simons theory with Wilson loops should really be thought
of as given by a single Lagrangian which is the sum of the 3d Chern-Simons Lagrangian for the gauge field
as above, plus that for this topologically charged particle.

We now briefly indicate how this picture is naturally captured by higher geometry and refined to a single
extended Lagrangian for coupled 1d and 3d Chern-Simons theory, given by maps on higher moduli stacks. In
doing this, we will also see how the ingredients of Kirillov’s orbit method and the Borel-Weil-Bott theorem

16This can be traced back to [BBS78]; a nice modern review can be found in section 4 of [Be02].
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find a natural rephrasing in the context of smooth differential moduli stacks. The key observation is that
for 〈λ,−〉 an integral weight for our simple, connected, simply connected and compact Lie group G, the
contraction of g-valued differential forms with λ extends to a morphism of smooth moduli stacks of the form

〈λ,−〉 : Ω1(−, g)//Tλ → BU(1)conn ,

where Tλ ↪→ G is the maximal torus of G which is the stabilizer subgroup of 〈λ,−〉 under the coadjoint
action of G on g∗. Indeed, this is just the classical statement that exponentiation of 〈λ,−〉 induces an
isomorphism between the integral weight lattice Γwt(λ) realtive to the maximal torus Tλ and the Z-module
HomGrp(Tλ, U(1)) and that under this isomorphism a gauge transformation of a g-valued 1-form A turns
into that of the u(1)-valued 1-form 〈λ,A〉.

This is the extended Lagrangian of a 1-dimensional Chern-Simons theory. In fact it is just a slight variant
of the trace-theory discussed there: if we realize g as a matrix Lie algebra and write 〈α, β〉 = tr(α · β) as the
matrix trace, then the above Chern-Simons 1-form is given by the “λ-shifted trace”

CSλ(A) := tr(λ ·A) ∈ Ω1(−;R) .

Then, clearly, while the “plain” trace is invariant under the adjoint action of all of G, the λ-shifted trace is
invariant only under the subgroup Tλ of G that fixes λ.

Notice that the domain of 〈λ,−〉 naturally sits inside BGconn by the canonical map

Ω1(−, g)//Tλ → Ω1(−, g)//G ' BGconn .

One sees that the homotopy fiber of this map to be the coadjoint orbit Oλ ↪→ g∗ of 〈λ,−〉, equipped with
the map of stacks

θ : Oλ ' G//Tλ → Ω1(−, g)//Tλ

which over a test manifold U sends g ∈ C∞(U,G) to the pullback g∗θG of the Maurer-Cartan form. Com-
posing this with the above extended Lagrangian 〈λ,−〉 yields a map

〈λ, θ〉 : Oλ
θ // Ω1(−, g)//Tλ

〈λ,−〉 // BU(1)conn

which modulates a canonical U(1)-principal bundle with connection on the coadjoint orbit. One finds that
this is the canonical prequantum bundle used in the orbit method [Kir04]. In particular its curvature is the
canonical symplectic form on the coadjoint orbit.

So far this shows how the ingredients of the orbit method are incarnated in smooth moduli stacks. This
now immediately induces Chern-Simons theory with Wilson loops by considering the map Ω1(−, g)//Tλ →
BGconn itself as the target17 for a field theory defined on knot inclusions ι : S1 ↪→ Σ3. This means that a
field configuration is a diagram of smooth stacks of the form

S1
(ι∗A)g //

ι

��

Ω1(−, g)//Tλ

��
Σ3

A
// BGconn ,

g
s{

i.e., that a field configuration consists of

• a gauge field A in the “bulk” Σ3;

• a G-valued function g on the embedded knot

17This means that here we are secretely moving from the topos of (higher) stacks on smooth manifolds to its arrow topos,
see section 7.1.1 below.
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such that the restriction of the ambient gauge field A to the knot is equivalent, via the gauge transforma-
tion g, to a g-valued connection on S1 whose local g-valued 1-forms are related each other by local gauge
transformations taking values in the torus Tλ. Moreover, a gauge transformation between two such field
configurations (A, g) and (A′, g′) is a pair (tΣ3

, tS1) consisting of a G-gauge transformation tΣ3
on Σ3 and

a Tλ-gauge transformation tS1 on S1, intertwining the gauge transformations g and g′. In particular if the
bulk gauge field on Σ3 is held fixed, i.e., if A = A′, then tS1 satisfies the equation g′ = g tS1 . This means that
the Wilson-line components of gauge-equivalence classes of field configurations are naturally identified with
smooth functions S1 → G/Tλ, i.e., with smooth functions on the Wilson loop with values in the coadjoint
orbit. This is essentially a rephrasing of the above statement that G/Tλ is the homotopy fiber of the inclusion
of the moduli stack of Wilson line field configurations into the moduli stack of bulk field configurations.

We may postcompose the two horizontal maps in this square with our two extended Lagrangians, that
for 1d and that for 3d Chern-Simons theory, to get the diagram

S1
(ι∗A)g //

ι

��

Ω1(−, g)//T

��

〈λ,−〉 // BU(1)conn

Σ3
A // BGconn

ĉ // B3U(1)conn .

g

s{

Therefore, writing FieldsCS+W

(
S1 ι

↪→ Σ3

)
for the moduli stack of field configurations for Chern-Simons

theory with Wilson lines, we find two action functionals as the composite top and left morphisms in the
diagram

FieldsCS+W

(
S1 ι

↪→ Σ3

)
//

��

Maps(Σ3,BGconn)

��

holΣ3Maps(Σ3,ĉ)
// U(1)

Maps(S1,Ω1(−, g)//Tλ) //

holS1Maps(S1,〈λ,−〉)

��

Maps(S1,BGcon)

U(1)

in H, where the top left square is the homotopy pullback that characterizes maps in H(∆1) in terms of maps
in H. The product of these is the action functional

FieldsCS+W

(
S1 ι

↪→ Σ3

)
//Maps(Σ3,B

3U(1)conn)×Maps(S1,BU(1)conn)

��
U(1)× U(1)

· // U(1) .

where the rightmost arrow is the multiplication in U(1). Evaluated on a field configuration with components
(A, g) as just discussed, this is

exp

(
2πi

(∫
Σ3

CS3(A) +

∫
S1

〈λ, (ι∗A)g〉
))

.

This is indeed the action functional for Chern-Simons theory with Wilson loop ι in the representation R
correspponding to the integral weight 〈λ,−〉 by the Borel-Weil-Bott theorem, as reviewed for instance in
Section 4 of [Be02].
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Apart from being an elegant and concise repackaging of this well-known action functional and the quanti-
zation conditions that go into it, the above reformulation in terms of stacks immediately leads to prequantum
line bundles in Chern-Simons theory with Wilson loops. Namely, by considering the codimension 1 case, one
finds the the symplectic structure and the canonical prequantization for the moduli stack of field configu-
rations on surfaces with specified singularities at specified punctures [Wi96]. Moreover, this is just the first
example in a general mechanism of (extended) action functionals with defect and/or boundary insertions.
Another example of the same mechanism is the gauge coupling action functional of the open string. This we
discuss in section 1.4.3 below.

1.4.2 Prequantum higher Chern-Simons theory

• 1.4.2.1 – Classical Chern-Weil theory and its shortcomings;

• 1.4.2.2 – Higher Chern-Weil theory;

• 1.4.2.3 – Higher Chern-Simons-type Lagrangians;

• 1.4.2.4 – Boundaries and long fiber sequences of characteristic classes;

• 1.4.2.5 – Global effects and anomaly cancellation.

1.4.2.1 Classical Chern-Weil theory and its shortcomings Even in the space of all topological local
action functionals, those that typically appear in fundamental physics are special. The archetypical example
of a TQFT is 3-dimensional Chern-Simons theory (see [Fr95] for a detailed review). Its action functional
happens to arise from a natural construction in classical Chern-Weil theory. We now briefly summarize this
process, which already produces a large family of natural topological action functionals on gauge equivalence
classes of gauge fields. We then point out deficiencies of this classical theory, which are removed by higher
prequantization.

A classical problem in topology is the classification of vector bundles over some topological space X.
These are continuous maps E → X such that there is a vector space V , and an open cover {Ui ↪→ X}, and
such that over each patch we have fiberwise linear identifications E|Ui ' Ui × V . Examples include

• the tangent bundle TX of a smooth manifold X;

• the canonical C-line bundle over the 2-sphere, S3×S1 C→ S2 which is associated to the Hopf fibration.

A classical tool for studying isomorphism classes of vector bundles is to assign to them simpler charac-
teristic classes in the ordinary integral cohomology of the base space. For vector bundles over the complex
numbers these are the Chern classes, which are maps

[c1] : VectBundC(X)/∼ → H2(X,Z)

[c2] : VectBundC(X)/∼ → H4(X,Z)

etc. natural in X. If two bundles have differing characteristic classes, they must be non-isomorphic. For
instance for C-line bundles the first Chern-class [c1] is an isomorphism, hence provides a complete invariant
characterization.

In the context of differential geometry, where X and E are taken to be smooth manifolds and the local
identifications are taken to be smooth maps, one wishes to obtain differential characteristic classes. To that
end, one can use the canonical inclusion Z ↪→ R of coefficients to obtain the map Hn+1(X,Z)→ Hn+1(X,R)
from integral to real cohomology, and send any integral characteristic class [c] to its real image [c]R. Due to
the de Rham theorem, which identifies the real cohomology of a smooth manifold with the cohomology of
its complex of differential forms,

Hn+1(X,R) ' Hn+1
dR (X) ,
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this means that for [c]R one has representatives given by closed differential (n+ 1)-forms ω ∈ Ωn+1
cl (X),

[c]R ∼ [ω] .

But since the passage to real cohomology may lose topological information (all torsion group elements map
to zero), one wishes to keep the information both of the topological characteristic class [c] as well as of its
“differential refinement” ω. This is accomplished by the notion of differential cohomology Hn+1

diff (X) (see
[HoSi05] for a review). These are families of cohomology groups equipped with compatible projections both
to integral classes as well as to differential forms

Hn+1
diff (X)

uu ))
Hn+1(X,Z)

))

Ωn+1
cl (X)

uu
Hn+1(X,R) ' Hn+1

dR (X)

[ĉ]6

{{

�

##
[c]

�

##

ω7

{{
[c]R ∼ [ω]

.

Moreover, these differential cohomology groups come equipped with a notion of volume holonomy. For Σn
an n-dimensional compact manifold, there is a canonical morphism∫

Σ

: Hn+1
diff (Σ)→ U(1)

to the circle group.
For instance for n = 1, we have that H2(X,Z) classifies circle bundles / complex line bundles over X,

H2
diff(X) classifies such bundles with connection ∇, and the map

∫
Σ

: H2
diff(Σ)→ U(1) is the line holonomy

obtained from the parallel transport of ∇ over the 1-dimensional manifold Σ.
With such differential refinements of characteristic classes in hand, it is desirable to have them classify

differential refinements of vector bundles. These are known as vector bundles with connection. We say a
differential refinement of a characteristic class [c] is a map [ĉ] fitting into a diagram

VectBundconn(X)/∼
[ĉ] //

��

Hn+1
diff (X)

��
VectBund(X)/∼

[c] // Hn+1(X,Z)

,

where the vertical maps forget the differential refinement. Such a [ĉ] contains information even when [c] = 0.
Therefore one also calls [ĉ] a secondary characteristic class.

All of this has a direct interpretation in terms of quantum gauge field theory.

• the elements in VectBundconn(X)/∼ are gauge equivalence classes of gauge fields on X (for instance
the electromagnetic field, or nuclear force fields);

• the differential class [ĉ] defines a canonical action functional S[c] on such fields, by composition with
the volume holonomy

exp(iSc(−)) : Conf(Σ)/∼ := VectBundconn(Σ)/∼
[ĉ]−→ Hn+1

diff (Σ)

∫
Σ−→ U(1) .

The action functionals that arise this way are of Chern-Simons type. If we write A ∈ Ω1(Σ, u(n)) for a
differential form representing locally the connection on a vector bundle, then we have
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•
∫

Σ
c1 : A 7→ exp(i

∫
Σ

tr(A));

•
∫

Σ
c2 : A 7→ exp(i

∫
Σ

tr(A ∧ ddRA+ 2
3 tr(A ∧A ∧A)))

• etc.

Here the second expression, coming from the second Chern-class, is the standard action functional for
3-dimensional Chern-Simons theory. The first, coming from the first Chern-class, is a 1-dimensional Chern-
Simons type theory. Next in the series is an action functional for a 5-dimensional Chern-Simons theory.
Later we will see that by generalizing here from vector bundles to higher bundles of various kinds, a host of
known action functionals for quantum field theories arises this way.

Despite this nice story, this traditional Chern-Weil theory has several shortcomings.

1. It is not local, related to the fact that it deals with cohomology classes [c] instead of the cocycles c
themselves. This means that there is no good obstruction theory and no information about the locality
of the resulting QFTs.

2. It does not apply to higher topological structures, hence to higher gauge fields that take values in higher
covers of Lie groups which are not themselves compact Lie groups anymore.

3. It is restricted to ordinary differential geometry and does not apply to variants such as supergeometry,
infinitesimal geometry or derived geometry, all of which appear in examples of QFTs of interest.

1.4.2.2 Higher Chern-Weil theory We discuss now these problems in slightly more detail, together
with their solution in cohesive homotopy type theory.

The problem with the locality is that every vector bundle is, by definition, locally equivalent to a trivial
bundle. Also, locally on contractible patches U ↪→ X every integral cocycle becomes cohomologous to the
trivial cocycle. Therefore the restriction of a characteristic class to local patches retains no information at
all

VectBund(X)/∼
[c] //

(−)|U
��

Hn+1(X,Z)

(−)|U
��

∗ Id // ∗

.

Here we may think of the singleton ∗ as the class of the trivial bundle over U . But even though on U every
bundle is equivalent to the trivial bundle, this has non-trivial gauge automorphisms

∗ g→ ∗ g ∈ C∞(U,G := GL(V )) .

These are not seen by traditional Chern-Weil theory, as they are not visible after passing to equivalence
classes and to cohomology.

But by collecting this information over each U , it organizes into a presheaf of gauge groupoids. We shall
write

BG : U 7→
{
∗

g∈C∞(U,G) // ∗
}
∈ Funct(SmoothMfdop,Grpd) .

In order to retain all this information, we may pass to the 2-category

H := LW Func(SmoothMfdop,Grpd)

of such groupoid-valued functors, where we formally invert all those morphisms (natural transformations) in
the class W of stalkwise equivalences of groupoids. This is called the 2-topos of stacks on smooth manifolds.

For example we have

• H(U,BG) '
{
∗

g∈C∞(U,G) // ∗
}
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• π0H(X,BG) ' VectBund(X)/∼

and hence the object BG ∈ H constitutes a genuine smooth refinement of the classifying space for rank
n-vector bundles, which sees not just their equivalence classes, but also their local smooth transformations.

The next problem of traditional Chern-Weil theory is that it cannot see beyond groupoids even in co-
homology. Namely, under the standard nerve operation, groupoids embed into simplicial sets (described in
more detail in 1.2.6.4 below)

N : Grpd ↪→ sSet .

But simplicial sets model homotopy theory.

• There is a notion of homotopy groups πk of simplicial sets;

• and there is a notion of weak homotopy equivalences, morphisms f : X → Y which induce isomorphisms
on all homotopy groups.

Under the above embedding, groupoids yield only (and precisely) those simplicial sets, up to equivalence,
for which only π0 and π1 are nontrivial. One says that these are homotopy 1-types. A general simplicial set
presents what is called a homotopy type and may contain much more information.

Therefore we are led to refine the above construction and consider the simplicial category

H := LW Func(SmoothMfdop, sSet)

of functors that send smooth manifolds to simplicial sets, where now we formally invert those morphisms
that are stalkwise weak homotopy equivalences of simplicial sets.

This is called the ∞-topos of ∞-stacks on smooth manifolds.
For instance, there are objects BnU(1) in this context which are smooth refinements of higher integral

cohomology, in that
π0H(X,BnU(1)) ' Hn+1(X,Z) .

Finally, in this construction it is straightforward to change the geometry by changing the category of
geometric test spaces. For instance we many replace smooth manifolds here by supermanifolds or by formal
(synthetic) smooth manifolds. In all these cases H describes homotopy types with differential geometric
structure. One of our main statements below is the following theorem.

These H all satisfy a simple set of axioms for “cohesive homotopy types”, which were proposed for 0-types
by Lawvere. In the fully homotopical context these axioms canonically induce in H

• differential cohomology;

• higher Chern-Weil theory;

• higher Chern-Simons functionals;

• higher geometric prequantization.

This is such that it reproduces the traditional notions where they apply, and otherwise generalizes them
beyond the realm of classical applicability.

1.4.2.3 Higher Chern-Simons-type Lagrangians It has become a familiar fact, known from exam-
ples as those indicated above, that there should be an n-dimensional topological quantum field theory Zc

associated to the following data:

1. a gauge group G: a Lie group such as U(n); or more generally a higher smooth group, such as the smooth
circle n-group Bn−1U(1) or the String 2-group or the smooth Fivebrane 6-group [SSS09c, FSS10];

2. a universal characteristic class [c] ∈ Hn+1(BG,Z) and/or its image ω in real/de Rham cohomology,
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where Zc is a G-gauge theory defined naturally over all closed oriented n-dimensional smooth manifolds Σn,
and such that whenever Σn happens to be the boundary of some manifold Σn+1 the action fuctional on a
field configuration φ is given by the integral of the pullback form φ̂∗ω (made precise below) over Σn+1, for

some extension φ̂ of φ. These are Chern-Simons type gauge theories. See [Zan08] for a gentle introduction
to the general idea of Chern-Simons theories.

Notably for G a connected and simply connected simple Lie group, for c ∈ H4(BG,Z) ' Z any integer
– the “level” – and hence for ω = 〈−,−〉 the Killing form on the Lie algebra g, this quantum field theory is
the original and standard Chern-Simons theory introduced in [Wi89]. See [Fr95] for a comprehensive review.
Familiar as this theory is, there is an interesting aspect of it that has not yet found attention, and which is
an example of our constructions here.

To motivate this, it is helpful to look at the 3d Chern-Simons action functional as follows: if we write
H(Σ3,BGconn) for the set of gauge equivalence classes of G-principal connections ∇ on Σ3, then the (expo-
nentiated) action functional of 3d Chern-Simons theory over Σ3 is a function of sets

exp(iS(−)) : H(Σ3,BGconn)→ U(1) .

Of course this function acts by picking a representative of the gauge equivalence class, given by a smooth
1-form A ∈ Ω1(Σ3, g) and sending that to the element exp(2πik

∫
Σ3

CS(A)) ∈ U(1), where CS(A) ∈ Ω3(Σ3)

is the Chern-Simons 3-form of A [ChSi74], that gives the whole theory its name. That this is well defined
is the fact that for every gauge transformation g : A→ Ag, for g ∈ C∞(Σ3, G), both A as well as its gauge
transform Ag, are sent to the same element of U(1). A natural formal way to express this is to consider the
groupoid H(Σ3,BGconn) whose objects are gauge fields A and whose morphisms are gauge transformations
g as above. Then the fact that the Chern-Simons action is defined on individual gauge field configurations
while being invariant under gauge transformations is equivalent the statement that it is a functor, hence a
morphism of groupoids,

exp(iS(−)) : H(Σ3,BGconn)→ U(1) ,

where the set underlying U(1) is regarded as a groupoid with only identity morphisms. Hence the fact that
exp(iS(−)) has to send every morphism on the left to a morphism on the right is the gauge invariance of
the action.

Furthermore, the action functional has the property of being smooth. It takes any smooth family of
gauge fields, over some parameter space U , to a corresponding smooth family of elements of U(1) and such
that these assignmens are compatible with precomposition of smooth functions U1 → U2 between parameter
spaces. The formal language that expresses this concept is that of stacks on the site of smooth manifolds
(discussed in detail in 6.4 below): to say that for every U there is a groupoid, as above, of smooth U -families
of gauge fields and smooth U -families of gauge transformations between them, in a consistent way, is to say
that there is a smooth moduli stack, denoted [Σ3,BGconn], of gauge fields on Σ3. Finally, the fact that the
Chern-Simons action functional is not only gauge invariant but also smooth is the fact that it refines to a
morphism of smooth stacks

exp(iS(−)) : [Σ3,BGconn]→ U(1) ,

where now U(1) is regarded as a smooth stack by declaring that a smooth family of elements is a smooth
function with values in U(1).

It is useful to think of a smooth stack simply as being a smooth groupoid. Lie groups and Lie groupoids are
examples (and are called “differentiable stacks” when regarded as special cases of smooth stacks) but there are
important smooth groupoids which are not Lie groupoids in that they have not a smooth manifold but a more
general smooth space of objects and of morphisms. Just as Lie groups have an infinitesimal approximation
given by Lie algebras, so smooth stacks/smooth groupoids have an infinitesimal approximation given by Lie
algebroids. The smooth moduli stack [Σ3,BGconn] of gauge field configuration on Σ3 is best known in the
physics literature in the guise of its underlying Lie algebroid: this is the formal dual of the (off-shell) BRST
complex of the G-gauge theory on Σ3: in degree 0 this consists of the functions on the space of gauge fields
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on Σ3, and in degree 1 it consists of functions on infinitesimal gauge transformations between these: the
“ghost fields”.

The smooth structure on the action functional is of course crucial in field theory: in particular it allows
one to define the differential d exp(iS(−)) of the action functional and hence its critical locus, characterized
by the Euler-Lagrange equations of motion. This is the phase space of the theory, which is a substack

[Σ2, [BG] ↪→ [Σ2,BGconn]

equipped with a pre-symplectic 2-form. To formalize this, write Ω2
cl(−) for the smooth stack of closed 2-forms

(without gauge transformations), hence the rule that sends a parameter manifold U to the set Ω2
cl(U) of

smooth closed 2-forms on U . This may be regarded as the smooth moduli 0-stack of closed 2-forms in that
for every smooth manifold X the set of morphisms X → Ω2

cl(−) is in natural bijection to the set Ω2
cl(X) of

closed 2-forms on X. This is an instance of the Yoneda lemma. Similarly, a smooth 2-form on the moduli
stack of field configurations is a morphism of smooth stacks of the form

[Σ2,BGconn]→ Ω2
cl(−) .

Explicitly, for Chern-Simons theory this morphism sends for each smooth parameter space U a given smooth
U -family of gauge fields A ∈ Ω1(Σ2 × U, g) to the 2-form∫

Σ2

〈dUA ∧ dUA〉 ∈ Ω2
cl(U) .

Notice that if we restrict to genuine families A which are functions of U but vanish on vectors tangent to
U (technically these are elements in the concretification of the moduli stack) then this 2-form is the fiber
integral of the Poincaré 2-form 〈FA ∧ FA〉 along the projection Σ2 × U → U , where FA := dA+ 1

2 [A ∧A] is
the curvature 2-form of A. This is the first sign of a general pattern, which we highlight in a moment.

There is more fundamental smooth moduli stack equipped with a closed 2-form: the moduli stack
BU(1)conn of U(1)-gauge fields, hence of smooth circle bundles with connection. This is the rule that
sends a smooth parameter manifold U to the groupoid H(U,BU(1)conn) of U(1)-gauge fields ∇ on U , which
we have already seen above. Since the curvature 2-form F∇ ∈ Ω2

cl(U) of a U(1)-principal connection is gauge
invariant, the assignment ∇ 7→ F∇ gives rise to a morphism of smooth stacks of the form

F(−) : BU(1)conn → Ω2
cl(−) .

In terms of this morphism the fact that every U(1)-gauge field ∇ on some space X has an underlying field
strength 2-form ω is expressed by the existence of a commuting diagram of smooth stacks of the form

BU(1)conn

F(−)

��

gauge field / differential cocycle

X
ω //

∇
::

Ω2
cl(−) field strength / curvature .

Conversely, if we regard the bottom morphism ω as given, and regard this closed 2-form as a (pre)symplectic
form, then a choice of lift ∇ in this diagram is a choice of refinement of the 2-form by a circle bundle with
connection, hence the choice of a prequantum circle bundle in the language of geometric quantization (see
for instance section II in [Bry00] for a review of geometric quantization).

Applied to the case of Chern-Simons theory this means that a smooth (off-shell) prequantization of the
theory is a choice of dashed morphism in a diagram of smooth stacks of the form

BU(1)conn

F(−)

��
[Σ2,BGconn] ∫

Σ2
〈F(−),F(−)〉

//

55

Ω2
cl(−) .
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Similar statements apply to on-shell geometric (pre)quantization of Chern-Simons theory, which has been
so successfully applied in the original article [Wi89]. In summary, this means that in the context of smooth
stacks the Chern-Simons action functional and its prequantization are as in the following table:

dimension moduli stack description
k = 3 action functional (0-bundle) exp(iS(−)) : [Σ3,BGconn]→ U(1)
k = 2 prequantum circle 1-bundle [Σ2,BGconn]→ BU(1)conn

There is a precise sense, discussed in section 6.4.16 below, in which a U(1)-valued function is a circle
k-bundle with connection for k = 0. If we furthermore regard an ordinary U(1)-principal bundle as a circle
1-bundle then this table says that in dimension k Chern-Simons theory appears as a circle (3 − k)-bundle
with connection – at least for k = 3 and k = 2.

Formulated this way, it should remind one of what is called extended or multi-tiered topological quantum
field theory (formalized and classified in [L-TFT]) which is the full formalization of locality in the Schrödinger
picture of quantum field theory. This says that after quantization, an n-dimensional topological field theory
should be a rule that to a closed manifold of dimension k assigns an (n−k)-categorical analog of a vector space
of quantum states. Since ordinary geometric quantization of Chern-Simons theory assigns to a closed Σ2

the vector space of polarized sections (holomorphic sections) of the line bundle associated to the above
circle 1-bundle, this suggests that there should be an extended or multi-tiered refinement of geometric
(pre)quantization of Chern-Simons theory, which to a closed oriented manifold of dimension 0 ≤ k ≤ n assigns
a prequantum circle (n − k)-bundle (bundle (n − k − 1)-gerbe) on the moduli stack of field configurations
over Σk, modulated by a morphism [Σk,BGconn] → B(n−k)U(1)conn to a moduli (n − k)-stack of circle
(n− k)-bundles with connection.

In particular for k = 0 and Σ0 connected, hence Σ0 = ∗ the point, we have that the moduli stack of fields
on Σ0 is the universal moduli stack itself, [∗,BGconn] ' BGconn, and so a fully extended prequantization of
3-dimensional G-Chern-Simons theory would have to involve a universal characteristic morphism

cconn : BGconn → B3U(1)conn

of smooth moduli stacks, hence a smooth circle 3-bundle with connection on the universal moduli stack of
G-gauge fields. This indeed naturally exists: an explicit construction is given in [FSS10]. This morphism
of smooth higher stacks is a differential refinement of a smooth refinement of the level itself: forgetting
the connections and only remembering the underlying (higher) gauge bundles, we still have a morphism of
smooth higher stacks

c : BG→ B3U(1) .

This expression should remind one of the continuous map of topological spaces

c : BG→ B3U(1) ' K(Z, 4)

from the classifying space BG to the Eilenberg-MacLane space K(Z, 4), which represents the level as a class
in integral cohomology H4(BG,Z) ' Z. Indeed, there is a canonical derived functor or ∞-functor

| − | : H→ Top

from smooth higher stacks to topological spaces (one of the defining properties of a cohesive ∞-topos),
derived left adjoint to the operation of forming locally constant higher stacks, and under this map we have

|c| ' c .

In this sense c is a smooth refinement of [c] ∈ H4(BG,Z) and then cconn is a further differential refinement
of c.
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However, more is true. Not only is there an extension of the prequantization of 3d G-Chern-Simons
theory to the point, but this also induces the extended prequantization in every other dimension by tracing :
for 0 ≤ k ≤ n and Σk a closed and oriented smooth manifold, there is a canonical morphism of smooth
higher stacks of the form

exp(2πi

∫
Σk

(−)) : [Σk,B
nU(1)conn]→ Bn−kU(1)conn ,

which refines the fiber integration of differential forms, that we have seen above, from curvature (n+1)-forms
to their entire prequantum circle n-bundles (we discuss this below in section 7.2.1.1). Since, furthermore,
the formation of mapping stacks [Σk,−] is functorial, this means that from a morphism cconn as above we
get for every Σk a composite morphism as such:

exp(2πi

∫
Σk

[Σk, cconn]) : [Σk,BGconn]
[Σk,cconn] // [Σk,BnU(1)conn]

exp(2πi
∫
Σk

(−))
// Bn−kU(1)conn .

For 3d G-Chern-Simons theory and k = n = 3 this composite is the action functional of the theory (down
on the set H(Σ3,BGconn) this is effectively the perspective on ordinary Chern-Simons theory amplified in
[CJMSW05]). Therefore, for general k we may speak of this as the extended action functional, with values
not in U(1) but in Bn−kU(1)conn.

This way we find that the above table, containing the Chern-Simons action functional together with its
prequantum circle 1-bundle, extends to the following table that reaches all the way from dimension 3 down
to dimension 0.

dim. prequantum (3− k)-bundle

k = 0
differential fractional

first Pontrjagin
cconn : BGconn → B3U(1)conn [FSS10]

k = 1
WZW

background B-field
[S1,BGconn]

[S1,cconn] // [S1,B3U(1)conn]
exp(2πi

∫
S1 (−))

// B2U(1)conn

k = 2
off-shell CS

prequantum bundle
[Σ2,BGconn]

[Σ2,cconn] // [Σ2,B
3U(1)conn]

exp(2πi
∫
Σ2

(−))
// BU(1)conn

k = 3
3d CS

action functional
[Σ3,BGconn]

[Σ3,cconn] // [Σ3,B
3U(1)conn]

exp(2πi
∫
Σ3

(−))
// U(1) [FSS10]

For each entry of this table one may compute the total space object of the corresponding prequantum k-
bundle. This is now in general itself a higher moduli stack. In full codimension k = 0 one finds that this
is the moduli 2-stack of String(G)-2-connections described in [SSS09c, FSS12b]. This we discuss in section
7.2.5.1 below.

It is clear now that this is just the first example of a general class of theories which we may call higher
extended prequantum Chern-Simons theories or just ∞-Chern-Simons theories, for short. These are defined
by a choice of

1. a smooth higher group G;

2. a smooth universal characteristic map c : BG→ BnU(1);

3. a differential refinement cconn : BGconn → BnU(1)conn.

An example of a 7-dimensional such theory on String-2-form gauge fields is discussed in [FSS12a], given by
a differential refinement of the second fractional Pontrjagin class to a morphism of smooth moduli 7-stacks

1
6 (p2)conn : BStringconn → B7U(1)conn .
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We expect that these ∞-Chern-Simons theories are part of a general procedure of extended geometric quan-
tization (multi-tiered geometric quantization) which proceeds in two steps, as indicated in the following
table.

classical system geometric prequantization quantization

char. class c of deg. (n+ 1)
with de Rham image ω:
invariant polynomial/

n-plectic form

prequantum circle n-bundle
on moduli ∞-stack of fields
cconn : BGconn → BnU(1)conn

extended quantum field theory

Zc : Σk 7→


polarized sections of
prequantum (n− k)-bundle
exp(2πi

∫
Σk

[Σk, cconn])


Here we are concerned with the first step, the discussion of n-dimensional Chern-Simons gauge theories
(higher gauge theories) in their incarnation as prequantum circle n-bundles on their universal moduli ∞-
stack of fields. A dedicated discussion of higher geometric prequantization, including the discussion of higher
Heisenberg groups, higher quantomorphism groups, higher symplectomorphisms and higher Hamiltonian
vector fields, and their action on higher prequantum spaces of states by higher Heisenberg operators, is given
below. As shown there, plenty of interesting physical information turns out to be captured by extended
prequantum n-bundles. For instance, if one regards the B-field in type II superstring backgrounds as a
prequantum 2-bundle, then its extended prequantization knows all about twisted Chan-Paton bundles, the
Freed-Witten anomaly cancellation condition for type II superstrings on D-branes and the associated anomaly
line bundle on the string configuration space.

Generally, all higher Chern-Simons theories that arise from extended action functionals this way enjoy
a collection of very good formal properties. Effectively, they may be understood as constituting examples
of a fairly extensive generalization of the refined Chern-Weil homomorphism with coefficients in secondary
characteristic cocycles. Moreover, we have shown previously that the class of theories arising this way is
large and contains not only several familiar theories, some of which are not traditionally recognized to be of
this good form, but also contains various new QFTs that turn out to be of interest within known contexts,
e.g. [FSS12b, FSS12b]. Here we further enlarge the pool of such examples.

Notably, here we are concerned with examples arising from cup product characteristic classes, hence of∞-
Chern-Simons theories which are decomposable or non-primitive secondary characteristic cocyles, obtained
by cup-ing more elementary characteristic cocycles. The most familiar example of these is again ordinary
3-dimensional Chern-Simons theory, but now for the non-simply connected gauge group U(1). In this
case a gauge field configuration in H(Σ3,BU(1)conn) is not necessarily given by a globally defined 1-form
A ∈ Ω1(Σ3), instead it may have a non-vanishing “instanton number”, the Chern-class of the underlying
circle bundle. Only if that happens to vanish is the value of the action functional again given by the simple
expression exp(2πik

∫
Σ3
A ∧ ddRA) as before. But in view of the above we are naturally led to ask: which

circle 3-bundle (bundle 2-gerbe) with connection over Σ3, depending naturally on the U(1)-gauge field, has
A ∧ ddRA as its connection 3-form in this special case, so that the correct action functional in generality is
again the volume holonomy of this 3-bundle (see section 7.2.3 below)? The answer is that it is the differential
cup square of the gauge field with itself. As a fully extended action functional this is a natural morphism of
higher moduli stacks of the form

(−)∪
2
conn : BU(1)conn → B3U(1)conn .

This morphism of higher stacks is characterized by the fact that under forgetting the differential refinement
and then taking geometric realization as before, it is exhibited as a differential refinement of the ordinary
cup square on Eilenberg-MacLane spaces

(−)∪
2

: K(Z, 2)→ K(Z, 4)
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and hence on ordinary integral cohomology. By the above general procedure, we obtain a well-defined action
functional for 3d U(1)-Chern-Simons theory by the expression

exp(2πi

∫
Σ3

[Σ3, (−)∪
2
conn ]) : [Σ3,BU(1)conn]→ U(1)

and this is indeed the action functional of the familiar 3d U(1)-Chern-Simons theory, also on non-trivial
instanton sectors, see section 7.2.5.2 below.

In terms of this general construction, there is nothing particular to the low degrees here, and we have
generally a differential cup square / extended action functional for a (4k + 3)-dimensional Chern-Simons
theory

(−)∪
2
conn : B2k+1U(1)conn → B4k+3U(1)conn

for all k ∈ N, which induces an ordinary action functional

exp(2πi

∫
Σ3

[Σ4k+3, (−)∪
2
conn ]) : [Σ4k+3,B

4k+3U(1)conn]→ U(1)

on the moduli (2k+ 1)-stack of U(1)-(2k+ 1)-form gauge fields, given by the fiber integration on differential
cocycles over the differential cup product of the fields. This is discussed in section 7.2.8.1 below.

Forgetting the smooth structure on [Σ4k+3,B
2k+1U(1)conn] and passing to gauge equivalence classes of

fields yields the cohomology group H2k+2
conn (Σ4k+3). This is what is known as ordinary differential cohomology

and is equivalent to the group of Cheeger-Simons differential characters, a review with further pointers
is in [HoSi05]. That gauge equivalence classes of higher degree U(1)-gauge fields are to be regarded as
differential characters and that the (4k + 3)-dimensional U(1)-Chern-Simons action functional on these is
given by the fiber integration of the cup product is discussed in detail in [FP89], also mentioned notably
in [Wi96, Wi98c] and expanded on in [Fr00]. Effectively this observation led to the general development of
differential cohomology in [HoSi05]. Or rather, the main theorem there concerns a shifted version of the
functional of (4k+ 3)-dimensional U(1)-Chern-Simons theory which allows one to further divide it by 2. We
have discussed the refinement of this to smooth moduli stacks of fields in [FSS12b]. These developments were
largely motivated from the relation of (4k + 3)-dimensional U(1)-Chern-Simons theories as the holographic
duals to theories of self-dual forms in dimension (4k+2) (see [BeMo06] for survey and references): a choice of
conformal structure on a Σ4k+2 naturally induces a polarization of the prequantum 1-bundle of the (4k+ 3)-
dimensional theory, and for every choice the resulting space of quantum states is naturally identified with
the corresponding conformal blocks (correlators) of the (4k + 2)-dimensional theory.

Therefore we have that regarding the differential cup square on smooth higher moduli stacks as an
extended action functional yields the following table of familiar notions under extended geometric prequan-
tization.

dim. prequantum (4k + 3− d)-bundle

d = 0 differential cup square (−)∪
2
conn : B2k+1U(1)conn → B4k+3U(1)conn

...
...

...

d = 4k + 2
“pre-conformal blocks” of

self-dual 2k-form field
[Σ4k+2,B

2k+1U(1)conn]
[Σ4k+2,(−)∪

2
conn ]// [Σ4k+2,B

2k+1U(1)conn]
exp(2πi

∫
Σ4k+2

(−))

// BU(1)conn

d = 4k + 3
CS

action functional
[Σ4k+3,B

2k+1U(1)conn]
[Σ4k+3,(−)∪

2
conn ]// [Σ4k+3,B

2k+1U(1)conn]
exp(2πi

∫
Σ4k+3

(−))

// U(1)

This fully extended prequantization of (4k+3)-dimensional U(1)-Chern-Simons theory allows for instance
to ask for and compute the total space of the prequantum circle (4k+ 3)-bundle. This is now itself a higher
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smooth moduli stack. For k = 0, hence in 3d-Chern-Simons theory it turns out to be the moduli 2-stack of
differential T-duality structures.

More generally, as the name suggests, the differential cup square is a specialization of a general differential
cup product. As a morphism of bare homotopy types this is the familiar cup product of Eilenberg-MacLane
spaces

(−) ∪ (−) : K(Z, p+ 1)×K(Z, q + 1)→ K(Z, p+ q + 2)

for all p, q ∈ N. Its smooth and then its further differential refinement is a morphism of smooth higher stacks
of the form

(−) ∪conn (−) : BpU(1)conn ×B1U(1)conn → Bp+q+1U(1)conn .

By the above discussion this now defines a higher extended gauge theory in dimension p + q + 1 of two
different species of higher U(1)-gauge fields. One example of this is the higher electric-magnetic coupling
anomaly in higher (Euclidean) U(1)-Yang-Mills theory, as explained in section 2 of [Fr00]. In this example
one considers on an oriented smooth manifold X (here assumed to be closed, for simplicity) an electric current
(p+ 1)-form Jel ∈ Ωp+1

cl (X) and a magnetic current (q+ 1)-form Jmag ∈ Ωq+1
cl (X), such that p+ q = dim(X)

is the dimension of X. A prequantization of these current forms in our sense of higher geometric quantization
is a lift to differential cocycles

BpU(1)conn

F(−)

��
X

Ĵel

66

Jel // Ωp+1
cl (−) ,

BqU(1)conn

F(−)

��
X

Ĵmag

66

Jmag // Ωq+1
cl (−)

and here this amounts to electric and magnetic charge quantization, respectively: the electric charge is the
universal integral cohomology class of the circle p-bundle underlying the electric charge cocycle: its higher
Dixmier-Doudy class [Ĵel] ∈ Hp+1

cpt (X,Z) (see section 7.2.3 below); and similarly for the magnetic charge.
Accordingly, the higher mapping stack [X,BpU(1)comm ×BqU(1)conn] is the smooth higher moduli stack of
charge-quantized electric and magnetic currents on X. Recall that this assigns to a smooth test manifold U
the higher groupoid whose objects are U -families of pairs of charge-quantized electric and magnetic currents,
namely such currents on X × U . As [Fr00] explains in terms of such families of fields, the U(1)-principal
bundle with connection that in the present formulation is the one modulated by the morphism

∇an := exp(2πi

∫
X

[X, (−) ∪conn (−)]) : [X,BpU(1)comm ×BqU(1)conn]→ BU(1)conn

is the anomaly line bundle of (p − 1)-form electromagnetism on X, in the presence of electric and mag-
netic currents subject to charge quantization. In the language of ∞-Chern-Simons theory as above, this is
equivalently the off-shell prequantum 1-bundle of the higher cup product Chern-Simons theories on pairs of
U(1)-gauge p-form and q-form fields.

Regarded as an anomaly bundle, one calls its curvature the local anomaly and its holonomy the “global
anomaly”. In our contex the holonomy of ∇an is (discussed again in section 7.2.3 below) the morphism

hol(∇an) = exp(2πi

∫
S1

[S1,∇an]) : [S1, [X,BpU(1)comm ×BqU(1)conn → U(1)

from the loop space of the moduli stack of fields to U(1). By the characteristic universal propery of higher
mapping stacks, together with the “Fubini-theorem”-property of fiber integration, this is equivalently the
morphism

exp(2πi

∫
X×S1

[X × S1, (−) ∪conn (−)]) : [X × S1,BpU(1)comm ×BqU(1)conn]→ U(1) .

259



But from the point of view of∞-Chern-Simons theory this is the action functional of the higher cup product
Chern-Simons field theory induced by ∪conn. The situation is now summarized in the following table.

dim. prequantum (dim(X) + 1− k)-bundle

k = 0 differential cup product (−)∪
2
conn : BpU(1)connB

qU(1)conn → Bd+2U(1)conn

...
...

...

k = dim(X)
higher E/M-charge

anomaly line bundle
exp(2πi

∫
X

[X, (−) ∪conn (−)]) : [X,BpU(1)conn ×BqU(1)conn] // BU(1)conn

k = dim(X) + 1 global anomaly exp(2πi
∫
X×S1 [X × S1, (−) ∪conn (−)]) : [X × S1,BpU(1)conn ×BqU(1)conn]→ U(1)

These higher electric-magnetic anomaly Chern-Simons theories are of particular interest when the higher
electric/magnetic currents are themselves induced by other gauge fields. Namely if we have any two ∞-
Chern-Simons theories given by extended action functionals c1

conn : BG1
conn → BpU(1)conn and c2

conn :
BG2

conn → BqU(1)conn, respectively, then composition of these with the differential cup product yields an
extended action functional of the form

c1
conn ∪conn c2

conn : B(G1 ×G2)conn

(c1
conn,c

2
conn) // BpU(1)conn ×B1U(1)conn

(−)∪conn(−) // Bp+q+1U(1)conn ,

which describes extended topological field theories in dimension p + q + 1 on two species of (possibly non-
abelian, possibly higher) gauge fields, or equivalently describes the higher electric/magnetic anomaly for
higher electric fields induced by c1 and higher magnetic fields induced by c2.

For instance for heterotic string backgrounds c2
conn is the differential refinement of the first fractional

Pontrjagin class 1
2p1 ∈ H4(BSpin,Z) [SSS09c, FSS10] of the form

c2
conn = ĴNS5

mag = 1
2 (p1)conn : BSpinconn → B3U(1)conn ,

formalizing the magnetic NS5-brane charge needed to cancel the fermionic anomaly of the heterotic string by
way of the Green-Schwarz mechanism. It is curious to observe, going back to the very first example of this
introduction, that this ĴNS5

mag is at the same time the extended action functional for 3d Spin-Chern-Simons
theory.

Still more generally, we may differentially cup in this way more than two factors. Examples for such higher
order cup product theories appear in 11-dimensional supergravity. Notably plain classical 11d supergravity
contains an 11-dimensional cubic Chern-Simons term whose extended action functional in our sense is

(−)∪
3
conn : B3U(1)conn → B11U(1)conn .

Here for X the 11-dimensional spacetime, a field in [X,B3U(1)] is a first approximation to a model for the
supergravity C-field. If the differential cocycle happens to be given by a globally defined 3-form C, then
the induced action functional exp(2πi

∫
X

[X, (−)∪
3
conn ]) sends this to element in U(1) given by the familiar

expression

exp(2πi

∫
X

[X, (−)∪
3
conn ]) : C 7→ exp(2πi

∫
X

C ∧ ddRC ∧ ddRC) .

More precisely this model receives quantum corrections from an 11-dimensional Green-Schwarz mechanism.
In [FSS12b, FSS12b] we have discussed in detail relevant corrections to the above extended cubic cup-product
action functional on the moduli stack of flux-quantized C-field configurations.

1.4.2.4 Boundaries and long fiber sequences of characteristic classes It is a traditionally familiar
fact that short exact sequences of (discrete) groups give rise to long sequences in cohomology with coefficients
in these groups. In fact, before passing to cohomology, these long exact sequences are refined by corresponding
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long fiber sequences of the homotopy types obtained by the higher delooping of these groups: of the higher
classifying spaces of these groups.

An example for which these long fiber sequences are of interest in the context of quantum field theory
is the universal first fractional Pontryagin class 1

2p1 on the classifying space of Spin-principal bundles. The
following digram displays the first steps in the long fiber sequence that it induces, together with an actual
Spin-principal bundle P → X classified by a map X → BSpin. All squares are homotopy pullback squares
of bare homotopy types.

BU(1) //

��

String //

BU(1)
bundle

��

P̂ //

BU(1)
−bundle

��

String
bundle

��

∗

��
∗ // Spin //

��

canonical
3−class

33P //

Spin
bundle

��

B2U(1) //

��

∗

��
∗ x // X

classifies
Spin bundle

33//

Pontryagin
class

,,

BString //

��

BSpin

1
2p1

��
∗ // B3U(1)

.

The topological group String which appears here as the loop space object of the homotopy fiber of 1
2p1 is

the String group. We discuss this in detail below in 7.1.2. It is a BU(1)-extension of the Spin-group.
If X happens to be equipped with the structure of a smooth manifold, then it is natural to also equip

the Spin-principal bundle P → X with the structure of a smooth bundle, and hence to lift the classifying
map X → BSpin to a morphism X → BSpin into the smooth moduli stack of smooth Spin-principal bundles
(the morphism that not just classifies but “modulates” P → X as a smooth structure). An evident question
then is: can the rest of the diagram be similarly lifted to a smooth context?

This indeed turns out to be the case, if we work in the context of higher smooth stacks. For instance there
is a smooth moduli 3-stack B2U(1) such that a morphism Spin→ B2U(1) not just classifies a BU(1)-bundle
over Spin, but “modulates” a smooth circle 2-bundle or U(1)-bundle gerbe over Spin. One then gets the
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following diagram

BU(1) //

��

String //

WZW
2−bundle

��

P̂ //

BU(1)
2−bundle

��

String
2−bundle

��

∗

��
∗ // Spin //

��

modulates
WZW

2−bundle

33P //

Spin
bundle

��

B2U(1) //

��

∗

��
∗ x // X

modulates
Spin bundle

33//

modulates
Chern−Simons

3−bundle

,,

BString //

��

BSpin

1
2p1

��
∗ // B3U(1)

,

where now all squares are homotopy pullbacks of smooth higher stacks.
With this smooth geometirc structure in hand, one can then go further and ask for differential refinements:

the smooth Spin-principal bundle P → X might be equipped with a principal connection ∇, and if so, this
will be “modulated” by a morphism X → BSpinconn into the smooth moduli stack of Spin-connections.

One of our central theorems below in 7.1.2 is that the universal first fractional Pontryagin class can
be lifted to this situation to a differential smooth universal morphism of higher moduli stacks, which we
write 1

2 p̂1. Inserting this into the above diagram and then forming homotopy pullbacks as before yields
further differential refinements. It turns out that these now induce the Lagrangians of 3-dimensional Spin
Chern-Simons theory and of the WZW theory on Spin.

BU(1) //

��

String //

WZW
2−bundle

��

P̂

BU(1)
2−bundle

��

String
2−bundle

��

∗ // Spin //

��

WZW
Lagrangian

22P //

Spin
bundle

��

B2U(1)conn

��
∗ x // X

Spin
connection

22//

Chern−Simons
Lagrangian

,,

BStringconn
//

��

BSpinconn

1
2 p̂1

��
∗ // B3U(1)conn

.

One way to understand our developments here is as a means to formalize and then analyze this setup
and its variants and generalizations.
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1.4.2.5 Global effects and anomaly cancellation One may wonder to which extent the higher gauge
fields of section 1.1.2.1.2 may be motivated within physics. It turns out that an important class of examples
is required already by consistency of the quantum mechanics of higher dimensional fermionic (“spinning”)
quantum objects.

We indicate now how the full description of this quantum anomaly cancellation forces one to go beyond
classical Chern-Weil theory to a more comprehensive theory of higher differential cohomology.

Consider a smooth manifold X. Its tangent bundle TX is a real vector bundle of rank n = dimX. By the
classical theorem which identifies isomorphism classes of rank-n real vector bundles with homotopy classes
of continuous maps to the classifying space BO(n), for O(n) the orthogonal group,

VectBund(X)/∼ ' [X,BO] ,

we have that TX is classified by a continuous map which we shall denote by the same symbol

TX : X → BO(n) .

Notice that this map takes place after passing from smooth spaces to just topological spaces. A central
theme of our discussion later on are first smooth and then differential refinements of such maps.

A standard question to inquire about X is whether it is orientable. If so, a choice of orienation is, in terms
of this classifying map, given by a lift through the canonical map BSO(n) → BO(n) from the classifying
space of the special orthogonal group. Further, we may ask if X admits a Spin-structure. If so, a choice
of Spin-structure corresponds to a further lift through the canonical map BSpin(n) → BO(n) from the
classifying space of the Spin-group, which is the universal simply connected cover of the special orthogonal
group. (Details on these basic notions are reviewed at the beginning of ?? below.)

These lifts of structure groups are just the first steps through a whole tower of higher group extensions,
called the Whitehead tower of BO(n), as shown in the following picture. Here String is a topological group
which is the universal 3-connected cover of Spin, and then Fivebrane is the universal 7-connected cover of
String.

BFivebrane

��

fivebrane structure

BString

1
6p2

//

��

K(Z, 8) string structure

BSpin
1
2p1 //

��

K(Z, 4) spin structure

BSO
w2 //

��

K(Z2, 2) orientation structure

Σ
φ // X

TX //

77

??

CC

EE

BO
w1 // K(Z2, 1) Riemannian structure

.

Here all subdiagrams of the form

BĜ

��
BG

c // K(A,n)

are homotopy fiber sequences. This means that BĜ is the homotopy fiber of the characteristic map c and
Ĝ itself is the homotopy fiber of the looping Ωc of c. By the universal property of the homotopy pullback,
this implies the obstruction theory for the existence of these lifts. The first two of these are classical. For
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instance the orientation structure exists if the first Stiefel-Whitney class [w1(TX)] ∈ H1(X,Z2) is trivial.
Spin-structure exists if moreover the second Stiefel-Whitney class [w2(TX)] ∈ H2(X,Z2) is trivial.

Analogously, a string structure exists on X if moreover the first fractional Pontryagin class [ 1
2p1(TX)] ∈

H4(X,Z) is trivial, and if so, a fivebrane structure exists if moreover the second fractional Pontryagin class
[ 1
6p2(TX)] ∈ H8(X,Z) is trivial.

The names of these structures indicate their role in quantum physics. Let Σ be a d + 1-dimensional
manifold and assume now that also X is smooth. Then a smooth map φ : Σ → X may be thought of as
modelling the trajectory of a d-dimensional object propagating through X. For instance for d = 0 this would
be the trajectory of a point particle, for d = 1 it would be the worldsheet of a string, and for d = 5 the
6-dimensional worldvolume of a 5-brane. The intrinsic “spin” of point particles and their higher dimensional
analogs is described by a spinor bundle S → Σ equipped for each φ : Σ→ X with a Dirac operator Dφ∗TX

that is twisted by the pullback of the tangent bundle of X along φ. The fermionic part of the path integral
that gives the quantum dynamics of this setup computes the analog of the determinant of this Dirac operator,
which is an element in a complex line called the Pfaffian line of Dφ∗TX . As φ varies, these Pfaffian lines
arrange into a line bundle on the mapping space

{Pfaff(Dφ∗TX)}

��
{φ : Σ→ X} SmthMaps(Σ, X)

tgΣ(c) // K(Z, 2)

.

Since the result of the fermionic part of the path integral is therefore a section of this line bundle, the
resulting effective action functional can be a well defined function only if this line bundle is trivializable,
hence if its Chern class vanishes. Therefore the Chern class of the Pfaffian line bundle over the bosonic
configuration space is called the global quantum anomaly of the system. It is an obstruction to the existence
of quantum dynamics of d-dimensional objects with spin on X.

Now, it turns out that this Chern class is the transgression tgΣ(c) of the corresponding class c appearing
in the picture of the Whitehead tower above. Therefore the vanishing of these classes implies the vanishing
of the quantum anomaly.

For instance a choice of a spin structure on X cancels the global quantum anomaly of the quantum
spinning particle. Then a choice of string structure cancels the global quantum anomaly of the quantum
spinning string, and a choice of fivebrane structure cancels the global quantum anomaly of the quantum
spinning 5-brane.

However, the Pfaffian line bundle turns out to be canonically equipped with more refined differential
structure: it carries a connection. Moreover, in order to obtain a consistent quantum theory it needs to be
trivialized as a bundle with connection.

For the Pfaffian line bundle with connection still to be the transgression of the corresponding obstruction
class on X, evidently the entire story so far needs to be refined from cohomology to a differentially refined
notion of cohomology.

Classical Chern-Weil theory achieves this, in parts, for the first few steps through the Whitehead tower
(see [GHV73] for a classical textbook reference and [HoSi05] for the refinement to differential cohomology
that we need here). For instance, since maps X → BSpin classify Spin-principal bundles on X, and since Spin
is a Lie group, it is clear that the corresponding differential refinement is given by Spin-principal connections.
Write H1(X,Spin)conn for the equivalence classes of these structures on X.

For every n ∈ N there is a notion of differential refinement of Hn(X,Z) to the differential cohomology
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group Hn(X,Z)conn. These groups fit into square diagrams as indicated on the right of the following diagram.

H1
conn(X,Spin)

[ 1
2 p̂1] // H4

diff(X,Z)

curvature

xx
top. class

&&
Ω4

cl(X)

&&

H4(X,Z)

xx
H4

dR(X) ' H4(X,R)

.

As shown there, an element in Hn
diff(X,Z) involves an underlying ordinary integral class, but also a differential

n-form on X such that both structures represent the same class in real cohomology (using the de Rham
isomorphism between real cohomology and de Rham cohomology). The differential form here is to be thought
of as a higher curvature form on a higher line bundle corresponding to the given integral cohomology class.

Finally, the refined form of classical Chern-Weil theory provides differential refinements for instance of
the first fractional Pontryagin class [ 1

2p1] ∈ H4(X,Z) to a differential class [ 1
2 p̂1] as shown in the above

diagram. This is the differential refinement that under transgression produces the differential refinement of
our Pfaffian line bundles.

But this classical theory has two problems.

1. Beyond the Spin-group, the topological groups String, Fivebrane etc. do not admit the structure of
finite-dimensional Lie groups anymore, hence ordinary Chern-Weil theory fails to apply.

2. Even in the situation where it does apply, ordinary Chern-Weil theory only works on cohomology
classes, not on cocycles. Therefore the differential refinements cannot see the homotopy fiber sequences
anymore, that crucially characterized the obstruction problem of lifting through the Whitehead tower.

The source of the first problem may be thought to be the evident fact that the category Top of topological
spaces does not encode smooth structure. But the problem goes deeper, even. In homotopy theory, Top is
not even about topological structure. Rather, it is about homotopies and discrete geometric structure.

One way to make this precise is to say that there is a Quillen equivalence between the model category
structures on topological spaces and on simplicial sets.

Top
oo |−|

Sing
// sSet Ho(Top) ' Ho(sSet) .

Here the singular simplicial complex functor Sing sends a topological space to the simplicial set whose k-cells
are maps from the topological k-simplex into X.

In more abstract modern language we may restate this as saying that there is an equivalence

Top
Π

'
// ∞Grpd

between the homotopy theory of topological spaces and that of ∞-groupoids, exhibited by forming the
fundamental ∞-groupoid of X.

To break this down into a more basic statement, let Top≤1 be the subcategory of homotopy 1-types,
hence of these topological spaces for which only the 0th and the first homotopy groups may be nontrivial.
Then the above equivalence restricts to an equivalence

Top≤1
Π

'
// Grpd
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with ordinary groupoids. Restricting this even further to (pointed) connected 1-types, hence spaces for which
only the first homotopy group may be non-trivial, we obtain an equivalence

Top1,pt

π1

'
// Grp

with the category of groups. Under this equivalence a connected 1-type topological space is simply identified
with its first fundamental group.

Manifestly, the groups on the right here are just bare groups with no geometric structure; or rather with
discrete geometric structure. Therefore, since the morphism Π is an equivalence, also Top1 is about discrete
groups, Top≤1 is about discrete groupoids and Top is about discrete ∞-groupoids.

There is a natural solution to this problem. This solution and the differential cohomology theory that it
supports is the topic of this book.

The solution is to equip discrete ∞-groupoids A with smooth structure by equipping them with infor-
mation about what the smooth families of k-morphisms in it are. In other words, to assign to each smooth
parameter space U an ∞-groupoid of smoothly U -parameterized families of cells in A.

If we write A for A equipped with smooth structure, this means that we have an assignment

A : U 7→ A(U) =: Maps(U,A)smooth ∈ ∞Grpd

such that A(∗) = A.
Notice that here the notion of smooth maps into A is not defined before we declare A, rather it is defined

by declaring A. A more detailed discussion of this idea is below in 1.2.5.1.
We can then define the homotopy theory of smooth ∞-groupoids by writing

Smooth∞Grpd := LWFunct(SmoothMfdop, sSet) .

Here on the right we have the category of contravariant functors on the category of smooth manifolds, such as
the A from above. In order for this to inform this simple construction about the local nature of smoothness,
we need to formally invert some of the morphisms between such functors, which is indicated by the symbol
LW on the left. The set of morphisms W that are to be inverted are those natural transformation that are
stalkwise weak homotopy equivalences of simplicial sets.

We find that there is a canonical notion of geometric realization on smooth ∞-groupoids

| − | : Smooth∞Grpd
Π→∞Grpd

|−|→ Top ,

where Π is the derived left adjoint to the embedding

Disc :∞Grpd ↪→ Smooth∞Grpd

of bare∞-groupoids as discrete smooth∞-groupoids. We may therefore ask for smooth refinements of given
topological spaces X, by asking for smooth ∞-groupoids X such that |X| ' X.

A simple example is obtained from any Lie algebra g. Consider the functor exp(g) : SmoothMfdop → sSet
given by the assignment

exp(g) : U 7→ ([k] 7→ Ω1
flat,vertU ×∆k, g) ,

where on the right we have the set of differential forms on the parameter space times the smooth k-simplex
which are flat and vertical with respect to the projection U ×∆k → U .

We find that the 1-truncation of this smooth ∞-groupoid is the Lie groupoid

τ1 exp(g) = BG

that has a single object and whose morphisms form the simply connected Lie group G that integrates g. We
may think of this Lie groupoid also as the moduli stack of smooth G-principal bundles. In particular, this is
a smooth refinement of the classifying space for G-principal bundles in that

|BG| ' BG .

266



So far this is essentially what classical Chern-Weil theory can already see. But smooth ∞-groupoids now go
much further.

In the next step there is a Lie 2-algebra g = string such that its exponentiation

τ2 exp(string) = BString

is a smooth 2-groupoid, which we may think of as the moduli 2-stack of String-principal which is a smooth
refinement of the String-classifying space

|BString| ' BString .

Next there is a Lie 6-algebra fivebrane such that

τ6 exp(fivebrane) = BFivebrane

with
|BFivebrane| ' BFivebrane .

Moreover, the characteristic maps that we have seen now refine first to smooth maps on these moduli
stacks, for instance

1

2
p1 : BSpin→ B3U(1) ,

and then further to differential refinement of these maps

1

2
p̂1 : BSpinconn → B3U(1)conn ,

where now on the left we have the moduli stack of smooth Spin-connections, and on the right the moduli
3-stack of circle n-bundles with connection.

A detailed discussion of these constructions is below in 7.1.2.
In addition to capturing smooth and differential refinements, these constructions have the property that

they work not just at the level of cohomology classes, but at the level of the full cocycle ∞-groupoids. For
instance for X a smooth manifold, postcomposition with 1

2 p̂ may be regarded not only as inducing a function

H1
conn(X,Spin)→ H4

conn(X)

on cohomology sets, but a morphism

1

2
p̂(X) : H1(X,Spin)→ H3(X,B3U(1)conn)

from the groupoid of smooth principal Spin-bundles with connection to the 3-groupoid of smooth circle
3-bundles with connection. Here the boldface H = Smooth∞Grpd denotes the ambient ∞-topos of smooth
∞-groupoids and H(−,−) its hom-functor.

By this refinement to cocycle ∞-groupoids we have access to the homotopy fibers of the morphism 1
2 p̂1.

Before differential refinement the homotopy fiber

H(X,BString) // H(X,BSpin)
1
2 p1 // H(X,B3U(1)) ,

is the 2-groupoid of smooth String-principal 2-bundles on X: smooth string structures on X. As we pass to
the differential refinement, we obtain differential string structures on X

H(X,BStringconn) // H(X,BSpinconn)
1
2 p̂1 // H(X,B3U(1)conn) .

A cocycle in the 2-groupoid H(X,BStringconn)is naturally identified with a tuple consisting of
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• a smooth Spin-principal bundle P → X with connection ∇;

• the Chern-Simons 2-gerbe with connection CS(∇) induced by this;

• a choice of trivialization of this Chern-Simons 2-gerbe and its connection.

We may think of this as a refinement of secondary characteristic classes: the first Pontryagin curvature
characteristic form 〈F∇ ∧ F∇〉 itself is constrained to vanish, and so the Chern-Simons form 3-connection
itself constitutes cohomological data.

More generally, we have access not only to the homotopy fiber over the 0-cocycle, but may pick one cocycle
in each cohomology class to a total morphism H4

diff(X)→ H(X,B3U(1)conn) and consider the collection of
all homotopy fibers over all connected components as the homotopy pullback

1
2 p̂1Structw(X) //

��

H4
diff(X)

��
H(X,BSpinconn)

1
2 p̂1 // H(X,B3U(1)conn)

.

This yields the 2-groupoid of twisted differential string structure. These objects, and their higher analogs
given by twisted differential fivebrane structures, appear in background field structure of the heterotic string
and its magnetic dual, as discussed in [SSS09c].

These are the kind of structures that ∞-Chern-Weil theory studies.

1.4.3 The anomaly-free gauge coupling of the open string

As another example of the general phenomena of higher prequantum field theory, we close by briefly indicating
how the higher prequantum states of 3d Chern-Simons theory in codimension 2 reproduce the twisted Chan-
Paton gauge bundles of open string backgrounds, and how their transgression to codimension 1 reproduces
the cancellation of the Freed-Witten-Kapustin anomaly of the open string. This section draws from [FSS13a].

By the above, the Wess-Zumino-Witten gerbe wzw : G→ B2U(1)conn as discussed in section 1.4.1.2
may be regarded as the prequantum 2-bundle of Chern-Simons theory in codimension 2 over the circle.
Equivalently, if we consider the WZW σ-model for the string on G and take the limiting TQFT case obtained
by sending the kinetic term to 0 while keeping only the gauge coupling term in the action, then it is
the extended Lagrangian of the string σ-model: its transgression to the mapping space out of a closed
worldvolume Σ2 of the string is the topological piece of the exponentiated WZW σ-model action. For Σ2

with boundary the situation is more interesting, and this we discuss now.
The canonical representation of the 2-group BU(1) is on the complex K-theory spectrum, whose smooth

(stacky) refinement is given by BU := lim
−→n

BU(n) in H. On any component for fixed n the action of the

smooth 2-group BU(1) is exhibited by the long homotopy fiber sequence

U(1) −→ U(n)→ PU(n) −→ BU(1) −→ BU(n) −→ BPU(n)
ddn // B2U(1)

in H, in that ddn is the universal (BU(n))-fiber 2-bundle which is associated by this action to the universal
(BU(1))-2-bundle.18 Using the general higher representation theory in H as developed in [NSS12a], a local
section of the (BU(n))-fiber prequantum 2-bundle which is ddn-associated to the prequantum 2-bundle
wzw, hence a local prequantum 2-state, is, equivalently, a map

Ψ : wzw|Q −→ ddn

18 The notion of (BU(n))-fiber 2-bundle is equivalently that of nonabelian U(n)-gerbes in the original sense of Giraud,
see [NSS12a]. Notice that for n = 1 this is more general than then notion of U(1)-bundle gerbe: a G-gerbe has structure
2-group Aut(BG), but a U(1)-bundle gerbe has structure 2-group only in the left inlcusion of the fiber sequence BU(1) ↪→
Aut(BU(1))→ Z2.
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in the slice H/B2U(1), where ιQ : Q ↪→ G is some subspace. Equivalently (compare with the general discussion
in section 7.1.1), this is a map

(Ψ,wzw) : ιQ −→ ddn

in H(∆1), hence a diagram in H of the form

Q
Ψ //

� _

ιQ

��

BPU(n)

ddn
��

G
wzw

// B2U(1) .
s{

One finds that this equivalently modulates a unitary bundle on Q which is twisted by the restriction of wzw
to Q as in twisted K-theory (such a twisted bundle is also called a gerbe module if wzw is thought of in
terms of bundle gerbes [CBMMS02]). So

ddn ∈ H/B2U(1)

is the moduli stack for twisted rank-n unitary bundles. As with the other moduli stacks before, one finds a
differential refinement of this moduli stack, which we write

(ddn)conn : (BU(n)//BU(1))conn → B2U(1)conn ,

and which modulates twisted unitary bundles with twisted connections (bundle gerbe modules with connec-

tion). Hence a differentially refined state is a map Ψ̂ : wzw|Q → (ddn)conn in H/B2U(1)conn
; and this is

precisely a twisted gauge field on a D-brane Q on which open strings in G may end. Hence these are the
prequantum 2-states of Chern-Simons theory in codimension 2. Precursors of this perspective of Chan-Paton
bundles over D-branes as extended prequantum 2-states can be found in [Sc07, Rog11b].

Notice that by the above discussion, together the discussion in section 7.1.1, an equivalence

Ô : wzw
' // wzw

in H/B2U(1)conn
has two different, but equivalent, important interpretations:

1. it is an element of the quantomorphism 2-group (i.e. the possibly non-linear generalization of the
Heisenberg 2-group) of 2-prequantum operators;

2. it is a twist automorphism analogous to the generalized diffeomorphisms for the fields in gravity.

Moreover, such a transformation is locally a structure well familiar from the literature on D-branes: it is
locally (on some cover) given by a transformation of the B-field of the form B 7→ B + ddRa for a local
1-form a (this is the Hamiltonian 1-form in the interpretation of this transformation in higher prequantum
geometry) and its prequantum operator action on prequantum 2-states, hence on Chan-Paton gauge fields

Ψ̂ : wzw // (ddn)conn (by precomposition) is given by shifting the connection on a twisted Chan-Paton

bundle (locally) by this local 1-form a. This local gauge transformation data

B 7→ B + da , A 7→ A+ a ,

is familiar from string theory and D-brane gauge theory (see e.g. [Po01]). The 2-prequantum operator action
Ψ 7→ ÔΨ which we see here is the fully globalized refinement of this transformation.

The map Ψ̂ : (ιQ,wzw) → (ddn)conn above is the gauge-coupling part of the extended Lagrangian of
the open string on G in the presence of a D-brane Q ↪→ G. We indicate what this means and how it works.
Note that for all of the following the target space G and background gauge field wzw could be replaced by
any target space with any circle 2-bundle with connection on it.
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The object ιQ in H(∆1) is the target space for the open string. The worldvolume of that string is a

smooth compact manifold Σ with boundary inclusion ι∂Σ : ∂Σ→ Σ, also regarded as an object in H(∆1). A
field configuration of the string σ-model is then a map

φ : ιΣ → ιQ

in H(∆1), hence a diagram
∂Σ //� _

ι∂Σ

��

Q� _
ιQ

��
Σ

φ // G

in H, hence a smooth function φ : Σ → G subject to the constraint that the boundary of Σ lands on the
D-brane Q. Postcomposition with the background gauge field Ψ̂ yields the diagram

∂Σ //� _

ι∂Σ

��

Q� _

ιQ

��

Ψ̂ // (BU(n)//U(1))conn

Σ
φ // G

wzw
// B2U(1)conn .

Comparison with the situation of Chern-Simons theory with Wilson lines in section 1.4.1.5 shows that the
total action functional for the open string should be the product of the fiber integration of the top composite
morphism with that of the bottom composite morphisms. Hence that functional is the product of the surface
parallel transport of the wzw B-field over Σ with the line holonomy of the twisted Chan-Paton bundle over
∂Σ.

This is indeed again true, but for more subtle reasons this time, since the fiber integrations here are
twisted (we discuss this in detail below in 6.4.18): since Σ has a boundary, parallel transport over Σ does
not yield a function on the mapping space out of Σ, but rather a section of the line bundle on the mapping
space out of ∂Σ, pulled back to this larger mapping space.

Furthermore, the connection on a twisted unitary bundle does not quite have a well-defined traced
holonomy in C, but rather a well defined traced holonomy up to a coherent twist. More precisely, the
transgression of the WZW 2-connection to maps out of the circle as in section 1.4 fits into a diagram of
moduli stacks in H of the form

Maps(S1, (BU(n)//BU(1))conn)

Maps(S1,(ddn)conn)

��

tr holS1 // C//U(1)conn

��
Maps(S1,B2U(1)conn)

holS1 // BU(1)conn .

This is a transgression-compatibility of the form that we have already seen in section 1.4.1.2.
In summary, we obtain the transgression of the extended Lagrangian of the open string in the background

of B-field and Chan-Paton bundles as the following pasting diagram of moduli stacks in H (all squares are
filled with homotopy 2-cells, which are notationally suppressed for readability)
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FieldsOpenString(ι∂Σ) //

��

Maps(Σ, G)
exp(2πi

∫
Σ

[Σ,wzw])
//

Maps(ι∂Σ,G)

��

C//U(1)conn

��

Maps(S1, Q)
Maps(S1,ιQ) //

Maps(S1,Ψ̂)

��

Maps(S1, G)

Maps(S1,wzw)

))
Maps(S1, (BU(n)//BU(1))conn)

Maps(S1,(ddn)conn) //

tr holS1

��

Maps(S1,B2U(1)conn)

holS1

))
C//U(1)conn

// BU(1)conn

Here

• the top left square is the homotopy pullback square that computes the mapping stack Maps(ι∂Σ, ιQ)

in H(∆1), which here is simply the smooth space of string configurations Σ → G which are such that
the string boundary lands on the D-brane Q;

• the top right square is the twisted fiber integration of the wzw background 2-bundle with connection:
this exhibits the parallel transport of the 2-form connection over the worldvolume Σ with boundary
S1 as a section of the pullback of the transgression line bundle on loop space to the space of maps out
of Σ;

• the bottom square is the above compatibility between the twisted traced holonomy of twisted unitary
bundles and the trangression of their twisting 2-bundles.

The total diagram obtained this way exhibits a difference between two section of a single complex line bundle
on FieldsOpenString(ι∂Σ) (at least one of them non-vanishing), hence a map

exp

(
2πi

∫
Σ

[Σ,wzw]

)
· tr holS1([S1, Ψ̂]) : FieldsOpenString(ι∂Σ) −→ C .

This is the well-defined action functional of the open string with endpoints on the D-brane Q ↪→ G, charged
under the background wzw B-field and under the twisted Chan-Paton gauge bundle Ψ̂.

Unwinding the definitions, one finds that this phenomenon is precisely the twisted-bundle-part, due to
Kapustin [Ka99], of the Freed-Witten anomaly cancellation for open strings on D-branes, hence is the Freed-
Witten-Kapustin anomaly cancellation mechanism either for the open bosonic string or else for the open
type II superstring on Spinc-branes. Notice how in the traditional discussion the existence of twisted bundles
on the D-brane is identified just as some construction that happens to cancel the B-field anomaly. Here, in
the perspective of extended quantization, we see that this choice follows uniquely from the general theory of
extended prequantization, once we recognize that ddn above is (the universal associated 2-bundle induced
by) the canonical representation of the circle 2-group BU(1), just as in one codimension up C is the canonical
representation of the circle 1-group U(1).

1.4.4 Super p-branes propagating on super-spacetimes

We consider aspects of the traditional formulation super p-brane sigma models in the light of higher geometric
prequantum theory, following [FSS13b] and the classical referecnes given there.
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The “old brane scan” (see 1.4.4.2 below) contains all the branes of string/M-theory which do not have
tensor-multiplet fields on their worldvolume, equivalently those which may end on other brane, but do not
have themselves other branes ending on them. Below in 8.1.2 we consider the refinement of the theory
to higher geometry proper and find that here the old brane scan completes to the full “brane boquet” of
string/M-theory.

• 1.4.4.1 – Super-Minkowski spacetimes;

• 1.4.4.2 – The old brane scan;

• 1.4.4.3 – Brane charges and Supergravity BPS-states.

1.4.4.1 Super-Minkowski spacetimes We set up some basic notation concerning the super-translation-
and the super-Poincaré super Lie algebras, following [dAFr82]. For more background see [Fr99, lecture 3]
and [Po01, appendix B].

Write o(d−1, 1) for the Lie algebra of the Lorentz group in dimension d. If {ωab}a,b is the canonical basis
of Lie algebra elements, then the Chevalley-Eilenberg algebra CE(o(d − 1, 1)) is generated from elements
{ωab}a,b in degree (1, even) with the differential given by19 dCE ω

a
b := ωac ∧ ωcb. Next, write iso(d − 1, 1)

for the Poincaré Lie algebra. Its Chevalley-Eilenberg algebra in turn is generated from the {ωab} as before
together with further generators {ea}a in degree (1, even) with differential given by dCE e

a := ωab ∧ eb. Now
for N denoting a real spinor representation of o(d − 1, 1), also called the number of supersymmetries (see
for instance [Fr99, part 3]), write {Γa} for a representation of the Clifford algebra in this representation
and {Ψα}α for the corresponding basis elements of the spinor representation. There is then an essentially
unique symmetric Spin(d− 1, 1)-equivariant bilinear map from two spinors to a vector, traditionally written
in components as

(ψ1, ψ2)a := i
2ψΓaψ .

This induces the super Poincaré Lie algebra sisoN (d − 1, 1) whose Chevalley-Eilenberg super-dg-algebra is
generated from the generators as above together with generators {ψα} in degree (1, odd) with the differential
now defined as follows

dCE ω
a
b = ωac ∧ ωcb ,

dCE e
a = ωab ∧ eb + i

2ψ ∧ Γaψ ,

dCE ψ
α = 1

4ω
a
b ∧ Γabψ .

Here and in the following Γa1···ap denotes the skew-symmetrized product of the Clifford matrices and in
the above matrix multiplication is understood whenever the corresponding indices are not displayed. In
summary, the degrees are

deg(ea) = (1, even), deg(ωa) = (1, even), deg(ψα) = (1, odd), deg(dCE) = (1, even) .

Notice that this means that, for instance, ea1 ∧ ea2 = −ea1 ∧ ea2 and ea ∧ ψα = −ψα ∧ ea but ψα1 ∧ ψα2 =
+ψα

2 ∧ ψα1 .

Example 1.4.1. For Σ a supermanifold of dimension (d;N), a flat siso(d − 1, 1)-valued differential form
A : CE(siso(d − 1, 1) → Ω•dR(Σ), according to Def. 7.3.1 and subject to the constraint that the Rd;N -
component is induced from the tangent space of Σ (this makes it a Cartan connection) is

1. a vielbein field Ea := A(ea),

2. with a Levi-Civita connection Ωab := A(ωab) (graviton),

3. a spinor-valued 1-form field ψα := A(ψα) (gravitino),

19Here and in all of the following a summation over repeated indices is understood.
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subject to the flatness constraints which here say that the torsion of of the Levi-Civita connection is the super-
torsion τ = Ψ∧ΓaΨ∧Ea and that the Riemann curvature vanishes. This is the gravitational field content (for
vanishing field strength here, one can of course also consider non-flat fields) of supergravity on Σ, formulated
in first order formalism. By passing to L∞-extensions of siso this is the fomulation of supergravity fields
which seamlessly generalizes to the higher gauge fields that higher supergravities contain, including their
correct higher gauge transformations. This is the perspective on supergravity originating around the article
[dAFr82] and expanded on in the textbook [CaDAFr91]. Recognizing the “FDA”-language used in this book
as secretly being about Lie n-algebra homotopy theory (the “FDA”s are really Chevalley-Eilenberg algebras
super-L∞-algebras) allows one to uncover some natural and powerful higher gauge theory and geometric
homotopy theory hidden in traditional supergravity literature.

The super translation Lie algebra corresponding to the above is the quotient

Rd;N := siso(d− 1, 1)/o(d− 1, 1)

whose CE-algebra is as above but with the {ωab} discarded. We may think of the underlying super vector
space of Rd;N as N -super Minkowski spacetime of dimension d, i.e. with N supersymmetries. Regarded as a
supermanifold, it has canonical super-coordinates {xa, ϑα} and the CE-generators ea and ψα above may be
identified under the general equivalence CE(g) ' Ω•L(G) (for a (super-)Lie group G with (super-)Lie algebra
g) with the corresponding canonical left-invariant differential forms on this supermanifold:

ea = ddR x
a + ϑΓa ddR ϑ ,

ψα = ddR ϑ
α .

This defines a morphism θ : CE(Rd;N ) → Ω•|•(Rd;N ) to super-differential forms on super Minkowski space,
and via def. 7.3.1 this is the Maurer-Cartan form, example 7.3.7, on the supergroup Rd;N of supergranslations
As such {ea, ψα} is the canonical super-vielbein on super-Minkowski spacetime.

Notice that the only non-trivial piece of the above CE-differential remaining on CE(Rd;N ) is

dCE(Rd;N ) e
a = ψ ∧ Γaψ .

Dually this is the single non-trivial super-Lie bracket on Rd;N , the one which pairs two spinors to a vector.
All the exceptional cocycles considered in the following exclusively are controled by just this equation and
Lorentz invariance.

1.4.4.2 The old brane scan As usual, we write N for a choice of number of irreducible real (Ma-
jorana) representations of Spin(d − 1, 1), and N = (N+, N−) if there are two inequivalent chiral minimal
representations. For instance, two important cases are

d = 10 d = 11
N = (1, 0) = 16 N = 1 = 32

For 0 ≤ p ≤ 9 consider the dual bispinor element

µp := ea1 ∧ · · · ∧ eap ∧ (ψ ∧ Γa1···apψ) ∈ CE(Rd;N ) ,

where here and in the following the parentheses are just to guide the reader’s eye. Observe that the differential
of this element is of the form

dCE µp ∝ ea1 ∧ · · · ∧ eap−1 ∧ (ψΓa1···ap ∧ ψ) ∧ (ψ ∧ Γapψ) .

This is zero precisely if after skew-symmetrization of the indices, the spinorial expression

ψΓ[a1···ap ∧ ψ ∧ ψ ∧ Γap]ψ = 0
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vanishes identically (on all spinor components). The spinorial relations which control this are the Fierz iden-
tities. If this expression vanishes, then µp is a (p+ 2)-cocycle on Rd;N=1, Def. 7.3.3, hence a homomorphism
of super Lie n-algebras of the form

µp : Rd;N=1 // R[p+ 1] .

If this is the case then, by def. 7.3.8, this defines a σ-model p-brane propagating on Rd;N=1.

The combinations of d and p for which this is the case had originally been worked out in [AETW87]. The
interpretation in terms of super-Lie algebra cohomology was clearly laid out in [AzTo89]. See [Br10a, Br10b,
Br13] for a rigorous treatment and comprehensive classification for all N . The non-trivial cases (those where
µp is closed but not itself a differential) correspond precisely to the non-empty entries in the following table.

d\p 1 2 3 4 5 6 7 8 9

11
(1)

m2brane

10
(1,0)

stringhet

(1,0)
ns5branehet

9 (1)

8 (1)

7 (1)

6
(1,0)

littlestring
(1,0)

5 (1)

4 (1) (1)

3 (1)

This table is known as the “old brane scan” for string/M-theory. Each non-empty entry corresponds
to a p-brane WZW-type σ-model action functional of Green-Schwarz type. For (d = 10, p = 1) this is the
original Green-Schwarz action functional for the superstring [GrSch84] and, therefore, we write stringhet in
the respective entry of the table (similarly there are cocycles for type II strings, discussed in the following
sections), which at the same time is to denote the super Lie 2-algebra extension of R10,N=1 that is classified
by µp in this dimension, according to Remark 7.3.24:

stringhet

��
R10;N=(1,0) µ1 // R[2] .

This Lie 2-algebra has been highlighted in [BaH10].

Analogously we write m2brane for the super Lie 3-algebra extension of R11;N=1 classified by the nontrivial
cocycle µ2 in dimension 11 (this was called the supergravity Lie 3-algebra sugra11 in [SSS09a])

m2brane

��
R11;N=1 µ2 // R[3] ,

and so on.
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Remark 1.4.2. While it was a pleasant insight back then that so many of the extended objects of string/M-
theory do appear from just super-Lie algebra cohomology this way in the above table, it was perhaps just
as curious that not all of them appeared. Later other tabulations of string/M-branes were compiled, based
on less mathematically well defined physical principles [Duf08]. These “new brane scans” are what make
the above an “old brane scan”. But, following [FSS13b], we will discuss below in 8.1.2 that if only we allow
ourselves to pass from (super-)Lie algebra theory to the higher homotopy theory of (super-) Lie n-algebra
theory, then the old brane scan turns out to be part of a brane bouquet that accurately incorporates all the
information of the “new brane scan”, all the branes of the new brane scan, altogether with their intersection
laws, with their tensor multiplet field content and its correct higher gauge transformation laws.

1.4.4.3 Brane charges and Supergravity BPS-states Let Rd−1,1|N be a super-Minkowski spacetime
and (d,N, p) an item in the brane scan, i.e.

ωWZW = ψ ∧ E∧p ∧ ψ ∈ Ω2
cl(Rd−1,1|N )

a cocycle. Let then X be a super-spacetime equipped with a definite globalization ωXWZW ∈ Ω2(X) of ωWZW.
We may regard the pair (X,ωXWZW) as a pre-(p+ 1)-plectic supermanifold. As such it induces the higher

Poisson bracket super Lie (p+ 1)-algebra Pois(X,ωXWZW) of def. 1.3.158, def. 1.3.159, prop. 1.3.162.
If X is equipped with super-vielbein field E and with further relevant fields that solve the equations of

motion of supergravity in the relevant dimension, then these equations imply the existence of such definite
ωXWZW [BeSeTo86, BeSeTo87]. This means that isometries of X preserve ωXWZW, hence that their vector
fields (the Killing vectors and Killing spinors) are (p+ 1)-plectomorphisms for ωXWZW.

However, and this point is neglected in the literature, except for a brief indication in [Wi86, page 17],
definition of the WZW model globally on X requires a choice of prequantization of ωXWZW. This means that
the relevant symmetries are those isomeetries that are not just (p + 1)-plectomorphisms, but Hamiltonian
vector fields, in the sense of def. 1.3.156. Write

Isom(X) ↪→ VectHam(X)

for the inclusion of these.

Definition 1.4.3. Write BPS(X,ωXWZW) for the restriction of the current Lie (p+1)-algebra Pois(X,ωXWZW)
(def. 1.3.158, def.1.3.159, prop. 1.3.162) of ωXWZW to isometries, i.e. for the super L∞-algebra in the homo-
topy pullback diagram

BPS(X,ωXWZW) //

��

Pois(X,ωXWZW)

��
Isom(X) // VectHam(X)

.

Proposition 1.4.4. The 0-truncation of the super Lie (p + 1)-algebra BPS(X,ω) to a super-Lie algebra
τ0BPS(X,ω) is the central extension of the supersymmetry algebra of X by charges of p-branes wrapping
non-trivial cycles, as in [AGIT89].

Proof. This follows via remark 1.3.157 by corollary 6.4.205, which gives an extension

Hp
dR(X)→ τ0BPS(X,ω)→ Isom(X)

classified by ω(−,−). The elements in Hp
dR(X) are the p-brane charges as on [AGIT89, p.8]. �

Remark 1.4.5. It follows that X is a supergravity 1/k BPS-state (see e.g. [CaSm07]) if the odd dimension
of τ0BPS(X,ω) is 1/k times that of Rd−1,1|N .

This concerns the charges of the branes in the old brane scan, 1.4.4.2. The refinement of this statement to
the full brane bouquet needs a more comprehensive formulation in higher differential geometry. We consider
this below in 8.1.2.
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2 Concept

We discuss here aspects of homotopy-type theory, the theory of locally cartesian closed ∞-categories and of
∞-toposes, that we need in the following. We find it useful to think and speak of this without the hyphen,
due to theorem 3.1.9 below.

Much of this is a review of material available in the literature, we just add some facts that we will need
and for which we did not find a citation. The reader at least roughly familiar with this theory should skip
ahead to our main content, the discussion of cohesive ∞-toposes in 4. We will refer back to these sections
here as needed.

• 2.1 – Categories

• 2.2 – The method

2.1 Categories

The natural joint generalization of the concept of category and of homotopy type is that of ∞-category : a
collection of objects, such that between any ordered pair of them there is a homotopy type of morphisms.
We briefly survey key definitions and properties in the theory of ∞-categories.

• 2.1.1 – Dependent homotopy-types and Locally cartesian closed ∞-categories;

• 2.1.2 – Presentation by simplicial sets;

• 2.1.3 – Presentation by simplicially enriched categories.

2.1.1 Dependent homotopy-types and Locally cartesian closed ∞-categories

For the most basic notions of category theory see the first pages of [MacMoe92] or A.1 in [L-Topos].

Definition 2.1.1. A category C is called cartesian closed if it has Cartesian products X × Y of all objects
X,Y ∈ C and if there is for each X ∈ C a mapping space functor [X,−] : C −→ C, characterized by the fact
that there is a bijection of hom-sets

C(X ×A, Y ) ' C(A, [X,Z])

natural in the objects A,X, Y ∈ C. A category C is called locally cartesian closed if for each object X ∈ C
the slice category C/X is a cartesian closed category.

The main example of locally cartesian closed categories of interest here are toposes, to which we come
below in def. 3.1.3. It is useful to equivalently re-express local cartesian closure in terms of base change:

Proposition 2.1.2. If C is a locally cartesian closed category, def. 2.1.1, then for f : X −→ Y any
morphism in C there exists an adjoint triple of functors between the slice categories over X and Y (called
base change functors)

C/Γ1

f!
//

oo f∗

f∗ //
C/Γ2

,

where f∗ is given by pullback along f , f! is its left adjoint and f∗ its right adjoint. Conversely, if a category
C has pullbacks and has for every morphism f a left and right adjoint f! and f∗ to the pullback functor f∗,
then it is locally cartesian closed.

It turns out that base change may usefully be captured syntactically such as to constitute a flavor of
formal logic called constructive set theory or type theory [ML74]:

Definition 2.1.3. Given a locally cartesian closed category C, one says equivalently that
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• its internal logic is a dependent type theory ;

• it provides categorical semantics for dependent type theory

as follows:

• the objects of C are called the types;

• the objects in a slice C/Γ are called the types in context Γ or dependent on Γ, denoted

Γ ` X : Type

• a morphism ∗ → X (from the terminal object into any object X) in a slice CΓ is called a term of type
X in context Γ, and denoted

Γ ` x : X

or more explicitly
a : Γ ` x(a) : X(a);

• given a morphism f : Γ1 −→ Γ2 in C with its induced base change adjoint triple of functors between
slice categories from prop. 2.1.2

C/Γ1

f!
//

oo f∗

f∗ //
C/Γ2

then

– given a morphism (∗ → X) in C/Γ2
, hence a term Γ2 ` x : X, then its pullback by f∗ is denoted

by substitution of variables
a : Γ1 ` x(f(a)) : X(f(a)) ,

– given an object X ∈ CΓ1 its image f!(X) ∈ C/Γ2
is called the dependent sum of X along f and is

denoted as
Γ2 `

∑
f

X : Type ,

– given an object X ∈ CΓ1
its image f∗(X) ∈ C/Γ2

is called the dependent product of X along f and
is denoted as

Γ2 `
∏
f

X : Type ,

• the universal property of the adjoints (f! a f∗ a f∗) translates to evident rules for introducing and
for transforming terms of these dependent sum/product types, called term introduction and term
elimination rules.

We consider bundles and base change in more detail below in 5.1.2.
When this syntactic translation is properly formalized, it yields an equivalent description of locally

cartesian closed categories:

Proposition 2.1.4 ([See84, ClDy11]). There is an equivalence of 2-categories between locally cartesian closed
categories and dependent type theories.

Remark 2.1.5. Given any object X ∈ C/Γ, its diagonal X −→ X ×X regarded as an object of C/(Γ×X×X)

serves as the identity type of X, denoted

Γ, (x1, x2) : X ×X ` (x1 = x2) : Type .
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Namely given two terms x1, x2 : X, then a term Γ ` p : (x1 = x2) is as a morphism in C an element on
the diagonal of X ×X and in the type theory is a proof of equality of x1 and x2. If there is such a proof of
equality then it is unique, since the diagonal is always a monomorphism.

But consider now the case that C in addition carries the structure of a model category (see A.2 in [L-Topos]
for a review). Then there is for each X a path space object XI −→ X ×X. Using this as the categorical
semantics of identity types, instead of the plain diagonal X −→ X × X, means to make identity behave
instead like higher gauge equivalence in physics: there are then possibly many equivalences between two
terms of a given type, and many equivalences between equivalences, and so on. If C is moreover right proper
as a model category and such that its cofibrations are precisely its monomorphisms, then there exists a
variant of the dependent type theory of remark 2.1.3 reflecting these homotopy-theoretic identity types.
This is called dependent type theory with intensional identity types or, more recently, homotopy type theory
[UFP13]. At the same time, such a model category is a presentation for the homotopy-theoretic analogy of
a locally cartesian closed category: a locally cartesian closed (∞, 1)-category (see A.3 of [L-Topos]).

The following was maybe first explicitly suggested by [Jo08a] and in its refinement to ∞-toposes (see
theorem 3.1.9 below) in [Aw10]. A proof of the technical details involved appeared in [CiSh13, Shul12a]. For
a survey in our context see [Sc14b].

Proposition 2.1.6. Up to equivalence, the internal type theory of a locally Cartesian closed (∞, 1)-category
is homotopy type theory (without necessarily univalence) and conversely homotopy type theory (without nec-
essarily univalence) has categorical semantics in locally cartesian closed (∞, 1)-categories.

We now turn to description such ∞-categories “externally” in terms of simplicial sets and categories
enriched over simplicial sets. We briefly come back to the “inernal” perspective of homotopy type theory
below in 4.1.1.2.

2.1.2 Presentation by simplicial sets

Definition 2.1.7. An quasi-category is a simplicial set C such that all horns Λi[n] → C that are inner, in
that 0 < i < n, have an extension to a simplex ∆[n]→ C.

A vertex c ∈ C0 is an object, an edge f ∈ C1 is a morphism in C.
An morphism of quasi-categories f : C → D is a morphism of the underlying simplicial sets.

This definition is due [Jo08a]. Such quasi-categories turn out to have the right homotopy theory to qualify
as presentation of ∞-categories and we will usually abuse terminology and speak of them as ∞-categories
right away.

Remark 2.1.8. For C an ∞-category, we think of C0 as its collection of objects, and of C1 as its collection
of morphisms and generally of Ck as the collection of k-morphisms. The inner horn filling property can be
seen to encode the existence of composites of k-morphisms, well defined up to coherent (k + 1)-morphisms.
It also implies that for k > 1 these k-morphisms are invertible, up to higher morphisms. To emphasize this
fact one also says that C is an (∞, 1)-category. (More generally an (∞, n)-category would have k morphisms
for all k such that for k > n these are equivalences.)

The power of the notion of ∞-categories is that it supports the higher analogs of all the crucial facts of
ordinary category theory. This is a useful meta-theorem to keep in mind, originally emphasized by André
Joyal and Charles Rezk.

Fact 2.1.9. In general

• ∞-Category theory parallels category theory;

• ∞-Topos theory parallels topos theory.

More precisely, essentially all the standard constructions and theorems have their ∞-analogs if only we
replace isomorphism between objects and equalities between morphisms consistently by equivalences and
coherent higher equivalences in an ∞-category.
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Proposition 2.1.10. For C and D two ∞-categories, the internal hom of simplicial sets sSet(C,D) ∈ sSet
is an ∞-category.

Definition 2.1.11. We write Func(C,D) for this ∞-category and speak of the ∞-category of ∞-functors
between C and D.

Remark 2.1.12. The objects of Func(C,D) are indeed the ∞-functors from def. 2.1.7. The morphisms
may be called ∞-natural transformations.

Definition 2.1.13. The opposite Cop of an ∞-category C is the ∞-category corresponding to the opposite
of the corresponding sSet-category.

Definition 2.1.14. Let KanCplx ⊂ sSet be the full subcategory of sSet on the Kan complexes, regarded
naturally as an sSet-enriched category, in fact a Kan-complex enriched category. Below in 2.1.3 we recall the
homotopy coherent nerve construction Nh that sends a Kan-complex enriched category to an ∞-category.
We say that

∞Grpd := NhKanCplx

is the ∞-category of ∞-groupoids.

Definition 2.1.15. For C an ∞-category, we write

PSh∞(C) := Func(Cop,∞Grpd)

and speak of the ∞-category of ∞-presheaves on C.

The following is the ∞-category theory analog of the Yoneda lemma.

Proposition 2.1.16. For C an ∞-category, U ∈ C any object, j(U) ' C(−, U) : Cop → ∞Grpd an ∞-
presheaf represented by U we have for every ∞-presheaf F ∈ PSh∞(C) a natural equivalence of ∞-groupoids

PSh∞(C)(j(U), F ) ' F (U) .

From this derives a notion of∞-limits and of adjoint∞-functors and they satisfy the expected properties.
This we discuss below in 5.1.1.

2.1.3 Presentation by simplicially enriched categories

A convenient way of handling∞-categories is via sSet-enriched categories: categories which for each ordered
pair of objects has not just a set of morphisms, but a simplicial set of morphisms (see [Ke82] for enriched
category theory in general and section A of [L-Topos] for sSet-enriched category theory in the context of
∞-category theory in particular):

Proposition 2.1.17. There exists an adjunction between simplicially enriched categories and simplicial sets

(| − | a Nh) : sSetCat
Nh

//
oo |−|

sSet

such that

• if S ∈ sSetCat is such that for all objects X,Y ∈ S the simplicial set S(X,Y ) is a Kan complex, then
Nh(S) is an ∞-category;

• the unit of the adjunction is an equivalence of ∞-categories (see def. 2.1.19 below).

This is for instance prop. 1.1.5.10 in [L-Topos].
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Remark 2.1.18. In particular, for C an ordinary category, regarded as an sSet-category with simplicially
constant hom-objects, NhC is an ∞-category. A functor C → D is precisely an ∞-functor NhC → NhD. In
this and similar cases we shall often notationally suppress the Nh-operation. This is justified by the following
statements.

Definition 2.1.19. For C an ∞-category, its homotopy category Ho(C) (or HoC) is the ordinary category
obtained from |C| by taking connected components of all simplicial hom-sets:

HoC(X,Y ) = π0(|C|(X,Y )) .

A morphism f ∈ C1 is called an equivalence if its image in Ho(C) is an isomorphism. Two objects in C
connected by an equivalence are called equivalent objects.

Definition 2.1.20. An ∞-functor F : C → D is called an equivalence of ∞-categories if

1. It is essentially sujective in that the induced functor Ho(f) : Ho(C)→ Ho(D) is essentially surjective;

2. and it is full and faithful in that for all objects X,Y the induced morphism fX,Y : |C|(X,Y ) →
|D|(X,Y ) is a weak homotopy equivalence of simplicial sets.

For C an ∞-category and X, Y two of its objects, we write

C(X,Y ) := |C|(X,Y )

and call this Kan complex the hom-∞-groupoid of C from X to Y .
The following assertion guarantees that sSet-categories are indeed a faithful presentation of∞-categories.

Proposition 2.1.21. For every ∞-category C the unit of the (| − | a Nh)-adjunction from prop. 2.1.17 is
an equivalence of ∞-categories

C
'→ Nh|C| .

This is for instance theorem 1.1.5.13 together with remark 1.1.5.17 in [L-Topos].

Definition 2.1.22. An ∞-groupoid is an ∞-category in which all morphisms are equivalences.

Proposition 2.1.23. ∞-groupoids in this sense are precisely Kan complexes.

This is due to [Jo02]. See also prop. 1.2.5.1 in [L-Topos].
A convenient way of constructing ∞-categories in terms of sSet-categories is via categories with weak

equivalences.

Definition 2.1.24. A category with weak equivalences (C,W ) is a category C equipped with a subcategory
W ⊂ C which contains all objects of C and such that W satsifies the 2-out-of-3 property : for every commuting
triangle

y

��
x

??

// z

in C with two of the three morphisms in W , also the third one is in W .

Definition 2.1.25. The simplicial localization of a category with weak equivalences (C,W ) is the sSet-
category

LWC ∈ sSetCat

(or LC for short, when W is understood) given as follows: the objects are those of C; and for X,Y ∈ C
two objects, the simplicial hom-set LC(X,Y ) is the inductive limit over n ∈ N of the nerves of the following
categories:
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• objects are equivalence classes of zig-zags of length n of morphisms

X oo
'

K1
// K2
oo ' · · · // Y

in C, such that the left-pointing morphisms are in W ;

• morphisms are equivalence classes of transformations of such zig-zags

K1

'

��

'

~~

// K2

'

��

oo ' · · ·

��
X Y

K ′1

'
``

// K ′2 oo
' · · ·

AA

,

such that the vertical morphisms are in W ;

• subject to the equivalence relation that identifies two such (transformations of) zig-zags if one is
obtained from the other by discarding identity morphisms and then composing consecutive morphisms.

This simplicial “hammock localization” is due to [DwKa80a].

Proposition 2.1.26. Let (C,W ) be a category with weak equivalences and LC be its simplicial localization.
Then its homotopy category in the sense of def. 2.1.19 is equivalent to the ordinary homotopy category
Ho(C,W ) (the category obtained from C by universally inverting the morphisms in W ):

HoLWC ' Ho(C,W ) .

A convenient way of controlling simplicial localizations is via sSetQuillen-enriched model category struc-
tures (see section A.2 of [L-Topos] for a good discussion of all related issues).

Definition 2.1.27. A model category is a category with weak equivalences (C,W ) that has all limits and
colimits and is equipped with two further classes of morphisms, Fib,Cof ⊂ Mor(C) – the fibrations and
cofibrations – such that (Cof,Fib ∩W ) and (Cof ∩W,Fib) are two weak factorization systems on C. Here
the elements in Fib ∩W are called acyclic fibrations and those in Cof ∩W are called acyclic cofibrations.
An object X ∈ C is called cofibrant if the canonical morphism ∅ → X is a cofibration. It is called fibrant if
the canonical morphism X → ∗ is a fibration.

A Quillen adjunction between two model categories is a pair of adjoint functors between the underlying
categories, such that the right adjoint preserves fibrations and acyclic fibrations, which equivalently means
that the left adjoint preserves cofibrations and acyclic cofibrations.

Remark 2.1.28. The axioms on model categories directly imply that every object is weakly equivalent to
a fibrant object, and to a cofibrant objects and in fact to a fibrant and cofibrant objects.

Example 2.1.29. The category of simplicial sets carries a model category structure, here denoted sSetQuillen,
whose weak equivalences are the weak homotopy equivalences, cofibrations are the monomorphisms, and
fibrations and the Kan fibrations.

Definition 2.1.30. Let A,B,C be model categories. Then a functor

F : A×B → C

is a left Quillen bifunctor if

1. it preserves colimits separately in each argument;
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2. for i : a → a′ and j : b → b′ two cofibrations in A and in B, respectively, the canonical induced
morphism

F (a′, b)
∐
F (a,b)

F (a, b′)→ F (a′, b′)

is a cofibration in C and is in addition a weak equivalence if i or j is.

Remark 2.1.31. In particular, for F : A×B → C a left Quillen bifunctor, if a ∈ A is cofibrant then

F (a,−) : B → C

is an ordinary left Quillen functor if F is a left Quillen bifunctor, as is

F (−, b) : A→ C

for b cofibrant.

Definition 2.1.32. A monoidal model category is a category equipped both with the structure of a model
category and with the structure of a monoidal category, such that the tensor product functor of the monoidal
structure is a left Quillen bifunctor, def. 2.1.30, with respect to the model category structure.

Example 2.1.33. The model category sSetQuillen is a monoidal model category with respect to its Cartesian
monoidal structure.

Definition 2.1.34. For V a monoidal model category, an V-enriched model category is a model category
equipped with the structure of an V-enriched category which is also V-tensored and -cotensored, such that
the V-tensoring functor is a left Quillen bifunctor, def. 2.1.30.

Remark 2.1.35. An sSetQuillen-enriched model category is often called a simplicial model category. Notice
that, while entirely standard, this use of terminology is imprecise: first, not every simplicial object in
categories is a sSet-enriched category, and second, there are other and inequivalent model category structure
on sSet that make it a monoidal model category with respect to its Cartesian monoidal structure.

Definition 2.1.36. For C an (sSetQuillen-enriched) model category write

C◦ ∈ sSetCat

for the full sSet-subcategory on the fibrant and cofibrant objects.

Proposition 2.1.37. Let C be an sSetQuillen-enriched model category. Then there is an equivalence of
∞-categories

C◦ ' LC .

This is corollary 4.7 with prop. 4.8 in [DwKa80b].

Proposition 2.1.38. The hom-∞-groupoids (NhC
◦)(X,Y ) are already correctly given by the hom-objects

in C from a cofibrant to a fibrant representative of the weak equivalence class of X and Y , respectively.

In this way sSetQuillen-enriched model category structures constitute particularly convenient extra struc-
ture on a category with weak equivalences for constructing the corresponding ∞-category.

In terms of the presentation of ∞-categories by simplicial categories, 2.1.3, adjoint ∞-functors are pre-
sented by simplicial Quillen adjunctions, def. 2.1.27, between simplicial model categories: the restriction
of a simplicial Quillen adjunction to fibrant-cofibrant objects is the sSet-enriched functor that presents the
∞-derived functor under the model of ∞-categories by simplicially enriched categories.
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Proposition 2.1.39. Let C and D be simplicial model categories and let

(L a R) : C
oo L

R
// D

be an sSet-enriched adjunction whose underlying ordinary adjunction is a Quillen adjunction. Let C◦ and
D◦ be the ∞-categories presented by C and D (the Kan complex-enriched full sSet-subcategories on fibrant-
cofibrant objects). Then the Quillen adjunction lifts to a pair of adjoint ∞-functors

(LL a RR) : C◦
oo

// D◦

On the decategorified level of the homotopy categories these are the total left and right derived functors,
respectively, of L and R.

This is [L-Topos], prop 5.2.4.6.
The following proposition states conditions under which a simplicial Quillen adjunction may be detected

already from knowing of the right adjoint only that it preserves fibrant objects (instead of all fibrations).

Proposition 2.1.40. If C and D are simplicial model categories and D is a left proper model category, then
for an sSet-enriched adjunction

(L a R) : C
oo

// D

to be a Quillen adjunction it is already sufficient that L preserves cofibrations and R preserves fibrant objects.

This appears as [L-Topos, cor. A.3.7.2].
We will use this for finding simplicial Quillen adjunctions into left Bousfield localizations of left proper

model categories: the left Bousfield localization preserves the left properness, and the fibrant objects in the
Bousfield localized structure have a good characterization: they are the fibrant objects in the original model
structure that are also local objects with respect to the set of morphisms at which one localizes. Therefore
for D the left Bousfield localization of a simplicial left proper model category E at a class S of morphisms,
for checking the Quillen adjunction property of (L a R) it is sufficient to check that L preserves cofibrations,
and that R takes fibrant objects c of C to such fibrant objects of E that have the property that for all f ∈ S
the derived hom-space map RHom(f,R(c)) is a weak equivalence.

2.2 The method

Based on the archetypical example of an ∞-category, the ∞-category ∞Grpd of ∞-groupoids/homotopy
types (def. 2.1.14), it makes sense to think of an∞-category generally as a system of homotopy types or type
system, for short.

The concept of type system H provides a setting for homotopy-types to be, but lacks as yet any deter-
mination of further qualities these types may have.

For instance while it is common to think of bare ∞-groupoids as being presented by topological spaces,
(via the famous equivalence ∞Grpd ' LwheTop which we recall below in 6.2 ) there is not actually any
intrinsic continuous topological quality left on objects X ∈ ∞Grpd, whereas in a richer ∞-topos such as
ETop∞Grpd := Sh∞(TopMfd) there is (this we discuss below in 6.3). In the latter one has differing objects
such as on the one hand the topological circle S1 ∈ TopMfd ↪→ ETop∞Grpd as well as on the other hand the

homotopy-theoretic circle ∗
∐
∗
∐
∗
∗ ∈ ∞Grpd ↪→ ETop∞Grpd. That the former has a topological geometric

quality which the latter lacks is reflected by the operation
∫

of forming the shape of a topological space. One

has
∫
S1 '

∫ (∗ ∐
∗
∐
∗
∗
)
' ∗

∐
∗
∐
∗
∗, exhibiting that projecting out from S1 all but its quality of pure shape

makes it equivalent to the homotopy-theoretic circle, which itself is already pure shape. Hence the existence
of a nontrivial shape operation on types is what reflects that types may carry a nontrivial topological (or
more generally: cohesive) quality in the first place.

We now discuss a general method of axiomatizing determinations of qualities on types along these lines.
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• 2.2.1 – Modality;

• 2.2.2 – Moments;

• 2.2.3 – Oppositions;

• 2.2.4 – Determinate negation;

• 2.2.5 – Progression

2.2.1 Modality

A central insight of traditional formal logic is, when generalized from propositions to types, that such
modalities are formalized by monads on the type system [Law70a, Gol81, Mog91, Kob97, Shul12b, LiSh15],
traditionally called modalities or modal operators:

Definition 2.2.1. A modality © on a type system H is a monad (an ∞-monad) © : H −→ H. A co-
modality � is a co-monad (∞-comonad) � : H −→ H. We say a ©-modal type (or �-co-modal type) is a
type equipped with the structure of a (co-)algebra over this monad.

(In practice we often suppress the “co-” terminologically, as it is determined by the context.)

Remark 2.2.2. The general theory of∞-monads on∞-categories is discussed in section 6.2 of [L-Alg] and in
[RiVe13]. By the homotopy monadicity theorem (theorem 6.2.2.5 of [L-Alg] and def. 6.1.15 with section 7 of
[RiVe13]) every∞-monad© : H→ H arises as the endomorphism monad© ' R ◦L of some∞-adjunction
(L a R) : H ↔ D for some ∞-category D. By theorem 5.4.14 in [RiVe13] ∞-adjunctions have the higher
coherence data of their unit (and counit) uniquely (up to a contractible homotopy type of choices) induced
from the underlying adjunction in the homotopy 2-categories. Therefore a choice of ∞-adjunction (L a R)
for © re-encodes the coherence data of © as a homotopy coherent monoid in the monoidal ∞-category
End(H) equivalently as the choice of ∞-category D and the single datum of an ∞-adjunction unit, see also
remark 6.2.0.7 in [L-Alg]. This allows to present∞-monads as ordinary monads on the homotopical fibration
category underlying H, see [Hess10] for homotopy monadicity discussed in homotopical (model) categories
this way. All ∞-monads that we consider below arise as endomorphism monads of a given ∞-adjunction.

The concept of modality originates historically in the desire to equip propositional logic with extra struc-
ture that allows to formalize the informal idea of propositions being “possibly true” and being “necessarily
true” in all cases (“in all possible worlds”). Using type dependency we may accurately formalize this idea
as follows.

Example 2.2.3. For H a locally Cartesian closed ∞-category, def. 2.1.1, and for ω : W −→ W0 any
morphism with induced base change adjoint triple (def. 2.1.3)

H/W

∑
ω //

oo ω∗∏
ω

//
H/W0

then we say that the induced pair of adjoint (co-)monads(
♦
ω
a �
ω

)
:=

((
ω∗
∑
ω

)
a

(
ω∗
∏
ω

))

are the modalities of possibility and of necessity, respectively, with respect to ω.
If here ω is a 1-epimorphism, def. 5.1.64, then it exhibits an equivalence relation (by theorem 5.1.123),

the relation for which w1 ∼ w2 is given by ω(w1) ' ω(w2). In this case we have in the internal language of
H that
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• ♦
ω
P is inhabited over w precisely if there exists w̃ in the same equivalence class over which it is inhabited;

• �
ω
P is inhabited over w preciely if it is inhabited for all w̃ in the same equivalence class.

The standard model of this situation in sets is the traditional “possible worlds semantics” of modal logic
with relation on the “possible worlds”.

Remark 2.2.4. Conversely, when considering the system of these adjoint modalities ♦
ω
a �

ω
as ω ranges

over all morphisms in H, then we may think of this as providing a modal perspective on local Cartesian
closure. Following [Law91] we might hence speak of locally Cartesian closed ∞-categories as “categories of
necessity and possibility”. Or, if we feel poetic and declare that the union of the opposites of necessity and
possibility is actuality, then we might speak of “categories of actuality”. In 3.2 we adopt this perspective
also for dependent linear homotopy-theory.

Another basic example that plays a key role is the following.

Definition 2.2.5. Given an ∞-category C with terminal object ∗ and coproducts, then its maybe-modality
∗/ is the ∞-monad given by

∗/ : X 7→ X t ∗ .

Here our notation reflects the following basic fact.

Proposition 2.2.6. The maybe-modal types, hence the algebras in C over the maybe-monad, def. 2.2.5, are
equivalently the pointed objects; the category of algebras over the maybe monad is the co-slice C∗/ under the
point.

Proof. That these algebras are the pointed objects is already equivalent to the statement of the unit
axiom for algebras over the maybe-monad. Then action axiom is then automatically satisfied. �

Proposition 2.2.7. Let C be a closed symmetric monoidal category with finite limits and colimits and
reflexive coequalizers. Write ∗ ∈ C for its terminal object and write C∗/ for the category of maybe-modal
types, def. 2.2.5, hence by prop. 2.2.6 of pointed objects, prop. 2.2.6, in C. The maybe monad ∗/ is a
commutative monoidal monad [Se12] and hence canonically induces the structure of a monoidal category on
C∗/.

Proposition 2.2.8. The canonical tensor product induced on the maybe-modal types C∗/ is the smash
product “∧” of pointed objects. For E1, E2 ∈ C∗/ this operation sends these to the following pushout of
coproducts and tensor products formed in C

E1 ∧ E2 := ∗
∐

(E1⊗∗)
∐

(∗⊗E2)

(E1 ⊗ E2)

and this makes (C∗/,∧, ∗
∐
∗) a closed symmetric monoidal category for the internal hom of pointed mor-

phisms.

Proof. The canonically induced monoidal structure on the category of algebras of a commutative monad
is often said to go back to [Kock86], where indeed the closed structure is discussed, from which the tensor
may be obtained as the adjunct in suitable circumstances. The monoidal structure appears in print ex-
plicitly in [Se12] (section 2.2 and theorem 2.5.5). Inserting the maybe-monad into the coequalizer formula
there straightforwardly yields the pushout diagram defining the smash product as it appears for instance in
construction 4.19 and proposition 4.20 of [EM07]. �
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2.2.2 Moments

When a (co-)monad is idempotent in that applying it twice is equivalent to applying it just once, hence if
it behaves as a projection, then it may be thought of as projecting out from any type some pure quality or
moment that it has. Traditionally this is called a closure operator :

Definition 2.2.9. A moment © is an idempotent modality on H, def. 2.2.1, a co-moment � is an idempotent
co-modality. Given a moment © or co-moment � write H©,H� ↪→ H for the full subcategory of its modal
types.

See [Shul12b, Shul15a] and section 7.7. of [UFP13] for modalities (moments) in homotopy type theory.
Notice that:

Proposition 2.2.10. For � a moment (© a co-moment), def. 2.2.9, then its modal types X, def.2.2.1, are
equivalently those for which the unit X → �X (the co-unit ©X → X) is an equivalence. Moreover, these
(co-)units exhibit the (co-)modal types as forming a reflective subcategory

H©
oo
� � // H ,

resp. co-reflective subcategory
H� oo
� � //

H .

Such operations on the global type system also induce moments relative to a base type:

Proposition 2.2.11. Let© be a moment, def. 2.2.9, which preserves homotopy fiber produces over© modal

types. Then for X ∈ H there is a moment ©X on H/X given by sending (E
p→ X) to the left morphism in

the pullback diagram

©XE //

��

©E

©p
��

X // ©X

,

where the bottom morphism is the ©-unit. Moreover, the universal factorization of p through this pullback

E

p
##

// ©X(E) //

��

©E

©p
��

X // ©X

is by a ©-equivalence E → ©XE, and this decomposition exhibits an orthogonal factorization system
[L-Topos, 5.2.8] (©-equivalences / ©X-modal morphisms) in H.

This is essentially observed in [CJKP97].
Proof. The factorization is as given in the statement. It remains to check orthogonality.

Let therefore
A //

��

X

��
B // Y

be any commuting diagram in H, where the left morphism is a ©-equivalence and the right morphism is
©X -modal. Then, by assumption, there exists a pullback diagram on the right in

A //

��

X

��

//©X

��
B // Y //©Y

.
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By the naturality of the ©-unit, the outer rectangle above is equivalent to the outer rectangle of

A //

��

©A

'
��

// ©X

��
B // ©B // ©Y

,

where now, again by assumption, the middle vertical morphism is an equivalence. Therefore there exists
an essentially unique lift in the right square of this diagram. This induces a lift in the outer rectangle.
By the universality of the

∫
-unit, such lifts factor essentially uniquely through

∫
B and hence this lift, too,

is essentially unique. Finally by the universal property of the pullback square on the right, this gives the
required essentially unique lift on the left of

A //

��

X

��

//©X

��
B

??

// Y //©Y

.

�

2.2.3 Opposition

One way of further determining a given pure quality is to assert an opposite pure quality, to contrast with. A
formalization of this is the concept of a reflection and a co-reflection of types of pure quality jointly existing
in two different ways, either as an adjoint triple of the form

H© ' H�
oo ©
� �

i�'i© //
oo

�

H

or of the form

H© ' H�

� � i� //
oo ©'�� �

i©
//
H

This is captured by the following

Definition 2.2.12. We say a moment © and co-moment � are dual or opposite if they are adjoint

© a � or � a ©

such that their categories of modal types are canonically equivalent in a manner exhibited by the above
adjoint triples.

Remark 2.2.13. The perspective of def. 2.2.12 has been highlighted in [Law91], where it is proposed (p.
7) that adjunctions of this form usefully formalize “many instances of the Unity and Identity of Opposites”
that control Hegelian metaphysics [He1841].

When we give such a duality a name D, we write

D : © a � or D : � a ©

respectively and may call D the unity of the two opposites that it related by adjunction.
Given opposite moments © a � or � a ©, every type X sits naturally in a transformation

�X −→ X −→©X

between its two dual moments. This expresses how X is decomposed into these two moments.
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2.2.4 Determinate negation

If �X is a pure moment found inside X, then it makes sense to ask for its complement or negative.

Definition 2.2.14. The negative � of a co-moment � is the homotopy cofiber of its comparison morphism

�X := cofib (�X −→ X) .

The intuitive meaning suggests to ask whether this kind of negation of determinations is faithful in that
there is no �-moment left in the negative �, hence whether

��X ' ∗ .

In general there is no reason for this to be the case. But if � also has an opposite in the sense of def. 2.2.12,
then one of the two opposite moments is left adjoint, hence preserves cofibers, and then a little more may
be said.

Consider the case of an opposition of the form © a �. Then both © and � express the same pure
moment, just opposite ways of projecting onto it. Therefore in this situation it makes sense to alternatively
ask that there is no ©-moment left in the �-moment:

Definition 2.2.15. Given a unity of opposite moments © a �, def. 2.2.12, we say that it has determinate
negation if � and © both restrict to homotopy 0-types (def. 5.1.47) and such that on these

1. ©∗ ' ∗;

2. � −→© is epi.

Proposition 2.2.16. For opposite moments © a � with determinate negation, def. 2.2.15, then on homo-
topy 0-type there is no ©-moment left in the �-moment, in that

©�X ' ∗

naturally for all X ∈ H.

Proof. Given that ©, being a left adjoint, preserves colimits, hence cofibers, the first condition in def.
2.2.15 gives that

©�X =©cofib(�X → X) ' cofib(�X →©X) .

Now the second condition and the fact that epiness is preserved by pushout say that this result receives an
epimorphism from the terminal object. But this forces it to be the terminal obect itself. �

This proof of prop. 2.2.16 crucially depends on the restriction to 0-types. At the other extreme, on stable
types the intuition that ©-moment is complementary to �-moment is verified in the following sense.

Proposition 2.2.17. Given opposite moments © a � as in def. 2.2.12, then every type X naturally sits in
a hexagonal diagram of the form

©X //

  

�X

##
©�X

;;

##

X

>>

!!

©�X

�X //

==

©X

;;

,

and if X is stable, then this hexagon is homotopy exact in the following sense:
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1. both squares are homotopy Cartesian, hence are fracture squares;

2. the boundary sequences are long homotopy fiber sequences.

This was highlighted in [BNV13]. See below prop. 6.1.26.

Remark 2.2.18. Since on stable types Cartesian product is direct sum, we may write the exactness of the
right square in prop. 2.2.17 as

X ' ©X ⊕
©�X

�X ,

making notationally manifest how X decomposes into its pure ©-moment and its pure �-moment.

2.2.5 Progression

The principle of further determining a moment by positing opposite (adjoint) moments may be iterated.
Given an opposition © a � with © the left adjoint moment, we may ask that © also participates as the
right adjoint of another opposition ♦ a ©, hence that there is a total adjoint tripe

♦ a

⊥

©

⊥

© a �

.

We might think of this as a higher order opposition, where the unity of the opposite moments at the
bottom is itself opposed by the unity of the opposite moments on top.

In principle such progression of moments could be considered indefinitely, but the existence of each
opposition is a strong condition and one finds that there are hardly non-degenerate models of longer sequences
of oppositions.

But instead of finding further opposite moments directly, it happens that they appear after previous
oppositions are being lifted.

Definition 2.2.19. A resolution of an opposition ©1 a �1, def. 2.2.12, is another opposition ©2 a �2

such that the types of pure quality for the first are also types of pure quality for the latter in that there are
natural equivalences

©2©1 X ' ©1X

�2�1X ' �1X ;

as well as either
©2�1X ' �1X

or
�2©1 X ' ©1X .

We denote such a situation by inclusion signs as

©2 a

∨

�2

∨

©1 a �1

.

Again, this has been suggested by William Lawvere.
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Example 2.2.20. In a category with initial object ∅ and terminal object ∗ there exist canonical moments
given by the (co-)monads which are constant on these two objects. These are in opposition and this opposition
is lifted by the trivial opposition

id a

∨

id

∨

∅ a ∗

.

Below in 4 we see how by a sequence of intermediate resolutions and oppositions this develops to a rich
progression of modalities that are considerably expressive, 5.

The negative of ∅, according to def. 2.2.14, is the maybe monad, def. 2.2.5:

∅ ' ∗/ .

Thus, by prop. 2.2.6, the negated-nothing modal types, according to def. 2.2.1, are the pointed (thus
non-empty) objects. Below in 6.1.2 we consider a generic pointed object and show, in 6.1.3, that together
with the progression of cohesive modalities, 4.1, this induces the theory of twisted differential generalized
cohomology.
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3 Essence

We discuss here those categories, 2.1 which are reflected in themselves via a universe object. These are the
homotopy toposes or∞-toposes. This is the essence of all further formalization. Our discussion merely serves
to review existing theory and establish our notation.

3.1 id a id – Reflection and Appearance

The natural context for discussing the geometry of spaces that are locally modeled on test spaces in some
category C (and equipped with a notion of coverings) is the category called the sheaf topos Sh(C) over C
[Joh02]. Analogously, the natural context for discussing the higher geometry of such spaces is the∞-category
called the ∞-sheaf topos H = Sh∞(C).

The theory of∞-toposes has been given a general abstract formulation in [L-Topos], using the∞-category
theory introduced by [Jo08a] and building on [Re05] and [ToVe02]. One of the central results proven there
is that the old homotopy theory of simplicial presheaves, originating around [Br73] and developed notably
in [Jard87] and [Dug01], is indeed a presentation of ∞-topos theory.

• 3.1.1 – Abstract ∞-category theoretic characterization

• 3.1.2 – Homotopy-type theory with type universes

• 3.1.3 – Presentation by simplicial (pre-)sheaves

• 3.1.4 – Presentation by simplicial objects in the site

• 3.1.5 – ∞-Sheaves and descent

• 3.1.6 – ∞-Sheaves with values in chain complexes

3.1.1 Abstract ∞-category theoretic characterization

Following [L-Topos], for us “∞-topos” means this:

Definition 3.1.1. An ∞-topos is an accessible ∞-geometric embedding

H
oo L
� � // Func(Cop,∞Grpd)

into an ∞-category of ∞-presheaves, def. 2.1.15 over some small ∞-category C, hence a full and faithful
embedding functor which preserves filtered ∞-colimits, and has a left adjoint ∞-functor which preserves
finite ∞-limits.

We say this is an∞-category of∞-sheaves (as opposed to a hypercompletion of such) if H is the reflective
localization at the covering sieves of a Grothendieck topology on the homotopy category of C (a topological
localization), and then write H = Sh∞(C) with the site structure on C understood.

As we discuss in some detail below, hom-spaces in ∞-toposes constitute a unification and generalization
of all kinds of cohomoloy theories. Therefore we adopt notation as follows.

Definition 3.1.2. For H an ∞-topos we write H(X,Y ) for its hom-∞-groupoid between objects X and Y
and write H(X,Y ) = π0H(X,Y ) for the hom-set in the homotopy category.

One of the aspects of ∞-toposes that makes their theory more interesting than that of 1-toposes beyond
what one might naively expect is referred to in the following terminology

Definition 3.1.3. An ∞-topos H is n-localic if it has a site C, def. 3.1.1, which is an (n, 1)-category with
finite ∞-limits.
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See [L-Topos, lemma 6.4.5.6].

Remark 3.1.4. Where generally any ∞-topos embodies some kind of higher geometry, those ∞-toposes
which are not 1-localic are often referred to as encoding derived geometry. The higher differential geometry
which we discuss below is axiomatically defined and applies generally also in such “derived” geometry. Just
a handful of the statements below will assume the ∞-topos to be 1-localic for technical conditions used in
the proofs. But I expect that more general proofs not needing these technical assumptions should exist.

More intrinsically, ∞-toposes are characterized as follows (we review the ingredients of the following
statement in 5.1.1 and 5.1.8 below).

Proposition 3.1.5 (Giraud-Rezk-Lurie axioms). An ∞-topos is a presentable ∞-category H that satisfies
the following properties.

1. Coproducts are disjoint. For every two objects A,B ∈ H, the intersection of A and B in their
coproduct is the initial object: in other words the diagram

∅ //

��

B

��
A // A

∐
B

is a pullback.

2. Colimits are preserved by pullback. For all morphisms f : X → B in H and all small diagrams
A : I → H/B, there is an equivalence

lim−→
i

f∗Ai ' f∗(lim−→
i

Ai)

between the pullback of the colimit and the colimit over the pullbacks of its components.

3. Quotient maps are effective epimorphisms. Every simplicial object A• : ∆op → H that satisfies
the groupoidal Segal property (Definition 5.1.124) is the Čech nerve of its quotient projection:

An ' A0 ×lim−→n
An A0 ×lim−→n

An · · · ×lim−→n
An A0 (n factors) .

This is theorem 6.1.0.6 in [L-Topos].
An ordinary topos is famously characterized by the existence of a classifier object for monomorphisms,

the subobject classifier. With hindsight, this statement already carries in it the seed of the close relation
between topos theory and bundle theory, for we may think of a monomorphism E ↪→ X as being a bundle
of (−1)-truncated fibers over X. The following axiomatizes the existence of arbitrary universal bundles

Proposition 3.1.6. An ∞-topos H is a presentable ∞-category with the following properties.

1. Colimits are preserved by pullback.

2. There are universal κ-small bundles. For every sufficiently large regular cardinal κ, there exists a

morphism Ôbjκ → Objκ in H which represents the core of the κ-small codomain fibration in that for
every object X, there is an equivalence

name : Core(H/κX)
'−→ H(X,Objκ)
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between the ∞-groupoid of bundles (morphisms) E → X which are relatively κ-small over X and the
∞-groupoid of morphisms from X into Objκ, such that there are ∞-pullback squares

E //

��

Ôbjκ

��
X

name(E) // Objκ

.

These two characterizations of ∞-toposes, prop. 3.1.5 and prop. 3.1.6 are equivalent; this is due to
Rezk and Lurie, appearing as Theorem 6.1.6.8 in [L-Topos]. We find below in prop. 5.1.249 that the second
of these axioms gives the equivalence between V -fiber bundles and Aut(V )-principal ∞-bundles which is
crucial for differential geometry.

The theory of cohesive ∞-toposes revolves around situations where the following fact has a refinement:

Proposition 3.1.7. For every ∞-topos H there is an essentially unique geometric morphism to the ∞-topos
∞Grpd.

(∆ a Γ) : H
oo ∆

Γ
// ∞Grpd

This is prop 6.3.41 in [L-Topos].

Proposition 3.1.8. Here Γ forms global sections, in that Γ(−) ' H(∗,−), and ∆ forms constant ∞-sheaves
– ∆(−) ' LConst(−).

Proof. By prop. 3.1.7 it is sufficient to exhibit an ∞-adjunction (LConst(−) a H(∗,−)) such that the
left adjoint preserves finite ∞-limits. The latter follows since Const : ∞Grpd → PSh∞(C) preserves all
limits (for C some ∞-site of definition for H) and L : PSh(C) → H by definition preserves finite ∞-limits.
To show the ∞-adjunction we use prop. 5.1.1, which says that every∞-groupoid is the ∞-colimit over itself
of the ∞-functor constant on the point: S ' lim

−→S
∗. From this we obtain the natural hom-equivalence

H(LConstS,X) ' PShC(ConstS,X)

' PSh(Constlim
−→S
∗, X)

' lim
←−S

Psh(Const∗, X)

' lim
←−S

H(LConst∗, X)

' lim
←−S

H(∗, X)

' lim
←−S
∞Grpd(∗,H(∗, X))

' ∞Grpd(lim
−→S
∗,H(∗, X))

' ∞Grpd(S,H(∗, X)) .

.

Here and in the following “∗” always denotes the terminal object in the corresponding ∞-category. We used
that LConst preserves the terminal object (the empty ∞-limit.) �

3.1.2 Syntax of homotopy type theory with type universes

Above in 2.1.1 we indicated how locally cartesian closed∞-categories have an internal homotopy type theory.
In locally cartesian closed ∞-categories which are ∞-toposes, the “object of small objects” of prop. 3.1.5
above is internally the type of types denoted Type [UFP13].

The following statement was originally conjectured in [Aw10]. For a survey in our context see [Sc14b].
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Theorem 3.1.9. Every ∞-sheaf ∞-topos interprets homotopy type theory with higher inductive types and
with a univalent type-universe á laTarski.

For the underlying dependent type theory with intensional identity types this is the content of sections
3 in [Shul12a], using the coherence result of [LuWa14]. For the higher inductive types this is [ShLu12]. For
univalence one observes that this is precisely the universal property of the object classifier of ∞-toposes, if
the syntax of the type universe is taken to be “á la Tarski”, this is summarized in [Shul14].

It is due to this theorem that we are entitled to write “homotopy type theory” in either of its meanings
(“homotopy-type theory” and “homotopy type-theory”).

In this context the type theoretic judgement “x : X ` E(x) : Type” is interpreted in the ∞-topos as the

name morphism X
name(E)−→ Objκ of a morphism E → X in the ∞-topos, according to prop. 3.1.6. If here

we declare to abbreviate (` E) := name(E) then this means we have the following disctionary between the
symbols used to talk about objects of slices in ∞-toposes and equivalently dependent types in homotopy
type theory.

morphisms to sequents:
notation in\for objects/types elements/terms

∞-topos theory X
`E−→ Objκ X

t−→X E
homotopy type theory x : X ` E(x) : Type x : X ` t(x) : E(x)

3.1.3 Presentation by simplicial (pre-)sheaves

For computations it is useful to employ a generators-and-relations presentation of presentable ∞-categories
in general and of ∞-toposes in particular, given by ordinary sSet-enriched categories equipped with the
structure of combinatorial simplicial model categories. These may be obtained by left Bousfield localization
of a model structure on simplicial presheaves (as reviewed in appendix 2 and 3 of [L-Topos]).

We discuss these presentations and then discuss various constructions in terms of these presentations
that will be useful over and over again in the following. Much of this material is standard and our discussion
serves to briefly collect the relevant pieces. But we also highlight a few points that are not usually discussed
explicitly in the literature, but which we will need later on.

Definition 3.1.10. Let C be a small category.

• Write [Cop, sSet] for the category of functors Cop → sSet to the category of simplicial sets. This is
naturally equivalent to the category [∆op, [Cop,Set of simplicial objects in the category of presheaves
on C. Therefore one speaks of the category of simplicial presheaves over C.

• For {Ui → U} a covering family in the site C, write

C({Ui}) ∈ [Cop, sSet] :=

∫ [k]∈∆

∆[k] ·
∐

i0,··· ,ik

j(Ui0)×j(U) · · · ×j(U) j(Uik)

for the corresponding Čech nerve simplicial presheaf. This is in degree k the disjoint union of the (k+1)-
fold intersections of patches of the cover. It is canonically equipped with a morphism C({Ui})→ j(U).
(Here j : C → [Cop,Set] is the Yoneda embedding.)

• The category [Cop, sSet] is naturally an sSet-enriched category. For any two objects X,A ∈ [Cop, sSet]
write Maps(X,A) ∈ sSet for the simplicial hom-set.

• Write [Cop, sSet]proj for the category of simplicial presheaves equipped with the following choices of
classes of morphisms (which are natural transformations between sSet-valued functors):

– the fibrations are those morphisms whose component over each object U ∈ C is a Kan fibration
of simplicial sets;
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– the weak equivalences are those morphisms whose component over each object is a weak equiva-
lence in the Quillen model structure on simplicial sets;

– the cofibrations are the morphisms having the right lifting property against th morphisms that
are both fibrations as well as weak equivalences.

This makes [Cop, sSet]proj into a combinatorial simplicial model category.

• Write [Cop, sSet]proj,loc for model category structure on simplicial presheaves which is the left Bousfield
localization of [Cop, sSet]proj at the set of morphisms of the form C({Ui})→ U for all covering families
{Ui → U} of C.

This is called the projective local model structure on simplicial presheaves [Dug01].

Definition 3.1.11. The operation of forming objectwise simplicial homotopy groups extends to a functors

πPSh
0 : [Cop, sSet]→ [Cop,Set]

and for n > 1
πPSh
n : [Cop, sSet]∗ → [Cop,Set] .

These presheaves of homotopy groups may be sheafified. We write

π0 : [Cop, sSet]
πPSh

0→ [Cop,Set]→ Sh(C)

and for n > 1

πn : [Cop, sSet]∗
πPSh
n→ [Cop,Set]→ Sh(C) .

Proposition 3.1.12. For X ∈ [Cop, sSet]proj,loc fibrant, the homotopy sheaves πn(X) from def. 3.1.11
coincide with the abstractly defined homotopy groups of X ∈ Sh∞(C) from [L-Topos].

Proof. One may observe that the sSetQuillen-powering of [Cop, sSet]proj,loc does model the abstract
∞Grpd-powering of Sh∞(C). �

Definition 3.1.13. A site C has enough points if a morphism (A
f→ B) ∈ Sh(C) in its sheaf topos is an

isomorphism precisely if for every topos point, hence for every geometric morphism

(x∗ a x∗) : Set
oo x∗

x∗
// Sh(C)

from the topos of sets we have that x∗(f) : x∗A→ x∗B is an isomorphism.

Notice here that, by definition of geometric morphism, the functor i∗ is left adjoint to i∗ – hence preserves
all colimits – and in addition preserves all finite limits.

Example 3.1.14. The following sites have enough points.

• The categories Mfd (SmoothMfd) of (smooth) finite-dimensional, paracompact manifolds and smooth
functions between them;

• the category CartSp of Cartesian spaces Rn for n ∈ N and continuous (smooth) functions between
them.

This is discussed in detail below in 6.3.2. We restrict from now on attention to this case.

Assumption 3.1.15. The site C has enough points.
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Theorem 3.1.16. For C a site with enough points, the weak equivalences in [Cop, sSet]proj,loc are precisely
the stalkwise weak equivalences in sSetQuillen

Proof. By [Ja96, theorem 17] and using our assumption 3.1.15 the statement is true for the local injective
model structure. The weak equivalences there coincide with those of the local projective model structure. �

Definition 3.1.17. We say that a morphism f : A→ B in [Cop, sSet] is a local fibration or a local weak equiv-
alence precisely if for all topos points x the morphism x∗f : x∗A→ x∗B is a fibration of weak equivalence,
respectively.

Warning. While by theorem 3.1.16 the local weak equivalences are indeed the weak equivalences in
[Cop, sSet]proj,loc, it is not true that the fibrations in this model structure are the local fibrations of def.
3.1.17.

Proposition 3.1.18. Pullbacks in [Cop, sSet] along local fibrations preserve local weak equivalences.

Proof. Let
A //

��

C

��

Boo

��
A′ // C ′ B′oo

be a diagram where the vertical morphisms are local weak equivalences. Since the inverse image x∗ of a
topos point x preserves finite limits and in particular pullbacks, we have

x∗(A×C B
f→ A′ ×C′ B′) = (x∗A×x∗C x∗B

x∗f→ x∗A′ ×x∗C′ x∗B′) .

On the right the pullbacks are now by assumption pullbacks of simplicial sets along Kan fibrations. Since
sSetQuillen is right proper, these are homotopy pullbacks and therefore preserve weak equivalences. So x∗f
is a weak equivalence for all x and thus f is a local weak equivalence. �
The following characterization of ∞-toposes is one of the central statements of [L-Topos]. For the purposes

of our discussion here the reader can take this to be the definition of ∞-toposes.

Theorem 3.1.19. For C a site with enough points, the ∞-topos over C is the simplicial localization, def.
2.1.25,

Sh∞(C) ' L([Cop, sSet]proj,loc

of the category of simplicial presheaves on C at the local weak equivalences.

In view of prop. 3.1.21 this is prop. 6.5.2.14 in [L-Topos].

3.1.4 Presentation by simplicial objects in the site

We will have use of the following different presentation of Sh∞(C).

Definition 3.1.20. Let C be a small site with enough points. Write C̄ ⊂ [Cop, sSet] for the free coproduct
completion.

Let (C̄∆op

,W ) be the category of simplicial objects in C̄ equipped with the stalkwise weak equivalences
inherited from the canonical embedding

i : C̄∆op

↪→ [Cop, sSet] .

Proposition 3.1.21. The induced ∞-functor

NhLC̄
∆op

→ NhL[Cop, sSet]proj,loc

is an equivalence of ∞-categories.
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This is due to [NSS12b]. We prove this after noticing the following fact.

Proposition 3.1.22. Let C be a category and C̄ its free coproduct completion.
Every simplicial presheaf over C is equivalent in [Cop, sSet]proj to a simplicial object in C̄ (after the

degreewise Yoneda embedding j∆op

: C̄∆op → [Cop, sSet]).
If moreover C has pullbacks and sequential colimits, then the simplicial object in C̄ can be taken to be

globally Kan, hence fibrant in [Cop, sSet]proj.

Proof. The first statement is prop. 2.8 in [Dug01], which says that for every X ∈ [Cop, sSet] the canonical
morphism from the simplicial presheaf

(QX) : [k] 7→
∐

U0→···→Uk→Xk

j(U0) ,

where the coproduct runs over all sequences of morphisms between representables Ui as indicated and using
the evident face and degeneracy maps, is a global weak equivalence

QX
'→ X .

The second statement follows by postcomposing with Kan’s fibrant replacement functor (see for instance
section 3 in [Jard87])

Ex∞ : sSet→ KanCplx ↪→ sSet .

This functor forms new simplices by subdivision, which only involves forming iterated pullbacks over the
spaces of the original simplices. �

Example 3.1.23. Let C be a category of connected topological spaces with given extra structure and
properties (for instance smooth manifolds). Then C̄ is the category of all such spaces (with arbitrary many
connected components).

Then the statement is that every ∞-stack over C has a presentation by a simplicial object in C̄. This is
true with respect to any Grothendieck topology on C, since the weak equivalences in the global projective
model structure that prop. 3.1.22 refers to remain weak equivalences in any left Bousfield localization.

If moreover C has all pullbacks (for instance for connected topological spaces, but not for smooth mani-
folds) then every ∞-stack over C even has a presentation by a globally Kan simplicial object in C̄.

Proof of theorem 3.1.21. Let Q : [Cop, sSet]→ C̄∆op

be Dugger’s replacement functor from the proof of
prop. 3.1.22. In [Dug01] it is shown that for all X the simplicial presheaf QX is cofibrant in [Cop, sSet]proj

and that the natural morphism QX → X is a weak equivalence. Since left Bousfield localization does not
affect the cofibrations and only enlarges the weak equivalences, the same is still true in [Cop, sSet]proj,loc.

Therefore we have a natural transformation

i ◦Q→ Id : [Cop, sSet]→ [Cop, sSet]

whose components are weak equivalences. From this the claim follows by prop. 3.5 in [DwKa80a]. �

Remark 3.1.24. If the site C is moreover equipped with the structure of a geometry as in [L-Geo] then
there is canonically the notion of a C-manifold : a sheaf on C that is locally isomorphic to a representable
in C. Write

C̄ ↪→ CMfd ↪→ [Cop,Set]

for the full subcategory of presheaves on the C-manifolds.
Then the above argument applies verbatim also to the category CMfd∆op

of simplicial C-manifolds.
Therefore we find that the∞-topos over C is presented by the simplicial localization of simplicial C-manifolds
at the stalkwise weak equivalences:

Sh∞(C) ' NhLCMfd∆op

.
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Example 3.1.25. Let C = SmoothCartSp be the full subcategory of the category SmoothMfd of smooth
manifolds on the Cartesian spaces, Rn, for n ∈ R. Then C̄ ⊂ SmoothMfd is the full subcatgory on manifolds
that are disjoint unions of Cartesian spaces and CMfd ' SmoothMfd. Therefore we have an equivalence of
∞-categories

Sh∞(SmoothMfd) ' Sh∞(CartSp) ' L SmoothMfd∆op

.

3.1.5 ∞-Sheaves and descent

We discuss some details of the notion of ∞-sheaves from the point of view of the presentations discussed
above in 3.1.3.

By def. 3.1.1 we have, abstractly, that an ∞-sheaf over some site C is an ∞-presheaf that is in the
essential image of a given reflective inclusion Sh∞(C) ↪→ PSh∞(C). By prop. 3.1.19 this reflective embedding
is presented by the Quillen adjunction that exhibits the left Bousfield localization of the model category of
simplicial presheaves at the Čech covers

([Cop, sSet]proj,loc)◦

'
��

oo LId

RId
// ([Cop, sSet]proj)

◦

'
��

Sh∞(C)
oo L
� � // PSh∞(X)

.

Since the Quillen adjunction that exhibits left Bousfield localization is given by identity-1-functors, as in-
dicated, the computation of ∞-sheafification (∞-stackification) L by deriving the left Quillen functor is all
in the cofibrant replacement in [Cop, sSet]proj followed by fibrant replacement in [Cop, sSet]proj,loc. Since
the collection of cofibrations is preserved by left Bousfield localization, this simply amounts to cofibrant-
fibrant replacement in [Cop, sSet]proj,loc. Since, finally, the derived hom space Sh∞(U,A) is computed in
[Cop, sSet]proj,loc already on a fibrant resolution of A out of a cofibrant resolution of U , and since every
representable is necessarily cofibrant, one may effectively identify the ∞-sheaf condition in PSh∞(C) with
the fibrancy condition in [Cop, sSet]proj,loc.

We discuss aspects of this fibrancy condition.

Definition 3.1.26. For C a site, we say a covering family {Ui → U} is a good cover if the corresponding
Čech nerve

C(Ui) :=

∫ [k]∈∆ ∐
i0,··· ,ik

j(Ui0)×j(U) · · · ×j(U) j(Uk) ∈ [Cop, sSet]proj

(where j : C → [Cop, sSet] is the Yoneda embedding) is degreewise a coproduct of representables, hence if
all non-empty finite intersections of the Ui are again representable:

j(Ui0,··· ,ik) = Ui0 ×U · · · ×U Uik .

Proposition 3.1.27. The Čech nerve C(Ui) of a good cover is cofibrant in [Cop, sSet]proj as well as in
[Cop, sSet]proj,loc.

Proof. In the terminology of [DHS04] the good-ness condition on a cover makes its Čech nerve a split
hypercover. By the result of [Dug01] this is cofirant in [Cop, sSet]proj. Since left Bousfield localization
preserves cofibrations, it is also cofibrant in [Cop, sSet]proj,loc. �

Definition 3.1.28. For A a simplicial presheaf with values in Kan complexes and {Ui → U} a good cover
in the site C, we say that

Desc({Ui}, A) := [Cop, sSet](C(Ui), A) ,

where on the right we have the sSet-enriched hom of simplicial presheaves, is the descent object of A over
{Ui → U}.
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Remark 3.1.29. By assumption A is fibrant and C(Ui) is cofibrant (by prop. 3.1.27) in [Cop, sSet]proj.
Since this is a simplicial model category, it follows that Desc({Ui}, A) is a Kan complex, an ∞-groupoid.
We may also speak of the descent ∞-groupoid. Below we show that its objects have the interpretation of
gluing data or descent data for A. See [DHS04] for more details.

Proposition 3.1.30. For C a site whose topology is generated from good covers, a simplicial presheaf A is
fibrant in [Cop, sSet]proj,loc precisely if it takes values in Kan complexes and if for each generating good cover
{Ui → U} the canonical morphism

A(U)→ Desc({Ui}, A)

is a weak equivalence of Kan complexes.

Proof. By standard results recalled in A.3.7 of [L-Topos] the fibrant objects in the local model structure
are precisely those which are fibrant in the global model structure and which are local with respect to the
morphisms at which one localizes: such that the derived hom out of these morphisms into the given object
produces a weak equivalence.

By prop. 3.1.27 we have that C(Ui) is cofibrant for {Ui → U} a good cover. Therefore the derived hom
is computed already by the enriched hom as in the above statement. �

Remark 3.1.31. The above condition manifestly generalizes the sheaf condition on an ordinary sheaf
[Joh02]. One finds that

(πPSh
0 (C(Ui))→ πPSh

0 (U)) = (S(Ui) ↪→ U)

is the (subfunctor corresponding to the) sieve associated with the cover {Ui → U}. Therefore when A is itself
just a presheaf of sets (of simplicially constant simplicial sets) the above condition reduces to the statement
that

A(U)→ [Cop,Set](S(Ui), A)

is an isomorphism. This is the standard sheaf condition.

We discuss the descent object, def. 3.1.28, in more detail.

Definition 3.1.32. Write
coDesc({Ui}, A) ∈ sSet∆

for the cosimlicial simplicial set that in degree k is given by the value of A on the k-fold intersections:

coDesc({Ui}, A)k =
∏

i0,··· ,ik

A(Ui0,··· ,ik) .

Proposition 3.1.33. The descent object from def. 3.1.28 is the totalization of the codescent object:

Desc({Ui}, A) = tot(coDesc({Ui}), A)

:=

∫
[k]∈∆

sSet(∆[k], coDesc({Ui}, A)k)

Here and in the following equality signs denote isomorphism (such as to distinguish from just weak
equivalences of simplicial sets).
Proof. Using sSet-enriched category calculus for the sSet-enriched and sSet-tensored category of simplicial
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presheaves (for instance [Ke82] around (3.67)) we compute as follow

Desc({Ui}, A) := [Cop, sSet](C(Ui), A)

= [Cop, sSet](

∫ [k]∈∆

∆[k] · C(Ui)k, A)

=

∫
[k]∈∆

[Cop, sSet](∆[k] · C(Ui), A)

=

∫
[k∈∆]

sSet(∆[k], [Cop, sSet](C(Ui)k), A)

=

∫
[k∈∆]

sSet(∆[k], A(C(Ui)k))

= tot(A(C(Ui)•))

= tot (coDesc({C(Ui)}, A)) .

Here we used in the first step that every simplicial set Y (hence every simplicial presheaf) is the realization
of itself, in that

Y =

∫ [k]∈∆

∆[k] · Yk ,

which is effectively a variant of the Yoneda-lemma. �

Remark 3.1.34. This provides a fairly explicit description of the objects in Desc({Ui}, A) by what is called
nonabelian Čech hypercohomology.

Notice that an element c of the end
∫

[k]∈∆
sSet(∆[k], coDesc({Ui}, A)) is by definition of ends a collection

of morphisms

{ck : ∆[k]→
∏

i0,··· ,ik

Ak(Ui0,··· ,ik)}

that makes commuting all parallel diagrams in the following:

∆[2]
c2 // ∏

i0,i1,i2
A(Ui0,i1,i2)

∆[1]
c1 //

OO

��

OO

��

OO

��

OO

∏
i0i1

A(Ui0,i1)

OO

��

OO

��

OO

��

OO

∆[0]

OO

��

OO

c0 // ∏
i0
A(Ui0)

OO

��

OO

.

This says in words that c is

1. a collection of objects ai ∈ A(Ui) on each patch;

2. a collection of morphisms {gij ∈ A1(Uij)} over each double intersection, such that these go between
the restrictions of the objects ai and aj , respectively

ai|Uij
gij // aj |Uij
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3. a collection of 2-morphisms {hijk ∈ A2(Uijk)} over triple intersections, which go between the corre-
sponding 1-morphisms:

aj |Uijk
gjk|Uijk

$$
ai|Uijk gik|Uijk

//

gij |Uijk
::

ak|Uijk

hijk

��

,

4. a collection of 3-morphisms {λijkl ∈ A3(Uijkl)} of the form

aj |Uijkl
gjk|Uijkl // ak|Uijkl

gkl|Uijkl

��
ai|Uijkl //

gij |Uijkl

OO ;;

al|Uijkl

hijk|Uijkl
�#

hikl|Uijkl
�#

λijkl //

aj |Uijkl
gjk|Uijkl //

##

aj |Uijkl

gkl|Uijkl

��
ai|Uijkl //

gij |Uijkl

OO

al|Uijkl

hjkl|Uijkl
{�hijl|Uijkl

{�

;

5. and so on.

This recovers the cocycle diagrams that we have discussed more informally in 1.2.6 and generalizes them to
arbitrary coefficient objects A.

3.1.6 ∞-Sheaves with values in chain complexes

Many simplicial presheaves appearing in practice are (equivalent to) objects in sub-∞-categories of Sh∞(C)
of ∞-sheaves with values in abelian or at least in “strict” ∞-groupoids. These subcategories typically offer
convenient and desireable contexts for formulating and proving statements about special cases of general
simplicial presheaves.

One well-known such notion is given by the Dold-Kan correspondence (discussed for instance in [GoJa99]).
This identifies chain complexes of abelian groups with strict and strictly symmetric monoidal ∞-groupoids.

Proposition 3.1.35. Let Ch+
proj be the standard projective model structure on chain complexes of abelian

groups in non-negative degree and let sAbproj be the standard projective model structure on simplicial abelian
groups. Let C be any small category. There is a composite Quillen adjunction

((N•F )∗ a Ξ) : [Cop, Ch+
proj]proj

oo (N•)∗

Γ∗

' // [Cop, sAbproj]proj
oo F∗

U∗

// [Cop, sSetQuillen]proj ,

where the first is given by postcomposition with the Dold-Puppe-Kan correspondence and the second by post-
composition with the degreewise free-forgetful adjunction for abelian groups over sets.

We also write DK := Ξ for this Dold-Kan map. Dropping the condition on symmetric monoidalness we
obtain a more general such inclusion, a kind of non-abelian Dold-Kan correspondence: the identification of
crossed complexes, def. 1.2.96, with strict ∞-groupoids (see [BrHiSi11][Por] for details).

Definition 3.1.36. A globular set X is a collection of sets {Xn}n∈N equipped with functions {sn, tn :
Xn+1 → Xn}n∈N such that ∀n∈N(sn ◦ sn+1 = sn ◦ tn+1) and ∀n∈N(tn ◦ sn+1 = tn ◦ tn+1). (These relations

ensure that for every pair k1 < k2 ∈ N there are uniquely defined functions s, t : Xk2
→ Xk1

.) A strict

∞-groupoid is a globular set X• equipped for each k ≥ 1 with the structure of a groupoid on Xk

s //
t
// X0

such that for all k1 < k2 ∈ N this induces the structure of a strict 2-groupoid on

Xk2

s //
t
// Xk1

s //
t
// X0 .
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Remark 3.1.37. We have a sequence of (non-full) inclusions

ChainComplex //

'
��

CrossedComplex //

'
��

KanComplex

'
��

StrAbStr∞Grpd // Str∞Grpd //∞Grpd

of strict ∞-groupoids into all ∞-groupoids, where in the top row we list the explicit presentation and in the
bottom row the abstract notions.

We state a useful theorem for the computation of descent for presheaves, prop. 3.1.30, with values in
strict ∞-groupoids.

Suppose that A : Cop → Str∞Grpd is a presheaf with values in strict ∞-groupoids. In the context of
strict ∞-groupoids the standard n-simplex is given by the nth oriental O(n) [Stre04]. This allows us to
perform a construction that looks like a descent object in Str∞Grpd:

Definition 3.1.38 (Street 04). The descent object for A ∈ [Cop,Str∞Grpd] relative to Y ∈ [Cop, sSet] is

DescStreet(Y,A) :=

∫
[n]∈∆

Str∞Cat(O(n),A(Yn)) ∈ Str∞Grpd ,

where the end is taken in Str∞Grpd.

This object had been suggested by Ross Street to be the right descent object for strict∞-category-valued
presheaves in [Stre04].

Canonically induced by the orientals is the ω-nerve

N : StrωCat→ sSet

Applying this to the descent object of prop. 3.1.38 yields the simplicial set NDesc(Y,A). On the other
hand, applying the ω-nerve componentwise to A yields a simplicial presheaf NA to which the ordinary
simplicial descent from def. 3.1.28 applies. The following theorem asserts that under certain conditions the
∞-groupoids presented by both these simplicial sets are equivalent.

Proposition 3.1.39 (Verity 09). If A : Cop,Str∞Grpd and Y : Cop → sSet are such that NA(Y•) : ∆ →
sSet is fibrant in the Reedy model structure [∆, sSetQuillen]Reedy, then

NDescStreet(Y,A)
'→ Desc(Y,NA)

is a weak homotopy equivalence of Kan complexes.

This is proven in [Veri09]. In our applications the assumptions of this theorem are usually satisfied:

Corollary 3.1.40. If Y ∈ [Cop, sSet] is such that Y• : ∆ → [Cop,Set] ↪→ [Cop, sSet] is cofibrant in
[∆, [Cop, sSet]proj]Reedy then for A : Cop → Str∞Grpd we have a weak equivalence

NDesc(Y,A)
'→ Desc(Y,NA) .

Proof. If Y• is Reedy cofibrant, then by definition the canonical morphisms

lim
→

(([n]
+→ [k]) 7→ Yk)→ Yn

are cofibrations in [Cop, sSet]proj. Since the latter is an sSetQuillen-enriched model category and NA is fibrant
in [Cop, sSet]proj, it follows that the hom-functor [Cop, sSet](−, NA) sends cofibrations to fibrations, so that

NA(Yn)→ lim
←

([n]
+→ [k] 7→ NA(Yk))

is a Kan fibration. But this says that NA(Y•) is Reedy fibrant, so that the assumption of prop. 3.1.39 is
met. �
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3.2
∑
a( )∗ a

∏
– Actuality

Given a cohesive spaceX, then there is also the category EMod(X) of E-module bundles overX. For instance
if X is a physical phase space, then the prequantum line bundle is an invertible object in EMod(X). It
follows that quantization is to take place in dependent linear type theory, parameterized over the cartesian
types X of the pre-quantum geometry. According to Lawvere’s notion of categorical logic embodied in the
notion of hyperdoctrines as made precise in [See83], this means, applied to linear logic, the following:

A dependent linear logic or linear hyperdoctrine is a category of contexts Γ, a symmetric closed monoidal
category CΓ for each such context and functorially for each morphism of contexts f : Γ1 −→ Γ2 an adjoint
triple of functors

(
∑
f

a f∗ a
∏
f

) : CΓ1

f!
//

oo f∗

f∗

// CΓ2

such that f∗ is strong monoidal and satisfies Frobenius reciprocity, hence such that f∗ is a strong closed
monoidal functor. Typically one would also demand that consecutive such adjoint triples satisfy the Beck-
Chevalley condition.

The categorical semantics for such dependent linear type theory has been studied in [Shul08, Shul12a].
But it is noteworthy that in just slightly different guise these axioms are much older: they are a version
of Grothendieck’s “yoga of six functors” [May05], which were recognized as the abstract reason behind
Verdier duality. Specifically, an adjoint triple (f! a f∗ a f∗) with f∗ strong closed monoidal is called a
Wirthmüller context in [May05]. (The literature on Grothendieck’s six operations often considers (also) the
dual Grothendieck contexts, e.g. [Pol08].)

This concept of a linear hyperdoctrine is a generalization (obtained by removing the axiom of the tensor
product being Cartesian) of the system of base change operations between the slices of an ∞-topos in prop.
5.1.26. Accordingly, following example 2.2.3, we may think of the base change here as encoding linear the
generalization to linear logic of the modalities of possibility and necessity from example 2.2.3:

(♦f a �f ) := ((f∗f!) a (f∗f∗)) .

We now state the concept more formally.

Definition 3.2.1. For C, D two closed symmetric monoidal categories, a Wirthmüller context f : C → D
between them is a strong closed monoidal functor f∗ : D → C such that it has a left adjoint and right adjoint
(f! a f∗ a f∗).

Often it is useful to equivalently reformulate closedness of f∗ in terms of the following condition.

Definition 3.2.2. Given an adjunction (f! a f∗) between symmetric monoidal categories such that f∗ is a
strong monoidal functor, then the condition that the canonical natural transformation

π : f!((f
∗B)⊗A) −→ B ⊗ f!(A)

is a natural equivalence is called the projection formula. The existence of the left adjoint f! and the validity of
the projection formula is also referred to as Frobenius reciprocity in representation theory and in categorical
logic (“hyperdoctrines”), and often just called reciprocity, for short.

A basic fact is that:

Proposition 3.2.3. Given an adjoint pair (f! a f∗) between closed monoidal categories with f∗ a strong
monoidal functor, then the condition that f∗ is strong closed is equivalent to Frobenius reciprocity, def. 3.2.2,
hence to f! satisfying its projection formula.

Remark 3.2.4. If in a Wirthmüller context, def. 3.2.1, not only f! but also f∗ satisfies its projection formula,
then [?] speaks of a “transfer context” (def. 4.9 there), because this turns out to be an abstract context
in which Becker-Gottlieb transfer exists (prop. 4.14 there). The abstract construction of Becker-Gottlieb
transfer is similar to the construction of Umkehr maps via fundamental classes in Wirthmüller contexts
which we consider in 5.5.4 below.

303



The central concept of interest here is now the following.

Definition 3.2.5. A model/semantics for linear homotopy-type theory is a locally Cartesian closed ∞-
category H (“of non-linear homotopy-types”) and a Cartesian fibration

Mod

��
H

(“of dependent linear homotopy-types”) such that the ∞-functor

Mod : Hop → Cat∞

that classifies the fibration by the Grothendieck-Lurie construction ([L-Topos], section 3.2) takes values in
Wirthmüller contexts, def. 3.2.1, hence sends objects X ∈ H to closed symmetric monoidal ∞-categories
Mod(X) and sends morphism f : X → Y to∞-functors f∗ : Mod(Y )→ Mod(X) which are strong monoidal,
have a left and right adjoint, and are strong closed, hence, by prop. 3.2.3, satisfy Frobenius reciprocity.

Remark 3.2.6. Definition 3.2.5 is the evident ∞-categorical version of the closed monoidal fibrations con-
sidered in [Shul08] (def. 13.1) and [Shul12a] (theorem 2.14). Mike Shulman is working on developing formal
syntax for linear homotopy-type theory similar to the formal syntax for non-linear homotopy-type theory
that is laid out in [UFP13]. This is to be such that def. 3.2.5 provides the corresponding ∞-categorical
semantics/models.

Example 3.2.7. Discussion of various classes of models for dependent linear type theory, def. 3.2.5, is
below in 6.1. In 7.6 we discuss how quantization of local prequantum field theory, 5.2.18, is realized in these
models.
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4 Substance

We consider now equipping homotopy toposes, 3.1, with determinations of qualities of their objects, via
systems of modal operators as in 2.2. The resulting homotopy toposes behave like an abstract substance
exhibiting these qualities. Below in 5 we discuss how to mold out of such substance various structures of
relevance in mathematics and physics.

An ∞-topos may be viewed both as an ∞-category of generalized spaces – then also called a “gros
topos” – or as a generalized space itself – then also called a “petit topos”. The duality relation between
these two perspectives is given by prop. 5.1.29, which says that every ∞-topos regarded as a generalized
space is equivalent to the ∞-category of generalized étale spaces over it, while, conversely, every collection
of generalized spaces encoded by an∞-topos may be understood as being those generalized spaces equipped
with local equivalences to a fixed generalized model space.

From this description it is intuitively clear that the “smaller” an∞-topos is when regarded as a generalized
space, the “larger” is the collection of generalized spaces locally modeled on it, and vice versa. If by “size”
we mean “dimension”, there are two notions of dimension of an ∞-topos H that coincide with the ordinary
notion of dimension of a manifold X when H = Sh∞(X), but which may be different in general. These are

• homotopy dimension (see def. 5.1.107 below);

• cohomology dimension ([L-Topos], section 7.2.2).

If by “size” we mean “nontriviality of homotopy groups”, hence nontriviality of the shape of a space, there
is the concept of

• shape of an ∞-topos ([L-Topos], section 7.1.6);

which coincides with the topological shape of X in the case that H = Sh∞(X), as above. Finally, if by
“small size” we just mean finite dimensional, then the property of ∞-toposes reflecting that is

• hypercompleteness ([L-Topos], section 6.5.2).

For the description of higher geometry and higher differential geometry, we are interested in ∞-toposes
that are “maximally gros” and“minimally petit”: regarded as generalized spaces they should look like fat
points or contractible blobs being the abstract blob of geometry that every object in them is supposed to be
locally modeled on, but that otherwise do not make these objects be parameterized over a nontrivial space.

The following concepts of local∞-topos,∞-connected∞-topos, cohesive∞-topos, and differential cohesive
∞-topos describe extra properties of the global section geometric morphism of an ∞-topos that imply that
some or all of the measures of “size” of the ∞-topos vanish, hence that make the ∞-topos be far from being
a non-trivial generalized space itself, and instead be genuinely a collection of generalized spaces modeled on
some notion of local geometry.

All these properties are equivalently encoded in terms of idempotent ∞-(co)monads on the ∞-topos H

�,♦ : H→ H ,

as discussed in 2.2. Internally, on the homotopy type theory language of H, these are (higher) closure
operators or modalities on the type system (more on this is below in 4.1.1.2). Externally, these structures
correspond to adjunctions

(L a R) : H
oo L

R
// B

such that L or R is a fully faithful ∞-functor, by � ' L ◦R and ♦ ' R ◦ L, or the other way around.

Proposition 4.0.8. Let (L a R) : C
R
//

oo L
D be a pair of adjoint ∞-functors. Then
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1. The left adjoint∞-functor L is fully faithful precisely if the adjunction unit is an equivalence idD
' // R ◦ L .

2. The right adjoint ∞-functor R is fully faithful precisely if the adjunction counit is an equivalence

L ◦R ' // idC .

Proof. This is [L-Topos], p. 308 or follows directly from it. �

For encoding “gros” geometry in the above sense, here the comonadic � is itself to be part of an adjunction
with the monadic ♦, as � a ♦ or ♦ a �. Such a situation corresponds externally to adjoint triples of ∞-
functors

(f! a f∗ a f∗) : H

f! //
oo f∗

f∗

// B or (f∗ a f∗ a f !) : H
oo f
∗

f∗ //oo
f !

B

such that the middle functor or the two outer functors are fully faithful:

(♦ a �) ' (f∗f! a f∗f∗) or (� a ♦) ' (f∗f∗ a f !f∗) .

All that matters for the nature of the induced modalities is in which direction these functors go and
which of them are fully faithful. Moreover, both direction and fully faithfulness are necessarily alternating
through the adjoint triple, so what really matters is only which functor we regard as the direct image, the
number of adjoints it has to the left and to the right, and whether it is itself fully faithful or its adjoints
are. To bring that basic information out more clearly it may be helpful to introduce the following condensed
notation:

Let stand for an adjoint pair where the direct image f∗ points from H to B, (this
is the bar on the dotted baseline) and such that it has a single left adjoint f∗ (the second bar on top).

Accordingly, if there is a further left adjoint f! then we draw a further bar on top . If

there is a further right adjoint f ! then we draw a further bar on the bottom . And so
forth: bars on top are left adjoint to bars below them, and the direction is left-to-right for the bar on the
base line and for every second bar next to it, while it is right-to-left for every other bar. Finally, we mark

the fully faithful functors by breaking the corresponding bar. For instance the notation

means that the inverse image is fully faithful, hence is shorthand for an adjunction of the form H
oo f
∗
? _

f∗

// B ,

and so forth.
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The following table lists, in the above notation, the possibilities for adjoint higher modalities together
with the name of the corresponding attribute of H as an ∞-topos over the base B.

Locality ([ a ]) (section 4.1).

locally
local local

locally
local

embedded
discrete

∞-Connectedness (
∫
a [) (section 4.1).

locally
∞-connected ∞-connected essentially

embedded discrete

Cohesion (
∫
a [ a ]) (section 4.1).

cohesive infinitesimally
embedded

Differential cohesion (< a = a &) (section 4.2).

infinitesimally
cohesive

differentially
cohesive
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4.1
∫
a [ a ] – Cohesion

We discuss now the definition and some basic properties of cohesive ∞-toposes.

4.1.1 General abstract

Definition 4.1.1. An ∞-topos H is called locally local if the global section geometric morphism has a right
adjoint.

H
oo Disc

Γ //oo
coDisc

∞Grpd .

It is called local if that right adjoint is in addition fully faithful.

Definition 4.1.1 is the immediate lift of the concept of local topos [JohMo89] from topos theory to∞-topos
theory.

Proposition 4.1.2. A local ∞-topos

1. has homotopy dimension 0 (see def. 5.1.107 below);

2. has cohomological dimension 0 ([L-Topos], section 7.2.2).

Proof. The first statement is cor. 5.1.113 below. The second is a consequence of the first by [L-Topos],
cor. 7.2.2.30. �

The following definition is the direct generalization standard notion of a locally/globally connected topos
[Joh02]: a topos whose terminal geometric morphism has an extra left adjoint that computes geometric
connected components, hence a geometric notion of π0. We will see in 5.2, that as we pass to ∞-toposes,
the extra left adjoint provides a good definition of all geometric homotopy groups.

Definition 4.1.3. An ∞-topos H we call locally ∞-connected if the (essentially unique) global section ∞-
geometric morphism from prop. 3.1.7 is an essential ∞-geometric morphism in that it has a further left
adjoint Π:

(Π a ∆ a Γ) : H

Π //
oo ∆

Γ
// ∞Grpd .

If in addition ∆ is fully faithful, then we say that H is in addition an ∞-connected or globally ∞-connected
∞-topos.

Remark 4.1.4. Meanwhile, a locally∞-connected∞-topos as above has been called an∞-topos of constant
shape in [L-Alg], section A.1. Some of the following statements now overlap with the discussion there.

Proposition 4.1.5. For H a locally/globally ∞-connected ∞-topos, the underlying 1-topos τ≤0H of 0-
truncated objects (def. 5.1.47) is a locally/globally connected topos (as in [Joh02] C1.5, C3.3).

Proof. By prop. 3.1.8 and by the very definition of truncated objects Γ takes 0-truncated objects in H to
0-truncated objects in ∞Grpd, hence the restriction Γ|τ≤ factors through the inclusion Set ' τ≤0∞Grpd ↪→
∞Grpd.

Similarly the restriction ∆|≤0 factors through the inclusion τ≤0H ↪→ H: by definition this is the case if
for all S ∈ Set and all X ∈ H the hom-∞-groupoid H(X,∆S) ∈ ∞Grpd is equivalently a set. But by the
defining right-adjointness of ∆ this is equivalently

H(X,∆S) ' ∞Grpd(Π(X), S) ' Set(τ≤0Π(X), S) ∈ Set ↪→∞Grpd ,

which is a set by assumption that S is 0-truncated.
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By uniqueness of adjoints and the fact that τ≤0 : ∞Grpd → Set is left adjoint to the inclusion, this

means that ∆|≤0 : Set �
� // ∞Grpd

∆ // H has a left adjoint

Π0 := τ≤ ◦Π .

Finally τ≤0 preserves finite products by [L-Topos], lemma 6.5.1.2. and if Π preserves the terminal object
then so does Π0. �

Proposition 4.1.6. A locally ∞-connected topos (Π a ∆ a Γ) : H → ∞Grpd is globally ∞-connected
precisely if the following equivalent conditions hold.

1. The inverse image ∆ is a fully faithful ∞-functor.

2. The extra left adjoint Π preserves the terminal object.

Proof. This follows verbatim the proof for the familiar statement about connected toposes, since all the
required properties have ∞-analogs: we have that

• ∆ is fully faithful precisely if the (Π a ∆)-adjunction unit is an equivalence, by prop. 4.0.8.

• every∞-groupoid S is the∞-colimit over itself of the∞-functor constant on the point, by prop. 5.1.1:

S ' lim
−→S

∗ .

Therefore if ∆ is fully faithful, then
Π(∗) ' Π∆(∗)

' ∗

and hence Π preserves the terminal object. Conversely, if Π preserves the terminal object then for any
S ∈ ∞Grpd we have that

Π∆S ' Π∆lim
→ S
∗

' lim
−→S

Π∆∗

' lim
−→S
∗

' S

.

and hence ∆ is fully faithful. �

Proposition 4.1.7. A locally ∞-connected ∞-topos

1. has the shape of Π(∗);

2. hence has the shape of the point if it is globally ∞-connected.

Proof. By inspection of the definitions. �

We give the definition and basic properties of cohesive ∞-toposes first externally, in 4.1.1.1 in terms of
properties of the global section geometric morphism, and then internally, in the language of the internal type
theory of an ∞-topos, in 4.1.1.2.
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4.1.1.1 External formulation

Definition 4.1.8. A cohesive ∞-topos H is

1. a locally and globally ∞-connected topos H, def 4.1.3,

2. which in addition is a local ∞-topos, def. 4.1.1;

3. and such that the extra left adjoint preserves not just the terminal object, but all finite products.

Definition 4.1.8 is the immediate lift of the main axioms in the definition of topos of cohesion in [Law07]
from topos theory to ∞-topos theory.

Remark 4.1.9. The conditions in def. 4.1.8 say in summary that an ∞-topos is cohesive precisely if it
admits quadruple of adjoint ∞-functors over the base ∞-topos

(Π a ∆ a Γ a ∇) : H

× Π //
oo ∆ ? _

Γ //
oo

∇
? _
∞Grpd

such that ∆ and ∇ are fully faithful and such that Π preserves finite products.

We may think of these axioms as encoding properties that characterize those ∞-toposes of ∞-groupoids
that are equipped with extra cohesive structure (in generalization of how geometric stacks are equipped with
geometric structure). In order to reflect this geometric interpretation notationally we will from now on write

(Π a Disc a Γ a coDisc) : H

× Π //
oo Disc ? _

Γ //
oo

coDisc
? _
∞Grpd

for the defining ∞-connected and ∞-local geometric morphism and say for S ∈ ∞Grpd that

• Disc(S) ∈ H is a discrete object of H or a discrete cohesive ∞-groupoid obtained by equipping S with
discrete cohesive structure;

• coDisc(S) ∈ H is a codiscrete object of H or a codiscrete cohesive ∞-groupoid, obtained by equipping
S with indiscrete cohesive structure;

and for X ∈ H that

• Γ(X) ∈ ∞Grpd is the underlying ∞-groupoid of X;

• Π(X) is the fundamental ∞-groupoid or geometric path ∞-groupoid of X.

A simple but instructive toy example illustrating these interpretations is given by the Sierpinski ∞-topos,
discussed below in example 6.1.2. A detailed discussion of these geometric interpretations in various models
is in 6. For emphasis we record the following list of properties of a cohesive∞-topos H that show that when
regarded as a generalized space itself over which its objects are parameterized, then H looks like one fat
point, which we think of as the archetypical cohesive blob.

Proposition 4.1.10. A cohesive ∞-topos

1. has homotopy dimension 0;

2. has cohomological dimension 0;

3. has the shape of the point.
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Proof. By prop. 4.1.2 and prop. 4.1.7. �
Often it is useful to speak of cohesion in terms of the following three operations (“modalities”) which it

induces on H.

Definition 4.1.11. Given a cohesive ∞-topos H define the adjoint triple of idempotent (co-)monads:

(
∫
a [ a ]) : H

× Π //
oo Disc ? _

Γ
//
∞Grpd

� � Disc //
oo Γ� �

coDisc
//
H .

Remark 4.1.12. The geometric interpretation of these three functors is discussed below in 5.2.3, 5.2.6 and
5.2.2, respectively:

•
∫

is the shape modality, the geometric path or geometric homotopy functor or fundamental ∞-groupoid
functor or Betti stack functor;

• [ is the flat modality, for A ∈ H we may pronounce [A as “flat A”, it is the coefficient object for flat
cohomology with coefficients in A;

• ] is the sharp modality, for A ∈ H we may pronounce ]A as “sharp A”, it is the classifying object for
“sharply varying” A-principal ∞-bundles, those that need not be geometric (e.g. not continuous).

In the vein of the discussion in 2.2.5 we will sometimes depict the situation of cohesion in this form:

id a

∨

id

∨∫
a

⊥

[

⊥

[ a

∨

]

∨

∅ a ∗

Notice that the units and counits of the cohesion modalities of def. 4.1.11 are naturally compatible:

Proposition 4.1.13. For Π an idempotent monad with right adjoint comonad [, then the unit X → ΠX
and counit [A→ A give naturally commuting squares

X

��

f̄ // [A

��
ΠX

f // A

'

X //

��

[ΠX
[f //

��

[A

��
ΠX ΠX

f // A

for all morphisms f : ΠX → A and their adjuncts f̄ : X → [A.

Proof. Write (Γ! a Γ∗ a Γ∗) for the corresponding adjoint triple of functors, where Γ! is the reflection
onto the subcategory of Π-modal objects and Γ∗ is the subcategory inclusion. In terms of this the morphism
f is of the form

f : Γ∗Γ!X −→ A .

By the general formula for adjuncts, the (Γ∗ a Γ∗)-adjunct of this morphism is the composite of Γ∗f with
the (Γ∗ a Γ∗)-unit on Γ!X

Γ!X
ηΓ!X−→ Γ∗Γ

∗Γ!X
Γ∗f−→ Γ∗A ,
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Similarly forming in turn the (Γ! a Γ∗)-adjunct of this result yields the (Π a [)-adjunct of f as the following
composite:

f̄ : X
ηΠ
X−→ Γ∗Γ!X

Γ∗ηΓ!X−→ Γ∗Γ∗Γ
∗Γ!X

Γ∗Γ∗f−→ Γ∗Γ∗A .

This fits into a pasting composite of commuting squares of the following form:

X ηΠ
X

//

ηΠ
X

��

f̄

**
Γ∗Γ!X Γ∗ηΓ!X

// Γ∗Γ∗Γ∗Γ!X Γ∗Γ∗f //

εΓ∗Γ!X

��

Γ∗Γ∗A

εA

��
Γ∗Γ!X Γ∗Γ!X Γ∗Γ!X

f // A

.

Here the left square commutes trivially, the middle square commutes by the triangle identity for the (Γ∗ a Γ∗)-
adjunction and the right one by the naturality of the (Γ∗ a Γ∗)-counit. Therefore the total outer diagram
commutes, and this is the commuting square in question. �

Moreover, there is a canonical comparison map between [ and Π:

Definition 4.1.14. For H a cohesive ∞-topos with modalities (
∫
a [ a ]), we say that the composite

transformation (
[X −→

∫
X
)

:=
(
[X −→ X −→

∫
X
)

of the (Disc a Γ)-counit followed by the (Π a Disc)-unit, natural in X ∈ H, is the pieces-to-points transform.

Given the geometric interpretation of
∫

and [, this map may be thought of as sending each point of a
cohesive space X to the cohesive piece that it sits in. This is a central conceptual insight in [Law07].

Proposition 4.1.15. There is a natural equivalence of natural transformations(
[A −→

∫
X
)
' Disc (ΓX −→ ΠX) ,

where
(ΓX −→ ΠX) :=

(
ΓX −→ ΓDiscΠX

'−→ ΠX
)

and where on the right we have the composite of the image under Γ of the (Π a Disc)-unit followed by the
(Disc a Γ)-counit applied to ΠX. In particular the points-to-pieces transform [ →

∫
, def. 4.1.14, is an

equivalence on X ∈ H precisely if Γ→ Π is.

Proof. By the formula for ∞-adjuncts and the fully faithfulness of Disc. �

Definition 4.1.16. Given an object X ∈ H of a cohesive ∞-topos over ∞Grpd, we say that

1. pieces have points in X if the points-to-pieces transform, def. 4.1.14, restricts to 0-truncated objects

and is an epimorphism on these, def. 5.1.65, [X // //
∫
X ;

2. X has one point per piece the points-to-pieces transform is an equivalence, [X
' //

∫
X .

Example 4.1.17. For the class of cohesive ∞-toposes constructed below in 4.1.2 from ∞-cohesive sites, it
is true for all their objects that pieces have points. A class of (relative) cohesive ∞-toposes for which this is
not the case is discussed in 6.1.1.
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Remark 4.1.18. The condition that pieces have points, def. 4.1.16, together with the condition that
∫

preserves finite products and hence in particular the terminal object, means that ([ a
∫

) has determinate
negation in the sense of def. 2.2.15.

Example 4.1.19. The property one point per piece in def. 4.1.16 is a characteristic feature of infinitesimally
thickened points (often called “formal points”) and indeed we find examples of this below in Goodwillie-
tangent cohesion, 6.1, in formal smooth cohesion, 6.5, and in supergeometric cohesion, 6.6.

Remark 4.1.20. The pieces-to-points transformation appears as part of the canonical stable differential
cohomology diagram (prop. 6.1.26 below) which exists for every object in Goodwillie-tangent cohesive ∞-
toposes (def. 6.1.17 below). In this diagram it is opposite to the canonical de Rham differential operation
on de Rham coefficients of differential cohomology theories.

Therefore it is useful to introduce the following terminology.20

Definition 4.1.21. Given a cohesive ∞-topos H, an object X ∈ H we call infinitesimal if the points-to-
pieces transform, def. 4.1.14, is an equivalence on X

[X
'−→
∫
X .

If the points-to-pieces transform is a natural equivalence (hence on all objects in H)

[
'−→
∫
.

then we call H an infinitesimal cohesive ∞-topos.

Example 4.1.22. Below in 4.2 we encounter infinitesimal cohesion as one aspect of the richer context of
differential cohesion, which pairs cohesion with an axiomatic/synthetic formulation of D-geometry.

Remark 4.1.23. Infinitesimal cohesive ∞-toposes are typically simple in themselves, but in examples they
are relevant as alternative base ∞-toposes over which richer ∞-toposes are cohesive (e.g. in formal smooth
cohesion, 6.5 and in supergeometric cohesion, 6.6).

In these contexts we appeal repeatedly to the following elementary fact.

Proposition 4.1.24. If C is a small ∞-category with a zero-object (an object which is both initial as well as
terminal), then the ∞-presheaf ∞-category PSh∞(C), def. 2.1.15, is infinitesimally cohesive, def. 4.1.21.

Proof. The constant ∞-presheaf ∞-functor Disc : ∞Grpd → PSh∞(Grpd) has a left adjoint Π and a
right adjoint Γ, given by forming ∞-limits and ∞-colomits of ∞-functors on C, respectively. Due to the
assumption of a zero object ∗, both of these are given by evaluation on that zero object. This first of all
implies that ΓDisc ' id, hence that Γ is full and faithful, and that Π preserves all ∞-limits, hence finite
∞-products, so that PSh∞(C) is indeed cohesive. Second it implies that the unit id −→ DiscΠ is given on
generators in C ↪→ PSh∞(C) by sending each of them to the zero object, and hence that Γ → ΓDiscΠ is an
equivalence. By prop. 4.1.15 this implies the claim. �

4.1.1.2 Internal formulation The above discussion in 4.1.1.1 looks at an ∞-topos “from the outside”,
namely as an object of the∞-category of all∞-toposes, and characterizes its cohesion in terms of additional
properties of functors defined on it. But in 2.1.1 we saw that an ∞-topos also comes with its internal
homotopy-type theory [UFP13], which describes it “from inside”. Mike Shulman has shown how one may
formulate the axioms of cohesion in this internal homotopy-type theory, to obtain cohesive homotopy-type
theory. An exposition of this is in [ScSh12], where pointers to the full details are given, see also [Sc14b].

20 I am grateful to Mike Shulman for discussion of this concept. In def. 1 of [Law07] essentially this concept is referred to as
“quality type”.
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The crucial insight of Mike Shulman [Shu11] is that to implement cohesion fully formally in homotopy-
type theory one is to regard the sharp modality ], remark 4.1.12, as the fundamental axiom that serves to
exhibit the external base ∞-topos as an internal sub-system of homotopy-types. Then the flat modality and
the shape modality are axiomatized based on the existence of the sharp modality.

While traditional topos theory (hence: 1-topos theory) had had an emphasis on the internal logic provided
by toposes from the very beginning [Law65], the formulation of constructions in higher topos theory in general
and of cohesive higher topos theory in particular in terms of the internal language of homotopy-type theory
has only just begun to be explored. But it is clear that it can provide considerable advantages. For instance
the whole theory of relative Postnikov-Whitehead towers in ∞-toposes (see 5.1.4 below), which in [L-Topos]
takes a fairly lenghty list of lemmas to establish, follows elegantly with a few simple proofs from homotopy-
type theory, see chapter 7 of [UFP13] (some of this goes back to [SpRi12]). Combined with the richness of
the formal consequences of the axioms of cohesion, for instance in the derivation of the long fiber sequences
in stable differential cohomology in 6.1.3 below, this opens interesting perspectives.

In the following we briefly sketch how one begins going about re-formulating the axioms of cohesion in
terms of structure internal to the ambient ∞-topos. For more details we refer the reader to [ScSh12] and
the pointers given there.

Theorem 4.1.25. Let H be an ∞-topos. The inclusion of a full sub-∞-category

Disc : Bdisc ↪→ H

– to be called the discrete objects – and of a full sub-∞-category

coDisc : Bcod ↪→ H

– to be called the codiscrete objects – satisfies Bdisc ' Bcod and extends to an adjoint quadruple of the form

H

× Π //
oo Disc ? _

Γ //
oo coDisc ? _

B

as in def. 4.1.8 precisely if for every object X ∈ H

1. there exists, with notation from def. 4.1.11,

(a) a morphism X →
∫
X to a discrete object;

(b) a morphism [X → X from a discrete object;

(c) a morphism X → ]X to codiscrete object;

2. such that for all discrete Y and codiscrete Ỹ the induced morphisms

(a) H(
∫
X,Y )→ H(X,Y );

(b) H(Y, [X)→ H(Y,X);

(c) H(]X, Ỹ )→ H(X, Ỹ );

(d) ]([X → X);

(e) [(X → ]X)

are equivalences.

Finally, Π preserves the terminal object if the morphism ∗ →
∫
∗ is an equivalence.

314



Proof. Prop. 5.2.7.8 in [L-Topos] asserts that a full sub-∞-category B ↪→ H is reflectively embedded
precisely if for every object X ∈ H there is a morphism

locX : X → LX

to an object LX ∈ H ↪→ H such that for all Y ∈ B ↪→ H the morphism

H(locX , Y ) : H(LX,Y )→ H(X,Y )

is an equivalence. In this case L is the composite of the embedding and its left adjoint. Accordingly, a dual
statement holds for coreflective embeddings. This gives the structure and the first three properties of the
above assertion. We identify therefore

(
∫
a [ a ]) := (Disc Π a Disc Γ a coDisc Γ) .

It remains to show that the last two properties say precisely that the sub-∞-categories of discrete and
codiscrete objects are equivalent and that under this equivalence their coreflective and reflective embedding,
respectively, fits into a single adjoint triple. It is clear that if this is the case then the last two properties
hold. We show the converse.

First notice that the two embeddings always combine into an adjunction of the form

Bdisc

� � Disc //
oo

Γ

H
Γ̃ //

oo
coDisc

? _Bcod .

The equivalence ]([X → X) applied to X := coDiscA gives that coDisc applied to the counit of this composite
adjunction is an equivalence

coDisc Γ̃ Disc ΓcoDiscA
'−→ coDisc Γ̃ coDiscA

'−→ coDiscA

and since coDisc is full and faithful, so is the composite counit itself. Dually, the equivalence [(X → ]X)
implies that the unit of this composite adjunction is an equivalence. Hence the adjunction itself is an
equivalence, and so Bdisc ' Bcod. Using this we obtain a composite equivalence

Disc Γ̃X
'→ Disc ΓcoDisc Γ̃X

'→ Disc ΓX ,

where the left morphism is the image under Disc of the ave composite adjunction on the codiscrete object
Γ̃X, and where the second is a natural inverse of [(X → ]X). Since Disc is full and faithful, this implies
that

Γ ' Γ̃ .

�
This formulation of cohesion is not entirely internal yet, since it still refers to the external hom∞-groupoids

H. But cohesion also implies that the external ∞-groupoids can be re-internalized.

Proposition 4.1.26. The statement of theorem 4.1.25 remains true with items 2. a) - 2. b) replaced by

2. (a’) ][
∫
X,Y ]→ ][X,Y ];

2. (b’) ][Y, [X]→ ][Y,X];

2. (c’) []X, Ỹ ]→ [X, Ỹ ];

where [−,−] denotes the internal hom in H.

Proof. By prop. 5.2.2 we have for codiscrete Ỹ equivalences [X, Ỹ ] ' coDiscH(X, Ỹ ). Since coDisc is
full and faithful, the morphism H(]X, Ỹ )→ H(X, Ỹ ) is an equivalence precisely if []X, Ỹ ]→ [X, Ỹ ] is.

Generally, we have Γ[X,Y ] ' H(X,Y ). With the full and faithfulness of coDisc this similarly gives the
remaining statements. �
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4.1.2 Presentation

We now discuss presentations of cohesive ∞-toposes, in the sense of presentation of ∞-toposes as discussed
in 3.1.3. In 4.1.2.2 we consider sites such that the∞-topos of∞-sheaves over them is cohesive. In 4.1.2.3 we
analyze fibrancy and descent over these sites. These considerations serve as the basis for the construction of
models of cohesion below in 6.

4.1.2.1 Presentation over ∞-connected sites We discuss presentations of locally and globally ∞-
connected ∞-toposes, def. 4.1.3, by categories of simplicial presheaves over a suitable site of definition.

Definition 4.1.27. We call a site (a small category equipped with a coverage) locally and globally ∞-
connected if

1. it has a terminal object ∗;

2. for every generating covering family {Ui → U} in C

(a) {Ui → U} is a good covering, def. 3.1.26: the Čech nerve C({Ui}) ∈ [Cop, sSet] is degreewise a
coproduct of representables;

(b) the colimit lim
−→

: [Cop, sSet]→ sSet of C({Ui}) is weakly contractible

lim
−→

C({Ui})
'→ ∗ .

Proposition 4.1.28. For C a locally and globally ∞-connected site, the ∞-topos Sh∞(C) is locally and
globally ∞-connected.

We prove this after noting two lemmas.

Lemma 4.1.29. For {Ui → U} a covering family in the ∞-connected site C, the Čech nerve C({Ui}) ∈
[Cop, sSet] is a cofibrant resolution of U both in the global projective model structure [Cop, sSet]proj as well
as in the local model structure [Cop, sSet]proj,loc.

Proof. By assumption on C we have that C({Ui}) is a split hypercover [DHS04]. This implies that
C({Ui}) is cofibrant in the global model structure. By general properties of left Bousfield localization we
have that the cofibrations in the local model structure as the same as in the global one. Finally that
C({Ui})→ U is a weak equivalence in the local model structure holds effectively by definition (since we are
localizing at these morphisms). �

Proposition 4.1.30. On a locally and globally∞-connected site C, the global section∞-geometric morphsm
(∆ a Γ) : Sh∞(C)→∞Grpd is presented under prop. 2.1.39 by the simplical Quillen adjunction

(Const a Γ) : [Cop, sSet]proj,loc
ooConst

Γ
// sSetQuillen ,

where Γ is the functor that evaluates on the terminal object, Γ(X) = X(∗), and where Const is the functor
that assigns constant presheaves ConstS : U 7→ S.

Proof. That we have a 1-categorical adjunction (Const a Γ) follows by noticing that since C has a
terminal object we have that Γ = lim

←−
is given by the limit operation.

To see that we have a Quillen adjunction first notice that we have a Quillen adjunction on the global
model structure

(Const a Γ) : [Cop, sSet]proj
ooConst

Γ
// sSetQuillen ,
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since Γ manifestly preserves fibrations and acyclic fibrations there. Because [Cop, sSet]proj,loc is left proper
and has the same cofibrations as the global model structure, it follows with prop. 2.1.40 that for this to
descend to a Quillen adjunction on the local model structure it is sufficient that Γ preserves locally fibrant
objects. But every fibrant object in the local structure is in particular fibrant in the global structure, hence
in particular fibrant over the terminal object of C.

The left derived functor LConst of Const : sSetQuillen → [Cop, sSet] preserves∞-limits (because∞-limits
in an ∞-category of ∞-presheaves are computed objectwise), and moreover ∞-stackification, being the left
derived functor of Id : [Cop, sSet]proj → [Cop, sSet]proj, is a left exact ∞-functor, therefore the left derived
functor of Const : sSetQuillen → [Cop, sSet]proj,loc preserves finite ∞-limits.

This means that our Quillen adjunction does model an ∞-geometric morphism Sh∞(C)→∞Grpd. By
prop. 3.1.7 this is indeed a representative of the terminal geometric morphism as claimed. �
Proof of theorem 4.1.28. By general abstract facts the sSet-functor Const : sSet → [Cop, sSet] given on

S ∈ sSet by Const(S) : U 7→ S for all U ∈ C has an sSet-left adjoint

Π : X 7→
∫ U

X(U) = lim
−→

X

naturally in X and S, given by the colimit operation. Notice that since sSet is itself a category of presheaves
(on the simplex category), these colimits are degreewise colimits in Set. Also notice that the colimit over a
representable functor is the point (by a simple Yoneda lemma-style argument).

Regarded as a functor sSetQuillen → [Cop, sSet]proj the functor Const manifestly preserves fibrations and
acyclic fibrations and hence

(Π a Const) : [Cop, sSet]proj

lim
−→ //
oo
Const

sSetQuillen

is a Quillen adjunction, in particular Π : [Cop, sSet]proj → sSetQuillen preserves cofibrations. Since by
general properties of left Bousfield localization the cofibrations of [Cop, sSet]proj,loc are the same, also Π :
[Cop, sSet]proj,loc → sSetQuillen preserves cofibrations.

Since sSetQuillen is a left proper model category it follows with prop. 2.1.40 that for

(Π a Const) : [Cop, sSet]proj,loc

lim
−→ //
oo
Const

sSetQuillen

to be a Quillen adjunction, it suffices now that Const preserves fibrant objects. This means that constant
simplicial presheaves satisfy descent along covering families in the ∞-cohesive site C: for every covering
family {Ui → U} in C and every simplicial set S it must be true that

[Cop, sSet](U,ConstS)→ [Cop, sSet](C({Ui}),ConstS)

is a homotopy equivalence of Kan complexes. (Here we use that U , being a representable, is cofibrant,
that C({Ui}) is cofibrant by the lemma 4.1.29 and that ConstS is fibrant in the projective structure by the
assumption that S is fibrant. So the simplicial hom-complexes in the above equaltion really are the correct
derived hom-spaces.)

But that this is the case follows by the condition on the ∞-connected site C by which lim
−→

C({Ui}) ' ∗:
using this we have that

[Cop, sSet](C({Ui}),ConstS) = sSet(lim
−→

C({Ui}), S) ' sSet(∗, S) = S .

So we have established that (lim
−→
a Const) is also a Quillen adjunction on the local model structure.

It is clear that the left derived functor of lim
−→

preserves the terminal object: since that is representable

by assumption on C, it is cofibrant in [Cop, sSet]proj,loc, hence L lim
−→
∗ ' lim

−→
∗ = ∗. �
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4.1.2.2 Presentation over ∞-cohesive sites We discuss a class of sites with the property that the
∞-toposes of ∞-sheaves over them (3.1.3) are cohesive, def. 4.1.8.

Definition 4.1.31. An ∞-cohesive site is a site such that

1. it has finite products;

2. every object U ∈ C has at least one point: C(∗, U) 6= ∅;

3. for every covering family {Ui → U} its Čech nerve C({Ui}) ∈ [Cop, sSet] is degreewise a coproduct of
representables

4. the canonical morphisms C({Ui}) → U are taken to weak equivalences by both limit and colimit
[Cop, sSet]→ sSet:

lim
−→

C({Ui})
'→ lim
−→

Ui

lim
←−

C({Ui})
'→ lim
←−

Ui
.

Notice that for the representable U we have lim→ U ' ∗ and that since C is assumed to have finite
products and hence in particular a terminal object lim← U = C(∗, U).

Proposition 4.1.32. The ∞-sheaf ∞-topos over an ∞-cohesive site is a cohesive ∞-topos in which for all
objects pieces have points, def. 4.1.16.

Proof. Since an ∞-cohesive site is in particular a locally and globally ∞-connected site (def. 4.1.27) it
follows with theorem 4.1.28 that Π exists and preserves the terminal object. Moreover, by the discussion there
Π acts by sending a fibrant-cofibrant simplicial presheaf F : Cop → sSet to its colimit. Since C is assumed
to have finite products, Cop has finite coproducts, hence is a sifted category. Therefore taking colimits of
functors on Cop commutes with taking products of these functors. Since the ∞-product of ∞-presheaves is
modeled by the ordinary product on fibrant simplicial presheaves, it follows that over an ∞-cohesive site Π
indeed exhibits a strongly ∞-connected ∞-topos.

Using the notation and results of the proof of theorem 4.1.28, we show that the further right adjoint ∆
exists by exhibiting a suitable right Quillen adjoint to Γ : [Cop, sSet] → sSet, which is given by evaluation
on the terminal object. Its sSet-enriched right adjoint is given by

∇S : U 7→ sSet(Γ(U), S)

as confirmed by the following end/coend computation:

(X,∇(S)) =

∫
U∈C

sSet(X(U), sSet(Γ(U), S)

=

∫
U∈C

sSet(X(U)× Γ(U), S)

= sSet(

∫ U∈C
X(U)× Γ(U), S)

= sSet(

∫ U∈C
X(U)×HomC(∗, U), S)

= sSet(X(∗), S)

= sSet(Γ(X), S)

,

We have that

(Γ a ∇) : [Cop, sSet]proj

Γ→←
∇

sSetQuillen
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is a Quillen adjunction, since ∇ manifestly preserves fibrations and acyclic fibrations. Since [Cop, sSet]proj,loc

is a left proper model category, to see that this descends to a Quillen adjunction on the local model structure
it is sufficient by prop. 2.1.40 to check that ∇ : sSetQuillen → [Cop, sSet]proj,loc preserves fibrant objects, in
that for S a Kan complex we have that ∇S satisfies descent along Čech nerves of covering families.

This is implied by the second defining condition on the∞-local site C, that lim
←−

C({Ui}) = HomC(∗, C({Ui)}) '
HomC(∗, U) = lim

←−
U is a weak equivalence. Using this we have for fibrant S ∈ sSetQuillen the descent weak

equivalence
[Cop, sSet](U,∇S) = sSet(HomC(∗, U), S)

' sSet(HomC(∗, C(U)), S)

= [Cop, sSet](C(U),∇S)

,

where we use in the middle step that sSetQuillen is a simplicial model category so that homming the weak
equivalence between cofibrant objects into the fibrant object S indeed yields a weak equivalence.

It remains to show that pieces have points, def. 4.1.16, in Sh∞(C). For the first statement we use
the cofibrant replacement theorem from [Dug01] for [Cop, sSet]proj,loc which says that for X any simplicial
presheaf, a functorial projective cofibrant replacement is given by the object

QX :=

(
· · · //////

∐
U0→U1→X1

U0
////
∐

U0→X0

U0

)
,

where the coproducts are over the set of morphisms of presheaves from representables Ui as indicated. By
the above discussion, the presentations of Γ and Π by left Quillen functors lim

←−
and lim

−→
takes this to the

morphism lim
←−

QX → lim
−→

QX induced in components by

· · · //////
∐

U0→U1→X1

C(∗.U0) ////

��

∐
U0→X0

C(∗, U0)

��
· · · //////

∐
U0→U1→X1

∗ // //
∐

U0→X0

∗

.

By assumption on C we have that all sets C(∗, U0) are non-empty, so that this is componentwise an epimor-
phism and hence induces in particular an epimorphism on connected components.

Finally, for S a Kan complex we have by the above that DiscS is the presheaf constant on S. Its homotopy
sheaves are the presheaves constant on the homotopy groups of S. The inclusion of these into the homotopy
sheaves of coDiscS is over each U ∈ C the diagonal injection

πn(S, x) ↪→ πn(S, x)C(∗,U) .

Therefore also discrete objects are concrete in the ∞-topos over the ∞-cohesive site C. �
Below in 6 we discuss in detail the following examples.

Examples 4.1.33. The following sites are ∞-cohesive.

• The site CartSptop of Cartesian spaces, continuous maps between them and good open covers (prop.
6.3.2).

• The site SmoothCartSp of Cartesian spaces, smooth maps between them and good open covers (prop.
6.4.6),

• The site CartSpformal of Cartesian spaces with infinitesimal thickening, smooth maps between the and
good open covers that are the identity on the thickening (prop. 6.5.8).
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• The site CartSpsuper of super-Cartesian spaces, morphisms of supermanifolds between them and good
open covers.

We record some general properties of ∞-toposes over such sites, that will be used below.
The following might be expected to hold quite generally for ∞-toposes, but currently we have a proof

only over ∞-connected sites.

Theorem 4.1.34 (parameterized∞-Grothendieck construction). Let H be an∞-topos with an∞-connected
site of definition, def. 4.1.27, and let A ∈ ∞Grpd be any ∞-groupoid. Then there is an equivalence of ∞-
categories

H/DiscA ' HA

between the slice∞-topos of H over the discrete cohesive∞-groupoid on A and the∞-category of∞-functors
A→ H.

Proof. For the case that the site of definition is terminal, hence that H ' ∞Grpd, this statement is the
∞-Grothendieck construction from section 2 of [L-Topos]. There the equivalence of ∞-categories

∞Grpd/A ' ∞GrpdA

which takes a fibration to an∞-functor that assigns its fibers is presented by a Quillen equivalence of model
categories

sSet+/A
//

oo [w(A)op, sSet]proj

between a model structure on marked simplicial sets sSet+ over a Kan complex A and the global projective
model structure on enriched presheaves on the simplically enriched category w(A) corresponding to A by
the discussion in section 1.1.5 of [L-Topos].

Now for C an ∞-connected site and H ' ([Cop, sSet]proj,loc)◦ we have by the proof of prop. 4.1.28 that
with A a Kan complex, the constant simplicial presheaf constA : Cop → sSet is a fibrant presentation in
[Cop, sSet]proj,loc of DiscA. Therefore the ∞-categorical slice H/DiscA is presented by the induced model
structure on the 1-categorical slice category

H/DiscA '
(
([Cop, sSet]/constA)proj,loc/constA

)◦
.

We have an evident equivalence of 1-categories

[Cop, sSet]/constA ' [Cop, sSet/A]

under which the above slice model structure is seen to become the model structure on presheaves with values
in the slice model structure (sSet/A)Quillen/A, hence

H/DiscA '
(
[Cop, (sSet/A)Quillen/A]proj,loc

)◦
.

Since A is fibrant in the Quillen model structure, the slice model structure here presents the ∞-categorical
slice of ∞-groupoids

∞Grpd/A '
(
(sSet/A)Quillen/A

)◦
.

By the above presentation of the∞-Grothendieck construction by marked simplicial sets, this is equivalently

· · · '
(
sSet+/A

)◦ ' ([w(A)op, sSet]proj)
◦
.

Since all model categories appearing here are combinatorial, it follows with prop. 4.2.4.4 in [L-Topos] that
we have an equivalence of ∞-categories

H/DiscA ' ([Cop, [w(A)op, sSet]proj]proj,loc)
◦

and hence
· · · ' ([w(A)op, [Cop, sSet]proj,loc]proj)

◦ ' HA .

�
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Proposition 4.1.35. If H has an ∞-cohesive site of definition, def. 4.1.31, then the functor Π : H →
∞Grpd preserves ∞-pullbacks over discrete objects.

This was pointed out by Mike Shulman.
Proof. By prop. 5.2.5.1 in [L-Topos] the (Π a Disc)-adjunction passes for each A ∈ ∞Grpd to the slice as

(Π/DiscA a Disc/DiscA) : H/DiscA →∞Grpd/A .

Under the parameterized ∞-Grothendieck construction, prop. 4.1.34, we have that Π/DiscA becomes

ΠA : HA →∞GrpdA .

Since ∞-limits of functor ∞-categories are computed objectwise, and since Π preserves finite products by
the axioms of cohesion, ΠA preserves finite products and hence so does Π/DiscA. Since a binary product in
H/DiscA is an ∞-pullback over DiscA in H, this completes the proof. �

Remark 4.1.36. We find below that over some∞-cohesive sites of interest Π preserves further∞-pullbacks.
See prop. 6.3.47.

4.1.2.3 Fibrancy over ∞-cohesive sites The condition on an object X ∈ [Cop, sSet]proj to be fibrant
models the fact that X is an∞-presheaf of ∞-groupoids. The condition that X is also fibrant as an object in
[Cop, sSet]proj,loc models the higher analog of the sheaf condition: it makes X an ∞-sheaf. For generic sites
C fibrancy in the local model structure is a property rather hard to check or establish concretely. But often
a given site can be replaced by another site on which the condition is easier to control, without changing the
corresponding ∞-topos, up to equivalence. Here we discuss for cohesive sites, def. 4.1.31 explicit conditions
for a simplicial presheaf over them to be fibrant.

In order to discuss descent over C it is convenient to introduce the following notation for “cohomology
over the site C”. For the moment this is just an auxiliary technical notion. Later we will see how it relates
to an intrinsically defined notion of cohomology.

Definition 4.1.37. For C an ∞-cohesive site, A ∈ [Cop,Set]proj fibrant, and {Ui → U} a good cover in U ,
we write

Hn
C({Ui}, A) := π0Maps(C({Ui}), A) .

Moreover, if A is equipped with (abelian) group structure we write

Hn
C({Ui}, A) := π0Maps(C({Ui}),W

n
A) .

Definition 4.1.38. An object A ∈ [Cop, sSet] is called C-acyclic if

1. it is fibrant in [Cop, sSet]proj;

2. for all n ∈ N the homotopy group presheaves πPSh
n from def. 3.1.11 are already sheaves πn(A) ∈ Sh(C);

3. for n = 1 and k = 1 as well as n ≥ 2 and k ≥ 1 we have Hk
C({Ui}, πn(A)) ' ∗ for all good covers

{Ui → U}.

Remark 4.1.39. This definition can be formulated and the following statements about it are true over any
site whatsoever. However, on generic sites C the C-acyclic objects are not very interesting. On ∞-cohesive
sites on the other hand they are of central importance.

Observation 4.1.40. If A is C-acyclic then for every point x : ∗ → A also ΩxA is C-acyclic (for any model
of the loop space object in [Cop, sSet]proj).
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Proof. The standard statement in sSetQuillen

πnΩX ' πn+1X

directly prolongs to [Cop, sSet]proj. �

Theorem 4.1.41. Let C be an ∞-cohesive site. Sufficient conditions for an object A ∈ [Cop, sSet] to be
fibrant in the local model structure [Cop, sSet]proj,loc are

• A is 0-truncated and C-acyclic;

• A is connected and C-acyclic;

• A is a group object and C-acyclic.

Here and in the following “truncated” and “connected” are as simplicial presheaves (not after sheafifica-
tion of homotopy presheaves).

We demonstrate this statement in several stages.

Proposition 4.1.42. A 0-truncated object is fibrant in [Cop, sSet]proj,loc precisely if it is fibrant in [Cop, sSet]proj

and weakly equivalent to a sheaf: to an object in the image of the canonical inclusion

ShC ↪→ [Cop,Set] ↪→ [Cop, sSet] .

Proof. From general facts of left Bousfield localization we have that the fibrant objects in the local model
structure are necessarily fibrant also in the global structure.

Since moreover A → π0(A) is a weak equivalence in the global model structure by assumption, we have
for every covering {Ui → U} in C a sequence of weak equivalences

Maps(C({Ui}), A)
'→ Maps(C({Ui}), π0(A))

'→ Maps(π0C({Ui}), π0(A))
'→ ShC(S({Ui}), π0(A)) ,

where S({Ui}) ↪→ U is the sieve corresponding to the cover. Therefore the descent condition

Maps(U,A)
'→ Maps(C({Ui}), A)

is precisely the sheaf condition for π0(A). �

Proposition 4.1.43. A connected fibrant object A ∈ [Cop, sSet]proj is fibrant in [Cop, sSet]proj,loc if for all
objects U ∈ C

1. HC(U,A) ' ∗;

2. ΩA is fibrant in [Cop, sSet]proj,loc ,

where ΩA is any fibrant object in [Cop, sSet]proj representing the looping of A.

Proof. For {Ui → U} a covering we need to show that the canonical morphism

Maps(U,A)→ Maps(C({Ui}), A)

is a weak homotopy equivalence. This is equivalent to the two morphisms

1. π0Maps(U,A)→ π0Maps(C({Ui}), A)

2. ΩMaps(U,A)→ ΩMaps(C({Ui}), A)
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being weak equivalences. Since A is connected the first of these says that there is a weak equivalence

∗ '→ HC(U,A). The second condition is equivalent to Maps(U,ΩA) → Maps(C({Ui}),ΩA), being a weak
equivalence, hence to the descent of ΩA. �

Proposition 4.1.44. An object A which is connected, 1-truncated and C-acyclic is fibrant in [Cop, sSet]proj,loc.

Proof. Observe that for a connected and 1-truncated objects we have a weak equivalence A 'Wπ1(A) in
[Cop, sSet]proj. The first condition of prop. 4.1.43 is then implied by C-connectedness. The second condition
there is that π1(A) satisfies descent. By C-acyclicity this is a sheaf and it is 0-truncated by assumption,
therefore it satisfies descent by prop 4.1.42. �

Proposition 4.1.45. Every connected and C-acyclic object A ∈ [Cop, sSet]proj is fibrant in [Cop, sSet]proj,loc.

Proof. We first show the statement for truncated A and afterwards for the general case.
The k-truncated case in turn we consider by induction over k. If A is 1-truncated the proposition holds

by prop. 4.1.44. Assuming then that the statement has been shown for k-truncated A, we need to show it
for (k + 1)-truncated A.

This we do by decomposing A into its canonical Postnikov tower def. 5.1.50: For n ∈ N let

A(n) := A/∼n

be the quotient simplicial presheaf where two cells

α, β : ∆n × U → A

are identified, α ∼n β, precisely if they agree on their n-skeleton:

sknα = sknβ : skn∆ ↪→ ∆n → A(U) .

It is a standard fact (shown in [GoJa99], theorem VI 3.5 for simplicial sets, which generalizes immediately
to the global model structure [Cop, sSet]proj ) that for all n > 1 we have sequences

K(n)→ A(n)→ A(n− 1) ,

where A(n−1) is (n−1)-truncated with homotopy groups in degree ≤ n−1 those of A, and where the right
morphism is a Kan fibration and the left morphism is its kernel, such that

A = lim
←−n

A(n) .

Moreover, there are canonical weak homotopy equivalences

K(n)→ Ξ((πn−1A)[n])

to the Eilenberg-MacLane object on the nth homotopy group in degree n.
Since A(n− 1) is (n− 1)-truncated and connected, the induction assumption implies that it is fibrant in

the local model structure.
Moreover we see that K(n) is fibrant in [Cop, sSet]proj,loc: the first condition of 4.1.43 holds by the

assumption that A is C-connected. The second condition is implied again by the induction hypothesis, since
ΩK(n) is (n− 1)-truncated, connected and still C-acyclic, by observation 4.1.40.

Therefore in the diagram (where Maps(−,−) denotes the simplicial hom complex)

Maps(U,K(n)) //

'
��

Maps(U,A(n)) //

��

Maps(U,A(n− 1))

'
��

Maps(C({Ui}),K(n)) // Maps(C({Ui}), A(n)) // Maps(C({Ui}), A(n− 1))
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for {Ui → U} any good cover in C the top and bottom rows are fiber sequences (notice that all simplicial
sets in the top row are connected because A is connected) and the left and right vertical morphisms are
weak equivalences in [Cop, sSet]proj (the right one since A(n − 1) is fibrant in the local model structure by
induction hypothesis, as remarked before, and the left one by C-acyclicity of A). It follows that also the
middle morphism is a weak equivalence. This shows that A(n) is fibrant in [Cop, sSet]proj,loc. By completing
the induction the same then follows for the object A itself.

This establishes the claim for truncated A. To demonstrate the claim for general A notice that the limit
over a sequence of fibrations between fibrant objects is a homotopy limit (by example 5.1.12). Therefore we
have

Maps(U,A)

��

' lim
←−n

Maps(U,A(n))

'

��
Maps(C({Ui}), A) ' lim

←−n
Maps(C({Ui}), A(n))

,

where the right vertical morphism is a morphism between homotopy limits in [Cop, sSet]proj induced by a
weak equivalence of diagrams, hence is itself a weak equivalence. Therefore A is fibrant in [Cop, sSet]proj,loc.
�

Lemma 4.1.46. For G ∈ [Cop, sSet] a group object, the canonical sequence

G0 → G→ G/G0

is a homotopy fiber sequence in [Cop, sSet]proj.

Proof. Since homotopy pullbacks of presheaves are computed objectwise, it is sufficient to show this for
C = ∗, hence in sSetQuillen. One checks that generally, for X a Kan complex and G a simplicial group acting
on X, the quotient morphism X → X/G is a Kan fibration. Therefore the homotopy fiber of G→ G/G0 is
presented by the ordinary fiber in sSet. Since the action of G0 on G is free, this is indeed G0 → G. �

Proposition 4.1.47. Every C-acyclic group object G ∈ [Cop, sSet]proj for which G0 is a sheaf is fibrant in
[Cop, sSet]proj,loc.

Proof. By lemma 4.1.46 we have a fibration sequence

G0 → G→ G/G0 .

Since G0 is assumed to be a sheaf it is fibrant in the local model structure by prop. 4.1.42. Since G/G0 is
evidently connected and C-acyclic it is fibrant in the local model structure by prop. 4.1.45. As before in the
proof there this implies that also G is fibrant in the local model structure. �

We discuss some examples.

Proposition 4.1.48. Let (δ : G1 → G0) be a crossed module, def. 1.2.81, of sheaves over an ∞-cohesive
site C. Then the simplicial delooping W̄ (G1 → G0) is fibrant in [Cop, sSet]proj,loc if the image factorization
of G0 ×G1 → G0 ×G0 has sections over each U ∈ C and if the presheaf kerδ is a sheaf.

Proof. The existence of the lift ensures that the homotopy presheaf πPSh
1 W̄G is a sheaf. Notice that

πPSh
2 W̄G = ker(δ). Since moreover W̄G is manifestly connected, the claim follows with theorem 4.1.41. �

324



4.2 < a = a & – Elasticity

We discuss extra structure on a cohesive ∞-topos that encodes a refinement of the corresponding notion of
cohesion to a notion of what may be called infinitesimal cohesion or differential cohesion. With respect to
such it makes sense to ask if an object in the topos is infinitesimal. Where cohesion encodes the presence of
fundamental path∞-groupoids and differential cohomology, we find that differential cohesion is what allows
to formulate infinitesimal path ∞-groupoids, manifold theory and Cartan geometry, such as Riemannian
and Lorentzian geometry. Following a common imagery of differential manifolds in general and manifolds
with (pseudo-)Riemannian structure in particular exhibiting a kind of (rigid) elasticity (“hearing the shape
of a drum”) we also speak of an ∞-topos with differential cohesion as abstract elastic substance.

A basic class of examples of objects with infinitesimal extension are infinitesimal intervals D that arise,
in the presence of infinitesimal cohesion, from line objects A as the subobjects D ↪→ A of elements that
square to 0 (in the internal logic of the topos)

D = {x ∈ A|x · x = 0} .

These objects co-represent tangent spaces, in that for any other object X the internal hom object TX :=
[D, X] plays the role of the tangent bundle of X.

A well-known proposal for an axiomatic characterization of infinitesimal objects in a 1-topos goes by
the name synthetic differential geometry [Law97], where infinitesimal extension is characterized by algebraic
properties of dual function algebras, as above. From the point of view and in the presence of cohesion in an
∞-topos, however, there is a more immediate geometric characterization: an object D in a cohesive∞-topos
H behaves like a possibly infinitesimally thickened point if

1. it is geometrically contractible, Π(D) ' ∗;

2. it has a single global point, Γ(D) ' ∗.

In particular this implies that the points-to-pieces transform, def. 4.1.14, is an equivalence on D. More
generally, a disjoint union of such infinitesimally thickened points is an object X for which the pieces-to-
points transform is an equivalence

[(X)
'−→ Π(X)

as in the definition of infinitesimal cohesion, def. 4.1.21.
This axiomatization we discuss in the following. We observe that this formalizes a modern refinement of

infinitesimal calculus called D-geometry [BeDr04] [L-DGeo].
More precisely, we consider geometric inclusions H< ↪→ H of cohesive∞-toposes that exhibit the objects

of H as infinitesimal cohesive neighbourhoods of objects in H<. Equivalently, if the cohesive ∞-topos H<
is itself regarded as a fat point by prop. 4.1.10, then H is a further infinitesimal thickening of that fat point
itself. Below in 5.3.6 we furthermore consider the ∞-cofiber Hinf of this inclusion

H<
� � //

��

H

��
∞Grpd �

� // Hinf

.

This cofiber is interpreted accordingly as the respective infinitesimal thickening of the absolute point. We
observe in 6.5.2.5 that the sub-∞-category of globally trivial objects of Hinf is equivalent to that of L∞-
algebras, by the theory of “formal moduli problems” of [L-Lie]. Moreover, the reflection along

Grp(H) ' H
∗/
≥1 −→ (Hinf)

∗/
≥1

is Lie differentiation, sending a cohesive ∞-group to the L∞-algebra that approximates it infinitesimally.

Below in 5.3 we discuss a list of structures that are canonically present in infinitesimal cohesive neigh-
bourhoods.
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Further below in 6.5 we discuss a model for these axioms by formall smooth ∞-groupoids which is an
∞-categorical generalization of a topos that is a model for synthetic differential geometry. In this model the
above ∞-cofiber sequence of cohesive ∞-toposes reads

Smooth∞Grpd �
� / FormalSmooth∞Grpd / / Inf∞Grpd ,

where on the right we have “infinitesimal∞-groupoids” (essentially the “formal moduli problems” of [L-Lie]),
which are infinitesimally cohesive. This is prop. 6.5.15 below.

A similar model, differing by the existence of a grading on the infinitesimals, is that of supergeometric
∞-groupoids, discussed below in in 6.6. There the ∞-cofiber sequence of cohesive ∞-toposes reads

Smooth∞Grpd �
� / SmoothSuper∞Grpd / / Super∞Grpd ,

where on the right we have bare but “super”∞-groupoids, an infinitesimally cohesive∞-topos whose internal
algebra is superalgebra. This is prop. 6.6.18 below.

4.2.1 General abstract

Definition 4.2.1. Given an ∞-topos H, then differential structure or elastic structure on H turning it into
a differential ∞-topos or elastic substance is a sub-∞-topos H< which is included (co-)reflectively via an
adjoint quadruple of ∞-functors of the form

(i! a i∗ a i∗ a i!) : H<

� � i! //
oo i∗� �
i∗ //oo
i!

H

such that i! preserves finite products. We call i! the inclusion of the reduced objects and i∗ the inclusion of
the co-reduced objects.

If the differential ∞-topos H is cohesive over the given base ∞-topos (in which case also H< is cohesive)
then we also say for short that it carries differential cohesion. The adjoint triple of idempotent (co-)monads
corresponding to this adjoint quadrupuple we write

< a = a & : H→ H

(see def. 5.3.1 below for more details) and pronounce them as

• < – infinitesimal reduction modality ;

• = – infinitesimal shape modality ;

• & – infinitesimal flat modality.

Remark 4.2.2. Definition 4.2.1 captures the characterization of infinitesimal objects as having a single
global point surrounded by an infinitesimal neighbourhood: as we discuss in detail below in 5.3.1, the ∞-
functor i∗ may be thought of as contracting away any infinitesimal extension of an object. Thus X being
an infinitesimal object amounts to i∗X ' ∗, and the ∞-adjunction (i! a i∗) then implies that X has only a
single global point, since

H(∗, X) ' H(i!∗, X)

' H(∗, i∗X)

' H(∗, ∗)
' ∗

.
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Proposition 4.2.3. The inclusion into the infinitesimal neighbourhood is necessarily a morphism of ∞-
toposes over ∞Grpd.

H<
(i∗ai∗) //

ΓH< $$

H

ΓH{{
∞Grpd

as is the induced ∞-geometric morphism (i∗ a i!) : Hth → H:

H
(i∗ai!) //

ΓH ##

H

ΓH<{{
∞Grpd

.

Proof. By essential uniqueness of the terminal global section geometric morphism, prop. 3.1.7. In both
cases the direct image functor has as left adjoint that preserves the terminal object. Therefore we compute
in the first case

ΓH(i∗X) ' H(∗, i∗X)

' H<(i∗∗, X)

' H<(∗, X)

' ΓH<(X)

and analogously in the second. �

Definition 4.2.4. For (i! a i∗ a i∗ a i!) : H< → H an differential structure, def. 4.2.1, on a cohesive
∞-topos, we write

(Πinf a Discinf a Γinf) := (i∗ a i∗ a i!) ,

so that the locally connected terminal geometric morphism of H factors as

(ΠH a DiscH a [H) : H

oo i! ? _

Πinf
//

oo Discinf
? _

Γinf
// H<

ΠH<
//

oo DiscH<
? _

ΓH<
//

oo coDiscH<
? _
∞Grpd .

See the schematics surveyed in 2.2 and 4.

Remark 4.2.5. Organizing the adjoints as in def. 4.2.4 and using that by prop. 3.1.7 the geometric
morphism to the base ∞Grpd is essentially unique, shows that the moments (= a & of differential cohesion
in def. 4.2.1 factor the moments (

∫
a [) of cohesion. Hence in the vein of the discussion in 2.2.5 and
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continuing remark 4.1.12, the situation in def. 4.2.4 may be depicted as follows:

id a

∨

id

∨

<
⊥

a⊥ =
⊥

=
∨

a &

∨∫
a

⊥

[

⊥

[ a

∨

]

∨

∅ a ∗

The interrelation between overlapping adjoint triples here is discussed in more detail below in 5.3.1.
As a simple class of examples we record right away:

Proposition 4.2.6. If H is an infinitesimally cohesive ∞-topos over ∞Grpd def. 4.1.24, then it is also
enjoys differential cohesion relative to ∞Grpd.

Proof. By the properties of infinitesimal cohesion the composite

∞Grpd

� � //
oo
� � //
oo

H

//
oo ? _

oo ? _

//
∞Grpd

is the identity adjoint quadruple, which is the one that exhibits the discrete cohesion of ∞Grpd over itself.
�

More generally, one may encode infinitesimals of various fixed order of infinitesimally.

Definition 4.2.7. Given a sequence of differential inclusions, def. 4.2.1,

H< = H<(0)

� � //
oo
� � //
oo

H<(1)

� � //
oo
� � //
oo

H<(2)

� � //
oo
� � //
oo

· · ·
� � //
oo
� � //
oo

H<(∞)

� � //
oo
� � //
oo

H
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we speak of a sequence of orders of differential structures and we write

id

∨

` id

∨

=(∞) `

∨

<(∞)

∨

...

∨

...

∨

=(2) `

∨

<(2)

∨

=(1) `

∨

<(1)

∨

=(0) ` <(0)

= ` <

for the induced tower of moments. We call =(k)X the order k infinitesimal path ∞-groupoid of X, etc.

4.2.2 Presentations

We establish a presentation of differential cohesive ∞-toposes, def. 4.2.1, in terms of categories of simplicial
presheaves over suitable neighbourhoods of ∞-cohesive sites.

Definition 4.2.8. Let C be an ∞-cohesive site, def. 4.1.31. We say a site Cth

• equipped with a co-reflective embedding

(i a p) : C
� � i //
oo

p
Cth

• such that

1. i preserves finite products;

2. i preserves pullbacks along morphisms in covering families;

3. both i and p send covering families to covering families;

4. for all U ∈ Cth and for all covering families {Ui → p(U)} in C there is a lift through p to a
covering family {Ui → U} in Cth

is an infinitesimal neighbourhood site of C.

Proposition 4.2.9. Let C be an ∞-cohesive site and let (i a p) : C
i
↪→←
p
Cth be an infinitesimal neighbourhood

site, def. 4.2.2. Then the ∞-category of ∞-sheaves on Cth is a cohesive ∞-topos and the restriction i∗ along
i exhibits it as an infinitesimal neighbourhood of the cohesive ∞-topos over C.

(i! a i∗ a i∗ a i!) : Sh∞(C)→ Sh∞(Cth) .
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Moreover, i! restricts on representables to the ∞-Yoneda embedding factoring through i:

C
� � //

i

��

Sh∞(C)

i!

��
Cth
� � // Sh∞(Cth)

.

Proof. We demonstrate this in the model category presentation of Sh∞(Cth) as in the proof of prop.
4.1.32.

Consider the right Kan extension Rani : [Cop, sSet] → [Cop
th , sSet] of simplicial presheaves along the

functor i. On an object K ∈ Cth it is given by

RaniF : K 7→
∫
U∈C

sSet(Cth(i(U),K), F (U))

'
∫
U∈C

sSet(C(U, p(K)), F (U))

' F (p(K)

,

where in the last step we use the Yoneda reduction-form of the Yoneda lemma.
This shows that the right adjoint to (−) ◦ i is itself given by precomposition with a functor, and hence

has itself a further right adjoint, which gives us a total of four adjoint functors

[Cop, sSet]

Lani //
oo (−)◦i

(−)◦p //
oo

Ranp

[Cop
th , sSet] .

From this are induced the corresponding simplicial Quillen adjunctions on the global projective and injective
model structure on simplicial presheaves

(Lani a (−) ◦ i) : [Cop, sSet]proj

Lani //
oo
(−)◦i

[Cop
th , sSet]proj ;

((−) ◦ i a (−) ◦ p) : [Cop, sSet]proj
oo (−)◦i

(−)◦p
// [C

op
th , sSet]proj ;

((−) ◦ p a Ranp) : [Cop, sSet]inj

(−)◦p //
oo
Ranp

[Cop
th , sSet]inj .

By prop. 2.1.40, for these Quillen adjunctions to descend to the Čech-local model structure on simplicial
presheaves it suffices that the right adjoints preserve locally fibrant objects.

We first check that (−) ◦ i sends locally fibrant objects to locally fibrant objects. To that end, let

{Ui → U} be a covering family in C. Write
∫ [k]∈∆

∆[k] ·
∐
i0,··· ,ik(j(Ui0)×j(U) j(Ui1)×j(U) · · · ×j(U) j(Uk))

for its Čech nerve, where j denotes the Yoneda embedding. Recall by the definition of the ∞-cohesive site
C that all the fiber products of representable presheaves here are again themselves representable, hence

· · · =
∫ [k]∈∆

∆[k] ·
∐
i0,··· ,ik(j(Ui0×U Ui1×U · · ·×U Uk)). Using that the left adjoint Lani preserves the coend

and tensoring, that it restricts on representables to i and by the assumption that i preserves pullbacks along
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covers we have that

LaniC({Ui → U}) '
∫ [k]∈∆

∆[k] ·
∐

i0,··· ,ik

Lani(j(Ui0 ×U Ui1 ×U · · · ×U Uk))

'
∫ [k]∈∆

∆[k] ·
∐

i0,··· ,ik

j(i(Ui0 ×U Ui1 ×U · · · ×U Uk))

'
∫ [k]∈∆

∆[k] ·
∐

i0,··· ,ik

j(i(Ui0)×i(U) i(Ui1)×i(U) · · · ×i(U) i(Uk))

.

By the assumption that i preserves covers, this is the Čech nerve of a covering family in Cth. Therefore for
F ∈ [Cop

th , sSet]proj,loc fibrant we have for all coverings {Ui → U} in C that the descent morphism

i∗F (U) = F (i(U))
'→ [Cop

th , sSet](C({i(Ui)}), F ) = [Cop, sSet](C({Ui}), i∗F )

is a weak equivalence.
To see that (−) ◦ p preserves locally fibrant objects, we apply the analogous reasoning after observing

that its left adjoint (−) ◦ i preserves all limits and colimits of simplicial presheaves (as these are computed

objectwise) and by observing that for {UI
pi→ U} a covering family in Cth we have that its image under

(−) ◦ i is its image under p, by the Yoneda lemma:

[Cop, sSet](K, ((−) ◦ i)(U)) ' Cth(i(K),U)

' C(K, p(U))

and using that p preserves covers by assumption.
Therefore (−) ◦ i is a left and right local Quillen functor with left local Quillen adjoint Lani and right

local Quillen adjoint (−) ◦ p.
Finally to see by the above reasoning that also Ranp preserves locally fibant objects notice that for every

covering family {Ui → U} in C and every morphism K → p∗U in Cth we may find a covering {Kj → K}
such that we have commuting diagrams as on the left of

Kj
//

��

p∗Ui(j)

��
K // p∗U

↔

p(Kj)

��

i∗(Kj) //

��

Ui(j)

��
p(K) i∗(K) // U

,

because by the (i∗ a p∗) adjunction established above these correspond to the diagrams as indicated on the
right, which exist by definition of coverage and the fact that, by definition, in Cth covers lift through p.

This implies that {p∗Ui → p∗U} is a generalized cover in the terminology of [DHS04], which by the
discussion there implies that the corresponding Čech nerve projection C({p∗Ui})→ p∗U is a weak equivalence
in [Cop

th , sSet]proj,loc.
This establishes the quadruple of adjoint ∞-functors as claimed.
To see that Lani preserves products, use that, by the local formula for the left Kan extension, it is

sufficient that for each K ∈ Cth the functor

X 7→ lim
→

(pop/K → Cop X→ sSet)

preserves finite products. By a standard fact this is the case precisely if the slice category pop/K is sifted.
A sufficient condition for this is that it has coproducts. This is equivalent to K/p having products, and this
is finally true due to the assumption that p preserves products.

It remains to see that i! is a full and faithful ∞-functor. For that notice the general fact that left Kan
extension along a full and faithful functor i satisfies Lani ◦ i ' id. It only remains to observe that since (−)◦ i
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is not only right but also left Quillen by the above, we have that i∗ ◦ Lani applied to a cofibrant object is
already the derived functor of the composite. �

4.3 ⇒a a Rh – Solidity

Definition 4.3.1. We say that an ∞-topos H which is equipped with a progression of opposite moments,
def.2.2.12, of the form

id a

∨

id

∨

⇒

⊥

a  

⊥

 

∨

a Rh

∨

<
⊥

a⊥ =
⊥

=
∨

a &

∨∫
a

⊥

[

⊥

[ a

∨

]

∨

∅ a ∗

such that

1. the first stage at the bottom exhibits it as cohesive substance 4.1;

2. the middle stages exhibits it as elastic substance 4.2 (see remark 4.2.5);

3. the third stage resolves the second, def. 2.2.19, in the form = ' = and such that sends the =-unit

on
 
X to itself, up to equivalence

is a solid ∞-topos or is solid substance.

We consider an example below in 6.6.3. We consider a list of structures that may be formulated inside a
solid ∞-topos below in 5.4.
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5 The Idea

We discuss a list of structures that may be defined using the operations in 4.

• 5.1 – Structures in bare substance;

• 5.2 – Structures in cohesive substance;

• 5.3 – Structures in elastic substance;

• 5.4 – Structures in solid substance;

• 5.5 – Structures in actual substance.

5.1 ∅ a ∗ – Structures in bare substance

We discuss here a list of fundamental homotopical and cohomological structures that exist in every ∞-topos
but are particularly expressive in a local ∞-topos, def. 4.1.1, or rather: over a base∞-topos that is local. As
we discuss below in 5.1.7, every local∞-topos has the homotopy dimension of the point and hence all gerbes
are delooped groups. This means that group objects in a local ∞-topos, discussed in 5.1.9 below, behave as
absolute structured groups rather than as ∞-sheaves of groups that vary over a fixed nontrivial space. This
is the first central property of the gros toposes H that we are interested in here. For every object X ∈ H
the slice ∞-topos H/X → H is an ∞-topos relative to its local base H, but is itself in general not local.
Group objects in the slice are groups parameterized over X and pointed connected objects in the slice are
the ∞-gerbes over X. This we discuss below in 5.1.19.

Structures entirely specific to local ∞-toposes we discuss below in 5.2. Additional structures that are
present if we assume that H is locally∞-connected are discussed below in 5.2, and those in an actual cohesive
∞-topos below in 5.2.

• 5.1.1 – Limits

• 5.1.2 – Bundles

• 5.1.3 – Truncated objects and Postnikov towers

• 5.1.4 – Epi-/mono-morphisms and relative Postnikov systems

• 5.1.5 – Compact objects

• 5.1.6 – Homotopy

• 5.1.7 – Connected objects

• 5.1.8 – Groupoids

• 5.1.9 – Groups

• 5.1.10 – Cohomology

• 5.1.11 – Principal bundles

• 5.1.12 – Associated fiber bundles

• 5.1.13 – Sections and twisted cohomology

• 5.1.14 – Actions and Representations

• 5.1.15 – Double dimensional reduction
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• 5.1.16 – Group cohomology

• 5.1.17 – Stabilizer groups

• 5.1.18 – Extensions, Obstructions, and Twisted bundles

• 5.1.19 – Gerbes

• 5.1.20 – Relative cohomology

5.1.1 Limits

We discuss some basic abstract properties and some presentations of universal constructions in ∞-category
theory that we will refer to in the main text.

5.1.1.1 General abstract The following proposition says that every ∞-groupoid is the ∞-colimit over
itself, regarded as a diagram, of the ∞-functor constant on the point in ∞Grpd.

Proposition 5.1.1. For S ∈ ∞Grpd, the∞-colimit of the∞-functor S →∞Grpd constant on the terminal
object is equivalent to S:

lim
−→S

∗ ' S .

This is essentially corollary 4.4.4.9 in [L-Topos].
We will have have ample application for the following immediate ∞-category theoretic generalization of

a basic 1-categorical fact.

Proposition 5.1.2 (pasting law for ∞-pullbacks). Let

a //

��

b //

��

c

��
d // e // f

be a diagram in an ∞-category and suppose that the right square is an ∞-pullback. Then the left square is
an ∞-pullback precisely if the outer rectangle is.

This appears as [L-Topos], lemma 4.4.2.1. Notice that here and in the following we do not explicitly
display the 2-morphisms/homotopies that do fill these diagrams in the given ∞-category.

Proposition 5.1.3. A retract of an ∞-limiting cone is itself ∞-limiting.

Proof. We invoke the presentation of∞-limits by derivators (thanks to Mike Shulman for this argument):
we have

1. ∞-limits in H are computed by homotopy limits in any presentation by a model category K :=
[Cop, sSet]loc 2.1.3;

2. for j : J → J/ the inclusion of a diagram into its cone (the join with an initial element), the homotopy
limit over C is given by forming the right Kan extension j∗ : Ho(KJ(W J)−1)→ Ho(KJ/(W J/)−1),

3. a J/-diagram F is a homotopy limiting cone precisely if the unit

F → j∗j
∗F

us an isomorphism.

�
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5.1.1.2 Presentations We discuss presentations of various classes of ∞-limits and ∞-colimits in an ∞-
category by homotopy limits and homotopy colimits in categories with weak equivalences presenting them.

5.1.1.2.1 ∞-Pullbacks We discuss here tools for computing ∞-pullbacks in an ∞-category H in
terms of homotopy pullbacks in a homotopical 1-category presenting it.

Proposition 5.1.4. Let A → C ← B be a cospan diagram in a model category, def. 2.1.27. Sufficient
conditions for the ordinary pullback A×C B to be a homotopy pullback are

• one of the two morphisms is a fibration and all three objects are fibrant;

• one of the two morphisms is a fibration and the model structure is right proper.

This appears for instance as prop. A.2.4.4 in [L-Topos].
It remains to have good algorithms for identifying fibrations and for resolving morphisms by fibrations.

A standard recipe for constructing fibration resolutions is

Proposition 5.1.5 (factorization lemma). Let B → C be a morphism between fibrant objects in a model

category and let C
' // CI // // C × C be a path object for B. Then the composite vertical morphism in

CI ×C B

��

//

�� ��

B

��
CI

��

// C

C

is a fibrantion replacement of B → C.

This appears for instance on p. 4 of [Br73].

Corollary 5.1.6. For A→ C ← B a diagram of fibrant objects in a model category, its homotopy pullback
is presented by the ordinary limit A×hC B in

A×hC B //

��

CI ×C B //

��

B

��
CI //

��

C

A // C

,

which is, up to isomorphism, the same as the ordinary pullback in

A×hC B //

��

CI

��
A×B // C × C

.

Remark 5.1.7. For the special case of “abelian” objects another useful way of constructing fibrations is via
the Dold-Kan correspondence, wich we discuss in 3.1.6. As described there, a morphism between simplicial
presheaves that arise from presheaves of chain complexes is a fibration (in the projective model structure on
simplicial presheaves) if it arises from a degreewise surjection of chain complexes.
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5.1.1.2.2 Finite ∞-limits of ∞-sheaves We discuss presentations for finite∞-limits specifically in
∞-toposes.

Proposition 5.1.8. Let C be a site with enough points, def. 3.1.13. Write H ' (Sh(C)∆op

,W ) for the
hypercomplete ∞-topos over C, where W is the class of local weak equivalences, theorem 3.1.16.

Then pullbacks in Sh(C)∆op

along local fibrations, def. 3.1.17, are homotopy pullbacks, hence present
∞-pullbacks in H.

Proof. Let A
loc // // C oo B be a cospan with the left leg a local fibration. By the existence of the

projective local model structure [Cop, sSet]proj,loc there exists a morphism of diagrams

A
loc // //

'
��

C

'
��

oo B

'
��

A′ // // C ′ oo B′

,

where the bottom cospan is a fibrant diagram with respect to the projective local model structure, hence a
cospan of genuine fibrations between fibrant objects, so that the ordinary pullback A′×C′B′ is a presentation
of the homotopy pullback of the original diagram. Here the vertical morphisms are weak equivalences, and
by theorem 3.1.16 this means that they are stalkwise weak equivalences of simplicial sets. Moreover, by
the nature of left Bousfield localization, the genuine fibrations are in particular global projective fibrations,
hence in particular are stalkwise fibrations.

Now for p : Set→ Sh(C) any topos point, the stalk functor p∗ preserves finite limits and hence preserves
(the sheafification of) the above pullbacks. So by the asumption that A → C is a local fibration, the
simplicial set p∗(A×CB) is a pullback of simplicial sets along a Kan fibration, hence, by the right properness
of sSetQuillen, and using prop. 5.1.4, is a homotopy pullback there. Moreover, the induced morphism
p∗(A ×C B) → p∗(A′ ×C′ B′) is therefore a morphism of homotopy pullbacks along a weak equivalence of
diagrams. This means that it is itself a weak equivalence. Since this is true for all topos points, it follows
that A×C B → A′ ×C′ B′ is a stalkwise weak equivalence, hence a weak equivalence, hence that A×C B is
itself already a model for the homotopy pullback. �

The following proposition establishes the model category analog of the statement that by left exactness
of ∞-sheafification, finite ∞-limits of ∞-sheafified ∞-presheaves may be computed as the ∞-sheafification
of the finite ∞-limit of the ∞-presheaves.

Proposition 5.1.9. Let C be a site and F : D → [Cop, sSet] be a finite diagram.
Write Rglob lim

←
F ∈ [Cop, sSet] for (any representative of) the homotopy limit over F computed in the

global model structure [Cop, sSet]proj, well defined up to isomorphism in the homotopy category.
Then Rglob lim

←
F ∈ [Cop, sSet] presents also the homotopy limit of F in the local model structure [Cop, sSet]proj,loc.

Proof. By [L-Topos], theorem 4.2.4.1, we have that the homotopy limit R lim
←

computes the corresponding

∞-limit. Since ∞-sheafification L is by definition a left exact ∞-functor it preserves these finite ∞-limits:

([D, [Cop, sSet]proj,loc]inj)
◦

R lim
←−
��

oo L∗ ([D, [Cop, sSet]proj]inj)
◦

R lim
←−
��

([Cop, sSet]proj,loc)◦ oo
L'LId

([Cop, sSet]proj)
◦

.

Here L ' LId is the left derived functor of the identity for the left Bousfield localization. Therefore for
F a finit diagram in simplicial presheaves, its homotopy limit in the local model structure R lim← L∗F is
equivalently computed by LIdR lim→ F , with R lim← F the homotopy limit in the global model structure. �
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Together with 5.1.1.2.1, this provides an efficient algorithm for computing presentations of ∞-pullbacks in a

model structure on simplicial presheaves.

Remark 5.1.10. Taken together, prop. 5.1.9, prop. 5.1.4 and definition 3.1.10 imply that we may compute
∞-pullbacks in an ∞-topos by the following algorithm:

1. Present the ∞-topos by a local projective model structure on simplicial presheaves;

2. find a presentation of the morphisms to be pulled back such that one of them is over each object of
the site a Kan fibration of simplicial sets;

3. then form the ordinary pullback of simplicial presheaves, which in turn is over each object the ordinary
pullback of simplicial sets.

The resulting object presents the ∞-pullback of ∞-sheaves.

5.1.1.2.3 ∞-Colimits We collect some standard facts and tools concerning the computation of ho-
motopy colimits.

Proposition 5.1.11. Let C be a combinatorial model category and let J be a small category. Then the
colimit over J-diagrams in C is a left Quillen functor for the projective model structure on functors on J :

lim
−→

: [J,C]proj → C .

Proof. For C combinatorial, the projective model structure exists by [L-Topos] prop. A.2.8.2. The right
adjoint to the colimit

const : C → [J,C]proj

is manifestly right Quillen for the projective model structure. �

Example 5.1.12. Write
(N,≤) := { 0 // 1 // 2 // · · · }

for the cotower category. A cotower X0 → X1 → A2 → · · · in a model category C is projectively cofibrant
precisely if

1. every morphism Xi → Xi+1 is a cofibration in C;

2. the first object X0, and hence all objects Xi, are cofibrant in C.

Therefore a sequential∞-colimit over a cotower is presented by the ordinary colimit of a presentation of this
cotower where all morphisms are cofibrations and all objects are cofibrant.

This is a simple example, but since we will need details of this at various places, we spell out the proof
for the record.
Proof. Given a cotower X• with properties as stated, we need to check that for p• : A• → B• a morphism
of cotowers such that for all n ∈ N the morphism pn : An → Bn is an acyclic fibration in C, and for
f• : X• → B• any morphism, there is a lift f̂• in

A•

p•
����

X•
f• //

f̂•

==

B•

.
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This lift we can construct by induction on n. For n = 0 we only need a lift in

A0

p0

����
X0

f0 //

f̂0

==

B0

,

which exists by assumption that X0 is cofibrant. Assume then that a lift has been for f≤n. Then the next

lift f̂n+1 needs to make the diagram

An

""��
Xn � q

""

f̂n

55

// Bn An+1

����
Xn+1

fn+1

//

f̂n+1

55

Bn+1

commute. Such a lift exists now by assumption that Xn → Xn+1 is a cofibration.
Conversely, assume that X• is projectively cofibrant. Then first of all it has the left lifting property

against all cotower morphisms of the form

A0
//

'
����

∗

��

// ∗ //

��

· · ·

B0
// ∗ // ∗ // · · ·

.

Such a lift is equivalent to a lift of X0 against A0
' // // B0 and hence X0 is cofibrant in C. To see that

every morphism Xn → Xn+1 is a cofibration, notice that for every lifting problem in C of the form

Xn

��

// A

'
����

Xn+1
// B

the cotower lifting problem of the form

X0
// · · · // Xn

// A

��

// ∗ // ∗ // · · ·

X0
// · · · // Xn

// B // ∗ // ∗ // · · ·

X0
// · · · // Xn

// Xn+1

<<

// · · ·

is equivalent. �
For less trivial diagram categories it quickly becomes hard to obtain projective cofibrant resolutions. In these

cases it is often it is useful to compute the (homotopy) colimit instead as a special case of a (homotopy)
coend.
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Proposition 5.1.13. Let F : A×B → C be a Quillen bifunctor, def. 2.1.30, and let J be a Reedy category,
then the coend over F (see [Ke82])∫ S

F (−,−) : [J,A]Reedy × [Jop, B]Reedy → C

is a Quillen bifunctor from the product of the Reedy model categories on functors with values in A and B,
respectively, to C.

Similarly, if A and B are combinatorial model categories and J is any small category, then the coend∫ S

F (−,−) : [J,A]proj × [Jop, B]inj → C

is a Quillen bifunctor.

This appears in [L-Topos] as prop. A.2.9.26 and remark A.2.9.27.

Proposition 5.1.14. If V is a closed monoidal model category, C is a V-enriched model category, and J is
a small category which is Reedy, then the homotopy colimit of J-shaped diagrams in C is presented by the
left derived functor of ∫ J

(−) ·QReedy(I) : [J,C]Reedy → C ,

where QReedy(I) is a cofibrant replacement of the functor constant in the tensor unit in [Jop,V]Reedy, and
where

(−) · (−) : C × V → C

is the given V-tensoring of C. Similarly, if J is not necessarily Reedy, but V and C are combinatorial, then
the homotopy colimit is also given by the left derived functor of∫ J

(−) ·Qproj(I) : [J,C]inj → C ,

where now Qproj(I) is a cofibrant resolution of the tensor unit in [Jop,V]proj.

This is nicely discussed in [Gam10].
Proof. By definition of enriched category, the V-tensoring operation is a left Quillen bifunctor. With this
the statement follows from prop. 5.1.13. �
Various classical facts of model category theory are special cases of these formulas.

5.1.1.2.4 ∞-Colimits over simplicial diagrams We discuss here a standard presentation of homo-
topy colimits over simplical diagrams given by the diagonal simplicial set or the total simplicial set associated
with a bisimplicial set.

Proposition 5.1.15. Write [∆, sSet] for the category of cosimplicial simplicial sets. For sSet equipped with
its cartesian monoidal structure, the tensor unit is the terminal object ∗.

• The simplex functor
∆ : [n] 7→ ∆[n] := ∆(−, [n])

is a cofibrant resolution of ∗ in [∆, sSetQuillen]Reedy;

• the fat simplex functor
∆ : [n] 7→ N(∆/[n])

is a cofibrant resolution of ∗ in [∆, sSetQuillen]proj.
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Proposition 5.1.16. Let C be a simplicial model category and F : ∆op → C a simplicial diagram

1. If every monomorphism in C is a cofibration, then the homotopy colimit over F is given by the real-
ization

L lim
→
F '

∫ [n]∈∆

F ([n]) ·∆[n] .

2. If F takes values in cofibrant objects, then the homotopy colimit over F is given by the fat realization

L lim
→
F '

∫ [n]∈∆

F ([n]) ·∆[n] .

3. If F is Reedy cofibrant, then the canonical morphism∫ [n]∈∆

F ([n]) ·∆[n]→
∫ [n]∈∆

F ([n]) ·∆[n]

(the Bousfield-Kan map) is a weak equivalence.

Proof. If every monomorphism is a cofibration, then F is necessarily cofibrant in [∆op, C]Reedy. The first
statement then follows from prop. 5.1.14 and the first item in prop. 5.1.15. On the other hand, if F takes
values in cofibrant objects, then it is cofibrant in [∆op, C]inj, and so the second statement follows from prop.
5.1.14 and the second item in prop. 5.1.15.

Notice that projective cofibrancy implies Reedy cofibrancy, so that ∆ is also Reedy cofibrant. Therefore
the morphism in the last item of the proposition is, by remark 2.1.31, the image under a left Quillen functor
of a weak equivalence between cofibrant objects and therefore itself a weak equivalence. �
An important example of this general situation is the following.

Proposition 5.1.17. Every simplicial set, and more generally every simplicial presheaf is the homotopy
colimit over its simplicial diagram of cells. Precisely, let C be a small site, and let [Cop, sSetQuillen]inj,loc

be the corresponding local injective model structure on simplicial presheaves. Then for any X ∈ [Cop, sSet],
with

X• : ∆op → [Cop,Set] ↪→ [Cop, sSetQuillen]

its simplicial diagram of components, we have

X ' L lim
−→

X• .

Proof. By prop. 5.1.16 the homotopy colimit is given by the coend

L lim
−→

X• '
∫ [n]∈∆

Xn ×∆[n] .

By basic properties of the coend, this is isomorphic to X. �

Proposition 5.1.18. The homotopy colimit of a simplicial diagram in sSetQuillen, or more generally of a
simplicial diagram of simplicial presheaves, is given by the diagonal of the corresponding bisimplicial set /
bisimplicial presheaf. Precisely, for

F : ∆op → [Cop, sSetQuillen]inj,log

a simplicial diagram, its homotopy colimit is given by

L lim
−→

F• ' dF : ([n] 7→ (Fn)n) .
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Proof. By prop. 5.1.16 the homotopy colimit is given by the coend

L lim
−→

F• '
∫ [n]∈∆

Fn ·∆[n] .

By a standard fact (e.g. exercise 1.6 in [GoJa99]), this coend is in fact isomorphic to the diagonal. �

Definition 5.1.19. Write ∆a for the augmented simplex category, which is the simplex category with an
initial object adjoined, denoted [−1].

This is a symmetric monoidal category with tensor product being the ordinal sum operation

[k], [l] 7→ [k + l + 1] .

Write
σ : ∆×∆→ ∆

for the restriction of this tensor product along the canonical inclusion ∆ ↪→ ∆a. Write

σ∗ : sSet→ [∆op, sSet]

for the operation of precomposition with this functor. By right Kan extension this induces an adjoint pair
of functors

(Dec a T ) : [∆op, sSet]
oo σ∗

σ∗
// sSet .

• Dec := σ∗ is called the total décalage functor;

• T := σ∗ is called the total simplicial set functor.

The total simplicial set functor was introduced in [ArMa66]. Details are in [St11].

Remark 5.1.20. By definition, for X ∈ [∆op, sSet], its total décalage is the bisimplicial set given by

(DecX)k,l = Xk+l+1 .

Remark 5.1.21. For X ∈ [∆op, sSet], the simplicial set TX is in each degree given by an equalizer of maps
between finite products of components of X. Hence forming T is compatible with sheafification and other
processes that preserve finite limits.

See [St11], equation (2).

Proposition 5.1.22. For every X ∈ [∆op, sSet]

• the canonical morphism
dX → TX

from the diagonal to the total simplicial set is a weak equivalence in sSetQuillen;

• the adjunction unit
X → TDecX

is a weak equivalence in sSetQuillen.

For every X ∈ sSet

• there is a natural isomorphism T constX ' X.

This is due to [CeRe05][St11].
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Corollary 5.1.23. For
F : ∆op → [Cop, sSetQuillen]inj,loc

a simplicial object in simplicial presheaves, its homotopy colimit is given by applying objectwise over each
U ∈ C the total simplicial set functor

L lim
−→

F ' (U 7→ TF (U)) .

Proof. By prop. 5.1.22 this follows from prop. 5.1.18. �

Remark 5.1.24. The use of the total simplicial set instead of the diagonal simplicial set in the presentation
of simplicial homotopy colimits is useful and reduces to various traditional notions in particular in the context
of group objects and action groupoid objects. This we discuss below in 5.1.9.2 and 5.1.11.3.

5.1.2 Bundles

We discuss the general notion of bundles or objects in a slice in an ∞-topos. In the following sections this
general notion is specialized to principal bundles, 5.1.11, and associated fiber bundles, 5.1.12.

5.1.2.1 General abstract For X ∈ H an object, a bundle over X is, in full generality, nothing but a
morphism

T

p

��
X

in H with codomain X, and a homomorphism of bundles over X is a diagram of the form

T1
//

  

T2

~~
X

x�

in H. The full ∞-category of bundles over X in H is also called the slice of H over X:

Definition 5.1.25. For H an ∞-category and for X ∈ H an object, the slice ∞-category H/X is the
∞-pullback

H/X := H∆[1] ×
H
{X}

in the diagram of ∞-categories

H/X
//

∑
X

%%

��

H∆[1] dom //

cod

��

H

∗ `X // H

.

Proposition 5.1.26. For H an ∞-topos and X ∈ H, also the slice H/X , def. 5.1.25, is an ∞-topos.
Moreover, the forgetful ∞-functor

∑
X in def. 5.1.25 is the extra left adjoint in an essential geometric

morphism of ∞-toposes (∑
X

a X∗ a
∏
X

)
: H/X

∑
X

//
oo X×(−)∏

X
//
H
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called the étale geometric morphism of H/X .
Here

∏
X is also called the dependent product over X and

∑
X is also called the dependent sum over

X, see 2.1.1 above.
Finally , X × (−) is a cartesian closed ∞-functor, which equivalently means that it satisfies Frobenius

reciprocity: for U ∈ H and E ∈ H/X there is a natural equivalence

∑
X

(E ×X (X × U))
' //

(∑
X

E

)
× U

exhibited by the canonical morphism.

This is prop. 6.3.5.1 in [L-Topos].

Proposition 5.1.27. For T : I −→ HX a small diagram in a slice, then its ∞-colimit is the ∞-colimit of

the underlying diagram I −→ H/X

∑
X−→ H regarded as an object in the slice via the canonical projection map

out of the colimit

lim
−→i

Ei


Ei

��
X

 '


lim
−→i

Ei

��
X


This is [L-Topos, prop. 1.2.13.8].
More generally we have base change along arbitrary morphisms.

Proposition 5.1.28. For H an ∞-topos and for f : X → Y a morphism in H, the functor∑
f

:= f ◦ (−) : H/X → H/Y

between the slices over the domain and codomain given by postcomposition with f is the extra left adjoint in
an essential geometric morphism

(
∑
f

a f∗ a
∏
f

) : H/X

∑
f

//
oo f∗∏

f
//
H ,

called the base change geometric morphism. Here f∗ is given by forming the ∞-pullback in H along f . As
before

∑
f is called the dependent sum along f and

∏
f the dependent product along f .

This is prop. 6.3.5.1, remark 6.3.5.10 of [L-Topos].

Proposition 5.1.29. For H an ∞-topos, the ∞-functor

H/(−) : H→∞Toposet/H

given by prop. 5.1.28, constitutes an equivalence of ∞-categories between H and the full sub-∞-category of
the slice of ∞-toposes and geometric morphisms over H on the étale geometric morphisms.

This is [L-Topos], remark 6.3.5.10.
The internal hom in the slice is closely related to the dependent product:

Proposition 5.1.30. For H an ∞-topos and X ∈ H an object, let E1, E2 ∈ H/X be two object in the slice,
corresponding to morphisms fi :

∑
X

Ei → X in H. Then there is a natural equivalence

[E1, E2] '
∏
f1

f∗1E2 .
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Proof. The product in the slice H/X is given by the fiber product in H over X. Hence for E ∈ H/X the
product functor is

(−)× E '
∑
f

f∗ .

Since the internal hom is right adjoint to this functor, the statement follows by the defining adjoint triple
(
∏
f a f∗ a

∑
f ). �

Example 5.1.31. The terminal object of the slice H/X is given by the identity morphism on X in H.

Remark 5.1.32. The interpretation of these base change functors is as follows: an object in the slice H/X

corresponds to a morphism into X in H. The functor
∑
X picks out the domain of these morphisms: it forms

the “sum (union) of all the fibers”. Therefore an object E ∈ H/X in the slice corresponds to a morphism of
the form ∑

X E

��
X

in H. More generally, a morphism f : E1 → E2 in the slice corresponds to a diagram of the form

∑
X E1

∑
X f //

##

∑
X E2

{{
X

f
u}

in H.
On the other hand, the right adjoint

∏
X forms internal spaces of sections of these morphisms. With

E ∈ H/X as above we have ∏
X

E '

[
X,
∑
X

E

]
×

[X,X]
{id} ,

which says that
∏
X E is the homotopy fiber of the projection [X,

∑
X E] → [X,X] from the internal hom

space of maps from the base X to the domain
∑
X E, picking those morphisms in there which go to the

identity on X, up to homotopy, when postcomposed with E, regarded as a morphism in H.

This kind of relation also holds externally:

Proposition 5.1.33. For E1, E2 ∈ H/X two objects in a slice ∞-topos over X ∈ H, the hom ∞-groupoid
H/X(E1, E2) between them is characterized as the homotopy fiber product

H/X(E1, E2) ' H

(∑
X

E1,
∑
X

E2

)
×

H(
∑
X E1,X)

{E1}

of hom-∞-groupoids in H, sitting in the ∞-pullback diagram

H/X(E1, E2) //

��

∗

`E1

��
H(
∑
X E1,

∑
X E2)

E2◦(−) // H(
∑
X E1, X)

.
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This appears as prop. 5.5.5.12 in [L-Topos].
Therefore the slice ∞-topos H/X may be regarded not only as living over the canonical base ∞-topos

∞Grpd, but also as living over H. As such its H-valued hom is the dependent product of its interal hom:

Definition 5.1.34. For X ∈ H and E1, E2 ∈ H/X we write

[E1, E2]H :=
∏
X

[E1, E2]

and speak of the H-valued hom between E1 and E2 in the slice.

Similarly there is a Grp(H)-valued automorphism group construction in the slice:

Definition 5.1.35. For X ∈ H and E ∈ H/X we say that the H-valued automorphism group of E is the
dependent product, def 5.1.26,

AutH(E) :=
∏
X

Aut(E)

of the automorphism group of E in H/X , def. 5.1.155.

Remark 5.1.36. A global element of
∏
X [E1, E2] corresponds again to a diagram of the form∑
X E1

//

##

∑
X E2

{{
X

'u}

in H. The morphism of prop. 5.1.38 below sends such a global element to the top horizontal morphism∑
X E1 →

∑
X E2, regarded as a global element of [

∑
X E1,

∑
X E2].

Proposition 5.1.37. The ∞-groupoid of global points of [E1, E2]H is the slice hom H/X(E1, E2):

H/X(E1, E2) ' Γ ([E1, E2]H) ' H (∗, [E1, E2]H) .

Proof. We compute
H (∗, [E1, E2]H) ' H/X ((∗ ×X) , [E1, E2])

' H/X (X ×X E1, E2)

' H/X (E1, E2)

.

Here the first equivalence is that of the defining

(
(−)×X E1 a

∏
X

)
-adjunction of the dependent product,

def. 5.1.26, the second is that of the ((−)×X E1 a [E1,−])-adjunction and the last one finally uses that X
is the terminal object in H/X . �
We may compare the internal hom in the slice with that in the base by the following comparison morphism.

Proposition 5.1.38. For X ∈ H and E1, E2 ∈ H/X , there is a natural morphism

pX :
∏
X

[E1, E2] −→

[∑
X

E1,
∑
X

E2

]

given objectwise by dependent sum.
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Proof. Let U ∈ H be any object. Consider then the morphism of ∞-groupoids given by the composite

H

(
U,
∏
X

[E1, E2]

)
' H/X (X∗U, [E1, E2])

' H/X (X∗U × E1, E2)

→ H

(∑
X

(X∗U × E1) ,
∑
X

E2

)

' H

(
U ×

∑
X

E1,
∑
X

E2

)

' H

(
U,

[∑
X

E1,
∑
X

E2

])
.

Here the first and last equivalences are the adjunction properties, the morphism in the middle is the relevant
component of the dependent sum ∞-functor

∑
X : H/X → H and the step after that uses the Frobenius

reciprocity property of the dependent sum (reflecting that X∗ is a cartesian closed morphism, prop. 5.1.26).
Since this morphism of∞-groupoids is natural in U , the∞-Yoneda lemma asserts that it is given by homming
U into a morphism

∏
X [E1, E2]→ [

∑
X E1,

∑
X E2] in H. �

Proposition 5.1.39. For E1, E2 ∈ H/X , there is an ∞-pullback diagram in H of the form

[E1, E2]H
//

pX
��

∗

`E1
��[∑

X

E1,
∑
X

E2

]
E2◦(−)//

[∑
X

E1, X

] ,

where the left vertical projection is the morphism of prop. 5.1.38, the bottom morphism is postcomposition
with E2 :

∑
X E2 → X and the right vertical morphism is the global point given by E1.

Proof. We may check this on a set U ∈ H of generators of H (for instance the objects in a small ∞-site
of definition). Since H(U,−) preserves ∞-limits and detects them as U ranges over the set of generators,
applying it to the above diagram (and using the definition (def. 5.1.34) [E1, E2]H :=

∏
X

[E1, E2]) yields the

diagram

H/X(U ×X, [E1, E2]) //

H(U,pX)

��

∗

`(U×X)×XE1

��

H

(
U ×

∑
X

E1,
∑
X

E2

)
E2◦(−) // H

(
U ×

∑
X

E1, X

)
.

By the proof of prop 5.1.38 the left vertical morphism is equivalent to the hom-component of the dependent
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sum ∞-functor, and so this diagram is equivalent to

H/X((U ×X)×
X
E1, E2) //

∑
X

��

∗

`(U×X)×XE1

��

H

(
U ×

∑
X

E1,
∑
X

E2

)
E2◦(−) // H

(
U ×

∑
X

E1, X

)

.

This is an ∞-pullback diagram by prop. 5.1.33. �

Proposition 5.1.40. For E ∈ H/X the object AutH(E) ∈ H of def. 5.1.35 sits in an ∞-pullback diagram
of the form

AutH(E) //

pX
��

∗

`E
��

Aut

(∑
X

E

)
E◦(−) //

[∑
X

E,X

]
.

Proof. In view of remark 5.1.36 the inclusion AutH(E) ↪→ [E,E]H fits into an ∞-pullback square as on
the left of the diagram

AutH(E) �
� //

��

[E,E]H

pX
��

// ∗

`E
��

Aut

(∑
X

E

)
� � //

[∑
X

E,
∑
X

E

]
E◦(−) //

[∑
X

E,X

]
where the square on the right is the ∞-pullback of prop. 5.1.39. Hence the claim follows by the pasting law,
prop. 5.1.2. �

Proposition 5.1.41. For H an ∞-topos, X ∈ H an object and E ∈ H/X a slice, the ∞-fiber of the

morphism pX from def. 5.1.38 over the identity ∗
`id∑

X E// [
∑
X E,

∑
X E] is ΩE [

∑
X E,X]: there is a fiber

sequence of the form

ΩE [
∑
X E,X] �

� // ∏
X [E,E]

pX // [
∑
X E,

∑
X E] .

Proof. This follows directly from prop. 5.1.39 for the special case that E1 = E2 = E. By the pasting
law, prop. 5.1.2, this gives the outer homotopy pullback in

ΩE [
∑
X E,X]

��

// [E,E]H
//

pX
��

∗

`E
��

∗ `id //

E

66

[∑
X

E,
∑
X

E

]
E◦(−) //

[∑
X

E,X

] .
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More explicitly, by the proof of prop. 5.1.38 the morphism pX is for any U ∈ H characterized, up to
equivalence, as being the forgetful morphism

H(U, p) : H/X(U × E,E) // H(U ×
∑
X E,

∑
X E)

that sends a morphism in the slice over X to the morphism obtained by forgetting the maps to X. Since
H(U,−) preserves ∞-limits, it is sufficient to show that the homotopy fiber of this morphism (in ∞Grpd)
is H(U,ΩE [

∑
X E,X]), naturally for each U . To that end, notice that H(U, pX) is the middle vertical

morphism in the following diagram, where the right square is the∞-pullback diagram that exhibits the hom
space in the slice by prop. 5.1.33:

H(U,ΩE [
∑
X E,X]) //

��

H/X(U × E,E)

H(U,pX)

��

// ∗

`(U×X)×XE
��

∗ // H(U ×
∑
X E,

∑
X E)

E◦(−) // H(U ×
∑
X E,X)

.

With the left square now denoting the ∞-pullback in question, we obtain the fiber in the top left by the
pasting law for ∞-pullbacks, which says that also the total rectangle here is an ∞-pullback. But this total
pullback rectangle is by example 5.1.148 the one that characterizes the loop space object and hence identifies
the top left item in the above diagram as claimed. �

5.1.2.2 Presentations We discuss presentations of slice ∞-categories, def. 5.1.25, by simplicial model
categories, remark 2.1.35.

Proposition 5.1.42. For C a model category and X ∈ C an object, the slice category (overcategory)
C/X as well as the co-slice category (undercategory) CX/ inherit model category structures whose fibrations,
cofibrations and weak equivalences are precisely those of C under the canonical forgetful functors C/X → C

and CX/ → C, respectively.

Proposition 5.1.43. If the model category C is

• cofibrantly generated;

• or proper;

• or cellular

then so are the (co)-slice model structures of prop. 5.1.42, for every object X ∈ C.

This is shown in [H].

Proposition 5.1.44. If the model category C is combinatorial, then so is the slice model structure C/X , for
every object X ∈ C.

Proof. With prop. 5.1.43 this follows form the fact that the slice of a locally presentable category is
again locally presentable, (e.g. remark 3 in [CRV]). �

Proposition 5.1.45. If C is a simplicial model category, then so is its slice C/X , for every object X ∈ C.

Proposition 5.1.46. Let C be a simplicial model category and write C for the ∞-category that it presents.
If X is fibrant in C, then the slice model structure C/X is a presentation of the ∞-categorical slicing C/X . If

X is cofibrant in C, then the co-slice model structure CX/ is a presentation of the ∞-categorical co-slicing
CX/.
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Proof. We discuss the first case. The other one is dual. We need to check that the derived hom-spaces

are the correct ∞-categorical hom-spaces. Let A
a→ X and B

b→ X be two objects of C/X . By prop. 5.1.33
the hom C/X(a, b) is the ∞-pullback

C/X(a, b) ' C(A,B)×C(A,X) {a}

in∞Grpd. Now write a for a cofibrant representative of this object in C/X and b for a fibrant representative.
The sSet-hom object in C/X is the ordinary pullback

C/X(a, b) ' C(A,B)×C(A,X) {a}

in sSet. One finds that a being cofibrant in C/X means that A is cofibrant in C and b being fibrant in C/X
means that it is a fibration in C. Since by assumption X is fibrant in C, it follows that also B is fibrant
in C. By the fact that sSetQuillen is itself a simplicial model category, it follows with prop. 2.1.38 that the
simplicial hom-objects appearing in the above pullback are the correct hom-spaces, and that the pullback is
along a fibration. Together this means by prop. 5.1.4 that the ordinary pullback is indeed a model for the
above ∞-pullback. �

5.1.3 Truncated objects and Postnikov towers

We discuss general notions and presentations of truncated objects and Postnikov towers in an ∞-topos.

5.1.3.1 General abstract

Definition 5.1.47. For n ∈ N an ∞-groupoid X ∈ ∞Grpd is called n-truncated or a homotopy n-type if all
its homotopy groups in degree > n are trivial. It is called (−1)-truncated if it is either empty or contractible.
It is called (−2)-truncated if it is non-empty and contractible.

For H an ∞-topos, and object A ∈ H is called n-truncated for −2 ≤ n ≤ ∞ if for all X ∈ H the hom
∞-groupoid H(X,A) is n-truncated.

An ∞-functor between ∞-groupoids is called k-truncated for −2 ≤ k ≤ ∞ if all its homotopy fibers are
k-truncated. A morphism f : A → B in an ∞-topos H is k-truncated if for all objects X ∈ H the induced
∞-functor H(X, f) : H(X,A)→ H(X,B) is k-truncated.

This appears as [Re05] 7.1 and [L-Topos] def. 5.5.6.8.

Remark 5.1.48. • A morphism is (−2)-truncated precisely if it is an equivalence.

• A morphism between ∞-groupoids that is (−1)-truncated is a full and faithful ∞-functor. A general
morphism that is (−1)-truncated is an ∞-monomorphism.

Proposition 5.1.49. For all (−2) ≤ n ≤ ∞ the full sub-∞-category H≤n of H on the n-truncated objects
is reflective in H in that the inclusion functor has a left adjoint ∞-functor τn

H≤n
oo τn
� � // H .

Moreover, τn preserves finite products

This is [L-Topos, prop. 5.5.6.18, lemma 6.5.1.2].

Definition 5.1.50. For an object X ∈ H in an ∞-topos, we say that the canonical sequence

X

|| "" ))
· · · // τnX // · · · // τ0X // τ−1X
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induced from the reflectors of prop. 5.1.49 is the Postnikov tower of X.
We say that the Postnikov tower converges if the above diagram exhibits X as the ∞-limit over its

Postnikov tower
X ' lim

←−n
τnX .

This is [L-Topos, def. 5.5.6.23].

Remark 5.1.51. Postnikov towers (def. 5.1.50) are a special cases of towers of higher images. This we
discuss further below in 5.1.4.

5.1.3.2 Presentations We discuss presentations in model categories of simplicial presheaves of the gen-
eral concept of Postnikov towers from 5.1.3.1.

Proposition 5.1.52. Let C be a small site of definition of an ∞-topos H, so that

H ' LW [Cop, sSet]proj,loc

according to theorem 3.1.19. Let [Cop, sSet]proj,loc,≤n be the left Bousfield localization of the local projective
model structure on simplicial presheaves at the set of morphisms

{∂∆[k + 1] ↪→ U → ∆[k + 1] · U | U ∈ C; k > n} .

This is a presentation of the sub-∞-category of n-truncated objects

H≤n ' ([Cop, sSet]proj,loc,≤n)◦

and the canonical Quillen adjunction

[Cop, sSet]proj,loc
oo id

id
// [Cop, sSet]proj,loc,≤n

presents the reflection, τn ' Lid.

This appears in the proof of [Re05, prop. 7.5].
We now discuss an explicit presentation for n-truncation and Postnikov decompositions, def. 5.1.50, in

terms of the projective model structure on simplicial presheaves. First recall the following classical notions,
reviewed for instance in [GoJa99].

Definition 5.1.53. Let ιn+1 : ∆≤n+1 ↪→ ∆ be the full subcategory of the simplex category on the objects
[k] for k ≤ n+ 1. Write sSet≤n+1 := Func(∆op

≤n+1,Set) for the category of (n+ 1)-stage simplicial sets.
Finally, write

coskn+1 : sSet
ι∗n+1 // sSet≤n+1

� �coskn+1// sSet

for the composite of the pullback along ιn+1 with its right adjoint coskn+1.
For X ∈ sSet we say that coskn+1X is it (n+ 1)-coskeleton.
All of these constructions prolong to simplicial presheaves.

Theorem 5.1.54. For X ∈ sSet a Kan complex, the tower of cosk-units

· · · → cosk3X → cosk2X → cosk1X

presents the Postnikov decomposition of X, def. 5.1.50, in ∞Grpd.

This is a classical result due to [DwKa84b].
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Proposition 5.1.55. For C the site of definition of a hypercomplete ∞-topos, let X ∈ [Cop, sSet]proj,loc be
a fibrant simplicial presheaf. Then the tower of cosk-units

· · · → cosk3X → cosk2X → cosk1X

presents the Postnikov decomposition of X in Sh∞(X).

Proof. It is sufficient to show that X → coskn+1X presents the n-truncation X → τnX in Sh∞(X). For
this, in turn, it is sufficient to observe that this morphism exhibits a fibrant resolution in [Cop, sSet]proj,loc,≤n.
By standard facts about left Bousfield localizations, coskn+1X is indeed fibrant in that model structure,
since it is fibrant in the original structure by assumption and is local with respect to higher sphere inclusions
by the nature of the coskeleton construction.

So it remains to see that the morphism X → coskn+1X is a weak equivalence in the localized model
structure. We notice that by assumption of hypercompleteness, the homotopy category is also computed by
the derived hom in the truncation-localization of the Jardine model structure [Jard87]. By the nature of
cosk, the morphism induces an isomorphism on all homotopy sheaves in degree ≤ n (since the homotopy
presheaves of X and coskn+1X in these degrees are manifestly equal and X → coskn+1 is the identity on
cells in these degrees). Since by prop. 5.1.52 also the localized Jardine structure presents the full sub-∞-
category on n-truncated objects, the morphisms which are isos on homotpy groups in degree ≤ n are already
equivalences here. �

5.1.4 Epi-/mono-morphisms and relative Postnikov systems

In an ∞-topos there is an infinite tower of notions of epimorphisms and monomorphisms: the (n − 2)-
connected and (n − 2)-truncated morphisms for all n ∈ N [Re05, L-Topos]. Accordingly, factorization
through these induces a notion of n-images of morphisms in an ∞-topos, for each n ∈ N. The case when
n = −1 is in some sense the most direct generalization of the 1-categorical notion.

5.1.4.1 General abstract

Definition 5.1.56. For f : X → Y a morphism in an∞-topos H and for n ∈ N, the (n−2)-connected/(n−2)-
truncated factorization of f is the (n − 2)-truncation of f , def. 5.1.47, as an object in the slice H/Y , def.
5.1.25:

X //

f
��

∑
Y

τn−2f

τn−2f

||
Y

.

We write
imn(f) :=

∑
Y

τn−2f

and call this the n-image of f . We also say that

im∞(f) := X

is the 1-image of f .

Proposition 5.1.57. The n-image operations of def. 5.1.56 preserves products in that for any two mor-
phisms fi : Xi → Yi we have

imn

(
X1 ×X2

(f1,f2)−→ Y1 × Y2

)
' (imn(f1)× imn(f2) −→ Y1 × Y2)
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Proof. Observe that the morphism (f, g) is the product of (f, id) with (id, f) in the slice ∞-topos over
Y1 × Y2. By [L-Topos, lemma 6.5.1.2] n-truncation in ∞-toposes preserves products. �

Definition 5.1.58. A morphism f : X → Y is called

• an n-epimorphism if its n-image injection imn(f)→ Y is an equivalence;

• an n-monomorphism if its n-image projection X → imn(f) is an equivalence.

Proposition 5.1.59. For all n, the classes (Epin(H),Monon(H)) constitute an orthogonal factorization
system.

This is Proposition 8.5 in [Re05] and Example 5.2.8.16 in [L-Topos]. As a direct corollary:

Proposition 5.1.60. The class of n-monomorphisms is stable under pullback, for all n.

This follows with prop. 5.2.8.6 in [L-Topos]. Moreover:

Proposition 5.1.61. The factorization systems of prop. 5.1.59 are stable: for all n, also the class of
n-epimorphisms is preserved by ∞-pullback.

This is [L-Topos], prop. 6.1.5.16(6).

Remark 5.1.62. By prop. 5.1.69 also 1-epimorphisms are preserved by∞-pullback (as are 0-epimorphisms
= equivalences), but the class of n-epimorphisms for n > 1 is in general not preserved by ∞-pullback.

Proposition 5.1.63. A morphism f : X → Y is an n-monomorphism, precisely if its diagonal X → X×
Y
X

is an (n− 1)-monomorphism.

This is [L-Topos], lemma 5.5.6.15.
Of particular interest are 1-epimorphisms/1-monomorphisms.

Definition 5.1.64. For f : X → Y a morphism in H, we write its 1-epi/1-mono factorization given by
Proposition 5.1.59 as

f : X // // im1(f) �
� // Y

and we call im1(f)
� � // Y the 1-image (or just image, for short) of f .

Equivalently the 1-image is the (−1)-truncation of f : X → Y regarded as an object in the slice∞-topos.

Definition 5.1.65. Let H be an ∞-topos. For X → Y any morphism in H, there is a simplicial object
Č(X → Y ) in H (the Čech nerve of f : X → Y ) which in degree n is the (n+ 1)-fold ∞-fiber product of X
over Y with itself

Č(X → Y ) : [n] 7→ X×
n+1
Y

A morphism f : X → Y in H is an effective epimorphism if it is the colimiting cocone under its own Čech
nerve:

f : X → lim−→ Č(X → Y ) .

Write Epi(H) ⊂ HI for the collection of effective epimorphisms.

See [L-Topos, below cor. 6.2.3.5].

Remark 5.1.66. In view of the discussion of groupoid objects below in 5.1.8 (see remark 5.1.127 there) we

also speak of an effective epimorphism U // // X as being an atlas, or, more explicitly, as exhibiting U as
an atlas of X.
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Proposition 5.1.67. A morphism f : X → Y in the ∞-topos H is an effective epimorphism precisely if its
0-truncation τ0f : τ0X → τ0Y is an epimorphism (necessarily effective) in the 1-topos τ≤0H.

This is [L-Topos, prop. 7.2.1.14].

Example 5.1.68. A morphism in ∞Grpd is effective epi precisely if it induces an epimorphism π0(X) →
π0(Y ) of sets of connected components.

Proposition 5.1.69. Effective epimorphisms are preserved by ∞-pullback.

This is [L-Topos, prop. 6.2.3.15].

Proposition 5.1.70. The effective epimorphisms of def. 5.1.65 are equivalently the 1-epimorphisms of def.
5.1.56. In particular, for f : X → Y any morphism, its 1-image, def. 5.1.64, is given by the ∞-colimit over
its Čech nerve, def. 5.1.65:

im1(f) ' lim
−→n

(
X×

n+1
Y

)
.

Proof. Let f : X // // im1(f) // Y be the essentially unique 1-image factorization. Then by prop.

5.1.63 the diagram exhibiting the ∞-fiber product of this morphism with itself decomposes into a pasting
diagram of ∞-pullbacks of the form

X ×
Y
X ' X ×

im1(f)
X //

��

X
' //

����

X

����
f

��

X // //

'
��

im1(f)
' //

'
��

im1(f)� _

��
X //

f

44im1(f) �
� // Y

.

By the pasting law, prop. 5.1.2 this identifis the ∞-fiber product of f with itself over Y with its prod-
uct over im1(f), as indicated, and hence the Čech nerve of f is equivalently that of its image projection

X // // im1(f) . Finally be the Giraud-Rezk-Lurie axiom, prop. 3.1.5, satisfied by the ambient ∞-topos,

the ∞-colimit over the Čech nerve of X // // im1(f) is that morphism itself. �

The following is a simple consequence of prop. 5.1.70 which we will need.

Proposition 5.1.71. For
ι : A

� � // B

a 1-monomorphism in H and for X ∈ H any object, the image of φ under the internal hom [X,−] : H→ H
is again a 1-monomorphism.

[X, ι] : [X,A] �
� // [X,B]

Proof. By prop. 5.1.63 a morphism is a 1-monomorphism precisely if the ∞-fiber product with itself
reproduces its domain. Since [X,−] preserves ∞-limits, this implies the claim. �

Proposition 5.1.72. For ι : X
� � // ∗ a 1-monomorphism (exhibiting X as a subterminal object), and

for E1, E2 ∈ H/X two objects in the slice, the canonical map

pX :
∏
X

[E1, E2]→

[∑
X

E1,
∑
X

E2

]
of prop. 5.1.38 is an equivalence.
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Proof. By the proof of prop. 5.1.38 it suffices to show that the analogous statement holds for the external
hom, hence that we have that the canonical map

H/X(E1, E2) // H(
∑
X

E1,
∑
X

E1)

of prop. 5.1.33 is an equivalence. That morphism sits in the ∞-pullback on the left of the diagram

H/X(E1, E2) //

��

∗

`E1

�� ##
H(
∑
X

E1,
∑
X

E1)
E2◦(−)// H(

∑
X

E1, X) �
�

H(X,ι)
// ∗

in ∞Grpd. Here H(
∑
X

E1, X) is subterminal and inhabited, hence is terminal. Therefore the right vertical

morphism is an equivalence and hence so is the left vertical morphism. �
By taking H in prop. 5.1.72 itself to be a slice of another ∞-topos, the statement implies the following

seemingly more general statement:

Proposition 5.1.73. for f : X �
� // Y a 1-monomorphism in an ∞-topos H and for E1, E2 ∈ H/X two

objects in the slice over X, the canonical morphism

∏
Y

pf : [E1, E2]H →

∑
f

E1,
∑
f

E2


H

between the H-valued slice homs of def. 5.1.34 is an equivalence.

The following is another simple fact that we will need.

Proposition 5.1.74. For f : X → Y any morphism in H its homotopy fiber over any global point of Y in
the image of f is equivalent to the homotopy fiber over the corresponding point in im1(f).

Proof. By the pasting law, prop. 5.1.2 the homotopy fiber sits in a pasting diagram of ∞-pullbacks.

fiby(f) //

��

X

����
∗

��

y // im1(f)� _

��
∗

y // Y

.

That y is in the image of f precisely says that we have the bottom square and the fact that that the bottom
right morphism is a 1-monomorphism says that the bottom square is an ∞-pullback. This identifies the
middle row of the digram as indicated. (For instance one can check this by applying H(U,−) to the diagram
where U ranges over a set of generators and then using that the only suobobjects in ∞Grpd of ∗ ' H(U, ∗)
are ∅ and ∗ itself). �

Now we turn to discussion of the towers of n-image factorizations as n ranges, which are the relative
Postnikov towers in an ∞-topos.

Remark 5.1.75. For f : X → ∗ a terminal morphism, then its n-image (def. 5.1.56) coincides with the
(n− 2)-truncation of X (def. 5.1.47):

τn−2X ' imn(X → ∗) .

354



Definition 5.1.76. Given a morphism f : X → Y in an ∞-topos H, its n-images (def. 5.1.56) for all n
form a tower

X
= //

f

44im∞(f) // · · · // im2(f) // im1(f) // im0(f)
' // Y ,

also called the relative Postnikov tower of f . For Y ' ∗ the terminal object, then this is the (absolute)
Postnikov tower of the object X according to def. 5.1.50, by remark 5.1.75. For X ' ∗ the terminal object,
this is called the Whitehead tower of Y . Conversely, the relative Postnikov tower of f in H is equivalently
the absolute Postnikov tower according to def. 5.1.50 of f regarded as an object of the slice H/Y .

Proposition 5.1.77. Let f : X → Y be a morphism in an ∞-topos H and let x : ∗ → X be a base point.
Then for all n ∈ N, forming n-images commutes with forming loop space objects up to a shift in image-degree,
in that there is a natural equivalence

Ω (imn(f)) ' imn−1(Ωf) .

Proof. The corresponding statement in homotopy-type theory is shown in [SpRi12]. The above statement
is the categorical semantics of that. �

5.1.4.2 Presentations We discuss aspects of presentation of the general abstract theory of epi-/monomorphisms
and relative Postnikov towers of 5.1.4.1.

5.1.4.2.1 Effective epimorphisms We discuss apsects of the presentation of effective epimorphisms,
def. 5.1.65, with respect to presentations of the ambient∞-topos by categories of simplicial presheaves, 3.1.3.

Remark 5.1.78. If the ∞-topos H is presented by a category of simplicial presheaves, 3.1.3, then for X a
simplicial presheaf the canonical morphism of simplicial presheaves constX0 → X that includes the presheaf
of 0-cells as a simplicially constant simplicial presheaf presents an effective epimorphism in H.

Proof. By prop. 5.1.67. �

Remark 5.1.79. In practice the presentation of an ∞-stack by a simplicial presheaf is often taken to be
understood, and then remark 5.1.78 induces also a canonical atlas.

We now discuss a fibration resolution of the canonical atlas. Let σ : ∆ ×∆ → ∆ the functor from def.
5.1.19, defining total décalage.

Definition 5.1.80. Write
Dec0 : sSet→ sSet

for the functor given by precomposition with σ(−, [0]) : ∆→ ∆, and

Dec0 : sSet→ sSet

for the functor given by precomposition with σ([0],−) : ∆→ ∆. This is called the plain décalage functor or
shifting functor.

This functor was introduced in [Il72]. A discussion in the present context is in section 2.2 of [St11].
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Proposition 5.1.81. The décalage of X is isomorphic to the simplicial set

Dec0X = Hom(∆• ?∆[0], X) ,

where (−) ? (−) : sSet × sSet → sSet is the join of simplicial sets. The canonical inclusions ∆[n],∆[0] →
∆[n] ?∆[0] induce two canonical morphisms

Dec0X

'
��

// // X

constX0

,

where

• the horizontal morphism is given in degree n by dn+1 : Xn+1 → Xn;

• the horizontal morphism is a Kan fibration;

• the vertical morphism is a weak homotopy equivalence;

• a weak homotopy inverse is given by the morphism that is degreewise given by the degeneracy morphisms
in X.

Proof. The relation to the join of simplicial sets is nicely discussed around page 7 of [RoSt12]. The weak
homotopy equivalence is classical, see for instance [St11].

To see that Dec0X → X is a Kan fibration, notice that for all n ∈ N we have (Dec0X)n = Hom(∆[c] ?
∆[0], X), where (−) ? (−) : sSet× sSet→ sSet is the join of simplicial sets. Therefore the lifting problem

Λi[n] //

��

Dec0X

��
∆[n] // X

is equivalently the lifting problem

(Λi[n] ?∆[n])
∐

Λi[n] ∆[n] //

��

X

��
∆[n] ?∆[0] // ∗

.

Here the left moprhism is a anodyne morphism, in fact is an (n + 1)-horn inclusion. Hence a lift exists if
X is a Kan complex. (Alternatively, notice that Dec0X is the disjoint union of slices X/x for x ∈ X0. By
cor. 2.1.2.2 in [L-Topos] the projection X/x → X is a left fibration if X is Kan fibrant, and by prop. 2.1.3.3
there this implies that it is a Kan fibration). �

Corollary 5.1.82. For X in [Cop, sSet]proj fibrant, a fibration resolution of the canonical effective epimor-
phism constX0 → X from remark 5.1.78 is given by the décalage morphism Dec0X → X, def. 5.1.80.

Proof. It only remains to observe that we have a commuting diagram

constX0
s //

��

Dec0X

��
X

= // X

,

where the top morphism, given degreewise by the degeneracy maps in X, is a weak homotopy equivalence
by classical results. �
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5.1.4.2.2 n-Images and Relative Postnikov towers We discuss presentations of n-images in ∞-
toposes by constructions on simplicial presheaves.

In H = ∞Grpd, the general notion of relative Postnikov towers, def. 5.1.76, reproduces the traditional
one.

Definition 5.1.83. Let f : X → Y be a morphism of simplicial sets. Then a relative Postnikov tower of
simplicial sets for f is a diagram of simplicial sets of the form

X
= //

f

44im∞(f) // · · · // im2(f) // im1(f) // im0(f)
' // Y

such that for all n

1. the morphism X → imn(f)

(a) induces an epimorphism on homotopy groups in degree n− 1;

(b) induces an isomorphism on homotopy groups in degree < n− 1;

2. the morphism imn(f)→ Y

(a) induces a monomorphism on homotopy groups in degree n− 1;

(b) induces an isomorphism on homotopy groups in degree > n− 1.

This appears for instance as [GoJa99, VI def. 2.9].
Here is an explicit construction:

Definition 5.1.84. For X,Y ∈ sSet two simplicial sets, let f : X → Y be a Kan fibration. For n ∈ N define
an equivalence relation ∼n on X• by declaring that two k-simplices σ1, σ2 : ∆k → X of X are equivalent if

1. they have the same n-skeleton skn∆k // ∆k σ1,σ2 // X

2. and f(σ1) = f(σ2).

Write then
imn+1(f) := X/ ∼n

for the quotient simplicial set. This comes equipped with canonical morphisms of simplicial sets

X //

f

66imn+1(f) // Y .

This is [GoJa99, VI def. 2.10].

Proposition 5.1.85. The construction in def. 5.1.84 is a relative Postnikov tower of simplicial sets in the
sense of def. 5.1.83.

This is [GoJa99, VI theorem 2.11]

Proposition 5.1.86. Under the equivalence ∞Grpd ' LwhesSet, any relative Postnikov tower of simplicial
sets in the sense of def. 5.1.83 is a presentation of the relative Postnikov tower, def. 5.1.76, in H =∞Grpd.

Proof. Applying the defining properties in def. 5.1.83 in the long exact sequence of simplicial homtoopy
groups for f shows that each factorizatioon X → imn(f)→ Y is an (n-epi/n-mono)-factorization. �

For maps between low truncated objects, we have the following simple identification of their n-images.
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Proposition 5.1.87. A 1-functor between 1-groupoids

1. is n-truncated as a morphism of ∞-groupoids precisely if

(a) for n = −2 it is an equivalence of categories;

(b) for n = −1 it is a full and faithful functor;

(c) for n = 0 it is a faithful functor.

2. is n-connected as a morphism of ∞-groupoids precisely if

(a) for n = −2 it is an equivalence of categories;

(b) for n = −1 it is essentially surjective;

(c) for n = 0 it is essentially surjective and full.

In particular

1. the 1-image factorization of a functor f : X → Y of groupoids is given by factoring it through an essen-
tially surjective functor followed by a fully faithful functor (sometimes called the (eso,ff)-factorization).
Up to equivalence the groupoid im1(f) is given as follows: its set of objects is the image of the set of
objects of the groupoid X under f , its set of morphisms is all the morphisms of X on these objects.

2. the 2-image fatorization of a functor f : X → Y of groupoids is given by factoring it through an essen-
tially surjective and full functor followed by a faithful fuunctor (sometimes called the (eso+full,faithful)-
factorization). Up to equivalence the groupoid im2(f) is given as follows: its set of objects is that of
X, while its set of morphisms is the image of the set of morphisms of X under f .

Proof.
It is immediately checked that with these definitions then the defining properties in def. 5.1.83 are

satisfied. Hence the statement follows with proposition 5.1.86.
lternatively one may analyze the homotopy fibers. We consider the case n = 0:
A functor f : X → Y between groupoids being faithful is equivalent to the induced morphisms on first

homotopy groups being monomorphisms. Therefore for F → X → Y the homotopy fiber over any point of
Y , the long exact sequence of homotopy groups yields

· · · → π1(F )→ π1(X)
f∗
↪→ π1(Y )→ · · ·

and hence realizes π1(F ) as the kernel of an injective map. Therefore π(F ) ' ∗ and hence F is 0-truncated
for every basepoint. This is the defining condition for f being 0-truncated. �

Proposition 5.1.88. Let C be a site and let f : X → Y be a morphism of presheaves of groupoids on
C which, under the nerve, are fibrant objects in [Cop, sSet]proj,loc. If f is objectwise a) an equivalence, b)
full and faithful or c) faithful, then the morphism presented by f in H := Sh∞(X) is a) -2-truncated, b)
(-1)-truncated, c) 0-truncated, respectively.

Proof. We need to compute for every A ∈ H the homotopy fibers of H(A, f). Since by assumption X
and Y are fibrant presentations, we may pick any cofibrant presentation of A and obtain this morphism as
[Cop, sSet](A, f). This is the nerve of a functor of groupoids which is a) an equivalence, b) full and faithful
or c) faithful, respectively. The statement then follows with proposition 5.1.87. �

More generally, we obtain a similarly simple and concrete presentation of n-image factorization of mor-
phisms in the case that they are presented by homomorphisms of strict ∞-groupoids, def. 3.1.36.
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Proposition 5.1.89. Let f : X → Y be a morphism in ∞Grpd which is in the essential image of the
inclusion

Str∞Grpd ↪→ KanCplx→ LwhesSet ' ∞Grpd

of a morphism strict ∞-groupoids, given by an underlying morphism of globular sets f• : X•, Y•. Then for
n ∈ N the n-image factorization def. 5.1.56 of f is presented under this inclusion by the strict ∞-groupoid
imn(f) whose underlying globular set is

(imn(f))k :=

 Xk ∀k < n− 1
im(Xn−1) ⊂ Yn−1 ∀k = n− 1

Yk ∀k ≥ n

equipped with the evident composition operations induced from those on X• and Y•, and with the evident
morphisms

X• // imn(f)• // Y• ,

the left one being the identity in degree k < n − 1, the quotent projection in degree n − 1 and f in degree
k ≥ n, and the right one being f in degree k < n − 1, the image inclusion in degree n − 1 and the identity
in degree k ≥ n.

For the case Y = ∗ this is discussed in [BFGM].
Proof. The homotopy groups of a strict globular∞-groupoid in any degree k are simply given by the groups
of k-automorphisms of the identity (k− 1)-morphism on a given baspoint modulo (k+ 1)-morphisms (hence
the homology of the corresponding crossed complex, def. 1.2.96 in that degree). Therefore it is clear from
the construction of imn(f) above that X → imn(f) is surjective on π0 and an isomorphism on πk<n−1, and
that imn(f) is a monomorphism on πn−1 and an isomorphism on πk≥n. �

5.1.5 Compact objects

Traditionally there are two notions referred to as compactness of a space, which are closely related but subtly
different.

1. On the one hand a space is called compact if regarded as an object of a certain site each of its covering
families has a finite subfamily that is still covering.

2. On the other hand, an object in a category with colimits is called compact if the hom-functor out of
that object commutes with all filtered colimits. Or more generally in the context of ∞-categories: if
the hom-∞-functor out of the objects commutes with all filtered ∞-colimits ([L-Topos, section 5.3]).

For instance in the site of topological spaces or of smooth manifolds, equipped with the usual open-cover
coverage, the first definition reproduces the traditional definition of compact topological space and of compact
smooth manifold, respectively. But the notion of compact object in the category of topological spaces in the
sense of the second definition is not quite equivalent. For instance the two-element set equipped with the
indiscrete topology is compact in the first sense, but not in the second.

The cause of this mismatch, as we will discuss in detail below, becomes clearer once we generalize beyond
1-category theory to ∞-topos theory: in that context it is familiar that locality of morphisms out of an
object X into an n-truncated object A (an n-stack) is no longer controled by just the notion of covers of
X, but by the notion of hypercover of height n, which reduces to the ordinary notion of cover for n = 0.
Accordingly it is clear that the ordinary condition on a compact topological space to admit finite refinement
of any cover is just the first step in a tower of conditions: we may say an object is compact of height n if
every hypercover of height n over the object is refined by a “finite hypercover” in a suitable sense.

Indeed, the condition on a compact object in a 1-category to distribute over filtered colimits turns out to
be a compactness condition of height 1, which conceptually explains why it is stronger than the existence of
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finite refinements of covers. This state of affairs in the first two height levels has been known, in different
terms, in topos theory, where one distinguishes between a topos being compact and being strongly compact
[MoVe00]:

Definition 5.1.90. A 1-topos (∆ a Γ) : X oo // Set is called

1. a compact topos if the global section functor Γ preserves filtered colimits of subterminal objects (=
(-1)-truncated objects);

2. a strongly compact topos if Γ preserves all filtered colimits (hence of all 0-truncated objects).

Clearly these are the first two stages in a tower of notions which continues as follows.

Definition 5.1.91. For (−1) ≤ n ≤ ∞, an ∞-topos (∆ a Γ) : X oo //∞Grpd is called compact of height
n if Γ preserves filtered ∞-colimits of n-truncated objects.

Since therefore the traditional terminology concerning “compactness” is not quite consistent across fields,
with the category-theoretic “compact object” corresponding, as shown below, to the topos theoretic “strongly
compact”, we introduce for definiteness the following terminology.

Definition 5.1.92. For C a subcanonical site, call an object X ∈ C ↪→ Sh(C) ↪→ Sh∞(C) representably
compact if every covering family {Uα → X}i∈I has a finite subfamily {Uj → X}j∈J⊂I which is still covering.

The relation to the traditional notion of compact spaces and compact objects is given by the following

Proposition 5.1.93. Let H be a 1-topos and X ∈ H an object. Then

1. if X is representably compact, def. 5.1.92, with respect to the canonical topology, then the slice topos
H/X , def. 5.1.25 is a compact topos;

2. the slice topos H/X is strongly compact precisely if X is a compact object.

Proof. Use that the global section functor Γ on the slice topos is given by

Γ([E → X]) = H(X,E)×H(X,X) {idX}

and that colimits in the slice are computed as colimits in H:

lim
−→i

[Ei → X] ' [( lim
−→i

Ei)→ X] .

For the first statement, observe that the subterminal objects of H/X are the monomorphisms in H.
Therefore Γ sends all subterminals to the empty set except the terminal object itself, which is sent to the
singleton set. Accordingly, if U• : I → H/X is a filtered colimit of subterminals then

• either the {Uα} do not cover, hence in particular none of the Uα is X itself, and hence both Γ(lim
−→i

Uα)

as well as lim
−→i

Γ(Uα) are the empty set;

• or the {Uα}i∈I do cover. Then by assumption on X there is a finite subcover J ⊂ I, and then by
assumption that U• is filtered the cover contains the finite union lim

−→
i∈J

Uα = X and hence both Γ(lim
−→i

Uα)

as well as lim
−→i

Γ(Uα) are the singleton set.
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For the second statement, assume first that X is a compact object. Then using that colimits in a topos
are preserved by pullbacks, it follows for all filtered diagrams [E• → X] in H/X that

Γ(lim
−→i

[Ei → X]) ' H(X, lim
−→i

Ei)×H(X,X) {id}

' ( lim
−→i

H(X,Ei))×H(X,X) {id}

' lim
−→i

(H(X,Ei)×H(X,X) {id})

' lim
−→i

Γ[Ei → X]

,

and hence H/X is strongly compact.
Conversely, assume that H/X is strongly compact. Observe that for every object F ∈ H we have a

natural isomorphism H(X,F ) ' Γ([X × F → X]). Using this, we obtain for every filtered diagram F• in H
that

H(X, lim
−→i

Fi) ' Γ([X × ( lim
−→i

Fi)→ X])

' Γ(lim
−→i

[X × Fi → X])

' lim
−→i

Γ([X × Fi → X])

' lim
−→i

H(X,Fi)

and hence X is a compact object. �

Notice that a diagram of subterminal objects necessarily consists only of monomorphisms. We show now
that a representably compact object generally distributes over such monofiltered colimits.

Definition 5.1.94. Call a filtered diagram A : I → D in a category D mono-filtered if for all morphisms
i1 → i2 in the diagram category I the morphism A(i1 → i2) is a monomorphism in D.

Lemma 5.1.95. For C a site and A : I → Sh(C) ↪→ PSh(C) a monofiltered diagram of sheaves, its colimit
lim
−→i

Ai ∈ PSh(C) is a separated presheaf.

Proof. For {Uα → X} any covering family in C with S({Uα}) ∈ PSh(C) the corresponding sieve, we
need to show that

lim
−→i

Ai(X)→ PShC(S({Uα}), lim
−→i

Ai)

is a monomorphism. An element on the left is represented by a pair (i ∈ I, a ∈ Ai(X)). Given any other
such element, we may assume by filteredness that they are both represented over the same index i. So let
(i, a) and (i, a′) be two such elements. Under the above function, (i, a) is mapped to the collection {i, a|Uα}α
and (i, a′) to {i, a′|Uα}α. If a is different from a′, then these families differ at stage i, hence at least one pair
a|Uα , a′|Uα is different at stage i. Then by mono-filteredness, this pair differs also at all later stages, hence
the corresponding families {Uα → lim

−→i

Ai}α differ. �

Proposition 5.1.96. For X ∈ C ↪→ Sh(C) a representably compact object, def. 5.1.92, HomSh(C)(X,−)
commutes with all mono-filtered colimits.

Proof. Let A : I → Sh(C) ↪→ PSh(C) be a mono-filtered diagram of sheaves, regarded as a diagram
of presheaves. Write lim

−→i

Ai for its colimit. So with L : PSh(C) → Sh(C) denoting sheafification, L lim
−→i

Ai

is the colimit of sheaves in question. By the Yoneda lemma and since colimits of presheaves are computed
objectwise, it is sufficient to show that for X a representably compact object, the value of the sheafified
colimit is the colimit of the values of the sheaves on X

(L lim
−→i

Ai)(X) ' ( lim
−→i

Ai)(X) = lim
−→i

Ai(X) .
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To see this, we evaluate the sheafification by the plus construction. By lemma 5.1.95, the presheaf lim
−→i

Ai is

already separated, so we obtain its sheafification by applying the plus-construction just once.
We observe now that over a representably compact object X the single plus-construction acts as the

identity on the presheaf lim
−→i

Ai. Namely the single plus-construction over X takes the colimit of the value

of the presheaf on sieves

S({Uα}) := lim
−→

(
∐
α,β Uα,β

// //
∐
α Uα )

over the opposite of the category of covers {Uα → X} of X. By the very definition of compactness, the
inclusion of (the opposite category of) the category of finite covers of X into that of all covers is a final
functor. Therefore we may compute the plus-construction over X by the colimit over just the collection of
finite covers. On a finite cover we have

PSh(S({Uα}), lim
−→i

Ai) := PSh(lim
−→

(
∐
α,β Uαβ

////
∐
α Uα ), lim

−→i

Ai)

' lim
←−

(
∏
α lim
−→i

Ai(Uα) ////
∏
α,β lim
−→i

Ai(Uα,β) )

' lim
−→i

lim
←−

(
∏
αAi(Uα) ////

∏
α,β Ai(Uα,β) )

' lim
−→i

Ai(X)

,

where in the second but last step we used that filtered colimits commute with finite limits, and in the last
step we used that each Ai is a sheaf.

So in conclusion, for X a representably compact object and A : I → Sh(C) a monofiltered diagram, we
have found that

HomSh(C)(X,L lim
−→i

Ai) ' ( lim
−→i

Ai)
+(X)

' lim
−→i

Ai(X)

' lim
−→i

HomSh(C)(X,Ai)

�
The discussion so far suggests that there should be conditions for “representably higher compactness” on

objects in a site that imply that the Yoneda-embedding of these objects into the ∞-topos over the site
distribute over larger classes of filtered ∞-colimits.

Definition 5.1.97. For C a site, say that an object X ∈ C is representably paracompact if each bounded
hypercover over X can be refined by the Čech nerve of an ordinary cover.

The motivating example is

Proposition 5.1.98. Over a paracompact topological space, every bounded hypercover is refined by the Čech
nerve of an ordinary open cover.

Proof. Let Y → X be a bounded hypercover. By lemma 7.2.3.5 in [L-Topos] we may find for each k ∈ N
a refinement of the cover given by Y0 such that the non-trivial (k + 1)-fold intersections of this cover factor
through Yk+1. Let then n ∈ N be a bound for the height of Y and form the intersection of the covers obtained
by this lemma for 0 ≤ k ≤ n. Then the resulting Čech nerve projection factors through Y → X. �

Proposition 5.1.99. Let X ∈ C ↪→ Sh∞(C) =: H be an object which is

1. representably paracompact, def. 5.1.97;

2. representably compact, def. 5.1.92,
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then it distributes over sequential ∞-colimits A• : I → Sh∞(C) of n-truncated objects for every n ∈ N.

Proof. Let A• : I → [Cop, sSet] be a presentation of a given sequential diagram in Sh∞(Mfd), such that
it is fibrant and cofibrant in [I, [Cop, sSet]proj,loc]proj. Note for later use that this implies in particular that

• The ordinary colimit lim
−→i

Ai ∈ [Cop, sSet] is a homotopy colimit.

• Every Ai is fibrant in [Cop, sSet]proj,loc and hence also in [Cop, sSet]proj.

• Every morphismAi → Aj is (by example 5.1.12) a cofibration in [Cop, sSet]proj,loc, hence in [Cop, sSet]proj,
hence in particular in [Cop, sSet]inj, hence is over each U ∈ C a monomorphism.

Observe that lim
−→i

Ai is still fibrant in [Cop, sSet]proj: since the colimit is taken in presheaves, it is computed

objectwise, and since it is filtered, we may find the lift against horn inclusions (which are inclusions of
degreewise finite simplicial sets) at some stage in the colimit, where it exists by assumption that A• is
projectively fibrant, so that each Ai is projectively fibrant in the local and hence in particular in the global
model structure.

Since X, being representable, is cofibrant in [Cop, sSet]proj,loc, it also follows by this reasoning that the
diagram

H(X,A•) : I →∞Grpd

is presented by
A•(X) : I → sSet .

Since the functors

[I, [Cop, sSet]proj,loc]proj
id // [I, [Cop, sSet]proj]proj

id // [I, [Cop, sSet]inj]proj
id // [I, sSetQuillen]proj

all preserve cofibrant objects, it follows that A•(X) is cofibrant in [I, sSetQuillen]proj. Therefore also its
ordinary colimit presents the corresponding ∞-colimit.

This means that the equivalence which we have to establish can be written in the form

RHom(X, lim
−→i

Ai) ' lim
−→i

Ai(X) .

If here lim
−→i

Ai were fibrant in [Cop, sSet]proj,loc, then the derived hom on the left would be given by the

simplicial mapping space and the equivalence would hold trivially. So the remaining issue is now to deal
with the fibrant replacement: the ∞-sheafification of lim

−→i

Ai.

We want to appeal to theorem 7.6 c) in [DHS04] to compute the derived hom into this ∞-stackification
by a colimit over hypercovers of the ordinary simplicial homs out of these hypercovers into lim

−→i

Ai itself. To

do so, we now argue that by the assumptions on X, we may in fact replace the hypercovers here with finite
Čech covers.

So consider the colimit
lim

{Uα→X}finite

[Cop, sSet](Č({Uα}), lim
−→i

Ai)

over all finite covers of X. Since by representable compactness of X these are cofinal in all covers of X, this
is isomorphic to the colimit over all Čech covers

· · · = lim
{Uα→X}

[Cop, sSet](Č({Uα}), lim
−→i

Ai) .

Next, by representable paracomopactness of X, the Čech covers in turn are cofinal in all bounded hypercovers
Y → X, so that, furthermore, this is isomorphic to the colimit over all bounded hypercovers

· · · = lim
Y→X

[Cop, sSet](Y, lim
−→i

Ai) .
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Finally, by the assumption that the Ai are n-truncated, the colimit here may equivalently be taken over all
hypercovers.

We now claim that the canonical morphism

lim
{Uα→X}finite

[Cop, sSet](Č({Uα}), lim
−→i

Ai)→ RHom(X, lim
−→i

Ai)

is a weak equivalence. Since the category of covers is filtered, we may first compute homotopy groups and
then take the colimit. With the above isomorphisms, the statement is then given by theorem 7.6 c) in
[DHS04].

Now to conclude: since maps out of the finite Cech nerves pass through the filtered colimit, we have

RHom(X, lim
−→i

Ai) ' lim
{Uα→X}finite

[Cop, sSet](Č({Uα}), lim
−→i

Ai)

' lim
{Uα→X}finite

lim
−→i

[Cop, sSet](Č({Uα}), Ai)

' lim
−→i

lim
{Uα→X}finite

[Cop, sSet](Č({Uα}), Ai)

' lim
−→i

Ai(X)

.

Here in the last step we used that each single Ai is fibrant in [Cop, sSet]proj,loc, so that for each i ∈ I

[Cop, sSet](X,Ai)→ [Cop, sSet](Č({Uα}), Ai)

is a weak equivalence. Moreover, the diagram [Cop, sSet](Č({Uα}), A•) in sSet is still projectively cofibrant,
by example 5.1.12, since all morphisms are cofibrations in sSetQuillen, and so the colimit in the second but
last line is still a homotopy colimit and thus preserves these weak equivalences. �

5.1.6 Homotopy

For reference, we recall the basic concepts of homotopy groups of objects in an ∞-topos from [L-Topos].

Definition 5.1.100. Let H an ∞-topos and X ∈ H an object. For n ∈ N write

(X(∗→∂∆[n+1]) : X∆[n] → X) ∈ H/X

for the cotensoring of X by the point inclusion into the simplicial n-sphere, regarded as an object in the
slice of H over X, def. 5.1.25. The nth homotopy group of X is the image of this under 0-truncation, prop.
5.1.49

πn(X) := τ0(X∗→∂∆[n+1]) ∈ τ0(H/X) .

This appears as [L-Topos, def. 6.5.1.1].

Remark 5.1.101. Since truncation preserves finite products by prop. 5.1.49 we have that πn(X) is indeed
a group object in the 1-topos τ0(H) for n ≥ 1 and is an abelian group object for n ≥ 2.

Example 5.1.102. For H = ∞Grpd ' Top and x : ∗ → X ∈ ∞Grpd a pointed object, we have for all
n ∈ N that

πn(X,x) := x∗πn(X) ∈ τ0∞Grpd/∗ ' Set

is the nth homotopy group of X at x as traditionally defined.

In [L-Topos] this is remark 6.5.1.6.
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Remark 5.1.103. Once we pass to cohesive∞-toposes in 5.2, all objects X in H are equipped with cohesive
structure as witnessed by their shape

∫
X ∈ ∞Grpd ↪→ H. There are then (at least) two different concepts

that both tend to be called “the” homotopy groups of X: on the one hand the homotopy groups in the sense
of def. 5.1.100 of X itself, and on the other the homotopy groups in the sense of def. 5.1.100 of its shape∫
X. In order to distinguish these we will say for emphasis that

• π•X are the categorical homotopy groups of X;

• π•
∫
X are the geometric homotopy groups of X.

See also definition 5.2.13 below. For instance for H = Smooth∞Grpd the ∞-topos of smooth ∞-groupoids
constructed in 6.4 below, and for X ∈ SmoothMfd ↪→ Smooth∞Grpd a smooth manifold, then its categorical
homotopy groups in positive degree are all trivial, while its geometric homotopy groups are the homotopy
groups of its underlying topological space in the usual sense of algebraic topology. If on the other hand
X ∈ Smooth∞Grpd is an orbifold, then its first categorical homotopy groups are the orbifold isotropy
groups, while its geometric homotopy groups are the homotopy groups of the topological space which is the
geometric realization of the orbifold.

5.1.7 Connected objects

We discuss objects in an ∞-topos which are connected or higher connected in that their first non-trivial
homotopy group, 5.1.6, is in some positive degree.

In a local ∞-topos and hence in particular in a cohesive ∞-topos, these are precisely the deloopings of
group objects, discussed below in 5.1.9. In a more general ∞-topos, such as a slice of a cohesive ∞-topos,
these are the (nonabelian/Giraud-)gerbes, discussed below in 5.1.19.

5.1.7.1 General abstract

Definition 5.1.104. Let n ∈ Z, with −1 ≤ n. An object X ∈ H is called n-connected if

1. the terminal morphism X → ∗ is an effective epimorphism, def. 5.1.65;

2. all categorical homotopy groups πk(X), def. 5.1.100, remark 5.1.103, for k ≤ n are trivial.

One also says

• inhabited or well-supported for (-1)-connected;

• connected for 0-connected;

• simply connected for 1-connected;

• (n+ 1)-connective for n-connected.

A morphism f : X → Y in H is called n-connected if it is n-connected regarded as an object of H/Y .

This is def. 6.5.1.10 in [L-Topos].

Example 5.1.105. An object X ∈ ∞Grpd ' Top is n-connected precisely if it is n-connected in the
traditional sense of higher connectedness of topological spaces. (A morphism in ∞Grpd is effective epi
precisely if it induces an epimorphism on sets of connected components.)

Example 5.1.106. For C an ∞-site, a connected object in Sh∞(C) may also be called an (“nonabelian” or
“Giraud”-) ∞-gerbe over C. This we discuss below in 5.1.19.

Definition 5.1.107. An ∞-topos H has homotopy dimension n ∈ N if n is the smallest number such that
every (n− 1)-connected object X ∈ H admits a morphism ∗ → X from the terminal object
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Remark 5.1.108. A morphism ∗ → X is a section of the terminal geometric morphism. So in an ∞-topos
of homotopy dimension n every (n−1)-connected object X has a section. For such X the terminal geometric
morphism is therefore in fact a split epimorphism.

Example 5.1.109. The trivial ∞-topos H = ∗ is, up to equivalence, the unique ∞-topos of homotopy
dimension 0.

This is example 7.2.1.2 in [L-Topos].

Proposition 5.1.110. An ∞-topos H has homotopy dimension ≤ n precisely if the global section geometric
morphism Γ : H → ∞Grpd, def. 3.1.7, sends (n − 1)-connected morphisms to (−1)-connected morphisms
(effective epimorphisms).

Proof. This is essentially lemma 7.2.1.7 in [L-Topos]. The proof there shows a bit more, even. �

Proposition 5.1.111. A local ∞-topos, def. 4.1.1, has homotopy dimension 0.

Proof. By prop. 5.1.110 it is sufficient to show that effective epimorphisms are sent to effective epi-
morphisms. Since for a local ∞-topos the global section functor is a left adjoint, it preserves not only the
∞-limits involved in the characterization of effective epimorphisms, def. 5.1.65, but also the ∞-colimits. �

Remark 5.1.112. In particular an ∞-presheaf ∞-topos over an ∞-site with a terminal object is local. For
this special case the statement of prop. 5.1.111 is example. 7.2.1.2 in [L-Topos], the argument above being
effectively the same as the one given there.

Corollary 5.1.113. A cohesive ∞-topos, def. 4.1.8, has homotopy dimension 0.

Proof. By definition, a cohesive ∞-topos is in particular a local ∞-topos. �

In an ordinary topos every morphism has a unique factorization into an epimorphism followed by a
monomorphism, the image factorization.

X
f //

epi ""

A

im(f)

mono

<< .

In an ∞-topos this notion generalizes to a tower of factorizations.

Proposition 5.1.114. In an ∞-topos H for any −2 ≤ k ≤ ∞, every morphism f : X → Y admits a
factorization

X
f //

$$

A

imk+1(f)

::

into a k-connected morphism, def. 5.1.104 followed by a k-truncated morphism, def. 5.1.47, and the space
of choices of such factorizations is contractible.

This is [L-Topos], example 5.2.8.18.

Remark 5.1.115. For k = −1 this is the immediate generalization of the (epi,mono) factorization system
in ordinary toposes. In particular, the 0-image factorization of a morphism between 0-truncated objects is
the ordinary image factorization.

For k = 1 this is the generalization of the (essentially surhective and full, faithful) factorization system
for functors between groupoids.

366



5.1.7.2 Presentations We discuss presentations of connected and pointed connected objects in an ∞-
topos by presheaves of pointed or reduced simplicial sets.

Observation 5.1.116. Under the presentation ∞Grpd ' (sSetQuillen)◦, a Kan complex X ∈ sSet presents
an n-connected ∞-groupoid precisely if

1. X is inhabited (not empty);

2. all simplicial homotopy groups of X in degree k ≤ n are trivial.

Definition 5.1.117. For n ∈ N a simplicial set X ∈ sSet is n-reduced if it has a single k-simplex for all
k ≤ n, hence if its n-skeleton is the point

sknX = ∗ .

For 0-reduced we also just say reduced. Write

sSetn ↪→ sSet

for the full subcategory of n-reduced simplicial sets.

Proposition 5.1.118. The n-reduced simplicial sets form a reflective subcategory

sSetn
oo redn
� � // sSet

of that of simplicial sets, where the reflector redn identifies all the n-vertices of a given simplicial set, in
other words redn(X) = X/sknX for X a simplicial set.

The inclusion sSetn ↪→ sSet uniquely factors through the forgetful functor sSet∗/ → sSet from pointed
simplicial sets, and that factorization is co-reflective

sSetn
� � //
oo
En+1

sSet∗/ .

Here the coreflector En+1 sends a pointed simplicial set ∗ x→ X to the sub-object En+1(X,x) – the (n+ 1)-
Eilenberg subcomplex (e.g. def. 8.3 in [May67]) – of cells whose n-faces coincide with the base point, hence
to the fiber

En+1(X,x) //

��

X

��
{∗} // cosknX

of the projection to the n-coskeleton.
For (∗ → X) ∈ sSet∗/ such that X ∈ sSet is Kan fibrant and n-connected, the counit En+1(X, ∗)→ X is

a homotopy equivalence.

The last statement appears for instance as part of theorem 8.4 in [May67].

Proposition 5.1.119. Let C be a site with a terminal object and let H := Sh∞(C). Then under the
presentation H ' ([Cop, sSet]proj,loc)◦ every pointed n-connected object in H is presented by a presheaf of
n-reduced simplicial sets, under the canonical inclusion [Cop, sSetn] ↪→ [Cop, sSet].

Proof. Let X ∈ [Cop, sSet] be a simplicial presheaf presenting the given object. Then its objectwise
Kan fibrant replacement Ex∞X is still a presentation, fibrant in the global projective model structure.
Since the terminal object in H is presented by the terminal simplicial presheaf and since by assumption
on C this is representable and hence cofibrant in the projective model structure, the point inclusion is
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presented by a morphism of simplicial presheaves ∗ → Ex∞X, hence by a presheaf of pointed simplicial sets
(∗ → Ex∞X) ∈ [Cop, sSet∗/]. So with observation 5.1.118 we obtain the presheaf of n-reduced simplicial sets

En+1(Ex∞X, ∗) ∈ [Cop, sSetn] ↪→ [Cop, sSet]

and the inclusion En+1(Ex∞X, ∗) → Ex∞X is a global weak equivalence, hence a local weak equivalence,
hence exhibits En+1(Ex∞X, ∗) as another presentation of the object in question. �

Proposition 5.1.120. The category sSet0 of reduced simplicial sets carries a left proper combinatorial
model category structure whose weak equivalences and cofibrations are those in sSetQuillen under the inclusion
sSet0 ↪→ sSet.

Proof. The existence of the model structure itself is prop. V.6.2 in [GoJa99]. That this is left proper
combinatorial follows for instance from prop. A.2.6.13 in [L-Topos], taking the set C0 there to be

C0 := {red(Λk[n]→ ∆[n])}n∈N,0≤k≤n ,

the image under of the horn inclusions (the generating cofibrations in sSetQuillen) under the left adjoint, from
observation 5.1.118, to the inclusion functor. �

Lemma 5.1.121. Under the inclusion sSet0 → sSet a fibration with respect to the model structure from prop.
5.1.120 maps to a fibration in sSetQuillen precisely if it has the right lifting property against the morphism
(∗ → S1) := red(∆[0]→ ∆[1]).

In particular it maps fibrant objects to fibrant objects.

The first statement appears as lemma 6.6. in [GoJa99]. The second (an immediate consequence) as
corollary 6.8.

Proposition 5.1.122. The adjunction

sSet0

� � i //
oo

E1

sSet
∗/
Quillen

from observation 5.1.7.2 is a Quillen adjunction between the model structure form prop. 5.1.120 and the
co-slice model structure, prop. 5.1.42, of sSetQuillen under the point. This presents the full inclusion

∞Grpd
∗/
≥1 ↪→∞Grpd∗/

of connected pointed ∞-groupoids into all pointed ∞-groupoids.

Proof. It is clear that the inclusion preserves cofibrations and acyclic cofibrations, in fact all weak
equivalences. Since the point is necessarily cofibrant in sSetQuillen, the model structure on the right is by

prop. 5.1.46 indeed a presentation of ∞Grpd∗/.
We claim now that the derived ∞-adjunction of this Quillen adjunction presents a homotopy full and

faithful inclusion whose essential image consists of the connected pointed objects. For homotopy full- and
faithfulness it is sufficient to show that for the derived functors there is a natural weak equivalence

id ' RE1 ◦ Li .

This is the case, because by prop. 5.1.121 the composite derived functors are computed by the composite
ordinary functors precomposed with a fibrant replacement functor P , so that we have a natural morphism

X
'→ PX = E1 ◦ i(PX) ' (RE1) ◦ (Li)(X) .

Hence Li is homotopy full-and faithful and by prop. 5.1.119 its essential image consists of the connected
pointed objects. �
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5.1.8 Groupoids

In any ∞-topos H we may consider groupoids internal to H, in the sense of internal category theory (as
exposed for instance in the introduction of [L-Cat]).

Such a groupoid object G in H is an H-object G0 “of G-objects” together with an H-object G1 “of G-
morphisms” equipped with source and target assigning morphisms s, t : G1 → G0, an identity-assigning
morphism i : G0 → G1 and a composition morphism G1×G0 G1 → G1 that all satisfy the axioms of a groupoid
(unitalness, associativity, existence of inverses) up to coherent homotopy in H. One way to formalize what
it means for these axioms to hold up to coherent homotopy is the following.

One notes that ordinary groupoids, i.e. groupoid objects internal to Set, are characterized by the fact
that their nerves are simplicial objects G• : ∆op → Set in Set such that all groupoidal Segal maps (see def.
5.1.124 below) are isomorphisms. This turns out to be a characterization that makes sense generally internal
to higher categories: a groupoid object in H is an ∞-functor G : ∆op → H such that all groupoidal Segal
morphisms are equivalences in H. This defines an ∞-category Grpd(H) of groupoid objects in H.

Here a subtlety arises that is the source of a lot of interesting structure in higher topos theory: by the
discussion in 3.1 the very objects of H are already to be regarded as “structured ∞-groupoids” themselves.
Indeed, there is a full embedding const : H ↪→ Grpd(H) that forms constant simplicial objects and thus
regards every object X ∈ H as a groupoid object which, even though it has a trivial object of morphisms,
already has a structured∞-groupoid of objects. This embedding is in fact reflective, with the reflector given
by forming the ∞-colimit over a simplicial diagram

H
oo

lim
−→

� �

const
// Grpd(H) .

For G a groupoid object in H, the object lim
−→
G• in H may be thought of as the ∞-groupoid obtained from

“gluing together the object of objects of G along the object of morphisms of G”. This idea that groupoid
objects in an ∞-topos are like structured ∞-groupoids together with gluing information is formalized by
the theorem that groupoid objects in H are equivalent to the effective epimorphisms Y // // X in H,
the intrinsic notion of cover (of X by Y ) in H. The effective epimorphism / cover corresponding to a

groupoid object G is the colimiting cocone G0
// // lim
−→
G• . This state of affairs is a fundamental property

of ∞-toposes, and as such part of the ∞-Giraud axioms prop. 3.1.5.
The following statement refines the third ∞-Giraud axiom, prop. 3.1.5.

Theorem 5.1.123. There is a natural equivalence of ∞-categories

Grpd(H) ' (H∆[1])eff ,

where (H∆[1])eff is the full sub-∞-category of the arrow category H∆[1] of H on the effective epimorphisms,
Definition 5.1.65.

This appears below Corollary 6.2.3.5 in [L-Topos].

5.1.8.1 General abstract We briefly recall the notion of groupoid objects in an∞-topos from [L-Topos]
with a note on how this notion axiomatizes that of ∞-groupoids with geometric structure and equipped with
an atlas (a choice of object of objects) in 5.1.8.1.1. Then we discuss the notion of the ∞-group of bisections
associated to such a choice of atlas in 5.1.8.1.2 and how these arrange to Lie-Rinehart pairs describing ∞-
groupoids with atlases. Finally, by the 1-image factorization every morphism in an∞-topos induces an atlas
on its 1-image ∞-groupoid. This universal construction we identify as a generalization of the traditional
notion of Atiyah groupoids, which we discuss in 5.1.8.1.3.

• 5.1.8.1.1 – Atlases;

• 5.1.8.1.2 – Group of bisections;

• 5.1.8.1.3 – Atiyah groupoids.
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5.1.8.1.1 Atlases On the one hand, every object in an ∞-topos H may be thought of as being an
∞-groupoid equipped with certain structure, notably with geometric or cohesive structure. On the other
hand, traditional notions of geometric groupoids, such as Lie groupoids (discussed in detail in 6.4.4 below),
typically involve (often implicitly) more data: the additional choice of an atlas, def. 5.1.66. An extreme
example is the pair groupoid on some space X, which we discuss as example 5.1.129 below. As just an object
of H every pair groupoid is trivial: it is equivalent to the point; but what traditonal literature really means
(often implicitly) by the pair groupoid is the groupoid-with-atlas X → ∗ with X regarded as an atlas of the
point.

Abstractly, an atlas on an ∞-groupoid in H is just a 1-epimorphism in H. Here we discuss this notion
of ∞-groupoids with atlas. This gives us occasion to put one of the Giraud-Rezk-Lurie axioms, prop. 3.1.5,
into a higher geometric context and to establish some perspetive on ∞-groupoids which is crucial in the
succeeding discussion.

Definition 5.1.124. A groupoid object in an ∞-topos H is a simplicial object

G : ∆op → H

such that all its groupoidal Segal maps are equivalences: for every n ∈ N and every partition [k]∪ [k′]→ [n]
into two subsets with exactly one joint element {∗} = [k] ∩ [k′], the canonical diagram

G[n] //

��

G[k]

��
G[k′] // G[∗]

is an ∞-pullback diagram.
Write

Grpd(H) ⊂ Func(∆op,H)

for the full subcategory of the ∞-category of simplicial objects in H on the groupoid objects.

This is def. 6.1.2.7 of [L-Topos], using prop. 6.1.2.6.

Example 5.1.125. For Y → X any morphism in H, there is a groupoid object Č(Y → X) which in degree
n is the (n+ 1)-fold ∞-fiber product of Y over X with itself

Č(Y → X) : [n] 7→ Y ×
n+1
X

This appears in [L-Topos] as prop. 6.1.2.11. The following statement strengthens the third ∞-Giraud
axiom of prop. 3.1.5.

Theorem 5.1.126. In an ∞-topos H we have

1. Every groupoid object in H is effective: the canonical morphism G0 → lim
−→
G• is an effective epimor-

phism, and G is equivalent to the Čech nerve of this effective epimorphism.

Moreover, this extends to a natural equivalence of ∞-categories

Grpd(H) ' (H∆[1])eff ,

where on the right we have the full sub-∞-category of the arrow category of H on the effective epimor-
phisms.
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2. The ∞-pullback along any morphism preserves ∞-colimits

lim
→i

f∗Pi ' f∗ lim
→i

Pi

��

// lim
→i

Pi

��
Y

f // X

This are two of the Giraud-Rezk-Lurie axioms, prop. 3.1.5, that characterize∞-toposes. (The equivalence
of ∞-categories in the first point follows with the remark below corollary 6.2.3.5 of [L-Topos].)

Remark 5.1.127. If geometric structure is understood (as in a cohesive∞-topos), there is a slight ambiguity
in the word groupoid as usually used: in one sense every object of an∞-topos itself is already a parameterized
∞-groupoid (an ∞-sheaf of ∞-groupoids, def. 3.1.1). However, for instance the literature on Lie groupoid
theory often (and often implicitly) takes a choice of object of objects as part of the data of a Lie groupoid.
For instance the notion of group of bisection of a Lie groupoid X or of its associated Lie algebroid both
require that the inclusion of a manifold of objects is specified, a morphism X0 → X. This choice is genuine
extra structure on X, as it is not in general preserved by equivalences on X. The main technical requirement
on this choice is that it indeed captures “all objects” of the groupoid, up to equivalence. One often says that
the inclusion has to be an atlas of X. In the general abstract terms of ∞-topos theory this means simply
that X0 → X is a 1-epimorphism, remark 5.1.66.

In view of this we interpret theorem 5.1.126: if we follow remark 5.1.66 and call a 1-epimorphism in an
∞-topos an atlas of its codomain parameterized ∞-groupoid, then the groupoid objects of def. 5.1.124 are
really the “parameterized ∞-groupoids equipped with a choice of atlas”. (In traditional geometric groupoid
theory the atlas (the domain object) is usually required to be 0-truncated, and this is often the choice of
interest, also in applications of higher geometry, but in general every 1-epimorphism qualifies as an atlas in
this sense.)

With this understood, the following definitions axiomatize and generalize standard constructions in tra-
ditional geometric groupoid theory. That they indeed reduce to these traditional notions is shown below in
6.4.4.

Example 5.1.128. For G ∈ Grp(H) an ∞-group, 5.1.9, its delooping BG is essentially uniquely pointed,

and this point inclusion ∗ // // BG is a 1-epimorphism (for instance by prop. 5.1.67). Hence this is
the canonical incarnation of the delooping of G as an ∞-groupoid with atlas. In terms of this we may
read theorem 5.1.151 as saying that ∞-groups are equivalent to their delooping ∞-groupoids with canonical
atlases.

Example 5.1.129. By def. 5.1.104 an object X ∈ H is called inhabited if the canonical morphism to the
terminal object is a 1-epimorphism. Therefore for X inhabited the map X // // ∗ may be regarded as an
∞-groupoid with atlas. To see what this means consider its Čech nerve, which is of course of the form(

· · ·
////// X ×X

p1 //
p2

// X

)
∈ H∆op

.

This is a groupoid object whose objects are the points of X, whose morphisms are ordered pairs of points
in X, and where composition is given in the evident way. This is what in the literature is known as the pair
groupoid of X.

Pair(X) :=
(
X // // ∗

)
∈ (H∆1

)eff ' Grpd(H) .

Almost trivial as it may seem, the pair groupoid plays an important role for instance in the theory of
Atiyah groupoids, discussed below in 5.1.8.1.3.

As these examples show, often it is more convenient to work with the atlas than with the groupoid
object that it equivalently corresponds to. The following propositions shows how to compute ∞-limits in
this perspective.
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Proposition 5.1.130. An ∞-limit of a diagram in in (H∆1

)eff is given by the (-1)-truncation projection

of the ∞-limit of the underlying diagram in H∆1

. Hence if A : J → (H∆1

)eff is a diagram with underlying
diagrams X := ∂1 ◦A and Y := ∂2 ◦A in H, then

lim
←−j

Aj '

(
lim
←−j

Xj → im1

(
lim
←−j

Xj
// lim
←−j

Yj

))
.

Proof. One checks the defining universal property by the orthogonal factorization system of prop. 5.1.59.
�

5.1.8.1.2 Group of Bisections We discuss here the description of ∞-groupoids X ∈ H equipped
with atlases X0

// // X in terms of their ∞-groups AutX(X0) of autoequivalences of X0 over X. In the
case that H is the∞-topos of smooth cohesion described below in 6.4 and for the example that X is presented
by a traditional Lie groupoid this is the group which is traditionally known as the group of bisections of
X, this we discuss in 6.4.4.1 below. Since this is a good descriptive term also in the general case, we here
generally speak of AutX(X0) as the ∞-group of bisections.

Due to their special construction, groups of bisections have special properties. In the traditional literature
these are best known after Lie differentiation: again forX a Lie groupoid, the pair (C∞(X0),Lie(AutX(X0)))
consisting of the associative algebra of smooth functions on X0 and the Lie algebra of the group of bisections
is known as the Lie-Rinehart algebra pair associated with the groupoid. It enjoys the special property that
each of the two algebras is equipped with an action of the other algebra in a compatible way. This is an
equivalent way of encoding the Lie algebroid associated with the Lie groupoid X.

Definition 5.1.131. For X• ∈ H∆op

a groupoid object in an∞-topos, def. 5.1.124, with φX : X0
// // X

the corresponding 1-epimorphism by theorem 5.1.126 (the atlas by remark 5.1.127), we say that the group
of bisections BisSect(φX) ∈ Grp(H) of X• (also written BiSectX(X0) if the morphism pX is understood)
is the relative automorphism group, def. 5.1.35, of X0 over X:

BiSectX(X0) := AutH(pX) :=
∏
X

Aut(pX) .

Remark 5.1.132. We discuss how this general abstract notion reduces to that of the group of bisections of
a Lie groupoid as traditionally defined below in prop. 6.4.23.

Definition 5.1.133. The atlas automorphisms AtlasAutX(X0) of the atlas φX : X0
// // X is the

1-image of the morphism pX of def. 5.1.38, hence the factorization of pX as

BiSectX(X0)
p // // AtlasAutX(X0) �

� // Aut(X) .

Proposition 5.1.134. For X• ∈ H∆op

a groupoid object in an∞-topos, def. 5.1.124, with φX : X0
// // X

the corresponding 1-epimorphism by theorem 5.1.126, we have a fiber sequence

ΩφX [X0, X] �
� // BiSectX(X0)

p // // AtlasAutX(X0)

in Grp(H) which exhibits BiSectX(X0) as an ∞-group extension of AtlasAutX(X0) by the automorphism
∞-group of the atlas X0 inside X.
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Proof. Since AtlasAutX(X0) is by definition the 1-image of the morphism p : BiSectX(X0)→ Aut(X)
the statement is equivalent to the diagram

Ω∇[X,X]
� � // BisSectX(X0)

p // // Aut(X)

being a fiber sequence, since, by the pasting law, with the bottom square in the following diagram being an
∞-pullback, the top square is precisely so if the outer rectangle is.

Ω∇[X0, X] //

��

BiSectX(X0)

p
����

∗

��

// AtlasAutX(X0)� _

��
∗ // Aut(X)

That the outer rectangle is an ∞-pullback is the statement of prop. 5.1.41. �

Remark 5.1.135. The sequence of prop. 5.1.134 is actually the sequence of bisection groups induced by
a fiber sequence of ∞-groupoids with atlases: the generalized Atiyah sequence. This we discuss below in
5.1.8.1.3.

Example 5.1.136. For X ∈ H inhabited, the group of bisections of the pair groupoid Pair(X), example
5.1.129, is canonically equivalent to Aut(X):

BiSect(Pair(X)) ' Aut(X) .

Example 5.1.137. For X ∈ H
const
↪→ Grpd(H) the constant groupoid object on X, its group of bisections is

the trivial group
BiSect(constX) ' ∗ .

Proof. By example 5.1.31 the identity morphism on X is the terminal object in the slice ∞-topos H/X .
�

5.1.8.1.3 Atiyah groupoids By the 1-image factorization, def. 5.1.56, every morphism in an ∞-
topos induces an atlas for an ∞-groupoid, in the sense discussed above in 5.1.8.1.1. If the codomain is a
pointed connected object, hence of the form BG for some∞-group G, then we may equivalently think of this
∞-groupoid with atlas as associated to the corresponding G-principal ∞-bundle over the domain, discussed
below in 5.1.11. One finds that this construction generalizes the traditional notion of the Lie groupoid which
Lie integrates the Atiyah Lie algebroid of a smooth principal bundle (this traditional example we discuss in
6.4.4.2 below). Therefore we generally speak of Atiyah ∞-groupoids.

A special case this construction relevant for codomains that are moduli ∞-stacks specifically for differ-
ential cocycles are Courant groupoids which we discuss below in 5.2.17.6.

Note. This section partly refers to definitions and results in the theory of principal ∞-bundles which
we discuss only below in 5.1.11. We nevertheless group the discussion of Atiyah groupoids here since one of
the key aspects of their general definition in ∞-toposes is that they apply much more generally than just to
principal ∞-bundles.
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A fundamental construction in the traditional theory of G-principal bundles P → X is that of the corre-
sponding Atiyah Lie algebroid and that of the Lie groupoid which integrates it, which we will call the Atiyah
groupoid At(P ). In words this is the Lie groupoid whose manifold of objects is X, and whose morphisms
between two points are the G-equivariant maps between the fibers of P over these points. Observing that a
G-equivariant map between two G-torsors over the point is fixed by its image on any one point, this groupoid
is usually written as on the left of

At(P ) → Pair(X)
= =

(P × P )/diagG

��

OO

��
X




X ×X

��

OO

��
X

 .

There is a conceptual simplification to this construction when expressed in terms of the smooth moduli stack
BG of G-principal bundles (in the smooth model for cohesion, discussed below in 6.4): if ∇0 : X → BG is
the map which modulates P → X, then

Proposition 5.1.138. The space of morphisms of At(P ) is naturally identified with the homotopy fiber
product of ∇0 with itself:

(P × P )/diagG ' X ×
BG

X .

Moreover, the canonical atlas of the Atiyah groupoid, given by the canonical inclusion pAt(P ) : X // // At(P ) ,

is equivalently the homotopy-colimiting cocone under the full Čech nerve of the classifying map ∇0:

X ×
BG

X ×
BG

//oo //oo //oo //
X ×

BG
X

//oo // X
pAt(P ) // //

(
lim
−→n

X×
n+1
BG

)
' At(P ) .

This is by direct verification, the details of this example are discussed below in 6.4.4.2. In terms of groups
of bisections the above proposition 5.1.138 becomes:

Proposition 5.1.139. The Atiyah groupoid At(P ) of a smooth G-principal bundle P → X is the Lie
groupoid which is universal with the property that its group of bisections is naturally equivalent to the group
of automorphisms of the modulating map ∇0 of P → X in the slice:

BiSect(At(P )) ' AutH(∇0)
= =

X

pAt(P ) ""

φ
' // X

pAt(P )||
At(P )

v~




X

∇0 !!

φ
' // X

∇0}}
BG

w�


.

In terms of 1-image factorizations we may naturally understand proposition 5.1.138 as saying that (the
atlas of) the Atiyah groupoid provides the essentially unique factorization

∇0 : X
pAt(P ) // // At(P ) �

� // BG

of the modulating map ∇0 of P → X by a 1-epimorphism of stacks followed by a 1-monomorphism, namely
the first relative Postnikov stage of ∇0, in the context of smooth stacks. As for traditional relative Postnikov
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theory in traditional homotopy theory, this characterizes At(P ) uniquely as receiving an epimorphism on
smooth connected components from X (the atlas pAt(P )), while at the same time having a fully faithful em-
bedding into BG. This being fully faithful directly implies that the components of any natural transformation
from ∇0 to itself necessarily factor through this fully faithful inclusion:



X

∇0

��

φ
' // X

∇0

��
BG

�



'



X

∇0

��

p
"" ""

φ
' // X

∇0

��

p
||||

At(P )� _

��
BG

u}


.

This relation translates to a proof of prop. 5.1.139.

This discussion of Atiyah groupoids of traditional G-principal bundles generalizes directly now to bundles
in an ∞-topos.

Definition 5.1.140. Let φ : X → F a morphism in H. We say that its 1-image projection, def. 5.1.56,

X // // im1(φ) ,

regarded as an ∞-groupoid im1(φ) with atlas X by remark 5.1.66, is the Atiyah groupoid At(φ) ∈ Epi1(H)
of φ.

Here for the direct generalization of the traditional notion of Atiyah groupoids we set F = BG the
delooping of some ∞-group. But the definition and many of its uses does not depend on this restriction. An
exception os the following fact, which generalizes a standard theorem about Atiyah groupoids known from
textbooks on differential geometry.

Proposition 5.1.141. For G ∈ Grp(H) an ∞-group, every G-principal ∞-bundle P → X in H, def.
5.1.192, over an inhabited object X, def. 5.1.104, is equivalently the source-fiber of a transitive higher
groupoid G ∈ Grpd(H) with vertex ∞-group G. Here in particular we can set G = At(P ).

Proof. For P → X a G-principal∞-bundle, write g : X → BG for the map that modulates it by theorem
5.1.207. Then the outer rectangle of

P // //

��

∗ ' //

x
����

∗

����
X // //

g

55At(P ) �
� // BG

is an ∞-pullback by that theorem 5.1.207. Also the right sub-square is an ∞-pullback (for any global
point x ∈ X) because by ∞-pullback stability of 1-epimorphisms (prop. 5.1.69, prop. 5.1.61) and 1-
monomorphisms (prop. 5.1.60), the top right morphism is a 1-monomorphism from an inhabited object to
the terminal object, hence is not just a 1-mono but also a 1-epi and hence is an equivalence. Now by the
pasting law for ∞-pullbacks, prop. 5.1.2, also the left sub-square is an ∞-pullback and this exhibits P as
the source fiber of At(P ) over x ∈ X. �
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Proposition 5.1.142. For φ : X → F a morphism, there is a canonical equivalence

BiSect(At(φ)) ' AutH(φ)

between the ∞-group of bisections, def. 5.1.131, of the higher Atiyah groupoid of φ, def. 5.1.140, and the
H-valued automorphism ∞-group of φ

Moreover, the ∞-group of bisections of the higher Atiyah ∞-groupoid sits in a homotopy fiber sequence
of ∞-groups of the form

Ωφ[X,F] // BiSect(At(φ)) //

'

Aut(X)

AutH(φ)

,

where on the right we have the canonical forgetful map.

Proof. This is the restriction of the statement of prop. 5.1.73 to those endomorphisms that are equiva-
lences. �

Definition 5.1.143 (Atiyah sequence). For φ : X → BG a cocycle, write

At(φ)
p // Pair(X)

for the morphism of groupoid objects to the pair groupoid of X, example 5.1.129, given by the canonical
map of atlases

X
id //

��

X

��
im1(φ) // ∗

.

We say that the ∞-fiber sequence of this morphism over X

ad(φ) // At(φ) // Pair(X) ,

is the Atiyah sequence of φ, hence the sequence given by the ∞-pullback diagram

ad(φ) //

��

X

��
At(φ)

p // Pair(X)

.

Proposition 5.1.144. Given φ : X → BG, the induced sequence of groups of bisections, def. 5.1.131, is
the sequence of prop. 5.1.134.

Proof. By prop. 5.1.136 and prop. 5.1.142 the morphism of groupoid objects At(φ)→ Pair(X) induces
the morphism of groups of bisections Aut(φ)→ Aut(X). Therefore it remains to show that ad(φ)→ At(φ)
is as claimed.

By prop. 5.1.130 we obtain ad(φ) as the 1-image factorization of the limit in H∆1

over

X
id //

����

X

����

oo X

id
����

im1(φ) // ∗ oo X

,
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hence the 1-image factorization of the diagonal X // // X × im1(φ) . Moreover by prop. 5.1.142 the group

of bisections of this image factorization is equivalently that of the morphism itself. Now a bisection of the
diagonal, hence a diagram

X
' //

%%

X

yy
X × im1(φ)

s{

is equivalently a pair of a diagrams of the form

X
f
' //

id   

X

id~~
X

x�
,

X
f
' //

##

X

||
im1(φ)

u}

that share the top horizontal morphism, as indicated. By example 5.1.137 the∞-groupoid of diagrams as on
the left is contractible, hence up to essentially unique equivalence we have f = id. This reduces the diagram
on the right to an automorphism of φ, as claimed. �

The Atiyah groupoid acts on sections of the corresponding bundle and its associated bundles:

Definition 5.1.145. For G ∈ Grp(H) an ∞-group, for P → X a G-principal ∞-bundle modulated by a
map g : X → BG, and for ρ : V//G→ BG an action of G on some V ∈ H, write

(P ×G V )//At(P )→ At(P )

for the ∞-pullback of ρ along the defining 1-monomorphism from the Atiyah groupoid of P . Then by the
pasting law, prop. 5.1.2, and by the characterization of the universal ρ-associated bundle, prop. 5.1.246, we
have an ∞-pullback square as on the left of the following diagram:

P ×G V //

��

(P ×G V )//At(P ) //

��

V//G

ρ

��
X // //

g

55At(P )
� � // BG

.

This exhibits (P ×GV )//At(P ) as a groupoid action of At(P ) on the associated V -fiber bundle P ×GV → X.
This we call the canonical Atiyah-groupoid action on sections.

5.1.9 Groups

Every ∞-topos H comes with a notion of ∞-group objects that generalizes the ordinary notion of group
objects in a topos as well as that of grouplike A∞-spaces in Top ' ∞Grpd [Sta63b]. Operations of looping
and delooping identify ∞-group objects with pointed connected objects. If moreover H is cohesive then
it follows that every connected object is canonically pointed, and hence every connected object uniquely
corresponds to an ∞-group object.

This section to a large extent collects and reviews general facts about ∞-group objects in ∞-toposes
from [L-Topos] and [L-Alg]. We add some observations that we need later on.
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5.1.9.1 General abstract

Definition 5.1.146. Write

• H∗/ for the ∞-category of pointed objects in H;

• H≥1 for for the full sub-∞-category of H on the connected objects;

• H
∗/
≥1 for the full sub-∞-category of the pointed and connected objects.

Definition 5.1.147. For f : Y → Z any morphism in H and z : ∗ → Z a point, the ∞-fiber or homotopy
fiber of f over this point is the ∞-pullback X := ∗ ×Z Y

X //

��

∗

��
Y

f // Z

.

Definition 5.1.148. Write
Ω : H∗/ → H

for the ∞-functor that sends a pointed object ∗ → X to its loop space object : the ∞-pullback

ΩX //

��

∗

��
∗ // X

.

Remark 5.1.149. Suppose that also Y is pointed and f is a morphism of pointed objects. Then the∞-fiber
of an ∞-fiber is the loop object of the base. This means that we have a diagram

ΩzZ

��

// X //

��

∗

��
∗ // Y

f // Z

.

where the outer rectangle is an∞-pullback if the left square is an∞-pullback. This follows from the pasting
law prop. 5.1.2.

Definition 5.1.150. An ∞-group in H is an A∞-algebra G in H such that π0(G) is a group object. Write
Grp(H) for the ∞-category of ∞-groups in H.

This is def. 5.1.3.2 in [L-Alg], together with remark 5.1.3.3.

Theorem 5.1.151. Every loop space object canonically has the structure of an ∞-group, and this construc-
tion extends to an ∞-functor

Ω : H∗/ → Grp(H) .

This constitutes an equivalence of ∞-categories

(Ω a B) : Grp(H)
oo Ω

B

' // H
∗/
≥1

of ∞-groups with connected pointed objects in H.

This is lemma 7.2.2.1 in [L-Topos]. (See also theorem 5.1.3.6 of [L-Alg] where this is the equivalence
denoted φ0 in the proof.)
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Definition 5.1.152. We call the inverse B : Grp(H) → H
∗/
≥1 the delooping functor of H. By convenient

abuse of notation we write B also for the composite B : ∞Grpd(H) → H
∗/
≥1 → H with the functor that

forgets the basepoint and the connectedness.

Example 5.1.153. Given a map from the point x : ∗ → X, then its 1-image, def. 5.1.56, is the delooping,
def. 5.1.152, of its loop space object, def. 5.1.148

x : ∗ // // BΩxX
� � // X .

Remark 5.1.154. While by prop. 4.1.10 every connected object in a cohesive ∞-topos has a unique point,
nevertheless the homotopy-type of the full hom-∞-groupoid H∗/(BG,BH) of pointed objects in general
differs from the hom ∞-groupoid H(BG,BH) of the underlying unpointed objects.

For instance let H := ∞Grpd and let G be an ordinary group, regarded as a group object in ∞Grpd.
Then H∗/(BG,BG) ' Aut(G) is the ordinary automorphism group of G, but H(BG,BG) = AUT(G) is the
automorphism 2-group, example 1.2.87.

The following is a key class of examples.

Definition 5.1.155. Let V ∈ H be a κ-compact object, for some regular cardinal κ. By the characterization
of prop. 3.1.6, there exists an ∞-pullback square in H of the form

V //

��

Ôbjκ

��
∗ `V // Objκ

Write
BAut(V ) := im(` V )

for the 1-image, def. 5.1.64, of the classifying morphism ` V of V . By definition this comes with an effective
epimorphism

∗ // // BAut(V ) �
� // Objκ ,

and hence, by Proposition 5.1.158, it is the delooping of an ∞-group

Aut(V ) ∈ Grp(H)

as indicated. According to example 5.1.153, we call this the internal automorphism ∞-group of V .

In 5.1.9.2.2 we consider presentations of internal automorphism∞-groups, in example 5.1.275 we consider
the canonical action of Aut(V ) on V .

The more deloopings an ∞-group admits, the “more abelian” it is:

Definition 5.1.156. A braided ∞-group in H is an ∞-group G ∈ Grp(H) equipped with the following
equivalent additional structures:

1. a lift of the groupal A∞ ' E1-algebra structure to an E2-algebra structure;

2. the structure of an ∞-group on the delooping BG;

3. a choice of double delooping B2G.

Definition 5.1.157. An abelian ∞-group in H is an ∞-group G ∈ Grp(H) equipped with the following
equivalent additional structures:
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1. a lift of the groupal A∞ ' E1-algebra structure to an E∞-algebra structure;

2. coinductively: a choice of abelian ∞-group structure on its delooping BG.

Proposition 5.1.158. ∞-groups G in H are equivalently those groupoid objects, def. 5.1.124, G in H for
which G0 ' ∗.

This is the statement of the compound equivalence φ3φ2φ1 in the proof of theorem 5.1.3.6 in [L-Alg].

Remark 5.1.159. This means that for G an∞-group object the Čech nerve extension of its delooping fiber
sequence G→ ∗ → BG is the simplicial object

· · ·
// ////// G×G

////// G
//// ∗ // // BG

that exhibits G as a groupoid object over ∗. In particular it means that for G an ∞-group, the essentially
unique morphism ∗ → BG is an effective epimorphism.

The following simple lemma will have some important applications. Let H be an∞-topos and let G ∈ H
be an object equipped with ∞-group structure, def. 5.1.150 (or in fact just with group structure in the
homotopy category of H). Write

G×G
(id,(−)−1) //

(−)·(−)−1

44G×G · // G

for the morphism in H given by inversion in one argument following by the group product operation.

Lemma 5.1.160. For φ : D → G any morphism in the ∞-topos H, there is a homotopy pullback diagram
in H of the form

G×D

��

// D

φ

��
G×G

(−)·(−)−1

// G

,

where the left vertical morphism is in components given by (g, d) 7→ (g, g · φ(d)). In particular for φ = e :
∗ → G the canonical point inclusion, then the left vertical morphism is the diagonal.

Proof. We check this, below, for the case that H is 1-localic (def. 3.1.3), by considering a presentation
by simplicial presheaves. This includes in particular the case H =∞Grpd. From this the statement follows
generally by choosing any defining lex reflection according to def. 3.1.1,

H
←−
↪→ [Cop,∞Grpd]

and using that both embedding and reflection preserves finite ∞-limits.
Now for the special case that H has a 1-site C of definition (notably C = ∗ for H =∞Grpd). Then prop.

5.1.170 says that the ∞-group object G is represented by a presheaf of simplicial groups (which we denote
by the same symbol) G ∈ [Cop, sGrp]→ [Cop, sSet]. In terms of this the morphism (−) · (−)−1 : G×G→ G
is, objectwise over U ∈ C, presented by the simplicial morphism −U : G(U) × G(U) → G(U) that sends
k-cells (a, b) : ∆[k]→ G(U)×G(U) to a · b−1, using the degreewise group structure.

We observe first that this morphism is objectwise a Kan fibration and hence a fibration in [Sop, sSet]proj.
To see this, let

Λ[k]i

j

��

(ha,hb)// G(U)×G(U)

−
��

∆[k]
σ // G(U)
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be a lifting problem. Since G(U), being the simplicial set underlying a simplicial group, is a Kan complex,
there is a filler b : ∆[k]→ G(U) of the horn hb. Define then a k-cell

a := σ · b .

This is a filler of ha, since the face maps are group homomorphisms:

δla = δl(σ · b)
= δl(σ) · δl(b)
= δl(σ) · (hb)l
= (ha)l

.

So we have a filler

Λ[k]i

j

��

(ha,hb)// G(U)×G(U)

−
��

∆[k]
σ //

(a,b)
88

G(U)

.

and hence (−) · (−)−1 : G×G→ G is represented by a fibration of simplicial presheaves.
Observe then that for any presheaf presentation of φ : D → G (which again we denote by the same

symbols) there is a pullback diagram of simplicial presheaves

G //

��

D

φ

��
G×G − // G

,

where the left vertical morphism is degreewise given by

(g, d) 7→ (g, g · φ(d))

Since, by the above, the bottom morphism is a fibration, this presents a homotopy pullback of simplicial
presheaves, hence by prop. 5.1.9 also a homotopy pullback in H. �

5.1.9.2 Presentations We discuss presentations of the notion of∞-groups, 5.1.9.1, by simplicial groups
in a category with weak equivalences.

• 5.1.9.2.2 – Presentation of ∞-groups by presheaves of simplicial groups;

• 5.1.9.2.2 – Presentation of automorphism groups

5.1.9.2.1 Presentation of ∞-groups by presheaves of simplicial groups

Definition 5.1.161. One writes W for the composite functor from simplicial groups to simplicial sets given
by

W : [∆op,Grpd]
[∆op,B]// [∆op,Grpd]

[∆op,N ]// [∆op, sSet]
T // sSet ,

where

• [∆op,B] : [∆op,Grp] → [∆op,Grpd] is the functor from simplicial groups to simplicial groupoids that
sends degreewise a group to the corresponding one-object groupoid;
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• T : [∆op, sSet]→ sSet is the total simplicial set functor, def. 5.1.19.

This simplicial delooping W was originally introduced in components in [EM53], now a classical con-
struction. The above formulation is due to [Dus75], see lemma 15 in [St11].

Remark 5.1.162. This functor takes values in reduced simplicial sets sSet≥1 ↪→ sSet, those with precisely
one vertex.

Remark 5.1.163. For G a simplicial group, the simplicial set WG is, by corollary 5.1.23, the homotopy
colimit over a simplicial diagram in simplicial sets. Below in 5.1.11.4 we see that this simplicial diagram is
that presenting the groupoid object ∗//G which is the action groupoid of G acting trivially on the point.

Proposition 5.1.164. The category sGrpd of simplicial groups carries a cofibrantly generated model struc-
ture for which the fibrations and the weak equivalences are those of sSetQuillen under the forgetful functor
sGrpd→ sSet.

Proof. This is theorem 2.3 in [GoJa99]. Since model structure is therefore transferred along the forgetful
functor, it inherits generating (acyclic) cofibrations from those of sSetQuillen. �

Theorem 5.1.165. The functor W is the right adjoint of a Quillen equivalence

(L aW ) : sGrp
W

//
oo L

sSet≥1 ,

with respect to the model structures of prop. 5.1.164 and prop. 5.1.120. In particular

• the adjunction unit is a weak equivalence

Y
'→WLY

for every Y ∈ sSet0 ↪→ sSetQuillen

• WLY is always a Kan complex.

This is discussed for instance in chapter V of [GoJa99]. A new proof is given in [St11].

Definition 5.1.166. For G a simplicial group, write

WG→WG

for the décalage, def. 5.1.80, on WG.

This characterization by décalage of the object going by the classical name WG is made fairly explicit
on p. 85 of [Dus75]. The fully explicit statement is in [RoSt12].

Proposition 5.1.167. The morphism WG → WG is a Kan fibration resolution of the point inclusion
∗ →WG.

Proof. This follows directly from the characterization of WG→WG by décalage. �
Pieces of this statement appear in [May67]: lemma 18.2 there gives the fibration property, prop. 21.5 the

contractibility of WG.

Corollary 5.1.168. For G a simplicial group, the sequence of simplicial sets

G // WG // // WG

is a presentation in sSetQuillen by a pullback of a Kan fibration of the looping fiber sequence, theorem. 5.1.151,

G→ ∗ → BG

in ∞Grpd.
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Proof. One finds that G is the 1-categorical fiber of WG → WG. The statement then follows using
prop. 5.1.167 in prop. 5.1.4. �
The explicit statement that the sequence G→WG→WG is a model for the looping fiber sequence appears

on p. 239 of [Por]. The universality of WG→WG for G-principal simplicial bundles is the topic of section
21 in [May67], where however it is not made explicit that the “twisted cartesian products” considered there
are precisely the models for the pullbacks as above. This is made explicit for instance on page 148 of [Por].

Corollary 5.1.169. The Quillen equivalence (L a W ) from theorem 5.1.165 is a presentation of the loop-
ing/delooping equivalence, theorem 5.1.151.

We now lift all these statements from simplicial sets to simplicial presheaves.

Proposition 5.1.170. If the cohesive ∞-topos H has site of definition C with a terminal object, then

• every ∞-group object has a presentation by a presheaf of simplicial groups

G ∈ [Cop, sGrp]
U→ [Cop, sSet]

which is fibrant in [Cop, sSet]proj;

• the corresponding delooping object is presented by the presheaf

WG ∈ [Cop, sSet0] ↪→ [Cop, sSet]

which is given over each U ∈ C by W (G(U)) .

Proof. By theorem 5.1.151 every ∞-group is the loop space object of a pointed connected object. By
prop. 5.1.119 every such is presented by a presheaf X of reduced simplicial sets. By the simplicial loop-
ing/delooping Quillen equivalence, theorem 5.1.165, the presheaf

WLX ∈ [Cop, sSet]proj

is weakly equivalent to the simplicial presheaf X. From this the statement follows with corollary 5.1.168,
combined with prop. 5.1.9, which together say that the presheaf LX of simplicial groups presents the given
∞-group. �

Remark 5.1.171. We may read this as saying that every ∞-group may be strictified.

Example 5.1.172. Every 2-group in H (1-truncated group object) has a presentation by a crossed module,
def. 1.2.81, in simplicial presheaves.

5.1.9.2.2 Presentation of automorphism groups

Remark 5.1.173. Let V be a κ-compact object. By example 5.1.153 the internal automorphism group
Aut(V ) of def. 5.1.155 is ΩV (Objκ). By the nature of the subobject classifier Objκ, this means that over
an ∞-site of definition the value of Aut(V ) over an object U of the site is the ∞-groupoid

Aut(V ) : U 7→ H/U (U × V,U × V )∼

of auto-equivalences of U × V over U .

5.1.10 Cohomology

There is an intrinsic notion of cohomology in every ∞-topos. It is the joint generalization of the definition
of cohomology in Top in terms of maps into classifying spaces and of sheaf cohomology over any site of
definition of the ∞-topos.

For the case of abelian coefficients, as discussed in 3.1.6, this perspective of (sheaf) cohomology as the
cohomology intrinsic to an ∞-topos is essentially made explicit already in [Br73]. In more modern language
analogous discussion is in section 7.2.2 of [L-Topos].

Here we review central concepts and discuss further aspects that will be needed later on.
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5.1.10.1 General abstract

Definition 5.1.174. For X,A ∈ H two objects, we say that

H(X,A) := π0H(X,A)

is the cohomology set of X with coefficients in A. If A = G is an ∞-group we write

H1(X,G) := π0H(X,BG)

for cohomology with coefficients in its delooping. Generally, if K ∈ H has a p-fold delooping for some p ∈ N,
we write

Hp(X,K) := π0H(X,BpK) .

In the context of cohomology on X wth coefficients in A we we say that

• the hom-space H(X,A) is the cocycle ∞-groupoid ;

• a morphism g : X → A is a cocycle;

• a 2-morphism : g ⇒ h is a coboundary between cocycles.

• a morphism c : A→ B represents the characteristic class

[c] : H(−, A)→ H(−, B) .

Remark 5.1.175. Traditionally attention is often concentrated on the case that K ∈ τ0Grp(H) is an
abelian 0-truncated group object and A := BpK is the Eilenber-MacLane object with K in degree p.
The corresponding cohomology Hp(−,K) ' π0H(−,BpK) is sometimes called ordinary cohomology with
coefficients in K, to distinguish it from the generalizations obtained by allowing more general K, which
traditionally go by the term hypercohomology (if K is not necessarily concentrated in a single degree but is
still an abelian ∞-group, def. 5.1.157) and more generally nobabelian cohomology (if A is allowed to be any
homotopy-type).

Below in 5.1.11 we discuss the notion of an∞-group G acting on a space X and the corresponding (homotopy)
quotient X//G. Then we say

Definition 5.1.176. The cohomology of X//G is the G-equivariant cohomology of X with respect to the
given action. .

Remark 5.1.177. There is also a notion of cohomology in the petit ∞-topos of X ∈ H, the slice of H over
X

X := H/X .

This is canonically equipped with the étale geometric morphism, prop. 5.1.28

(X! a X∗ a X∗) : H/X

X! //
oo X∗

X∗

// H ,

where X! simply forgets the morphism to X and where X∗ = X×(−) forms the product with X. Accordingly
X∗(∗H) ' ∗X =: X and X!(∗X ) = X ∈ H. Therefore cohomology over X with coefficients of the form X∗A
is equivalently the cohomology in H of X with coefficients in A:

X (X,X∗A) ' H(X,A) .

For a general coeffcient object A ∈ X the A-cohomology over X in X is a twisted cohomology of X in H,
discussed below in 5.1.13.
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Typically one thinks of a morphism A→ B in H as presenting a characteristic class of A if B is “simpler”
than A, notably if B is an Eilenberg-MacLane object B = BnK for K a 0-truncated abelian group in H. In
this case the characteristic class may be regarded as being in the degree-n K-cohomology of A

[c] ∈ Hn(A,K) .

Definition 5.1.178. For every morphism c : BG→ BH ∈ H define the long fiber sequence to the left

· · · → ΩG→ ΩH → F → G→ H → BF → BG
c→ BH

to be given by the consecutive pasting diagrams of ∞-pullbacks

F

��

// G //

��

∗

��
∗ // H //

��

BF //

��

∗

��
∗ // BG

c // BH

.

Proposition 5.1.179. This is well-defined, in that the objects in the fiber sequence are indeed as indicated.

Proof. Repeatedly apply the pasting law 5.1.2 and definition 5.1.148. �

Proposition 5.1.180. 1. In the long fiber sequence to the left of c : BG → BH after n iterations all
terms are equivalent to the point if H and G are n-truncated.

2. For every object X ∈ H we have a long exact sequence of pointed cohomology sets

· · · → H0(X,G)→ H0(X,H)→ H1(X,F )→ H1(X,G)→ H1(X,H) .

Proof. The first statement follows from the observation that a loop space object ΩxA is a fiber of the
free loop space object LA and that this may equivalently be computed by the ∞-powering AS

1

, where
S1 ∈ Top ' ∞Grpd is the circle.

The second statement follows by observing that the ∞-hom-functor H(X,−) preserves all ∞-limits, so
that we have ∞-pullbacks

H(X,F ) //

��

∗

��
H(X,G) // H(X,H)

etc. in ∞Grpd at each stage of the fiber sequence. The statement then follows with the familiar long exact
sequence for homotopy groups in Top ' ∞Grpd. �

Remark 5.1.181. To every cocycle g : X → BG is canonically associated its homotopy fiber P → X, the
∞-pullback

P //

��

∗

��
X

g // BG .

.

We discuss below in 5.1.11 that such P canonically has the structure of a G-principal ∞-bundle and that
BG is the fine moduli space – the moduli ∞-stack – for G-principal ∞-bundles.
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The following higher topos-theoretic version of the classical Mayer-Vietoris fiber sequences [EckHi64]
further generalizes the homotopy-theoretic perspective highlighted in [DyRo80].

Proposition 5.1.182 (Mayer-Vietoris fiber sequence). Let H be an ∞-topos and let G be an object equipped
with ∞-group structure, def. 5.1.150 (or in fact just with group structure in the homotopy category of H).
Then for any two morphisms f : X → G and g : Y → G the ∞-fiber product X ×G Y is equivalently the
∞-pullback

X ×G Y //

��

∗

��
X × Y

f ·g−1

// G

,

where the bottom morphism is the composite

f · g−1 : X × Y
(f,g) // B ×B

(id,(−)−1) //

(−)·(−)−1

44G×G · // G

of the pair (f, g) with the morphism that inverts the second factor and the morphism that exhibits the group
product on G. Hence we have a long Mayer-Vietoris-type homotopy fiber sequence, def. 5.1.178, that starts
out as

· · · // ΩG // X ×G Y // X × Y
f ·g−1

// G .

Proof. By (for instance) the factorization lemma, lemma 5.1.5, the homotopy fiber product of f with g
is equivalently given by the following homotopy pullback

X ×G Y //

��

G

∆

��
X × Y

(f,g) // G×G

,

where the right morphism is the diagonal. By lemma 5.1.160 this is itself the homotopy fiber of the operation
(−) · (−)−1 of inversion following by multiplication, so that we have a pasting of two homotopy pullback
squares

X ×G Y //

��

G

∆

��

// ∗

e

��
X × Y

(f,g) //

f ·g−1

44G×G
(−)·(−)−1

// G

,

Now the statement follows by the pasting law, prop. 5.1.2. �

5.1.10.2 Presentations We discuss explicit presentations of cocycles, cohomology classes and fiber se-
quences in an ∞-topos.

• 5.1.10.2.1 – Cocycle ∞-Groupoids and cohomology classes;

• 5.1.10.2.2 – Fiber sequences.
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5.1.10.2.1 Cocycle ∞-groupoids and cohomology classes We discuss a useful presentation of
cocycle ∞-groupoids and of cohomology classes by a construction that exists when the ambient ∞-topos is
presented by a category with weak equivalences that is equipped with the structure of a category of fibrant
objects [Br73].

Definition 5.1.183 (Brown). A category of fibrant objects is a category equipped with two distinguished
classes of morphisms, called fibrations and weak equivalences, such that

1. the category has a terminal object ∗ and finite products;

2. fibrations and weak equivalences form subcategories that contain all isomorphisms; weak equivalences
moreover satisfy the 2-out-of-3 property;

3. for any object B the map B → ∗ is a fibration;

4. the classes of fibrations and of acyclic fibrations (the fibration that are also weak equivalences) are

stable under pullback. That means: given a diagram A
g−→ C

f←− B where f is a (acyclic) fibration then
the pullback A×C B exists and the morphism A×C B → A is again a (acyclic) fibration.

5. For every object B there is a path object BI , i.e. a factorization of the diagonal ∆: B → B ×B into

B
' // BI // // B ×B

such that left map is weak equivalence and the right map a fibration. We assume here moreover for
simplicity that this BI can be chosen functorial in B.

Given a category of fibrant objects, we will denote the class of weak equivalence by W and the class of
fibrations by F .

Examples 5.1.184. We have the following well known examples of categories of fibrant objects.

• For any model category (with functorial factorization) the full subcategory of fibrant objects is a
category of fibrant objects.

• The category of stalkwise Kan simplicial presheaves on any site with enough points. In this case the
fibrations are the stalkwise fibrations and the weak equivalences are the stalkwise weak equivalences.

Remark 5.1.185. Notice that (over a non-trivial site) the second example above is not a special case of
the first: while there are model structures on categories of simplicial presheaves whose weak equivalences
are the stalkwise weak equivalences, their fibrations (even between fibrant objects) are much more restricted
than just being stalkwise fibrations.

Theorem 5.1.186. Let the ∞-category H be presented by a category with weak equivalences (C,W ) that
carries a compatible structure of a category of fibrant objects, def. 5.1.183.

Then for X,A and two objects in C, presenting two objects in H, the ∞-groupoid H(X,A) is presented
in sSetQuillen by the nerve of the category whose

• objects are spans (cocycles / ∞-anafunctors)

X oooo ' X̂
g // A

in C;

• morphisms f : (X̂, g)→ (X̂ ′, g′) are given by morphisms f : X̂ → X̂ ′ in C such that the diagram

X̂
'
wwww

f

��

g

&&
X A

X̂ ′
'
gggg

g′

88

commutes.

387



This appears for instance as prop. 3.23 in [Ci10]. Another proof is in [NSS12b].

Example 5.1.187. By the discussion in 3.1.3, if H has a 1-site of definition C with enough 1-topos points,
then it is presented by the category Sh(C)∆op

of simplicial sheaves on C with weak equivalences the stalkwise
weak equivalences of simplicial sets, and equivalently by its full subcategory of stalkwise Kan fibrant simplicial
sheaves. With the local fibrations, def. 3.1.17 as fibrations, this is a category of fibrant objects. So in this
case the cocycle ∞-groupoid H(X,A) is presented by the Kan fibrant replacement of the category whose
objects are spans

X oooo ' X̂
g // A

for X̂ → X a stalkwise acyclic Kan fibration, and whose morphisms are as above.

5.1.10.2.2 Fiber sequences We discuss explicit presentations of certain fiber sequences, def. 5.1.178,
in an ∞-topos.

Proposition 5.1.188. Let A → Ĝ → G be a central extension of (ordinary) groups. Then there is a long
fiber sequence in ∞Grpd of the form

A // Ĝ // G
Ωc // BA // BĜ // BG

c // B2A ,

where the connecting homomorphism is presented by the correspondence of crossed modules, def. 1.2.81,
given by

(1→ G) oo
'

(A→ Ĝ) // (A→ 1) .

Here in the middle appears the crossed module defined by the central extension, def. 1.2.88.

5.1.11 Principal bundles

For G an ∞-group object in a cohesive ∞-topos H and BG its delooping in H, as discussed in 5.1.9, the
cohomology over an object X with coefficients in BG, as in 5.1.10, classifies maps P → X that are equipped
with a G-action that is principal. We discuss here these G-principal ∞-bundles.

5.1.11.1 Introduction and survey We give an exposition of some central ideas and phenomena of
higher principal bundles, discussed in detail below.

This section draws from [NSS12a].

Let G be a topological group, or Lie group or some similar such object. The traditional definition of
G-principal bundle is the following: there is a map

P → X := P/G

which is the quotient projection induced by a free action

ρ : P ×G→ P

of G on a space (or manifold, depending on context) P , such that there is a cover U → X over which the
quotient projection is isomorphic to the trivial one U ×G→ U .

In higher geometry, if G is a topological or smooth ∞-group, the quotient projection must be replaced
by the ∞-quotient (homotopy quotient) projection

P → X := P//G

for the action of G on a topological or smooth ∞-groupoid (or ∞-stack) P . It is a remarkable fact that this
single condition on the map P → X already implies that G acts freely on P and that P → X is locally
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trivial, when the latter notions are understood in the context of higher geometry. We will therefore define a
G-principal ∞-bundle to be such a map P → X.

As motivation for this, notice that if a Lie group G acts properly, but not freely, then the quotient
P → X := P/G differs from the homotopy quotient. Specifically, if precisely the subgroup Gstab ↪→ G acts
trivially, then the homotopy quotient is instead the quotient stack X//Gstab (sometimes written [X//Gstab],
which is an orbifold if Gstab is finite). The ordinary quotient coincides with the homotopy quotient if and
only if the stabilizer subgroup Gstab is trivial, and hence if and only if the action of G is free.

Conversely this means that in the context of higher geometry a non-free action may also be principal:
with respect not to a base space, but with respect to a base groupoid/stack. In the example just discussed,
we have that the projection P → X//Gstab exhibits P as a G-principal bundle over the action groupoid
P//G ' X//Gstab. For instance if P = V is a vector space equipped with a G-representation, then V → V//G
is a G-principal bundle over a groupoid/stack. In other words, the traditional requirement of freeness in a
principal action is not so much a characterization of principality as such, as rather a condition that ensures
that the base of a principal action is a 0-truncated object in higher geometry.

Beyond this specific class of 0-truncated examples, this means that we have the following noteworthy
general statement: in higher geometry every ∞-action is principal with respect to some base, namely with
respect to its ∞-quotient. In this sense the notion of principal bundles is (even) more fundamental to
higher geometry than it is to ordinary geometry. Also, several constructions in ordinary geometry that are
traditionally thought of as conceptually different from the notion of principality turn out to be special cases
of principality in higher geometry. For instance a central extension of groups A → Ĝ → G turns out to
be equivalently a higher principal bundle, namely a BA-principal 2-bundle of moduli stacks BĜ → BG.
Following this through, one finds that the topics of principal ∞-bundles, of ∞-group extensions (5.1.18), of
∞-representations (5.1.14), and of ∞-group cohomology are all different aspects of just one single concept
in higher geometry.

More is true: in the context of an ∞-topos every ∞-quotient projection of an ∞-group action is locally
trivial, with respect to the canonical intrinsic notion of cover, hence of locality. Therefore also the condition
of local triviality in the classical definition of principality becomes automatic. This is a direct consequence of
the third ∞-Giraud axiom, prop. 3.1.5 that “all ∞-quotients are effective”. This means that the projection
map P → P//G is always a cover (an effective epimorphism) and so, since every G-principal ∞-bundle
trivializes over itself, it exhibits a local trivialization of itself; even without explicitly requiring it to be
locally trivial.

As before, this means that the local triviality clause appearing in the traditional definition of principal
bundles is not so much a characteristic of principality as such, as rather a condition that ensures that a
given quotient taken in a category of geometric spaces coincides with the “correct” quotient obtained when
regarding the situation in the ambient ∞-topos.

Another direct consequence of the ∞-Giraud axioms is the equivalence of the definition of principal
bundles as quotient maps, which we discussed so far, with the other main definition of principality: the
condition that the “shear map” (id, ρ) : P × G → P ×X P is an equivalence. It is immediate to verify in
traditional 1-categorical contexts that this is equivalent to the action being properly free and exhibiting X as
its quotient (we discuss this in detail in [NSS12c]). Simple as this is, one may observe, in view of the above
discussion, that the shear map being an equivalence is much more fundamental even: notice that P × G
is the first stage of the action groupoid object P//G, and that P ×X P is the first stage of the Čech nerve
groupoid object Č(P → X) of the corresponding quotient map. Accordingly, the shear map equivalence is
the first stage in the equivalence of groupoid objects in the ∞-topos

P//G ' Č(P → X) .

This equivalence is just the explicit statement of the fact mentioned before: the groupoid object P//G is
effective – as is any groupoid object in an ∞-topos – and, equivalently, its principal ∞-bundle map P → X
is an effective epimorphism.

Fairly directly from this fact, finally, springs the classification theorem of principal ∞-bundles. For we
have a canonical morphism of groupoid objects P//G→ ∗//G induced by the terminal map P → ∗. By the
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∞-Giraud theorem the ∞-colimit over this sequence of morphisms of groupoid objects is a G-cocycle on X
(Definition 5.1.174) canonically induced by P :

lim−→
(
Č(P → X)• ' (P//G)• → (∗//G)•

)
= (X → BG) ∈ H(X,BG) .

Conversely, from any such G-cocycle one finds that one obtains a G-principal ∞-bundle simply by forming
its∞-fiber: the∞-pullback of the point inclusion ∗ → BG. We show in [NSS12b] that in presentations of the
∞-topos theory by 1-categorical tools, the computation of this homotopy fiber is presented by the ordinary
pullback of a big resolution of the point, which turns out to be nothing but the universal G-principal bundle.
This appearance of the universal ∞-bundle as just a resolution of the point inclusion may be understood in
light of the above discussion as follows. The classical characterization of the universal G-principal bundle
EG is as a space that is homotopy equivalent to the point and equipped with a free G-action. But by the
above, freeness of the action is an artefact of 0-truncation and not a characteristic of principality in higher
geometry. Accordingly, in higher geometry the universal G-principal ∞-bundle for any ∞-group G may be
taken to be the point, equipped with the trivial (maximally non-free) G-action. As such, it is a bundle not
over the classifying space BG of G, but over the full moduli ∞-stack BG.

This way we have natural assignments of G-principal∞-bundles to cocycles in G-nonabelian cohomology,
and vice versa. We find (see Theorem 5.1.207 below) that precisely the second ∞-Giraud axiom of prop.
3.1.5, namely the fact that in an ∞-topos ∞-colimits are preserved by ∞-pullback, implies that these
constructions constitute an equivalence of ∞-groupoids, hence that G-principal ∞-bundles are classified by
G-cohomology.

The following table summarizes the relation between ∞-bundle theory and the ∞-Giraud axioms as
indicated above, and as proven in the following section.

∞-Giraud axioms principal ∞-bundle theory

quotients are effective
every ∞-quotient P → X := P//G

is principal

colimits are preserved by pullback G-principal ∞-bundles
are classified by H(X,BG)

5.1.11.2 Definition and classification We discuss the general definition and the central classification
theorem of principal ∞-bundles.

This section draws from [NSS12a].

Definition 5.1.189. For G ∈ Grp(H) a group object, we say a G-action on an object P ∈ H is a groupoid
object P//G (Definition 5.1.124) of the form

· · ·
//////// P ×G×G

////// P ×G
ρ:=d0 //
d1

// P

such that d1 : P×G→ P is the projection, and such that the degreewise projections P×Gn → Gn constitute
a morphism of groupoid objects

· · ·
//////// P ×G×G

��

////// P ×G

��

//// P

��
· · ·

//////// G×G
////// G

//// ∗

where the lower simplicial object exhibits G as a groupoid object over ∗.
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With convenient abuse of notation we also write

P//G := lim−→(P ×G×
•
) ∈ H

for the corresponding ∞-colimit object, the ∞-quotient of this action.
Write

GAction(H) ↪→ Grpd(H)/(∗//G)

for the full sub-∞-category of groupoid objects over ∗//G on those that are G-actions.

Remark 5.1.190. The remaining face map d0

ρ := d0 : P ×G→ P

is the action itself.

Remark 5.1.191. Using this notation in Proposition 5.1.158 we have

BG ' ∗//G .

We list examples of ∞-actions below in 5.1.14.2. This is most conveniently done after establishing the
theory of principal ∞-actions, to which we now turn.

Definition 5.1.192. Let G ∈ ∞Grp(H) be an ∞-group and let X be an object of H. A G-principal
∞-bundle over X (or G-torsor over X) is

1. a morphism P → X in H;

2. together with a G-action on P ;

such that P → X is the colimiting cocone exhibiting the quotient map X ' P//G (Definition 5.1.189).
A morphism of G-principal ∞-bundles over X is a morphism of G-actions that fixes X; the ∞-category

of G-principal ∞-bundles over X is the homotopy fiber of ∞-categories

GBund(X) := GAction(H)×H {X}

over X of the quotient map

GAction(H)
� � // Grpd(H)/(∗//G)

// Grpd(H)
lim−→ // H .

Remark 5.1.193. By the third ∞-Giraud axiom (prop. 3.1.5) this means in particular that a G-principal
∞-bundle P → X is an effective epimorphism in H.

Remark 5.1.194. Even though GBund(X) is by definition a priori an ∞-category, Proposition 5.1.206
below says that in fact it happens to be ∞-groupoid: all its morphisms are invertible.

Proposition 5.1.195. A G-principal ∞-bundle P → X satisfies the principality condition: the canonical
morphism

(ρ, p1) : P ×G ' // P ×X P

is an equivalence, where ρ is the G-action.

Proof. By the third ∞-Giraud axiom (prop. 3.1.5) the groupoid object P//G is effective, which means
that it is equivalent to the Čech nerve of P → X. In first degree this implies a canonical equivalence
P ×G→ P ×X P . Since the two face maps d0, d1 : P ×X P → P in the Čech nerve are simply the projections
out of the fiber product, it follows that the two components of this canonical equivalence are the two face
maps d0, d1 : P ×G→ P of P//G. By definition, these are the projection onto the first factor and the action
itself. �
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Proposition 5.1.196. For g : X → BG any morphism, its homotopy fiber P → X canonically carries the
structure of a G-principal ∞-bundle over X.

Proof. That P → X is the fiber of g : X → BG means that we have an ∞-pullback diagram

P

��

// ∗

��
X

g // BG.

By the pasting law for ∞-pullbacks, Proposition 5.1.2, this induces a compound diagram

· · ·
//////// P ×G×G

��

////// P ×G

��

//// P

��

// // X

g

��
· · ·

//////// G×G
// //// G

//// ∗ // // BG

where each square and each composite rectangle is an ∞-pullback. This exhibits the G-action on P . Since
∗ → BG is an effective epimorphism, so is its ∞-pullback P → X. Since, by the ∞-Giraud theorem, ∞-
colimits are preserved by ∞-pullbacks we have that P → X exhibits the ∞-colimit X ' P//G. �

Lemma 5.1.197. For P → X a G-principal∞-bundle obtained as in Proposition 5.1.196, and for x : ∗ → X
any point of X, we have a canonical equivalence

x∗P
' // G

between the fiber x∗P and the ∞-group object G.

Proof. This follows from the pasting law for ∞-pullbacks, which gives the diagram

G

��

// P

��

// ∗

��
∗ x // X

g // BG

in which both squares as well as the total rectangle are ∞-pullbacks. �

Definition 5.1.198. The trivial G-principal ∞-bundle (P → X) ' (X ×G→ X) is, up to equivalence, the
one obtained via Proposition 5.1.196 from the morphism X → ∗ → BG.

Observation 5.1.199. For P → X a G-principal ∞-bundle and Y → X any morphism, the ∞-pullback
Y ×X P naturally inherits the structure of a G-principal ∞-bundle.

Proof. This uses the same kind of argument as in Proposition 5.1.196 (which is the special case of the
pullback of what we will see is the universal G-principal ∞-bundle ∗ → BG below in Proposition 5.1.203).
�

Definition 5.1.200. A G-principal ∞-bundle P → X is called locally trivial if there exists an effective
epimorphism U // // X and an equivalence of G-principal ∞-bundles

U ×X P ' U ×G

from the pullback of P (Observation 5.1.199) to the trivial G-principal∞-bundle over U (Definition 5.1.198).
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Proposition 5.1.201. Every G-principal ∞-bundle is locally trivial.

Proof. For P → X a G-principal ∞-bundle, it is, by Remark 5.1.193, itself an effective epimorphism.
The pullback of the G-bundle to its own total space along this morphism is trivial, by the principality
condition (Proposition 5.1.195). Hence setting U := P proves the claim. �

Remark 5.1.202. This means that every G-principal ∞-bundle is in particular a G-fiber ∞-bundle (in
the evident sense of Definition 5.1.241 below). But not every G-fiber bundle is G-principal, since the local
trivialization of a fiber bundle need not respect the G-action.

Proposition 5.1.203. For every G-principal ∞-bundle P → X the square

P

��

// ∗

��
X ' lim−→n

(P ×G×n) // lim−→n
G×n ' BG

is an ∞-pullback diagram.

Proof. Let U → X be an effective epimorphism such that P → X pulled back to U becomes the trivial
G-principal ∞-bundle. By Proposition 5.1.201 this exists. By definition of morphism of G-actions and by
functoriality of the ∞-colimit, this induces a morphism in H∆[1]

/(∗→BG) corresponding to the diagram

U ×G // //

����

P //

����

∗

pt
����

U // // X // BG

'

U ×G // //

����

∗

pt
����

U // ∗
pt // BG

in H. By assumption, in this diagram the outer rectangles and the square on the very left are ∞-pullbacks.
We need to show that the right square on the left is also an ∞-pullback.

Since U → X is an effective epimorphism by assumption, and since these are stable under ∞-pullback,
U ×G→ P is also an effective epimorphism, as indicated. This means that

P ' lim−→
n

(U ×G)×
n+1
P .

We claim that for all n ∈ N the fiber products in the colimit on the right are naturally equivalent to

(U×
n+1
X )×G. For n = 0 this is clearly true. Assume then by induction that it holds for some n ∈ N. Then

with the pasting law (Proposition 5.1.2) we find an ∞-pullback diagram of the form

(U×
n+1
X )×G ' (U ×G)×

n+1
P //

��

(U ×G)×
n
P

��

' (U×
n
X )×G

U ×G //

��

P

��
U // X.
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This completes the induction. With this the above expression for P becomes

P ' lim−→
n

(U×
n+1
X )×G

' lim−→
n

pt∗ (U×
n+1
X )

' pt∗ lim−→
n

(U×
n+1
X )

' pt∗X,

where we have used that by the second∞-Giraud axiom (prop. 3.1.5) we may take the∞-pullback out of the
∞-colimit and where in the last step we used again the assumption that U → X is an effective epimorphism.
�

Example 5.1.204. The fiber sequence
G // ∗

��
BG

which exhibits the delooping BG of G according to Theorem 5.1.151 is a G-principal ∞-bundle over BG,
with trivial G-action on its total space ∗. Proposition 5.1.203 says that this is the universal G-principal
∞-bundle in that every other one arises as an ∞-pullback of this one. In particular, BG is a classifying
object for G-principal ∞-bundles.

Below in Theorem 5.1.314 this relation is strengthened: every automorphism of a G-principal ∞-bundle,
and in fact its full automorphism∞-group arises from pullback of the above universal G-principal∞-bundle:
BG is the fine moduli ∞-stack of G-principal ∞-bundles.

The traditional definition of universal G-principal bundles in terms of contractible objects equipped with
a free G-action has no intrinsic meaning in higher topos theory. Instead this appears in presentations of the
general theory in model categories (or categories of fibrant objects) as fibrant representatives EG→ BG of
the above point inclusion. This we discuss in [NSS12b].

The main classification Theorem 5.1.207 below implies in particular that every morphism in GBund(X)
is an equivalence. For emphasis we note how this also follows directly:

Lemma 5.1.205. Let H be an ∞-topos and let X be an object of H. A morphism f : A→ B in H/X is an
equivalence if and only if p∗f is an equivalence in H/Y for any effective epimorphism p : Y → X in H.

Proof. It is clear, by functoriality, that p∗f is a weak equivalence if f is. Conversely, assume that p∗f is
a weak equivalence. Since effective epimorphisms as well as equivalences are preserved by pullback we get a
simplicial diagram of the form

· · · ////// p∗A×A p∗A // //

'
��

p∗A

'
��

// // A

f

��
· · · ////// p∗B ×B p∗B // // p∗B // // B

where the rightmost horizontal morphisms are effective epimorphisms, as indicated. By definition of effective
epimorphisms this exhibits f as an ∞-colimit over equivalences, hence as an equivalence. �

Proposition 5.1.206. Every morphism between G-actions over X that are G-principal ∞-bundles over X
is an equivalence.
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Proof. Since a morphism of G-principal bundles P1 → P2 is a morphism of Čech nerves that fixes their∞-
colimit X, up to equivalence, and since ∗ → BG is an effective epimorphism, we are, by Proposition 5.1.203,
in the situation of Lemma 5.1.205. �

Theorem 5.1.207. For all X,BG ∈ H there is a natural equivalence of ∞-groupoids

GBund(X) ' H(X,BG)

which on vertices is the construction of Definition 5.1.196: a bundle P → X is mapped to a morphism
X → BG such that P → X → BG is a fiber sequence.

We therefore say

• BG is the classifying object or moduli ∞-stack for G-principal ∞-bundles;

• a morphism c : X → BG is a cocycle for the corresponding G-principal ∞-bundle and its class
[c] ∈ H1(X,G) is its characteristic class.

Proof. By Definitions 5.1.189 and 5.1.192 and using the refined statement of the third ∞-Giraud axiom
(Theorem 5.1.123), the∞-groupoid of G-principal∞-bundles over X is equivalent to the fiber over X of the
sub-∞-category of the slice of the arrow ∞-topos on those squares

P //

����

∗

����
X // BG

that exhibit P → X as a G-principal ∞-bundle. By Proposition 5.1.196 and Proposition 5.1.203 these are
the ∞-pullback squares Cart(H∆[1]

/(∗→BG)) ↪→ H∆[1]
/(∗→BG), hence

GBund(X) ' Cart(H∆[1]
/(∗→BG))×H {X} .

By the universality of the ∞-pullback the morphisms between these are fully determined by their value on
X, so that the above is equivalent to

H/BG ×H {X} .
(For instance in terms of model categories: choose a model structure for H in which all objects are cofibrant,
choose a fibrant representative for BG and a fibration resolution EG → BG of the universal G-bundle.
Then the slice model structure of the arrow model structure over this presents the slice in question and the
statement follows from the analogous 1-categorical statement.) This finally is equivalent to

H(X,BG) .

(For instance in terms of quasi-categories: the projection H/BG → H is a fibration by Proposition 2.1.2.1
and 4.2.1.6 in [L-Topos], hence the homotopy fiber H/BG ×X {X} is the ordinary fiber of quasi-categories.

This is manifestly the HomR
H(X,BG) from Proposition 1.2.2.3 of [L-Topos]. Finally, by Proposition 2.2.4.1

there, this is equivalent to H(X,BG).) �

Corollary 5.1.208. Equivalence classes of G-principal ∞-bundles over X are in natural bijection with the
degree-1 G-cohomology of X:

GBund(X)/∼ ' H1(X,G) .

Proof. By Definition 5.1.174 this is the restriction of the equivalence GBund(X) ' H(X,BG) to connected
components. �
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5.1.11.3 Universal principal ∞-bundles and the Borel construction By prop. 5.1.170 every ∞-
group in an ∞-topos over an ∞-cohesive site is presented by a (pre-)sheaf of simplicial groups, hence by
a strict group object G in a 1-category of simplicial (pre-)sheaves. We have seen in 5.1.9.2 that for such
a presentation the delooping BG is presented by W̄G. By the above discussion in 5.1.11.2 the theory of
G-principal ∞-bundles is essentially that of homotopy fibers of morphisms into BG, hence into W̄G. By
prop. 5.1.4 such homotopy fibers are computed as ordinary pullbacks of fibration resolutions of the point
inclusion into W̄G. Here we discuss these fibration resolutions. They turn out to be the classical universal
simplicial principal bundles WG→ W̄G.

This section draws from [NSS12b].

By prop. 5.1.170 every ∞-group in an ∞-topos over an ∞-cohesive site is presented by a (pre-)sheaf
of simplicial groups, hence by a strict group object G in a 1-category of simplicial (pre-)sheaves. We have
seen in 5.1.9.2 that for such a presentation the delooping BG is presented by W̄G. By the above discussion
in 5.1.11.2 the theory of G-principal ∞-bundles is essentially that of homotopy fibers of morphisms into
BG, hence into W̄G. By prop. 5.1.4 such homotopy fibers are computed as ordinary pullbacks of fibration
resolutions of the point inclusion into W̄G. Here we discuss these fibration resolutions. They turn out to be
the classical universal simplicial principal bundles WG→ W̄G.

Let C be some site. We consider group objects in the category of simplicial presheaves [Cop, sSet].
Since sheafification preserves finite limits, all of the following statements hold verbatim also in the category
Sh(C)∆op

of simplicial sheaves over C.

Definition 5.1.209. For G be a group object in [Cop, sSet] and for ρ : P × G → P a G-action, its action
groupoid object is the simplicial object

P//G ∈ [∆op, [Cop, sSet

whose value in degree n is
(P//G)n := P ×G×

n

∈ [Cop, sSet] ,

whose face maps are given by

di(p, g1, . . . , gn) =


(pg1, g2, . . . , gn) if i = 0,

(p, g1, . . . , gigi+1, . . . , gn) if 1 ≤ i ≤ n− 1,

(p, g1, . . . , gn−1) if i = n,

and whose degeneracy maps are given by

si(p, g1, . . . , gn) = (p, g1, . . . , gi−1, 1, gi, . . . , gn) .

Definition 5.1.210. For ρ : P ×G→ P an action, write

P/hG := T (P//G) ∈ [Cop, sSet]

for the corresponding total simplicial object, def. 5.1.19.

Remark 5.1.211. According to corollary 5.1.23 the object P/hG presents the homotopy colimit over the
simplicial object P//G. We say that P/hG is the homotopy quotient of P by the action of G.

Example 5.1.212. The unique trivial action of a group object G on the terminal object ∗ gives rise to a
canonical action groupoid ∗//G. According to def. 5.1.161 we have

∗/hG = WG.

The multiplication morphism · : G × G → G regarded as an action of G on itself gives rise to a canonical
action groupoid G//G. The terminal morphism G→ ∗ induces a morphism of simplicial objects

G//G→ ∗//G .
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Defined this way G//G carries a left G-action relative to this morphism. To stay with our convention that
actions on bundles are from the right, we consider in the following instead the right action of G on itself
given by

G×G σ // G×G
((−)−1,id) // G×G · // G ,

where σ exchanges the two cartesian factors

(h, g) 7→ g−1h .

With respect to this action, the action groupoid object G//G is canonically equipped with the right G-action
by multiplication from the right. Whenever in the following we write

G//G→ ∗//G

we are referring to this latter definition.

Definition 5.1.213. Given a group object in [Cop, sSet], write

(WG→ W̄G) := (G/hG→ ∗/hG) ∈ [Cop, sSet]

for the morphism induced on homotopy quotients, def. 5.1.210, by the morphism of canonical action groupoid
objects of example 5.1.212.

We will call this the universal weakly G-principal bundle.

This term will be justified by prop. 5.1.218, remark 5.1.219 and theorem 5.1.238 below. We now discuss
some basic properties of this morphism.

Definition 5.1.214. For ρ : P ×G→ P a G-action in [Cop, sSet], we write

P ×GWG := (P ×WG)/G ∈ [Cop, sSet]

for the quotient by the diagonal G-action with respect to the given right G action on P and the canonical
right G-action on WG from prop. 5.1.218. We call this quotient the Borel construction of the G-action on
P .

Proposition 5.1.215. For P ×G→ P an action in [Cop, sSet], there is an isomorphism

P/hG ' P ×GWG,

between the homotopy quotient, def. 5.1.210, and the Borel construction. In particular, for all n ∈ N there
are ismorphisms

(P/hG)n ' Pn ×Gn−1 × · · · ×G0 .

Proof. This follows by a straightforward computation.

Lemma 5.1.216. Let P be a Kan complex, G a simplicial group and ρ : P × G → P an action. The
following holds.

1. The qotient map P → P/G is a Kan fibration.

2. If the action is free, then P/G is a Kan complex.

The second statement is for instance lemma V3.7 in [GoJa99].

Lemma 5.1.217. For P a Kan complex and P ×G→ P an action by a group object, the homotopy quotient
P/hG, def. 5.1.210, is itself a Kan complex.
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Proof. By prop. 5.1.215 the homotopy quotient is isomorphic to the Borel construction. Since G acts
freely on WG it acts freely on P ×WG. The statement then follows with lemma 5.1.216. �

Proposition 5.1.218. For G a group object in [Cop, sSet], the morphism WG → WG from def. 5.1.213
has the following properties.

1. It is isomorphic to the traditional morphism denoted by these symbols, e.g. [May67].

2. It is isomorphic to the décalage morphism Dec0WG→WG, def. 5.1.80.

3. It is canonically equipped with a right G-action over WG that makes it a weakly G-princial bundle (in
fact the shear map is an isomorphism).

4. It is an objectwise Kan fibration replacement of the point inclusion ∗ → W̄G.

This is lemma 10 in [RoSt12].

Remark 5.1.219. Let X̂ → W̄G be a morphism in [Cop, sSet], presenting, by prop. 5.1.170, a morphism
X → BG in the ∞-topos H = Sh∞(C). By prop. 5.1.203 every G-principal ∞-bundle over X arises as
the homotopy fiber of such a morphism. By using prop. 5.1.218 in prop. 5.1.4 it follows that the principal
∞-bundle classified by X̂ → W̄G is presented by the ordinary pullback of WG→ W̄G. This is the defining
property of the universal principal bundle.

In 5.1.11.4 below we show how this observation leads to a complete presentation of the theory of principal
∞-bundles by simplical weakly principal bundles.

5.1.11.4 Presentation in locally fibrant simplicial sheaves We discuss a presentation of the general
notion of principal ∞-bundles, 5.1.11.2 by weakly principal bundles in a 1-category of simplicial sheaves.

Let H be a hypercomplete ∞-topos (for instance a cohesive ∞-topos), such that it admits a 1-site C
with enough points.

Observation 5.1.220. By prop. 3.1.16 a category with weak equivalences that presents H under simplicial
localization, def. 2.1.25, is the category of simplicial 1-sheaves on C, sSh(C), with the weak equivalences
W ⊂ Mor(sSh(C)) being the stalkwise weak equivalences:

H ' LW sSh(C) .

Also the full subcategory
sSh(C)lfib ↪→ sSh(C)

on the locally fibrant objects is a presentation.

Corollary 5.1.221. Regard sSh(C)lfib as a category of fibrant objects, def. 5.1.183, with weak equivalences
and fibrations the stalkwise weak equivalences and firations in sSetQuillen, respectively, as in example 5.1.184.

Then for any two objects X,A ∈ H there are simplicial sheaves, to be denoted by the same symbols,
such that the hom ∞-groupoid in H from X to A is presented in sSetQuillen by the Kan complex of cocycles
5.1.10.2.

Proof. By theorem 5.1.186. �
We now discuss for the general theory of principal∞-bundles in H from 5.1.11.2 a corresponding realization

in the presentation for H given by (sSh(C),W ).
By prop. 5.1.170 every∞-group in H is presented by an ordinary group in sSh(C). It is too much to ask

that also every G-principal ∞-bundle is presented by a principal bundle in sSh(C). But something close is
true: every principal ∞-bundle is presented by a weakly principal bundle in sSh(C).
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Definition 5.1.222. Let X ∈ sSh(C) be any object, and let G ∈ sSh(C) be equipped with the structure of
a group object. A weakly G-principal bundle is

• an object P ∈ sSh(C) (the total space);

• a local fibration π : P → X (the bundle projection);

• a right action

P ×G

##

ρ // P

��
X

of G on P over X

such that

• the action of G is weakly principal in that the shear map

(p1, ρ) : P ×G→ P ×X P (p, g) 7→ (p, pg)

is a local weak equivalence.

Remark 5.1.223. We do not ask the G-action to be degreewise free as in [JaLu04], where a similar notion
is considered. However we show in Corollary 5.1.240 below that each weakly G-principal bundle is equivalent
to one with free G-action.

Definition 5.1.224. A morphism of weakly G-principal bundles (π, ρ) → (π′, ρ′) over X is a morphism
f : P → P ′ in sSh(C) that is G-equivariant and commutes with the bundle projections, hence such that it
makes this diagram commute:

P ×G
(f,id) //

ρ

��

P ′ ×G

ρ′

��
P

π
##

f // P ′

π′{{
X

.

Write
wGBund(X) ∈ sSetQuillen

for the nerve of the category of weakly G-principal bundles and morphisms as above. The ∞-groupoid that
this presents under ∞Grpd ' (sSetQuillen)◦ we call the ∞-groupoid of weakly G-principal bundles over X.

Lemma 5.1.225. Let π : P → X be a weakly G-principal bundle. Then the following statements are true:

1. For any point p : ∗ → P the action of G induces a weak equivalence

G −→ Px

where x = πp and where Px is the fiber of P → X over x.

2. For all n ∈ N, the multi-shear maps

P ×Gn → P×
n+1
X (p, g1, ..., gn) 7→ (p, pg1, ..., pgn)

are weak equivalences.
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Proof. We consider the first statement. Regard the weak equivalence P ×G ∼−→ P ×X P as a morphism
over P where in both cases the map to P is given by projection onto the first factor. By basic properties of
categories of fibrant objects, both of these morphisms are fibrations. Therefore, by prop. 5.1.8 the pullback
of the shear map along p is still a weak equivalence. But this pullback is just the map G→ Px, which proves
the claim.

For the second statement, we use induction on n. Suppose that P ×Gn → P×
n+1
X is a weak equivalence.

By prop. 5.1.8, the pullback P×
n
X ×X (P × G) → P×

n+2
X of the shear map itself along P×

n
X → X is again

a weak equivalence, as is the product P × Gn × G → P×
n+1
X × G of the n-fold shear map with G. The

composite of these two weak equivalences is the multi-shear map P ×Gn+1 → P×
n+2
X , which is hence a also

weak equivalence.

Proposition 5.1.226. Let P → X be a weakly G-principal bundle and let f : Y → X be an arbitrary
morphism. Then the pullback f∗P → Y exists and is also canonically a weakly G-principal bundle. This
operation extends to define a pullback morphism

f∗ : wGBund(X)→ wGBund(Y ) .

Proof. By basic properties of a category of fibrant objects:
The pullback f∗P exists and the morphism f∗P → Y is again a local fibration. Thus it only remains to

show that f∗P is weakly principal, i.e. that the morphism f∗P ×G → f∗P ×Y f∗P is a weak equivalence.
This follows from prop. 5.1.8.

Remark 5.1.227. The functor f∗ associated to the map f : Y → X above is the restriction of a functor
f∗ : sSh(C)/X → sSh(C)/Y mapping from simplicial sheaves over X to simplicial sheaves over Y . This

functor f∗ has a left adjoint f! : sSh(C)/Y → Sh∆op

/X given by composition along f , in other words

f!(E → Y ) = E → Y
f−→ X.

Note that the functor f! does not usually restrict to a functor f! : wGBund(Y )→ wGBund(X). But when it
does, we say that principal ∞-bundles satisfy descent along f . In this situation, if P is a weakly G-principal
bundle on Y , then P is weakly equivalent to the pulled-back principal∞-bundle f∗f!P on Y , in other words
P ‘descends’ to f!P .

The next result says that weakly G-principal bundles satisfy descent along local acyclic fibrations (hy-
percovers).

Proposition 5.1.228. Let p : Y → X be a local acyclic fibration in sSh(C). Then the functor p! defined
above restricts to a functor p! : wGBund(Y )→ wGBund(X), left adjoint to p∗ : wGBund(X)→ wGBund(Y ),
hence to a homotopy equivalence in sSetQuillen.

Proof. Given a weakly G-principal bundle P → Y , the first thing we have to check is that the map
P ×G→ P ×X P is a weak equivalence. This map can be factored as P ×G→ P ×Y P → P ×X P . Hence
it suffices to show that the map P ×Y P → P ×X P is a weak equivalence. But this follows by prop. 5.1.8,
since both pullbacks are along local fibrations and Y → X is a local weak equivalence by assumption.

This establishes the existence of the functor p!. It is easy to see that it is left adjoint to p∗. This implies
that it induces a homotopy equivalence in sSetQuillen.

Corollary 5.1.229. For f : Y → X a local weak equivalence, the induced functor f∗ : wGBund(X) →
wGBund(Y ) is a homotopy equivalence.

Proof. By lemma 5.1.5 we can factor the weak equivalence f into a composite of a local acyclic fibration
and a left inverse to a local acyclic fibration. Therefore, by prop. 5.1.228, f∗ may be factored as the composite
of two homotopy equivalences, hence is itself a homotopy equivalence.

We discuss now how weakly G-principal bundles arise from the universal G-principal bundle, def. 5.1.213
by pullback, and how this establishes their equivalence with G-ccoycles.
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Proposition 5.1.230. For G a group object in sSh(C), the map WG → WG from def. 5.1.213 equipped
with the G-action of prop. 5.1.218 is a weakly G-principal bundle.

Indeed, it is a strictly G-principal bundle. This is a classical fact, for instance around lemma V4.1 in
[GoJa99].In terms of the total simplicial set functor it is observed in section 4 of [RoSt12].
Proof. By inspection one finds that

(G//G)×G

��

// G//G

��
G//G // ∗//G

is a pullback diagram in [∆op, sSh(C)]. Since the total simplicial object functor T of def. 5.1.19 is right
adjoint it preserves this pullback. This shows the principality of the shear map.

Definition 5.1.231. For Y → X a morphism in sSh(C), write

Č(Y ) ∈ [∆op, sSh(C)]

for its Čech nerve, given in degree n by the n-fold fiber product of Y over X

Č(Y )n := Y ×
n+1
X .

Observation 5.1.232. The canonical morphism of simplicial objects Č(Y ) → X, with X regarded as a
constant simplicial object induces under totalization, def. 5.1.19, and by prop. 5.1.22 a canonical morphism

TČ(Y )→ X ∈ sSh(C) .

Lemma 5.1.233. For p : Y → X a local acyclic fibration, the morphism TČ(Y ) → X from observation
5.1.232 is a local weak equivalence.

Proof. By pullback stability of local acylic fibrations, for each n ∈ N the morphism Y ×
n
X → X is a local

weak equivalence. By remark. 5.1.21 and prop. 5.1.22 this degreewise local weak equivalence is preserved
by the functor T .

The main statement now is the following.

Theorem 5.1.234. For P → X a weakly G-principal bundle in sSh(C), the canonical morphism

P/hG −→ X

is a local acyclic fibration.

Proof. To see that the morphism is a local weak equivalence, factor P//G→ X in [∆op, sSh(C)] via the
multi-shear maps from lemma 5.1.225 through the Čech nerve, def. 5.1.231, as

P//G→ Č(P )→ X .

Applying to this the total simplicial object functor T , def. 5.1.19, yields a factorization

P/hG→ TČ(P )→ X .

The left morphism is a weak equivalence because, by lemma 5.1.225, the multi-shear maps are weak equiv-
alences and by corollary 5.1.23 T preserves sends degreewise weak equivalences to weak equivalences. The
right map is a weak equivalence by lemma 5.1.233.
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We now prove that P/hG→ X is a local fibration. We need to show that for each topos point p of Sh(C)
the morphism of stalks p(P/hG) → p(X) is a Kan fibration of simplicial sets. By prop. 5.1.215 this means
equivalently that the morphism

p(P ×GWG)→ p(X)

is a Kan fibration. By definition of topos point, p commutes with all the finite products and colimits involved
here. Therefore equivalently we need to show that

p(P )×p(G) Wp(G)→ p(X)

is a Kan fibration for all topos points p.
Observe that this morphism factors the projection p(P )×W (p(G))→ p(X) as

p(P )×W (p(G))→ p(P )×p(G) W (p(G))→ p(X)

in sSet. Here the first morphism is a Kan fibration by lemma 5.1.216, which in particular is also surjective
on vertices. Also the total composite morphism is a Kan fibration, since W (p(G)) is Kan fibrant. From this
the desired result follows with the next lemma 5.1.235.

Lemma 5.1.235. Suppose that X
p−→ Y

q−→ Z is a diagram of simplicial sets such that p is a Kan fibration
surjective on vertices and qp is a Kan fibration. Then q is also a Kan fibration.

Proof. Consider a lifting problem of the form

Λk[n] //

��

Y

q

��
∆[n] // Z.

Choose a 0-simplex of X which projects to the 0-simplex of Y corresponding to the image of the vertex 0
under the map Λk[n] → Y . Since ∆[0] → Λk[n] is an acyclic cofibration, we may choose a map Λk[n] → X
such that the diagram

∆[0]

��

// X

p

��
Λk[n] //

==

Y

commutes. This map gives rise to a commutative diagram

Λk[n] //

��

X

qp

��
∆[n] // Z

and any diagonal filler in this diagram gives a solution of the original lifting problem.

We now discuss the equivalence between weakly G-principal bundles and G-cocycles. For X,A ∈ sSh(C),
write Cocycle(X,A) for the category of cocycles from X to A, according to 5.1.10.2.

Definition 5.1.236. Let X,G ∈ sSh(C) with G equipped with the structure of a group object (hence
necessarily locally fibrant) and also with X being locally fibrant.

Define a functor
Extr : wGBund(X)→ Cocycle(X,WG)
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(“extracting” a cocycle) on objects by sending a weakly G-principal bundle P → X to the cocycle

X oooo ∼
P/hG // WG ,

where the left morphism is the local acyclic fibration from theorem 5.1.234, and where the right morphism
is the image under the total simplicial object functor, def. 5.1.19, of the canonical morphism P//G→ ∗//G
of simplicial objects.

Define also a functor
Rec : Cocycle(X,WG)→ wGBund(X)

(“reconstruction” of the bundle) which on objects takes a cocycle X
π←− Y g−→WG to the weakly G-principal

bundle
g∗WG→ Y

π→ X ,

which is the pullback of the universal G-principal bundle, def. 5.1.213, along g, and which on morphisms
takes a coboundary to the morphism between pullbacks induced from the corresponding morphism of pullback
diagrams.

Observation 5.1.237. The functor Extr sends the universal G-principal bundle WG→WG to the cocycle

WG ' ∗ ×GWG
'←WG×GWG

'→WG×G ∗ 'WG.

Write
q : Cocycle(X,WG)→ Cocycle(X,WG)

for the functor given by postcomposition with this universal cocycle. This has an evident left and right
adjoint q̄. Therefore under the simplicial nerve these functors induce homotopy equivalences in sSetQuillen.

Theorem 5.1.238. The functors Extr and Rec from def. 5.1.236 induce weak equivalences

NwGBund(X) ' NCocycle(X,WG) ∈ sSetQuillen

between the simplicial nerves of the category of weakly G-principal bundles and of cocycles, respectively.

Proof. We construct natural transformations

Extr ◦ Rec⇒ q

and
Rec ◦ Extr⇒ id ,

where q is the homotopy equivalence from observation 5.1.237.
For

X
π←− Y f−→WG.

a cocycle, its image under Extr ◦ Rec is

X ← (f∗WG)/hG→WG.

The morphism (f∗WG)/hG factors through Y by construction, so that the left triangle in the diagram

(f∗WG)/hG

��

∼

ssss ++
X WG

Y
∼

kkkk
q(f)

33
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commutes. The top right morphism is by definition the image under the total simplicial set functor, def.
5.1.19, of (f∗WG)//G→ ∗//G. This factors the top horizontal morphism in

(f∗WG)//G

��

// (WG)//G

��

// ∗//G

Y
f // WG

.

Applying the total simplicial object functor to this diagram gives the above commuting triangle on the right.
Clearly this construction is natural and hence provides a natural transformation Extr Rec⇒ q.

For the other natural trasformation, let now P → X be a weakly G-principal bundle. This induces the
following commutative diagram of simplicial objects (with P and X regarded as constant simplicial objects)

P oo

��

P ×X (P//G)

��

(P ×G)//G∼
φoo //

��

G//G

��
X oo P//G P//G // ∗//G

,

where the left and the right square are pullbacks, and where the top horizontal morphism φ is the degreewise
local weak equivalence which is degreewise induced by the shear map, composed with exchange of the two
factors.

Explicitly, in degree 0 the morphism φ is given on generalized elements by

(p′, g) (p′g, p′)�φ0oo

and in degree 1 by

(p′g, (p′, h))
_

d0

��

((p′, g), h)
_

d0

��

�φ1oo

(p′g, p′h) ((p′h, h−1g)�φ0oo

,

etc. Here the top horizontal morphisms also respect the right G-actions ρ induced from the weakly G-
principal bundle structure on P → X and on G//G→ ∗//G. For instance the respect of the right G-action
of φ in degree 0 is on elements verified by

((p′g, p′), k)
_
ρ

��

((p′, g), k)
_
ρ

��

�φ0oo

(p′gk, p′) ((p′, gk)
�φ0oo

.

The image of the above diagram under the total simplicial object functor, which preserves all the pullbacks
and weak equivalences involved, is

P oooo
∼

����

P ×X P/hG

����

(P ×G)/hG
∼oo //

����

WG

����
X oooo ∼

P/hG P/hG // WG

.

Here the total bottom span is the cocycle Extr(P ), and so the object (P ×G)/hG over X is Rec(Extr(P )).
Therefore this exhibits a natural morphism Rec ExtrP → P .
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Remark 5.1.239. By theorem 5.1.186 the simplicial set NCocycle(X,WG) is a presentation of the intrinsic
cocycle ∞-groupoid H(X,BG) of the hypercomplete ∞-topos H = Shhc

∞(C). Therefore the equivalence of
theorem 5.1.238 is a presentation of that of theorem 5.1.207,

GBund∞(X) ' H(X,BG)

between the ∞-groupoid of G-principal ∞-bundles in H and the intrinsic cocycle ∞-groupoid of H.

Corollary 5.1.240. For each weakly G-principal bundle P → X there is a weakly G-principal bundle P f

with a levelwise free G-action and a weak equivalence P f
∼−→ P of weakly G-principal bundles over X. In

fact, the assignment P 7→ P f is an homotopy inverse to the full inclusion of weakly G-principal bundles with
free action into all weakly G-principal bundles.

Proof. Note that the universal bundle WG→WG carries a free G-action, in the sense that the levelwise
action of Gn on (WG)n is free. This means that the functor Rec from the proof of theorem 5.1.238 indeed
takes values in weakly G-principal budles with free action. Hence we can set

P f := Rec(Extr(P )) = (P ×G)/hG .

By the discussion there we have a natural morphism P f → P and one checks that this exhibits the homo-
motopy inverse.

5.1.12 Associated fiber bundles

We discuss the notion of representations/actions/modules of ∞-groups in an ∞-topos and the structures
directly induced by this: the corresponding twisted cohomology is cohomology with coefficients in modules
(the generalization of group cohomology with coefficients in a module) and the corresponding notion of
associated ∞-bundles.

5.1.12.1 General abstract This section draws from [NSS12a].

Let H be an ∞-topos, G ∈ Grp(H) an ∞-group. Fix an action ρ : V × G → V (Definition 5.1.189) on
an object V ∈ H. We discuss the induced notion of ρ-associated V -fiber ∞-bundles. We show that there is
a universal ρ-associated V -fiber bundle over BG and observe that under Theorem 5.1.207 this is effectively
identified with the action itself. Accordingly, we also further discuss ∞-actions as such.

Definition 5.1.241. For V,X ∈ H any two objects, a V -fiber ∞-bundle over X is a morphism E → X,
such that there is an effective epimorphism U // // X and an ∞-pullback of the form

U × V //

��

E

��
U // // X .

We say that E → X locally trivializes with respect to U . As usual, we often say V -bundle for short.

Definition 5.1.242. For P → X a G-principal ∞-bundle, we write

P ×G V := (P × V )//G

for the ∞-quotient of the diagonal ∞-action of G on P × V . Equipped with the canonical morphism
P ×G V → X we call this the ∞-bundle ρ-associated to P .
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Remark 5.1.243. The diagonal G-action on P ×V is the product in GAction(H) of the given actions on P
and on V . Since GAction(H) is a full sub-∞-category of a slice category of a functor category, the product
is given by a degreewise pullback in H:

P × V ×G×n //

��

V ×G×n

��
P ×G×n // G×n .

and so
P ×G V ' lim−→

n

(P × V ×G×n) .

The canonical bundle morphism of the corresponding ρ-associated ∞-bundle is the realization of the left
morphism of this diagram:

P ×G V :=

��

lim−→n
(P × V ×G×n)

��
X ' lim−→n

(P ×G×n) .

Example 5.1.244. By Theorem 5.1.207 every ∞-group action ρ : V ×G → V has a classifying morphism
c defined on its homotopy quotient, which fits into a fiber sequence of the form

V // V//G

c

��
BG .

Regarded as an ∞-bundle, this is ρ-associated to the universal G-principal ∞-bundle ∗ // BG from
Example 5.1.204:

V//G ' ∗ ×G V .

Lemma 5.1.245. The realization functor lim−→ : Grpd(H)→ H preserves the ∞-pullback of Remark 5.1.243:

P ×G V ' lim−→
n

(P × V ×G×n) ' (lim−→
n

P ×G×n)×(lim−→n
G×n ) (lim−→

n

V ×G×n) .

Proof. Generally, let X → Y ← Z ∈ Grpd(H) be a diagram of groupoid objects, such that in the
induced diagram

X0
//

����

Y0
oo

����

Z0

����
lim−→n

Xn
// lim−→n

Yn oo lim−→n
Zn

the left square is an ∞-pullback. By the third ∞-Giraud axiom (prop. 3.1.5) the vertical morphisms are
effective epi, as indicated. By assumption we have a pasting of ∞-pullbacks as shown on the left of the
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following diagram, and by the pasting law (Proposition 5.1.2) this is equivalent to the pasting shown on the
right:

X0 ×Y0
Z0

//

��

Z0

��
X0

//

��

Y0

��
lim−→n

Xn
// lim−→n

Yn

'

X0 ×Y0 Z0
//

����

Z0

����
(lim−→n

Xn)×(lim−→n
Yn) (lim−→n

Zn) //

��

lim−→n
Zn

��
lim−→n

Xn
// lim−→n

Yn.

Since effective epimorphisms are stable under ∞-pullback, this identifies the canonical morphism

X0 ×Y0
Z0 → (lim−→

n

Xn)×(lim−→n
Yn) (lim−→

n

Zn)

as an effective epimorphism, as indicated.
Since ∞-limits commute over each other, the Čech nerve of this morphism is the groupoid object [n] 7→

Xn ×Yn Zn. Therefore the third ∞-Giraud axiom now says that lim−→ preserves the ∞-pullback of groupoid
objects:

lim−→(X ×Y Z) ' lim−→
n

(Xn ×Yn Zn) ' (lim−→
n

Xn)×(lim−→n
Yn) (lim−→

n

Zn) .

Consider this now in the special case that X → Y ← Z is (P × G×•) → G×• ← (V × G×•). Theorem
5.1.207 implies that the initial assumption above is met, in that P ' (P//G)×∗//G ∗ ' X ×BG ∗, and so the
claim follows. �

Proposition 5.1.246. For gX : X → BG a morphism and P → X the corresponding G-principal ∞-bundle
according to Theorem 5.1.207, there is a natural equivalence

g∗X(V//G) ' P ×G V

over X, between the pullback of the ρ-associated ∞-bundle V//G
c // BG of Example 5.1.244 and the

∞-bundle ρ-associated to P by Definition 5.1.242.

Proof. By Remark 5.1.243 the product action is given by the pullback

P × V ×G×• //

��

V ×G×•

��
P ×G×• // G×•

in H∆op

. By Lemma 5.1.245 the realization functor preserves this ∞-pullback. By Remark 5.1.243 it sends
the left morphism to the associated bundle, and by Theorem 5.1.207 it sends the bottom morphism to gX .
Therefore it produces an ∞-pullback diagram of the form

V ×G P //

��

V//G

c

��
X

gX // BG .

�
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Remark 5.1.247. This says that V//G
c // BG is both, the V -fiber∞-bundle ρ-associated to the univer-

sal G-principal∞-bundle, Observation 5.1.244, as well as the universal∞-bundle for ρ-associated∞-bundles.

Proposition 5.1.248. Every ρ-associated ∞-bundle is a V -fiber ∞-bundle, Definition 5.1.241.

Proof. Let P ×G V → X be a ρ-associated ∞-bundle. By the previous Proposition 5.1.246 it is the
pullback g∗X(V//G) of the universal ρ-associated bundle. By Proposition 5.1.201 there exists an effective

epimorphism U // // X over which P trivializes, hence such that gX |U factors through the point, up to
equivalence. In summary and by the pasting law, Proposition 5.1.2, this gives a pasting of ∞-pullbacks of
the form

U × V

��

// P ×G V //

��

V//G

��
U // //

**

X
gX // BG

∗

44

which exhibits P ×G V → X as a V -fiber bundle by a local trivialization over U . �

So far this shows that every ρ-associated∞-bundle is a V -fiber bundle. We want to show that, conversely,
every V -fiber bundle is associated to a principal ∞-bundle.

Proposition 5.1.249. Every V -fiber ∞-bundle is ρAut(V )-associated to an Aut(V )-principal ∞-bundle.

Proof. Let E → V be a V -fiber ∞-bundle. By Definition 5.1.241 there exists an effective epimorphism
U // // X along which the bundle trivializes locally. It follows by the second Axiom in prop. 3.1.6 that

on U the morphism X
`E // Objκ which classifies E → X factors through the point

U × V //

��

E //

��

Ôbjκ

��
U // //

((

X
`E // Objκ.

∗ `V

66

Since the point inclusion, in turn, factors through its 1-image BAut(V ), def. 5.1.155, this yields the outer
commuting diagram of the following form

U //

����

∗ // BAut(V )� _

��
X

`E
//

g
66

Objκ

By the epi/mono factorization system of Proposition 5.1.59 there is a diagonal lift g as indicated. Using
again the pasting law and definition 5.1.155 with example 5.1.275 this factorization induces a pasting of
∞-pullbacks of the form

E //

��

V//Aut(V ) //

cV

��

Ôbjκ

��
X

g // BAut(V ) �
� // Objκ
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Finally, by Proposition 5.1.246, this exhibits E → X as being ρAut(V )-associated to the Aut(V )-principal
∞-bundle with class [g] ∈ H1(X,G). �

Theorem 5.1.250. V -fiber ∞-bundles over X ∈ H are classified by H1(X,Aut(V )).

Under this classification, the V -fiber∞-bundle corresponding to [g] ∈ H1(X,Aut(V )) is identified, up to
equivalence, with the ρAut(V )-associated ∞-bundle (Definition 5.1.242) to the Aut(V )-principal ∞-bundle
corresponding to [g] by Theorem 5.1.207.

Proof. By Proposition 5.1.249 every morphism X
`E // Objκ that classifies a small ∞-bundle E → X

which happens to be a V -fiber ∞-bundle factors via some g through the moduli for Aut(V )-principal ∞-
bundles

X
g //

`E

44BAut(V )
� � // Objκ .

Therefore it only remains to show that also every homotopy (` E1) ⇒ (` E2) factors through a homotopy
g1 ⇒ g2. This follows by applying the epi/mono lifting property of Proposition 5.1.59 to the diagram

X
∐
X

(g1,g2)//

����

BAut(V )� _

��
X //

88

Objκ

The outer diagram exhibits the original homotopy. The left morphism is an effective epi (for instance
immediately by Proposition 5.1.67), the right morphism is a monomorphism by construction. Therefore
the dashed lift exists as indicated and so the top left triangular diagram exhibits the desired factorizing
homotopy. �

Remark 5.1.251. In the special case that H = Grpd∞, the classification Theorem 5.1.250 is classical
[St63a, May67], traditionally stated in (what in modern terminology is) the presentation of Grpd∞ by
simplicial sets or by topological spaces. Recent discussions include [BlCh12]. For H a general 1-localic
∞-topos (def. 3.1.3), the statement of theorem 5.1.250 appears in [We11], formulated there in terms of the
presentation of H by simplicial presheaves. (We discuss the relation of these presentations to the above
general abstract result in [NSS12b].) Finally, one finds that the classification of G-gerbes [Gir71] and G-2-
gerbes in [Br94] is the special case of the general statement, for V = BG and G a 1-truncated ∞-group.
This we discuss below in Section 5.1.19.

5.1.12.2 Presentation in locally fibrant simplicial sheaves We discuss associated ∞-bundles in an
∞-topos H = Sh∞(C) in terms of the presentation of H by locally fibrant simplicial sheaves, corresponding
to the respective presentation of principal ∞-bundles from 5.1.11.4.

This section draws from [NSS12b].

Let C be a site with terminal object.
By prop. 5.1.170 every ∞-group over C has a presentation by a sheaf of simplicial groups G ∈

Grp(sSh(C)lfib). Moreover, by theorem 5.1.238 every∞-action of G on an object V , def. 5.1.189, is exhibited
by a weakly principal simplicial bundle

V // V/hG

ρ

��
WG

.
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By example 5.1.246 this is a presentation for the universal ρ-associated V -bundle.
We now spell out what this means in the presentation.

Lemma 5.1.252. The morphism V/hG→WG is a local fibration.

Proof. By the same argument as in the proof of theorem 5.1.234. �

Proposition 5.1.253. Let P → X in sSh(C)lfib be a weakly G-principal bundle with classifying cocycle

X
'← X̂

g→ WG. Then the corresponding ρ-associated ∞-bundle, def. 5.1.246, is presented by the ordinary
V -associated bundle P ×G V formed in sSh(C)lfib.

Proof. By def. 5.1.246 the associated∞-bundle is the∞-pullback of V//G→ BG along g. Using lemma
5.1.252 in prop. 5.1.8 we find that this is presented already by the ordinary pullback of V/hG→WG along
g. By prop. 5.1.215 this in turn is isomorphic to the pullback of V ×G WG → WG. Since sSh(C) is a
1-topos, pullbacks preserve quotients, and so this pullback finally is

g∗(WG×G V ) ' (g∗WG)×G V ' P ×GWG.

�

5.1.13 Sections and twisted cohomology

We discuss here how the general notion of cohomology in an ∞-topos considered above in 5.1.10, already
subsumes the notion of twisted cohomology and we discuss the corresponding geometric structure classified
by twisted cohomology: twisted ∞-bundles.

Where ordinary cohomology is given by a derived hom-∞-groupoid, twisted cohomology is given by the
∞-groupoid of sections of a local coefficient bundle in an ∞-topos. This is a geometric and unstable variant
of the picture of twisted cohomology developed in [ABG10a] [MaSi06]. It is fairly immediate that given a
universal coefficient bundle, the induced twisted cohomology is equivalently the ordinary cohomology in the
corresponding slice∞-topos. This identification provides a clean formulation of the contravariance of twisted
cocycles. Finally, we observe that twisted cohomology in an ∞-topos equivalently classifies extensions of
structure groups of principal ∞-bundles.

This section draws from [NSS12a] and [NSS12b].

5.1.13.1 General abstract

Definition 5.1.254. Let p : E → X be any morphism in H, to be regarded as an ∞-bundle over X. A
section of E is a diagram

E

p

��
X

id
//

σ

??

X

'��

(where for emphasis we display the presence of the homotopy filling the diagram). The ∞-groupoid of

sections of E
p→ X is the homotopy fiber

ΓX(E) := H(X,E)×H(X,X) {idX}

of the space of all morphisms X → E on those that cover the identity on X.
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We record two elementary but important observations about spaces of sections.

Observation 5.1.255. There is a canonical identification

ΓX(E) ' H/X(idX , p)

of the space of sections of E → X with the hom-∞-groupoid in the slice ∞-topos H/X between the identity
on X and the bundle map p.

Proof. By prop. 5.1.33. �

Lemma 5.1.256. Let
E1

//

p1

��

E2

p2

��
B1

f // B2

be an∞-pullback diagram in H and let X
gX // B1 be any morphism. Then post-composition with f induces

a natural equivalence of hom-∞-groupoids

H/B1
(gX , p1) ' H/B2

(f ◦ gX , p2) .

Proof. By Proposition 5.1.33, the left hand side is given by the homotopy pullback

H/B1
(gX , p1) //

��

H(X,E1)

H(X,p1)

��
{gX} // H(X,B1) .

Since the hom-∞-functor H(X,−) : H → Grpd∞ preserves the ∞-pullback E1 ' f∗E2, this extends to a
pasting of ∞-pullbacks, which by the pasting law (Proposition 5.1.2) is

H/B1
(gX , p1) //

��

H(X,E1)

H(X,p1)

��

// H(X,E2)

H(X,p2)

��
{gX} // H(X,B1)

H(X,f)
// H(X,B2)

'

H/B2
(f ◦ gX , p2) //

��

H(X,E2)

H(X,p2)

��
{f ◦ gX} // H(X,B2).

�
Fix now an ∞-group G ∈ Grp(H) and an ∞-action ρ : V ×G→ V . Write

V // V//G

c

��
BG

for the corresponding universal ρ-associated ∞-bundle as discussed in Section 5.1.14.

Proposition 5.1.257. For gX : X → BG a cocycle and P → X the corresponding G-principal ∞-bundle
according to Theorem 5.1.207, there is a natural equivalence

ΓX(P ×G V ) ' H/BG(gX , c)

411



between the space of sections of the corresponding ρ-associated V -bundle (Definition 5.1.242) and the hom-
∞-groupoid of the slice ∞-topos of H over BG, between gX and c. Schematically:

E

X X

p

��

σ

??

id
//

'�



'



V//G

X BG

c

��

σ

??

gX

//

'�



Proof. By Observation 5.1.255 and Lemma 5.1.256. �

Observation 5.1.258. If in the above the cocycle gX is trivializable, in the sense that it factors through
the point ∗ → BG (equivalently if its class [gX ] ∈ H1(X,G) is trivial) then there is an equivalence

H/BG(gX , c) ' H(X,V ) .

Proof. In this case the homotopy pullback on the right in the proof of Proposition 5.1.257 is

H/BG(gX , c) ' H(X,V ) //

��

H(X,V//G)

H(X,c)

��
{gX} ' H(X, ∗) // H(X,BG)

using that V → V//G
c→ BG is a fiber sequence by definition, and that H(X,−) preserves this fiber sequence.

�

Remark 5.1.259. Since by Proposition 5.1.201 every cocycle gX trivializes locally over some cover U // // X
and equivalently, by Proposition 5.1.248, every∞-bundle P ×GV trivializes locally, Observation 5.1.258 says
that elements σ ∈ ΓX(P ×G V ) ' H/BG(gX , c) locally are morphisms σ|U : U → V with values in V . They
fail to be so globally to the extent that [gX ] ∈ H1(X,G) is non-trivial, hence to the extent that P ×G V → X
is non-trivial.

This motivates the following definition.

Definition 5.1.260. We say that the ∞-groupoid ΓX(P ×G V ) ' H/BG(gX , c) from Proposition 5.1.257
is the ∞-groupoid of [gX ]-twisted cocycles with values in V , with respect to the local coefficient ∞-bundle

V//G
c→ BG.

Accordingly, its set of connected components we call the [gX ]-twisted V -cohomology with respect to the
local coefficient bundle c and write:

H [gX ](X,V ) := π0H/BG(gX , c) .

Remark 5.1.261. The perspective that twisted cohomology is the theory of sections of associated bundles
whose fibers are classifying spaces is maybe most famous for the case of twisted K-theory, where it was
described in this form in [Ros89]. But already the old theory of ordinary cohomology with local coefficients
is of this form, as is made manifest in [BFG] (we discuss this in detail in [NSS12c]).
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A proposal for a comprehensive theory in terms of bundles of topological spaces is in [MaSi06] and a sys-
tematic formulation in∞-category theory and for the case of multiplicative generalized cohomology theories
is in [ABG10a]. The formulation above refines this, unstably, to geometric cohomology theories/(nonabelian)
sheaf hypercohomology, hence from bundles of classifying spaces to ∞-bundles of moduli ∞-stacks.

A wealth of examples and applications of such geometric nonabelian twisted cohomology of relevance in
quantum field theory and in string theory is discussed in 5.2.14.

Remark 5.1.262. Of special interest is the case where V is pointed connected, hence (by Theorem 5.1.151)
of the form V = BA for some ∞-group A, and so (by Definition 5.1.174) the coefficient for degree-1 A-
cohomology, and hence itself (by Theorem 5.1.207) the moduli ∞-stack for A-principal ∞-bundles. In
this case H [gX ](X,BA) is degree-1 twisted A-cohomology. Generally, if V = BnA it is degree-n twisted
A-cohomology. In analogy with Definition 5.1.174 this is sometimes written

Hn+[gX ](X,A) := H [gX ](X,BnA) .

Moreover, in this case V//G is itself pointed connected, hence of the form BĜ for some ∞-group Ĝ, and
so the universal local coefficient bundle

BA // BĜ

c

��
BG

exhibits Ĝ as an extension of ∞-groups of G by A. This case we discuss below in Section 5.1.18.

In this notation the local coefficient bundle c is left implicit. This convenient abuse of notation is justifed
to some extent by the fact that there is a universal local coefficient bundle:

Example 5.1.263. The classifying morphism of the Aut(V )-action on some V ∈ H from Definition 5.1.155
according to Theorem 5.1.207 yields a local coefficient ∞-bundle of the form

V // V//Aut(V )

��
BAut(V )

which we may call the universal local V -coefficient bundle. In the case that V is pointed connected and
hence of the form V = BG

BG // (BG)//Aut(BG)

��
BAut(BG)

the universal twists of the corresponding twisted G-cohomology are the G-∞-gerbes. These we discuss below
in section 5.1.19.

We now internalize the formulation of spaces of sections, to obtain objects of sections in the ambient
∞-topos.

Definition 5.1.264. For p : E → X a ρ-associated V -fiber bundle, its object of sections is the dependent
product, def. 5.1.26:

ΓX(E) '
∏
X

p .
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Proposition 5.1.265. For p : E → X a ρ-associated V -fiber bundle, its object of sections is equivalently
given by

ΓX(E) '
∏
BG

[g, ρ] ,

where g : X → BG is the modulus of the G-principal bundle to which E is associated.

Proof. By functoriality we have ∏
X

g∗ρ '
∏
BG

∏
g

g∗ρ

'
∏
BG

[g, ρ]
,

where the second step is prop. 5.1.30. �

5.1.13.2 Presentations

Remark 5.1.266. When the ∞-topos H is presented by a model structure on simplicial presheaves as in
3.1.3 and presentations for X and C have been chosen, then the cocycle∞-groupoid H(X,C) is presented by
an explicit simplicial set H(X,C)simp ∈ sSet. Once these choices are made, there is therefore the inclusion
of simplicial presheaves

const(H(X,C)simp)0 → H(X,C)simp ,

where on the left we have the simplicially constant object on the vertices of H(X,C)simp. This morphism,
in turn, presents a morphism in ∞Grpd that in general contains a multitude of copies of the components of
any H(X,C)→ H(X,C), a multitude of representatives of twists for each cohomology class of twists. Since
the twisted cohomology does not depend, up to equivalence, on the choice of representative of the twist,
the corresponding ∞-pullback yields in general a larger coproduct of ∞-groupoids as the corresponding
twisted cohomology. This however just contains copies of the homotopy-types already present in Htw(X,A)
as defined above and therefore constitutes no additional information.

However, the choice of effective epimorphism H(X,C) → H(X,C), while unique up to equivalence, can
usually not be made functorially in X. Therefore twisted cohomology can have a representing object only if
one does consider multiple twist representatives in a suitable way. An example of this situation appears in
the discussion of differential cohomology below in 5.2.13.

5.1.14 Actions and Representations

We further discuss the concept of actions/representations/modules of ∞-groups in an ∞-topos and the
related concepts of invariants and coinvariants (quotients).

5.1.14.1 General abstract Let G ∈ Grp(H) be a group object, according to 5.1.9.1. By the discussion
in 5.1.12 we may identify the slice ∞-topos over its delooping with the ∞-category of G-actions:

Proposition 5.1.267. We have an equivalence of ∞-categories

GAct ' H/BG ,

under which an action of G on some V ∈ H is identified with a morphism V//G → BG, regarded as an
object in H/BG, whose ∞-fiber is V :

V // V//G // BG .

Proof. This follows from theorem 5.1.207. �
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Definition 5.1.268. Given an action ρ of a group G on some V as in prop. 5.1.267, and given a global
element x : ∗ → V of V , then we write

ρ(x,−) : G −→ V

for the morphism which fits into a homotopy pullback diagram of the form

G //

ρ(x,−)

��

∗

`x
��

V // V//G

,

where we are using prop. 5.1.267 and the pasting law, prop. 5.1.2 to indeed identify the top left object as
G.

We observe now that under this equivalence, the canonical base change

H/BG ∏
BG

//
oo (BG)∗

∑
BG

//

H ,

via prop. 5.1.28, along the terminal morphism BG→ ∗, translates into fundamental operations of represen-
tation theory.

Definition 5.1.269. For ρ ∈ H/BG a G-action on some V ∈ H, we say that

1. its dependent product
∏
BG

ρ ∈ H is the object of invariants (homotopy invariants) of the action;

2. its dependent sum
∑
BG

ρ ∈ H is the object of coinvariants (homotopy coinvariants) or quotient object

(homotopy quotient) of the action.

Moreover, for V ∈ H any object, we say that (BG)∗V ∈ H/BG is the trivial action of G on V . .

Proposition 5.1.270. 1. The quotient object in the sense of def. 5.1.269 coincides with the quotient in
the sense of def. 5.1.242: ∑

BG

ρ ' V//G .

2. The object of invariants coincides with the object of sections of the universal V -associated bundle, def.
5.1.257: ∏

BG

ρ ' ΓBG(V//G) .

Definition 5.1.271. For G1, G2 ∈ Grp(H) two groups and f : G1 → G2 a group homomorphism, hence
Bf : BG1 → BG2 a morphism in H we say that

1. the base change
(Bf)∗ : G2Act ' H/BG2

// H/BG1
' G1Act

is the pullback representation functor (or restricted representation functor if f is a monomorphism);

2. the dependent sum ∑
Bf

: G1Act ' H/BG1
// H/BG2

' G2Act

is the induced representation functor.
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3. the dependent product ∏
Bf

: G1Act ' H/BG1
// H/BG2

' G2Act

is the coinduced representation functor.

Remark 5.1.272. For the case of permutation representations of discrete groups, this identification of de-
pendent sum/dependent product along contexts of pointed connected discrete groupoids has been mentioned
on p. 14 of [Law06].

5.1.14.2 Examples We consider a list of fundamental types of examples of∞-group∞-actions via prop.
5.1.267.

Example 5.1.273. For every V ∈ H, the fiber sequence

V
(idV ,ptBG) // V ×BG

p2

��
BG

exhibits the trivial ∞-action of G on V .

Example 5.1.274. For every G ∈ Grp(H), the fiber sequence

G // ∗

��
BG

which defines BG by theorem 5.1.151 induces the right action of G on itself

∗ ' G//G .

At the same time this sequence, but now regarded as a bundle over BG, is the universal G-principal ∞-
bundle, remark 5.1.204.

Example 5.1.275. Let V be any κ-compact object, and consider its internal automorphism group Aut(V )
according to def. 5.1.155. By the pasting law, prop. 5.1.2, the image factorization (prop. 5.1.59) gives a
pasting of ∞-pullback diagrams of the form

V //

��

V//Aut(V ) //

cV

��

Ôbjκ

��
∗ `V // // BAut(V )

� � // Objκ

By Theorem 5.1.207 this defines a canonical ∞-action

ρAut(V ) : V ×Aut(V )→ V

of Aut(V ) on V with homotopy quotient V//Aut(V ) as indicated.
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Example 5.1.276. For every∞-group homomorphism H → G, hence, by prop. 5.1.152, for every morphism
BH → BG, the homotopy fiber of this morphism is G//H (by the long homotopy fiber sequence and theorem
5.1.207). This exhibits

G/H // BH

��
BG

a canonical action of G on G//H.
This example we discuss further in the context of Klein geometry below in 5.1.17.

Example 5.1.277. For every object X ∈ H write

LX := X ×X×X X

for its free loop space object, the ∞-fiber product of the diagonal on X along itself

LX //

ev∗

��

X

��
X // X ×X

For every G ∈ Grp(H) there is a fiber sequence

G // LBG

ev∗

��
BG

This exhibits the adjoint action of G on itself

LBG ' G//adG .

Definition 5.1.278. For ρ1, ρ2 ∈ H/BG two G-actions on objects V1, V2 ∈ H, respectively, write [ρ1, ρ2] ∈
H/BG for their internal hom in the slice. This we call the conjugation action of G on morphisms V1 → V2.
We say its object of invariants, def. 5.1.269, is the object of G-action homomorphisms between V1 and V2

(the “intertwiner space”) and write

HomG(ρ1, ρ2) :=
∏
BG

[ρ1, ρ2] ∈ H .

Proposition 5.1.279. The conjugation action [ρ1, ρ2], def. 5.1.278, is a G-action on the internal hom
object [V1, V2] ∈ H, i.e. ∑

BG

[ρ1, ρ2] ' [V1, V2]//G .

Proof. By def. 5.1.242 we need to show that the internal hom [ρ1, ρ2] in the slice sits in a homotopy
fiber sequence in H of the form

[V1, V2] // ∑
BG

[ρ1, ρ2]

��
BG

.
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Observe that forming the homotopy fiber is applying the inverse image of base change along the point
inclusion ptBG : ∗ → BG and that base change inverse images are (cartesian-)closed functors, by prop.
5.1.26, hence preserve internal homs. This yields

hfib

(∑
BG

[ρ1, ρ2]→ BG

)
' (ptBG)∗[ρ1, ρ2]

' [(ptBG)∗ρ1, (ptBG)∗ρ2]

' [V1, V2]

.

�

Example 5.1.280. Combining example 5.1.275 with def. 5.1.278: For X,Y ∈ H two objects, the automor-
phism group Aut(X) of X, def. 5.1.155 has a canonical action ρprec by precomposition on the internal hom
[X,Y ] ∈ H, given itself by the internal hom

ρprec :=
[
ρaut(X),BAut(X)∗Y

]
in (Aut(X))Act, hence by the congugation action, def. 5.1.278, on morphisms from X to Y with Y regarded
as equipped with the trivial Aut(X)-action; we have a fiber sequence

[X,Y ] // [X,Y ]//Aut(X)

ρprec

��
BAut(X)

in H.

Remark 5.1.281. Given a morphism f : X → Y regarded as a global element ` f : ∗ → [X,Y ], then
the morphism expressing the Aut(X)-translation of this morphism under the action of example 5.1.280, via
5.1.268, is naturally denoted as

f ◦ (−) : Aut(X) −→ [X,Y ] .

Proposition 5.1.282. Any morphism Y1 −→ Y2 canonically induces a homomorphism [X,Y1] −→ [X,Y2]
of the Aut(X)-actions of example 5.1.280.

Proof. By the construction in example 5.1.280, this is just the functoriality of the internal hom in the
slice over BAut(X). �

Proposition 5.1.283. Let E → X be an F -fiber bundle associated to an Aut(F )-principal bundle P → X
according to 5.1.12. Then A-valued functions on E are naturally equivalent to sections of the [F,A]-fiber
bundle canonically associated to P via the precomposition action of example 5.1.280:

H(E,A) ' ΓX

(
P ×

Aut(F )
[F,A]

)
.

Moreover, pulled back to a cover U // // X over which P (hence E) trivializes, this equivalence restricts
to the (product a hom)-adjunction equivalence:

H(U × F,A) ' H(U, [F,A]) .
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Proof. Write X → BAut(F ) for the map that modulates E → X according to the discussion in 5.1.12.
By prop. 5.1.257 the space of sections in question is equivalently the space

ΓX

(
P ×

Aut(F )
[F,A]

)
' H/BAut(F )(X, [F,A]//Aut(F ))

of dashed lifts in the diagram

[F,A]//Aut(F )

��
X //

88

BAut(F )

where the right vertical morphism is the one exhibiting the precomposition action according to example
5.1.280. By def. 5.1.278, prop. 5.1.279 we have that the homotopy quotient here is the internal hom taken
in the slice over BAut(F )

[F,A]//Aut(F ) ' [F//Aut(F ), A×BAut(F )]BAut(F ) .

Hence by the (product a hom)-adjunction in the slice and using again the characterization of associated
bundles from 5.1.12, this means that we have a sequence of natural equivalences as follows

ΓX

(
P ×

Aut(F )
[F,A]

)
' H/BAut(F )(X, [F,A]//Aut(F ))

' H/BAut(F )(X, [F//Aut(F ), A×BAut(F )]BAut(F ))

' H/BAut(F )(X ×
BAut(F )

F//Aut(F ), A×BAut(F ))

' H/BAut(F )(P ×
Aut(F )

F,A×BAut(F ))

' H/BAut(F )(E,A×BAut(F ))

' H(E,A) .

This establishes the first part of the statement.
For the second part, notice that U → X being trivializing means that the composite U → X → BAut(F )

is equivalent to a morphism of the form U → ∗ → BAut(F ). With this the second part of the statement
follows via the compatibility of Frobenius reciprocity with closure of pullback and the (product a hom)-
adunctions in the slice (as spelled out in section 2 of [May05]).

5.1.15 Double dimensional reduction

In physics one speaks of “double dimensional reduction” when (p + 1)-branes on the total space of a fiber
bundle with typical fiber a compact n-manifold are regarded as (p + 1 − n)-branes on the base space by
“wrapping” their worldvolume on the n-dimensional fibers. For example the situation of a string with
worldvolume Σ2 some abstract 2-manifold and propagating in some target manifold X via a smooth function
phi2 : Σ2 → X may be the double dimensional reduction of a membrane with worldvolume Σ3 := Σ2 × S1

and propagating on the total space of the trivial circle bundle Y := X ×S1 via the map φ2× idS1 : Σ3 → Y .
If this membrane couples to a differential 3-form ω3 ∈ Ω3(Y ) in that part of its action functional is

the integral φ 7→ exp( i~
∫

Σ3
φ∗ω3), then the string that corresponds to the membrane under this double

dimensional reduction similarly couples to the 2-form ω2 :=
∫
S1 ω3, hence to the fiber integration of the

3-form.
On the other hand, if the membrane propagates in Y via a map φ2 × φ1 : Σ2 × S1 → Y which does not

“wrap” a cycle in Y (in that (φ1)∗(S
1) is a trivial cycle in Y ), then it should still couple to the original

3-form.
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Hence a formalization of the concept of double dimensional reduction should be an operation that estab-
lishes a correspondence between cocycles on total spaces of fiber bundles with cocycles on the base space of
the fiber bundle, but with modified coefficients. We now consider such a formalization in full generality.

Proposition 5.1.284. Let H be an ∞-topos and let G ∈ Grp(H) be an ∞-group in H (def. 5.1.150). Then
there is a pair of adjoint ∞-functors of the form

H
[G,−]/G

⊥ //
oo hofib

H/BG ,

where

• hofib is the ∞-functor that takes a morphism of the form X → BG to its homotopy fiber, hence (by
theorem 5.1.207) to the total space of the G-pincipal ∞-bundle P → X that it classifies;

• [G,−]/G denotes the ∞-functor which takes an object X ∈ H to the homotopy quotient of the internal
hom [G,X] by the G-action given by precomposition with the action of G on itself by left multiplication,
according to example 5.1.280 and example 5.1.274.

Proof. By example 5.1.278 the precomposition action on [G,X] is the internal hom in ActG(H), from the
canonical G-action on G to the trivial G-action on X. By the equivalence of∞-categories ActG(H) ' H/BG

from prop. 5.1.267 and via example 5.1.280 and example 5.1.273 this is

[G,X]/G ' [∗, X ×BG]BG ∈ H/BG ,

where we are notationally suppressing the morphisms to BG. Now since the slice ∞-topos H/BG is itself
cartesian closed, via

E ×BG (−) a [E,−]BG

it is immediate that there is the following sequence of natural equivalences:

H/BG(Y, [G,X]/G) ' H/BG(Y, [∗, X ×BG]BG)

' H/BG(Y ×BG ∗, X ×BG︸ ︷︷ ︸
(BG)∗X

)

' H(
∑
BG

(Y ×BG ∗)︸ ︷︷ ︸
hofib(Y )

, X)

' H(hofib(Y ), X)

.

�

5.1.16 Group cohomology

We discuss the concept of group cohomology with coefficients in a module realized in any ∞-topos.

5.1.16.1 General abstract

Definition 5.1.285. For G an∞-group, let (V, ρ) ∈ GActH/BG be G-action on some V , according to prop.
5.1.267.

We say that

HomG(∗, V ) =
∏
BG

[BG, ρ] ∈ H
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is the cocycle ∞-groupoid of G-group cohomology with coefficients in V . We say that

HGrp(G,V ) := π0HomG(∗, V )

is the group cohomology of G with coefficients in V .

Remark 5.1.286. By def. 5.1.278 and since the action on ∗ is trivial, this says in words that group
cohomology with coefficients in V is the collection of equivalence classes of homotopy invariants of the
G-representation V .

5.1.16.2 Presentations.

Remark 5.1.287. In the case that V ∈ H is presented by a chain complex under the Dold-Kan correspon-
dence, def. 3.1.35 and that G ∈ Grp(H) is a 0-truncated group, def. 5.1.285 of group cohomology of G with
coefficients in V manifestly reduces to the traditional definition of group cohomology in homological algebra,
given by the derived functor of the invariants functor of G-modules.

5.1.17 Stabilizer groups and Klein geometry

We consider here a formalization of the traditional concept of stabilizer groups and Klein geometry gener-
alized to ∞-group ∞-actions in an ∞-topos. We discuss how lifts of structure groups of fiber bundles to
stabilizer groups encode the central obstruction theory for globalization of functions (“fields”) from local
model spaces to global geometries.

Following def. 5.1.269 we say:

Definition 5.1.288. Given a G-action on any V (as in 5.1.14), exhibited via prop. 5.1.267 by a homotopy
fiber sequence of the form

V −→ V//G −→ BG

and given a point x : ∗ → V , then we say that the action stabilizes the point, or that the point is an invariant
of the action, if there is a section x//G in a homotopy commutative diagram of the form

∗

  

x // V // V//G

��
BG

x//G

;;

BG

.

Definition 5.1.289. Given a G-action on any V , def. 5.1.14, and given a point x : ∗ → V , then the stabilizer
∞-group StabG(x) of that point under that action , is the loop space object, def. 5.1.148, of the 1-image

factorization, def. 5.1.56, of the map ∗ x−→ V → V//G:

StabG(x) := ∗ // //

x

44BStabG(X) �
� // V//G

Remark 5.1.290. Examples connecting this definition to the traditional concepts that go by these names
we discuss below in 6.2.8.

Remark 5.1.291. By example 5.1.153 this means euivalently that the stabilizer group, def. 5.1.289, is the
loop space object

StabG(x) ' Ωx(V//G)
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of the homotopy quotient V//G at x. Moreover, this sits in a diagram of the form

∗ x //

����

V // V//G

��
BStabG(x) BStabG(x) //

+ �

99

BG

,

where the left vertical morphism is a 1-epimorphism and the diagonal morphism is a 1-monomorphism (def.
5.1.58).

Proposition 5.1.292. A G-action on some V stabilizes a point x : ∗ → V in the sense of def. 5.1.288
precisely if it factors through the stabilizer group StabG(x), def. 5.1.289, in that the canonical morphism
StabG(x)→ G of remark 5.1.291 has a section σ.

Proof. If we have a section σ, then it clearly provides the morphism x//G by forming composites.
Conversely, given x//G we get the outer square diagram in

∗

����

// BStabG(x)� _

��
BG

σ

99

x//G // V//G

��
BG

.

Since the left vertical morphism is a 1-epimorpism by remark 5.1.159 and the right vertical morphism is a
1-monomorphism by def. 5.1.289 the (1-epi,1-mono)-factorization system of prop. 5.1.59 implies the section
σ as indicated. �
The following equivalent reformulation of stabilizer groups is useful (for instance in the discussion of higher

Kostant-Souriau extensions below in 5.2.17.5).

Proposition 5.1.293. Given an action ρ of a group G on some V , then the stabilizer group, def. 5.1.289,
is equivalently the homotopy pullback in

StabG(x)

��

// G

ρ(x,−)

��
∗ `x // V

,

where the right morphism is from def. 5.1.268.

Proof. This follows by the pasting law, prop. 5.1.2, applied to the following pasting diagram of homotopy
pullbacks

Stab(x) //

��

G

ρ(x,−)

��

// ∗

x

��
∗ `x // V

��

// V//G

��
∗ // BG

�
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Example 5.1.294. Given a function f : X → A, then its stabilizer group, def. 5.1.289, under the precom-
position action of Aut(X) on [X,A], example 5.1.280, is equivalent to its H-valued automorphism group as
an object f ∈ H/A, def. 5.1.35:

StabAut(X)(f) ' AutA(X) := AutH(f) .

Proof. By example ?? used in prop. 5.1.293, we have an ∞-pullback of the form

StabAut(X)(f) //

��

Aut(X)

f◦(−)

��
∗ // [X,A]

.

From this the identification follows by prop. 5.1.40. �

Example 5.1.295. The statement of example 5.1.294 is useful for the following construction. Consider a
homotopy pullback

X2
//

f2

��

X1

f1

��
A2

// A1

.

Externally it is immediate that an automorphism φ of X1 over A1 extends to an automorphism of X2 over
A2, given by the dashed morphism in this diagram

X2
//

f2

��

!!

X1

f1

��

φ

!!
X2

//

f2}}

X1

f1}}
A2

// A1

which is induced by the universal property of the homotopy pullback. The internalization of this construction
should be a homomorphism AutA1(X1) → AutA2(X2). To construct this observe the following pasting
composite:

AutA1
(X1)×X1

p2

��

// Aut(X1)×X1

(f1◦(−),id)

��

ev // X1

f1

��
X1

f1

))

(`f1,id) // [X1, A1]×X1
ev // A1

A1

,

where the left square is the image under (−)×X1 of the homotopy pullback square which exhibits AutA1(X1)
as a homotopy fiber by example 5.1.294. Now the base change of this diagram by pullback along A2 → A1

is of the form
AutA1

(X1)×X2
//

p2

��

X2

f2

��
X2

f2 // A2

.
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This is equivalently a morphism
(A∗2AutA1(X1))×A2 f2 −→ f2

in the slice H/A2
, def. 5.1.25, hence by the Hom-adjunction in the slice is equivalently a morphism

A∗2AutA1
(X1) −→ Aut(f2)→ [f2, f2]A2

.

The (A∗2 a
∏
A2

)-adjunct of this (via prop. 5.1.28) is the morphism in question

AutA1(X1) −→
∏
A2

Aut(f2) = AutA2(X2) .

Example 5.1.296. For G a group object, hence, by theorem 5.1.151, equivalently pt : ∗ → BG a pointed
connected object, then the stabilizer of pt in [∗,BG] ' BG under the right composition action of Aut(BG)

has, again by theorem 5.1.151, the interpretation of being the object AutGrp(G) = Aut∗/(BG) of invertible
group homomorphisms. By prop. 5.1.293 this sits in the homotopy fiber sequence

AutGrp(G)
φ−→ Aut(BG)

(−)◦pt−→ [∗,BG]
'→ BG .

From this one gets a canonical forgetful morphism

AutGrp(V ) −→ Aut(V )

to the plain automorphism group of V by forming the Hom-adjunct of the result of applying the homotopy
limit construction to the morphism of cospan diagrams as shown on the right here:

AutGrp(G)×G

��
G

 = lim


AutGrp(G)

(id,pt) //

��

AutGrp(G)×BG

ev◦(φ,id)

��

AutGrp(G)
(id,pt)oo

��
∗

pt // BG ∗
ptoo

 ,

where the squares on the right are obtained from factoring the defining homotopy pullback square of
AutGrp(G) ' Aut(BG) ×

BG
∗ through the canonical evaluation action of Aut(BG):

AutGrp(G)
φ //

(id,pt)

��

Aut(BG)

(id,pt)

��
AutGrp(G)×BG

��

(φ,id) // Aut(BG)×BG

ev

��
∗

pt // BG

The following two examples show how higher stabilizer groups yield a higher analog of model spaces in
the sense of Klein’s Erlangen program (see remark 5.1.299 below).

Example 5.1.297. Given any homomorphism H → G of ∞-groups, then the canonical G-action for which
H is the stabilizer group of any point is that on G/H.

This is because, by example 5.1.276, this action is exhibited by the homotopy fiber sequence

G/H // BH

��
BG
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and hence for any x : ∗ → G/H we have

Stab(x) = Ω∗BH ' H .

Example 5.1.298 (stabilizer of Kleinian figures). For a G-∞-action on any X, and for any other object S,
there is canonically the G-action on the mapping space [S,X], given by the conjugation action, def. 5.1.278,
with S regarded as equipped with the trivial G-action.

A point in [S,X] is of course a morphism φ : S → X. In particular if this is a 1-monomorphism, def.
5.1.58, then we may think of this as defining a “figure in X of shape S”. Accordingly, the stabilizer group
StabG(φ) is then that of G-actions on X which preserve this “figure”. The quotient G/StabG(φ) (example
5.1.297) has the interpretation of all congruent configurations of the figure φ across the space X.

Remark 5.1.299. Examples 5.1.297 and 5.1.298 show that we may think of the homotopy fibers

G/StabG(φ) // BStabG(φ) �
� //

��

[S,X]BG

ww
BG

of the canonical maps from stabilizer ∞-groups as being the analogs in higher geometry of Klein geometries
of figures S in spaces X as in Felix Klein’s Erlanger program [Klein1872, end of section 5] (called “Körper”
there in the original German version, and “body” in the English translation from 1872). See for instance
[Sha97, section 4] for modern review of traditional Klein geometry.

Of course Klein’s program considered (or rather: catalyzed the development of) groups G equipped with
differential geometric structures, later to be named Lie groups. More generally, we consider here ∞-groups
equipped with differential cohesive structure, simply by implementing the above constructions in an∞-topos
H which is differentially cohesive.

Example 5.1.300 (stabilizers of co-shapes). Example 5.1.298 has an evident dual version, whose traditional
analog has not been considered by Klein, but which turns out to be at least as interesting. Here one considers
stabilizers of maps φ : X → A out of X (instead of into X) in [X,A] under the precomposition actio of
example 5.1.280. Such a “co-figure of co-shape A” may be thought of as a field on X, in the sense of pre-
quantum field theory discussed below in 5.2.18. The stabilizer group of such co-figures hence serves as a
group of automorpisms (e.g. diffeomorphisms) which leave a given background field invariant up to specified
(higher) gauge transformation.

Specifically if A here is a differential coefficient as in 5.2.13, then one may think of φ : X → A as a
higher prequantum bundle, as in 5.2.17.2. In this case the stabilizer of φ in the differential concretification
(see 5.2.13.4) is a higher quantomorphism group, discussed below in 5.2.17.5.

Remark 5.1.301. We find below in in prop. 5.1.317 that lifts of structure groups to stabilizer groups
obstruct the existence of locally constant sections, and secifically, below in theorem 5.1.321, that lifts to
“stabilizers of co-shapes” as in example 5.1.300 obstruct the existence of parameterized extensions of cocycles.

5.1.18 Extensions, Obstructions and Twisted bundles

We discuss the notion of extensions of ∞-groups (see Section 5.1.9), generalizing the traditional notion of
group extensions. This is in fact a special case of the notion of principal ∞-bundle, Definition 5.1.192, for
base space objects that are themselves deloopings of∞-groups. For every extension of∞-groups, there is the
corresponding concept of lifts of structure∞-groups of principal∞-bundles. These are classified equivalently
by trivializations of an obstruction class and by the twisted cohomology with coefficients in the extension
itself, regarded as a local coefficient ∞-bundle.

Moreover, we show that principal ∞-bundles with an extended structure ∞-group are equivalent to
principal∞-bundles with unextended structure∞-group but carrying a principal∞-bundle for the extending
∞-group on their total space, which on fibers restricts to the given ∞-group extension. We formalize these
twisted (principal) ∞-bundles and observe that they are classified by twisted cohomology, def. 5.1.260.
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5.1.18.1 General abstract

Definition 5.1.302. We say a sequence of homomorphisms of ∞-groups, def. 5.1.150

A→ Ĝ→ G

exhibits Ĝ as an extension of G by A if the delooping (def. 5.1.152)

BA→ BĜ→ BG

is a homotopy fiber sequence in H, def. 5.1.178.

Remark 5.1.303. By continuing the fiber sequence to the left via def. 5.1.178,

A→ Ĝ→ G→ BA→ BĜ→ BG

this implies by theorem 5.1.207 that Ĝ→ G is an A-principal bundle and that

G ' Ĝ//A

is the quotient of the canonical A-action on Ĝ.

Definition 5.1.304. For A a braided∞-group, def. 5.1.156, a central extension Ĝ of G by A is an extension
A→ Ĝ→ G, such that the defining delooping extends one step further to the right:

BA // BĜ
p // BG

c // B2A .

We also write
Ĝ = GoA

in this case, and we write
Ext(G,A) := H(BG,B2A) ' (BA)Bund(BG)

for the ∞-groupoid of extensions of G by A.

Definition 5.1.305. Given an ∞-group extension A // Ĝ
Ωc // G and given a G-principal ∞-bundle

P → X in H, we say that a lift P̂ of P to a Ĝ-principal ∞-bundle is a lift ĝX of its classifying cocycle
gX : X → BG, under the equivalence of Theorem 5.1.207, through the extension:

BĜ

p

��
X

ĝX

==

gX
// BG.

Accordingly, the ∞-groupoid of lifts of P with respect to p is

Lift(P,p) := H/BG(gX ,p) .

Remark 5.1.306. Of particular interest in applications are such lifts for gX a map that modulates a frame
bundle of an étale ∞-groupoid. This we consider below in def. 5.3.104 after introduction of the relevant
differential cohesive structure for formulating étaleness.

Remark 5.1.307. By the universal property of the ∞-pullback, a lift exists precisely if the cohomology
class

[c(gX)] := [c ◦ gX ] ∈ H2(X,A)

is trivial. Therefore we call [c(gX)] the obstruction to the lift.
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This is implied by Theorem 5.1.309, to which we turn after introducing the following terminology.

Definition 5.1.308. In the above situation, we call [c(gX)] the obstruction class to the extension; and we
call [c] ∈ H2(BG,A) the universal obstruction class of extensions through p.

We say that a trivialization of the obstruction cocycle c(gX) is a morphism c(gX)→ ∗X in H(X,B2A),
where ∗X : X → ∗ → B2A is the trivial cocycle. Accordingly, the ∞-groupoid of trivializations of the
obstruction is

Triv(c(gX)) := H/B2A(c ◦ gX , ∗X) .

We give now three different characterizations of spaces of extensions of ∞-bundles. The first two, by
spaces of twisted cocycles and by spaces of trivializations of the obstruction class, are immediate consequences
of the previous discussion:

Theorem 5.1.309. Let P → X be a G-principal ∞-bundle corresponding by Theorem 5.1.207 to a cocycle
gX : X → BG.

1. There is a natural equivalence
Lift(P,p) ' Triv(c(gX))

between the∞-groupoid of lifts of P through p, Definition 5.1.305, and the∞-groupoid of trivializations
of the obstruction class, Definition 5.1.308.

2. There is a natural equivalence Lift(P,p) ' H/BG(gX ,p) between the ∞-groupoid of lifts and the ∞-
groupoid of gX-twisted cocycles relative to p, Definition 5.1.260, hence a classification

π0Lift(P,P) ' H1+[gX ](X,A)

of equivalence classs of lifts by the [gX ]-twisted A-cohomology of X relative to the local coefficient bundle

BA // BĜ

p

��
BG .

Proof. The first statement is the special case of Lemma 5.1.256 where the ∞-pullback E1 ' f∗E2 in the
notation there is identified with BĜ ' c∗∗. The second is evident after unwinding the definitions. �

Remark 5.1.310. For the special case that A is 0-truncated, we may, by the discussion in [NW11a, NSS12c],
identify BA-principal ∞-bundles with A-bundle gerbes, [Mur96]. Under this identification the ∞-bundle
classified by the obstruction class [c(gX)] above is what is called the lifting bundle gerbe of the lifting
problem, see for instance [CBMMS02] for a review. In this case the first item of Theorem 5.1.309 reduces to
Theorem 2.1 in [Wal09] and Theorem A (5.2.3) in [NW11b]. The reduction of this statement to connected
components, hence the special case of Observation 5.1.307, was shown in [Br90].

While, therefore, the discussion of extensions of ∞-groups and of lifts of structure ∞-groups is just a
special case of the discussion in the previous sections, this special case admits geometric representatives of
cocycles in the corresponding twisted cohomology by twisted principal ∞-bundles. This we turn to now.

Definition 5.1.311. Given an extension of ∞-groups A → Ĝ
Ωc−−→ G and given a G-principal ∞-bundle

P → X, with class [gX ] ∈ H1(X,G), a [gX ]-twisted A-principal ∞-bundle on X is an A-principal ∞-bundle
P̂ → P such that the cocycle q : P → BA corresponding to it under Theorem 5.1.207 is a morphism of
G-∞-actions.

The ∞-groupoid of [gX ]-twisted A-principal ∞-bundles on X is

ABund[gX ](X) := GAction(P,BA) ⊂ H(P,BA) .
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Proposition 5.1.312. Given an ∞-group extension A→ Ĝ
Ωc→ G, an extension of a G-principal ∞-bundle

P → X to a Ĝ-principal ∞-bundle, def. 5.1.305, induces an A-principal ∞-bundle P̂ → P fitting into a
pasting diagram of ∞-pullbacks of the form

Ĝ //

Ωc

��

P̂ //

��

∗

��
G //

��

P
q //

��

BA //

��

∗

��
∗ x // X

g

55
ĝ // BĜ

c // BG.

In particular, it has the following properties:

1. P̂ → P is a [gX ]-twisted A-principal bundle, Definition 5.1.311;

2. for all points x : ∗ → X the restriction of P̂ → P to the fiber Px is equivalent to the ∞-group extension
Ĝ→ G.

Proof. This follows from repeated application of the pasting law for ∞-pullbacks, Proposition 5.1.2.
The bottom composite g : X → BG is a cocycle for the given G-principal ∞-bundle P → X and it

factors through ĝ : X → BĜ by assumption of the existence of the extension P̂ → P .
Since also the bottom right square is an ∞-pullback by the given ∞-group extension, the pasting law

asserts that the square over ĝ is also an ∞-pullback, and then that so is the square over q. This exhibits P̂
as an A-principal ∞-bundle over P classified by the cocycle q on P . By Proposition 5.1.314 this P̂ → P is
twisted G-equivariant.

Now choose any point x : ∗ → X of the base space as on the left of the diagram. Pulling this back upwards
through the diagram and using the pasting law and the definition of loop space objects G ' ΩBG ' ∗×BG ∗
the diagram completes by ∞-pullback squares on the left as indicated, which proves the claim. �

Remark 5.1.313. This is a generalization of the traditional theory of projective representations, see example
6.3.50 below.

Theorem 5.1.314. The construction of prop. 5.1.312 extends to an equivalence of ∞-groupoids

ABund[gX ](X) ' H/BG(gX , c)

between that of [gX ]-twisted A-principal bundles on X, Definition 5.1.311, and the cocycle ∞-groupoid of
degree-1 [gX ]-twisted A-cohomology, Definition 5.1.260.

In particular the classification of [gX ]-twisted A-principal bundles is

ABund[gX ](X)/∼ ' H1+[gX ](X,A) .

Proof. For G = ∗ the trivial group, the statement reduces to Theorem 5.1.207. The general proof
works along the same lines as the proof of that theorem. The key step is the generalization of the proof of
Proposition 5.1.203. This proceeds verbatim as there, only with pt : ∗ → BG generalized to i : BA→ BĜ.
The morphism of G-actions P → BA and a choice of effective epimorphism U → X over which P → X
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trivializes gives rise to a morphism in H
∆[1]
/(∗→BG) which involves the diagram

U ×G // //

��

P //

��

BA

i
��

U // // X // BĜ

'

U ×G // //

��

BA

i
��

U // ∗
pt // BĜ

in H. (We are using that for the 0-connected object BĜ every morphism ∗ → BG factors through BĜ →
BG.) Here the total rectangle and the left square on the left are ∞-pullbacks, and we need to show that
the right square on the left is then also an ∞-pullback. Notice that by the pasting law the rectangle on the
right is indeed equivalent to the pasting of ∞-pullbacks

U ×G //

��

G //

��

BA

i
��

U // ∗
pt // BĜ

so that the relation
U×

n+1
X ×G ' i∗(U×

n+1
X )

holds. With this the proof finishes as in the proof of Proposition 5.1.203, with pt∗ generalized to i∗. �

5.1.18.2 Examples We discuss examples of the general abstract theory 5.1.18.1 of extensions, obstruc-
tions and twisted bundles .

First of all to record the relation of our general theory to some existing results:

Example 5.1.315. Various aspects of special cases of theorem 5.1.314 may be identified in the literature:
For the special case of ordinary extensions of ordinary Lie groups, the equivalence of the corresponding

extensions of a principal bundle with certain equivariant structures on its total space is essentially the
content of [Mac88, An04]. In particular the twisted unitary bundles or gerbe modules of twisted K-theory
[CBMMS02] are equivalent to such structures.

For the case of BU(1)-extensions of Lie groups, such as the String-2-group, the equivalence of the corre-
sponding String-principal 2-bundles, by the above theorem, to certain bundle gerbes on the total spaces of
principal bundles underlies constructions such as in [Redd06]. Similarly, the bundle gerbes on double covers
considered in [SSW05] are BU(1)-principal 2-bundles on Z2-principal bundles arising by the above theorem
from the extension BU(1) → Aut(BU(1)) → Z2, a special case of the extensions that we consider in the
next Section 5.1.19.

Now we turn to the obstruction theory embodied by lifts of structure ∞-groups specifically through the
stabilizer ∞-groups of 5.1.17.

Definition 5.1.316. Let E → X be an F -fiber bundle, def. 5.1.241. Then a definite section of the bundle
is a section σ – which by prop. 5.1.257 is a lift of the modulating map of E of the form

F//Aut(F )

��
X

σ

::

// BAut(F )

,
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where the vertical map exhibits the automorphism action, example 5.1.275 – such that there exists a cover,
i.e. a 1-epimorphism U → X, def. 5.1.58, on which the section becomes constant on a global point x : ∗ → F ,
up to equivalence:

∗
x

��
U

99

����

F

��
X σ // F//Aut(F )

'
w�

,

Given x, we call such a section σ definite on x.

Proposition 5.1.317. Let E → X be an F -fiber bundle, def. 5.1.241 and let x : ∗ → F be a global point of
F . The following are equivalent:

1. there exists a section definite on x, def. 5.1.316;

2. there exists a lift of the structure group of E to the stabilizer group Stab(x) := StabAut(F )(x), def.
5.1.289 (through the canonical homomorphism Stab(x)→ Aut(F ) of remark 5.1.291).

Proof. Write X → BAut(F ) for the map that modulates E via prop. 5.1.249. By def. 5.1.316 and via
the factorization of def. 5.1.289 a definite section gives the solid diagram in

∗

x
����

U

99

����

// BStab(x)� _

��
X σ //

::

$$

F//Aut(F )

��
BAut(F )

,

where we display the factorization of the point inclusion through the delooped stabilizer group according
to remark 5.1.291. The (1-epi, 1-mono)-factorization of prop. 5.1.59 then gives dashed lift of the structure
group.

Conversely, given a dashed lift of the structure group in

BStab(x)

��
X //

::

BAut(F )

then it defines a section σ by the above factorization, and by the proof of prop. 5.1.201 we may take
U // // X to be the total space of the Stab(x)-principal∞-bundle that is classified by the lift, to find that

this section is definite on x. �

Definition 5.1.318. Let E → X be an F -fiber bundle, def. 5.1.241. We say that a function E → A is
definite if the section corresponding to it via prop. 5.1.283 is a definite section according to prop. 5.1.316.
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More generally, the same proof as of prop. 5.1.317 with the automorphism group action replaced by the
action of any other group G shows that:

Proposition 5.1.319. Given a G-action on F 5.1.14, let E := P ×G F be the F -fiber bundle associated to
a G-principal ∞-bundle P → X, def. 5.1.242 and let x : ∗ → F be a global point of F -

The following are equivalent:

1. there exists a section definite on x, def. 5.1.316;

2. there exists a lift of the structure group G of E to the stabilizer group StabG(x), def. 5.1.289, through
the canonical homomorphism StabG(x)→ Aut(F ) (of remark 5.1.291).

Definition 5.1.320 (parameterized extension). For φ : F → A any morphism in an∞-topos and for E → X
an F -fiber ∞-bundle def. 5.1.241, say that a morphism Φ : E → A is a parameterized extension of φ if there
exists a cover (1-epimorphism 5.1.58) U // // X over which E trivializes, such that Φ|U : E|U ' U×F → A
is equivalent to the projection on F followed by φ.

F
φ

��
U × F //

p2

;;

����

Φ|U
((

E

��

Φ // A

U // // X

Theorem 5.1.321 (obstruction theorem for parameterized extensions). Let φ : F → A be a function, and
let E → X be an F -fiber bundle. Then an extension of φ from F to E, in the sense of def. 5.1.320, exists
precisely if E admits a lift of its structure group to the stabilizer group (def. 5.1.289) StabAut(F )(φ) of φ
under the action (example 5.1.280) of the automorphism group of F on the function space [F,A] (i.e. to a
stabilizer group of co-shapes, as in example 5.1.300).

Proof. By the first clause of prop. 5.1.283 a function Φ : E → A is equivalently a section Φ̃ of the bundle
P ×Aut(F ) [F,A]. By the second clause of that proposition, Φ is an extension of φ precisely if the section Φ̃
is locally constant on φ. From this the statement follows by prop. 5.1.317. �

Example 5.1.322. Specialized to differential coefficients A as in example 5.1.300, we find below in 7.5.1
that theorem 5.1.321 subsumes Green-Schwarz anomaly cancellation in the geometric form via parameterized
WZW models considered in [DiSh07].

5.1.19 Gerbes

We discuss the general concept of (nonabelian) gerbes and higher gerbes in an ∞-topos.
This section draws from [NSS12a].

Remark 5.1.262 above indicates that of special relevance are those V -fiber ∞-bundles E → X in an ∞-
topos H whose typical fiber V is pointed connected, and hence is the moduli∞-stack V = BG of G-principal
∞-bundles for some ∞-group G. Due to their local triviality, when regarded as objects in the slice ∞-topos
H/X , these BG-fiber ∞-bundles are themselves connected objects. Generally, for X an ∞-topos regarded as
an∞-topos of∞-stacks over a given space X, it makes sense to consider its connected objects as∞-bundles
over X. Here we discuss these ∞-gerbes.

In the following discussion it is useful to consider two ∞-toposes:
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1. an “ambient”∞-topos H as before, to be thought of as an∞-topos “of all geometric homotopy-types”
for a given notion of geometry, in which ∞-bundles are given by morphisms and the terminal object
plays the role of the geometric point ∗;

2. an∞-topos X , to be thought of as the topos-theoretic incarnation of a single geometric homotopy-type
(space) X, hence as an ∞-topos of “geometric homotopy-types étale over X”, in which an ∞-bundle
over X is given by an object and the terminal object plays the role of the base space X.

In practice, X is the slice H/X of the previous ambient ∞-topos over X ∈ H, or the smaller ∞-topos
X = Sh∞(X) of (internal) ∞-stacks over X.

In topos-theory literature the role of H above is sometimes referred to as that of a gros topos and then the
role of X is referred to as that of a petit topos. The reader should beware that much of the classical literature
on gerbes is written from the point of view of only the petit topos X .

The original definition of a gerbe on X [Gir71] is: a stack E (i.e. a 1-truncated ∞-stack) over X that is
1. locally non-empty and 2. locally connected. In the more intrinsic language of higher topos theory, these
two conditions simply say that E is a connected object (Definition 6.5.1.10 in [L-Topos]): 1. the terminal
morphism E → ∗ is an effective epimorphism and 2. the 0th homotopy sheaf is trivial, π0(E) ' ∗. This
reformulation is made explicit in the literature for instance in Section 5 of [JaLu04] and in Section 7.2.2 of
[L-Topos]. Therefore:

Definition 5.1.323. For X an ∞-topos, a gerbe in X is an object E ∈ X which is

1. connected;

2. 1-truncated.

For X ∈ H an object, a gerbe E over X is a gerbe in the slice H/X . This is an object E ∈ H together with
an effective epimorphism E → X such that πi(E) = X for all i 6= 1.

Remark 5.1.324. Notice that conceptually this is different from the notion of bundle gerbe introduced in
[Mur96] (see [NW11a] for a review). We discuss in [NSS12c] that bundle gerbes are presentations of principal
∞-bundles (Definition 5.1.192). But gerbes – at least the G-gerbes considered in a moment in Definition
5.1.330 – are V -fiber ∞-bundles (Definition 5.1.241) hence associated to principal ∞-bundles (Proposition
5.1.249) with the special property of having pointed connected fibers. By Theorem 5.1.250 V -fiber∞-bundles
may be identified with their underlying Aut(V )-principal∞-bundles and so one may identify G-gerbes with
nonabelian Aut(BG)-bundle gerbes (see also around Proposition 5.1.333 below), but considered generally,
neither of these two notions is a special case of the other. Therefore the terminology is slightly unfortunate,
but it is standard.

Definition 5.1.323 has various obvious generalizations. The following is considered in [L-Topos].

Definition 5.1.325. For n ∈ N, an EM n-gerbe is an object E ∈ X which is

1. (n− 1)-connected;

2. n-truncated.

Remark 5.1.326. This is almost the definition of an Eilenberg-Mac Lane object in X , only that the condition
requiring a global section ∗ → E (hence X → E) is missing. Indeed, the Eilenberg-Mac Lane objects of
degree n in X are precisely the EM n-gerbes of trivial class, according to Proposition 5.1.333 below.

There is also an earlier established definition of 2-gerbes in the literature [Br94], which is more general
than EM 2-gerbes. Stated in the above fashion it reads as follows.

Definition 5.1.327 (Breen [Br94]). A 2-gerbe in X is an object E ∈ X which is
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1. connected;

2. 2-truncated.

This definition has an evident generalization to arbitrary degree, which we adopt here.

Definition 5.1.328. An n-gerbe in X is an object E ∈ X which is

1. connected;

2. n-truncated.

In particular an ∞-gerbe is a connected object.

The real interest is in those ∞-gerbes which have a prescribed typical fiber:

Remark 5.1.329. By the above, ∞-gerbes (and hence EM n-gerbes and 2-gerbes and hence gerbes) are
much like deloopings of ∞-groups (Theorem 5.1.151) only that there is no requirement that there exists
a global section. An ∞-gerbe for which there exists a global section X → E is called trivializable. By
Theorem 5.1.151 trivializable ∞-gerbes are equivalent to ∞-group objects in X (and the ∞-groupoids of all
of these are equivalent when transformations are required to preserve the canonical global section).

But locally every ∞-gerbe E is of this form. For let

(x∗ a x∗) : Grpd∞
oo x
∗

x∗
// X

be a topos point. Then the stalk x∗E ∈ Grpd∞ of the ∞-gerbe is connected: because inverse images
preserve the finite∞-limits involved in the definition of homotopy sheaves, and preserve the terminal object.
Therefore

π0 x
∗E ' x∗π0E ' x∗∗ ' ∗ .

Hence for every point x we have a stalk ∞-group Gx and an equivalence

x∗E ' BGx .

Therefore one is interested in the following notion.

Definition 5.1.330. For G ∈ Grp(X ) an ∞-group object, a G-∞-gerbe is an ∞-gerbe E such that there
exists

1. an effective epimorphism U // // X ;

2. an equivalence E|U ' BG|U .

Equivalently: a G-∞-gerbe is a BG-fiber ∞-bundle, according to Definition 5.1.241.

In words this says that a G-∞-gerbe is one that locally looks like the moduli ∞-stack of G-principal
∞-bundles.

Example 5.1.331. For X a topological space and X = Sh∞(X) the ∞-topos of ∞-sheaves over it, these
notions reduce to the following.

• a 0-group object G ∈ τ0Grp(X ) ⊂ Grp(X ) is a sheaf of groups on X (here τ0Grp(X ) denotes the
0-truncation of Grp(X );

• for {Ui → X} any open cover, the canonical morphism
∐
i Ui → X is an effective epimorphism to the

terminal object;

• (BG)|Ui is the stack of G|Ui-principal bundles (G|Ui-torsors).
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It is clear that one way to construct a G-∞-gerbe should be to start with an Aut(BG)-principal ∞-
bundle, Remark 5.1.263, and then canonically associate a fiber ∞-bundle to it.

Example 5.1.332. For G ∈ τ0Grp(Grpd∞) an ordinary group, Aut(BG) is usually called the automorphism
2-group of G. Its underlying groupoid is equivalent to

Aut(G)×G⇒ Aut(G),

the action groupoid for the action of G on Aut(G) via the homomorphism Ad: G→ Aut(G).

Corollary 5.1.333. Let X be a 1-localic ∞-topos, def. 3.1.3. Then for G ∈ Grp(X ) any ∞-group object,
G-∞-gerbes are classified by Aut(BG)-cohomology:

π0GGerbe ' π0X (X,BAut(BG)) =: H1
X (X,Aut(BG)) .

Proof. This is the special case of Theorem 5.1.250 for V = BG. �
For the case that G is 0-truncated (an ordinary group object) this is the content of Theorem 23 in [JaLu04].

Example 5.1.334. For G ∈ Grp(X ) ⊂ τ≤0Grp(X ) an ordinary 1-group object, this reproduces the classical
result of [Gir71], which originally motivated the whole subject: by Example 5.1.332 in this case Aut(BG)
is the traditional automorphism 2-group and H1

X (X,Aut(BG)) is Giraud’s nonabelian G-cohomology that
classifies G-gerbes (for arbitrary band, see Definition 5.1.340 below).

For G ∈ τ≤1Grp(X ) ⊂ Grp(X ) a 2-group, we recover the classification of 2-gerbes as in [Br94, Br06].

Remark 5.1.335. In Section 7.2.2 of [L-Topos] the special case that here we called EM-n-gerbes is consid-
ered. Beware that there are further differences: for instance the notion of morphisms between n-gerbes as
defined in [L-Topos] is more restrictive than the notion considered here. For instance with our definition (and
hence also that in [Br94]) each group automorphism of an abelian group object A induces an automorphism
of the trivial A-2-gerbe B2A. But, except for the identity, this is not admitted in [L-Topos] (manifestly so
by the diagram above Lemma 7.2.2.24 there). Accordingly, the classification result in [L-Topos] is different:
it involves the cohomology group Hn+1

X (X,A). Notice that there is a canonical morphism

Hn+1
X (X,A)→ H1

X (X,Aut(BnA))

induced from the morphism Bn+1A→ Aut(BnA).

We now discuss how the ∞-group extensions, Definition 5.1.302, given by the Postnikov stages of
Aut(BG) induces the notion of band of a gerbe, and how the corresponding twisted cohomology, according
to Remark 5.1.309, reproduces the original definition of nonabelian cohomology in [Gir71] and generalizes it
to higher degree.

Definition 5.1.336. Fix k ∈ N. For G ∈ ∞Grp(X ) a k-truncated ∞-group object (a (k + 1)-group), write

Out(G) := τkAut(BG)

for the k-truncation of Aut(BG). (Notice that this is still an∞-group, since by Lemma 6.5.1.2 in [L-Topos]
τn preserves all ∞-colimits and additionally all products.) We call this the outer automorphism n-group of
G.

In other words, we write
c : BAut(BG)→ BOut(G)

for the top Postnikov stage of BAut(BG).

Example 5.1.337. Let G ∈ τ0Grp(Grpd∞) be a 0-truncated group object, an ordinary group,. Then by
Example 5.1.332, Out(G) = Out(G) is the coimage of Ad : G→ Aut(G), which is the traditional group of
outer automorphisms of G.
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Definition 5.1.338. Write B2Z(G) for the ∞-fiber of the morphism c from Definition 5.1.336, fitting into
a fiber sequence

B2Z(G) // BAut(BG)

c

��
BOut(G)

.

We call Z(G) the center of the ∞-group G.

Example 5.1.339. For G an ordinary group, so that Aut(BG) is the automorphism 2-group from Example
5.1.332, Z(G) is the center of G in the traditional sense.

By theorem 5.1.333 there is an induced morphism

Band : π0GGerbe→ H1(X,Out(G)) .

Definition 5.1.340. For E ∈ GGerbe we call Band(E) the band of E.
By using Definition 5.1.338 in Definition 5.1.260, given a band [φX ] ∈ H1(X,Out(G)), we may regard it

as a twist for twisted Z(G)-cohomology, classifying G-gerbes with this band:

π0GGerbe[φX ](X) ' H2+[φX ](X,Z(G)) .

Remark 5.1.341. The original definition of gerbe with band in [Gir71] is slightly more general than that of
G-gerbe (with band) in [Br94]: in the former the local sheaf of groups whose delooping is locally equivalent
to the gerbe need not descend to the base. These more general Giraud gerbes are 1-gerbes in the sense of
Definition 5.1.328, but only the slightly more restrictive G-gerbes of Breen have the good property of being
connected fiber ∞-bundles. From our perspective this is the decisive property of gerbes, and the notion of
band is relevant only in this case.

Example 5.1.342. For G a 0-group this reduces to the notion of band as introduced in [Gir71], for the case
of G-gerbes as in [Br94].

5.1.20 Relative cohomology

We discuss the notion of relative cohomology internal to any ∞-topos H.

Definition 5.1.343. Let i : Y → X and f : B → A be two morphisms in H. We say that the ∞-groupoid
of relative cocycles on i with coefficients in f is the hom ∞-groupoid HI(i, f), where HI := Funct(∆[1],H).
The corresponding set of equivalence classes / homotopy classes we call the relative cohomology

HB
Y (X,A) := π0H

I(i, f) .

When A is understood to be a pointed object, B = ∗ is the terminal object and f : B ' ∗ → A is the
point inclusion, we speak for short of the cohomology of X with coefficients in A relative to Y and write

HY (X,A) := H∗Y (X,A) .

Proposition 5.1.344. The ∞-groupoid of relative cocycles fits into an ∞-pullback diagram of the form

HI(i, f) //

��

H(X,A)

i∗

��
H(Y,B)

f∗ // H(Y,A)

.
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Proof. Let C be an ∞-site of definition of H and

H ' ([Cop, sSet]proj,loc)◦

be a presentatin by simplicial presheaves as in 3.1.3. Then HI is presented by the, say, Reedy model structure
on simplicial functors from ∆[1] to simplicial presheaves

HI ' ([∆[1], [Cop, sSet]proj,loc]Reedy)◦ .

We may find for i : Y → X in H a presentation by a cofibration between cofibrant objects in [Cop, sSet]proj,loc,
and similarly for f : B → A a presentation by a fibration between fibrant objects. Let these same symbols
now denote these presentations. Then i is also cofibrant in the above presentation for HI and similarly f is
fibrant there.

This implies that the ∞-categorical hom space in question is given by the hom-simplicial set

HI(i, f) ' [∆[1], [Cop, sSet(i, f) .

This in turn is computed as the 1-categorical pullback of simplicial sets

[∆[1], [Cop, sSet(i, f) //

��

[Cop, sSet](X,A)

i∗

��
[Cop, sSet](Y,A)

f∗ // [Cop, sSet](Y,A)

.

Since [Cop, sSet] is a simplicial model category, and by assumption on our presentations for i and f , here
the bottom and the right morphism are Kan fibrations. Therefore by prop. 5.1.4 this presents a homotopy
pullback diagram, which proves the claim. �

Remark 5.1.345. This says in words that a cocycle relative to Y → X with coefficients in B → A is an
A-cocycle on X whose pullback to Y is equipped with a coboundary to a B-cocycle. In particular, in the
case that B ' ∗ it is an A-cocycle on X equipped with a trivialization of its pullback to Y .

In the case that B is not trivial, this definition of relative cohomology is a generalization of the twisted
cohomology discussed in 5.1.13.

Observation 5.1.346. Let c : X → A be a fixed A-cocycle on X. Then the fiber of the ∞-groupoid of
(i, f)-relative cocycles over c is equivalently the ∞-groupoid of [i∗c]-twisted cohomology on Y , according to
def. 5.1.260.

Proof. By the pasting law, prop. 5.1.2 the relative cocycles over c sitting in the top ∞-pullback square
of

HI(i, f)|c //

��

∗

c

��
HI(i, f) //

��

H(X,A)

i∗

��
H(Y,B)

f∗ // H(Y,A)

also form the ∞-pullback of the total rectangle, which is the ∞-groupoid of [i∗c]-twisted cocycles on Y . �
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Remark 5.1.347. In the special case that the coefficients B and A have a presentation by sheaves of chain
complexes in the image of the Dold-Kan correspondence, prop. 3.1.35, the morphism i∗ : H(X,A)→ H(Y,A)
has a presentation by a morphism of cochain complexes and the above∞-pullback may be computed in terms
of the dual mapping cone on this morphism. Specicially in the case that B ' ∗ the homotopy pullback is
presented by that dual mapping cone itself, and hence the relative cohomology is the cochain cohomology of
the mapping cone on i∗. In this form relative cohomology is traditionally defined in the literature.
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5.2
∫
a [ a ] – Structures in cohesive substance

We discuss differential geometric and differential cohomological structures that exist in any cohesive∞-topos,
def. 4.1.8.

We start with structures present in any local ∞-topos, def. 4.1.1.

• 5.2.1 – Codiscrete objects;

• 5.2.2 – Concrete objects.

Then we consider structures present in any locally ∞-connected topos def. 4.1.3.

• 5.2.3 – Geometric homotopy and Étale homotopy

• 5.2.4 – Concordance

• 5.2.5 – Universal coverings and geometric Whitehead towers

• 5.2.6 – Flat connections and local systems

• 5.2.7 – Galois theory

Finally we consider genuinely differential geometric structures present in a cohesive ∞-topos.

• 5.2.8 – A1-Homotopy and The Continuum

• 5.2.9 – Manifolds (unseparated)

• 5.2.10 – de Rham cohomology

• 5.2.11 – Exponentiated Lie algebras

• 5.2.12 – Maurer-Cartan forms and Curvature characteristic forms

• 5.2.13 – Differential cohomology

• 5.2.14 – Chern-Weil homomorphism and Chern-Simons Lagrangians

• 5.2.15 – Wess-Zumino-Witten terms

• 5.2.16 – Holonomy

• 5.2.17 – Prequantum geometry

• 5.2.18 – Local prequantum field theory

5.2.1 Codiscrete objects

Observation 5.2.1. The cartesian internal hom [−,−] : Hop × H → H is related to the external hom
H(−,−) : Hop ×H→∞Grpd by

H(−,−) ' Γ[−,−] ..
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Proof. The ∞-Yoneda lemma implies, by the same argument as for 1-categorical sheaf toposes, that the
internal hom is the ∞-stack given on any test object U by

[X,A](U) ' H(U, [X,A]) ' H(X × U,A).

By prop. 3.1.8 the global section functor Γ is given by evaluation on the point, so that

Γ([X,A]) ' H(∗, [X,A]) ' H(X × ∗, A) ' H(X,A) .

�

Proposition 5.2.2. The codiscrete objects in a local ∞-topos, hence in a cohesive ∞-topos, H are stable
under internal exponentiation: for all X ∈ H and A ∈ ∞Grpd we have

[X, coDiscA] ∈ H

is codiscrete. Specifically, the internal hom into a codiscrete object is the codiscretificartion of the external
hom

[X, coDiscA] ' coDiscH(X, coDiscA) .

Proof. The internal hom is the ∞-stack given by the assignment

[X, coDiscA] : U 7→ H(X × U, coDiscA) .

By the (Γ a Disc)-adjunction the right hand is

' ∞Grpd(Γ(X × U), A) .

Since Γ is also a right adjoint it preserves the product, so that

· · · ' ∞Grpd(Γ(X)× Γ(U), A) .

Using the cartesian closure of ∞Grpd this is

· · · ' ∞Grpd(Γ(U), [Γ(X), A]) .

Using again the (Γ a coDisc)-adjunction this is

· · · ' H(U, coDisc[Γ(X), A]).

Since all of these equivalence are natural, with the ∞-Yoneda lemma it finally follows that

[X, coDiscA] ' coDisc∞Grpd(Γ(X), A) ' coDiscH(X, coDiscA) .

�

5.2.2 Concrete objects

The cohesive structure on an object in a cohesive ∞-topos need not be supported by points. We discuss
a general abstract characterization of objects that do have an interpretation as bare n-groupoids equipped
with cohesive structure. Further refinements of these constructions are discussed further below in 5.2.13.4
for objects that serve as moduli of differential cocycles.

This section profited from discussion with David Carchedi at an early stage.
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5.2.2.1 General abstract

Proposition 5.2.3. On a cohesive ∞-topos H both Disc and coDisc are full and faithful ∞-functors and
coDisc exhibits ∞Grpd as a sub-∞-topos of H by an ∞-geometric embedding

∞Grpd
oo Γ
� �

coDisc
// H .

Proof. The full and faithfulness of Disc was shown in prop. 4.1.6 and that for coDisc follows from the
same kind of argument. Since Γ is also a right adjoint it preserves in particular finite ∞-limits, so that
(Γ a coDisc) is indeed an ∞-geometric morphism. �
Recall that we write

] := coDisc ◦ Γ

for the sharp modality, def. 4.1.12.

Corollary 5.2.4. The∞-topos∞Grpd is equivalent to the full sub-∞-category of H on those objects X ∈ H
for which the canonical morphism X → ]X is an equivalence.

Proof. This follows by general facts about reflective sub-∞-categories ([L-Topos], section 5.5.4). �

Proposition 5.2.5. Let H be the ∞-topos over an ∞-cohesive site C, def. 4.1.31. For a 0-truncated object
X in H the morphism

X → ]X

is a monomorphism precisely if X is a concrete sheaf in the traditional sense of [Dub79].

Proof. Monomorphisms of sheaves are detected objectwise. So by the Yoneda lemma and using the
(Γ a coDisc)-adjunction we have that X → coDisc ΓX is a monomorphism precisely if for all U ∈ C the
morphism

X(U) ' H(U,X)→ H(U, coDisc ΓX) ' H(Γ(U),Γ(X))

is a monomorphism. This is the traditional definition. �

Definition 5.2.6. For X ∈ H, write

X =: ]∞X // · · · // ]2X // ]1X // ]0X := ]X

for the tower of n-image factorizations, def. 5.1.56, of the unit X → ]X of the sharp modality, hence with

]nX := imn(X → ]X)

for all n ∈ N.

Proposition 5.2.7. The operations ]n in def. 5.2.6 preserves products.

Proof. By prop. 5.1.57. �

Definition 5.2.8. For X a cohesive object equipped with a co-filtration F •X, we say that its concretification
is the iterated homotopy fiber product

Conc(F •X) := ]1F
0X ×

]1F 1X
]2F

1X ×
]2F 2X

· · · ,

where ]n and the natural morphisms in the fiber product are as in def. 5.2.6, or rather, is the canonical
morphism

X −→ Conc(F •X) .

We say that X with its co-filtration F •X is concrete if this morphism is an equivalence.
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Example 5.2.9. If the co-filtration F •X is constant, i.e. with each FnX → Fn+1X an equivalence, then
all the left factors in the iterated fiber product of def. 5.2.8 are equivalences, and hence in this case the
iterated fiber product converges to

Conc(F •X) ' ]∞X ' X .

Example 5.2.10. If the co-filtration F •X truncates after the first term

F • = (X → ∗ → ∗ → · · · )

then all the right factors in def. 5.2.8 are equivalences, and hence in this case the iterated fiber product
converges to

Conc(F •X) ' ]1X .

If in addition X is 0-truncated and the cohesive topos has a 1-site of definition, then, by prop. 5.2.5, X
being concrete in the sense of def. 5.2.8 with respect to this cofiltration is equivalent to it being a concrete
sheaf in the traditional sense.

Proposition 5.2.11. When X equipped with an ∞-action by an ∞-group G, def. 5.1.267, and when the
cofiltration F •X is by G-actions and G-action homomorphisms, then there is an induced G-action on the
concretification Conc(F •X), def. 5.2.8, such that the concretification morphism X → Conc(F •X) is an
action homomorphism.

Proof. First observe that if an ∞-group G acts on any X, then ]nG canonically acts on ]nX, since ]n
preserves products, by prop. 5.2.7, and hence the simplicial objects that exhibit the action. Hence there is
a natural system of homotopy fiber sequences of the form

]nF
pX −→ (]nF

pX)//(]nG) −→ B]nX

as n and p vary. Consider then in all three places of this fiber sequence the iterated homotopy fiber product
of the shape which defines concretification in def. 5.2.8, where we take the co-filtration on BG to be trivial.
By def. 5.2.8 and by example 5.2.9, using that ∞-limits commute over each other and finally using prop.
5.1.267, the result is a homotopy fiber sequence of the form

Conc(X) −→ Conc(X)//G −→ BG

which exhibits the desired ∞-action. By construction and by the assumptions, the concretification map
X → Conc(X) is the universal map into an ∞-limit all whose components are G-homomorphisms, hence it
is itself a homomorphism. �

5.2.2.2 Presentations We discuss presentations of n-concrete objects for low n.

Proposition 5.2.12. Let C be an ∞-cohesive site, 4.1.2.2, and let A ∈ Sh∞(C) be a 1-truncated object
that has a presentation by a groupoid-valued presheaf on C which is fibrant as a simplicial presheaf. Then

A
'−→ ]1A if in degree 1 A is a concrete sheaf. Moreover ]1A has a presentation by a presheaf of groupoids

which in degree 1 is a concrete sheaf.

Proof. Any functor f : X → Y between groupoids has a factorization X → im1f → Y , where the
groupoid im1f has the same objects as X and has as morphisms equivalence classes [ξ] of morphisms ξ in X
under the relation [ξ1] = [ξ2] precisely if f(ξ1) = f(ξ)2. The evident functor im1f → Y is manifestly faithful
and this factorization is natural. Therefore if now f is a morphism of presheaves of groupoids, it, too, has a
factorization wich is objectwise of this form.

By the discussion in 4.1.2.2, over an ∞-cohesive site the units ηX : X → ]X of the (Γ a coDisc)-
∞-adjunction are presented for fibrant simplicial presheaf representatives X by morphisms of simplicial

441



presheaves that object- and degreewise send the value set of a presheaf to the set of concrete values. By the
previous paragraph and prop. 5.1.88 it follows that the 1-image factorization X → im1ηX → ]X is in the
second morphism objectwise a faithful functor. This means that the hom-presheaf (im1ηX)1 is a concrete
sheaf on C. �

5.2.3 Geometric homotopy and Étale homotopy

We discuss internal realizations of the notions of geometric realization, and geometric homotopy in any locally
∞-connected ∞-topos H.

Definition 5.2.13. For H a locally ∞-connected ∞-topos and X ∈ H an object, we call Π(X) ∈ ∞Grpd,
hence

∫
X ∈ ∞Grpd ↪→ H, the fundamental ∞-groupoid of X.

The ordinary homotopy groups of Π(X), def. 5.1.100, example 5.1.102, we call the geometric homotopy
groups of X (as in remark 5.1.103)

πgeom
• (X ∈ H) := π•(Π(X ∈ ∞Grpd)) .

Definition 5.2.14. For | − | :∞Grpd
'→ Top the canonical equivalence of ∞-toposes, we write

|X| := |ΠX| ∈ Top

and call this the geometric realization of X.

Remark 5.2.15. In presentations of H by simplicial presheaves, as in prop. 4.1.32, aspects of this abstract
notion are more or less implicit in the literature. See for instance around remark 2.22 of [SiTe]. The key
insight is already in [ArMa69], if somewhat implicitly. This we discuss in detail in 6.3.5.

In some applications we need the following characterization of geometric homotopies in a cohesive ∞-
topos.

Definition 5.2.16. We say a geometric homotopy between two morphisms f, g : X → Y in H is a diagram

X

(Id,i)

��

f

""
X × I

η // Y

X

(Id,o)

OO

g

<<

such that I is geometrically connected, πgeom0 (I) = ∗.
Proposition 5.2.17. If two morphism f, g : X → Y in a cohesive ∞-topos H are geometrically homotopic
then their images Π(f),Π(g) are equivalent in ∞Grpd.

Proof. By the condition that Π preserves products in a strongly∞-connected∞-topos we have that the
image of the geometric homotopy in ∞Grpd is a diagram of the form

Π(X)

(Id,Π(i))

��

Π(f)

&&
Π(X)×Π(I)

Π(η) // Π(Y )

Π(X)

(Id,Π(o))

OO

Π(g)

88
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Since Π(I) is connected by assumption, there is a diagram

∗

Π(i)

��
∗

==

!!

// Π(I)

∗

Π(o)

OO

in ∞Grpd (filled with homotopies, which we do not display, as usual, that connect the three points in
Π(I)). Taking the product of this diagram with Π(X) and pasting the result to the above image Π(η) of the
geometric homotopy constructs the equivalence Π(f)⇒ Π(g) in ∞Grpd. �

We consider a refinement of these kinds of considerations below in 5.2.8.

Proposition 5.2.18. For H a locally ∞-connected ∞-topos, also all its objects X ∈ H are locally ∞-
connected, in the sense that their over-∞-toposes H/X are locally ∞-connected (ΠX a ∆X a ΓX) : H/X →
∞Grpd.

The two notions of fundamental ∞-groupoids of any object X induced this way do agree, in that there is
a natural equivalence

ΠX(X ∈ H/X) ' Π(X ∈ H) .

Proof. By the general properties of over-∞-toposes ([L-Topos], prop 6.3.5.1) we have a a composite
essential ∞-geometric morphism

(ΠX a ∆X a ΓX) : H/X

X! //
oo X∗

X∗

// H

Π //
oo ∆

Γ
// ∞Grpd

and X! is given by sending (Y → X) ∈ H/X to Y ∈ H. �

The fundamental ∞-groupoid ΠX of objects X in H may be reflected back into H, where it gives a
notion of geometric homotopy path n-groupoids and a geometric notion of Postnikov towers of objects in H.

Recall from def. 4.1.11 the pair of adjoint endofunctors

(
∫
a [) : H→ H

on any locally connected ∞-topos H.
We say for any X,A ∈ H

•
∫

(X) is the path ∞-groupoid of X – the reflection of the fundamental∞-groupoid from 5.2.3 back into
the cohesive context of H;

• [A (“flat A”) is the coefficient object for flat differential A-cohomology or for A-local systems (discussed
below in 5.2.6).

Write

(τn a in) : H≤n

τn←
↪→
i

H

for the reflective sub-∞-category of n-truncated objects ([L-Topos], section 5.5.6) and

τn : H
τn→ H≤n ↪→ H
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for the localization funtor. We say ∫
n

: H

∫
n→ H

τn→ H

is the homotopy path n-groupoid functor. The (truncated) components of the (Π a Disc)-unit

X →
∫
n
(X)

we call the constant path inclusion. Dually we have canonical morphisms

[A→ A

natural in A ∈ H.

Definition 5.2.19. For X ∈ H we say that the geometric Postnikov tower of X is the categorical Postnikov
tower ([L-Topos] def. 5.5.6.23) of

∫
(X) ∈ H :∫

(X)→ · · · →
∫

2
(X)→

∫
1
(X)→

∫
0
(X) .

The main purpose of geometric Postnikov towers for us is the notion of geometric Whitehead towers that
they induce, discussed in the next section.

5.2.4 Concordance

We formulate the notion of concordance (of bundles or cocycles) abstractly internal to a cohesive ∞-topos.

Definition 5.2.20. For H a cohesive ∞-topos and X,A ∈ H two objects, we say that the ∞-groupoid of
concordances from X to A is

Concord(X,A) := Π[X,A] ,

where [−,−] : Hop ×H→ H is the internal hom.

Observation 5.2.21. For X,A,B ∈ H three objects, there is a canonical composition ∞-functor of con-
cordances between them

Concord(X,A)× Concord(A,B)→ Concord(X,B) .

Using that, by the axioms of cohesion, Π preserves products, this is the image under Π of the composition
on internal homs

[X,A]× [A,B]→ [X,B] .

5.2.5 Universal coverings and geometric Whitehead towers

We discuss an intrinsic notion of Whitehead towers in a locally ∞-connected ∞-topos H.

Definition 5.2.22. For X ∈ H a pointed object, the geometric Whitehead tower of X is the sequence of
objects

X(∞) → · · · → X(2) → X(1) → X(0) ' X

in H, where for each n ∈ N the object X(n+1) is the homotopy fiber of the canonical morphism X →
∫
n+1

X

to the path (n + 1)-groupoid of X (5.2.3). We call X(n+1) the (n + 1)-fold universal covering space of X.
We write X(∞) for the homotopy fiber of the untruncated constant path inclusion.

X(∞) → X →
∫

(X) .
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Here the morphisms X(n) → Xn−1 are those induced from this pasting diagram of ∞-pullbacks

X(n) //

��

∗

��
X(n−1)

��

// Bn
∫
n
(X)

��

// ∗

��
X //

∫
n
(X)

τ≤(n−1)//
∫

(n−1)
(X)

,

where the object Bn
∫
n
(X) is defined as the homotopy fiber of the bottom right morphism.

Proposition 5.2.23. Every object X in a cohesive ∞-topos H is covered by objects of the form X(∞) for
different choices of base points in X, in the sense that every X is the∞-colimit over a diagram whose vertices
are of this form.

Proof. Consider the diagram

lim
−→s∈Π(X)

(i∗∗s) //

'

��

lim
−→s∈Π(X)

∗s

'
��

X
i //

∫
(X)

.

The bottom morphism is the constant path inclusion, the (Π a Disc)-unit. The right morphism is the

equivalence that is the image under Disc of the decomposition lim
−→S
∗ '→ S of every ∞-groupoid as the ∞-

colimit over itself of the ∞-functor constant on the point. The left morphism is the ∞-pullback along i of
this equivalence, hence itself an equivalence. By universality of ∞-colimits in the ∞-topos H, the top left
object is the ∞-colimit over the single homotopy fibers i∗∗s of the form X(∞) as indicated. �
We would like to claim that moreover each of the patches i∗∗ ' X(∞) of the object X in a cohesive∞-topos

is geometrically contractible, thus exhibiting a generic cover of any object by contractibles. Without further
assumption, we have the following slightly weaker statement.

Proposition 5.2.24. The inclusion Π(i∗∗)→ Π(X) of the fundamental ∞-groupoid Π(i∗∗) of each of these
patches into Π(X) is homotopic to the point.

Proof. We apply Π(−) to the above diagram over a single vertex s and attach the (Π a Disc)-counit to
get

Π(i∗∗) //

��

∗

��
Π(X)

Π(i) // Π Disc Π(X) // Π(X)

.

Then the bottom morphism is an equivalence by the (Π a Disc)-zig-zag-identity. �
But with an assumption that is verified in most of the models of interest, the full statement follows:

Proposition 5.2.25. If H has an ∞-cohesive site of definition, def. 4.1.31, then

• the objects X(∞) of def. 5.2.22 are geometrically contractible;

• every object X ∈ H is the ∞-colimit of geometrically contractible objects.

Proof. The first statement follows by applying prop. 4.1.35 to the defining homotopy pullback of X(∞)

in def. 5.2.22. The second follows from this by prop. 5.2.23. �
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5.2.6 Flat connections and local systems

We describe for a locally ∞-connected ∞-topos H a canonical intrinsic notion of flat connections on ∞-
bundles, flat higher parallel transport and ∞-local systems.

Let
∫

: H→ H be the path ∞-groupoid functor from def. 4.1.11, discussed in 5.2.3.

Definition 5.2.26. For X,A ∈ H we write

Hflat(X,A) := H(
∫
X,A)

and call Hflat(X,A) := π0Hflat(X,A) the flat (nonabelian) differential cohomology of X with coefficients in
A. We say a morphism ∇ :

∫
(X)→ A is a flat ∞-connnection on the principal ∞-bundle corresponding to

X →
∫

(X)
∇→ A, or an A-local system on X.

The induced morphism
Hflat(X,A)→ H(X,A)

we say is the forgetful functor that forgets flat connections.

The object
∫

(X) has the interpretation of the path ∞-groupoid of X: it is a cohesive ∞-groupoid whose
k-morphisms may be thought of as generated from the k-morphisms in X and k-dimensional cohesive paths
in X. Accordingly a mophism

∫
(X)→ A may be thought of as assigning

• to each point of X a fiber in A;

• to each path in X an equivalence between these fibers;

• to each disk in X a 2-equivalalence between these equivaleces associated to its boundary

• and so on.

This we think of as encoding a flat higher parallel transport on X, coming from some flat ∞-connection and
defining this flat ∞-connection.

Observation 5.2.27. By the (
∫
a [)-adjunction we have a natural equivalence

Hflat(X,A) ' H(X, [A) .

A cocycle g : X → A for a principal ∞-bundle on X is in the image of

Hflat(X,A)→ H(X,A)

precisely if there is a lift ∇ in the diagram

[A

��
X

∇
>>

g // A

.

We call [A the coefficient object for flat A-connections.

Proposition 5.2.28. For G := Disc(G0) ∈ H discrete∞-group (5.1.9) the canonical morphism Hflat(X,BG)→
H(X,BG) is an equivalence.

Proof. This follows by definition 4.1.11 [ = Disc Γ and using that Disc is full and faithful. �
This says that for discrete structure ∞-groups G there is an essentially unique flat ∞-connection on any

G-principal ∞-bundle. Moreover, the further equivalence

H(
∫

(X),BG) ' Hflat(X,BG) ' H(X,BG)
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may be read as saying that the G-principal ∞-bundle for discrete G is entirely characterized by the flat
higher parallel transport of this unique ∞-connection.

Below in 5.2.7 we discuss in more detail the total spaces classified by ∞-local systems.
For later use we record:

Lemma 5.2.29. Over an ∞-cohesive site, def. 4.1.31, The flat modality [ commutes with n-truncation, def.
5.1.49: for A ∈ H and any n then

τn[A
' //

��

[τnA

��
τnA τnA

where the vertical morphisms are given by the counit of [ on τnA and by the image under τn of the [-unit on
A, respectively.

Proof. By prop. 4.1.32 [(−) is represented on simplicial presheaves over the ∞-cohesive site by send-
ing a presheaf A to the presheaf const(A(∗)) which is constant on its point evaluation. By prop. 5.1.55
the n-truncation operation is represented on Kan complexes by the (n + 1)-coskeleton operation and on
fibrant simplicial presheaves by the objectwise prolongation of this operation. With this the claim follows
immediately.

5.2.7 Galois theory

We discuss a canonical internal realization of locally constant ∞-stacks and their classification by Galois
theory inside any cohesive ∞-topos.

Classical Galois theory is the classification of certain extensions of a field K. Viewing the formal dual
Spec(K) as a space, this generalizes to Galois theory of schemes, which classifies κ-compact étale morphisms
E → X over a connected scheme X by functors

Π1(X) ' Bπ1(X)→ Setκ

from the classifying groupoid of the fundamental group of X (defined thereby) to the category of κ-small
sets. See for instance [Len85] for an account.

From the point of view of topos theory over the étale site, κ-compact étale morphisms are equivalently
sheaves (namely the sheaves of local sections of the étale morphism) that are locally constant on κ-small sets.
The notion of locally constant sheaves of course exists over any site and in any topos whatsoever, and hence
topos theoretic Galois theory more generally classifies locally constant sheaves. A general abstract category
theoretic discussion of such generalized Galois theory is given by Janelidze, whose construction in the form
of [CJKP97] we generalize below to locally connected ∞-toposes.

A generalization of Galois theory from topos theory to∞-topos theory as a classification of locally constant
∞-stacks was envisioned by Grothendieck and, for the special case over topological spaces, first formalized
in [Toë00], where it is shown that the homotopy-type of a connected locally contractible topological space X
is the automorphism ∞-group of the fiber functor on locally constant ∞-stacks over X. Similar discussion
appeared later in [PoWa05] and [Shu07].

We show below that this central statement of higher Galois theory holds generally in every ∞-connected
∞-topos.

For κ an uncountable regular cardinal, write

Core∞Grpdκ ∈ ∞Grpd

for the ∞-groupoid of κ-small ∞-groupoids, def. 6.2.19.
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Definition 5.2.30. For X ∈ H write

LConst(X) := H(X,Disc(Core∞Grpdκ))

for the cocycle ∞-groupoid on X with coefficients in the discretely cohesive ∞-groupoid on the ∞-groupoid
of κ-small ∞-groupoids. We call this the ∞-groupoid of locally constant ∞-stacks on X.

Observation 5.2.31. Since Disc is left adjoint and right adjoint, it commutes with coproducts and with
delooping, def. 5.1.152, so that by remark 6.2.20 we have

Disc(Core∞Grpdκ) '
∐
i

B Disc(Aut(Fi)) .

Therefore, by the discussion in 5.1.11, a locally constant ∞-stack P ∈ LConst(X) may be identified on each
geometric connected component of X with the total space of a Disc Aut(Fi)-principal ∞-bundle P → X.

Moreover, by the discussion in 5.1.14, to each such Aut(Fi)-principal ∞-bundle is canonically associated
a Disc(Fi)-fiber ∞-bundle E → X. This is the ∞-pullback

E //

��

Disc(Fi)//Disc(Aut(Fi))

��
X // BDisc(Aut(Fi))

.

Since by corollary 6.2.25 every discrete ∞-bundle with κ-small fibers over connected X arises this way,
essentially uniquely, we may canonically identify the morphism E → X with an object E ∈ H/X in the little
topos over X, which interprets as the ∞-topos of ∞-stacks over X, as discussed at the beginning of 5.1.19.
This way the objects of LConst(X) are indeed identified with ∞-stacks over X.

The following proposition says that the central statement of Galois theory holds for the notion of locally
constant ∞-stacks in a cohesive ∞-topos.

Proposition 5.2.32. For H locally and globally ∞-connected, we have

1. a natural equivalence
LConst(X) ' ∞Grpd(Π(X),∞Grpdκ)

of locally constant ∞-stacks on X with ∞-permutation representations of the fundamental ∞-groupoid
of X ( local systems on X);

2. for every point x : ∗ → X a natural equivalence of the endomorphisms of the fiber functor

x∗ : LConst(X)→∞Grpdκ

and the loop space of Π(X) at x
End(x∗) ' ΩxΠ(X) .

Proof. The first statement is essentially the (Π a Disc)-adjunction :

LConst(X) := H(X,Disc(Core∞Grpdκ))

' ∞Grpd(Π(X),Core∞Grpdκ)

' ∞Grpd(Π(X),∞Grpdκ)

.

Using this and that Π preserves the terminal object, so that the adjunct of (∗ → X → Disc Core∞Grpdκ) is
(∗ → Π(X)→∞Grpdκ), the second statement follows with an iterated application of the∞-Yoneda lemma:
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The fiber functor x∗ : Func∞(Π(X),∞Grpd)→∞Grpd evaluates an∞-presheaf on Π(X)op at x ∈ Π(X).
By the∞-Yoneda lemma this is the same as homming out of j(x), where j : Π(X)op → Func(Π(X),∞Grpd)
is the ∞-Yoneda embedding:

x∗ ' HomPSh(Π(X)op)(j(x),−) .

This means that x∗ itself is a representable object in PSh∞(PSh∞(Π(X)op)op). If we denote by j̃ :
PSh∞(Π(X)op)op → PSh∞(PSh∞(Π(X)op)op) the corresponding Yoneda embedding, then

x∗ ' j̃(j(x)) .

With this, we compute the endomorphisms of x∗ by applying the ∞-Yoneda lemma two more times:

End(x∗) ' EndPSh(PSh(Π(X)op)op)(j̃(j(x)))

' End(PSh(Π(X))op)(j(x))

' EndΠ(X)op(x, x)

' AutxΠ(X)

=: ΩxΠ(X)

.

�

Next we discuss how this intrinsic Galois theory in a cohesive ∞-topos is in line with the categorical
Galois theory of Janelidze, as treated in [CJKP97]. This revolves around factorization systems associated
with the path functor

∫
from 5.2.3.

Definition 5.2.33. For f : X → Y a morphism in H, write

c∫ f := Y ×∫
Y

∫
(X)→ Y

for the ∞-pullback in

c∫ f //

��

∫
X∫

f

��
Y //

∫
Y

,

where the bottom morphism is the (Π a Disc)-unit. We say that c∫ f is the
∫

-closure of f , and that f is∫
-closed if X ' c∫ f .

Remark 5.2.34. In the discussion of differential cohesion below in 4.2 we see that the infinitesimal analog
of
∫

-closesness is formal étaleness, see def. 5.3.19 below. There is a close conceptual relation: as we now

discuss (prop. 5.2.42 below) morphisms X
f→ Y that are

∫
-closed may be identified with the total space

projections of locally constant ∞-stacks over Y . Accordingly in a context of differential cohesion, =-closed
such morphisms may be interpreted as projections out of total spaces of general ∞-stacks over Y .

Definition 5.2.35. Call a morphism f : X → Y in H a Π-equivalence if Π(f) is an equivalence in ∞Grpd.

Remark 5.2.36. Since Disc :∞Grpd→ H is full and faithful, we may equivalently speak of
∫

-equivalences.

Proposition 5.2.37. If H has an ∞-connected site of definition, then every morphism f : X → Y in H
factors as

X
f //

f ′

  

Y

c∫
f

>> ,

where f ′ is a
∫

-equivalence.

449



Proof. This is a special case of prop. 2.2.11. The naturality of the adjunction unit together with the
universality of the ∞-pullback that defines c∫ f gives the factorization

X
f ′ //

f
##

Y ×∫
Y

∫
X //

��

∫
X∫

f

��
Y //

∫
Y

.

By prop. 4.1.35 the functor Π preserves the above ∞-pullback. Since Π(X →
∫
X) is an equivalence, it

follows that
∫
X is also a pullback of the

∫
-image of the diagram, and hence

∫
(f ′) is an equivalence. �

Proposition 5.2.38. For H with an ∞-cohesive site of definition, the pair of classes of morphisms

(
∫

-equivalences,
∫

-closed morphisms) ⊂ Mor(H)×Mor(H)

constitutes an orthogonal factorization system.

Proof. By prop. 2.2.11. �
We now identifiy the

∫
-closed morphisms with covering spaces, hence with total spaces of locally constant

∞-stacks.

Observation 5.2.39. For f : X → Y a
∫

-closed morphism, its fibers Xy over global points y : ∗ → Y are
discrete objects.

Proof. By assumption and using the pasting law, prop. 5.1.2, it follows that the fibers of f are the fibers
of
∫
f . Since the terminal object is discrete and since Disc preserves∞-pullbacks, these are the images under

Disc of fibers of Πf , and hence are discrete. �
Conversely we have:

Example 5.2.40. Let X ∈ H be any object, and let A ∈ ∞Grpd be any discrete ∞-groupoid. Then the
projection morphism p : X ×Disc(A)→ X out of the product is

∫
-closed.

Proof. Since
∫

preserves products, by the axioms of cohesion, and Disc preserves products as a right
adjoint and is moreover full and faithful, we have that

∫
(p) is the projection∫

(p) :
∫

(X)×Disc(A)→
∫

(X) .

Since ∞-limits commute with ∞-limits, it follows that

X ×Disc(A) //

��

∫
(X)×Disc(A)

��
X //

∫
(X)

is an ∞-pullback. �

Remark 5.2.41. Morphisms of the form X ×Disc(A)→ X fit into pasting diagrams of ∞-pullbacks of the
form

X ×Disc(A) //

��

Disc(A) //

��

Disc(A//Aut(A))

��
X // ∗ // BDisc(Aut(A))

,
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where the square on the right is the universal discrete A-bundle, by the discussion in 5.1.14. According
to def. 5.2.30 the composite morphism on the bottom classifies the trivial locally constant ∞-stack with
fiber A over X, hence the constant ∞-stack with fiber A over X. Therefore the above ∞-pullback exhibits
X ×Disc(A)→ X as the total space incarnation of that constant ∞-stack on X.

The following proposition generalizes this statement to all locally constant ∞-stacks over X.

Proposition 5.2.42. Let H have an ∞-cohesive site of definition, 4.1.2.2. Then for any X ∈ H the locally
constant ∞-stacks E ∈ LConst(X), regarded as ∞-bundle morphisms p : E → X by observation 5.2.31, are
precisely the

∫
-closed morphisms into X.

Proof. We may without restriction of generality assume that X has a single geometric connected com-
ponent. Then E → X is given by an ∞-pullback of the form

E //

p

��

Disc(Fi//Aut(Fi))

��
X

g // BDiscAut(Fi)

.

By prop. 4.1.35 the functor Π preserves this ∞-pullback, so that also∫
E //

��

Disc(Fi//Aut(Fi))

��∫
X

∫
g
// BDisc Aut(Fi)

is an ∞-pullback, where we used that, by the axioms of cohesion,
∫

sends discrete objects to themselves.
By def. 5.2.33 the factorization in question is given by forming the ∞-pullback on the left of

X ×∫
X

∫
E //

��

∫
E //

��

Disc(Fi//Aut(Fi))

��
X //

∫
X

∫
g
// BDiscAut(Fi)

.

By the universal property of the (Π a Disc)-reflection, the bottom composite is again equivalent to g, hence
by the pasting law, prop. 5.1.2, it follows that the pullback on the left is equivalent to E → X.

Conversely, if the ∞-pullback diagram on the left is given, it follows with prop. 6.2.23 and using, by
definition of cohesion, that Disc is full and faithful, that an ∞-pullback square as on the right exists. Again
by the pasting law, this implies that the morphism on the left is the total space projection of a locally
constant ∞-stack over X. �

Remark 5.2.43. In the “1-categorical Galois theory” of [CJKP97] only the trivial discrete ∞-bundles arise
as pullbacks this way, and much of the theory deals with getting around this restriction. In our language, this
is because in the context of 1-categorical cohesion, as in [Law07], the ∞-functor

∫
reduces to the 1-functor∫

0
' τ0 ◦

∫
, discussed in 5.2.3, on a locally connected and connected 1-topos, which assigns only the set of

connected components, instead of the full path ∞-groupoid.
Clearly, the pullback over an object of the form

∫
0
K is indeed a locally constant ∞-stack that is trivial

as a discretely fibered ∞-bundle. But this restriction is lifted by passing from cohesive 1-toposes to cohesive
∞-toposes.

We now characterize locally constant ∞-stacks over X as precisely the “relatively discrete” objects over
X. To that end, recall, by prop. 5.2.18, that for H a locally∞-connected∞-topos also all the slice∞-toposes
X := H/X for all objects X ∈ H are locally ∞-connected.
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Definition 5.2.44. For X ∈ H an object in a cohesive ∞-topos H and

H/X

p! //
oo p∗

p∗
//∞Grpd

the corresponding locally ∞-connected terminal geometric morphism, write

H/X

p!/X //
oo p∗/X ∞Grpd/Π(X)

for the induced ∞-adjunction on the slices, by prop. 5.2.5.1 in [L-Topos], where the left adjoint p!/X sends
(E → X) to (Π(E)→ Π(X)).

Proposition 5.2.45. Let the cohesive ∞-topos H have an ∞-cohesive site of definition, def. 4.1.31 and let
X ∈ H be any object.

The full sub-∞-category of H/X on the
∫

-closed morphisms into X, def. 5.2.33, hence on the locally
constant ∞-stacks over X, prop. 5.2.42, is equivalent to the image of the moprhism p∗/X :∞Grpd/Π(X) →
H/X .

Proof. By prop 5.2.5.1 in [L-Topos], the ∞-functor p∗/X is the composite

p∗/X : ∞Grpd/Π(X)
Disc // H

/
∫ X×∫

(X)
(−)

// H/X .

This sends a morphism Q→ Π(X) to the pullback on the left of the pullback square

E //

��

Disc(Q)

��
X //

∫
(X)

.

Since Π preserves this ∞-pullback, by prop. 4.1.35, and sends X →
∫

(X) to an equivalence, it follows that
Π(E → X) is equivalent to Q→ Π(X) and hence the above pullback diagram looks like

E //

��

∫
(E)

��
X //

∫
(X)

.

The naturality of the (Π a Disc)-unit and the universality of the pullback imply that the top horizontal
morphism here is indeed the E-component of the (Π a Disc) unit.

This shows that, up to equivalence, precisely the
∫

-closed morphism E → X arise this way. �

Remark 5.2.46. A definition of locally constant objects in general ∞-toposes is given in section A.1 of
[L-Alg]. The above prop. 5.2.45 together with theorem A.1.15 in [L-Topos] shows that restricted to the slices
H/X it coincides with the definition discussed here.
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5.2.8 A1-Homotopy and The Continuum

We formalize in a cohesive ∞-topos H the notion of the continuum in the sense in which the standard real
line R is traditionally called the continuum. Abstractly this is an object A1 ∈ H which, when regarded
as a line object, induces the geometric homotopy in H as discussed in 5.2.3. Explicitly this means that∫

: H
Π // ∞Grpd �

� // H exhibits the localization of H which inverts all those morphisms that are

products of an object with the terminal morphism A1 → ∗. Since by cohesion
∫

(∗) ' ∗, this means in
particular that such an A1 is a geometrically contractible object in that

∫
(A1) ' ∗. Together this are the

characterizing property of the archetypical “continuum” R. Below in 5.2.9 we discuss how a continuum line
object induces a notion of manifold objects in H.

Remark 5.2.47. The ∞-topos H, being in particular a presentable ∞-category, admits a choice of a small
set {ci ∈ H}i of generating objects, and every small set of morphisms in H induces a full reflective sub-∞-
category of objects that are local with respect to these morphisms.

This is [L-Topos], section 5.

Definition 5.2.48. For H a cohesive∞-topos, we say an object A ∈ H is an continuum line object exhibiting
the cohesion of H if the reflective inclusion of the discrete objects

(Π a Disc) : ∞Grpd
oo Π
� �

Disc
// H

is induced by the localization at the set of morphisms

S := {ci × (A→ ∗)}i, ,

for {ci}i some small set of generators of H, hence

Remark 5.2.49. In this situation, for X ∈ H we may think of Π(X) also as the A-localization of X.

Remark 5.2.50. A supergeometric version of def. 5.2.48 may be considered in solid ∞-toposes, this we
discuss below in def. 6.6.17.

A class of examples of this situation is the following.

Proposition 5.2.51. Let C be an ∞-cohesive site, def. 4.1.31, which moreover is the syntactic category of
a Lawvere algebraic theory (see chapter 3, volume 2 of [Borc94]), in that it has finite products and there is
an object

A1 ∈ C

such that every other object is isomorphic to an n-fold cartesian product An = (A1)n.
Then A1 ∈ C ↪→ Sh∞(C) is a geometric interval exhibiting the cohesion, def. 5.2.48, of the ∞-topos over

C.

Proof. A set of generating objects of H = Sh∞(C) is given by the set of isomorphism classes of objects
of C, hence, by assumption, by {An}n∈N. The set of localizing morphisms is therefore

S := {An+1 → An | n ∈ N} .

By prop. 4.1.32, H is presented by the model category [Cop, sSet]proj,loc. By the proof of [L-Topos] cor.
A.3.7.10 the localization of H at S is presented by the left Bousfield localization of this model category at
S, given by a Quillen adjunction to be denoted

(LA1 a RA1) : [Cop, sSet]proj,loc,A1

oo id

id
// [Cop, sSet]proj,loc .
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Observe that we also have a Quillen adjunction

(const a (−)∗) : [Cop, sSet]proj,loc,A1

oo const

(−)∗

// sSetQuillen ,

where the right adjoint evaluates at the terminal object A0, and where the left adjoint produces constant
simplicial presheaves. This is because the two functors are clearly a Quillen adjunction before localization
(on [Cop, sSet]proj) and so by [L-Topos, cor. A.3.7.2] it is sufficient to observe that on the local structure the
right adjoint still preserves fibrant objects, which it does because the fibrant objects in the localization are
in particular fibrant in the unlocalized structure.

Moreover, we claim that (const a (−)∗) is in fact a Quillen equivalence, by observing that the derived
adjunction unit and counit are equivalences. For the derived adjunction unit, notice that by the proof of
prop. 4.1.32 a constant Kan-simplicial presheaf is fibrant in [Cop, sSet]proj,loc, and so it is clearly fibrant
in [Cop, sSet]proj,loc,A1 . Therefore the plain adjunction unit, which is the identity, is already the derived
adjunction unit. For the derived counit, let X ∈ [Cop, sSet]proj,loc,A1 be fibrant. Then also the adjunction
counit

η : const(X(A0))→ X

is already the derived counit (since X(A0) ∈ sSetQuillen is necessarily cofibrant). At every An ∈ C it is
isomorphic to the sequence of morphisms

η(An);X(A0)→ X(A1)→ · · · → X(An) ,

each of which is a weak equivalence by the A1-locality of X.
Now observe that we have an equivalence of ∞-functors

Disc ' RRA1 ◦ Lconst :∞Grpd→ H .

Because for A ∈ sSet fibrant, Lconst(A) ' A is still fibrant, by the proof of prop. 4.1.32, and so
(RRA1)((Lconst)(A)) ' constA is presented simply by the constant simplicial presheaf on A, which indeed
is a presentation for DiscA, again by the proof of prop. 4.1.32.

Finally, since by the above Lconst is in fact an equivalence, by essential uniqueness of ∞-adjoints it
follows now that LLA1 is left adjoint to the ∞-functor Disc, and this proves the claim. �

Remark 5.2.52. Below in 6.3.6 we show that in the models of Euclidean-topological cohesion and of smooth
cohesion the standard real line is indeed the continuum line object in the above abstract sense.

5.2.9 Manifolds (unseparated)

We discuss a general abstract realization of the notion of unseparated manifolds internal to a cohesive
∞-topos. In order to formalize separated manifolds (Hausdorff manifolds) we need the extra axioms of
differential cohesion. This is discussed below in 5.3.10.

Remark 5.2.53. The theory of principal∞-bundles in 5.1.11 extensively used two of the three Giraud-Rezk-
Lurie axioms characterizing ∞-toposes, prop. 3.1.5 (universal coproducts and effective groupoid objects).
Here we now use the third one, that coproducts are disjoint.

Proposition 5.2.54. If A ∈ H is 0-truncated (def. 5.1.47) is geometrically connected in that Π(A) ∈ ∞Grpd
is connected, then morphisms A → X

∐
Y into a coproduct of 0-truncated objects in H factor through one

of the two inclusions X ↪→ X
∐
Y or Y ↪→ X

∐
Y .
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Proof. The 1-topos τ≤0H of 0-truncated objects of a locally∞-connected∞-topos is a locally connected
1-topos by prop. 4.1.5. Under this identification, A ∈ τ0H as above is a connected object, and hence is
in particular not a coproduct of two non-initial objects. Since moreover coproducts in H and in τ≤0H are
disjoint and since truncation (being a left adjoint) preserves them, the statement reduces to a standard fact
in topos theory (for instance [Joh02], p. 34). �

Let now A1 ∈ H be a continuum line object that exhibits the cohesion of H in the sense of def. 5.2.48.
For n ∈ N, write

An := A1 × · · · × A1︸ ︷︷ ︸
n factors

.

Proposition 5.2.55. For all n ∈ N the objects An ∈ H are geometrically connected.

Proof. By cohesion, Π : H→∞Grpd preserves finite products and so the statement reduces to the fact
that the product of two connected ∞-groupoids is itself a connected ∞-groupoid. �

Definition 5.2.56. Given an object A1 ∈ H exhibiting the cohesion (def. 5.2.48) of the cohesive topos H, an
object X ∈ H is an unseparated A-manifold of dimension n ∈ N if there exists a small set of monomorphisms
of the form

{An
φj
↪→ X}j

such that for the corresponding

φ :
∐
j An

(φj)j // // X

we have

1. φ is an effective epimorphism, def. 5.1.65;

2. the nerve simplicial object C•(φ) of φ is degreewise a coproduct of copies of An.

Remark 5.2.57. Since monomorphisms are stable under pullback and since by the Giraud-Rezk-Lurie
axioms coproducts are preserved under pullback, it follows that the simplicial object in def. 5.2.56 is such
that all components An → An of all face maps (given by prop. 5.2.54 and prop. 5.2.55) are monomorphisms.

Remark 5.2.58. Below in 6.3.7 and ?? is discussed that in the standard model of Euclidean-topological
and of smooth cohesion this abstract definition reproduces the traditional definition of topological and of
smooth manifolds, respectively.

Below in 5.3.10 we use the additional axioms of differential cohesion, 4.2, to give an accurate axiomati-
zation of separated manifolds and étale groupoid objects.

5.2.10 de Rham cohomology

We discuss how in every locally ∞-connected ∞-topos H there is an intrinsic notion of nonabelian de Rham
cohomology.

We have already seen the notions of Principal bundles, 5.1.11, and of flat ∞-connections on principal
∞-bundles, 5.2.6, in any locally ∞-connected ∞-topos. In traditional differential geometry, flat connection
on the trivial principal bundle may be canonically identified with flat differential 1-forms on the base space.
In the following we take this idea to be the definition of flat ∞-group/∞-Lie algebra valued forms: flat
∞-connections on trivial principal ∞-bundles.

Definition 5.2.59. Let H be a locally ∞-connected ∞-topos.
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1. For ptA : ∗ → A any pointed object in H, write [dRA := ∗
∏
A [A for the ∞-pullback

[dRA //

��

[A

��
∗ // A

.

We call this the de Rham coefficient object of ptA : ∗ → A.

2. For X ∈ H an object, write
∫

dR
X := ∗

∐
X

∫
X for the ∞-pushout

X //

��

∗

��∫
(X) //

∫
dR
X

.

We call this the cohesive de Rham homotopy-type of X (see remark 5.2.69 below).

The cohomology
HdR(−, A) := H(−, [dRA) = π0H(−, [dRA)

we call the de Rham cohomology with coefficients in A.

Remark 5.2.60. By prop. 5.1.267 the homotopy fiber sequence in definition 5.2.59 exhibits an action of G
on [dRBG whose homotopy quotient is [BG:

[BG ' ([dRBG)//G .

Example 5.2.61. Below in prop. 6.4.67 and remark 6.4.68 we see that in the model of smooth cohesion
and for G a Lie group, then the G-action of remark 5.2.60 is given by the traditional formula for gauge
transformations of Lie-algebra valued differential 1-forms

A 7→ g−1Ag + g−1dg .

We record the following simple but important property:

Proposition 5.2.62. For all X ∈ H the object
∫

dR
(X) is geometrically contractible:

∫
(ΠdR(X)) ' ∗ Dually

[[dRX ' ∗.

Proof. Since on the locally ∞-connected and ∞-connected H the functor Π preserves ∞-colimits and
the terminal object, we have

Π
∫

dR
X:=Π(∗)

∐
ΠX

Π
∫
X

' ∗
∐
ΠX

ΠDiscΠX

' ∗
∐
ΠX

ΠX ' ∗

,

where we used that on the ∞-connected H the functor Disc is full and faithful. The argument for [[dR is
formally dual. �
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Proposition 5.2.63. The construction in def. 5.2.59 yields a pair of adjoint ∞-functors

(
∫

dR
a [dR) : ∗/H oo

∫
dR

[dR

// H .

Proof. We check the defining natural hom-equivalence

∗/H(
∫

dR
X,A) ' H(X, [dRA) .

The hom-space in the under-∞-category ∗/H is computed by prop. 5.1.33 as the ∞-pullback

∗/H(
∫

dR
X,A) //

��

H(
∫

dR
X,A)

��
∗

ptA // H(∗, A)

.

By the fact that the hom-functor H(−,−) : Hop ×H → ∞Grpd preserves ∞-limits in both arguments we
have a natural equivalence

H(
∫

dR
X,A) := H(∗

∐
X

∫
(X), A)

' H(∗, A)
∏

H(X,A)

H(
∫

(X), A)
.

We paste this pullback to the above pullback diagram to obtain

∗/H(
∫

dR
X,A) //

��

H(
∫

dR
X,A) //

��

H(
∫

(X), A)

��
∗

ptA // H(∗, A) // H(X,A)

.

By the pasting law for ∞-pullbacks, prop. 5.1.2, the outer diagram is still a pullback. We may evidently
rewrite the bottom composite as in

∗/H(
∫

dR
X,A) //

��

H(
∫

(X), A)

��
∗ ' // H(X, ∗)

(ptA)∗ // H(X,A)

.

This exhibits the hom-space as the pullback

∗/H(
∫

dR
(X), A) ' H(X, ∗)

∏
H(X,A)

H(X, [A) ,

where we used the (
∫
a [)-adjunction. Now using again that H(X,−) preserves pullbacks, this is

· · · ' H(X, ∗
∏
A

[A) ' H(X, [dRA) .

�
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Observation 5.2.64. If H is also local, then there is a further right adjoint ΓdR

(
∫

dR
a [dR a ΓdR) : H

∫
dR
//

oo [dR

ΓdR

// ∗/H

given by

ΓdRX := ∗
∐
X

Γ(X) .

Definition 5.2.65. For X,A ∈ H we write

HdR(X,A) := H(
∫

dR
X,A) ' H(X, [dRA) .

A cocycle ω : X → [dRA we call a flat A-valued differential form on X.
We say that HdR(X,A):=π0HdR(X,A) is the de Rham cohomology of X with coefficients in A.

Observation 5.2.66. A cocycle in de Rham cohomology

ω :
∫

dR
X → A

is precisely a flat ∞-connection on a trivializable A-principal ∞-bundle. More precisely, HdR(X,A) is the
homotopy fiber of the forgetful functor from ∞-bundles with flat ∞-connection to ∞-bundles: we have an
∞-pullback diagram

HdR(X,A) //

��

∗

��
Hflat(X,A) // H(X,A)

.

Proof. This follows by the fact that the hom-functor H(X,−) preserves the defining ∞-pullback for
[dRA. �
Just for emphasis, notice the dual description of this situation: by the universal property of the ∞-colimit

that defines
∫

dR
X we have that ω corresponds to a diagram

X //

��

∗

��∫
(X)

ω // A

.

The bottom horizontal morphism is a flat connection on the∞-bundle which in turn is given by the composite
cocycle X →

∫
(X)

ω→ A. The diagram says that this is equivalent to the trivial bundle given by the trivial
cocycle X → ∗ → A.

Proposition 5.2.67. The de Rham cohomology with coefficients in discrete objects is trivial: for all S ∈
∞Grpd we have

[dRDiscS ' ∗ .

Proof. Using that in a ∞-connected ∞-topos the functor Disc is a full and faithful ∞-functor so that
unit Id → ΓDisc is an equivalence and using that by the zig-zag identity the counit component [DiscS :=
DiscΓDiscS → DiscS is also an equivalence, we have

[dRDiscS:= ∗
∏

DiscS

[DiscS

' ∗
∏

DiscS

DiscS

' ∗

,
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since the pullback of an equivalence is an equivalence. �

Proposition 5.2.68. For every X in a cohesive ∞-topos H, the object
∫

dR
X is globally connected in that

π0H(∗,
∫

dR
X) = ∗.

If X has at least one point (π0(ΓX) 6= ∅) and is geometrically connected (π0(ΠX) = ∗) then
∫

dR
(X) is

also locally connected: τ0
∫

dR
' ∗ ∈ H.

Proof. Since Γ preserves ∞-colimits in a cohesive ∞-topos we have

H(∗,
∫

dR
X) ' Γ

∫
dR
X

' ∗
∐
ΓX

Γ
∫

X

' ∗
∐
ΓX

ΠX

,

where in the last step we used that Disc is full and faithful, so that there is an equivalence Γ
∫
X :=

ΓDiscΠX ' ΠX.
To analyse this ∞-pushout we present it by a homotopy pushout in sSetQuillen. Denoting by ΓX and

ΠX any represetatives in sSetQuillen of the objects of the same name in ∞Grpd, this may be computed by
the ordinary pushout of simplicial sets

ΓX //

��

(ΓX)×∆[1]
∐

ΓX ∗

��
ΠX // Q

,

where on the right we have inserted the cone on ΓX in order to turn the top morphism into a cofibration.
From this ordinary pushout it is clear that the connected components of Q are obtained from those of ΠX
by identifying all those in the image of a connected component of ΓX. So if the left morphism is surjective
on π0 then π0(Q) = ∗. This is precisely the condition that pieces have points in H.

For the local analysis we consider the same setup objectwise in the injective model structure [Cop, sSet]inj,loc.
For any U ∈ C we then have the pushout QU in

X(U) //

��

(X(U))×∆[1]
∐
X(U) ∗

��
sSet(Γ(U),ΠX) // QU

,

as a model for the value of the simplicial presheaf presenting
∫

dR
(X). If X is geometrically connected then

π0sSet(Γ(U),Π(X)) = ∗ and hence for the left morphism to be surjective on π0 it suffices that the top left
object is not empty. Since the simplicial set X(U) contains at least the vertices U → ∗ → X of which there
is by assumption at least one, this is the case. �

Remark 5.2.69. In summary we see that in any cohesive∞-topos the objects
∫

dR
(X) of def. 5.2.59 have the

essential abstract properties of pointed geometric de Rham homotopy-types ([Toë06], section 3.5.1). In section
6 we will see that, indeed, the intrinsic de Rham cohomology of the cohesive ∞ -topos H = Smooth∞Grpd

HdR(X,A):=π0H(
∫

dR
X,A)

reproduces ordinary de Rham cohomology in degree d > 1.
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In degree 0 the intrinsic de Rham cohomology is necessarily trivial, while in degree 1 we find that it
reproduces closed 1-forms, not divided out by exact forms. This difference to ordinary de Rham cohomology
in the lowest two degrees may be understood in terms of the obstruction-theoretic meaning of de Rham
cohomology by which we essentially characterized it above: we have that the intrinsic Hn

dR(X,K) is the
home for the obstructions to flatness of Bn−2K-principal ∞-bundles. For n = 1 this are groupoid-principal
bundles over the groupoid with K as its space of objects. But the 1-form curvatures of groupoid bundles are
not to be regarded modulo exact forms.

We turn now to identifying certain de Rham cocycles that are adapted to intrinsic manifolds, as discussed
in 5.2.9. In general a cocycle ω : X → [dRBA is to be thought of as what traditionally is called a cocycle in
de Rham hypercohomology. The following definition models the idea of picking in de Rham hypercohomology
over a manifold those cocycles that are given by globally defined differential forms.

Fix a line object A1 ∈ H which exhibits the cohesion of H in the sense of def. 5.2.48.

Definition 5.2.70. For A ∈ Grp(H) an ∞-group, a choice of A-valued differential forms is a morphism

Ωcl(−, A)→ [dRBA

in H, which is an atlas over manifolds of [dRBA, in that:

1. Ωcl(−, A) is 0-truncated;

2. for each intrinsic A1-manifold Σ, def. 5.2.56, the morphism [Σ,Ωncl(−, A)]→ [Σ, [dRBnA] is an effective
epimorphism, def. 5.1.65.

Remark 5.2.71. We discuss below in 6.4.76 how in the standard model of smooth cohesion this notion
reproduces the traditional notion of smooth differential forms.

5.2.11 Exponentiated Lie algebras

In standard Lie theory, finite Lie algebras may be identified with the simply connected Lie groups that
Lie-integrate them. In the context of homotopy theory, being simply connected is the first two stages in the
infinite hierarchy of connectedness whose limiting case is geometric ∞-connectedness. Indeed, we find below
in prop. 6.4.82, that the explicit Lie integration as in [FSS10] of strong homotopy Lie algebras – L∞-algebras
– in the model of smooth cohesion 6.4 lands in geometrically∞-connected (contractible) cohesive∞-groups.
Therefore we axiomatize:

Definition 5.2.72. Given a cohesive ∞-topos H, then an exponentiated ∞-Lie algebra – which we sugges-
tively denote exp(g) – is a pointed connected cohesive homotopy-type ∗ → B exp(g) in H that is geometrically
contractible (5.2.3)

Π(B exp(g)) ' ∗ .
By theorem 5.1.151 this is equivalently the loop space object

exp(g) := Ω∗B exp(g)

equipped with its group-like A∞-structure.

Remark 5.2.73. When passing from the axioms of plain cohesion to those of differential cohesion 4.2 then
one may axiomatize a further restriction of the concept of exponentiated ∞-Lie algebras, namely that of
formal ∞-groups. This we discuss below in 5.3.6.

We now observe that the de Rham coefficient modalities of 5.2.10 provide a basic Lie theory for expo-
nentiated ∞-Lie algebras

Definition 5.2.74. Write
exp Lie :=

∫
dR
◦ [dR : ∗/H→ ∗/H .
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Remark 5.2.75. If H is cohesive, then exp Lie is a left adjoint (by the construction in def. 4.1.11).

Proposition 5.2.76. For every pointed cohesive homotopy-type (∗ → A) ∈ ∗/H the homotopy-type exp LieA
is an exponentiated ∞-Lie algebra the sense of def. 5.3.47.

Proof. By prop. 5.2.62 �

We shall write B exp(g) for exp LieBG, when the context is clear. The following basic fact shows that
exp LieBG behaves as its geoemtric interpretation implies in that G-valued differential forms indeed factor
through g-valued differential forms.

Proposition 5.2.77. Every de Rham cocycle (5.2.10) ω :
∫

dR
X → BG factors through the Lie integrated

∞-Lie algebra of G

B exp(g)

��∫
dR
X

ω //

::

BG

.

Proof. By the universality of the (
∫

dR
a [dR)-counit we have that ω factors through the counit ε :

exp LieBG→ BG ∫
dR
X

ω

""

∫
dR
ω̃

yy∫
dR
[dRBG

ε // BG

,

where ω̃ : X → [dRBG is the adjunct of ω. �
Therefore instead of speaking of a G-valued de Rham cocycle, it is less redundant to speak of an exp(g)-valued

de Rham cocycle. In particular we have the following.

Corollary 5.2.78. Every morphism B exp(h) := exp LieBH → BG from a Lie integrated ∞-Lie algebra to
an ∞-group factors through the Lie integrated ∞-Lie algebra of that ∞-group

B exp(h) //

&&

B exp(g)

��
BG

.

5.2.12 Maurer-Cartan forms and Curvature characteristic forms

In the intrinsic de Rham cohomology of the cohesive ∞-topos H there exist canonical cocycles that we may
identify with Maurer-Cartan forms and with universal curvature characteristic forms.

Definition 5.2.79. For G ∈ Group(H) an ∞-group in the cohesive ∞-topos H, write

θ : G→ [dRBG

for the G-valued de Rham cocycle on G induced by this pasting of ∞-pullbacks

G //

θ
��

∗

��
[dRBG //

��

[BG

��
∗ // BG
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using prop. 5.2.77.
We call θ the Maurer-Cartan form on G.

Remark 5.2.80. For any object X, postcomposition the Maurer-Cartan form sends G-valued functions on
X to g-valued forms on X

[θ∗] : H0(X,G)→ H1
dR(X,G) .

Remark 5.2.81. For G = BnA an Eilenberg-MacLane object, we also write

curv : BnA→ [dRBn+1A

for its intrinsic Maurer-Cartan form and call this the intrinsic universal curvature characteristic form on
BnA.

These curvature characteristic forms serve to define differential cohomology in the next section.

Remark 5.2.82. For G an ∞-group, then domain and codomain of the Maurer-Cartan form of def. 5.2.79
both carry a canonical G-∞-action (via prop. 5.1.267): the domain G carries its right action according to
example 5.1.274 and the codomain [dRBG carries the gauge transformation action of remark 5.2.60.

Proposition 5.2.83. For G an ∞-group, the Maurer-Cartan form θ : G → [dRBG of def. 5.2.79 is
essentially uniquely equipped with G-equivariant structure, hence with the structure intertwining the G-∞-
action on its domain and codomain.

Proof. By prop. 5.1.267 a G-equivariant structure on θ is a morphism θ//G fitting into the diagram

∗
θ//G //

  

[BG

{{
BG

such that its homotopy fiber is θ. That this morphism is essentially unique is clear. To see that its homotopy
fiber is indeed θ consider the diagram

G
θ

##

//

��

∗
θ//G

$$

��

[dRBG //

��

[BG

��
∗ // BG

where the bottom square and the rectangle in the back are homotopy pullbacks by construction. The
morphism denoted θ is the one induced from the universal property of the bottom homotopy pullback and
is the homotopy fiber of θ//G. That it is indeed the Maurer-Cartan form now follows with the pasting law,
prop. 5.1.2, and def. 5.2.79. �

Example 5.2.84. In view of example 5.2.61, this G-equivariance of the Maurer-Cartan form comes down
in the model of smooth cohesion and for G an ordinary Lie group to the following traditional formulas, for
g, h any to G-valued smooth functions:

g � θ //
_

��

g−1dg_

��
gh

� θ // h−1(g−1dg)h+ h−1dh

.
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5.2.13 Differential cohomology

We discuss an intrinsic realization of differential cohomology (see for instance [Bun12]) with coefficients in
braided ∞-groups in any cohesive ∞-topos.

We first give a general discussion in 5.2.13.1 and then consider a special class of cases in 5.2.13.2. Finally
we discuss issues of constructing differential moduli objects in 5.2.13.4.

In the case that the homotopy-type is not just braided, hence twice deloopable, but is in fact stable (a
spectrum object), then there is a strengthening of the theory of differential cohomology to differential stable
cohomology, which enjoys very good properties. This we come to below in the discussion of the models of
Goodwillie-tangent cohesion 6.1.3.

Notice that for many of the applications in ?? it is crucial to have available also generally the non-stable
differential cohomology discussed here. This is necessary specifically for the discussion of Wess-Zumino-
Witten-type prequantum field theory in 7.3.

5.2.13.1 General

Definition 5.2.85. For G a braided ∞-group, def. 5.1.156, write

curvG := θBG : BG −→ [dRB2G

for the Maurer-Cartan form, def. 5.2.79, on its delooping ∞-group BG. We call this the universal curvature
characteristic of G.

We say that the cohomology in the slice ∞-topos H/[dRB2G with coefficients in curvG is the differential
cohomology with coefficients in BG.

Remark 5.2.86. A domain object (X,F ) ∈ H/[dRB2G is an object X ∈ H equipped with a de Rham cocycle
F : X → [dRB2G, to be thought of as a prescribed curvature differential form.

A differential cocycle ∇ ∈ H/[dRB2G((X,F ), curvG) on such a pair is a diagram of the form

X
g //

F ##

BG

curvGzz
[dRB2G

∇t|

in H. This is

1. a cocycle g : X → BG in H for a G-principal ∞-bundle over X;

2. a choice of equivalence

g∗curvG
∇
'
// F

between the pullback of the universal G-curvature characteristic, def. 5.2.85 and the prescribed curva-
ture differential form.

This choice of equivalence is to be interpreted as a connection on the G-principal bundle modulated by g.

Often one is of interested in demanding that the curvature F : X → [dRB2G in the above factors through
a prescribed morphism C → [dRB2G, notably through an inclusion of differential forms as in def. 5.2.70.
This means that one is interested in cocycles as in remark 5.2.86 above which factor as diagrams

X
g //

F

��

BG

curvGzz
C // [dRB2G

∇px

.
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This in turn means equivalently that the cocycle is given by a morphism ∇ : X → BGconn into the ∞-
pullback BGconn ' C ×[dRB2G BG. This object we may then regard as a moduli stack for differential
cohomology with coefficients in A and curvatures in C.

This we now discuss in 5.2.13.2 below.

5.2.13.2 Global curvature forms We consider the subcase of the general notion of differential coho-
mology as in 5.2.13.1 above, where now the curvatures are required to be globally defined differential forms
according to def. 5.2.70. The resulting definition essentially reproduces that of differential cohomology
in terms of homotopy pullbacks as discussed in [HoSi05], but is formulated entirely internal to a cohesive
∞-topos. Therefore it refines the construction of [HoSi05] in two ways21:

1. The coefficient object may be a cohesive ∞-groupoid, where in [HoSi05] it is just a topological space,
hence, as explained below in 6.2, a discrete ∞-groupoid.

2. The domain object may also be a cohesive ∞-groupoid, where in [HoSi05] it is restricted to be a
manifold. In particular it can be an orbifold, or itself a moduli stack.

We give below an intrinsic characterization of domain objects that are manifolds in the sense of def. 5.2.56.
On more general objects our definition subsumes also a notion of equivariant differential cohomology.

Definition 5.2.87. For G a braided ∞-group in H, def. 5.1.156, the moduli of closed 2-forms with values
in G is a morphism

Ω2
cl(−,G) // [dRB2G

characterized as follows:

1. Ω2
cl(−,G) ∈ H is 0-truncated;

2. for every A1-manifold Σ ∈ H, def. 5.1.156, we have that

[Σ, ι] : [Σ,Ω2
cl(−,G)] // [Σ, [dRB2G]

is an epimorphism

3. ι is universal with the above two properties.

A morphism ωX : Ω2
cl(−,G) we call a closed Lie(G)-valued differential 2-form on X, or a pre-symplectic

structure on X, with values in Lie(G).

Definition 5.2.88. For G a braided ∞-group, we write

BGconn := BG ×
[dRB2G

Ω2(−,G)

for the ∞-fiber product in

BGconn

U

��

F(−) // Ω2(−,G)

��
BG curvG // [dRB2G

.

We say that

1. BGconn is the moduli object for differential cocycles with coefficients in G or equivalently for G-principal
connections;

21 After we had proposed this refinement, in [Ho11] it says that this is the context to which the article [HoSi05] was intended
to be refined.
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2. For ∇ : X → BGconn we say that

(a) F∇ : X → Ω2(−,G) is the curvature form of ∇
(b) that U(∇) : X → BG is (the morphism modulation) the underlying G-principal bundle of ∇.

Proposition 5.2.89. For G ∈ Grp(H) a braided ∞-group, the loop space object, def. 5.1.148, of BGconn is
equivalent to the flat coefficient object [G

ΩBGconn ' [G .

Proof. Using that Ωcl(−,G) is 0-truncated by definition, using that [ is right adjoint and hence commutes
with∞-pullbacks and repeatedly using the pasting law, prop. 5.1.2, we find a pasting diagram of∞-pullbacks
of the form

[G //

��

G //

��

∗

��
∗ //

��

[dRBG //

��

[BG //

��

∗

��
∗ // //

��

BGconn
//

��

Ωcl(−,G)

��
∗ // BG // [dRB2G

.

�

5.2.13.3 Ordinary differential cohomology We now spell out the constructions of 5.2.13.2 in more
detail for the special case that G is an Eilenberg-MacLane object, hence for the case there is a 0-truncated
abelian group object A ∈ Grp(τ≤0H) ↪→ H and n ∈ N such that

BG ' BnA .

This is the case of ordinary differential cohomology that refines what the ordinary cohomology with coefficients
in A, according to remark 5.1.175. The explicit realization of this construction in smooth cohesion is discussed
below in 6.4.16.

By the discussion in 5.1.9 we have for all n ∈ N the corresponding Eilenberg-MacLane object BnA.
By the discussion in 5.1.11 this classifies Bn−1A-principal ∞-bundles in that for any X ∈ H we have an
equivalence of n-groupoids

Bn−1ABund(X) ' H(X,BnA)

whose objects are Bn−1A-principal ∞-bundles on X, whose morphisms are gauge transformations between
these, and so on. The following definition refines this by equipping these ∞-bundles with the structure of a
connection.

Let A1 ∈ H be a line object exhibiting the cohesion of H in the sense of def. 5.2.48. Let then furthermore
for each n ∈ N

Ωncl(−, A)→ [dRBnA

be a choice of differential form objects, according to def. 5.2.70.
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Definition 5.2.90. For X ∈ H any object and n ≥ 1 write

Hdiff(X,BnA) := H(X,BnA)
∏

HdR(X,BnA)

Hn+1
dR (X,A)

for the cocycle∞-groupoid of twisted cohomology, 5.1.13, of X with coefficients in A relative to the canonical
curvature characteristic morphism curv : BnA → [dRBn+1A (5.2.12). By prop. 5.1.256 this is the ∞-
pullback

Hdiff(X,BnA)
[F ] //

c

��

Hn+1
dR (X,A)

��
H(X,BnA)

curv∗ // HdR(X,Bn+1A)

,

where the right vertical morphism π0HdR(X,Bn+1A) → HdR(X,Bn+1A) is the unique, up to equivalence,
effective epimorphism out of a 0-truncated object: a choice of cocycle representative in each cohomology
class, equivalently a choice of point in every connected component.

We call
Hn

diff(X,A):=π0Hdiff(X,BnA)

the degree-n differential cohomology of X with coefficient in A.
For ∇ ∈ Hdiff(X,BnA) a cocycle, we call

• [c(∇)] ∈ Hn(X,A) the characteristic class of the underlying Bn−1A-principal ∞-bundle;

• [F ](∇) ∈ Hn+1
dR (X,A) the curvature class of c (this is the twist).

We also say that ∇ is an ∞-connection on the principal ∞-bundle η(∇).

Observation 5.2.91. The differential cohomology Hn
diff(X,A) does not depend on the choice of morphism

Hn+1
dR (X,A) → HdR(X,Bn+1A) (as long as it is an isomorphism on π0, as required). In fact, for different

choices the corresponding cocycle ∞-groupoids Hdiff(X,BnA) are equivalent.

Proof. The set
Hn+1

dR (X,A) =
∐

Hn+1
dR (X,A)

∗

is, as a 0-truncated ∞-groupoid, an ∞-coproduct of the terminal object ∞Grpd. By universal colimits in
this∞-topos we have that∞-colimits are preserved by∞-pullbacks, so that Hdiff(X,BnA) is the coproduct

Hdiff(X,BnA) '
∐

Hn+1
dR (X,A)

(
H(X,BnA) ∗

HdR×(X,Bn+1A)

)

of the homotopy fibers of curv∗ over each of the chosen points ∗ → HdR(X,Bn+1A). These homotopy fibers
only depend, up to equivalence, on the connected component over which they are taken. �

Proposition 5.2.92. When restricted to vanishing curvature, differential cohomology coincides with flat
differential cohomology, 5.2.6,

Hn
diff(X,A)|[F ]=0 ' Hflat(X,B

nA) .

Moreover this is true at the level of cocycle ∞-groupoids(
Hdiff(X,BnA) ×

Hn+1
dR (X,A)

{[F ] = 0}

)
' Hflat(X,B

nA) ,

hence there is a canonical embedding by a full and faithful morphism

Hflat(X,B
nA)
� � // Hdiff(X,BnA)
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Proof. By the pasting law for ∞-pullbacks, prop. 5.1.2, the claim is equivalently that we have a pasting
of ∞-pullback diagrams

Hflat(X,B
nA) //

��

∗

[F ]=0

��
Hdiff(X,BnA)

[F ] //

η

��

Hn+1
dR (X,A)

��
H(X,BnA)

curv∗ // HdR(X,Bn+1A)

.

By definition of flat cohomology, def. 5.2.26 and of intrinsic de Rham cohomology, def. 5.2.65, in H, the
outer rectangle is

H(X, [BnA) //

��

∗

��
H(X,BnA)

curv∗ // H(X, [dRBn+1A)

.

Since the hom-functor H(X,−) preserves ∞-limits this is a pullback if

[BnA //

��

∗

��
BnA

curv // [dRBn+1A

is. Indeed, this is one step in the fiber sequence

· · · → [BnA→ BnA
curv→ [dRBn+1A→ [Bn+1A→ Bn+1A

that defines curv (using that [ preserves limits and hence looping and delooping).

Finally, ∗
[F ]=0 // Hn−1

dR (X,A) is, trivially, a monomorphism of sets, hence a full and faithfull morphism

of ∞-groupoids, and since these are stable under ∞-pullback, it follows that the canonical inclusion of flat
∞-connections into all ∞-connections is also full and faithful. �
The following establishes the characteristic short exact sequences that characterizes intrinsic differential

cohomology as an extension of curvature forms by flat ∞-bundles and of bare ∞-bundles by connection
forms.

Proposition 5.2.93. Let imF ⊂ Hn+1
dR (X,A) be the image of the curvatures. Then the differential coho-

mology group Hn
diff(X,A) fits into a short exact sequence

0→ Hn
flat(X,A)→ Hn

diff(X,A)→ imF → 0

Proof. Form the long exact sequence in homotopy groups of the fiber sequence

Hflat(X,B
nA)→ Hdiff(X,BnA)

[F ]→ Hn+1
dR (X,A)

of prop. 5.2.92 and use that Hn+1
dR (X,A) is, as a set – a homotopy 0-type – to get the short exact sequence

on the bottom of this diagram

π1(HdR(X,A)) // π0(Hflat(X,B
nA)) // π0(Hdiff(X,BnA))

[F ] // π0(Hn+1
dR (X,A))

��
0 // Hn

flat(X,A) // Hn
diff(X,A) // im[F ]

.
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�

Proposition 5.2.94. The differential cohomology group Hn
diff(X,A) fits into a short exact sequence of abelian

groups
0→ Hn

dR(X,A)/Hn−1(X,A)→ Hn
diff(X,A)

c→ Hn(X,A)→ 0 .

Proof. We claim that for all n ≥ 1 we have a fiber sequence

H(X,Bn−1A)→ HdR(X,BnA)→ Hdiff(X,BnA)→ H(X,BnA)

in ∞Grpd. This implies the short exact sequence using that by construction the last morphism is surjective
on connected components (because in the defining ∞-pullback for Hdiff the right vertical morphism is by
assumption surjective on connected components).

To see that we do have the fiber sequence as claimed, consider the pasting composite of ∞-pullbacks

HdR(X,Bn−1A) //

��

Hdiff(X,BnA) //

��

HdR(X,Bn+1A)

��
∗ // H(X,BnA)

curv // HdR(X,Bn+1A)

.

The square on the right is a pullback by def. 5.2.90. Since also the square on the left is assumed to be
an ∞-pullback it follows by the pasting law for ∞-pullbacks, prop. 5.1.2, that the top left object is the
∞-pullback of the total rectangle diagram. That total diagram is

ΩH(X, [dRBn+1A) //

��

H(X, [dRBn+1A)

��
∗ // H(X, [dRBn+1A)

,

because, as before, this ∞-pullback is the coproduct of the homotopy fibers, and they are empty over the
connected components not in the image of the bottom morphism and are the loop space object over the
single connected component that is in the image.

Finally using that
ΩH(X, [dRBn+1A) ' H(X,Ω[dRBn+1A)

and
Ω[dRBn+1A ' [dRΩBn+1A

since both H(X,−) as well as [dR preserve ∞-limits and hence formation of loop space objects, the claim
follows. �

Often it is desireable to restrict attention to differential cohomology over domains on which the twisting
cocycles can be chosen functorially. This we consider now.

Definition 5.2.95. For any n ∈ N write BnAconn for the ∞-pullback

BnAconn
//

��

Ωn+1
cl (−, A)

��
BnA

curv // [dRBn+1A

in H.
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For X an A-dR-projective object we write

Hn
conn(X,A) := π0H(X,BnAconn)

for the cohomology group on X with coefficients in BnAconn.

The objects BnAconn represent differential cohomology in the following sense.

Observation 5.2.96. For every A-dR-projective object X there is a full and faithful morphism

Hdiff(X,BnA) ↪→ H(X,BnAconn) ,

hence in particular an inclusion
Hn

diff(X,A) ↪→ Hn
conn(X,A) .

Proof. Since Ωn+1
cl (X,A)→ Hn+1

dR (X,A) is a surjection by definition, there exists a factorization

Hn+1
dR (X,A) ↪→ Ωn+1

cl (X,A)→ H(X, [dRBn+1A)

of the canonical effective epimorphism (well defined up to homotopy), where the first morphism is an injection
of sets, hence a monomorphism of ∞-groupoids. Since these are stable under ∞-pullback, it follows that
also the top left morphism in the pasting diagram of ∞-pullbacks

Hdiff(X,BnA) //
� _

��

Hn+1
dR (X,A)� _

��
H(X,BnAconn) //

��

Ωn+1
cl (X,A)

��
H(X,BnA)

curv // H(X, [dRBn+1A)

is a monomorphism.
Notice that here the bottom square is indeed an ∞-pullback, by def. 5.2.95 combined with the fact that

the hom-functor H(X,−) : H→∞Grpd preserves ∞-pullbacks, and that with the top square defined to be
an ∞-pullback the total outer rectangle is an ∞-pullback by prop. 5.1.2. This identifies the top left object
as Hdiff(X,BnA) by def. 5.2.90. �
The reason that prop. 5.2.96 gives in inclusion is that Hn

conn(X,A) contains connections for all possible

curvature forms, while Hn
diff(X,A) contains only connections for one curvature representative in each de

Rham cohomology class. This is made precise by the following refinement of the exact sequences from prop.
5.2.93 and prop. 5.2.94.

Definition 5.2.97. Write
Ωncl,int(−, A) ↪→ Ωncl(−, A)

for the image factorization of the canonical morphism BnAconn → Ωncl(−, A) from def. 5.2.95.

Proposition 5.2.98. For X an A-dR-projective object we have a short exact sequence of groups

Hn
flat(X,A) // Hn

conn(X,A)
curv // Ωn+1

cl,int(X,A) .

Proof. As in the proof of prop. 5.2.92 we have a pasting diagram of ∞-pullbacks

∗ //

��

H(X, [BnA) //

��

∗

0

��
∗ // H(X,BnAconn) //

��

Ωn+1
cl,int(X,A) �

� // Ωn+1
cl (X,A)

��
H(X,BnA)

curv // H(X, [dRBn+1A)

.
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After passing to connected components, this implies the claim. �

Details on how traditional ordinary differential cohomology is recovered by implementing the above in
the context of smooth cohesion are discussed in 6.4.16.

5.2.13.4 Differential moduli We discuss issues related to the formulation of moduli objects in a cohesive
∞-topos for differential cocycles as discussed above, over a fixed base object.

To motivate this consider the following. Given a coefficient object BGconn ∈ H for differential cohomology
as discussed above, and given any object X ∈ H, the mapping space object [X,BGconn] ∈ H is a kind of
moduli object for G-differential cocycles on X, in that its global points are precisely such cocycles. However,
for any U ∈ H a U -plot of [X,BGconn] may be more general than just a cohesively parameterized U -collection
of such cocycles on X, because it is actually a differential cocycle on U×X and hence may contain nontrivial
differential/connection data along U , not just along X.

In some applications this behaviour of [X,BGconn] is exactly what is needed. This is notably the case
for the construction of extended Chern-Simons action functionals in all codimensions, discussed below in
5.2.14. But in other applications, such as the construction of the extended phase spaces of Chern-Simons
functionals, one rather needs to have an object of genuine differential moduli, which is such that its U -plots
are genuine U -parameterized collections of differential cocycles (and their gauge transformations) just on X.
This issue is discussed in more detail with illustrative examples in the model of smooth cohesion below in
6.4.16.3.

Here we discuss how such differential moduli objects are obtained general abstractly in a cohesive∞-topos
from a degreewise concretification of the mapping space objects [X,BGconn] in the sense of 5.2.2.

Definition 5.2.99. Let G ∈ Grp(H) be a braided ∞-group, def. 5.1.156, which is exactly n− 1-truncated,
def. 5.1.47. A G-Hodge filtration is a choice of filtration of [B2G:

// F p+1[B2G //

''

F p[B2G //

��

F p−1[B2G //

ww
[B2G

such that

1. each F p[B2G is connected (has an essentially unique point);

2. the first stage F 1[B2G −→ F 0[B2G is equivalent to the canonical morphism [dRBG −→ [B2G from
def. 5.2.59.

We write
Ω2

cl(−,G) := Fn+1[B2G

for the object that is to be thought of as the moduli of “closed differential 2-forms” with coefficients in G,
with respect to this choice of Hodge filtation.

Definition 5.2.100. Let G ∈ Grp(H) be a braided∞-group, def. 5.1.156, which is exactly n−1-truncated,
def. 5.1.47, and let F •[B2G be a choice of Hodge filtration, def. 5.2.99. Then for p ≤ n + 1 ∈ N write
BGconnp for the ∞-pullback in

BGconnp
//

��

F p+1[B2G

��
BG θBG // [dRB2G
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Definition 5.2.101. With BGconn as in def. 5.2.100, then a morphism ∇ : X → BGconn we call a G-
principal connection on the underlying G-principal bundle modulated, via theorem 5.1.207, by the composite

X
∇−→ BGconn −→ BGconn. A morphism to an intermediate stage of the filtration X −→ BGconnk we also

call a G-principal pseudo-connection.

Remark 5.2.102. Hence we have a tower of homotopy pullbacks

[BG //

��

∗

��
BGconn

//

��

Fn+1[B2G

��

' Ω2
cl(−,G)

��

BGconn2 //

��

F 3[B2G

��
BGconn1 //

��

F 2[B2G

��
BG θBG // F 1[B2G ' [dRB2G

providing a cofiltration on BGconn.

Of particular interest is the following special case.

Definition 5.2.103. Given a 0-truncated object A ∈ H, def. 5.1.47, equipped with abelian group structure,
hence given canonical deloopings BkA for all k ∈ N, then we say an abelian Hodge filtration for the group
object G := BnA is a compatible system of Hodge filtrations, def. 5.2.99, on all the BkA for 0 ≤ k ≤ n such
that there are natural equivalences

BGconnk ' Bn−k(B((Bk−1A)conn)) .

where we set
B((B−1A)conn) := A

Remark 5.2.104. For A a 0-truncated abelian group and G ' BA, the objects B2Aconn1 of def. 5.2.100
modulate what in the literature is often known as a bundle gerbe with connective data but without curving.
In this context then the structures modulated by B2

conn2 ' B2Aconn would be called bundles gerbes with
connective data and with curving. We discuss this in more detail in 6.4.16 below.

Definition 5.2.105. For X ∈ H and n ∈ N, n ≥ 1, G ∈ Grp(H) a braided ∞-group which is precisely
(n − 1)-truncated and given a choice of G-Hodge filtration, def. 5.2.99, then the moduli of G-principal
connections on X is the concretification, def. 5.2.8, of [X,BGconn], def. 5.2.100, with respect to the induced
co-filtration of remark 5.2.102;

GConn(X) := Conc([X,BGconn• ]) .

The canonical morphism
[X,BGconn] −→ GConn(X)

we call differential concretification.

471



Remark 5.2.106. Unwinding the definitions, def. 5.2.105 describes the iterated ∞-fiber product

GConn(X) := Conc([X,BGconn• ])

= ]1[X,BGconnn ] ×
]1[X,BGconnn−1 ]

]2[X,BGconnn−1 ] ×
]2[X,BGconnn−2 ]

· · · ×
]n[X,BGconn0 ]

[X,BGconn0 ] ,

of the morphisms

]k[X,BGconnn−k+1 ] // ]k[X,BGconnn−k ]

which are the image under ]k, def. 5.2.6, of the image under the internal hom [X,−] of the canonical
projections of remark 5.2.102, and of the morphisms

]k+1[X,BnU(1)connn−k ] // ]k[X,BnU(1)connn−k ]

of def. 5.2.6. By the universal property of the ∞-pullback, the commuting naturality diagrams

]k2 [X,BGconnn2 ] //

��

]k2
[X,BGconnn1 ]

��
]k1

[X,BGconnn2 ] // ]k1
[X,BGconnn1 ]

induce the differential concretification map

conc : [X,BGconn] // GConn(X)

Proposition 5.2.107. The canonical Aut(X)-action on [X,BGconn] of example 5.1.280 passes to an ac-
tion on the differential moduli GConn(X), def. 5.2.105, such that the differential concretification map

[X,BConn(X)]
conc−→ GConn(X) carries the structure of a homomorphism of ∞-actions, i.e., by prop.

5.1.267, it is the homotopy fiber of a diagram of the form

[X,BGconn]//Aut(X)

))

conc//Aut(X) // GConn(X)//Aut(X)

uu
BAut(X)

Proof. By using prop. 5.1.282 in prop. 5.2.11. �
We need the analogous construction also for the BGconnk regarded as coefficient objects themselves. The

following straightforwardly generalizes def. 5.2.105 from k = n to arbitrary k ≤ n.

Definition 5.2.108. For X ∈ H and n ∈ N, n ≥ 1, 0 ≤ k ≤ n, G ∈ Grp(H) a braided ∞-group which
is precisely (n − 1)-truncated, then the moduli of G-principal k-connections on X is the iterated ∞-fiber
product

GConnk(X)

:= ]n−k+1[X,BGconnk ] ×
]n−k+1[X,BG

connk−1 ]
]n−k+2[X,BGconnk−1 ] ×

]n−k+2[X,BG
connk−2 ]

· · · ×
]n[X,BGconn0 ]

[X,BGconn0 ] .

Remark 5.2.109. The projection maps out of the iterated ∞-pullbacks induce a canonical sequence of
projections

GConn(X) ' GConnn(X) // GConnn−1(X) // · · · // GConn1(X) // GConn0(X) ' BG .
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We now turn to defining moduli for flat differential cocycles.

Definition 5.2.110. For A a 0-truncated abelian group and Bn+1A equipped with an abelian Hodge
filtration, def. 5.2.103, we call

(BnA)FlatConn(X) := ][X, [BnA] ×
][X,BnAconn]

(BnA)Conn(X)

the moduli object for flat G-connections on X.

Proposition 5.2.111. For A a 0-truncated abelian group and Bn+1A equipped with an abelian Hodge fil-
tration, def. 5.2.103, we have for n ≥ 1 a natural equivalence

Ω0 ((BnA) Conn (X)) ' (Bn−1)FlatConn (X)

between the looping of the moduli of (Bn)-principal connections, def. 5.2.105, and that of flat (Bn−1A)-
connections, def. 5.2.110.

For n = 0, if H has a set of generators being concrete objects (in particular if it has an ∞-cohesive site
of definition, def. 4.1.31)

Ω0 (AConn(X)) ' A .

Proof. Since forming loops is an ∞-pullback operation, it commutes with the iterated ∞-fiber product.
Moreover, by prop. 5.1.77 it passes through the ]k, while lowering their degree by one. Finally by prop.
5.2.89 we have

Ω0

(
B2Gconn

)
' [BG .

This gives the first claim. For the second, observe that with the same reasoning we obtain

Ω (GConn(X)) ' Ω

(
]1[X,BGconn] ×

]1[X,BG]
[X,BG]

)
' ][X, [G] ×

][X,G]
[X,G]

.

Hence for any concrete U ∈ H we have

H(U,Ω(GConn(X))) ' ∞Grpd(Γ(U),H(X, [G)) ×
∞Grpd(Γ(U),H(X,G))

H(U ×X,G)

' ∞Grpd(Γ(U)×Π(X),Γ(G)) ×
∞Grpd(Γ(U),H(X,G))

H(U ×X,G)

' Set(τ0Γ(U),Γ(G)) ×
Set(τ0Γ(U),H(X,G))

H(U ×X,G)

' H(U,G)

.

Here we used the defining adjunctions of cohesion and that G is 0-truncated by assumption, so that H(−,G)
takes values in sets. In the last step we used that U is concrete so that maps out of it are determined by
their value on all global points of U . So the second but last row says in words “those maps out of U ×X
which for every point of U are independent of X” and the last equivalence identifies that with the maps
out of just U . Since these equivalences are all natural in U the claim follows by the assumption that the
Us range over a set of generators (hence with the ∞-Yoneda lemma, prop. 2.1.16, if the Us range over the
objects of a site of definition). �
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5.2.14 Chern-Weil homomorphism and Chern-Simons Lagrangian

We discuss an intrinsic realization in cohesive homotopy theory of the Chern-Weil homomorphism [GHV73]
and of its differential refinement, which we identify with local Chern-Simons Lagrangians.

Throughout, let G be a braided cohesive ∞-group, def. 5.1.156, equipped with a Hodge filtration, def.
5.2.99, and write BGconn for the corresponding differential coefficient object, def. 5.2.100.

Definition 5.2.112. For G a cohesive ∞-group, def. 5.1.150 and

c : BG −→ BG

a representative of a characteristic class [c] ∈ H1(BG,G) we say that its composite with the universal
curvature class of def. 5.2.85,

cdR : BG
c−→ BG curvG−→ [dRB2G

represents the curvature characteristic class [cdR] ∈ H2
dR(BG,G) in de Rham cohomology, def. 5.2.59. The

induced map on cohomology
(cdR)∗ : H1(−, G) −→ H2

dR(−,G)

we call the (unrefined) Chern-Weil homomorphism induced by c.

Given an unrefined Chern-Weil homomorphism as in def. 5.2.112, the natural question to ask is how it
lifts through the chosen Hodge filtration on its coefficients, def. 5.2.99, hence, by the universal property of
the homotopy pullback in def. 5.2.100, how it lifts from taking values in de Rham cohomology to taking
values in differential cohomology lifting the de Rham cohomology.

Definition 5.2.113. Let c : BG→ BG be a characteristic map. Then we write BGconn for an object that
fits into a factorization

[BG
[c //

��

[BG

��
BGconn

cconn //

��

BGconn

��
BG

c // BG
of the naturality diagram of the [-counit.

The induced morphism on cohomology

H1
conn(−, G) := π0H(−,BGconn) −→ π0H(−,BGconn) = H1

conn(−,G)

we call the corresponding differentially refined Chern-Weil homomorphism.

Remark 5.2.114. The object BGconn here is far from being uniquely determined by one such diagram.
Typically one will require it to lift a whole tower of characteristic classes- But for the moment we find it
convenient not to indicate this in the notation but have it be implied by the context.

Remark 5.2.115. According to prop. 5.1.267 the morphism BGconn → BG exhibits a G-∞-action on its
homotopy fiber. We typically write Ω(−, g) for this homotopy fiber

Ω(−, g) // BGconn

��
BG

and hence have that
BGconn ' Ω(−, g)//G

is the homotopy quotient of Ω(−, g) by the ∞-action of G “by gauge transformations”.
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Combining the refined ∞-Chern-Weil homomorphism, def. 5.2.113, with the higher holonomy, 5.2.16, of
the resulting ∞-connections produces a notion of higher Chern-Simons functionals internal to any cohesive
∞-topos. For a review of standard Chern-Simons functionals see [Fr95].

Definition 5.2.116. Let Σ ∈ H be of cohomological dimension dimΣ = n ∈ N and let c : X → BnA a
representative of a characteristic class [c] ∈ Hn(X,A) for some object X. We say that the composite

exp(Sc(−)) : H(Σ, X)
ĉ→ Hdiff(Σ,BnA)

'→ Hflat(Σ,B
nA)

∫
Σ→ τ≤0∞Grpd(Π(Σ),ΠBnA)

is the ∞-Chern-Simons functional induced by c on Σ.

Here ĉ denotes the refined Chern-Weil homomorphism, 5.2.14, induced by c, and
∫

Σ
is the holonomy over

Σ, 5.2.16, of the resulting n-bundle with connection.

Remark 5.2.117. In the language of σ-model quantum field theory the ingredients of this definition have
the following interpretation

• Σ is the worldvolume of a fundamental (dimΣ− 1)-brane ;

• X is the target space;

• ĉ is the background gauge field on X;

• the external hom Hconn(Σ, X) is the space of worldvolume field configurations φ : Σ→ X or trajectories
of the brane in X;

• exp(Sc(φ)) =
∫

Σ
φ∗ĉ is the value of the action functional on the field configuration φ.

Traditionally, σ-models have been considered for X an ordinary (Riemannian) manifold, or at most an
orbifold, see for instance [DeMo99]. The observation that it makes sense to allow target objects X to be
more generally a gerbe, 5.1.19, is explored in [PaSh05] [HeSh10]. Here we see that once we pass to fully
general (higher) stacks, then also all (higher) gauge theories are subsumed as σ-models.

For if there is an ∞-group G such that the target space object X is the moduli ∞-stack of G-∞-
connections, def. 5.2.113, X ' BGconn, then a “trajectory” Σ → X ' BGconn is in fact a G-gauge field on
Σ. Hence in the context of ∞-stacks, the notions of gauge theories and of σ-models unify.

More in detail, assume that H has a canonical line object A1 and a natural numbers object Z. Then
the action functional exp(iS(−)) may lift to the internal hom with respect to the canonical cartesian closed
monoidal structure on any ∞-topos to a morphism of the form

exp(iSc(−)) : [Σ,BGconn]→ Bn−dimΣA1/Z .

We call the internal hom [Σ,BGconn] the moduli∞-stack of field configurations on Σ of the∞-Chern-Simons
theory defined by c and exp(iSc(−)) the action functional in codimension (n− dimΣ) defined on it.

A list of examples of Chern-Simons action functionals defined on moduli stacks obtained this way is given
in 6.4.19.

We discuss the differential refinement of twisted cohomology, def. 5.1.13. Following [SSS09c] we speak of
twisted differential c-structures.

Definition 5.2.118. For c : BG → BnA a characteristic map in a cohesive ∞-topos H, define for any
X ∈ H the ∞-groupoid cStructw(X) to be the ∞-pullback

cStructw(X)
tw //

��

Hn(X,A)

��
H(X,BG)

c // H(X,BnA)

,

where the vertical morphism on the right is the essentially unique effective epimorphism that picks on point
in every connected component.
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Let now H be a cohesive ∞-topos that canonically contains the circle group A = U(1), such as
Smooth∞Grpd and its variants. Then by 6.4.16 the intrinsic differential cohomology with U(1)-coefficients
reproduces traditional ordinary differential cohomology and by 6.4.17 we have models for the ∞-connection
coefficients BGconn. Using this we consider the differential refinement of def. 5.2.118 as follows.

Definition 5.2.119. For c : BG→ BnU(1) a characteristic map as above, and for ĉ : BGconn → BnU(1)conn

a differential refinement, we write ĉStructw(X) for the corresponding twisted cohomology, def. 5.1.260,

ĉStructw(X)
tw //

χ

��

Hn
diff(X,U(1))

��
H(X,BGconn)

ĉ // H(X,BnU(1)conn)

,

We say ĉStructw(X) is the ∞-groupoid of twisted differential c-structures on X.

5.2.15 Wess-Zumino-Witten terms

We discuss axiomatization in cohesive homotopy theory of local Lagrangians of Wess-Zumino-Witten type.
For a review of traditional WZW functionals see for instance [Ga00], for more see below in 7.3.

Throughout, let G be a sylleptic cohesive ∞-group, def. 5.1.156, equipped with a Hodge filtration, def.
5.2.99, and write BGconn for the corresponding differential coefficient object, def. 5.2.100.

Definition 5.2.120. Given a cohesive ∞-group G equipped with a cocycle

c : BG −→ B2G

then a refinement of the chosen stage Ω2
cl(−,G) −→ [dRB2G of the Hodge filtration, def. 5.2.99, for G along

this cocycle is a connected object Ω1
flat(−, G) and completion to a diagram of the form

Ω1
flat(−, G)

µ //

��

Ω2
cl(−,G)

��
[dRBG

[dRc // [dRB2G

.

Write G̃ for the pullback of this refinement to G along the Maurer-Cartan form θG, def. 5.2.79,

G̃
θG̃ //

��

Ω1
flat(−, G)

��
G

θG // [dRBG

.

Remark 5.2.121. For every global point g0 : ∗ → G, there is an essentially unique lift through the
differential refinement G̃→ G of def. 5.2.120 (by the condition that Ω1

flat(−, G) be connected, def. 5.2.120).

We discuss canonical examples of this construction below in 6.4.20.

Proposition 5.2.122. In the situation of def. 5.2.120 there is is an essentially unique pre-quantization
LWZW, def. 5.2.130, of the closed differential form

µ(θG̃) : G̃
θG̃−→ Ω1

flat(−, G)
µ−→ Ω2

cl(−,G) ,

whose underlying G-principal bundle is modulated, via theorem 5.1.207, by the looping Ωc, def. 5.1.148, of
the cocycle c. This we call the WZW term associated with c and µ.
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Proof. By the naturality of the Maurer-Cartan form, by construction of µ and θG̃, and by definition of
BGconn we have the solid part of the following diagram

G̃

xx

θG̃
��

LWZW

&&
G

θG

�� Ωc %%

Ω1
flat(−, G)

yy

µ

&&

BGconn

F(−)

��xx
[dRBG

[dRc &&

BG

θBG

��

Ω2
cl(−,G)

xx
[dRB2G

.

The desired dashed morphism hence exists essentially uniquely by the universal property of the homotopy
pullback defining BGconn. �

Remark 5.2.123. A WZW term according to prop. 5.2.122 is hence a differential refinement of a group
cocycle c, compatible with the given differential cohomology refinement of the given coefficients.

G̃

{{
θG̃ &&

LWZW

++
G

��
θG ##

Ωc

**

Ω1
flat(−, G)

yy

µ

&&

BGconn

F(−)

��xx
∗

�� ((

[dRBG

{{

[dRc

&&

BG

xx

θBG
��

Ω2
cl(−,G)

xx
BG

c ##

∗

��

[dRB2G

xx
B2G

.

By the discussion in 5.1.18 then given any cocycle c : BG −→ B2G one is led to regard its homotopy
fiber, which is the delooping of the group extension Ĝ that it classifies.

BĜ

��
BG

c // B2G

.

Now with a WZW term, prop. 5.2.122, being a kind of differential refinement of the cocycle, we are led to
refininging this extension accordingly.

Definition 5.2.124. Given a group cocycle c1, def. 5.1.285 and a further cocycle c2 on the group extension
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G2 → G1, def. 5.1.302, that c1 classifies

BG2

��

c2 // B2G2

BG1
c1 // B2G1

.

Then a compatibility between refinements Ω1
flat(−, G1) and Ω1

flat(−, G2) of the corresponding Hodge filtra-
tions, according to def. 5.2.120, is the choice of a 0-truncated object Ω1(−,G1) equipped with a morphism

Ω1(−,G1)
d→ Ω2

cl(−,G1) fitting into a diagram of the form

Ω1
flat(−, G2) //

��

Ω1(−,G1)

d

��

// ∗

��
Ω1

flat(−, G1)
µ1 // Ω2

cl(−,G1) // [dRB2G1

such that the left square is a pullback. Write

ι : Ω1(−,G1) −→ B(G1)conn

for the morphism induced by this diagram via the homotopy pullback of def. 5.2.100.

This definition is such as to give:

Proposition 5.2.125. Given compatible differential refinements of Hodge filtrations as in def. 5.2.124, then
there is a homotopy pullback diagram of the form

G̃2
//

��

Ω1(−,G1)

ι

��
G̃1

LWZW // B(G1)conn

where the bottom morphism is the WZW term of prop. 5.2.122.

Proof. The four corners of the diagram are, by def. 5.2.100, def. 5.2.120 and by def. 5.2.124, each the
homotopy limit over the four diagonal edges, respectively, of the following cube.

Ω1
flat(−, G2) //

��

&&

Ω1(−,G1)

d

��

%%
[dRBG2

//

��

∗

��

Ω1
flat(−, G1)

##

µ1 // Ω2
cl(−,G1)

##
G2

//θG2

dd

��

∗

��

bb

[dRBG1
[dRc1 // [dRB2G2

G1

θG1

gg

Ωc1 // BG2

θBG2

ee

The front and the middle face of this cube are homotopy pullbacks by definition of BG2 as the homotopy
fiber of c1 and the fact that both Ω and [dR preserve homotopy limits; the rear face is a pullback by def.
5.2.124. Therefore the statement follows by the fact that homotopy limits commute over each other. �

Example 5.2.126. A class of examples of WZW terms and compatibilities is obtained from differential Lie
integration of L∞-algebra cocycles below in 6.4.20.
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5.2.16 Holonomy

The notion of ∞-connections in a cohesive ∞-topos induces a notion of higher holonomoy.

Definition 5.2.127. We say an object Σ ∈ H has cohomological dimension ≤ n ∈ N if for all 0-truncated
abelian group objects A the cohomology of Σ with coefficients in A, def. 5.1.174, vanishes in degrees greater
than n

H•>n(Σ, A) ' ∗ .
We write dim(Σ) be the maximum n for which this is true.

Remark 5.2.128. If Σ has cohomological dimension ≤ n then also its de Rham cohomology, def. 5.2.65,
(with coefficients in 0-truncated abelian groups A) vanishes in degrees greater than n:

H•>ndR (Σ, A) ' ∗ .

Proof. Since [ is a right adjoint it preserves delooping and hence [BkA ' Bk[A. It follows that

Hk
dR(Σ, A) := π0H(Σ, [dRBkA)

' π0H(Σ, ∗
∏
BkA

Bk[A)

' π0

H(Σ, ∗)
∏

H(Σ,BkA)

H(Σ,Bk[A)


' π0(∗)

.

�

Definition 5.2.129. Let Σ ∈ H, n ∈ N with cohomological dimension dimA(Σ) ≤ n. We say that the
composite∫

Σ

: Hflat(Σ,B
nA)

' // ∞Gprd(Π(Σ),Π(BnA))
τ≤n−dim(Σ) // τn−dim(Σ)∞Gprd(Π(Σ),Π(BnA))

of the adjunction equivalence followed by truncation as indicated, prop. 5.1.49, is the flat holonomy operation
on flat ∞-connections.

More generally, let

• ∇ ∈ Hdiff(X,BnA) be a differential coycle on some X ∈ H

• φ : Σ→ X a morphism.

Write
φ∗ : Hdiff(X,BnA)→ Hflat(Σ,B

nA)

(using prop. 5.2.92) for the morphism on ∞-pullbacks induced by the morphism of diagrams

H(X,BnA) //

φ∗

��

HdR(X,Bn+1A) oo

φ∗

��

Hn+1
dR (X,A)

��
H(Σ,BnA) // HdR(Σ,Bn+1A) oo ∗

The holonomomy of ∇ over σ is the flat holonomy of φ∗∇:∫
φ

∇ :=

∫
Σ

φ∗∇ .
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5.2.17 Prequantum geometry

Traditional prequantum geometry (see for instance [EMRV98] for a standard account) is the differential
geometry of smooth manifolds which are “twisted” by circle-principal bundles and circle-principal connections
– thought of as “prequantum bundles” – or equivalently is the contact geometry [Et03] of the total spaces
of these bundles thought of as regular contact manifolds [BoWa58]. Prequantum geometry studies the
automorphisms of prequantum bundles covering diffeomorphisms of the base – the prequantum operators –
and the action of these on the space of sections of the associated line bundle – the prequantum states. This is
an intermediate step in the genuine geometric quantization of the curvature 2-form of these bundles, which
is obtained by dividing the above data in half, important for instance in the orbit method. But prequantum
geometry is of interest already in its own right. For instance the above automorphism group naturally
provides the Lie integration of the Poisson Lie algebra of the underlying symplectic manifold. Moreover, it
is canonically included into the group of bisections of the Lie integration of the Atiyah Lie algebroid of the
given circle bundle.

We now formulate geometric prequantum theory internally to any cohesive ∞-topos to obtain higher
prequantum geometry.

This section draws from [FRS13a].

• 5.2.17.1 – Introduction and Survey

• 5.2.17.2 – Prequantization;

• 5.2.17.3 – Symplectomorphism group;

• 5.2.17.4 – Contactomorphism group;

• 5.2.17.5 – Quantomorphism group and Heisenberg group;

• 5.2.17.6 – Courant Lie algebroid;

• 5.2.17.8 – Prequantum states;

• 5.2.17.9 – Prequantum operators.

5.2.17.1 Introduction and survey Traditional prequantum geometry is the differential geometry of
smooth manifolds which are equipped with a twist in the form of a U(1)-principal bundle with a U(1)-
principal connection. (See section II of [Br93] for a modern account.) In the context of geometric quantization
[So97] of symplectic manifolds these arise as prequantizations (whence the name): lifts of the symplectic
form from de Rham cocycles to differential cohomology. Equivalently, prequantum geometry is the contact
geometry of the total spaces of these bundles, equipped with their Ehresmann connection 1-form [BoWa58].
Prequantum geometry studies the automorphisms of prequantum bundles covering diffeomorphisms of the
base – the prequantum operators or contactomorphisms – and the action of these on the space of sections of
the associated line bundle – the prequantum states. This is an intermediate step in the genuine geometric
quantization of symplectic manifolds, which is obtained by “dividing the above data in half” by a choice of
polarization. While polarizations do play central role in geometric quantum theory, for instance in the orbit
method in geometric representation theory [Kir04], to name just one example, geometic prequantum theory
is of interest in its own right. For instance the quantomorphism group naturally provides a non-simply
connected Lie integration of the Poisson bracket Lie algebra of the underlying symplectic manifold and the
pullback of this extension along Hamiltonian actions induces central extensions of infinite-dimensional Lie
groups (see for instance [RaSch81, Vi11]). Moreover, the quantomorphism group comes equipped with a
canonical injection into the group of bisections of the groupoid which integrates the Atiyah Lie algebroid
associated with the given principal bundle (this we discuss below in 5.2.17.6). These are fundamental objects
in the study of principal bundles over manifolds.
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We observe now that all this has a simple natural reformulation in terms of the maps into the smooth
moduli stacks that classify – better: modulate – principal bundles and principal connections. This refor-
mulation exhibits an abstract characterization of prequantum geometry which immediately generalizes to
higher geometric contexts richer than traditional differential geometry.

To start with, if we write Ω2
cl for the sheaf of smooth closed differential 2-forms (on the site of all smooth

manifolds), then by the Yoneda lemma a closed (for instance symplectic) 2-form ω on a smooth manifold X

is equivalently a map of sheaves ω : X // Ω2
cl . It is useful to think of this as a simple first instance of

moduli stacks: Ω2
cl is the universal moduli stack of smooth closed 2-forms.

Similarly but more interestingly, there is a smooth moduli stack of circle-principal connections, def.
6.4.108. This we denote by BU(1)conn in order to indicate that it is a differential refinement of the universal
moduli stack BU(1) of just U(1)-principal connections, which in turn is a smooth refinement of the traditional
classifiying space BU(1) ' K(Z, 2) of just equivalence classes of such bundles. Hence BU(1)conn is the
“smooth homotopy 1-type” which is uniquely characterized by the fact that maps X → BU(1)conn from a
smooth manifold X are equivalently circle-principal connections on X, and that homotopies between such
maps are equivalently smooth gauge transformations between such connections. This is a refinement of Ω2

cl:
the map which sends a circle-principal connection to its curvature 2-form constitutes a map of universal

moduli stacks F(−) : BU(1)conn
// Ω2

cl , hence a universal invariant 2-form on BU(1)conn. This universal

curvature form characterizes traditional prequantization: for ω ∈ Ω2
cl(X) a (pre-)symplectic form as above,

a prequantization of (X,ω) is equivalently a lift ∇ in the diagram

X
∇ //

ω
��

BU(1)conn

F(−)zz
Ω2

cl

,

where the commutativity of the diagram expresses the traditional prequantization condition ω = F∇.
A triangular diagram as above may naturally be interpreted as exhibiting a map from ω to F(−) in the

slice topos over Ω2
cl. This means that the map F(−) is itself a universal moduli stack – the universal moduli

stack of prequantizations. As such, F(−) lives not in the topos over all smooth manifolds, but in its slice
over Ω2

cl, which is the topos of smooth stacks equipped with a map into Ω2
cl.

Now given a prequantization∇, then a quantomorphism or integrated prequantum operator is traditionally

defined to be a pair (φ, η), consisting of a diffeomorphism φ : X
' // X together with an equivalence of

prequantum connections η : φ∗∇ ' // ∇ . A moment of reflection shows that such a pair is equivalently
again a triangular diagram, now as on the right of

QuantMorph(∇) =

{
φ ∈ Diff(X) ,

η : φ∗∇ '→ ∇

}
'


X

φ
' //

∇ $$

X

∇zz
BU(1)conn

ηs{

 .

This also makes the group structure on these pairs manifest – the quantomorphism group: it is given by the
evident pasting of triangular diagrams. In this form, the quantomorphism group is realized as an example of
a very general construction that directly makes sense also in higher geometry: it is the automorphism group
of a modulating morphism regarded as an object in the slice topos over the corresponding moduli stack –
a relative automorphism group. Also in this form the central property of the quantomorphism group – the
fact that over a connected manifold it is a U(1)-extension of the group of Hamiltonian symplectomorphisms
– is revealed to be just a special case of a very general extension phenomenon, expressed by the schematic
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diagrams below:

U(1) → QuantMorph(∇) → HamSympl(∇)
X

∇
��

∇
��

BU(1)conn

ks

 →


X

∇ $$

' // X

∇zz
BU(1)conn

s{

 →

 X
' // X

 .

Our main theorems in 5.2.17.5 below are a general account of canonical extensions induced by (higher)
automorphism groups in slices over (higher, differential) moduli stacks in this fashion.

This U(1)-extension is the hallmark of quantization: under Lie differentiation the above sequence of
(infinite-dimensional) Lie groups turns into the extension of Lie algebras

iR → Poisson(X,ω) → XHam(X,ω)

that exhibits the Poisson bracket Lie algebra of the symplectic manifold as an iR ' Lie(U(1))-extension of
the Lie algebra of Hamiltonian vector fields on X – the Kostant-Souriau extension (e.g section 2.3 of [Br93]).
If we write ~ ∈ R for the canonical basis element (“Planck’s constant”) then this expresses the quantum
deformation of “classical commutators” in XHam(X,ω) by the central term i~.

More widely known than the quantomorphism groups of all prequantum operators are a class of small
subgroups of them, the Heisenberg groups of translational prequantum operators: if (X,ω) is a symplectic
vector space of dimension 2n, regarded as a symplectic manifold, then the translation group R2n canonically
acts on it by Hamiltonian symplectomorphisms, hence by a group homomorphism R2n → HamSympl(∇).
The pullback of the above quantomorphism group extension along this map yields a U(1)-extension of R2n,
and this is the traditional Heisenberg group H(n,R). More generally, for (X,ω) any (prequantized) sym-
plectic manifold and G any Lie group, one considers Hamiltonian G-actions: smooth group homomorphisms
φ : G → HamSympl(∇). Pulling back the quantomorphism group extension now yields a U(1)-extension
of G and this we may call, more generally, the Heisenberg group extension induced by the Hamiltonian
G-action:

U(1) → Heisφ(∇) → G .

The crucial property of the quantomorphism group and any of its Heisenberg subgroups, at least for the
purposes of geometric quantization, is that these are canonically equipped with an action on the space of
prequantum states (the space of sections of the complex line bundle which is associated to the prequantum
bundle), this is the action of the exponentiated prequantum operators. Under an integrated moment map, –
a group homomorphism G→ QuantMorph(∇) covering a Hamiltonian G-action – this induces a represen-
tation of G on the space of prequantum states. After a choice of polarization this is the construction that
makes geometric quantization a valuable tool in geometric representation theory.

This action of prequantum operators on prequantum states is naturally interpreted in terms of slicing,
too: A prequantum operator is traditionally defined to be a function H ∈ C∞(X) with action on prequantum
states ψ traditionally given by the fomula

OH : ψ 7→ i∇vHψ +H · ψ ,

where the first term is the covariant derivative of the prequantum connection along the Hamiltonian vector
field corresponding to H. To see how this formula together with its Lie integration, falls out naturally from
the perspective of the slice over the moduli stack, write C//U(1) for the quotient stack of the canonical
1-dimensional complex representation of the circle group, and observe that this comes equipped with a

canonical map ρ : C//U(1) // ∗//U(1) ' BU(1) to the moduli stack of circle-principal bundles. This is

the universal complex line bundle over the moduli stack of U(1)-principal bundles, and it has a differential

refinement compatible with that of its base stack to a map ρconn : C//U(1)conn
// BU(1)conn . Now one
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can work out that maps ψ : ∇ → ρconn in the slice over BU(1)conn are equivalently sections of the complex
line bundle P ×U(1) C which is ρ-associated to the U(1)-principal prequantum bundle:

ΓX
(
P ×U(1) C

)
'


X

∇ $$

ψ // C//U(1)

ρconnxx
BU(1)conn

rz

 .

With this identification, the action of quantomorphisms on prequantum states

(Oh, ψ) 7→ Oh(ψ)

is simply the precomposition action in the slice H/BU(1), hence the action by pasting of triangular diagrams
in H:

X

∇ $$

φ // X

∇zz
BU(1)conn

Oh
s{

,

X

∇ $$

ψ // C//U(1)conn

ρconnww
BU(1)conn

qy

 7→
X

φ
' //

∇ $$

X

∇
��

ψ // C//U(1)conn

ρconnww
BU(1)conn

�	 s{

Once formulated this way as the geometry of stacks in the higher slice topos over the smooth moduli stack
of principal connections, it is clear that there is a natural generalization of traditional prequantum geometry,
hence of regular contact geometry, obtained by interpreting these diagrams in higher differential geometry
with smooth moduli stacks of principal bundles and principal connections refined to higher smooth moduli
stacks. Morever, by carefully abstracting the minimum number of axioms on the ambient toposes actually
needed in order to express the relevant constructions (this we discuss in 5.2.17) one obtains generalizations
to various other flavors of higher/derived geometry, such as higher/derived supergeometry.

Just as traditional prequantum geometry and contact geometry is of interest in itself, this natural re-
finement to higher geometry is of interest in itself, and is one motivation for studying higher prequantum
geometry. For instance in 7.5 we indicate how various higher central extensions of interest in string geometry
can be constructed as higher Heisenberg-group extensions in higher prequantum geometry.

But the strongest motivation for studying traditional prequantum geometry is, as the name indicates, as
a means in quantum mechanics and quantum field theory. This we come to below in 7.6.
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∞-geometric
quantization

cohesive homotopy-type theory
twisted hyper-
sheaf cohomology

pre-n-plectic
cohesive ∞-groupoid

ω : X → Ω2
cl(−,G) (e.g. G = Bn−1U(1) or = Bn−1C×)

twisting cocycle
in de Rham cohomology

symplectomorphisms AutH(ω) =


X

' //

ω $$

X

ωzz
Ω2

cl(−,G)


twist automorphism
∞-group

prequantum bundle

BGconn

F(−)

��
X

ω //

∇
;;

Ω2
cl(−,G)

twisting cocycle in
differential cohomology

Planck’s constant ~ 1
~∇ : X → BnGconn

divisibility
of twist class

quantomorphism group
⊃

Heisenberg group
AutH(∇) =


X

' //

∇ $$

X

∇zz
BnGconn

't|


twist automorphism
∞-group

Hamiltonian G-action µ : BG→ AutH(∇)
G-∞-action

on the twisting cocycle

gauge reduction ∇//G : X//G→ BGconn
G-∞-quotient

of the twisting cocycle
Hamiltonian observables
with Poisson bracket

Lie(AutH(∇))
infinitesimal
twist automorphisms

Hamiltonian
symplectomorphisms

image
(

AutH(∇) // Aut(X)
) twists in

de Rham cohomology
that lift to

differential cohomology

G-representation

V // V//G

ρ

��
BG

local coefficient ∞-bundle

prequantum space of states ΓX(E) =


X

σ //

c
!!

V//G

ρ
{{

BG

'u}


cocycles in

[c]-twisted cohomology

prequantum operator action (̂−) : ΓX(E)×AutH → ΓX(E)
∞-action of

twist automorphisms
on twisted cocycles

transgression

composition with:

[S1, V//Gconn]

ρVconn

��

tr holS1 // V//ΩGconn

ρVconn

��
BGconn

exp(2πi
∫
S1 (−))

// Gconn

fiber integration in
(nonabelian)

differential cohomology
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5.2.17.2 Prequantization Let X ∈ H be a cohesive homotopy-type. Let G ∈ Grp(H) be a braided
cohesive group, def. 5.1.156. In the present context we say

Definition 5.2.130. 1. A morphism (def. 5.2.87)

ω : X // Ω2
cl(−,G)

is a pre-symplectic structure on X.

2. Given a pre-symplectic structure, a lift ∇ in

BGconn

F(−)

��
X

∇
;;

ω
// Ω2

cl(−,G)
w�

is a prequantization of (X,ω).

5.2.17.3 Symplectomorphisms Let X ∈ H be a cohesive homotopy-type. Let G ∈ Grp(H) be a
braided cohesive group, def. 5.1.156. Let

ω : X // Ω2
cl(−,G) .

be a pre-symplectic structure, def. 5.2.87.

Definition 5.2.131. The symplectomorphism group Sympl(ω) of the pre-symplectic geometry (X,ω) is the
H-valued automorphism group, def. 5.1.35, of ω ∈ H/Ω2

cl(−,G):

Sympl(ω) := AutH(ω) :=
∏

Ω2
cl(−,G)

Aut(ω) .

Remark 5.2.132. According to remark 5.1.36 a global element of Sympl(ω) corresponds to a diagram in
H of the form

X
φ

'
//

ω $$

X

ωzz
Ω2

cl(−,G)

.

This is a diffeomorphism φ of X which preserves the pre-symplectic structure in that

φ∗ω = ω .

Definition 5.2.133. Write
pΩ2

cl(−,G) : Sympl(ω) // Aut(X)

for the canonical morphism induced by restriction of the morphism of prop. 5.1.38.

Proposition 5.2.134. The morphism pΩ2
cl(−,G) of def. 5.2.133 is a monomorphism

Proof. By direct generalization of the proof of prop. 5.1.41 we find that for each U ∈ H the fibers of
pΩ2

cl(−,G) are path space objects of [X,Ω2
cl(−,G)]. But since Ω2

cl(−,G) is 0-truncated by def. 5.2.87, also

[X,Ω2
cl(−,G)] is 0-truncated, and so its path spaces are either contractible or empty. �
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5.2.17.4 Contactomorphisms

Definition 5.2.135. Given two G-principal connections ∇1 : X1 → BGconn and ∇2 : X2 → BGconn, a
(strict) contactomorphism between regular contact spaces from ∇1 to ∇2 is a morphism between them in the
slice H/BGconn

. The ∞-groupoid of contactomorphisms betwen ∇1 and ∇2 is

ContactMorph(∇1,∇2) := Γ ([∇1,∇2]H) := Γ
∏

BGconn

[∇1,∇2] ,

Remark 5.2.136. This means that a single contactomorphism from ∇1 to ∇2 is given by a diagram

X
' //

∇1 ##

X

∇2{{
BGconn

t|

in H. However, in order to obtain the correct cohesive structure on the collection of all contactomorphisms
we need to concretify the object [∇1,∇2]H, as in the discussion at 5.2.13.4.

5.2.17.5 Quantomorphism group and Heisenberg group We discuss the formalization of the tra-
ditional concept of quantomorphism groups inside cohesive homotopy theory. The terminology “quantomor-
phism group” has been introduced by Souriau to the theory of geometric quantization already in the 1960s.
Under Lie differentiation the quantomorphism group becomes the Poisson bracket Lie algebra, and under
restriction to translations it becomes the Heisenberg group. Both the Poisson bracket and the Heisenberg
group are famous hallmarks of quantum theory. Both are just shadows of the quantomorphism group.

Let G be a braided cohesive ∞-group, def. 5.1.156, equipped with a Hodge filtration, def. 5.2.99, and
write BGconn for the corresponding differential coefficient object, def. 5.2.100.

Given a G-principal connection
∇ : X −→ BGconn ,

def. 5.2.101, regarded as a pre-quantization, def. 5.2.130, of its curvature form F∇ : X
∇−→ BGconn

F(−)−→
Ω2(−,G), def. 5.2.99, then the coresponding quantomorphism group is supposed to be the group of auto-

morphisms φ (e.g. diffeomorphisms) of X equipped with a choice of equivalence η : φ∗∇ '−→ ∇ identifying
the pullback of ∇ along φ with ∇ itself.

Hence informally the quantomorphism group looks like this:

QuantMorph(∇) =


X

φ //

∇   

X

∇~~
A

η
w�


More background discussion on this idea is in 1.3.2 and 1.3.3.3.

While the above diagram gives the right idea of the global elements of the quantomorphism group, care
has to be exercised in constructing the correct cohesive structure. Comparison with remark 5.1.36 might

suggest to define QuantMorph(∇) as AutH(∇) as in def. 5.1.35, with ∇ =


X

∇
��

BGconn

 ∈ H/BGconn
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regarded as an object in the slice over its codomain. However, a map U → AutH(∇) is equivalently a
diagram of the form

U ×X ' //

∇ %%

U ×X

∇yy
BGconn

ηUs{

and this is a bit more general than it should be for the quantomorphism group. Namely here the gauge
transformation ηU may have differention form components along U , whereas for the quantomorphism group
we need this to be a genuine U -parameterized collection of gauge transformation just on X, hence we need
to require that ηU has no differential form components along U .

This is a restriction of the kind accomplished by the operation of differential concretification in def.
5.2.105. Therefore we consider the following definition:

Remark 5.2.137. By prop. 5.2.11 the canonical action of Aut(X) on [X,BGconn], example 5.1.280, passes
to the differential concretification GConn(X) along the map in def. 5.2.105. Therefore we have an operation

∇ ◦ (−) : Aut(X) −→ GConn(X)

constructed by def. 5.1.268, with notation following remark 5.1.281.

Definition 5.2.138. The quantomorphism group of a G-principal connection ∇ : X → BGconn, def. 5.2.101,
is the homotopy fiber QuantMorph(∇) ∈ Grp(H) of the morphism ∇ ◦ (−) of remark 5.2.137, over ∇: in

QuantMorph(∇) // Aut(X)
∇◦(−) // GConn(X)

.

Remark 5.2.139. By prop. 5.1.40 there is a canonical morphism AutH(∇) −→ QuantMorph(∇), given
by the universal property of the homotopy pullback in the following diagram

AutH(∇) //

��

((

∗

`∇

��

''
QuantMorph(∇)

��

// ∗

��

Aut(X)
∇◦(−) // [X,BGconn]

conc

''
Aut(X) // GConn(X)

In this sense the quantomorphism group of ∇ is the differential concretification of AutH(∇).

This serves to motivate the abstract definition of the quantomorphism group in def. 5.2.138 from the
traditional concept. Indeed, corollary 6.4.192 shows that the traditional quantomorphism group is a special
case of this abstract definition. The following proposition however gives a more intrinsic and fundamental
characterization of this definition.

Proposition 5.2.140. Given a G-principal connection ∇ : X → BGconn, def. 5.2.101 its quantomorphism
group QuantMorph(∇) of def. 5.2.138 is equivalently the stabilizer group, def. 5.1.289, of the canonical
Aut(X)-action on GConn(X), remark 5.2.137:

QuantMorph(∇) ' StabAut(X)(∇) .
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Proof. This follows by using definition 5.2.138 in prop. 5.1.293 and using that the further homotopy
pullbacks in that proposition commute over the iterated homotopy fiber products in def. 5.2.105. �

Definition 5.2.141. Let ∇ : X → BGconn be a G-principal connection, regarded as a prequantum ∞-
bundle. Then

1. the Hamiltonian symplectomorphism group HamSympl(∇) ∈ Grp(H) is the sub-∞-group of the
automorphisms of X which is the 1-image, def. 5.1.56, of the quantomorphisms:

QuantMorph(∇) // // HamSympl(∇) �
� / Aut(X)

2. for G ∈ Grp(H) an ∞-group, a Hamiltonian G-action on X is an ∞-group homomorphim

G
φ // HamSympl(∇) �

� // Aut(X) ;

3. an integrated G-momentum map is an action by quantomorphisms

G
φ̂ // QuantMorph(∇) �

� // Aut(X) ;

4. given a Hamiltonian G-action φ, the corresponding Heisenberg ∞-group Heisφ(∇) is the homotopy
fiber product in

Heisφ(∇) //

��

QuantMorph(∇)

��
G

φ // HamSympl(∇)

.

Remark 5.2.142. The name Heisenberg group in def. 5.2.141 derives from the special traditional case
where G is a symplectic vector space, regarded as a translation group acting on itself by Hamiltonian
symplectomorphisms, this we discuss in 6.4.21.6 below.

Often we find it convenient to generalize this terminology even further and write HeisG(∇) for the
homotopy pullback as above but with φ : G→ Aut(X) not necessarily factoring through HamSympl(∇).
This notational abuse is mild, as by the pasting law and the pullback stability of the 1-image factorization,
such HeisG(∇) is HeisG̃(∇) in the sense of def. 5.2.141, for G̃ ↪→ G the restriction along which φ does
restrict to taking values in Hamiltonian automorphisms.

Then we have the following characterization of the corresponding quantomorphism ∞-group of def.
5.2.138.

Theorem 5.2.143. For A a 0-truncated abelian group and G := BnA equipped with an abelian Hodge
filtration, def. 5.2.103, then there is a long homotopy fiber sequence, def. 5.1.178, in Grp(H) of the form

• for n = 0

GLocConstFunct(X) // QuantMorph(∇) // HamSympl(∇)
∇◦(−) // B (GLocConstFunct(X))

• for n ≥ 1:

(ΩG)FlatConn(X) // QuantMorph(∇) // HamSympl(∇)
∇◦(−) // B ((ΩG) FlatConn(∇)) ,
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which hence exhibits the quantomorphism group QuantMorph(∇) ∈ Grp(H) as an ∞-group extension,
5.1.18 of the ∞-group of Hamiltonian symplectomorphisms, def. 5.2.141, by the differential moduli of flat
ΩG-principal connections on X, def. 5.2.110, classified by an ∞-group cocycle which is given by postcompo-
sition with ∇ itself.

Proof. Consider the natural 1-image factorization of the horizontal maps in the defining ∞-pullback of
def. 5.2.138:

QuantMorph(∇) // //

��

HamSympl(∇) �
� //

∇◦(−)

��

Aut(X)

∇◦(−)

��
∗ // //

`∇

22B (Ω∇ (GConn(X)))
� � // GConn(X)

.

By homotopy pullback stability of both 1-epimorphisms and 1-monomorphisms, prop. 5.1.69, prop. 5.1.60,
and by essential uniqueness of 1-image factorizations, prop. 5.1.59, this is a pasting diagram of homotopy
pullback squares. The claim then follows with prop. 5.2.111. �
By the pasting law, prop. 5.1.2, the analogous statement also holds for Heisenberg ∞-groups:

Corollary 5.2.144. If φ : G → HamSympl(∇) ↪→ Aut(X) is any Hamiltonian G-action, def. 5.2.141,
then the corresponding Heisenberg ∞-group sits in the ∞-fiber sequence

(ΩG)FlatConn(X) // Heisφ(∇) // G
∇◦(−) // B ((ΩG) FlatConn(∇)) ,

Definition 5.2.145. Given a G-principal ∞-connection ∇, def. 5.2.101, write

P∇ : BHamSympl(∇) −→ B2((ΩG)FlatConn(∇))

for the universal characteristic class which is the delooping, def. 5.1.152, of the homomorphism ∇ ◦ (−)
in theorem 5.2.143. By remark 5.1.307 this is the universal obstruction, def. 5.1.308, to lifts of structure
groups, def. 5.1.305, through the quantomorphism group extension.

Remark 5.2.146. The universal characteristic class P∇ in def. 5.2.145 is a generalization of the Kostant-
Souriau-cocycle, in that when realized in the topos of smooth cohesion, constructed in 6.4, and specialized to
G = U(1) the circle Lie group, then it reproduces this traditional cocycle, see 6.4.21.4. Further specialized
to a prequantum bundle ∇ on a symplectic vector space, then this is reduces to the Heisenberg cocycle, see
6.4.21.5.

5.2.17.6 Courant groupoids Given a G-principal ∞-connection

BGconn

uBG

��
X

∇
;;

∇0
// BG

we have considered in 5.1.8.1.3 the corresponding higher Atiyah groupoid At(∇0)• and in 5.2.17.5 the higher

quantomorphism groupoid At(∇) equipped with a canonical map At(∇)• // At(∇0)• . But in view of

the towers of differential coefficients discussed in 5.2.13 this has a natural generalization to towers of higher
groupoids interpolating between the higher Atiyah groupoid and the higher quantomorphism groupoid.

In particular, let G ∈ Grp3(H) a sylleptic ∞-group, def. 5.1.156, with compatibly chosen factorization
of differential form coefficients and induced factorization of differential coefficients

B2Gconn
// B(BGconn) // B2G .
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Definition 5.2.147. For ∇n−1 : X → B(BGconn) a G-principal connection without top-degree connection
data as in def. 6.4.96, we say that the corresponding higher Courant groupoid is the corresponding higher
Atiyah groupoid At(∇n−1)• ∈ Grpd(H), hence the groupoid object which by prop. 5.1.123 is equivalent to
the ∞-groupoid with atlas given by the 1-image factorization of ∇n−1

X // // At(∇n−1) := im1(∇n−1) .

Example 5.2.148. If H = Smooth∞Grpd is the ∞-topos of smooth ∞-groupoids and G = BU(1) ∈
Grp∞(H) is the smooth circle 2-group and if finally X ∈ SmoothMfd ↪→ Smooth∞Grpd is a smooth
manifold, then by def. 6.4.116 a map ∇1 : X → B(BU(1)conn) is equivalently a “U(1)-bundle gerbe with
connective structure but without curving” on X.

In this case the higher Courant groupoid according to def. 5.2.147 is a smooth 2-groupoid and its ∞-
group of bisections BiSect(At(∇1)•) is a smooth 2-group. The points of this 2-group are equivalently pairs

(φ, η) consisting of a diffeomorphism φ : X
' // X and an equivalence of bundle gerbes with connective

structure but without curving of the form η : φ∗∇n−1 ' // ∇n−1 . A homotopy of bisections between

two such pairs (φ1, η1) → (φ2, η2) exists if φ1 = φ2 and is then given by a higher gauge equivalence κ

κ : η1
' // η2 . Moreover, with prop. 5.2.13.4 the smooth structure on the differentially concretified

2-group of such bisections is the expected one, where U -plots are smooth U -parameterized collections of
diffeomorphisms and of bundle gerbe gauge transformations.

Precisely these smooth 2-groups have been studied in [Col11]. There it was shown that the Lie 2-
algebras that correspond to them under Lie differentiation are the Lie 2-algebras of sections of the Courant
Lie 2-algebroid which is traditionally associated with a bundle gerbe with connective structure. (See the
citations in [Col11] for literature on Courant Lie 2-algebroids.) Therefore the abstractly defined smooth
higher Courant groupoid At(∇n−1) according to def. 5.2.147 indeed is a Lie integration of the traditional
Courant Lie 2-algebroid assigned to ∇n−1, hence is the smooth Courant 2-groupoid.

Example 5.2.149. More generally, in the situation of example 5.2.148 consider now for some n ≥ 1 the
smooth circle n-group G = Bn−1U(1). Then a map

∇n−1 : X // B(Bn−1U(1)conn)

is equivalently a Deligne cocycle on X in degree (n+ 1) without n-form data.
To see what the corresponding smooth higher Courant groupoid At(∇n−1) is like, consider first the local

case in which ∇n−1 is trivial. In this case a bisection of At(∇n−1) is readily seen to be a pair consisting of a
diffeomorphism φ ∈ Diff(X) together with an (n−1)-form H ∈ Ωn−1(X), satisfying no further compatibility
condition. This means that there is an L∞-algebra representing the Lie differentiation of the higher Courant
groupoid At(∇n−1)• which in lowest degree is the space of sections of a bundle on X which is locally the
sum TX⊕∧n−1T ∗X of the tangent bundle with the (n−1)-form bundle. This is precisely what the sections
of higher Courant Lie n-algebroids are supposed to be like, see for instance [Zam10].

Finally, if we are given a tower of differential refinements of G-principal bundles as discussed in 5.2.13

BGconn

��
BGconnn−1

��
...

��
X ∇0 //

∇n−1

>>
∇

CC

BG
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then there is correspondingly a tower of higher gauge groupoids:

higher
Quantomorphism

groupoid

higher
Courant
groupoid

· · ·

intermediate
differential

higher
Atiyah

groupoid

· · ·
higher
Atiyah

groupoid

At(∇)• // At(∇n−1)• // · · · // At(∇k) // · · · // At(∇0)

.

The further intermediate stages appearing here seem not to correspond to anything that has already been
given a name in traditional literature. We might call them intermediate higher differential gauge groupoids.
These structures are an integral part of higher prequantum geometry.

5.2.17.7 Poisson and Heisenberg Lie algebra We consider now the∞-Lie algebras of these∞-groups
in prequantum geometry.

Definition 5.2.150. • The ∞-Lie algebra

poisson(X, ω̂) := Lie(QuantMorph(∇))

of the quantomorphism group we call the Poisson ∞-Lie algebra of the prequantum geometry (X,∇).

• The ∞-Lie algebra of the Hamiltonian symplectomorphisms

XHam(X, ω̂) := Lie(HamSympl(∇))

we call the ∞-Lie algebra of Hamiltonian vector fields of the prequantum geometry.

Remark 5.2.151. If X has a linear structure (the structure of a vector space) and ω is constant on X, then
we can consider the sub ∞-Lie algebra of poisson(X, ω̂) on the constant and linear elements. We discuss
realizations of this below in 6.4.21.6. This sub ∞-Lie algebra we call the Heisenberg ∞-Lie algebra

heis(∇) ↪→ poisson(∇) .

The corresponding sub-∞-group we call the Heisenberg ∞-group

Heis(∇) ↪→ QuantMorph(∇) .

5.2.17.8 Prequantum states Given a prequantum geometry

X
∇ // BGconn

F(−) // Ω2
cl(−,G)

as above, choose now finally a representation, def. 5.1.189, of G, hence a fiber sequence in H of the form

V // V//G
ρ // BG .

For UBG : BGconn
// BG the forgetful morphism, we obtain from the prequantum connection ∇ ∈

H/BGconn
the underlying modulus ∑

UBG

∇ ∈ H/BG

of the prequantum bundle proper.
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Definition 5.2.152. The ρ-associated V -fiber bundle

E :=

(∑
UBG

∇

)∗
ρ ∈ H/X

to
∑
UBG

∇, def. 5.1.246, we call the prequantum V -bundle (or just prequantum line bundle if V is equipped

compatibly with a ring structure).

Remark 5.2.153. If we write P → X for the total space projection of the prequantum bundle, sitting in
the ∞-pullback diagram

P //

��

∗

��
X

∑
UBG
∇ // BG

,

then by prop. 5.1.246 the total space projection of the prequantum line bundle is the left morphism in the
∞-pullback diagram

P ×G V //

��

V//G

ρ

��
X

∑
UBG
∇ // BG

.

Definition 5.2.154. The space of sections, def. 5.1.255, of the prequantum line bundle

ΓX(E) ∈ H

we call the prequantum space of states.

Remark 5.2.155. By prop. 5.1.265 the prequantum space of states is equivalently expressed as

ΓX(E) '
∏
BG

[∑
U

∇, ρ

]
.

5.2.17.9 Prequantum operators

Definition 5.2.156. The prequantum operator action of the quantomorphism group QuantMorph(∇),
def. 5.2.17.5, on the space of prequantum states ΓX(E), def. 5.2.154, is the action, def. 5.1.189,

ΓX(E) // ΓX(E)//QuantMorph(∇)

ρprequant

��
BQuantMorph(∇)

given by the canonical precomposition action, example 5.1.280, of AutH(
∑
U

∇) on ΓX(E) '
∏
BG

[∑
U

∇, ρ
]

H
(remark 5.2.155) restricted to a QuantMorph(∇) := AutH(∇)-action, def. 5.1.271, along the canonical
morphism pU : AutH(∇)→ AutH(

∑
U

∇).
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Remark 5.2.157. The prequantum operator action of def. 5.2.156 is exhibited by the following pasting
diagram of ∞-pullback squares.

ΓX(E) '
∏
BG

[
∑
U

∇, ρ] //

��

∏
BG

([∑
U

∇, ρ
]
//
∏
U

Aut(∇)

)
//

��

∏
BG

([∑
U

∇, ρ
]
//Aut(

∑
U

∇)

)

��

B
∏
BG

(∏
U

Aut (∇)

)
B
∏
BG

(pU ) // B
∏
BG

(
Aut

(∑
U

∇
))

∗ // B (AutH(∇)) // B

(
AutH(

∑
U

∇)

)

∗ // B (QuantMorph(∇))

.

This uses that the dependent product is right adjoint and hence preserves ∞-pullbacks (as well as group
structure).

Remark 5.2.158. A prequantum state is given by a diagram

X
ψ //

∑
U

∇ !!

V//G

ρ
{{

BG

u}

and a prequantum operator by a diagram

X
φ //

∇ ##

X

ρ{{
BGconn

O
t|

.

Then the result of the action is the new prequantum state O(ψ) given by the pasting diagram

X
φ //

∇
##∑

U

∇

��

X

∇
��

ψ // V//G

ρ

��

BGconn

U

��
BG

(where all the 2-cells are notationally suppressed, for readability).

5.2.18 Local prequantum field theory

We discuss now a formalization local prequantum field theory (see 1.3.2 and 1.3.3 in the introduction) in
cohesive ∞-toposes.
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The contents of this section draw from discussion with Domenico Fiorenza. An unpublished precursor
of the following discussion is [Sc08b]. The discussion here is inspired by the sketch in section 3 of [FHLT09]
which indicates prequantum theory for geometrically discrete topological field theories such as Dijkgraaf-
Witten theory.

After an

• 5.2.18.1 – Introduction

to the general idea of local prequantum field theory, we start in

• 5.2.18.2 – Local worldvolumes

by recalling aspects of (∞, n)-categories of cobordisms (i.e. of “worldvolumes” from the point of view of the
physics of field theory) from [L-TFT] and then discussing higher extensions of diffeomorphism groups and
mapping class groups.

Then we consider pre-quantum field theories on these worldvolumes. First just their assignment of
physical bulk fields in

• 5.2.18.3 – Local bulk fields

then the assignment of local action functionals to local bulk fields in

• 5.2.18.4 – Local action functionals

• 5.2.18.5 – Anomaly cancellation

and then we discuss boundaries, corners and defects of such prequantum field theories in

• 5.2.18.6 – Boundary field theory

• 5.2.18.7 – Corner field theory

• 5.2.18.8 – Defect field theory

5.2.18.1 Introduction The quantum field theories (QFTs) of interest, both in nature as well as theo-
retically, are typically not generic examples of the axioms of quantum field theory (see [SaSc11b] for a survey
of modern formalizations of QFT) but rather are special in two respects:

1. they arise from geometric data – the Lagrangian and action functional – via some process of quantiza-
tion, and notably from higher geometric data such as Lagrangian densities, pre-symplectic currents and
higher gauge fields, subject to gauge equivalences, and higher order gauge of gauge transformations;

2. they are local in that the spaces of configurations (states) which they assign to a piece of worldvol-
ume/spacetime are determined from gluing the data assigned to pieces of any decomposition of the
worldvolume/spacetime.

While quantized field theories (topological QFTs as well as non-topological boundary quantum field
theories) are axiomatically characterized by the cobordism theorem [L-TFT] (see [Be10] for a brief survey),
here we are after understanding the axiomatization the local higher geometric pre-quantum data of those
quantum field theories that arise from quantization. This also proceeds by the cobordism theorem, but with
the “linear” n-categorical coefficients appropriate for quantum field theories replaced by non-linear geometric
n-categorical coefficients. Since the natural context for higher geometry are higher toposes [L-Topos] and
specifically cohesive higher toposes and since, as we will discuss, local action functionals are naturally objects
in slices of such higher toposes over differential coefficient objects, the n-categorical coefficients that we
consider are higher correspondences in such higher slice toposes.
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For the case that the ambient higher topos encodes discrete geometry (suitable for the discussion of finite
gauge theories such as Dijkgraaf-Witten theory) the definition of local prequantum field theory that we
consider is that indicated in section 3 of [FHLT09].

One goal here is to show that by allowing the ambient higher topos to be more general and in particular by
choosing differentially cohesive higher toposes, the genuine differential geometric data familiar from general
field theories is naturally captured and usefully analyzed.

5.2.18.1.1 Action functionals and correspondences Traditionally in physics one considers (smooth)
spaces of trajectories of physical fields (“spaces of histories”), which we will denote by Fieldstraj, and consid-
ers smooth functions on these spaces valued in the circle group, called the exponentiated action functionals
or the phases

exp
(
i
~S
)

: Fieldstraj −→ U(1) ,

where 2π~ ∈ R denotes the choice of isomorphism

U(1) ' R/2π~Z ,

of the circle group with the quotient of the additive group of real numbers by a copy of the integers, which
physically is “Planck’s constant”, see def. 6.4.156 below. By the principle of extremal action the critical locus
of such functionals encodes those trajectories which are realized in macroscopic physics (classical physics),
while integrals over trajectory space (“path integrals”) of such functionals are to produce the integral kernels
that enocde the microscopic dynamics (quantum mechanics).

For example for X a smooth manifold to be thought of as spacetime, and for ∇ a circle-principal con-
nection on X, to be thought of as an electromagnetic field, then the Lorentz force inter-action between a
charged particle that travels around loops S1 −→ X in spacetime and the background electromagnetic field
is encoded by the holonomy functional

exp
(
i
~S
∇
Lor

)
:= hol∇ : [S1, X] −→ U(1) ,

where [S1, X] denotes the loop space of X regarded as a smooth space (for instance as a Fréchet manifold
or as a diffeological space) and where hol∇ is the function that sends a curve in X to its holonomy under ∇.

More generally, action functionals are in fact not U(1)-valued functions, but are sections of U(1)-principal
bundles. To say this more formally, we introduce the notation BU(1) for the universal moduli stack of
smooth U(1)-principal bundles. This is characterized as being the object such that for X any smooth
manifold then homomorphisms X −→ BU(1) are equivalent to smooth U(1)-principal bundles on X and
homotopies between such are equivalently to smooth isomorphisms/gauge transformations between those.
For an introduction into the language of smooth (moduli) stacks that we are using here see [FSS13a].

As the notation suggests, the characteristic feature of BU(1) is that it is the delooping of the group U(1),
and the boldface B is to indicate that we consider this with everything equipped with its smooth geometric
structure. This means that U(1) as a smooth Lie group is the homotopy fiber product of the point with
itself inside BU(1). By the universal property of the homotopy fiber construction this in turn means that
an exponentiated action functional as above is equivalently a homotopy from the pullback of the trivial
U(1)-principal bundle to itself, as follows:

Fieldstraj

$$zz∗

$$

∗

zz
BU(1)

u}

'

Fieldstraj

##{{
exp(

i
~S)

��
∗

##

U(1)oo // ∗

{{
BU(1)

ow

.
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Indeed, in the above example of the electromagnetic interaction, if instead of closed particle trajectories of
the shape of a circle we consider trajectories of the shape of the interval I := [0, 1], regarded as a smooth
manifold with boundary ∂I = ∗

∐
∗, then the inter-action functional is not given by the holonomy but more

generally by the parallel transport of the connection ∇ along paths, which is not a function but is a section
of the oriented pullback of the background bundle along the path endpoint evaluation map, in that it is a
homotopy diagram like this:

[I,X]
(−)|0

||

(−)|1

""
X

χ(∇) ""

X

χ(∇)||
BU(1)

tra∇w�

.

Here χ(∇) is the class (or rather the modulus/cocycle) of the U(1)-principal bundle underlying the U(1)-
principal connection ∇. We discuss this and its higher dimensional generalization below in 6.4.18.

This diagram is a correspondence from the background field χ(∇) to itself, regarded as an object in the
slice topos over BU(1). Since U(1) is the “group of phases” in traditional formulations of physics, BU(1)
here plays the role of a higher group of phases. Below we see that such correspondences in slices over higher
groups of phases serve to encode local pre-quantum field theory quite generally.

Another archetypical example for such correspondences – which is almost familiar from traditional liter-
ature – are pre-quantizations of Lagrangian correspondences in symplectic geometry [We71, We83]. In this
context, consider (X,ω) a symplectic manifold, to be thought of as the phase space of some physical system.
In the spirit of the above discussion we stick to representing all extra structure on spaces in terms of maps
into moduli stacks of these structures, and hence we think of the symplectic differential 2-form ω ∈ Ω2(X)
here a morphism

ω : X −→ Ω2
cl

to the smooth moduli space of closed differential 2-forms (technically this is simply the sheaf of closed 2-
forms on the site of all smooth manifolds). In terms of such maps we have for instance that a diffeomorphism
φ : X −→ X is a symplectomorphism precisely if it makes the following diagram of smooth spaces commute:

X
φ //

ω   

X

ω~~
Ω2

.

Equivalently, if we write (id, φ) : graph(φ) ↪→ X ×X for the graph of the function φ, then φ is a symplecto-
morphism precisely if it induces a correspondence from ω to itself regarded as an object in the slice topos
over Ω2 as follows:

graph(φ)
p1

zz

p2

$$
X

ω
$$

X

ω
zz

Ω2

.

While such Lagrangian correspondence have long been studied and have been proposed as a foundation for
geometric quantization [We83], it is well known that a symplectic manifold is too crude a model for a physical
phase space, and that more accurately a physical phase space is a “pre-quantization” of a symplectic manifold,
namely a choice of U(1)-principal connection ∇ whose curvature 2-form coincides with the symplectic form

496



F∇ = ω. (See the introduction of [FRS13a] for a review of geometric prequantization and for further pointers
to the literature.)

In order to see the effect of this refinement on the above discussion, observe that sending a U(1)-principal
connection ∇ to its curvature 2-form F∇ is a natural operation, compatible with gauge equivalences, and
hence is given by a universal morphism of stacks

F(−) : BU(1)conn −→ Ω2
cl

from the universal moduli stack BU(1)conn of U(1)-principal connections to the univseral smooth space of
closed differential 2-forms. In terms of this a prequantization of a symplectic manifold (X,ω) is a lift ∇ in
the diagram

X

ω
$$

∇ // BU(1)conn

F(−)

��
Ω2

.

In view of this it is clear what a pre-qauntized Lagrangian correspondence should be: this is a lift of the
above Lagrangian correspondence through the universal curvature homomorphism to a correspondence in
the slice over BU(1)conn of the form

graph(φ)

zz $$
X

∇
$$

ω

%%

X

∇
zz

ω

yy

BU(1)conn

F(−)

��
Ω2

u}

.

While this is an obvious refinement of the traditional notion of Lagrangian correspondence, it does not seem
to have found due attention in the existing literature. Its relevance may be seen from the following obser-
vation [FRS13a] which we discuss in more detail below in 1.3.2: Smooth 1-parameter flows of prequantized
Lagrangian correspondences as above are given precisely by choices of smooth functions H ∈ C∞(X), where
such a function induces the flow that sends t ∈ R to the correspondence

t 7→

graph(exp(t{H,−}))

ww ''
X

∇ ''

X

∇ww
BU(1)conn

exp(iSt)rz

,

where exp(t{H,−}) is the Hamiltonian flow induced by H and St =
∫ t

0
Ldt is its Hamilton-Jacobi action,

namely the integral of the Lagrangian L which is the Legendre transform of H. Hence the notion of flows of
Lagrangian correspondences unifies a fair bit of traditional classical mechanics [Ar89]. We survey in 1.3.2 how
when this is lifted to Lagrangian correspondences between prequantum n-bundles for n ∈ N as in [FRS13a],
then n-dimensional flows in n-fold correspondences encode the equations of motion of local Lagrangians on
jet spaces in deDonder-Weyl-Hamiltonian (“multisymplectic”) formulation.
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In summary, the description of classical mechanics here identifies prequantized Lagrangian correspon-
dences schematically as follows:

graph (exp (t{H,−}))

zz $$

space of
trajectoriesinitial

values

ww

Hamiltonian
evolution

&&

X

∇in

$$

X

∇out

zz

phase space
of incoming fields

prequantum
bundle

''

phase space of
outgoing fields

prequantum
bundle

xx

BU(1)conn
higher group

of phases

exp( i~St)=exp( i~
∫ t
0
Ldt)

u}

action
functional

s{

This state of affairs turns out to be essentially a blueprint for the formulation of local prequantum field
theory that we obtain below in 5.2.18, via maps from cobordisms to n-fold correspondences in higher slices
toposes.

5.2.18.1.2 Local Lagrangians and higher differential cocycles To see the need for passing
from traditional symplectic geometric and prequantum bundles to prequantum n-bundles, first observe the
traditional formulation of higher dimensional field theory along the above lines. Let Fields be a moduli
space/moduli stack of fields of some field theory – for instance Fields = BGconn the universal moduli stack
of G-principal connections of some Lie group G, for the case of G-gauge theory. Then over a closed manifold
Σn−1 of dimension (n− 1), to be thought of as a spatial slice of spacetime, the space of field configurations
on Σn−1 is the mapping stack Field(Σn−1) = [Σn−1,Fields] (or some slight variant of this, such as its
“differential concretification” [FRS13a], see the examples below in ?? for more). Now the evolution of fields
on Σn−1 in time is a trajectory given by a map

I −→ [Σn−1,Fields]

which by the internal hom-adjunction is equivalently a field configuration

φ ∈ [Σn−1 × I,Fields]

on the cylinder over Σn−1. Hence the n-dimensional field theory transgressed to maps out of Σn−1 looks like
a mechanical system with space of fields being the mapping space [Σn−1,Fields].

For instance if the field theory is the (n = p+ 1)-dimensional worldvolume theory of a p-brane which is
charged under a (p + 1)-form connection ∇, then the action functional over such cylinders is of the same
general form as that for electrically charged particles above

[I, [Σp,Fields]]

(−)|0

vv

(−)|1

((
[Σp,Fields]

χ
(

exp(
i
~
∫
Σn−1

∇
)
((

[Σp,Fields]

χ
(

exp(
i
~
∫
Σn−1

∇
)

vv
BU(1)

tra∇
qy

,

where now exp
(
i
~
∫

Σp
∇
)

is an ordinary 1-form connection on the mapping space [Σp,Fields], obtained by

transgression of the given (p+ 1)-form connection ∇ on the moduli space of fields itself.
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While in this fashion all n-dimensional field theories may be thought of in terms of mechanics (1-
dimensional field theory) on the space of fields over (n − 1)-dimensional spatial slices, restricting to this
perspective alone loses the manifest locality of the theory: the data for codimension-1 manifolds Σn−1 is not
necessarily represented as obtained by gluing data on smaller patches. In physics terminology, essentially this
problem is known as the problem of the non-covariance of canonical quantization, referring to the explicit
and non-natural choice of (n− 1)-dimensional spatial slices Σn−1 of spacetime.

Imposing locality then amounts to requiring that all the data of the n-dimensional theory can be re-
constructed by the data for codimension-n manifolds, hence for collections of just points. To continue the
pattern of phases U(1) and higher phases BU(1)conn that we have seen emerging in codimension-0 and 1, one
sees that the natural codimension-k datum for a n-dimensional prequantum theory is that of a morphism of
stacks of the form

[Σn−k,Fields] −→ Bn−kU(1)conn ,

where on the right we have the (n − k)-stack of (n − k)-form connections on higher (n − k)-circle bundles
(bundle (n− k − 1)-gerbes with connection). An introduction to this perspective is in [FSS13a].

Going down to codimension n and observing that if ∗ denotes the 1-point manifold then [∗,Fields] ∼=
Fields, we see that imposing locality on a prequantum theory means that the whole theory, in any codi-
mension, is determined by a single datum: a morphism of higher stacks of the form

L : Fields −→ BnU(1)conn .

Notice that such an n-connection on the moduli stack of fields is locally given by a differential n-form.
Moreover, this being an n-form on a stack means that for each test manifold Σ this is an n-form (locally)
on Σ, depending on the field configurations on Σ. Such a form is familiar in, and central to, traditional
prequantum field theory. It is the Lagrangian of the theory; whence the choice of symbol “L”.

Indeed, once such an L is given, all the codimension-k prequantum (n − k)-U(1)-bundles with con-
nections on the moduli stacks [Σn−k,Fields] are naturally obtained by transgression of n-bundles (fiber
integration/push-forward on cocycles in differential cohomology):

exp

 i
~

∫
Σn−k

L

 : [Σn−k,Fields]
[Σn−k,L]−−−−−−→ [Σn−k,B

nU(1)conn]

exp

 i
~
∫

Σn−k
(−)


−−−−−−−−−−−→ Bn−kU(1)conn .

The rightmost map here is fiber integration in Deligne cohomology, seen as morphism of smooth stacks, this
we describe below in 6.4.18. In particular, for k = 0 one recovers the action functional as

exp
(
i
~SΣn

)
= exp

(
i
~

∫
Σn

L

)
: [Σn,Fields] −→ B0U(1)conn ' U(1) .

The universal curvature morphisms

curv : Bn−kU(1)conn −→ Ωn−k+1
cl

endow the moduli spaces of field configurations with canonical closed degree n− k+ 1 differential forms. In
the traditional case, if Fields here is the jet bundle to a field bundle, then this is the pre-symplectic current
density known from the “covariant phase space” formulation of classical field theory [Zu87, CrWi87]. The
pre-quantum theory of such “multisymplectic” or “n-plectic” structure has been described systematically
in [FRS13a]. For k = 1 this is the traditional pre-symplectic structure on [Σn−1,Fields], so the “local
prequantization” can be seen as a de-transgression of this pre-symplectic structure to a pre-n-plectic structure
on the stack of fields.

In this fashion we consider here differential n-cocycles L : Fields −→ BnU(1)conn on higher moduli
stacks as pre-quantized local Lagrangians for n-dimensional field theories. More precisely, these define “bulk”
field theories on n-dimensional worldvolumes/spacetimes without physical boundaries or other singularities
(“defects”).
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5.2.18.1.3 Boundary field theory and twisted relative cohomology We observe in 5.2.18.6
below that by the full cobordism theorem in the presence of boundaries and singularities, a codimension-1
boundary condition for a local prequantum field theory L : Fields → BnU(1)conn as above is equivalently
the data of a correspondence of the form

Fieldsbdr

yy &&
∗

0 $$

Fields

Lxx
BnU(1)conn

t|

,

hence a choice of boundary fields Fieldsbdr, a choice of map from boundary fields into bulk fields, and a
choice of trivialization of the pre-quantized bulk field Lagrangian after restriction to the boundary fields.

The prototypical example of this is the relation between 3d Chern-Simons theory and 4d “univresal
topological Yang-Mills theory”, which we discuss below in 7.4.2. That 3d Chern-Simons theory is a theory
which ultimately deals with boundaries of 4-manifolds is something coming from the very origin of the theory
[ChSi74]. In the language of smooth moduli stacks [FRS13a] this is completely formalized and summarized
in the following (homotopy) commutative diagram

BGconn

��

〈F(−)∧F(−)〉

��

cs

��
B3U(1)conn

zz

F(−)

%%
∗

0 $$

(pb) Ω4
cl ,

LtYMyy
[B4U(1)

where BGconn is the stack of principal G-bundles with connection for a compact simple and simply connected
Lie group G,

〈F(−) ∧ F(−)〉 : BGconn → Ω4
cl

is the Chern-Weil 4-form representing the fundamental degree four characteristic class of G, and

cs : BGconn → B3U(1)conn

is the Chern-Simons action functional lifted to a morphism of stacks from BGconn to the 3-stack of U(1)-3-
bundles with connection (see [FSS13a] for details). In the lower part of the diagram,

LtYM : Ω4
cl −→ [B4U(1)

is the canonical embedding of closed 4-forms into the stack of flat U(1)-4-bundles with connection. Here we
are denoting it by the symbol LtYM) since we are physically interpreting it as the the Lagrangian of topological
4d Yang-Mills theory. The lower part of the diagram is what exhibits 3d Chern-Simons as a boundary theory
for 4d topological Yang-Mills. More precisely, since the lower part of the diagram is a homotopy pullback, it
exhibits B3U(1)conn as the universal boundary condition for 4d topological Yang-Mills. we will come back
to this in detail in Section 7.4.2.2.

Finally, in a fully extended field theory, going from the bulk to the boundary is only the first step: one can
go in higher codimension to boundaries of boundaries (or corners) or consider high codimension submanifolds
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of the bulk. For instance, in 4d topological Yang-Mills, this is the way Wess-Zumino-Witten theory and and
Wilson loop actions appears as a codimension-2 corner theory and as codimension-3 defects, respectively.
We will recover these as examples of more general corner and defect theories in Section 7.3.

A list of examples of twisted boundary fields is discussed in detail below in 7.1.

5.2.18.2 Local worldvolumes We discuss aspects of (∞, n)-categories of cobordisms [L-TFT]. From
the point of view of the local prequantum field theory which we consider, these cobordisms are “worldvolumes
of branes” and the fact that they are regarded as higher morphisms in an (∞, n)-category expresses the
“locality” embodied in the fact that these may be decomposed and glued together. Therefore here it makes
sense to think of these as “local worldvolumes”. Hence we recall the basic definitions from [L-TFT] and add
observations which seem not to have been stated in the literature elsewhere.

Following section 4.3 [L-TFT] we write:

Definition 5.2.159. For n ∈ N, and for χ : G → O(n) a homomorphism of topological groups, write
(BordGn )t for the symmetric monoidal (∞, n)-category of n-dimensional cobordism with G-structure. For
G = 1 we write

Bordfr
n := Bord1

n

for the (∞, n)-category of framed cobordims, for χ the inclusion of SO(n) we write

Bordor
n := BordSO(n)

n

for the (∞, n)-category of oriented cobordisms, and for χ the identity we write

Bordn := BordO(n)
n

for the (∞, n)-category of unoriented cobordisms.

Definition 5.2.160. For C⊗ a symmetric monoidal (∞, n)-category, a local G-topological field theory of
dimension n with coefficients in C is a monoidal (∞, n)-functor

Z : (BordGn )t −→ C⊗ .

Remark 5.2.161. Depending on the nature of the coefficient C⊗, local topological field theories have
different interpretation. If C⊗ is a “linear” (∞, n)-category “of n-vector spaces” of sorts or more generally
of “linear types”, then Z : (BordGn )t → C⊗ may be thought of as a local topological quantum field theory,
whose value on a closed manifold of codimension 1 is interpreted as the linear space of quantum states over
that manifold.

In contrast, here we are instead interested in prequantum field theory, with “prequantum” understood in
the traditional sense of geometric pre-quantization (see [Bon14] for a review) and lifted higher dimensional
local field theories as in [FRS13a]. This is a structure that is supposed to assign to a closed manifold the
higher moduli stack of fields on that manifold, equipped with a local Lagrangian/higher prequantum bundle or
the corresponding action functional that assigns to each field configuration a quantity – a phase – measuring
its contribution to the genuine quantum states.

Often prequantum field theory data (i.e., field configurations and Lagrangian/action functional data)
is called classical field theory data. However, strictly speaking in classical field theory phases spaces are
just equipped with differential form data (pre-symplectic forms), whereas for the purposes of full (non-
perturbative) quantization it is crucial that thes differential form data is lifted to line bundles with connection,
which are traditionally called the pre-quantum line bundles. This may be thought of as a refinement of
classical field theory, taking into account global phenomena such as “classical anomalies”, but it is not yet
quantum. Therefore we speak of pre-quantum field theory.

Remark 5.2.162. Since the difference matters to us, we explicitly distinguish notationally between
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• the orthogonal group O(n) ∈ Grp(ETop∞Grpd) regarded as a topological group (or as a Lie group);

• the ∞-group Π(O(n)) ∈ Grp(∞Grpd) of the underlying homotopy type (represented for instance by
the simplicial group structure on the singular simplicial complex of the topological space O(n)).

Moreover, sticking with writing BG ∈ H for the internal delooping of an ∞-group object G ∈ Grp(H) and
writing BG ∈ ∞Grpd ↪→ H for the traditional classifying space of a topological group G, we have

BO(n) ' BΠ(O(n)) ' Π(BO(n)) ' Π(BGL(n)) .

For Σ a (topological or smooth) manifold, then its tangent bundle as a topological or smooth bundle is
modulated by a morphism of stacks τΣ : Σ −→ BGL(n). Under Π this becomes a map

Π(τΣ) : Π(Σ) −→ BO(n) .

Theorem 5.2.163. For C a symmetric monoidal (∞, n)-category, then the (∞, n − 1)-category of local
framed-topological field theories, def. 5.2.160, i.e. of monoidal (∞, n)-functors

Z : (Bordfr
n)t −→ C⊗

is equivalent to the ∞-groupoid Cfd
∼ of fully dualizable objects in C, the equivalence being exhibited by the

evaluations on the point equipped with any of its n-framings

Z 7→ Z(pt) .

Via this equivalence, the O(n)-action on the space of n-framings of the point induces a Π(O(n))-∞-action
on Cfd.

This is [L-TFT, theorem 2.4.6, corollary 2.4.10]. In other words, this theorem says that local framed-
topological field theories are entirely reflected in the “higher dimensional traces” on a “space of states”
assigned to a point:

Definition 5.2.164. For ZV a framed-topological local field theory corresponding to a fully dualizable
object V ∈ C by theorem 5.2.163, then for Σ a closed k-dimensional manifold, we write

dimΣ(V ) := trΣ(idV ) := Z(Σ) ∈ ΩkC

for the image of Σ, regarded as a k-dimensional cobordisms, under Z. We say this is the “higher dimensional
trace of shape Σ of the identity on V ”.

Example 5.2.165. The canonical action on the abelian ∞-groups BnZ, regarded as symmetric monoidal
(∞, 0)-categoris, is discussed below in prop. 7.2.10.

For our purposes it is useful to state the classification of structured-topological field theories in terms of
∞-actions as in 5.1.14:

Definition 5.2.166. For F ∈ ∞Grpd equipped with a Π(O(n))-∞-action ρ, then a ρ-structure on a manifold
Σ of dimension k ≤ n is a lift

Π(Σ)

Π(τΣ)⊕Rn−k $$

// F//Π(O(n))

ρ
xx

BO(n)

,
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where the left morphism is the composite

Π(Σ)
Π(τΣ)−→ BO(k) ↪→ BO(n)

of the morphism from remark 5.2.162 with the canonical inclusion, and where the right morphism is the one
that exhibits the ∞-action by 5.1.267. Hence the ∞-groupoid of ρ-structures on τΣ is, in the notation of
5.1.2.1

ρStruc(Σ) :=
∏

BO(n)

[Π(τΣ), ρ] .

Example 5.2.167. An important class of examples of Π(O(n))-∞-actions are those determined by a coho-
mology class [c] ∈ Hq+1(BO(n), A) as sitting in the homotopy fiber sequence

BqA // (BqA)//Π(O(n))

ρc

��
BO(n)

c // Bq+1A

.

In this case we usually write
cStruc(Σ) := ρcStruc(Σ)

for short.

Remark 5.2.168. More generally one may consider structures as in def. 5.2.166 but defined in the ambient
∞-topos H instead of just in ∞Grpd ↪→ H. Such “geometric” structures we discuss in detail below in 7.1.
They include for instance Riemannian metric structure, given by lifts of maps of smooth stacks of the form

Σ

τΣ ##

// BO(k)

yy
BGL(k)

In view of this, the structures in def. 5.2.166 might better be called “bare homotopy theoretic structures” for
emphasis. Tradtionally they are sometimes referred to as “topological structures”. These are the structures
that we consider, following [L-TFT], as structures with which cobordisms may be equipped when forming
an (∞, n)-category of cobordisms. However, around prop. 5.2.203 below we see that such structures may
equivalently be traded in for fields, and fields with moduli spaces in cohesive ∞-toposes H we consider in
detail.

We consider now the extensions of the diffeomorphism group of a manifold Σ for diffeomorphisms that
preserve given ρ-structure, def. 5.2.167. More specifically, we first consider the higher extension (def. 5.1.302)
of the diffeomorphism group by the homotopy-theoretic data that exhibits the choices of homotopies between
a given ρ-structure and its pullback along a diffeomorphism.

Definition 5.2.169. Given a smooth manifold Σ of dimension k ≤ n and equipped with a ρ-structure
σ ∈ (H/BO(n))/ρ as in def. 5.2.166, then the ρ-diffeomorphism group of (Σ, σ) is the homotopy fiber product

Diffρ(Σ, σ) := Diff(Σ) ×
AutH(ιτΣ)

AutH(σ) ∈ Smooth∞Grpd

in Smooth∞Grpd fitting into

Diffρ(Σ, σ) //

��

AutH(σ)

pρ

��
Diff(Σ) ∑

ι ◦τ(−)

// AutH(ιτΣ)

,
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where ι : BGL(k) → Π(BGL(k)) ' BO(k) ↪→ BO(n) is the canonical morphism, where AutH(−) denotes
the H-valued slice automorphism group construction of def. 5.1.35, where the right vertical morphism is
from def. 5.1.38 and where τ(−) is from def. 5.3.101.

Remark 5.2.170. The ρ-diffeomorphism group Diffρ(Σ, σ) in def. 5.2.169 is a slight variant of the isometry
group Iso(Σ, σ), def. 5.3.131, the difference being that in the latter case homotopies take values in the
smooth stack BGL(n) whereas here we have them take values in the classifying space BO(n) under the
canonical map BGL(n)→ BO(n).

Remark 5.2.171. The top right entry in the pullback in def. 5.2.169 is the automorphisms in the slice
over ρ of, in turn, the slice over BO(n) of Smooth∞Grpd. Hence Diffρ(Σ, σ) is the smooth ∞-group whose

objects are diffeomorphisms φ : Σ
'−→ Σ equipped with an equivalence α : σ

'−→ φ∗σ, i.e.

Σ
φ //

τΣ

##

Σ //

τΣ

{{

F//Π(O(n))

ρ

{{

BGL(k)

ι

��
BO(n)

'u}

σ

ai α⇒

Σ //

##

F//Π(O(n))

ρ

{{

BGL(k)

ι

��
BO(n)

σnv

and whose morphisms are homotopies between such α, and so forth.

Proposition 5.2.172. The ρ-diffeomorphism group, def. 5.2.169, is a higher extension (def. 5.1.302) of
the smooth diffeomorphism group by the (geometrically discrete) ∞-group Ωσ[ιτΣ, F//Π(O(n))]H

Proof. This follows from prop. 5.1.41 in the same way as the analogous statement for the isometry
∞-groups in the proof of prop. 5.3.132. �

Proposition 5.2.173. The 0-truncation τ0(Diffρ(Σ, σ)) ∈ Grp(Smooth∞Grpd) of the ρ-diffeomorphism
group, def. 5.2.169 is a smooth group extension of the plain diffeomorphism group Diff(Σ) by

π0Ωσ[ιτΣ, F//Π(O(n))]/H ∈ Grp(∞Grpd) ↪→ Grp(Smooth∞Grpd) ,

in that there is a short exact sequence (of sheaves of groups)

1→ π0Ωσ[ιτΣ, F//Π(O(n))]H −→ τ0Diffρ(σ) −→ Diff(Σ)→ 1 .

Proof. Consider the maps p : Diffρ(Σ, σ)→ Diff(Σ) and i : ∗ → Diff(Σ) and z : Ωσ[ιτΣ, F//Π(O(n))]/H →
∗ → Diff(Σ) as objects in the slice Smooth∞Grpd/Diff(Σ). In the slice the homotopy fiber sequence of prop
5.2.172 translates to

z ' i× p .

By lemma 6.5.1.2 in [L-Topos] this is preserved by 0-truncation to yield

τ0(z) ' τ0(i)× τ0(p)

in the slice. But since Diff(Σ) is 0-truncated in Smooth∞Grpd, we have that

τ0(p) ' [τ0(Diffρ(Σ, σ))→ Diff(Σ)]

and
τ0(i) ' i

504



and
τ0(z) '

[
π0(Ωσ[ιτΣ, F//Π(O(n))]/H)×Diff(Σ)→ Diff(Σ)

]
.

Therefore translating τ0(z) ' τ0(i)×τ0(p) back from the slice to the global Smooth∞Grpd gives the homotopy
fiber sequence of 0-truncated objects

π0Ωσ[ιτΣ, F//Π(O(n))]/H → τ0Diffρ(Σ, σ)→ Diff(Σ) .

Here the right morphism is evidently surjective and hence this yields a short exact sequence. �

Proposition 5.2.174. Also the bare homotopy type Π(Diffρ(Σ, σ)) of the untruncated ρ-diffeomorphism
group, def. 5.2.169, is a higher extension (def. 5.1.302) of the bare homotopy type Π(Diff(Σ)) of the plain
diffeomorphism group by Aut/mathbfH(σ), i.e. applying Π to the sequence in prop. 5.2.172 yields a homotopy
fiber sequence of ∞-groups

Ωσ[ιτΣ, F//Π(O(n))]/H −→ Π(Diffρ(Σ, σ)) −→ Π(Diff(Σ))

and hence of classifying spaces

BΩσ[ιτΣ, F//Π(O(n))]/H −→ BDiffρ(Σ, σ) −→ BDiff(Σ) .

Proof. By prop. 5.1.39 the pullback pasting diagram in the proof of prop. 5.2.172 extends one square
further to the right:

Ωσ[ιτΣ, F//Π(O(n))]/H //

��

Diffρ(Σ, σ) //

��

Aut/H(σ)

∑
ρ

��

// ∗

��
∗ // Diff(Σ)

∑
ι // Aut/BO(n)(ιτΣ) // [ιτΣ, F//Π(O(n))]/H

But since F//Π(O(n)) is geometrically discrete, so is [ιτΣ, F//Π(O(n))]H. Now, by prop. 4.1.35, Π preserves
homotopy pullbacks over geometrically discrete objects. Hence applying Π to the total rectangle, gives the
homotopy fiber sequence in question. �

Definition 5.2.175. The mapping class group of a smooth manifold Σ is the group of connected components
of the bare homotopy type of its smooth diffeomorphism group:

MCG(Σ) := π0(Π(Diff(Σ))) .

The ρ-mapping class group of a smooth manifold Σ with ρ-structure σ is the group of connected components
of the bare homotopy type of its ρ-diffeomorphism group (def. 5.2.169):

MCGρ(Σ, σ) := π0(Π(Diffρ(Σ, σ))) .

Proposition 5.2.176. If the bare homotopy type of the diffeomorphism group of Σ is simply connected, then
the ρ-mapping class group, def. 5.2.175, is an extension of the plain mapping class group by π0Ωσ[ιτΣ, F//Π(O(n))]/H,

π0Ωσ[ιτΣ, F//Π(O(n))]/H −→ MCGρ(Σ, σ) −→ MCG(Σ)
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Proof. By prop. 5.2.174 we have a homotopy fiber sequence in ∞Grpd of the form

Ωσ[ιτΣ, F//Π(O(n))]/H → Π(Diffρ(Σ, σ))→ Π(Diff(Σ)) .

The long exact sequence of homotopy groups induced by this starts out as

· · · → π1Π(Diff(Σ))→ π0Ωσ[ιτΣ, F//Π(O(n))]/H → MCGρ(Σ, σ)→ MCG(Σ) .

The claim hence follows from the assumption that π1Π(Diff(Σ)) is trivial. �

Example 5.2.177. Consider c-structure as in example 5.2.167, where c : BO(n) −→ Bn+1Z with n ≥ 1 is
an integral cocycle. Then the c-class of, in particular, an (n− 1)-dimensional manifold Σ

c(Σ) : Π(Σ)
Π(τΣ)−→ BO(n− 1) ↪→ BO(n)

c−→ Bn+1Z

is trivializable, i.e. equivalent to the map that factors through the point. This implies, by the pasting law
prop. 5.1.2, that a c-structure on Σ is equivalently a map σ : Σ→ BnZ:

Σ
σ //

��

(BnZ)//Π(O(n))

ρc

��

// ∗

��
Π(Σ)

Π(τΣ)⊕R //

c(Σ)

33BO(n)
c // Bn+1Z

'

Σ
σ //

��

BnZ

��

// ∗

��
Π(Σ) // ∗ // Bn+1Z

Using that [Σ, BnZ] has the structure of a group object, it follows (via multiplication with the inverse of σ
under this group structure) that

Ωσ[ιτΣ, F//Π(O(n))]/BO(n) ' Ωσ[Σ, BnZ]

' Ω0[Σ, BnZ]

' [Σ, Bn−1Z]

and hence in this case the ρ-diffeomorphism group is, by prop. 5.2.172, an extension of Diff(Σ) by [X,Bn−1Z].
The 0-truncation of this∞-groupoid is the degree-(n−1) integral cohomology of Σ, and by assumption that Σ
is a manifold of dimension n−1 and further assuming that Σ is orientable (there is an evident generalization
of the discussion to the non-orientanle case), this is the group of integers

π0[X,Bn−1Z] ' Z .

It follows by prop. 5.2.173 that in this example the 0-truncation of the ρ-diffeomorphism group is a Z-
extension of the diffeomorphism group:

Z −→ τ0Diffρ(Σ, σ) −→ Diff(Σ) .

Moverover if Π(Diff(Σ)) is simply connected (for instance if n = 3 and Σ any closed Riemann surface of
genus ≥ 2) then prop. 5.2.176 says that also the ρ-mapping class group, def. 5.2.175, is a Z-extension

Z −→ MCGρ(Σ, σ) −→ MCG(Σ) .

For n = 3 and c = p1 the first Pontryagin class, these extensions have been considered in [Seg04] (around p.
46). We come back to this example below in 7.2.27.
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Theorem 5.2.178. The (∞, n− 1)-category of ρ-structured-topological local field theories, def. 5.2.160,

Z : (Bordρn)t −→ C⊗

is equivalent to the ∞-groupoid ∞Grpd/BO(n)(F, Cfd
∼ ) of morphisms inside diagrams of the form

F//Π(O(n))

ρ
&&

// Cfd
∼ //Π(O(n))

xx
BO(n)

where the left morphism is that of def. 5.2.166, while the right morphism is that corresponding to the
canonical Π(O(n))-∞-action of theorem 5.2.163 via prop. 5.1.267.

This is theorem 2.4.18 in [L-TFT]. As a special of this:

Theorem 5.2.179. The (∞, n− 1)-category of unoriented-topological local field theories

Z : Bordtn −→ C⊗

is equivalent to the ∞-groupoid
∏

BO(n)

(
Cfd
∼ //Π(O(n))

)
of Π(O(n))-homotopy fixed points, def. 5.1.269, of the

Π(O(n))-∞-action on the ∞-groupoid of fully dualizable objects in C, from theorem 5.2.163.

This is theorem 2.4.26 in [L-TFT].

5.2.18.3 Local bulk fields The following definition is alluded to in [Sc08b], is sketched in section 3.2
of [L-TFT] and is spelled out in detail in section 3 of [Hau14].

Definition 5.2.180. Write
Corr1 :=

{
i oo c // o

}
for the category free on a single correspondence, i.e. consisting of three objects and two non-identity mor-
phisms from one to the other two. For n ∈ N write

Corrn := (Corr1)×
n

for the n-fold cartesian product of this category with itself. Given an∞-category H with finite∞-limits, set

Corrn(H) := Func∞(Corrn,H)

Under composition of correspondences by fiber products of maps to a common face, Corrn(H) is naturally
an an (∞, n)-category. Moreover, from the cartesian product in H the (∞, n)-category Corrn(H) inherits a
natural structure of symmetric monoidal (∞, n)-category, which we will denote Corrn(H)⊗.

Often we take H here to be an ∞-topos and then write H for it.

Example 5.2.181. An object in Corrn(H) is just an object in H. A 1-morphism in Corrn(H) is a diagram
in H of the form

Ai Acoo // Ao .

In the application to prequantum field theory such a diagram is typically interpreted as follows: Ai is a moduli
stack of fields on an incoming piece of worldvolume and Ao that of field on an outgoing piece. The object
Ac is that of fields on a piece of worldvolume connecting these two pieces, putting them in correspondence,
hence Ac is the collection of trajectories of field configurations from the incoming to the outgoing piece.
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The left map sends such a trajectory to its initial configuration, the right one to its final configuration. A
2-morphism in Corrn(H) is a diagram in H of the form

Aii Aicoo // Aio

Aci

OO

��

Acc

OO

��

oo // Aco

OO

��
Aoi Aocoo // Aoo ,

and so on. Composition of morphisms is via homotopy fiber products in H. For instance, the composition
of the two 1-morphisms

X Yoo // Z and Z Soo // T

is the 1-morphism
X Y ×Z Soo // T .

In the above interpretation of these correspondences in prequantum field theory, this operation corresponds to
gluing or concatenating trajectories of field configurations whenever they match over their outgoing/ingoing
pieces of worldvolume, respectively. The compositions of higher morphisms are defined analogously.

The following proposition is announced as remark 3.2.3 in [L-TFT]. A formal statement and proof is in
section 6 of [Hau14]. We spell of some details of the structures involved.

Proposition 5.2.182. For all n ∈ N, every object X ∈ Corrn(H)⊗ is fully dualizable and is in fact its own
dual. The k-dimensional spherical trace of the identity on X in Corrn(H)⊗ is its free k-sphere space object

dimSk(X) = trSk(idX) ' [Π(Sk), X] ,

(as in 6.4.5.2), seen as a k-fold correspondence from the terminal object to itself.

Proof. Let X ∈ H ↪→ Corrn(H) be any object. We repeatedly apply lemma 6.4 in [Hau14].
The first step is to exhibit X as the ordinary dual of itself. For this, the co-evaluation and evaluation

morphisms ε : I → X × X and η : X × X → I are given by the “C” and by the “ C”, i.e. in H by the
correspondences

∗ Xoo ∆X // X ×X and X ×X X
∆Xoo // ∗ ,

where ∆X denotes the diagonal map for X. Notice that, by example 6.4.31, this diagonal map is equivalent
to the evaluation at the two endpoints of the interval (1-disk) Π(D1) in the mapping space [Π(D1), X], so
that ε is equivalent to

∗ [Π(D1), X]oo (ev0,ev1) // X ×X ,

and similarly for η.
For ε and η to exhibit a self-duality, the zig-zig-identities

X
X×ε //

idX

55X ×X ×X
η×X // X and X

ε×X //

idX

55X ×X ×X
η×X // X
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have to hold as diagram in Corrn(H). Indeed, as a composite of correspondences this is given in H by

X

idX

��

idX

��

∆X

ww
∆X

''
X ×X

p1

{{
(idX ,∆X)

&&

(pb) X ×X

(∆X ,idX)

xx
p2

##
X X ×X ×X X ,

and similarly for the other composite. As a consequence, the trace of the identity of X

tr(idX) := I ε // X ×X
η // I

is given by the correspondence

LX = [Π(S1), X]

uu ))
X = [Π(D1), X]

xx

∆X

))

(pb) X = [Π(D1), X]

∆X

uu &&
∗ X ×X ∗ ,

.

Hence
dim1(X) ' LX ' [Π(S1), X] ,

which amounts to the pictorial identity C◦ C ∼= O.
Next, to exhibit the self-duality (ε, η) on X as a full duality, we need to produce full adjoints ε∗ and η∗

of ε and of η, respectively with units

I ε //
��

X ×X ε∗ // I
��

, I
η∗ //

��
X ×X

η // I
��

and similar co-units. Here we may choose η∗ := ε and ε∗ := η and we take their unit and its dual

I

X ×X

η

OO

I

ε

OOid

::

ks +3

to be the given by the 2-fold correspondences in H which exhibit the “appearance of a circle” and the
“disappearance of a circle”:

∗ ∗oo // ∗

∗

OO

��

X

OO

��

oo // [Π(S1), X]

OO

��
∗ ∗oo // ∗

and

∗ ∗oo // ∗

[Π(S1), X]

OO

��

X

OO

��

oo // ∗

OO

��
∗ ∗oo // ∗
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and take the co-unit and its dual

X ×X
η //

id

==I ε // X ×XKS
��

to be given by the “saddle” correspondence22,

X ×X X ×X
∆X◦p1oo ∆X◦p2 // X ×X

X ×X

idX×X

OO

idX×X

��

X∆X
oo ∆X

//

∆X

OO

∆X

��

X ×X

idX×X

OO

idX×X

��
X ×X X ×X

idX×Xoo idX×X // X ×X

•

.

Notice that here the top row of the diagram arises from the fiber product composition of correspondences
given by

X ×X
p1

{{

p2

##
X ×X X //∆oo ∗ Xoo ∆ // X ×X .

The zig-zag identity for these

I ε //
��

X ×X
η //

CC

��
I ε //

��

X ×X ' I

ε

��

ε

@@X ×Xid

��

in indeed satisfied, as exhibited by the equivalence of following diagram in H, formed from pasting the above
diagrams,

∗ Xoo ∆X
// X ×X X ×X

idX×Xoo idX×X // X ×X

∗

OO

��

X

idX

OO

idX
��

oo ∆X
// X ×X

idX×X

OO

idX×X

��

X∆X
oo ∆X

//

∆X

OO

∆X

��

X ×X

idX×X

OO

idX×X

��
∗ Xoo ∆X

// X ×X X ×X∆X◦p1
oo ∆X◦p2

// X ×X

∗ Xoo [Π(S1), X]×X //oo

(pb)

X ×X p2 // X ∆X
// X ×X

∗

OO

��

X ×X

OO

p2

��

p2 //oo X

OO

idX
��

∆X
// X ×X

idX×X

OO

idX×X

��
∗ X idX //oo X ∆X

// X ×X
22The picture of the saddle here has been grabbed from Aaron Lauda’s repository.
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with the “vertical identity” 2-correspondence

∗ Xoo ∆X
// X ×X

∗

OO

��

X

idX

OO

idX
��

oo ∆X
// X ×X

idX×X

OO

idX×X

��
∗ Xoo ∆X

// X ×X ,

by the universal property of the homotopy pullback enjoyed by [Π(S1), X]. Checking of the other zig-zag
identities is completely analogous.

In this fashion we proceed by induction. The k-fold units and their adjoints are given in H by k-fold
correspondences of correspondences whose tips are, by the discussion in 6.4.5.2, given by

∗ Xoo // [Π(Sk), X] and [Π(Sk), X] Xoo // ∗ .

By proposition 6.4.33 the k-fold trace on the identity then is indeed

[Π(Sk+1), X]

yy %%
X

�� %%

X

yy ��
∗ [Π(Sk), X] ∗ .

�
By the classification of local topological field theories in theorem 5.2.163, prop. 5.2.182 implies

Proposition 5.2.183. Local framed-topological field theories with coefficients in Corrn(H) are equivalent to
objects Fields ∈ H

ZFields : (Bordfr
n)t −→ Corrn(H)⊗ ,

via ZFields(∗) ∼= Fields.

Therefore we will mostly just write this for short as

Fields : (Bordfr
n)t −→ Corrn(H)⊗ .

We want to deduce now what the local framed-topological field theory defined by Fields ∈ H this way
assigns to an arbitrary cobordism.

Lemma 5.2.184. The point
∗ ∈ Corrn(∞Grpdop)⊗

defines a local framed-topological field theory

Π : (Bordfr
n)t −→ Corrn(∞Grpdop)⊗

such that a closed k-dimensional manifold Σ, regarded as a cobordism, is sent to its homotopy type Π(Σ) ∈
∞Grpd, regarded as a k-fold correspondence with all boundaries trivial. More generally a k-dimensional

manifold Σ with boundary ∂Σ
ι
↪→ Σ is sent to the k-fold correspondence which in dimension k is the corre-

spondence

∗ Π(Σ)// oo Π(ι)
Π(∂Σ)

in ∞Grpdop which is induced by the boundary inclusion.
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Proof. Exactly as in the proof of prop. 5.2.182 above, following section 6 of [Hau14], one finds that the
claim is true for Σ a k-sphere. But by the inductive proof of the framed cobordism hypothesis in section
3.1 of [L-TFT], a (k + 1)-dimensional local framed-topological field theory is defined from its k-dimensional
sub-theory by specification of the (k + 1)-sphere attachment. �
This implies the following:

Proposition 5.2.185. The local framed-topological field theory of 5.2.183 defined by Fields ∈ Corrn(H)⊗

sends a closed k-dimensional manifold Σ, regarded as a cobordism, to the mapping stack

[Π(Σk),Fields] ∈ H

seen as a k-fold correspondence with trivial boundaries in H. Generally, a k-dimensional cobordism Σ with
incoming boundary Σin and outgoing boundary Σout is sent to the k-fold correspondence whose dimension-k
part is the correspondence

(Σin ↪→ Σ←↩ Σout) 7−→


[Π(Σ),Fields]

(−)|in

vv

(−)|out

((
[Π(Σin),Fields] [Π(Σout),Fields]


in H, given by applying [Π(−),Fields] to the boundary inclusion.

Example 5.2.186. The higher trace of shape the three-holed-sphere (pair-of-pants, trinion) on X ∈
Corrn(H)⊗ is given by taking the saddle-diagram from the proof of prop. 5.2.182 and tracing out two of the
sides. This yields the composition of the following pasting diagram of 2-dimensional correspondences:23

∗ X ∆X
//oo X ×X X ×X

∆X◦p1oo ∆X◦p2 // X ×X

��

X∆X
oo // ∗

∗

OO

��

X ∆X
//oo

idX

OO

idX

��

X ×X

idX×X

OO

idX×X

��

X∆X
oo ∆X

//

∆X

OO

∆X

��

X ×X

idX×X

OO

idX×X

��

X∆X
oo //

idX

OO

idX

��

∗

OO

��
∗ X ∆X

//oo X ×X X ×X
idX×Xoo idX×X // X ×X X∆X

oo // ∗

=:

∗ [Π(S1), X]× [Π(S1), X]oo // ∗

∗

OO

��

[Π(Fig8), X]oo //

OO

��

∗

OO

��
∗ [Π(S1), X]oo // ∗

It follows that the higher trace of shape the two-punctured-torus evaluated on X is the composite of this

23The picture of the trinion here has been grabbed from Aaron Lauda’s repository.
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with its adjoint (the same diagram, reflected about the horizontal axis),

∗ [Π(S1), X]oo // ∗

∗

OO

��

[Π(Fig8), X]oo //

OO

��

∗

OO

��
∗ [Π(S1), X]× [Π(S1), X]oo // ∗

∗

OO

��

[Π(Fig8), X]oo //

OO

��

∗

OO

��
∗ [Π(S1), X]oo // ∗

Composing this with itself g times and then composing the remaining two nontrivial boundaries with the
appearance-of-a-circle and the vanishing-of-a-circle yields the diagram exhibiting the action of the closed
genus-g surface on X.

Example 5.2.187. Let H be a cohesive ∞-topos and let G ∈ Grp(H) be a group object with delooping
BG ∈ H. Then for Σ any closed manifold, the mapping stack

LocG(Σ) := [Π(Σ),BG]

is the moduli stack of flat G-principal ∞-connections on Σ (sometimes called the moduli stack of “G-local
systems”).

We now consider the “anomaly cancellation” for local framed-topological field theories as in prop. 5.2.183,
i.e. their extensions to local topological field theories on cobordisms with G-structure.

In section 3.2 of [L-TFT] the following is stated as a fact.

Proposition 5.2.188. The O(n)-∞-action induced on Corrn(H) via prop. 5.2.183 is trivial.

Hence theorem 5.2.179 gives:

Proposition 5.2.189. Assuming proposition 5.2.188, then for all homomorphisms χ : G→ O(n), monoidal
(∞, n)-functors

ZFields : (BordGn )t −→ Corrn(H)⊗

are equivalent to objects of H equipped with G-∞-action, hence to (∞, 1)-functors

BO(n) −→ H .

Remark 5.2.190. By prop. 5.1.267, an ∞-action of Π(O(n)) on an object Fields ∈ H is equivalently
incarnated in the homotopy fiber sequence

Fields //// Fields//Π(O(n))

��
BΠ(O(n))

that exhibits the homotopy quotient of the action (prop. 5.1.267). Here we assume that H is cohesive and
write explicitly Π(O(n)) for the underlying ∞-group and to distinguish from the topological or Lie group
O(n), which may also exist as a group object in H.
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By generalizing the discussion below claim 3.2.4 in [L-TFT] from H = ∞Grpd to general H, the local
unoriented topological field theory

Fields//Π(O(n)) : Bordtn −→ Corrn(H)

defined by such an action via remark 5.2.190 sends a closed k-dimensional cobordism Σ with n-stable tangent
bundle classified by TΣ⊕ Rn−k : Σ→ BO(n) to the k-fold correspondence with trivial boundary whose tip
is

Σ 7→ [Π(Σ),Fields//Π(O(n))]/BO(n) ,

where on the right we have the internal hom whose global points are maps over BO(n) of the form

Π(Σ)

TΣ⊕Rn−k $$

// Fields//Π(O(n))

ww
BO(n)

Example 5.2.191. Consider the homotopy fiber sequence

Met // BO(n)

ρ

��
BO(n)

in H = Smooth∞Grpd, where the vertical morphism is the canonical one from the smooth moduli stack of
the orthogonal group, regarded as a Lie group, to its homotopy type:

ρ : BO(n) −→ Π(BO(n)) ' BO(n) ' BGL(n) .

By the discussion in 5.1.14 this exhibits Met as equipped with an Π(O(n))-∞-action. Regarding Met as
a moduli stack of fields in Smooth∞Grpd as in remark 5.2.190, one finds that this is the moduli stack of
Riemannian metrics, in that lifts

Σ

ιτΣ ""

// BO(n)

zz
BO(n)

are equivalently choices of vielbein fields on Σ. On the other hand, what appears in the field theory are just

Π(Σ)

Π(τΣ) $$

// BO(n)

zz
BO(n)

.

Example 5.2.192. Let Fields = BnZ and let p be an integral cohomology class of BO(n) in degree n+ 1.
Then this induces a Π(O(n))-∞-action on BnZ exhibited via prop. 5.1.267 by the long homotopy fiber
sequence of p

BnZ // (BnZ)//Π(O(n))

��
BO(n)

p // Bn+1Z

.
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What the corresponding local unoriented-topological field theory

(BnZ)//O(n) : Bordtn −→ Corrn(H)

assigns to Σ is the space
Σ 7→ pStruc(Σ)

of p-structures on (the n-stabilized tangent bundle) of Σ, def. 5.2.166 and remark 5.2.167, hence the space
of trivializations of p(TΣ ⊕ Rn−k). This is because, by the universal property of the homotopy pullback,
there is an equivalence

Σ

TΣ⊕Rn−k %%

// BnZ//Π(O(n))

��
BO(n)

 '


Σ //

TΣ⊕Rn−k
��

∗

��
BO(n)

p
// Bn+1Z

s{


5.2.18.4 Local action functionals In addition to field configurations, prequantum field theory encodes
the local action functionals or Lagrangians on these. This involves equipping all the objects described above
with maps to a given space “of phases”, a suitable higher version of the group U(1) in which traditional
action functionals take values. For instance, in the introduction we considered Lagrangians of the form
L : Fields→ BnU(1)conn, in which the space of phases was the n-stack of U(1) n-bundles with connection.
More generally, we will choose the space of phases to be a commutative group object Phases in H. Clearly,
since we are working in a higher categorical setting, “commutative” here means “commutative up to coherent
homotopies”, and the same consideration applies to the group structure of the space of phases. That is
Phases is an E∞-group object in H, hence a connective spectrum object in H.

Remark 5.2.193. The fact that here we consider Phases to be group object in H instead of in a more
general stack of symmetric monodical (∞, n)-categories is related to the fact that here we are considering
pre-quantum field theory as opposed to quantum field theory. For the latter one chooses a representation
Phases → C of the space of phases on a genuine (∞, n)-category and postcomposes the Lagrangian with
this, see [Nui13].

The general mechanism to describe local action functionals is based on the following simple observation.

Definition 5.2.194. The commutative group structure on Phases endows the slice topos H/Phases with a
natural tensor product lifting the cartesian product of H by


Fields1

L1

��
Phases

⊗


Fields2

L2

��
Phases

 :=


Fields1 × Fields2

p∗1L1+p∗2L2

��
Phases

 :=



Fields1 × Fields2

(p∗1L1,p
∗
2L2)

��
Phases×Phases

+

��
Phases


,

where on the right we use the group structure on Phases. Here p1 and p2 are the corresponding projections.
We call this the phased tensor product and write (H/Phases)

⊗phased for the resulting symmetric monoidal
∞-category.

Remark 5.2.195. The tensor unit of the phased tensor product in def. 5.2.194 is the unit inclusion:

I =


∗

0

��
Phases

 .
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Applying the inverse operation on Phases to a phased object


Fields

−L

��
Phases

 :=



Fields

L
��

Phases

−
��

Phases


is not an inverse or dual operation in (H/Phases)

⊗phased in general (unless Fields ' ∗). It is however going to
be the dualization operation in correspondences in (H/Phases)

⊗phased , this is the statement of prop. 5.2.198
below.

We may therefore lift Definition 5.2.180 from fields to fields equipped with action functionals as follows.

Definition 5.2.196. The symmetric monoidal (∞, n)-category Corrn(H/Phases)
⊗phased is the (∞, n)-category

of n-fold correspondences in the slice ∞-topos H/Phases as in def. 5.2.180 but equipped with the symmetric
monoidal product induced by the phased tensor product ⊗phased of H/Phases of def. 5.2.194.

This is a special case of def. 4.6 with cor. 7.5 in [Hau14].

Remark 5.2.197. The forgetful morphism H/Phases → H, which forgets the map to the space of phases,
induces a natural forgetful monoidal contravariant functor

Corrn(H/Phases)
⊗phased −→ Corrn(H)⊗ .

Thanks to the commutative group structure on the space of phases, we have the following generalization
of Proposition 5.2.182.

Proposition 5.2.198. Every object L ∈ Corrn(H/Phases)
⊗phased is fully dualizable, its full dual being −L

(as in remark 5.2.195).

Proof. This is proven in section 7 of [Hau14]. We indicate some of the higher duals.
First, that the dual of L is −L, is implied by the proof of corollary 7.8 in [Hau14]. Then it follows with

prop. 7.6 in [Hau14] (for A = ∗ and B = ∗) that the co-evaluation map I→ L⊗ (−L) and evaluation map
L⊗ (−L)→ I are given by the canonical diagrams

X
∆X

%%{{∗

0 ##

X ×X

p∗1L−p∗2Lyy
Phases

'

u}
and

X
∆X

yy ##
X ×X

p∗1L−p∗2L %%

∗

0{{
Phases

'

u}
,

in H, respectively. Here p1 and p2 denote projection to the first and second factors, respectively, and the
squares are filled by the canonical equivalence p1 ◦ ∆X

∼= p2 ◦ ∆X . For convenience we will speak of this
equivalence in the following as an identity (as in any non-contrived component presentation of the situation
it is an actual identity).

By theorem 7.7 in [Hau14] all the higher duals, i.e. all the adjoints of morphisms, are given by reversion
of correspondences. Hence the adjointness property of Corrn(H/Phases)

⊗phased is that of Corrn(H/Phases)
⊗

(with the tensor product induced by the Cartesian product on the slice ∞-topos), the only difference is in
their duality of objects.
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Hence it follows that the higher duality structure on any L is obtained as in the proof of prop. 5.2.182.
In particular to the circle S1, regarded as a 1-morphism in Bordn, is assigned the following correspondence
in H/Phases

[Π(S1),Fields]

ww ''
Fields

||

∆Fields

((

Fields

∆Fields

ww ##
∗

0
**

Fields× Fields

p∗1L−p∗2L

��

∗ ,

0
tt

Phases

(pb)

where the top two morphisms are restrictions to the left and right semicircles (hemispheres) of S1 which are
both homotopic to the point. By the universal property of the pullback, this induces a morphism

exp

(
i
~

∫
S1

[Π(Σ),L]

)
: [Π(S1),Fields] −→ ΩPhases,

into the loop space object of the stack Phases of higher phases. Notice that since Phases is an abelian
group object in H then so is ΩPhases.

Unwinding this in components shows that the displayed homotopy in the middle exhibits the circle by
two semi-circles that start and end at the same point. The whiskering with the vertical map evaluates the
action functional on the first semi-circle and minus the action functional on the second, hence evaluates the
action functional itself on one full copy of the circle. So this is the transgression of the Lagrangian to an
action functional on the loop space.

Next, the “left hemi-2-sphere” is the 3-morphism (second order homotopy)

∗

��

∗ //oo

		

∗

0

xx

∗

��

;;

��

Fields

::

oo //

{{

[Π(S1),Fields]

88

xx
∗

0

!!

∗oo // ∗

0

��

V

Phases

'
ow

'w�

'
��

which in turn is equivalently the first order homotopy

Fields

{{ ((
∗

0 ##

[Π(S1),Fields]

exp(
i
~
∫
S1 L)vv

ΩPhases

'

s{

.
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which by prop. 7.6 in [Hau14] is the unit of the adjunction that exhibits the identity as adjoint to itself, hence
this is itself again an identity (the canonical equivalence). But notice that for further composing this with, in
turn, its own adjoint, it is convenient to replace the tip here under the equivalence Fields ' [Π(D2),Fields].
Doing so yields

[Π(D2),Fields]

yy ((
∗

0 &&

[Π(S1),Fields]

exp(
i
~
∫
S1 L)uu

ΩPhases

'

rz

where the homotopy filling this is now the contracting homotopy that takes a disk in Fields to the homotopy
in ΩPhases contracting the images under L of its boundary disk in Fields. Following the above discussion,
we may think of this as being the parallel transport of L across this disk.

The analogous statement holds for all the higher semi-n-spheres, which are given by the homotopy

[Π(Dn+1)Fields]

xx ))
∗

0 &&

[Π(Sn),Fields]

exp(
i
~
∫
Sn

L)uu
ΩnPhases

'

rz

given by parallel transport over (n + 1)-disks. In particular, forming the (n + 1)-sphere by gluing to such
hemispheres, one finds that it is sent to

exp

(
i
~

∫
Sn+1

L

)
: [Sn,Fields] −→ ΩnPhases .

Notice that this implies immediately that for Σ = Sn1 × Sn2 the product of two spheres, then applying
the previous argument with L replaced by exp( i~

∫
Sn2

L) one finds that Σ is sent to

exp

 i
~

∫
Sn1×Sn2

L

 : [Sn1 × Sn2 ,Fields] ' [Sn1 , [Sn2 ,Fields]] −→ Ωn1+n2Phases .

�
Therefore we have the following analogue of Proposition 5.2.183.

Proposition 5.2.199. A morphism L : Fields −→ Phases in H equivalently determines a local framed-
topological field theory with coefficients in Corrn(H/Phases)

⊗phased ,

exp
(
i
~SL

)
: (Bordfr

n)t −→ Corrn(H/Phases)
⊗phased ,

characterized by the condition exp
(
i
~SL

)
(∗) ' L.

Remark 5.2.200. In view of the local topological field theories it defines, we may call a morphism L :
Fields→ Phases a local action functional or local Lagrangian for the field theory with Fields its universal
moduli stack of fields. Notice how the concept of local action and local Lagrangian unify here: the local
Lagrangian is the value of the local (extended) action functional on the point.
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Remark 5.2.201. Since fully extended topological field theories are completely determined by their value
on the point, a local action functional on a prescribed moduli stack of fields Fields is equivalent to the
datum of a symmetric monoidal lift

Corrn(H/Phases)

��
Bordfr

n Fields
//

exp
(
i
~SL

) 77

Corrn(H) ,

.

This is the perspective in section 3 of [FHLT09], generalized here from field theories with geometrically
discrete to those with cohesively geometric moduli stacks of fields, as envisioned in [Sc08b].

Example 5.2.202. For G,A ∈ Grp(H) group objects, with A an abelian group object, a map

L : BG −→ BnA

is a geometric ∞-group cocycle L ∈ Hn
Grp(G,A). Regarded as a local Lagrangian as in prop. 5.2.199, then

by example 5.2.187 the local prequantum field theory that this induces sends a closed (n − 1)-dimensional
manifold Σ to the transgression of L to an A-line bundle

exp( i~

∫
Σ

[Σ,L]) : LocG(Σ) −→ BA

on the moduli stack of G-local systems on Σ (regarded as an (n−1)-fold correspondence with trivial boundary
over BnA).

5.2.18.5 Anomaly cancellation We now discuss the anomaly cancellation for the field theories given
by prop. 5.2.199. We begin with field theories with fields spaces in ∞Grpd and then generalize to field
stacks in more general ∞-toposes H.

Theorem 5.2.203. For Phases⊗ a symmetric monoidal (∞, n)-category, then the ∞-groupoid of local
unoriented-topological field theories of the form

Corrn(∞Grpd/Phases)
⊗phased

��
Bordtn Fields//Π(O(n))

//

44

Corrn(H)⊗

lifting an unoriented bulk field theory Fields//Π(O(n))
ρ−→ BO(n) as in remark 5.2.190, is equivalent to to

that of ρ-structured-topological field theories (def.5.2.166) of the form

(Bordρn)t −→ Phases⊗

This is prop. 3.2.8 in [L-TFT].

Remark 5.2.204. In terms of quantum field theory jargon, theorem 5.2.203 may be read as saying that
“Background structures are fields.”: a field theory on cobordisms with ρ-structure is equivalently a field
theory on cobordisms with no structure, but with field content whose moduli space is the homotopy fiber of
ρ. This may be thought of as formalizing the idea of what in physics is known as general covariance.
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Now we generalize this to fields with richer geometric moduli stacks.

Proposition 5.2.205. Let H be a cohesive ∞-topos that admits a site of definition S all whose objects
U ∈ S are geometrically contractible, Π(U) ' ∗.24 Let Phases = Phases ∈ ∞Grpd ↪→ H be a discrete
object.

Then the ∞-groupoid of local unoriented-topological field theories of the form

Corrn(H/Phases)
⊗phased

��
Bordtn Fields//Π(O(n))

//

44

Corrn(H)⊗

lifting an unoriented bulk field theory Fields//Π(O(n)) as in remark 5.2.190, is equivalent to that of Π(O(n))-
equivariant local Lagrangians, hence (by prop. 5.1.267), to diagrams in H of the form

Fields//Π(O(n))
L//Π(O(n)) //

''

Phases//Π(O(n))

ww
BO(n)

,

where the left map exhibits the given Π(O(n))-∞-action on Fields while the right map exhibits the canonical
Π(O(n))-∞-action on Phases, regarded as an (∞, n)-category with duals, via prop. 5.2.183.

Moreover, the analogous statement is true for local oriented-topological field theories and SO(n)-∞-
actions.

Proof. First consider the case H =∞Grpd. In that case, prop. 5.2.203 says that the first datum in the
above statement is equivalent to local ρ-structured topological field theories of the form

(Bordρn)t −→ Phases⊗ ,

where a ρ-structure on a k-dimensional Σ is (def. 5.2.166) a lift

Π(Σ)

TΣ⊕Rn−k $$

// Fields//Π(O(n))

ww
BO(n)

.

From this the statement for H =∞Grpd follows with the equivalence in theorem 5.2.178.
Now notice that by the proof of prop. 3.2.8 in [L-TFT], this equivalence in the case of H =∞Grpd is a

natural equivalence, natural in the choice of the unoriented bulk field theory Fields//Π(O(n)).
Let then

H
oo L
� � // Func(Sop,∞Grpd)

be the reflection exhibiting S as an ∞-site of definition. The right adjoint is homotopy full and faithful and
the left adjoint L preserves finite ∞-limits (in addition to preserving all ∞-colimits, being a left adjoint).

For each U ∈ S, write
FieldsU := H(U,Fields)

Observe, in view of prop. 5.1.267, that setting

FieldsU//Π(O(n)) := H(U,Fields//Π(O(n)))

24 This includes all H with an ∞-cohesive site of definition, hence all examples of interest here.
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exhibits an Π(O(n))-∞-action on FieldsU since H(U,−) preserves∞-limits and since by assumption on the
site S we have H(U,BO(n)) ' BO(n), so that the defining homotopy fiber sequence

Fields→ Fields//Π(O(n))→ BO(n)

naturally induces a system of homotopy fiber sequences

FieldsU → FieldsU//Π(O(n))→ BO(n) .

It follows that a local unoriented-topological field theory with field spaces in H as in the statemet of the
proposition may equivalently be regarded as an (∞, n)-sheaf of local unoriented-topological field theories in
∞Grpd:

U 7→


Corrn(∞Grpd/Phases)

⊗phased

��
Bordtn FieldsU//Π(O(n))

//

exp
(
i
~LU//Π(O(n))

)44

Corrn(∞Grpd)⊗


.

Now the statement of the proposition for H =∞Grpd applies objectwise for each U , and since it is natural
in U this gives that the above is equivalent to the ∞-sheaf of diagrams

U 7→


FieldsU//Π(O(n))

LU//Π(O(n)) //

((

Phases//Π(O(n))

ww
BO(n)


in ∞Grpd. This being an ∞-sheaf, it is equivalent to the diagram

Fields//Π(O(n))
L//Π(O(n)) //

''

Phases//Π(O(n))

ww
BO(n)

in H.
Finally, that the analogous statement also holds for oriented-topological field theories and SO(n)-∞-

actions follows by the evident variant of prop. 3.2.8 in [L-TFT] by applying prop. 3.2.7 of [L-TFT] with
B = Bordor

n . �

Example 5.2.206. For Fields = ∗, prop. 5.2.205 says that the possible unoriented-topological refinements
of the framed field theory defined by the local Lagrangian

L : ∗ −→ Phases

(which is hence just a point of Phases) are equivalent to Π(O(n))-homotopy fixed points in Phases.

A partial generalization of example 5.2.206 is essentially conjecture 1.4 in [Hau14], which says that the
canonical O(n)-∞-action on Corrn(∞Grpd/Phases)

⊗phased is induced from just that on Phases⊗.
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5.2.18.6 Boundary field theory We now turn to the discussion of boundary data for a local prequan-
tum field theory.

Notice that the cobordism theorem in the version of theorem 2.4.6 in [L-TFT] essentially says that Bord⊗n
is the symmetric monoidal (∞, n)-category with fully dualizable objects which is freely generated from a
single object:

Bordn ' FreeSMD({∗}) .

Under this equivalence that single object is indeed identified with the manifold R0, which in the above
discussion is what locally supports a bulk field theory. But theorem 4.3.11 in [L-TFT] provides a considerable
generalization of this situation. This theorem essentially says that for any collection of (∞, n)-categorical
generating cells, there is a notion of smooth manifolds with singularities such that the (∞, n)-category

Bordsing
n

⊗
of n-dimensional cobordisms of manifolds with such singularities is the symmetric monoidal (∞, n)-

category with fully dualizable objects which is free on the given collection of cells.
We consider this now for a singularity that corresponds to a 1-morphism of the form

∅ −→ ∗ ,

hence a morphism from the tensor unit to a generating object. Regarded as a cobordism, this is going to be
interpreted as a cobordism that is much like the edge [0, 1] : ∗ −→ ∗, only that to the left it is not possible
to sew further edges to this. Hence under the cobordism theorem for manifolds with singularities, the above
1-cell is interpreted as a cobordism of the form

| ∗ ,

hence by a 1-dimensional cobordism that has a constrained boundary on the left.

Definition 5.2.207. Write
Bord∂n

⊗
:= FreeSMD({∅ → ∗})

for the symmetric monoidal ∞-category of cobordisms of manifolds with codimension-1 boundaries, corre-
spoding to the 1-cell datum {∅ → ∗} under theorem 4.3.11 in [L-TFT].

Notice that by free-ness and by construction, there is a canonical inclusion

Bordn
⊗ −→ Bord∂n

⊗

Definition 5.2.208. Let Fields : Bord⊗n → Corrn(H) be a choice of bulk fields according to prop. 5.2.183,
then a choice of boundary fields for these bulk fields is a choice of extension Fields∂ :

Bordn
⊗

��

ZFields // Corrn(H)⊗

Bord∂n
⊗

ZFields∂

66
.

The following immediate consequence is worth recording.

Proposition 5.2.209. A choice of boundary fields for Fields is equivalently a choice of moduli stack
Fields∂ ∈ H together with a choice of of morphism

Fields∂ → Fields

in H.
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Proof. Since Bord∂n is free symmetric monoidal with duals on a single morphism out of the unit object, a

symmetric monoidal functor Bord∂n
⊗
→ Corrn(H) is equivalent to the datum of a 1-morphism in Corrn(H)

out of ∗. Requiring this to be an extension of the bulk fields amounts to asking that this 1-morphism in
Corrn(H) has target Fields, and so it is a correspondence in H of the form

∗ Fields∂oo // Fields .

Since ∗ is the terminal object in H, this is equivalent to the datum of the morphism Fields∂ → Fields. �

Remark 5.2.210. Therefore we will write (Fields∂ → Fields) for ZFields∂ . Notice that hence the ∞-
category of boundary fields for given bulk Fields is the slice ∞-topos H/Fields.

The boundary field theory version of remark 5.2.185 about the bulk field theory is now the following (this
was pointed out by Domenico Fiorenza).

Proposition 5.2.211. A boundary field assignment

(Fields∂ → Fields) : (Bord∂n)⊗ → Corrn(H)⊗

sends cobordisms (∂Σ ↪→ Σ) ∈ Bord∂n with marked boundary ∂Σ to

(Fields∂ → Fields) : (∂Σ ↪→ Σ) 7→ [Π(∂Σ),Fields∂ ] ×
[Π(∂Σ),Fields]

[Π(Σ),Fields] ,

hence to the stack of diagrams in H of the form

Π(∂Σ)
φ∂ //

� _

��

Fields∂

��
Π(Σ)

φ // Fields .

.

Proof. Every cobordism Σ with marked boundary component ∂Σ decomposes as the gluing of the cylinder

( | ∗ ) × ∂Σ with Σ regarded as a manifold with unmarked boundary. Since | ∗ is mapped to the

corespondence
∗ Fields∂oo // Fields

in H, we find that ( | ∗ )× ∂Σ is mapped to

∗ [Π(∂Σ),Fields∂ ] //oo [Π(∂Σ),Fields] .

On the other hand, on the “piece” given by Σ with unmarked boundary ∂Σ the field theory reduces to the
one associated with the stack Fields, and we know from Remark 5.2.185 that ∂Σ ↪→ Σ is mapped by Fields
to

[Π(∂Σ),Fields] [Π(Σ),Fields] //oo ∗ .

The composite of these two contributions is

∗ [Π(∂Σ),Fields∂ ] ×
[Π(∂Σ),Fields]

[Π(Σ),Fields] //oo ∗ ,

as claimed. �
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Remark 5.2.212 (twisted relative cohomology). In words this says that for the boundary field theory
Fields∂ → Fields, a field configurations on a manifold Σ with constrained boundary ∂Σ is a bulk field
configuration on Σ together with a boundary field configuration on ∂Σ and an equivalence of the boundary
field configuration with the restriction of the bulk field configuration to the boundary. These data are equiv-
alently those of a twisted cocycle with local coefficient bundle Fields∂ → Fields, relative to the boundary
inclusion. In particular, when Fields∂ ' ∗ then these are equivalently cocycles in relative cohomology with
coefficients in Fields.

We now add local action functionals with boundary conditions to the boundary fields.

Definition 5.2.213. Let exp
(
i
~S
)

: Fields → Phases be a local action functional for a bulk prequantum
field theory according to prop. 5.2.199, then a boundary condition (or boundary extension) for L is an
extension

Bordn
⊗

��

exp
(
i
~SL

)
// Corrn(H/Phases)

⊗

Bord∂n
⊗ exp

(
i
~S

∂
L

)
55

,

Proposition 5.2.214. A boundary condition for a local Lagrangian L with respect to boundary fields
Fields∂ → Fields is equivalently a choice of homotopy in

( | ∗ ) 7→

Fields∂

{{ %%
∗

0 ##

Fields

exp
(
i
~SL

)
xx

Phases

u}

.

in H, which in turn is equivalently a choice of morphism

Fields∂ → fib(L)

in H, where fib(L) is the homotopy fiber of L : Fields → Phases on the zero element of the commutative
group stack of phases.

Proof. Since Bord∂n is free symmetric monoidal with duals on a single morphism out of the unit object,
a symmetric monoidal functor exp

(
i
~S

∂
L

)
is equivalent to the datum of a 1-morphism in Corrn(H/Phases)

out of ∗ 0−→ Phases. �
Therefore we set:

Definition 5.2.215. The ∞-category of boundary conditions for L : Fields→ Phases is the slice ∞-topos
H/fib(L). For n ∈ N and exp

(
i
~SL

)
∈ H/Phases, we call

Bdr
(
exp

(
i
~SL

))
:= Corr1

(
H/Phases

) (
0, exp

(
i
~SL

))
the ∞-category of boundary conditions of the local action functional exp

(
i
~SL

)
.

Definition 5.2.216. For exp
(
i
~SL

)
a local bulk prequantum field theory, by prop. 5.2.199, we say that its

universal boundary condition is that which is given via remark 5.2.214 by the square exhibiting the homotopy
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fiber of S in H

fib
(
exp

(
i
~S
))

yy ''
∗

0 %%

Fields

exp
(
i
~S
)

ww
[BnU(1)

s{

.

The following immediate consequence is relevant.

Proposition 5.2.217. The universal boundary condition is the terminal object in the∞-category Bdr
(
exp

(
i
~SL

))
of boundary conditions, def. 5.2.215. A general boundary condition with moduli stack Fields∂ is equivalently
a morphism Fields∂ → fib(exp(iS)): there is a natural equivalence

Bdr
(
exp

(
i
~S
))
' H

/fib
(

exp
(
i
~S
))

between the ∞-category of boundary conditions for exp(iS) and the slice ∞-topos of H over fib(exp(iS)).

Proof. The ∞-category Bdr
(
exp

(
i
~SL

))
is equivalently the ∞-category of cones over the diagram

0∨exp(iS) : cosp→ H from the free cospan category which exhibits the diagram
∗

0
##

Fields

exp(iS)yy
[BnU(1)

 .

In the notation of section 1.2.9 [L-Topos] this means

Bdr
(
exp

(
i
~SL

))
' H/(0∨

exp

(
i
~SL

)) .

Let then ∗ �
� // � oo ? _ cosp be the inclusion of the point as the initial object of the box-shaped diagram

∞-category

� =


0 //

��

01

��
10 // 11
{�

 ,

and the inclusion of the underlying cospan, respectively. Let then ̂0∨exp(iS) : � → H be the homotopy
pullback diagram that exhibits the homotopy fiber fib(exp(iS)) and write 0∨exp(iS) : cosp → H for its
restriction to the underlying cospan, as in remark 5.2.217. This induces a diagram of ∞-functors

H/fib(exp(iS)) H/ ̂0∨exp(iS)

' //'oo H/0∨exp(iS)
' Bdr(exp(iS)) .

The equivalence on the far right is that of remark 5.2.217. The functor in the middle is an equivalence by
finality of the∞-limiting cones, as for instance in the proof of prop. 1.2.13.8 in [L-Topos]. And finally – since
the inclusion of an initial object is an op-final∞-functor by prop. 4.1.3.1 in [L-Topos] – also the left functor,
being the restriction of slices along an op-final functor, is an equivalence, by prop. 4.1.1.8 in [L-Topos]. �
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5.2.18.7 Corner field theory We now consider singularities of codimension 2 at which two boundaries
of codimension 1 meet, a corner singularity.

Definition 5.2.218. Write

Bord∂1∂2
n

∗
:= FreeSMD

( | ∗ )×


−

∗

 :

∅ id //

id
��

∅

��
∅ // ∗ .


for the symmetric monoidal (∞, n)-category with fully dualizable objects which is free on a 2-cell as show
on the right, considered as the (∞, n)-category of cobordisms with two types of marked codimension-1
boundaries and one kind of corner between these, by theorem 4.3.11 in [L-TFT].

As an immediate consequence, we have:

Proposition 5.2.219. A symmetric monoidal (∞, n)-functor

ZFields∂1∂2
: (Bord∂1∂2

n )⊗ −→ Corrn(H)⊗

is equivalently the datum of

1. a moduli stack Fields ∈ H of bulk fields;

2. two moduli stacks Fields∂1
,Fields∂1

of boundary fields;

3. a moduli stack Fields∂1∂2
of corner fields or defect fields;

4. a homotopy diagram
Fields∂1∂2

//

��

Fields∂1

��
Fields∂2

// Fields

'
~�

in H.

A lift of that to correspondences in the slice

(Bord∂1∂2
n )⊗

ZFields∂1∂2 **

exp
(
i
~SL

)
// Corrn(H/Phases)

⊗

��
Corrn(H)⊗

is a choice of extension of the above homotopy commutative diagram in H as

∗

��

∗ //oo

��

∗

0

xx

∗

{{

77

��

Fields∂1∂2

77

oo //

xx

Fields∂2

::

xx
∗

0

%%

Fields∂1
oo // Fields

L

��

V

Phases

'
nv

'
s{

'��
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Remark 5.2.220. This means that for two boundary conditions which are given by relative boundary
trivializations of their local action functionals as in the previous section, a corner defect condition for them
is a further homotopy between the pullback of these two trivializations to the moduli stack of corner field
configurations.

5.2.18.8 Defect field theory Finally, let us sketch a few lines on general pre-quantum defect field theory
(see for instance [DKR11] for general considerations about extended defect field theory). These correspond
to adding another piece to the picture of framed cobordism, namely that of a punctured k-disk, seen as a
morphism from the vacuum to the (k − 1)-sphere. In more formal terms, since a k-disk is homotopically
trivial, this amounts to the following.

Definition 5.2.221. Given a bulk field Fields in H, a codimension-k defect datum is a k-fold correspondence
of the form

Fieldsins
oo Fieldsdef

// [Π(Sk−1),Fields] .

Examples of such defects and further comments on how to think of them appear as Example 7.4.20 and
Example 7.4.25 below.
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5.3 < a = a & – Structures in elastic substance

We discuss a list of differential geometric conscept that may be formulated within the axiomatics for differ-
ential cohesion, 4.2. These complement the structures that are present already by virtue of the underlying
cohesion as discussed in 5.2.

• 5.3.1 – Infinitesimal path ∞-groupoid and de Rham spaces;

• 5.3.2 – Crystalline cohomology;

• 5.3.3 – Local diffeomorphisms;

• 5.3.4 – Étale toposes and Structure sheaves;

• 5.3.5 – Infinitesimal extensions and Modules;

• 5.3.6 – Infinitesimal neighbourhoods and Lie differentiation;

(T k a Jk)

• 5.3.7 – Infinitesimal disk bundles;

• 5.3.8 – Jets and differential operators;

• 5.3.10 – Manifolds and Étale groupoids;

• 5.3.11 – Frame bundles;

• 5.3.12 – G-Structures and Cartan geometry;

• 5.3.13 – Definite forms;

• 5.3.14 – Generalized geometry;

• 5.3.15 – Isometries;

• 5.3.16 – BPS Currents.

5.3.1 Infinitesimal path ∞-groupoid and de Rham spaces

We discuss the infinitesimal analog of the path ∞-groupoid, 5.2.3, which exists in a context of differential
cohesion, def. 4.2.1.

Let (i! a i∗ a i∗ a i1) : H< → H be an infinitesimal neighbourhood of a cohesive ∞-topos.

Definition 5.3.1. Write
(< a = a [inf) : (i!i

∗ a i∗i∗ a i∗i!) : H→ H

for the adjoint triple induced by the adjoint quadruple that defines the differential cohesion. For X ∈ H we
say that

• =(X) is the infinitesimal path ∞-groupoid of X;

The (i∗ a i∗)-unit
X → =(X)

we call the constant infinitesimal path inclusion.
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• <(X) is the reduced cohesive ∞-groupoid underlying X.

The (i∗ a i∗)-counit
<X → X

we call the inclusion of the reduced part of X.

Remark 5.3.2. This is an abstraction of the setup considered in [SiTe]. In traditional contexts as considered
there, the object =(X) is called the de Rham space of X or the de Rham stack of X. Here we may tend
to avoid this terminology, since by 5.2.10 we have a good notion of intrinsic de Rham cohomology in every
cohesive ∞-topos already without equipping it with differential cohesion, which, over some X ∈ H is co-
represented by the object

∫
dR

(X), the cohesive de Rham homotopy-type of remark 5.2.69. On the other
hand, = co-represents instead what is called crystalline cohomology, 5.3.2 below.

Proposition 5.3.3. In the notation of def. 4.2.4, there is a canonical natural transformation

=(X)→
∫

(X)

that factors the finite path inclusion through the infinitesimal path inclusion

=(X)

iX

��
X

==

//
∫

(X)

.

Moreover,
∫

sends all three of these morphisms to equivalences, in particular

∫
(=(X))

∫
(iX)

'
//
∫

(X) .

Dually there is a canonical natural transformation

[A→ &A

that factors the [-counits

[A

�� !!
&A // A

and [ sends all three morphisms to equivalences.

Proof. Via def. 4.2.4

(
∫

H
a [H) : H

Πinf //
oo
Discinf

? _H<
ΠH //
oo
DiscH

? _∞Grpd ,

the factorization is given by the unit of (ΠH a DiscH) “conjugated” by the unit of (Πinf a &):

Discinf ◦Πinf(X)

��
X //

44

Discinf ◦DiscH ◦ΠH ◦Πinf(X)

.

From this the fact that all morphisms here are
∫

-equivalences is immediate. The case for [ is formally dual.
�
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Remark 5.3.4. The geometric interpretation of the factorization in proposition 5.3.3 is the successive
inclusion

{constant paths} ⊂ {infinitesimal paths} ⊂ {paths} .

We record some further relations between the various modalities of differential cohesion.

Proposition 5.3.5. In differential cohesion

(
< a = a &∫

a [ a ]

)
the following relations hold between

the cohesive and the differential structures.

1. The <-counit is a
∫

-equivalence
∫

(<(X)) '
//
∫

(X) ;

2. The
∫

-unit is an <-equivalence <(X) '
// <(
∫

(X)) ;

3. The <-counit is a [-equivalence [(<(X)) '
// [(X) ;

4. The =-unit is a [-equivalence [(X) '
// [(=(X)) .

Proof. Write i : H ↪→ Hth for the geometric inclusion which exhibits the differential structure on the
cogesive ∞-topos H. We freely use the notation introduced in def. 4.2.4.

Regarding items 1 and 2: Unwinding the decomposition into the morphisms of the two adjoint quadruples
we have

∫
' DiscinfDiscHΠHΠinf and < ' i!Πinf . By idempotency the <-counit is a Πinf -equivalence, hence

a
∫

-equivalence, and conversely.
Regarding items 3 and 4: Since [ is the faithful embedding of the global section direct image of the

differentially cohesive ∞-topos, the statement is equivalent to the (i! a i∗)-counit and the (i∗ a i∗)-unit
being Hth(∗,−)-equivalences. Since < preserves the terminal object by the axioms of differential structure,
this is equivalent to being Hth(<(∗),−)-equivalences, hence Hth(i!i

∗(∗),−)-equivalences. By adjointness a
sufficient condition for this is that the counit and unit are i∗-equivalences, which they are by idempotency.
�

Remark 5.3.6. The formal statements in prop. 5.3.5 all have an immediate meaning under the geometric
interpretation of differential cohesion. For instance item 1 says that infinitesimal reduction does not change
the geometric homotopy type and item 3 says that it also does not change the underlying bare homotopy
type. These statements are familiar meta-theorems in particular in the context of super-graded infinitesimals
(which we show to constitute a model for differential cohesion below in 6.6), where the slogan is that “fermions
do not affect the topology”.

5.3.2 Crystalline cohomology

We discuss now the infinitesimal analog of intrinsic flat cohomology, 5.2.6.

Definition 5.3.7. For X ∈ H an object, we call the cohomology, def. 5.1.174 of =(X) the crystalline
cohomology of X. More specificaly, for A ∈ H we say that

Hinfflat(X,A) := π0H(=(X), A) ' π0H(X, [infA)

is the infinitesimal flat cohomology of X with coefficient in A.

Remark 5.3.8. That traditional crystalline cohomology is the cohomology of the “de Rham stack”, see
remark 5.3.2 above with coefficients in a suitable stack is discussed in [L-DGeo, above theorem 0.4]. The
relation to de Rham cohomology in traditional contexts is discussed for instance in [SiTe].
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Remark 5.3.9. By observation 5.3.3 we have canonical natural morphisms

Hflat(X,A)→ Hinfflat(X,A)→ H(X,A)

The objects on the left are principal ∞-bundles equipped with flat ∞-connection. The first morphism
forgets their higher parallel transport along finite volumes and just remembers the parallel transport along
infinitesimal volumes. The last morphism finally forgets also this connection information.

Definition 5.3.10. For A ∈ H a 0-truncated abelian ∞-group object we say that the de Rham theorem for
A-coefficients holds in H if for all X ∈ H the infinitesimal path inclusion of observation 5.3.3

=(X)→
∫

(X)

is an equivalence in A-cohomology, hence if for all n ∈ N we have that

π0H(
∫

(X),BnA)→ π0H(=(X),BnA)

is an isomorphism.

If we follow the notation of remark 5.3.8 and moreover write |X| = |ΠX| for the intrinsic geometric
realization, def. 5.2.14, then this becomes

H•dR,th(X,A) ' H•(|X|, Adisc) ,

where on the right we have ordinary cohomology in Top (for instance realized as singular cohomology) with
coefficients in the discrete group Adisc := ΓA underlying the cohesive group A.

In certain contexts of infinitesimal neighbourhoods of cohesive ∞-toposes the de Rham theorem in this
form has been considered in [SiTe]. We discuss a realization below in 6.5.3.

5.3.3 Local diffeomorphisms

We discuss the formalization in higher differential cohesive geometry of local diffeomorphisms. This proceeds
via an axiomatization ofinfinitesimal étale morphisms or formal étale morphisms (depending on the order
of infinitesimality encoded by the reduction modality).

We first discuss formal étaleness in H<. Below in def. 5.3.19 we discuss the notion more generally in H.

Definition 5.3.11. We say an object X ∈ H is formally smooth if the constant infinitesimal path inclusion,
def. 5.3.1,

X → =(X)

is an effective epimorphism, def. 5.1.65.

Remark 5.3.12. In this form this is the direct ∞-categorical analog of the characterization of formal
smoothness in [SiTe]. The following equivalent reformulation corresponds in turn to the discussion in section
4.1 of [RoKo04].

Definition 5.3.13. Write
φ : i! → i∗

for the canonical natural transformation given as the composite

i!
ηi! // =i!

:=
i∗i
∗i!

' // i∗ .

Since the last composite on the right here is an equivalence due to i! being fully faithful we have:
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Proposition 5.3.14. An object X ∈ H
i!
↪→ H is formally smooth according to def. 5.3.11 precisely if the

canonical morphism
φ : i!X → i∗X

is an effective epimorphism.

Remark 5.3.15. In this form this characterization of formal smoothness is the evident generalization of the
condition given in section 4.1 of [RoKo04]. (Notice that the notation there is related to the one used here
by u∗ = i!, u∗ = i∗ and u! = i∗.)

Therefore with [RoKo04] we have the following more general definitions.

Definition 5.3.16. For f : X → Y a morphism in H, we say that

1. f is a formally smooth morphism if the canonical morphism

i!X → i!Y
∏
i∗Y

i∗Y

is an effective epimorphism;

2. f is a formally étale morphism if this morphism is an equivalence, equivalently if the naturality square

i!X
i!f //

φX

��

i!Y

φY

��
i∗X

i∗f // i∗Y

is an ∞-pullback square.

3. f is a formally unramified morphism if this is a (-1)-truncated morphism. More generally, f is an order-k
formally unramified morphisms for (−2) ≤ k ≤ ∞ if this is a k-truncated morphism ([L-Topos], 5.5.6).

Remark 5.3.17. An order-(−2) formally unramified morphism is equivalently a formally étale morphism.
Only for 0-truncated X does formal smoothness together with formal unramifiedness imply formal étaleness.

Remark 5.3.18. The idea of characterizing étale morphisms with respect to a notion of infinitesimal
extension as those making certain naturality squares into pullback squares goes back to lectures by André
Joyal in the 1970s, as is recalled in the introduction of [Dub00]. Notice that in sections 3 and 4 there the
analog of our functor i! is assumed to be the inverse image of a geometric morphism, whereas here we only
require it to be a left adjoint and to preserve finite products, as opposed to all finite limits. Indeed, it will fail
to preserve general pullbacks in most models for infinitesimal cohesion of interest, such as the one discussed
below in 6.5. In [JoyMo94] a different kind of axiomatization, by way of closure properties. This we discuss
further below, see remark 5.3.31.

The characterization of formal étaleness by cartesian naturality squares induced specifically by adjoint
triples of functors, as in our def. 5.3.11, appears around prop. 5.3.1.1 of [RoKo04].

But in view of prop. 5.3.11, which applies to objects in H not necessarily in the image of the inclusion
i!, and in view of def. 5.3.13 it is natural to generalize further:

Definition 5.3.19. A morphism f : X → Y in the differential cohesive∞-topos H is a local diffeomorphism
(or infinitesimally étale morphism or formally étale morphism) if the naturality diagram

X //

f

��

=(X)

=(f)

��
Y // =(Y )

of the unit of the infinitesimal shape modality, def. 5.3.1, is an ∞-pullback.
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Remark 5.3.20. Def. 5.3.19 is compatible with def. 5.3.16 in that a morphism f ∈ H is formally étale in
the sense of the former precisely if i!f ∈ H is formally étale in the sense of the latter.

Remark 5.3.21. The condition in def. 5.3.19 is the immediate infinitesimal analog of the concept of
∫

-
closure in def. 5.2.33: we may say equivalently that a morphism f ∈ H is a local diffeomorphism if it is
=-closed. Moreover, by the discussion in 5.2.7 the

∫
-closed morphisms into some X are interpreted as the

total space projections of locally constant ∞-stacks over X by general abstract Galois theory. Accordingly
here we may think of =-closed morphisms into X as total space projections of more general ∞-stacks over
X by what we may call general abstract infinitesimal Galois theory. This perspective we develop below in
5.3.4.

Further along the lines of the discussion in 5.2.7, the =-closed morphisms form an orthogonal factorization
system with the =-equivalences

(=-equivalences, formally étale morphisms) .

The =-equivalences we turn to below in 5.3.5.

In particular, we have the following immediate infinitesimal analogs of properties of
∫

-closure.

Definition 5.3.22. Call a morphism f : X → Y in H a =-equivalence if =(f) is an equivalence.

Proposition 5.3.23. For i : H< ↪→ H a differentially cohesive ∞-topos, the pair of classes of morphisms

(=-equivalences, local diffeomorphisms) ⊂ Mor(H)×Mor(H)

constitutes an orthogonal factorization system.

Proof. Since = has the left adjoint < it preserves all ∞-pullbacks and hence in particular those over
objects of the form =(X). Therefore factorization follows as in the proof of prop. 5.2.37. Accordingly,
orthogonality follows as in the proof of prop. 5.2.38. �
This and the fact that = preserves∞-limits implies a wealth of stability properties of local diffeomorphisms.

Corollary 5.3.24. Local diffeomorphism in H, def. 5.3.19, satisfy the following stability properties

1. Every equivalence is a local diffeomorphism.

2. The composite of two local diffeomorphisms is itself a local diffeomorphism.

3. If
Y

g

��
X

f
>>

h // Z

is a diagram such that g and h are local diffeomorphisms, then also f is.

4. Any retract of a local diffeomorphism is itself a local diffeomorphism.

5. The ∞-pullback of a local diffeomorphism is a local diffeomorphism.

But since the embedding functor i! does not preserve ∞-limits in general, closure under pullback in H
requires a condition on the codomain:

Proposition 5.3.25. The collection of formally étale morphisms in H<, def. 5.3.16, is closed under the
following operations.

1. Every equivalence is formally étale.
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2. The composite of two formally étale morphisms is itself formally étale.

3. If
Y

g

��
X

f
>>

h // Z

is a diagram such that g and h are formally étale, then also f is formally étale.

4. Any retract of a formally étale morphisms is itself formally étale.

5. The ∞-pullback of a formally étale morphisms is formally étale if the pullback is preserved by i!.

Remark 5.3.26. The statements about closure under composition and pullback appears as prop. 5.4, prop.
5.6 in [RoKo04]. The extra assumption that i! preserves the pullback is implicit in their setup.

Proof. The first statement follows trivially because ∞-pullbacks are well defined up to equivalence. The
second two statements follow by the pasting law for ∞-pullbacks, prop. 5.1.2: let f : X → Y and g : Y → Z
be two morphisms and consider the pasting diagram

i!X
i!f //

��

i!Y
i!g //

��

i!Z

��
i∗X

i∗f // i∗Y
i∗g // i∗Z

.

If f and g are local diffeomoprhisms then both small squares are pullback squares. Then the pasting law
says that so is the outer rectangle and hence g ◦ f is a local diffeomorphism. Similarly, if g and g ◦ f are
local diffeomorphisms then the right square and the total reactangle are pullbacks, so the pasting law says
that also the left square is a pullback and so also f is a local diffeomorphism.

For the fourth claim, let Id ' (g → f → g) be a retract in the arrow ∞-category HI
<. By applying the

natural transformation φ : i! → i∗ this becomes a retract

Id ' ((i!g → i∗g)→ (i!f → i∗f)→ (i!g → i∗g))

in the category of squares H�< . By assumption the middle square is an ∞-pullback square and we need to
show that the also the outer square is. This follows generally by lemma 5.1.3. Therefore we have a retract
in [∆[1], [�,K]]

(i!g → i!g) //

��

(i!f → i!f) //

��

(i!g → i!g)

��
j∗j∗(i!g → i!g) // j∗j∗(i!f → i!f) // j∗j∗(i!g → i!g)

,

where the middle morphism is an isomorphism. Hence so is the outer morphism and therefore also g is
formally étale.

For the last claim, consider an ∞-pullback diagram

A×Y X

p

��

// X

f

��
A // Y
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where f is formally étale. Applying the natural transformation φ : i! → i∗ to this yields a square of squares.
Two sides of this are the pasting composite

i!A×Y X //

i!p

��

i!X
φX //

i!f

��

i∗X

i∗f

��
i!A // i!Y

φY // i∗Y

and the other two sides are the pasting composite

i!A×Y X
φA×Y X//

i!p

��

i∗A×Y A //

i∗p

��

i∗X

i∗f

��
i!A

φA // i∗A // i∗Y

.

Counting left to right and top to bottom, we have that

• the first square is a pullback by assumption that i! preserves the given pullback;

• the second square is a pullback, since f is formally étale.

• the total top rectangle is therefore a pullback, by the pasting law;

• the fourth square is a pullback since i∗ is right adjoint and so also preserves pullbacks;

• also the total bottom rectangle is a pullback, since it is equal to the top total rectangle;

• therefore finally the third square is a pullback, by the other clause of the pasting law. Hence p is
formally étale.

�

We consider now types of ∞-pullbacks that are preserved by i!.

Proposition 5.3.27. If U // // X is an effective epimorphism in H< that it is addition formally étale,
def. 5.3.16, then also its image i!U → i!X in H is an effective epimorphism.

Proof. Because i∗ is left and right adjoint it preserves all small ∞-limits and ∞-colimits and therefore
preserves effective epimorphisms. Since these are stable under ∞-pullback, it follows by definition of formal
étaleness that with i∗U → i∗X also i!U → i!X is an effective epimorphism. �

Proposition 5.3.28. If in a differentially cohesive ∞-topos i : H< ↪→ H both H< as well as H have an
∞-cohesive site of definition, def. 4.1.31, then the functor i! preserves pullbacks over discrete objects.

Proof. Since it preserves finite products by assumption, the claim follows as in the proof of prop. 4.1.35.
�

Proposition 5.3.29. If in a differentially cohesive ∞-topos i : H< ↪→ H both H< as well as H have an
∞-cohesive site of definition, then the morphism E → X in H out of the total space of a locally constant
∞-stack over X, 5.2.7, is formally étale.
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Proof. First observe that every discrete morphism Disc(A
f→ B) is formally étale: since every discrete

∞-groupoid is an ∞-colimit over the ∞-functor constant on the point, φ∗ : i!∗ → i∗∗ is an equivalence, and
i! → i∗ preserves ∞-colimits, so we have that φDic(A) and φDisc(B) are equivalences. Therefore the relevant
diagram is an ∞-pullback.

Next, by definition, E → X is a pullback of a discrete morphism. By prop. 5.3.28 this pullback is
preserved by i! and so by prop. 5.3.25 also E → X is locally étale. �

Then there are coliming operations that preserve local diffeomorphisms

Proposition 5.3.30. Let Y : I −→ H/X be a small diagram of objects over X such that each component map

is a local diffeomorphism Yi et // X , def. 5.3.19. Then also the canonical projection out of the ∞-colimit
over the diagram is a local diffeomorphsim (

lim
−→i

Yi

)
et // X .

Proof. We need to show that the diagram

lim
−→i

Yi

��

// =( lim
−→i

Yi)

��
X // =X

is an ∞-pullback. Since = is a left adjoint, it may be taken into the colimit, and so we need to show that

lim
−→i

Yi

��

// lim
−→i

=Yi

��
X // =X

is an∞-pullback. This follows with prop. 3.1.5 and the assumption that on all component maps the diagram
is a pullback. �

Remark 5.3.31. The properties listed in prop. 5.3.24 imply in particular that étale morphisms in H
are “admissible maps” modelling a notion of local homeomorphism in a geometry for structured ∞-toposes
according to def. 1.2.1 of [L-Geo]. In the terminology used there this means that H equipped with its
canonical topology and with this notion of admissible maps is a geometry, see remark 5.3.39 below.

Another proposal for an axiomatization of open maps and étale maps has been made in [JoyMo94], and
the above list of properties covers most, but not necessarily all of these axioms.

In order to interpret the notion of formal smoothness, we close by further discussion of infinitesimal
reduction.

Observation 5.3.32. The operation < is an idempotent projection of H onto the image of H< under i!:

<< ' < .

Accordingly also
== ' =

and
[inf[inf ' [inf .
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Proof. By definition of infinitesimal neighbourhood we have that i! is a full and faithful ∞-functor. It
follows that i∗i! ' id and hence

<< ' i!i∗i!i∗

' i!i∗

' <
.

�

Observation 5.3.33. For every X ∈ H, we have that =(X) is formally smooth according to def. 5.3.11.

Proof. By prop. 5.3.32 we have that
=(X)→ ==(X)

is an equivalence. As such it is in particular an effective epimorphism. �

5.3.4 Étale toposes and Structure sheaves

For X ∈ H an object in a differential cohesive ∞-topos, we formulate

• the ∞-topos ShH(X ) of ∞-sheaves over X, or rather of formally étale maps into X;

• the structure sheaf OX of X.

The resulting pair (ShH,OX) is essentially a H-structured ∞-topos in the sense of [L-Geo].

One way to motivate the following construction, is to notice that for G ∈ Grp(H) a differential cohesive
∞-group with de Rham coefficient object [dRBG and for X ∈ H, def. 5.2.59 any differential homotopy-type,
the product projection

X × [dRBG→ X

regarded as an object of the slice ∞-topos H/X almost qualifies as a “bundle of flat g-valued differential
forms” over X: for U → X a cover (a 1-epimorphism) regarded in H/X , a U -plot of this product projection
is a U -plot of X together with a flat g-valued de Rham cocycle on X.

This is indeed what the sections of a corresponding bundle of differential forms over X are supposed to
look like – but only if U → X is sufficiently “spread out” over X, hence sufficiently étale. Because, on the
extreme, if X is the point (the terminal object), then there should be no non-trivial section of differential
forms relative to U over X, but the above product projection instead reproduces all the sections of [dRBG.

In order to obtain the correct cotangent-like bundle from the product with the de Rham coefficient object,
it needs to be restricted to plots out of sufficiently étale maps into X. In order to correctly test differential
form data, “suitable” here should be “formally”, namely infinitesimally. Hence the restriction should be
along the full inclusion

Hfet
/X ↪→ H/X

of the formally étale maps into X. Since on formally étale covers the sections should be those given by
[dRBG, one finds that the corresponding sheaf of flat forms OX([dRBG) must be the coreflection of the
given projection along this map.

Definition 5.3.34. For X ∈ H an object, write

Hfet
/X
� � // H/X

for the full sub-∞-category of the slice over X, def. 5.1.25, on the formally étale morphisms into X, def.
5.3.19.

537



Proposition 5.3.35. The inclusion of def. 5.3.34 is both reflective as well as coreflective: we have a left
and a right adjoint

Hfet
/X

oo� � //
oo

Et

H/X .

Proof. The reflection is given by the factorization of prop. 5.3.23. This exhibits Hfet
/X as a presentable

∞-category and hence, by the adjoint ∞-functor theorem, the coreflection exists precisely if the inclusion
preserves all small ∞-colomits. Since the inclusion is full, for this it is sufficient to show that an ∞-colimit
in H/X of a diagram A that factors through the inclusion,

A : I → Hfet
/X ↪→ H/X ,

is again in the inclusion. Since moreover ∞-colimits in a slice are preserved and detected by the dependent
sum, prop. 5.1.26, we are, by def. 5.3.19, reduced to showing that for the above diagram the square

lim
−→i∈I

Ai //

��

=lim
−→i∈I

Ai

��
X // =(X)

is an ∞-pullback square in H. Since = is a left adjoint by def. 5.3.1, this square is equivalent to

lim
−→i∈I

Ai //

��

lim
−→i∈I

=Ai

��
X // =(X)

.

Now that this square is an ∞-pullback follows since ∞-colimits are preserved by ∞-pullback in the ∞-topos
H, prop. 3.1.5, and the fact that every component square

Ai //

��

=Ai

��
X // =(X)

is an ∞-pullback by the assumption that the diagram factored through the inclusion of the étale morphisms
into the slice. �

Proposition 5.3.36. For X ∈ H, the ∞-category Hfet
/X of def. 5.3.34 is an ∞-topos, and the defining

inclusion into the slice H/X is a geometric embedding.

Proof. By prop. 5.3.35 the∞-category Hfet
/X is the sub-slice induced by a reflective factorization system.

This is a stable factorization system (in that the left class of =-equivalences is stable under∞-pullback) and
reflective factorization systems are stable precisely if the corresponding reflector preserves finite ∞-limits.
Hence the embedding is a geometric embedding of a sub-∞-topos. �

Definition 5.3.37. For H a differential cohesive ∞-topos and X ∈ H, we call the ∞-topos

ShH(X) := Hfet
/X
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of prop. 5.3.36 the petit ∞-topos of X ∈ H. An object of ShH(X) we also call an ∞-sheaf over X. The
composite functor

OX : H
(−)×X // H/X

Et // H/X =: ShH(X) ,

with Et the right adjoint of prop. 5.3.35, we call the structure ∞-sheaf of X. For A ∈ H we say that

OX(A) ∈ ShH(X)

is the ∞-sheaf of A-valued functions on X.

Proposition 5.3.38. The functor OX is right adjoint to the forgetful functor

ShH(X) := Hfet
/X
� � // H/X

∑
X // H .

In particular it preserves all small ∞-limits.

Proof. By essential uniqueness of ∞-adjoints, it is sufficient to observe that the the component maps
are pairwise adjoint. For the first this is prop. 5.1.26, for the second it is prop. 5.3.35. �

Remark 5.3.39. The triple (H, can, fet) of the differential cohesive ∞-topos equipped with

1. its canonical topology (a collection {Ui → X}i of morphisms in H is covering precisely if
∐
i Ui → X

is a 1-epimorphism, def. 5.1.65);

2. its class of formally étale morphisms, def. 5.3.19.

is a (large) geometry in the sense of [L-Geo]. For X ∈ H, the pair (ShH(X),OX) of def. 5.3.37 is a structured
∞-topos with respect to this geometry in the sense of [L-Geo]. In fact, it is essentially the structured∞-topos
associated to X in the geometry H by def. 2.2.9 there.

We close this section by making explicit the special case of ∞-sheaves of flat de Rham coefficients over
X.

Definition 5.3.40. For G ∈ Grp(H) a differential cohesive∞-group and for X ∈ H any object, we say that
the ∞-sheaf of flat exp(g)-valued differential forms over X is

OX([dRBG) ∈ Hfet
/X ↪→ H/X ,

where OX is given by def. 5.3.37 and where [dRBG is given by def. 5.2.59.

Definition 5.3.41. The canonical point 0 : ∗ → [dRBG induces a section

(idX , 0) : X → X × [dRBG

of the projection map. The image of this section under the coreflection of prop. 5.3.35

OX([dRBG)

��
X

= //

0:=Et(id,0)
99

X

we call the 0-section of the ∞-sheaf of flat differential forms.
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5.3.5 Infinitesimal extensions and Modules

Definition 5.3.42. For X a homotopy-type in differential cohesion, an infinitesimal extension or formal

extension of X is an object (E → X) ∈ H
X/
/X , such that the underlying morphism in H is a =-equivalence.

Write
InfExt(X) ↪→ H

X/
/X

for the opposite of the full subcategory on these objects.

Remark 5.3.43. By the discussion in 5.3.4 and in view of remark 5.3.21, there is a precise sense in which
Mod(X) is dual to the étale topos Sh(X) 5.3.4.

Lemma 5.3.44. The inclusions InfExt(X) ↪→ H
X/
/X of def. 5.3.42 preserve limits and colimits.

Proof. Limits in an undercategory are computed in the ambient category, and limits in an overcategory
are computed as the limits of the diagram with a terminal object adjoined in the ambient category. Dually for
colimits. We have to show that if the diagram in the under-overcategory is in the inclusion of the infinitesimal
extensions, then so is its (co-)limit. Since = preserves all these and by assumption on infinitesimal extension,
applying = to the diagrams with terminal (initial object) adjoined make them be diagrams of the shape an
∞-groupoid with a terminal object, hence of a contractible ∞-groupoid, hence be essentially constant on
=(X). This shows that the limit of =-equivalences in the slice is itself a =-equivalence. �

Example 5.3.45. In the model of formal smooth cohesion discussed below in 6.5, infinitesimal extensoions
of smooth manifolds are equivalently modules over their algebras of smooth functions. This is discussed
below in 6.5.7.

Remark 5.3.46. As the base X varies, the infinitesimal extensions form a model for dependent linear
homotopy type theory, see prop. 6.1.12.

5.3.6 Infinitesimal neighbourhoods and Lie differentiation

We discuss here how the axioms of differential cohesion, def. 4.2.1, induce a reflection and coreflection onto
infinitesimal homotopy-types, def. 4.1.21. The pointed infinitesimal homotopy-types have the interpretation
of strong homotopy Lie algebras (L∞-algebras) and the coreflection onto them has the interpretation of Lie
differentiation.

First we consider a slight refinement of the concept of infinitesimal homotopy-type:

Definition 5.3.47. Given differential cohesion

(
< a = a &∫

a [ a ]

)
, then

1. the points-to-infinitesimal-pieces transform is the natural transformation

[ −→ =

which is the composite of the [-counit with the =-unit;

2. a differentially cohesive homotopy-type X we call properly infinitesimal if the points-to-infinitesimal-
pieces transform is a natural equivalence

[X
'−→ =X ;

3. a group object G ∈ Grp(H), def. 5.1.150, whose underlying homotopy-type G is properly infinitesimal
and has a single global point, [G ' ∗, we call a formal group or ∞-Lie algebra (depending on whether
< encodes finite or infinite order infinitesimals).
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Remark 5.3.48. The idea of understanding Lie algebras as first-order infinitesimal Lie groups appears
in [Kock06], in the context of synthetic differential geometry, and with more details in [Kock10, section
6]. Of course a higher-order infinitesimal Lie group is traditionally called a formal Lie group. The lift of
this idea to geometric homotopy theory, that a formal∞-stack which satisfies a suitable first-order condition
(independently called “infinitesimal cohesion” in [L-Rep]) is equivalently a strong homotopy Lie algebra/L∞-
algebra originates in [Hin] and was substantiated in [Pr10] and [L-Lie].

Proposition 5.3.49. A properly infinitesimal object, def. 5.3.47, is in particular an infinitesimal object in
the sense of def. 4.1.21.

Proof. For a properly infinitesimal object X by definition =X is discrete, and therefore the relative
unit =(X) →

∫
(X), according to prop. 5.3.3, is an equivalence, hence so is the composite points-to-pieces

transform
[X //

''

=(X)

��∫
(X)

�

Definition 5.3.50. Given an object X and a point x : ∗ → X, then the infinitesimal neighbourhood or
infinitesimal disk or formal neighbourhood at that point is the homotopy fiber product

DXx := ∗ ×
=(X)

X

in
DXx //

��

X

��
∗ x // =(X)

More generally, for a sequence of orders of infinitesimals as in def. 4.2.7, then the order-k infinitesimal
disk is

D(k)Xx := ∗ ×
=(X)

=(k)X

Remark 5.3.51. The degree of the infinitesimal extension of the infinitesimal disk is implicit in the given
differential cohesion. In the models it may be any finite order of infinitesimals, or arbitrary order, in which
case one should speak of formal disks and formal neighbourhoods.

Proposition 5.3.52. Given a point x : ∗ → X, then its factorization

x : ∗ // DXx et // X

through the infinitesimal disk, according to def. 5.3.50, is the factorization of the (=-equivalences, local
diffeomorphisms)-system of remark 5.3.21.

Proof. By inspection of the definitions and using that =(∗) ' ∗. �
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Example 5.3.53. Let G be an ∞-group, def. 5.1.150, and let e : ∗ → G be its canonical point. Since
the infinitesimal shape modality =, def. 5.3.1, preserves ∞-limits, it also preserves group structure, i.e. the
infinitesimal disk of BG is a pointed connected object of the form BDGe and hence, via theorem 5.1.151,
exhibits group structure on DGe . This is really the Lie algebra of G and we will by default write

g := DGe

for the infinitesimal disk of a group object G at its canonical point (and h := DHe , etc.)
Similarly, for H → G a homomorphism of group objects, then the the canonical G-action of G on G/H

of example 5.1.276, via its defining homotopy fiber sequence of the form

G/H // BH

��
BG

is sent under forming infinitesimal disks to the sequence exhibiting the homotopy fiber of Bh→ Bg, which
we accordingly denote by g/h

g/h // Bh

��
Bg

.

Definition 5.3.54. Given a group object G ∈ Grp(H), def. 5.1.150, and given an action of G on some F ,
according to prop. 5.1.267, then a linearization of the action is a point 0 : ∗ → F and a compatible G-action
on the infinitesimal disk DF0 , def. 5.3.50, around that point, hence, by prop. 5.1.267, a pasting diagram of
homotopy pullbacks of the form

DF0 //

��

DF0 //G

��
F //

��

F//G

��
∗ // BG

where the bottom square is the one exhibiting the given G-action on F .

Remark 5.3.55. A linearized action, def. 5.3.54, is equivalently encoded by a group homomorphism

G −→ Aut(DF0 )

to the automorphism ∞-group, example 5.1.275.

Proposition 5.3.56 (linearization of actions). If a G-action on some F stabilizes a point 0 : ∗ → F
according to def. 5.1.288, then it restricts to an action on the infinitesimal disk DF0 of that point and hence
induces its linearization according to def. 5.3.55.

Proof. That the action stabilizes the point 0 is, by prop. 5.1.292, equivalent to a factorization of the
identity on BG through the delooping of the stabilizer group of the point

BG
σ //

=

44BStabG(x) �
� // BG

.
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Therefore by the pasting law, prop. 5.1.2, we have that the top square in

∗ //

0

��

∗//G

σ

��
V //

��

V//G

��
∗ // BG

is a homotopy pullback. This means (since the infinitesimal shape modality = preserves this pullback and
using again the pasting law) that as we apply the factorization of the top vertical morphisms through
(=-equivalences, local diffeomorphisms), via remark 5.3.21, we get

∗ //

0

��

∗//G

σ

��
DF0 //

et

��

DF0 //G

et

��
V //

��

V//G

��
∗ // BG

such that all squares are homotopy pullbacks. Hence the subdiagram

DF0 //

��

DF0 //G

��
∗ // BG

exhibits the linearized action in question. �

Example 5.3.57. Let H → G be a homomorphism of ∞-groups, def. 5.1.150. Consider the canonical
G-action on G//H of example 5.1.276. By example 5.1.297. its pullback/restriction, def. 5.1.271, to an
H-action on G/H stabilizes the canonical point

∗
e/H //

!!

G/H // H\G/H

��
BG

99

BH

.

Hence by example 5.3.53 and prop. 5.3.56 there is an induced linearized action of H on g/h = DG/He/H ,

exhibited by a homotopy fiber sequence of the form

g/h // H\g/h

��
BH
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In particular this means that there is a canonical homomorphism

H −→ GL(g/h)

from H to the general linear group, def. 5.3.95, GL(g/h) = Aut(DG/He/H ).

The following establishes canonical (co-)modalities characterizing the properly infinitesimal homotopy-
types and subsuming all these infinitesimal disks.

Definition 5.3.58. Given differential cohesion

(
< a = a &∫

a [ a ]

)
define operations

∫ rel
and [rel by

∫ rel
X := (

∫
X)
∐
<X

X

and
[relX := ([X) ×

=X
X .

Hence
∫ rel

X makes a homotopy pushout square

<X

��

// X

��
=X //

∫ rel
X

and [rel makes a homotopy pullback square

[relX //

��

X

��
[X // =X

,

where the bottom morphism is the points-to-infinitesimal-pieces transform.

Remark 5.3.59. For differential cohesion over ∞Grpd, [rel(X) is the collection of all infinitesimal disks
DXx , def. 5.3.50, inside X, around all its global points x : [X. This follows via prop. 5.1.1 and prop. 3.1.5:

[relX := [X ×
=(X)

X

'
(

lim
−→
x:[X

∗
)
×
=(X)

X

' lim
−→
x:[X

(
∗ ×
=(X)

X

)
' lim

−→
x:[X

DXx

Applied to pointed connected objects, then [rel has the interpretation of Lie differentiation, see 6.5.2.5.
Below in 5.3.66 we refine this to the cohesive (as opposed to geometrically discrete) collection of all these
infinitesimal disks.

Proposition 5.3.60. The operations in def. 5.3.58

1. form an adjoint pair (
∫ rel a [ref) of modalities (idempotent (co-)monads);
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2. whose (co-)modal homotopy-types are precisely the properly infinitesimal homotopy-types, def. 5.3.47;

3.
∫ rel

preserves the terminal object.

Proof. By lemma 4.1.13 the adjunctions between the (co-)monads (
∫
a [) and (< a =) intertwine their

respective units and counits as

H(
∫
X,A)

' //

&&

H(X, [A)

xx
H(X,A)

H(X,A)

&&xx
H(<X,A) '

// H(X,=A)

.

Together with the respect of H(−,−) for (co-)limits this implies the following natural equivalences

H(
∫ rel

X,A) ' H(
∫
X,A) ×

H(<X,A)
H(X,A)

' H(X, [A) ×
H(X,=A)

H(X,A)

' H(X, [relA)

.

This establishes the adjunction (
∫ rel a [rel) of ∞-functors. Now observe that

1. =([rel(X)) ' [(X), because = preserves homotopy fiber products (since it has the left adjoint <)
and hence preserves the defining pullback, sends the =-unit to an equivalence (by idempotency) and
preserves [(X) ' &([(X)) (by idempotency);

2. [([rel(X)) ' [(X), since also [ preserves homotopy fiber products (since it has the left adjoint
∫

) and
sends the =-unit to an equivalence (by prop. 5.3.5, item 4) and preserves [X (by idempotency).

This implies first of all that these equivalences exhibit the points-to-infinitesimal pieces transform on [rel(X)
as an equivalence

[([rel(X))

'
$$

' // =([rel(X))

'
yy

[(X)

(by inspection of the corresponding morphism of cospan diagrams in view of the above two points and by
2-out-of-3 for equivalences ).

This in turn implies that [rel is idempotent, since being a right adjoint we may take it into its own
defining homotopy pullback of its points-to-infinitesimal-pieces transform, which by the above trivializes.
More generally, this means that for any properly infinitesimal X, def. 5.3.47, the canonical map [relX → X
is an equivalence (being the pullback of an equivalence).

In summary this shows that [rel is an idempotent comonad whose modal homotopy-types are precisely the

properly infinitesimal homotopy-types. By adjointness the corresponding statements follow for
∫ rel

. That
this also preserves the terminal object is immediate from the fact that by the axioms of differential cohesion
< and

∫
do. �

Definition 5.3.61. Given a differential cohesive ∞-topos H< ↪→ H, write Hinf ↪→ H for the full sub-∞-
category of the properly infinitesimal homotopy types of H, def. 5.3.47.

Proposition 5.3.62. If in an differential cohesive ∞-topos H< ↪→ H the operation [rel from def. 5.3.58
has a right adjoint, to be denoted ]rel, then,
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1. the subcategory Hinf of def. 5.3.61 is an ∞-topos and it is infinitesimally cohesive, def. 4.1.21;

2. H is cohesive, def. 4.1.8, over Hinf .

Proof. By prop. 5.3.60. �

Remark 5.3.63. In the situation of prop. 5.3.62 the adjoint triple
∫ rel a [rel a ]rel is pronounced, in line

with the terminology in remark 4.1.12, the “relative shape modality” a “relative flat modality” a “relative
sharp modality”. Just like the cohesive triple

∫
a [ a ] exhibits an underlying cohesive point structure of

homotopy types, so this relative analog exhibits underlying cohesive structure of infinitesimally thickened
points (infinitesimal neighbourhoods/disks around the actual points).

In this situation we have in total a system of reflections as follows:

reduced
types

formal
differential

types

infinitesimal
types

H<

� � //
oo
� � //
oo

Γ<

%%

H

Πrel //
oo Discrel ? _

Γrel //
oo coDiscrel ? _

Γ

��

Hinf

Γinf

xx
∞Grpd

where the vertical morphisms exhibit cohesion of all three ∞-toposes over the base ∞-topos ∞Grpd; them-
selves fitting into adjoint quadruples, which we do not display; such that all 2 × 4 induces triangles of
∞-functors commute.

Example 5.3.64. We discuss realizations of relative cohesion, def. 5.3.62, in the context of formal smooth
cohesion below in prop. 6.5.16.

A direct consequence worth recording:

Proposition 5.3.65. The counit [relX −→ X of the relative flat modality, def. 5.3.58, is a formally étale
morphism, def. 5.3.19, for all objects X.

Proof. Using that the infinitesimal shape modality = is idempotent and preserves homotopy pullbacks,
one finds from def. 5.3.19 that its unit on [relX is equivalent to the canonical [relX → [X. This way the
defining homotopy pullback in def.5.3.19 is equivalent to

[relX //

��

X

��
=[relX // =X

and hence exhibits the top morphism as being formally étale. �

5.3.7 Infinitesimal disk bundles

The discrete collections [relX of infinitesimal disks, def. 5.3.50 in an object X (as in remark 5.3.50) naturally
refine to cohesive collections forming a bundle of infinitesimal disks over X. Here we discuss the elementary
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formalization and some basic properties of these. In the context of synthetic differential geometry these
infinitesimal disk bundles are sometimes known as [Kock80] bundles of monads (where “monad” is in some
Leibnizian sense of indivisible fundamental entities). More commonly known in traditional theory are, on the
one hand, the principal bundles to which these infinitesimal disk bundles are associated, these are the frame
bundles discussed in 5.3.11, and, on the other hand, the right adjoint to the construction of infinitesimal
disk bundles, these are the jet bundles discussed in 5.3.8.

Given a sequence of orders of infinitesimals as in def. 4.2.7, consider the following definitions for any
k ∈ N ∪ {∞}.
Definition 5.3.66. For X any object in differential cohesion, its order-k infinitesimal disk bundle T kX → X
is the homotopy pullback p

T kX
ev //

p

��

X

��
X // =(k)X

of the unit of its infinitesimal shape modality, def. 5.3.1, along itself.

Remark 5.3.67. With the base change geometric morphisms, prop. 2.1.2, along the infinitesimal path
inclusion i : X → =(k)X, def. 5.3.1, denoted by

H/X

i! //
oo i∗

i∗ // H/=(k)X

and with X naturally regarded as an object (the terminal object) of H/X , then its infinitesimal disk bundle

T kX → X of def. 5.3.66, also regarded as an object of H/X , is equivalently

T kX ' i∗i!X .

Therefore we set more generally:

Definition 5.3.68. Write
T k := i∗i! : H/X → H/X

for the monad induced by the base change in remark 5.3.67.

Remark 5.3.69. The morphism denoted ev in def. 5.3.66, regarded as a morphism over =(k)X, is the
i!X-component of the counit of the (i! a i∗)-adjunction

ev : i!i
∗i!X −→ i!X .

Hence its further image under i∗ is the product operation

i∗(ev) : T kT k −→ T k

of the T k-monad of def. 5.3.68. In the cubical diagram

T kX

p

��

ev // X

��

T kT kX
i∗(ev) //

dd

��

T kX

ev

dd

p

��

X // =(k)(X)

T kX

ev

dd

p // X

i
dd
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the bottom, left and right faces are homotopy pullbacks by construction, and hence by the pasting law,
prop. 5.1.2, so is the top face. This exhibits a generalized point in T kT kX as consisting of tuples of three
infinitesimal neighbour points y z

x in X, hence a sequence of infinitesimal paths, y // z

x

__ ??


and exhibits the three maps out of it as being the three possible projections on any pair of two of these
neighbours, where p takes the basepoint of an infinitesimal path, and ev the endpoint:(

y z
)

_

p

��

� ev //
(

z
)

_

��

(
y z
x

) � i
∗(ev) //

�

bb

_

��

(
z
x

)�

ev

bb

_

p

��

(
y
) � // ∗

(
y
x

)�
ev

bb

� p //
(
x

)�

i

bb

Remark 5.3.70. It follows by adjunction that for E → X any bundle then i∗i∗E is the bundle whose local
sections over any cover U // // X are equivalently bundle morphisms out of T kX to the original bundle
E:

U −→ i∗i∗E

i∗i!U −→ E
.

Here i∗i∗E =: Jk(E) is the jet bundle of E, def. 5.3.74, hence we have an adjunction

T k a Jk .

Indeed, the very concept of jets is such that a jet of E is equivalently a section of E over an infinitesimal
disk. Under this equivalence, precomposition with ev gives a map from sections of E to sections of Jk(E),
the jet prolongation. In the context of synthetic differential geometry, the adjunction between infinitesimal
disk bundles and jet bundles is [Kock80].

We record a few basic properties of infinitesimal disk bundles.

Proposition 5.3.71. The two maps out of the infinitesimal disk bundle in def. 5.3.66 become equivalences
under infinitesimal reduction <(k), def. 5.3.1:

<(k)(T
kX −→ X) ' (<(k)X

'−→ <(k)X) .

Proof. By idempotency we have <(k) ' <(k)=(k) and again by idempotency and using that =(k) preserves
homotopy pullbacks it follows that =(k) sends the diagram in def. 5.3.66 to the homotopy pullback

=(k)X
=(k)(ev)

'
//

=(k)(p)'
��

=(k)X

'
��

=(k)X
' // =(k)X

.
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�

Proposition 5.3.72. For f : X et // Y a local diffeomorphism, def. 5.3.19, then also the induced mor-

phism of infinitesimal disk bundles, def. 5.3.66, is a local diffeomorphism T kf : T kX et // T kY .

Proof. We are looking at the cube

T kX

Tkf
##

//

��

X

��

f

$$
T kY //

��

Y

����

X //

f
""

=(k)X

=(k)f

$$
Y // =(k)Y

.

The front and the rear face are homotopy pullbacks by definition of T k. Also the bottom face is a homotopy
pullback, by assumption that f is a local diffeomorphism (as is hence the right face). Hence the pasting law,
prop. 5.1.2, gives that also the top square is a homotopy pullback, and thus that the pasting of the top and
right square is a homotopy pullback. But by idempotency of =(k) and the fact that =(k) preserves homotopy

pullbacks, this top and right pasting is equivalently the naturality squre of the =(k)-unit on T kf . This is

hence a homotopy pullback, which is the defining property for T kf to be a local diffeomorphism. �

Proposition 5.3.73. For ι : U et // X a local diffeomorphism, def. 5.3.19, then pullback along i preserves
infinitesimal disk bundles, def. 5.3.66:

ι∗T kX ' T kU .

Proof. By the definition of local diffeomorphisms and using the pasting law, prop. 5.1.2, we have an
equivalence of pasting diagrams of homotopy pullbacks of the following form:

ι∗T kX //

��

T kX //

��

X

��
U // X // =(k)X

'

T kU //

��

U //

��

X

��
U // =(k)U // =(k)X

.

�

5.3.8 Jets and differential operators

We discuss elementary formalization in differential cohesion of the concepts of jet bundles, differential equa-
tions and differential operators (possibly non-linear).

Given a sequence of orders of infinitesimals as in def. 4.2.7, consider the following definitions for any
k ∈ N ∪ {∞}.
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Definition 5.3.74. For any object Σ ∈ H with i : Σ → =(k)Σ its constant order-k infinitesimal path
inclusion, def. 5.3.1, and

H/Σ
i∗

//
oo i∗

H/=(k)(Σ)

the corresponding base change geometric morphism, prop. 5.1.28, we say that the induced co-monad

JkΣ := i∗i∗ : H/Σ −→ H/Σ

is the Jet bundle operator or Jet comonad over Σ. If Σ is understood we abbreviate the notation to Jk.
For (E → Σ) ∈ H/Σ a bundle, we call (Jk(Σ)→ Σ) its order-k jet bundle.

Remark 5.3.75. In the context of differential geometry and for k =∞, the observation that the Jet bundle
operation is a comonad is due to [Marv86]. In the context over an algebraic site with jet bundles incarnated
via crystals of schemes or D-schemes as in section 2.3.2 of [BeDr04] (see [Paug11] for a review) the base
change origin of the jet bundle comonad was highlighted in [L-DGeo].

Remark 5.3.76. The jet comonad is right adjoint to forming infinitesimal disk bundles, def. 5.3.68,

(T k a Jk) ,

see 5.3.11, remark 5.3.70.

Hence Jk preserves all ∞-limits and in particular the terminal object Σ ∈ HΣ. We record the following
simple but important implication

Example 5.3.77. There is an essentially unique morphism

JkΣ(Σ)
'−→ Σ

in H/Σ, and this is an equivalence.

Another degenerate class of examples of relevance for the general theory is this:

Example 5.3.78. If Σ = ∗ is the terminal object, then JetΣ(E)
'−→ E for all E ∈ H/∗ ' H.

Definition 5.3.79. Given a bundle E ∈ H/Σ We write

jk : ΓΣ(E) −→ ΓΣ(Jk(E))

for the functor which is given by the jet functor itself, def. 5.3.74, regarded via example 5.3.77 as taking
sections to sections:

jk : (Σ
φ→ E) 7→ (Σ

'→ Jk(Σ)
Jk(φ)−→ Jk(Σ)) .

We call jk(φ) the order-k jet prolongation of φ.

Proposition 5.3.80. Jet bundles are preserved by pullback along local diffeomorphism, def. 5.3.19, i.e. for

f : X
et−→ Y a local diffeomorphism and E ∈ H/Y a bundle, then

f∗J∞Y E ' J∞X f∗E .

Proof. The defining homotopy pullback in def. 5.3.19 induces a square of base change operations

H/N∞Y XOO

f∗f∗

��

oo (iX)∗

(iX)∗

// H/=XOO

(=f)∗(=f)∗

��
H/Y

oo (iY )∗

(iY )∗

// H/=Y

.
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By Beck-Chevalley this implies that
(=f)∗(iY )∗ ' (iX)∗f

∗ .

Using this we find
f∗J∞Y E := f∗(iY )∗(iY )∗E

' (iX)∗(=f)∗(iY )∗E

' (iX)∗(iX)∗f
∗E

=: J∞Y f
∗E .

5.3.9 Partial differential equations

Definition 5.3.81. Given Σ ∈ H, write

PDE(H)Σ := EM(J∞Σ )

for the Eilenberg-Moore ∞-category of coalgebras over the Jet comonad of 5.3.74 (see [RiVe13]).

Remark 5.3.82. That in traditional differential geometry this definition yields Vinogradov’s category of
differential equations was shown in [Marv86].

Proposition 5.3.83. The ∞-category of def. 5.3.81 is an ∞-topos and the co-free/forgetful adjunction is a
geometric morphism:

H/Σ
oo forget

free
// PDE(H)Σ

Proof. The analog statement in 1-category theory is in [MacMoe92, V. 8]. The argument that lifts this
to ∞-category theory has kindly been compiled by Marc Hoyois25. �

Definition 5.3.84. Given Σ ∈ H then the ∞-category of bundles over Σ with (not necessarily lin-
ear)differential operators between them is the co-Kleisli category of the jet bundle co-monad of def. 5.3.74,
the full sub-category of PDE(H)Σ, def. 5.3.81, on the essential image of the free functor of prop. 5.3.83.
Hence for (Ei → X) ∈ H/X bundles (see 5.1.2.1) then

• a differential operator from sections of E1 to sections of E2, denoted D : ΓX(E1) → ΓX(E2), is a
morphism D̃ : Jk(E1)→ E2 in H/X ;

• the composition of two differential operators, denoted D2 ◦D1, is the composite morphism

Jk(E1) // Jk(Jk(E1))
Jk(D̃1) // Jk(E2)

D̃1 // E3 ,

where the first is the co-product of the Jk-comonad.

Remark 5.3.85. In the context of traditional differential geometry the co-Kleisli characterization of differ-
ential operator was observed in [Marv86].

25http://mathoverflow.net/a/206695/381
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5.3.10 Manifolds and Étale groupoids

We discuss an axiomatization in differential cohesion of separated manifolds and (formally) étale groupoids
. In typical models, for instance that discussed below in 6.5, formal étaleness automatically implies global
étaleness, and so the following formulation captures the notion of étale groupoid objects.

A classical texts on étale 1-groupoids is [MoMr03]. An discussion close in spirit to our discussion is
[Carc12].

Recall from 5.1.8 that groupoid objects G in an∞-topos H are equivalent to 1-epimorphisms, def. 5.1.65,

U
p // // X in H, which we think of as being an atlas for X ∈ H.

Definition 5.3.86. For H<
i
↪→ H a differential cohesive ∞-topos, def. 4.2.1, we say that a groupoid object

in H is formally étale if the corresponding atlas U // // X is a formally étale morphism, def. 5.3.16. We

denote this by U et // // X

Remark 5.3.87. When H is presented by a category of simplicial (pre)sheaves, as in 3.1.3, then for any
simplicial presheaf X there is, by remark 5.1.78, a canonical atlas, given by the inclusion constX0 → X.
If the presentation of X and the induced canonical atlas is understood explicitly, we often speak just of X
itself being a formally étale groupoid or a formally étale ∞-stack.

Fix now V any homotopy-type. We discuss étale groupoids locally modeled on V . While for the basic
definition V is arbitrary, typical choices of interest for V include the following

1. If A1 ∈ H be a line object exhibiting the cohesion of H according to def. 5.2.48, then A1 play the role
of “the continuum”, the real line, and so taking V = An := (A1)×n plays the role of the n-dimensional
Cartesian space.

2. For a good theory of tangent bundles and frame bundles (5.3.11 below) V is to have trivializable
infinitesimal disk bundle.

3. For applications to G-structures (5.3.12 below) and Cartan geometry (5.3.12 below) V is to carry group
structure, def. 5.1.150 (and typically abelian ∞-group structure, def. 5.1.157).

Definition 5.3.88. For V ∈ H, a V -manifold or V -étale stack is an object X ∈ H such that there exists a
V -cover or V -atlas of X: a correspondence from V to X via a coproduct∐

i Ui

et

||
et
"" ""

V X

such that

1. the component morphisms are all formally étale, def. 5.3.16, and those to V are in addition 1-
monomorphisms, def. 5.1.58,

UiO o

et

~~
et

  
V X

;

2. the total morphism
∐
i Ui

// // X is a 1-epimorphism, def. 5.1.65.

Hence a V -manifold/V -étale stack is an object which admits an atlas that makes it a formally étale
groupoid, def. 5.3.86, with additional conditions on the atlas.
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Remark 5.3.89. The condition in def. 5.3.88 that all the component maps are formally étale implies that
also the two maps out of the coproduct are formally étale, by prop. 6.5.55.

Example 5.3.90. Every object V ∈ H is canonically a V -manifold, def. 5.3.88, via the identity correspon-
dence on V .

The following simple definition captures a wealth of types of structures on manifolds that are of interest,
such as generalizations of symplectic structures.

Definition 5.3.91. Let φ : V → A any morphism and for X a V -manifold, def. 5.3.88, then a globalization
of φ over X is a morphism φX : X → A such that there exists a V -cover V ← U → X which extends to a
correspondence in the slice over A:

U

et

��
et
    

V

φ ��

X

φX~~
A

'

|�

Moreover, an infinitesimal neighbourhood-wise globalization is (just) such a correspondence after restricting
to the collection [relU of infinitesimal disks in U along the counit [relU → U of the relative flat modality,
def. 5.3.58,

[relU

et

}}
et

""
U

et

��

U

et
����

V

φ ""

X

φX||
A

'

�


Remark 5.3.92. When the object A in def. 5.3.91 is thought of as a moduli stack of fields, then such a
globalization is equivalently a correspondence phased by a local action functional as in local prequantum field
theory discussed in 5.2.18. In particular when A is a differential coefficient as in 5.2.13 then a globalization
is a prequantization of a V -cover in the sense of the prequantized Lagrangian correspondences discussed in
1.3.2.

A central question is: given φ and X, what are the obstructions to a globalization, def. 5.3.91, to exist?
This we turn to below in 5.3.12.

5.3.11 Frame bundles

We discuss how for framed V each V -manifold X in differential cohesion, as in def. 5.3.88, carries a frame
bundle which is a GL(n)-principal ∞-bundle for GL(V ) := Aut(DV ) the automorphism ∞-group of the
typical infinitesimal disk in X.

Definition 5.3.93. A framing of an object V ∈ H is a trivialization of its infinitesimal disk bundle, def.
5.3.66, hence an object DV (k) (the typical infinitesimal disk, def. 5.3.50, in V ) and a chosen equivalence

T kV ' V × DV (k) .
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The following gives a key class of examples of framed objects.

Proposition 5.3.94. Every object G in a differential cohesive ∞-topos H equipped with ∞-group structure,
def. 5.1.150, (or in fact just equipped with group structure in the homotopy category of H) is canonically
framed, def. 5.3.93, such that the horizontal morphism in def. 5.3.66

ev : T kG ' G× DGe (k)
·−→ G

is the restriction, in its second argument, of the group product operation G×G→ G to the infinitesimal disk,
def. 5.3.50, around the canonical point (the neutral element) of G, hence is the left translation operation on
DGe (k).

Proof. Since G has group structure, and since the infinitesimal shape modality =, def. 5.3.1, preserves
∞-group structure (since it even preserves all ∞-(co-)limits) we may use the higher topos-theoretic Mayer-
Vietoris sequence of prop. 5.1.182 to characterize T kG equivalently as the homotopy pullback in

T kG

(p,ev)

��

// ∗

e

��
G×G // (=(k)G)× (=(k)G)

(−)·(−)−1

// =(k)G

.

Since in particular the =-unit on G is an ∞-group homomorphism, the bottom morphism here is equivalent
to first forming the product and then applying the projection. Therefore by the pasting law, prop. 5.1.2,
this exhibits T kG equivalently as the homotopy pullback on the left of

T kG

(p,ev)

��

// DGe (k)

��

// ∗

e

��
G×G

(−)·(−)−1

// G // =(k)G

,

where in the right square we have used def. 5.3.50. By lemma 5.1.160 the left square is equivalent to

G× DGe (k)
p2 //

(p1,·)
��

DGe (k)

��
G×G

(−)·(−)−1

// G

.

�

Definition 5.3.95. Given V a framed object, def. 5.3.93, write

GL(V ) := Aut(DV (k))

for the automorphism ∞-group, def. 5.1.155, of its typical infinitesimal disk – the general linear group.

Remark 5.3.96. Given a sequence of orders of infinitesimals as in def. 4.2.7, then Aut(D(1)V ) plays the
role of the general linear group proper, while Aut(D(k)V ) is rather a jet group [KoMiSl93, section 13],
sometimes denoted “GLk(V )”, or similar, in the literature.

By prop. 5.3.73 it follows that:
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Proposition 5.3.97. Let V be a framed object, def. 5.3.93. For X a V -manifold, def. 5.3.88, then its
infinitesimal disk bundle, def. 5.3.66, canonically trivializes over its cover, i.e. there is a homotopy pullback
of the form

U × DV (k) //

��

T kX

��
U et // // X

.

This exhibits the infinitesimal disk bundle T kX → X as a DV (k)-fiber ∞-bundle, def. 5.1.241, and hence, by
prop. 5.1.249, as associated to a GL(V )-principal∞-bundle (def. 5.3.95) via an essentially unique morphism

τX : X −→ BGL(V ) .

Example 5.3.98. Let H → G be a homomorphism of differentially cohesive ∞-groups, def. 5.1.150, and
consider the induced Klein geometry G/H of example 5.1.297. Even though G and H are each canonically
framed by example 5.3.94, the quotient G/H need not be framed itself.

The structure of a V -manifold on G/H, def. 5.3.88, for a framed object V , exhibits G/H as being still

locally framed. With the notation g/h := D
G/H
eH from def. 5.3.53, a V -cover exhibits such a V -manifold

structure on G/H and gives an equivalence

GL(V ) ' GL(g/h) .

Definition 5.3.99. Let V be a framed object, def. 5.3.93. For X a V -manifold, def. 5.3.88, then the
GL(V )-principal bundle modulated via theorem 5.1.207 by τX in prop. 5.3.97 we call the frame bundle of
X.

Remark 5.3.100. In the presence of a sequence of orders of infinitesimals as in def. 4.2.7 and following
remark 5.3.96, for first order infinitesimal disks D(1)V then def. 5.3.99 captures the frame bundle proper,
while when DV is instead a higher order infinitesimal neighbourhood, or even the whole formal neighbour-
hood, then Fr(X) is rather a higher order frame bundle or formal frame bundle [KoMiSl93, section 12.12],
often denoted “Frk(X)” or similar. We nevertheless stick with the notation “Fr(X)” here.

Proposition 5.3.101. Let V be a framed object, def. 5.3.93. The operation that sends V -manifold X, def.
5.3.88 to frame bundle, def. 5.3.99, extends to a functor

τ(−) : VMfdet
H −→ H/BGL(V )

from V -manifolds with local diffeomorphisms between them, def. 5.3.19.

Proof. This follows with prop. 5.3.73 and the proof of prop. 5.1.249. �
In particular:

Example 5.3.102. For V a framed object andX a V -manifold, def. 5.3.88, then every V -cover V oo et U et // // X
extends to a diagram of the form

U

et

zz
et

$$
V

τV ##

X

τXzz
BGL(V )

'
v~
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Remark 5.3.103. It is desireable to have an internal refinement of the functor in prop. 5.3.101 (for instance
for the definition of cohesive isometry groups in def. 5.3.131), i.e. for any V manifold X a moprhism

τX(−) : Aut(X) −→ AutH(τX)

which on global points (in view of remark 5.1.36) restricts to the functor in prop. 5.3.101. This should have
a general abstract construction, but for the moment I only see how to construct this in concrete models.
Therefore let’s say that τX(−) is internalizable if this works for given X.

5.3.12 G-Structures and Cartan geometry

We discuss formalization of (integrable) G-structure on V -manifolds in differential cohesion. See below in
6.4.11 for the traditional such concept.

The following is the specialization of the general concept of lifts of structure groups of def. 5.1.305 to
lifts of the structure group of the frame bundle.

Definition 5.3.104. Let V be a framed object, def. 5.3.93 and let X be a V -manifold, def. 5.3.88. For
G ∈ Grp(H) an ∞-group, def. 5.1.150, equipped with a group homomorphism G → GL(V ) to the general
linear group from def. 5.3.95, hence with a morphism between deloopings

GStruc : BG −→ BGL(V ) ,

then a G-structure on the V -manifold X is a diagram

X //

τX $$

BG

GStruczz
BGL(V )

's{

in H, hence is a morphism
g : τX −→ GStruc

in the slice∞-topos H/BGL(V ) (5.1.2.1), where τX modulates the frame bundle of X, according to def. 5.3.99.
Accordingly a morphism between G-structures is a 2-morphism in the slice ∞-topos. Hence GStruc ∈
H/BGL(V ) is the moduli stack of G-structures for the given map G→ GL(V ).

Remark 5.3.105. In traditional theory, the group homomorphism in def. 5.3.104 is required to be a
monomorphism and one also speaks of a reduction of the structure group. If, at the other extreme, the
prescribed group homomorphism is an epimorphism then traditionally one speaks instead of a lift of the
structure group. However, since in homotopy theory the traditional (epi,mono)-factorization system dissolves
into the infinite tower of (n-epi, n-mono)-factorization systems for all n, prop. 5.1.59, and since the theory
may just as well be formulated for any homomorphism, we stick with the neutral term G-structure. This is
all the more justified since in the homotopy-theoretic context factorizations through prescribed morphisms
are in general not just a property of but structure on the given morphism.

Example 5.3.106. For V a framed object, def. 5.3.93, canonically regarded as a V -manifold via example
5.3.90, then the given trivialization fr of its frame bundle, def. 5.3.99, induces a canonical G-structure on V
given by the pasting composite:

V //

τV ##

∗

��

// BG

GStruczz
BGL(d)

fr
x�

.

We call this the trivial or flat or framing G-structure and denote it by

gfr : τV −→ GStruc.
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When V is a group object equipped with the canonical left-invariant framing of prop. 5.3.94, then we also
speak of the left-invariant G-structure and write

gLI : τV −→ GStruc.

for emphasis.

Example 5.3.107. Since in geometric homotopy theory G-structures need not be with respect to group
inclusions (remark 5.3.105) there are in general non-trivial ways to have two different structures at the same
time: let G1, G2 be two groups equipped with two group homomorphisms BGi → BGL(V ). Then a pair
consisting of a G1-structure g1 and of a G2-structure g2, according to def. 5.3.104, is equivalently one single
Ĝ-structure, for BĜ the homotopy fiber product in

BĜ

zz %%
BG1

G1Struc $$

BG2

G2Struczz
BGL(V )

u}

,

i.e.
ĜStruc ' G1Struc×G2Struc

with the product taken in the slice ∞-topos H/BGL(V ), prop. 5.1.26.

By def. 5.3.104 a homomorphism between two G-structures on a homotopy of homotopies in H of the
form

X
##

τX $$

// BG

GStruczz
BGL(V )

g1
s{

��

'⇒

X

τX $$

// BG

GStruczz
BGL(V )

g2
s{

.

On the other hand, one may also consider homotopies between the morphisms GStruct : BG → BGL(V )
that encode the local model geometry of the G-structure.

Definition 5.3.108. For V a group and GStruc : BG −→ BGL(V ), then an automorphism of this mor-
phism

BG

GStruc
**

GStruc

44
BGL(V )��

is called a homothety. Given to G-structures g1,g2 : τX → GStruc, def. 5.3.104, then a homothety from g1

to g2 is a homotopy of the form

X

τX $$

// BG

GStrucnn

GStruc

zz
BGL(V )

g1
s{

T\
'⇒

X

τX $$

// BG

GStruczz
BGL(V )

g2
s{

.
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Definition 5.3.109. Let V be a framed object, def. 5.3.93 and let X be a V -manifold, def. 5.3.88. A
G-structure g : τX → GStruc on X as in def. 5.3.104 is called integrable if there exists a V -cover, def.
5.3.88,

U

et
    

et

��
V X

such that the correspondence of frame bundles induced by it via prop. 5.3.101

τU

!!}}
τV τX

extends to a correspondence of G-structures from the canonical one of example 5.3.106 to the given one,
hence to a diagram in H/BGL(V ) of the form

τU

$$zz
τV

gfr $$

τX

gzz
GStruc

'
u}

.

Remark 5.3.110. Hence forgetting the map to BGL(V ), an integrable G-structure is in particular a diagram
of the form

U

et
!! !!

et

}}
V

!!

X

}}
BG

y�

This is an example of an integrable globalization over X, as in def. 5.3.124, of the trivial G-principal bundle
on V .

By restricting the correspondence in def. 5.3.109 to just infinitesimal disks in the atlas, we obtain the
infinitesimal version of integrability:

Definition 5.3.111. Let V be a framed object, def. 5.3.93 and let X be a V -manifold, def. 5.3.88. A
G-structure g : τX → GStruc on X as in def. 5.3.104 is infinitesimally integrable if there exists a V -cover,
def. 5.3.88,

[relU

��
U

et
"" ""

et

||
V X
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such that the correspondence of frame bundles induced by it via prop. 5.3.101, after restriction to the
collection of all infinitesimal disks along the counit of the relative flat modality, def 5.3.58

τ[relU

��
τU

##{{
τV τX

(using, by prop. 5.3.65, that the [rel-counit is formally étale) extends to a correspondence of G-structures
from the canonical one of example 5.3.106 to the given one, hence to a diagram in H/BGL(V ) of the form

τ[relU

$$zz
τV

gfr $$

τX

gzz
GStruc

'
u}

.

Remark 5.3.112. As in previous cases, depending on which order of infinitesimally is encoded by differential
cohesion, def. 5.3.111 gives different orders of infinitesimal integrality. For first-order infinitesimal integrabil-
ity one traditionally also speaks of torsion free G-structure. This however refers to the canonical background
G-structure gfr being globally torsion free, which is hower not generally what is needed in many examples,
in particular it is generically not the case for the left-invariant G-structures of example 5.3.106. A first-order
integrable G-structure relative to a torsion-full local model V might be called “relatively torsion-free”.

The condition in def. 5.3.111 for infinitesimal integrability is intuitively a differential equation imposed
on the collection of all G-structures. The following construction makes this precise with respect to the
formalization of differential equations according to def. 5.3.81.

Definition 5.3.113. Consider a differential cohesive ∞-topos H< ↪→ H such that [rel from def. 5.3.58 has
a right adjoint ]rel as in prop. 5.3.61. For V a framed object in H and X ∈ H a V -manifold, def. 5.3.88
exhibited by a V -cover V oo et U et // // X , and for GStruc : G −→ GL(V ) a group homomorphism into
the general linear group of V , def. 5.3.95, let

φ : [relU −→ X ×
BGL(V )

BG

be the universal morphism induced by the diagram

[relU

�� $$zz
BG

GStruc $$

oo V

τV

��

X

τXzz
BGL(V )

gfr

y�
nv

,

where the homotopy on the right is that from example 5.3.102, restricted along [relU → U , and where the
homotopy on the left is the canonical framing G-structure of example 5.3.106. Write φ̃ for the ([rel a ]rel)-
adjunct of φ.
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Now the differential equation for infinitesimal integrability of G-structure on X is the left vertical com-
posite in

InfIntGStruc(X) //

��

]relU

]relφ̃
��

X ×
BGL(V )

BG //

��

]rel

(
X ×

BGL(V )
BG

)

X

��
=X

where the top is a homotopy pullback square.

The following shows how integrable G-structures serve to solder structure on G-associated fiber bundles
to the infinitesimal disk bundle, def. 5.3.66, of the underlying V -manifold.

Proposition 5.3.114. Given

1. V a framed object, def. 5.3.93;

2. a G-action ρ on V , via prop. 5.1.1;

3. a V -manifold X, def. 5.3.88 with typical infinitesimal disk D := DV ;

4. a linearization, def. 5.3.54, of the G-action ρ to one on D;

then a choice of integrable G-structure on X, def. 5.3.109 (with respect to the group homomorphism G →
Aut(D) induced by the linearized action via remark 5.3.55) serves to turn any parameterized extension, def.
5.1.320, of a function φ : V → A over the associated V -fiber bundle to a parameterized extension of the

linearized restriction φlin : D→ V
φ−→ A over the infinitesimal disk bundle T kX, def. 5.3.66.

Proof. The integrable G-structure gives the lower bottom part of the following diagram. The rest of the

560



diagram is by assumption or by pullback.

A

V

φ
<<

U × V

��

<<

// E

��

// V//G

��
U // // X // BG

~~

U × D

��

==

}}

// T kX

��

//

<<

D//G

��

>>

||

U // // X // BG

||

U × D

��

// T kX

��

// D//GL

��
U // // X // BGL

�

Definition 5.3.115. Let H → G be a homomorphism of differentially cohesive ∞-groups, def. 5.1.150, and
let V be a framed object, def. 5.3.93, such that the induced Klein geometry G/H of example 5.1.297 has
V -manifold structure, def. 5.3.88. As in example 5.3.98 this induces an equivalence of general linear groups
GL(V ) ' GL(g/h).

An (H → G)-Cartan geometry is

1. a V -manifold X, def. 5.3.88,

2. an H-structure on X, via the induced H → GL(g/h) ' GL(V ), def. 5.3.104.

The Cartan geometry is called (infinitesimally) integrable if its H-structure is (infinitesimally) integrable in
the sense of def. 5.3.109

See below in 6.5.8 for the classical concept of Cartan connections.

Example 5.3.116. In the special case that V := G//H carries the structure of a braided ∞-group, def.
5.1.156, such that G ' H o V , def. 5.1.304, then with respect to the canonical V -manifold structure
on V (integrable) (H → G)-Cartan geometry structures are equivalently just (integrable) H-structures on
V -manifolds.

5.3.13 Definite forms

We discuss formalization of the concept of definite forms in the sense in which they traditionally appear for
instance in G2-structure, but pre-quantized to WZW-terms.

Throughout, let G be a braided cohesive ∞-group, def. 5.1.156, equipped with a Hodge filtration, def.
5.2.99, and write BGconn for the corresponding differential coefficient object, def. 5.2.100.
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Definition 5.3.117. Given

1. a G-principal connection ∇F : F −→ BGconn, def. 5.2.101;

2. an F -fiber bundle E → X, def. 5.1.241;

then a definite parameterization of ∇ by E is a G-principal connection on the total space of the fiber bundle

∇E : E −→ BGconn ,

such that the equivariant differential concretification conc//Aut(F ) ◦ σ(∇E), prop. 5.2.107, of the section
σ(∇E) corresponding to ∇E under prop. 5.1.283

[F,BGconn]//Aut(F )

((

conc//Aut(F ) // GConn(F )//Aut(F )

vv
X

σ(∇E)
77

// BAut(F )

is definite, def. 5.1.316, on ∗ `∇
F

−→ [F,BGconn]
conc−→ GConn(X).

Proposition 5.3.118. There is a canonical ∞-functor from definite parameterizations of ∇F over E → X,
def. 5.3.117, to lifts, def. 5.1.305, of the structure group of E (via prop. 5.1.249) through the quantomor-
phism ∞-group extension, def. 5.2.138

BQuantMorph(∇F )

��
X //

g
77

BAut(F )

.

Specifically if the structure ∞-group of E has already been reduced along some G→ HamSympl(∇F ), then
there is a canonical ∞-functor from definite parameterizations to lifts to HeisG(LWZW)-structures

BHeisG(∇F )

��
X //

g
99

BAut(F )

.

In particular for a definite parameterization on E → X to exist it is necessary that E admits a lift to
QuantMorph(∇F )-structure.

Proof. By prop. 5.1.317 and prop. 5.2.140. �

Corollary 5.3.119 (obstruction to definite parameterizations). With E → X and ∇F as in def. 5.3.118,
assume that the structure group of E is reduced along HamSympl(∇F ) ↪→ Aut(F ), def. 5.2.141. Then an
obstruction for a definite parameterization, def. 5.3.117, of ∇F over E → X to exist is the obstruction class
[P∇(E)] of def. 5.2.145.

We now consider definite parmeterizations of WZW terms over infinitesimal disk bundles, which are
induced from WZW terms on the base space.
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Definition 5.3.120. Let V be a framed object, def. 5.3.93 and ∇DV : DV −→ BGconn a G-principal
connection, def. 5.2.101 on its infinitesimal disk, def. 5.3.50. Then for X a V -manifold, def. 5.3.88, a

G-principal connection ∇X : X −→ BGconn on X is a definite globalization of ∇DV over X if its pullback

∇TkX to the infinitesimal disk bundle along the horizontal map in def. 5.3.66

∇T
kX : T kX

ev−→ X
∇X−→ BGconn

is a definite parameterization of ∇DV over T kX in the sense of def. 5.3.117.

Proposition 5.3.121. There is a canonical functor from definite globalizations of ∇ over X, def. 5.3.120,

to QuantMorph(∇DV )-structures on X, i.e. to G-structures on X, def. 5.3.104, for G the quantomorphism

group of ∇DV , def. 5.2.138.

Proof. The defining construction ∇X 7→ ∇TkX is clearly functorial, being given by precomposition.

Then prop. 5.3.118 gives a functor sending the ∇TkX further to StabGL(V )(∇DV )-structures on X. By prop.

5.2.140 these are equivalently QuantMorph(∇DV )-structures. �

Corollary 5.3.122 (obstruction to definite globalization). An obstruction for a definite globalization of ∇DV

over X to exist is the obstruction class

P∇DV (X) := P∇DV (T kX)

of def. 5.2.145.

Proof. By prop. 5.3.121 and corollary 5.3.119. �

Definition 5.3.123. We call a definite globalization as in def. 5.3.120, infinitesimally integrable if the

QuantMorph(∇DV )-structure corresponding to it under prop. 5.3.121 is infinitesimally integrable according
to def. 5.3.111.

So far the obstructions in corollary 5.3.119 and corollary 5.2.145 are such that their vanishing is necessary
but possibly not sufficient for the existence of a definite globalization. This is because, by construction, they
obstruct precisely the existence of the differential concretification of the section corresponding to a global
principal connection, but not necessarily the existence of that section itself, before differential concretifica-
tion. That is to say, when these obstructions vanish then a definite and diffentially concrete section of the
GConn(DV )-fiber bundle associated to the frame bundle is guarateed to exist, but the above results do not
guarantee yet, that this concrete section comes from an un-concrete section obtained by restricting a global
G-principal connection to all infinitesimal disks. We need to refine the obstruction information in order to
guarantee this.

To this end, we now consider fully integrable definite globalization, i.e. such that do not only coincide
with the prescribed prequantum geometry on infinitesimal disks as in def. 5.3.123, but do so on an entire
V -cover, def. 5.3.88.

Definition 5.3.124. Given a V -manifold with V -cover V ← U → X and given a G-principal connection
∇V : V −→ BGconn, def. 5.2.101, an integrable definite globalization of∇V overX is a G-principal connection
on X ∇X : X // BGconn such that there is a homotopy

U

et

## ##
et

{{
V

∇V ##

X

∇X{{
BGconn

'
v~

.
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Remark 5.3.125. The notion in def. 5.3.124 is the pre-quantization, def. 5.2.130, of the integrable global-
ization of just the curvature ωV of the connection:

U

et

$$ $$
et

zz
V

∇V
$$

ωV

##

X

∇X
zz

ωX

zz

BGconn

F(−)

��
Ω2

cl(−,G)

'
u}

.

Example 5.3.126. Given an integrable globalization as in def. 5.3.124, forget the connection and consider
just the maps modulating the underlying G-principal bundles PV → V and PX → X, respectively. Then
base-chaning the correspondence diagram along the point inclusion ∗ → BG and using that both local
diffeomorphisms as well as 1-epimorphisms are stable under pullback, it follows that PX is a PV -manifold.

Definition 5.3.127. Let V be an object equipped with the structure of a differential cohesive group, def.
5.1.150. We say that a G-principal connection, def. 5.2.101 ∇V : V −→ BGconn is equivariant if the left
∞-action of V on itself, def. 5.1.274, is Hamiltonian in that it factors

V // HamSympl(∇V ) // Aut(V )

through the object underlying the Hamiltonian symplectomorphism ∞-group, def. 5.2.141, of ∇V .

Remark 5.3.128. The condition in def. 5.3.127 means that there exists a cover V̂ of V over which the left
V -action on itself factors through the Heisenberg group, def. 5.2.141, of ∇V , hence that we have the dashed
morphism in the following diagram (from the proof of theorem 5.2.143):

V̂

����ss
HeisV (∇V )

��

// // V

��
QuantMorph(∇V )

��

// // HamSympl(∇V )

��

� � // Aut(V )

∇V ◦(−)

��
∗ // //

`∇V

22BΩ∇V (GConn(V )) �
� // GConn(V )

Notice that we do not require the dashed morphism to respect group structure.
For instance for ∇V the canonical prequantum bundle on a symplectic vector space (V, ω), then, by the

discussion in 6.4.21.6, HeisV (∇V ) is the traditional Heisenberg group extension U(1) → Heis(V, ω) → V .
While as a group extension this does not split, as a map of underlying spaces is the trivial U(1)-principal
bundle over V and hence does split and admit a dashed section as above, even with V̂ = V .
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Now the total left part of the diagram says that restricted along V̂ → V the operation V
∇V ◦(−)−→

GConn(V ) of (left-)translating the connection over V is cohesively gauge equivalent to the trivial action,
hence that the translation may be gauged away. This is the refinement of the curvature form ωV being
genuinely left invariant over all of V .

Theorem 5.3.129. Given a differentially cohesive group V , given a V -manifold X, def. 5.3.88, given
an equivariant connection ∇V , def. 5.3.127, then a necessary condition for the existence of an integrable
definite globalization ∇X , of ∇V over X, def. 5.3.124, is the existence of a G-structure on X, def. 5.3.104,
for G = QuantMorph(L∇DV ) the quantomorphism group, def. 5.2.138, of the restriction

∇DV : DV → V
∇V−→ BGconn

of ∇V to the infinitesimal disk, def. 5.3.50, of V , such that moreover this G-structure is integrable, def.
5.3.109, relative to the left-invariant G-structure gLI of V , example 5.3.106.

Proof. Assuming ∇X exists, consider its pullback to the infinitesimal disk bundle via the horizontal map
ev in the defining pullback in def. 5.3.66:

T kX

ev

"" ""

∇T
kX

--

U

et

##
et

{{{{
X

∇X

##

V

∇V{{
BGconn

We now find a necessary conditions for ∇TkX to exist, which is hence also a necessary condition for ∇X to
exist.

First observe that by prop. 5.3.73 the infinitesimal disk bundle of U is both the pullback of that on X
as well as of that on V . By prop. 5.3.94 the latter is canonically trivialized via left translation such that
the map ev restricts over the V -cover to the left action of V on its infinitesimal disk DVe at the neutral
element. This means that the above diagram completes to a pasting composite as shown by solid arrows in
the following diagram.

HeisV (∇V )× DVe

��

�� ��

U × DVe

����
et

zzzz

88

et

**

HeisV (∇V )

�� ��

T kX

ev
����

∇T
kX

00

U

et

++

et

yyyy

88

V × DVe
(−)·(−)

��
X

∇X

%%

V

∇Vss
BGconn

Moreover, by the assumptions in def. 5.3.127 the connection ∇V is locally invariant under left translation,
up to gauge transformation, as discussed in remark 5.3.128, (possibly after further refining the cover U via
the cover V̂ of V , which we suppress notationally) so that we get the dashed lifts in the above diagram.
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By prop. 5.1.317, ∇TkX is equivalently a section σ of the associated [DVe ,BGconn]-fiber bundle, such that
σ is locally on U equivalent to the ((−× DVe ) a [DVe ,−]))-adjunct of

U × DVe
ev|U // U et // V

∇V // BGconn .

Under differential concretification [DVe ,BGconn]→ GConn(DVe ) (def. 5.2.105) this implies, via prop. 5.2.140,
a section σconc of the associated GConn(DVe )-bundle.

But by the above diagram, the section σ is locally equivalently the adjunct of

U × DVe et // V × DVe
(−)·(−)// V

∇V // BGconn ,

which in turn is equivalently the adjunct of

U × DVe // HeisV (∇V )× DVe // V × DVe
(−)·(−)// V

∇V // BGconn ,

and so σconc is of the form

U // HeisV (∇V ) // GConn(DVe ) .

But by the diagram in remark 5.3.128 this means that σconc is locally constant, up to equivalence.

Therefore by prop. 5.1.317 and prop. 5.2.140 the existence of σconc is equivalent to a QuantMorph(∇DV )-
structure (def. 5.3.104) on X.

Finally, to see that this structure is integrable, def. 5.3.109, notice from the proof of prop. 5.1.317 that

this QuantMorph(∇DV )-structure is given by the dashed diagonal lift in

∗

∇V����
U

66

et

����

// BQuantMorph(∇V )� _

��
X σconc //

66

τX ((

(BG)Conn(DV )//GL(V )

��
BGL(V )

.

with the left morphism being formally étale by the above construction. Taking this pasting diagram apart,
it may be viewed as giving a morphism in the double slice (H/BGL(V ))/QuantMorph(∇TkX)Struc

U

et
����
X //

τX ##

BQuantMorph

QuantMorphStrucww
BGl(C)

gqy


−→



U

et
����

// ∗ // BQuantMorph

QuantMorphStruc

}}

X

τX $$
BGL(V )

(gLI)|U

w�


.

Here the codomain, given by the total pasting diagram, exhibits the constancy of the concretified section
σconc as obtained above. This was obtained from left translation over V with respect to the left invariant
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framing, prop. 5.3.94, of V , hence the homotopy shown on the right is that exhibits the left invariant
G-structure gLI of example 5.3.106.

The domain is the structure g that we constructed by way of the section σconc and the dashed lift obtained
from the homotopy which exhibits this section as constant on U relative to the given trivialization of the
frame bundle of U . Finally the morphism itself is the pasting of the diagram for g, pulled back to U , with
the top diagonal rectangular part of the original pasting diagram, yielding the diagram for gLI. Hence this
diagram exhibits the integrability according to def. 5.3.109. �

5.3.14 Generalized geometry

The definition of definite globalizations of principal connections above in 5.3.13 constrains both the curvature
as well as the connection data to be locall equivalent to that of a fixed reference connection. More generally
one may ask only the curvature to be definite, and leave the connection data less constrained, hence allow
more general pre-quantization of a given closed form data. The extra choices involved in such a globalization
turn out to subsume in special case structure that in the literature is known as generalized geometry [Hi11,
Hull07].

Let H be an ∞-topos equipped with differential cohesion. Throughout, let G be a braided cohesive
∞-group in H, def. 5.1.156, equipped with a Hodge filtration, def. 5.2.99, and write BGconn for the
corresponding differential coefficient object, def. 5.2.100.

The following definition accordingly relaxes def. 5.3.120.

Definition 5.3.130. Let

V̂

p

��

∇̂ // BGconn

V

be a group extension p, def. 5.1.302, equipped with a a G-principal ∞-connection ∇̂.
Then for X a V -manifold, def. 5.3.88, a G-principal connection ∇X : X −→ BGconn on X is a p-definite

globalization of ∇DV over X if its pullback ∇TkX to the infinitesimal disk bundle along the horizontal map
in def. 5.3.66

∇T
kX : T kX

ev−→ X
∇X−→ BGconn

is a p-definite parameterization of ∇DV̂ over T kX in that for the corresponding section

X //

τX ##

GConn(DV )/GL(V )

vv
BGL(V )
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there exists a cover U // // X , a map ĝ : U −→ ΓDV (DV̂ ) and a homotopy filling the following diagram

U
ĝ //

��

ΓDV (DV̂ )/GL(V )

'
��

(ΓDV (DV̂ )× ∗)/GL(V )

(id,∇̂DV̂ )/GL(V )
��

(ΓDV (DV̂ )×GConn(DV̂ ))/GL(V )

ev

��
X //

τX ##

GConn(DV )/GL(V )

tt
BGL(V )

y�

.

One choice of such data we say is a (p, ∇̂)-generalized geometry on X.

5.3.15 Isometries

Definition 5.3.131. Let X be a V -manifold, def. 5.3.88, equipped with a G-structure (τX
g→ GStruc) ∈

(H/BGL(V ))/GStruc, def. 5.3.104 and assume that the frame bundle functor τ(−) of X is internalizable,
according to remark 5.3.103 . Then a G-isometry of (X,g) is an automorphism of g in (HBGL(V ))GStruc,

that extends an automorphism φ : X
φ−→ X of X under the functor τ(−) of def. 5.3.101, hence is a diagram

in H/BGL(V ) of the form

τX '
τφ //

$$

τX

zz
GStruc

's{ .

The cohesive ∞-group of isometries of (X,g) is the homotopy fiber product Iso(X,g) of ∞-groups in

Iso(X,g) //

p

��

AutH(g)∏
BGL(V )

pGStruc

��
Aut(X)

τ(−) // AutH(τX)

where Aut(X) is the automorphism ∞-group of X ∈ H according to def. 5.1.155, while AutH(−) denotes
the H-valued slice automorphism group construction of def. 5.1.35, and where the right vertical morphism
is the image under base change, prop. 5.1.28, of the morphism pGStruc from def. 5.1.38.

Proposition 5.3.132. The isometry group Iso(X,g) of def. 5.3.131 sits in a homotopy fiber sequence of
the form

Ωg[τX , GStruc]H −→ Iso(X,g)
p−→ Aut(X) ,

where [τX , GStruc]H is the H-valued slice hom of def. 5.1.34, and where Ωg(...) forms its loop space object,
def. 5.1.148, based at the given map g.
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Proof. Unwinding definitions, the homotopy fiber in questions is given by the following pasting composite
of homotopy pullbacks:∏

BGL(V )

Ωg

(
[τX , GStruc]/BGL(V )

)
//

��

Iso(X,g) //

��

∏
BGL(V )

∏
GStruc

Aut(g)

∏
BGL(V )

pGStruc

��
∗ //

'

��

Aut(X) // ∏
BGL(V )

Aut(τX)

∏
BGL(V )

{idX}//GL(V ) ∏
BGL(V )

(`idX)
// ∏
BGL(V )

Aut(τX)

This identifies the homotopy fiber in the top left as indicated by applying prop. 5.1.41 to the outermost
diagram with the base change removed

∏
BGL(V )

, and then using that applying the base change preserves

homotopy pullbacks. Since in particular it preserves looping, we get

∏
BGL(V )

Ωg

(
[τX , GStruc]/BGL(V )

)
' Ωg

 ∏
BGL(V )

[τX , GStruc]/BGL(V )


= Ωg[τX , GStruc]H .

�

5.3.16 BPS Currents

In the context of supergravity, central extensions of super-isometry algebras Iso(X,g) of super-spacetimes
(X,g) induced by super p-branes are called BPS charges. By our discussion in 1.4.4.3 these extensions are
equivalently the quantomorphism/Heisenberg group extensions

HeisIso(X,g)(L
X
WZW)

��
Iso(X,g)

arising by asking the isometries to act as symmetries also of the WZW terms LXWZW : X −→ BGconn of the
respective super p-brane sigma-models with target space X. This concept of extension of isometry groups by
symmetries of WZW terms makes sense generally, and for lack of an established term for the more general
concept we here generally refer to these extensions as BPS charges.

Or rather, so far this concept captures BPS charges of super p-brane sigma models that carry no gauge
fields on their worldvolume (no “higher tensor multiplet fields”) such as the M2-brane but not the M5-
brane. But we find in 8.1.2, following [FSS13b], that the latter are given by WZW terms not on the original

spacetime X, but on the extension
˜̂
X of that classified by a homotopy fiber of the previous WZW term,

yielding a stage in a globalized brane bouquet [FSS13b] of the form

˜̂
X

��

L
˜̂
X
WZW // B(G2)conn

X
LXWZW

// B(G1)conn
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Since the isometries of (X,g) canonically act also on the extension
˜̂
X, in this situation one is to ask for

them to act as symmetries of both these WZW terms. Applied to supergravity this yields the BPS charge
extensions including charges for branes with tensor multiplet fields, hence we will more generally refer to
these extensions of isometry groups by symmetries of two or more consecutive WZW terms as BPS charge
extensions.

When the G-principal connection ∇ in def. 5.3.120 is a WZW term, 5.2.15, then its domain Ṽ carries
the structure of a differential refinement of a group and this group structure is reflected in the WZW term,
in that the WZW term is a differential refinement of a group cocycle. Hence in this case it is natural to
require that a definite globalization, def. 5.3.120, of the WZW term over a V -manifold respects this extra
group structure.

Definition 5.3.133. Given a group cocycle c : BV −→ B2G, def. 5.1.285, on a 0-truncated group V
(def. 5.1.47) with compatible Hodge filtration, def. 5.2.120 such that Ṽ ' V , def. 5.2.120, then a definite
globalization of the WZW term LWZW : V −→ BGconn, which is induced by this data via prop. 5.2.122, over
a V -manifold X, def. 5.3.88, is

1. an AutGrp(DV )-structure g, def. 5.3.104, on X (with respect to the canonical forgetful morphism
AutGrp(DV )→ Aut(DV ) from example 5.1.296);

2. a V -cover V Uetoo et // // X lifted to a correspondence between the underlying G-principal bundle

V̂ → V , modulated by Ωc ' χ(LWZW), of the WZW term and the underlying bundle χ(LXWZW) of its
globalization

U

et

}}
et
!! !!

V

χ(LWZW) !!

X

χ(LXWZW)}}
BG

'
y�

3. a definite globalization LXWZW : X → BGconn, relative to the above V -cover, of LWZW over X as a
G-principal connection via def. 5.3.120.

such that

• the HeisAutGrp(DV )(L
DV
WZW)-structure resulting from this via prop. 5.3.121, example 5.3.107 and def.

5.2.141 is infinitesimally integrable, def. 5.3.109.

The restriction of the quantomorphism group QuantMorph(LXWZW), def. 5.2.138, of such a definitely
globalized WZW term to the isometry group Iso(X,g), def. 5.3.131, hence by def. 5.2.141 the Heisenberg
group extension

HeisIso(X,g)(L
X
WZW)

��
Iso(X,g)

we call the group of BPS charges of (X,g,LXWZW ) and write for short

Iso(X,g,LXWZW) := HeisIso(X,g)(LWZW) .

Remark 5.3.134. In applications V is typically geometrically contractible,
∫
V ' ∗, and G is such that the

class of G-principal bundles on V is detected by the underlying map to BG :=
∫

BG. In this case V̂ → V is
trivial as a G-principal bundle (but not necessarily as a group extension) so that in this case the condition
on the cover in def. 5.3.133 reduces to saying that U → X is a trivializing cover for χ(LXWZW).
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Remark 5.3.135. By prop. 5.3.121 the definite globalization of LWZW demanded in the third item of

def. 5.3.133 already induces a QuantMorphGL(V )(L
DV
WZW)-structure on the V -manifold X. As in example

5.3.107 this implies that the choice of AutGrp(DV )-structure demanded in the first item is equivalently a

choice of HeisAutGrp(DV )(L
DV
WZW)-structure on the V -manifold X.

Proposition 5.3.136. Given a definite globalization of a WZW term over a V -manifold X as in def.
5.3.133, write X̂ → X for the total space of the G-principal bundle underlying the globalized WZW regared
as a G-principal connection. Then X̂ is a V̂ -manifold, def. 5.3.88.

Proof. Since 1-epimorphisms are preserved by pullback, by prop. 5.1.69, as are local diffeomorphisms,
by prop. 5.3.24, the base change pt∗, prop. 5.1.28, of the correspondence

U

et

}}
et
!! !!

V

χ(LWZW) !!

X

χ(LXWZW)}}
BG

'
y�

along the canonical point inclusion pt : ∗ → BG is, using theorem 5.1.207, of the form

pt∗U

et

}}
et
!! !!

V̂

""

X̂

||
∗

'
y�

and hence exhibits pt∗U as a V̂ -cover of X̂. �

In view of this fact that each definite globalization of a WZW term induces an extension X̂ → X of
the base geometry, more generally we consider a tower of two (or more) compatible WZW terms, one on
each stage of the extension. In order to generalize def. 5.3.133 to this case, first consider the following
construction.

Definition 5.3.137. Given

1. a group V , def. 5.1.150, which is 0-truncated, def. 5.1.47,

2. a group cocycle c1, def. 5.1.285 on V and a further cocycle c2 on the group extension V̂ → V , def.
5.1.302, that c1 classifies

BV̂

��

c2 // B2G2

BV
c1 // B2G1

,

3. corresponding refinements of Hodge filtrations, def. 5.2.120, such that Ṽ ' V ,
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4. with compatibility, def. 5.2.124, such that, by prop. 5.2.125, the WZW term on V , by prop. 5.2.122,
sits in a homotopy fiber product of the form

˜̂
V //

��

Ω1(−,G1)

ι

��
V

LWZW // B(G1)conn

5. a V -manifold X, def. 5.3.88,

6. a definite globalization (X,g,LXWZW) of LWZW over X, according to def. 5.3.133,

then we write
˜̂
X → X for the corresponding differentially twisted extension of X, being the homotopy

pullback in ˜̂
X //

��

Ω1(−,G1)

ι

��
X

LXWZW // B(G1)conn

.

Remark 5.3.138. In the terminology of [SSS09c] the object
˜̂
X in def. 5.3.137 is the modui stack of

Ω1(−,G1)-twisted differential LWZW-structures on X, see also 7.1.1.

Proposition 5.3.139. For all global points ∗ → ˜̂
X in the differential extension of the base space in def.

5.3.137, the infinitesimal disk around that point, def. 5.3.50, is equivalent to the infinitesimal disk over the

neutral element in the differential extension
˜̂
V of the model space V associated via prop. 5.2.125

Proof. By the characterization of prop. 5.2.125 of
˜̂
V as a homotopy pullback and by the fact that

both Ω1(−,G1) as well as B(G1)conn are connected and hence have an essentially unique global point (by
the nature of BG1, of [dRBG1 and by the condition that the objects of forms are connected) there is an

essentially unique global point in
˜̂
X over each global point of X. By the commutativity of homotopy limits

over each other, the infinitesimal disk around that point is the homotopy limit over the diagram

X

��

LXWZW // B(G1)conn

��

Ω1(−,G1)

��

oo

=X
=LXWZW// =B(G1)conn =Ω1(−,G1)oo

∗ //

x

OO

∗

OO

∗

OO

oo

Now since X is a V -manifold, by prop. 5.3.97 the homotopy limit over the left vertical cospan is equivalently
the infinitesimal disk DXx ' DVe in V . Finally, by the condition that LXWZW is definite on LWZW, def.
5.3.120, its precomposition with the inclusion of this infinitesimal disk is equivalent to the precomposition of
LWZW : V → B(G1)conn with this infinitesimal disk. Therefore the homotopy limit over the above diagram
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is equivalently that over the diagram

V

��

LWZW // B(G1)conn

��

Ω1(−,G1)

��

oo

=V =LWZW// =B(G1)conn =Ω1(−,G1)oo

∗ //

e

OO

∗

OO

∗

OO

oo

and this gives the infinitesimal disk over the neutral element in
˜̂
V . �

Proposition 5.3.140. In the situation of def. 5.2.122 assume that the differential concretification mor-
phism [X,B(G1)conn] → G1Conn(X) of def. 5.2.105 admits a section. Then there is a canonical action of

Isom(X,g,LXWZW) on X which lifts to an action on
˜̂
X.

Proof. Unwinding the definitions and by the assumption of the section, the BPS charge group acts on X
via AutB(G1)conn

(X) as in example 5.1.294. The statement then follows from using the homotopy pullback
in the last item of def. 5.3.137 in the construction of example 5.1.295. �
With this we get the following extended variant of def. 5.3.133:

Definition 5.3.141. In the situation of def. 5.3.137 and prop. 5.3.140, consider in addition a globalization

L
˜̂
X
WZW also of the second WZW term LṼWZW over the extension

˜̂
X → X

˜̂
X

��

L
˜̂
X
WZW // B(G2)conn

X
LXWZW

// B(G1)conn

,

which makes sense by prop.5.3.139. Then the BPS charge group of this situation is the Heisenberg group,

def. 5.2.141, of the second WZW term L
˜̂
X
WZW on the extended base space modulated by the first WZW,

with respect to the isometries of base space, def. 5.3.131, acting on the extended space via prop. 5.3.140

Iso(X,g,LXWZW,L
˜̂
X
WZW) := HeisIso(X,g)(L

˜̂
X
WZW) .

Example 5.3.142. For H = SuperFormalSmooth∞Grpd the supergeometric ∞-topos constructed in 6.6
and for V = R10,1|32 the 11-dimensional super-Minkowski spacetime discussed in 8.1.1, then by applying
prop. 6.4.168 to the Lie algebraic data discussed in 8.1.2 there is a compatible pair of WZW terms which are
the topologically nontrivial pieces of the action functionals for the M2-brane and the M5-brane sigma-model
(see 1.4.4).
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5.4 ⇒ a a Rh – Structures in solid substance

We discuss a list of structures that may be formulated in a solid ∞-topos, def. 4.3.1.

• 5.4.1 – A0|1-Homotopy theory;

• 5.4.2 – Manifolds

5.4.1 A0|1-Homotopy theory

In a solid ∞-topos there is the following fermionic analog of a continuum as axiomatized, def. 5.2.48, in a
cohesive ∞-topos.

Definition 5.4.1. For H a solid ∞-topos, def. 4.3.1, with bosonic modality  , then we say that an object
A0|1 ∈ H exhibits the solidity of H or is an odd continuum if the A0|1 localization of H (hence the localization
at a set of morphisms {(A0|1 → ∗)× c}c for c running over a set of generators of H) is equivalent to Rh.

5.4.2 Manifolds

We discuss aspects of the theory of manifolds, 5.3.88, that exists in every elastic ∞-topos H in the special
case that H is actually solid.

Lemma 5.4.2. In a solid ∞-topos H, the image under  of the =-unit on some object X ∈ H is naturally

equivalent to the =-unit on
 
X.

Proof. The image under  of the =-unit on some X ∈ H is the component of the following natural
transformation

∗ X //

 
X

))
H

id
++

Πe

!!

H Πe
// H 

� � // H

H 

Πinf

""

Id ))
H 
. �

Disce

==

id

@@

H<
- 


Discinf

<<

��

��

where unlabeled 2-cells are canonical equivalences and where the unlabeled inclusion in the top right is the
other inclusion, not Disce. Now the zig-zag identity of the (Πe a Disce)-adjunction cancels out the pasting
composite of the two 2-cells in the middle of the diagram, identifying the two 1-morphisms labeled Πe. This
serves to move the bottom 2-cell to the right to make the above diagram equivalent to

∗ X //

 
X

))
H Πe

// H 
id ))

Πe

""

H 
� � // H

H<

Disce

<<

��
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which in turn is equivalent to

∗ X //

 
X

%%
H Πe

// H 
� �
Disce

// H Πe
//

id ((

Πe

��

H 
� � // H

H<

Disce

<<

��

by idempotency ΠeDisce ' id. Now we use again the zig-zag identity to re-introduce the two 2-cells which

we removed at the beginning, only that now they act on
 
X. It is then the strong Aufhebung condition on a

solid ∞-topos which says that in the resulting diagram

∗
 
X // H

id
++

Πe

!!

H Πe
// H 

� � // H

H 

Πinf

""

Id ))
H 
. �

Disce

==

H<
- 


Discinf

<<

��

��

we may cancel the two 1-morphisms on the right. �

Proposition 5.4.3. For f : X et // Y a local diffeomorphism, def. 5.3.19, then also its bosonic part is a

local diffeomorphis
 
f :

 
X et //

 
Y .

Proof. By definition the =-unit of f makes a homotopy pullback diagram

X

f

��

// =X

=f
��

Y // =Y

.

Applying  to this diagram, using that  , being a right adjoint, preserves homotopy pullbacks, using that
 = ' = by the Aufhebung required in solidity and that =  = anyway, yields a homotopy pullback
diagram of the form

 
X

f
��

// =
 
X

=
 
f��

 
Y // =

 
Y

.

By lemma 5.4.2 this is indeed the naturality square of the =-unit on
 
f . �

As a corollary we get:

Proposition 5.4.4. Given a V -manifold X, def. 5.3.88 in a solid ∞-topos H, then its bosonic part
 
X is a

 
V -manifold.

Proof. Let V Uetoo et // // X be a V -cover. Since  , being both a left and a right adjoint, preserves
∞-limits and ∞-colimits, it preserves the property of the right morphism being a 1-epimorphism, by prop.
5.1.70. By prop. 5.4.3  also preserves the property of both morphisms being local diffeomorphisms, hence
 
V

 
Uetoo et // //

 
X is a

 
V -cover.
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5.5
∑
a( )∗ a

∏
– Structures in actual substance

Here we discuss a list of structures that may be realized within (i.e. using the axiomatics of) linear homotopy-
type theory as defined above in 3.2.

• 5.5.1 – Dependent linear De Morgan duality

• 5.5.2 – Primary integral transforms

• 5.5.3 – Exponential modality, Linear spaces of states and Fock space

• 5.5.4 – Fundamental classes and measures

• 5.5.5 – Secondary integral transforms and Path integrals

• 5.5.6 – Quantum operations

• 5.5.7 – Quantum states

• 5.5.8 – Anomaly cancellation of the path integral measure

5.5.1 Dependent linear De Morgan duality

In general linear logic there is no notion of negation, but its role is played by duality. Just as negation
intertwines ordinary logical conjunction and disjunction, a basic fact called de Morgan duality, so duality
in linear logic intertwines linear dependent sum with linear dependent product. This is prop. 5.5.3 below.
Since it is useful to freely pass back and forth along this linear de Morgan duality, we here collect some basic
constructions and facts.

Definition 5.5.1. For (C,⊗, [−,−], 1) a closed symmetric monoidal category, write

D := [−, 1] : Cop −→ C

for the weak dualization functor.

Remark 5.5.2. As usual, we say an object X ∈ C is dualizable if it has a (“strong”) dual with respect to
the tensor product ⊗, and we say X is invertible if the unit and counit of the duality map are equivalences.
Generally DX is usually called the weak dual of X. There is a canonical natural morphism

X −→ DDX

which exhibits the unit of the modality (monad) D2(−), also called the continuation monad [Mel08].

Proposition 5.5.3. For f a Wirthmüller morphism, def. 3.2.1, the left and right adjoints are intertwined
by weak duality in that there is a natural equivalence

f∗ ◦ D ' D ◦ f! .

hence ∏
f

◦D ' D ◦
∑
f

.

This is a special case of a more general consequence of the axioms of Wirthmüller morphisms which
appears in [May05] as prop. 2.8, prop. 2.11. (In fact the “sixth operation”, the internal hom [−,−], for us
here only ever appears in its specialization to weak duality D = [−, 1].)

Remark 5.5.4. Prop. 5.5.3 is an incarnation of de Morgan duality in linear logic. This involves in particular
that if A ∈ D is dualizable, then the (f∗ a f∗)-unit ηf∗ on A is the dual of the (f! a f∗)-counit εf! on the
dual of A.

ηf∗A ' D(εf!

DA) .
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5.5.2 Primary integral transforms

A central notion in type-semantics is the following:

Definition 5.5.5. Given a model of linear homotopy-type theory Mod→ H, def. 3.2.5, then a multivariate
polynomial functor P : Mod(X1)→ Mod(X2) is a functor of the form

P '
∑
f2

∏
g

f∗1

for a given diagram in H the form

Y
f1

~~

g // Z
f2

  
X1 X2

.

If here g ' id, hence if the diagram is a correspondence

Z
f1

~~

f2

  
X1 X2

,

then its polynomial functor
∑
f2

f∗1 is called a linear polynomial endofunctor.

Remark 5.5.6. In the existing type-theoretic literature the focus is on polynomial endofunctors, since the
initial algebras over such endofunctors embody a useful notion of inductive types (“W-types”). Polynomial
endofunctors in non-linear homotopy-type theory have been considered in [Ko12, vdBMo13].

Remark 5.5.7. In the existing representation-theoretic literature, linear polynomial functors are known as
categorified integral transforms, as for instance in “Fourier-Mukai transform”, “Penrose transform”, “Harish-
Chandra transform”, see e.g. [?, ?]. Here we will call these primary integral transforms for emphasis, since
below in 5.5.5 our focus is on another concept of “secondary” integral transform that will turn out to be
“boundaries” for the primary transforms.

Categorified integral transforms are often understood to have as correspondence space the product space
(fiber-product in the relative case) and given there not just by pull-push but by pull-tensor-push. This
relates to the above via the following basic fact (see for instance also p. 10 of [?]).

Proposition 5.5.8. Given a correspondence and its universal factorization through the product-space cor-
respondence

Z

f1

��

f2

��

(f1,f2)

��
X1 ×X2

p1

zz
p2

$$
X1 X2
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then pull-push through the given correspondence is equivalent pull-tensor-push through the product-correspondence,
for integral kernel given by K :=

∑
(f1,f2)

1Z :

∑
f2

◦ f∗1 '
∑
p2

◦ (K ⊗ (−)) ◦ p∗1 .

Proof. By Frobenius reciprocity, def. 3.2.2:

(f2)!(f1)∗A ' (p2)!(f1, f2)!(f1, f2)∗p∗1A

' (p2)!(f1, f2)!(((f1, f2)∗(p∗1A))⊗ 1Z)

' (p2)!(p
∗
1A⊗ ((f1, f2)!1Z))

=: (p2)!(p
∗
1A⊗K) .

�
The terminology “polynomial functor” in def. 5.5.5 is motivated from the following basic example.

Example 5.5.9. Consider H the topos of sets and Set∆1 cod−→ Set the associated dependent type structure.
If we think of finite sets under their cardinality as representing natural numbers, then a polynomial functor
with X ' ∗ the singleton acts indeed as a polynomial function under cardinality, summing up powers as
given by the cardinalities of the fibers of g. In the other extreme, for general X but with g = id then a
polynomial functor is analogously given by multiplication by a matrix with entries in natural numbers.

Similarly for Vect(−) → Set the linear type theory of vector spaces over sets, example 6.2.30, then for
finite dimensional vector spaces over finite sets, a polynomial functor acts as a polynomial function on the
dimensions of these vector spaces.

Remark 5.5.10. Example 5.5.9 shows that the concept of polynomial functor is a categorification of that
of polynomial function, hence a kind of “higher dimensional” polynomial function.

In parallel to this, below in 5.5.8 we find that linear polynomial functors in linear homotopy-type theory
constitute the propagators of (d+ 1)-dimensional topological quantum field theories between “categorified”
spaces of states, and that they encode (the quantum anomaly cancellation of) d-dimensional topological
quantum field theories with propagators acting between uncategorified spaces of states.

5.5.3 Exponential modality, Linear spaces of states and Fock space

The secondary integral transforms that we discuss below in 5.5.5 act on what in the typical model of linear
homotopy-type theory are linear spaces of sections of bundles of modules. In the application to quantization
these are going to be thought of as spaces of quantum states. Here we discuss how the concept of forming
spaces of sections is naturally captured by the exponential modality of linear logic, lifted to linear homotopy-
type theory.

The full set of axioms for linear logic as introduced in [Gir87] contains – on top of the “multiplicative
fragment” discussed above in 3.2 which is interpreted in (∗-autonomous/closed) symmetric monoidal cate-
gories – a co-modality (def. 2.2.1) denoted “!” and called the exponential modality. The axioms on ! are
roughly meant to be such that if A is a linear type, then !A is the linear type obtained from it by univer-
sally equipping it with properties of a non-linear type. More precisely, by the general categorical semantics
of (co-)modalities recalled above in def. 2.2.1, the exponential co-modality is to be interpreted as a some
co-monad on the type system [BBHdP92], and the axioms on ! are such as to make its co-Kleisli category of
co-free co-algebras be cartesian monoidal [See89] (see around prop. 17 of [Bi95] for more discussion).

Based on this in [Be95, Bi95] it is observed that generally the exponential modality is naturally interpreted
as a comonad induced specifically from a strong monoidal adjunction between the given symmetric monoidal
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category Mod(∗) of linear types and some given cartesian closed monoidal category H (representing a non-
linear type system):

(L a R) : Mod(∗)⊗ oo
L

R
// H× ! := L ◦R .

(If only a strong monoidal functor L like this exists without necessarily a strong monoidal right adjoint, then
[Bar97] speaks of the “structural fragment” of linear logic.)

Finally in [PoSh12] (4.3) it is observed that if Mod(∗) here is the fiber over the point of a linear type
system Mod dependent over H, then, as our notation already suggests, there is a canonical choice for L
induced from the dependent type structure, namely the map that sends Y ∈ H to the Y -dependent sum of
the unit linear type 1Y ∈ Mod(Y ):

L : Y 7→
∑
Y

1Y .

(On morphisms this L is given by the adjunction counit, we see this below in example 5.5.29 as a special case
of the general secondary integral transform formula). More generally, the dependent linear homotopy-type
theory induces for each X ∈ H a functor

LX : H/X −→ Mod(X)

given by summing the unit linear type along the fibers of f :

LX : (Y
f→ X) 7→

∑
f

1Y .

In this dependent form one recognizes this as the linear version of the operation considered in section 2
(p. 12) of [Law70b]. There the condition that these functors have right adjoints RX is found to be the
categorical semantics of the foundational axiom of comprehension (axiom of separation). Therefore one may
say that dependent linear type theory carries a canonical !-modality precisely if it satisfies the linear version
of the comprehension axiom. Since the comprehension axiom in foundations is typically taken for granted,
this shows that the existence of the exponential modality is a rather fundamental phenomenon.

In [BPS94] it had been found that in familiar models of (multiplicative) linear type theory such as in the
category of vector spaces, the exponential sends a vector space to its Fock space, the vector space underlying
the free symmetric algebra on the given space. This construction is manifestly a categorified exponential.
Now in the simplistic 1-categorical model given by vector spaces over sets, example 6.2.30, the left adjoint
L =

∑
1(−) canonically induced as above from the dependent type structure sends a set to the vector space

it spans, R sends a vector space to its underlying set of vectors, and ! = L ◦ R hence sends a vector space
not quite to its Fock space, but to the space freely spanned by all the original vectors. (Another adjunction
for vector spaces that does make ! produce exactly the Fock space is discussed in [Vi07].)

More interestingly;

Example 5.5.11. In the genuinely homotopy-theoretic model of linear homotopy-type theory given by E-
module spectra over∞-groupoids, example 6.2.28, then L = E∧Σ∞+ sends a homotopy-type to its suspension
spectrum, and R = Ω∞ sends a spectrum to its underlying infinite-loop space.

There is a deep sense in which stable homotopy theory is analogous to linear algebra, namely Goodwillie’s
calculus of functors (see section 7 of [L-Alg]), and it has been argued in [?] that from this point of view at
least Ω∞ ◦ Σ∞+ is indeed the analogue of the exponential function.26

In conclusion we find that the exponential modality ! in linear type theory, when implemented in linear
homotopy-type theory naturally decomposes into an adjunction who left adjoint is the process of forming
spaces of sections, hence quantum states (and whose induced comonad encodes free second quantization).

26 I am grateful to Mike Shulman and to David Corfield for highlighting this point and in fact for driving it home with some
patience.
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Below in 5.5.5 we find that the process of quantization of an action functional exp( i~S) subject to a
consistent (anomaly free) choice of path integral measure dµ is given by a twisted variant of the canonical
left adjoint L as above: we find there that a choice of action functional comes with a choice of an assignment
of invertible linear homotopy-types AX ∈ Mod(X) (thought of as “dual prequantum line bundles”) to
homotopy-types X ∈ H, and the quantization process sends these to their space of dual sections:

X 7→ AX 7→
∑
X

AX ∈ Mod(∗) .

For later reference we note at this point that

Remark 5.5.12. If we think of AX as a linear bundle over X (via example 6.5.61) then its X-dependent
product is to be thought of as its linear space of sections

ΓX(A) :=
∏
X

A .

If A here is dualizable with dual L := DA, then by dependent linear de Morgan duality, prop. 5.5.3 this is
equivalently the linear dual

ΓX(L) ' D
∑
X

L .

In the standard models of linear homotopy-type theory such as that of definition 6.2.28, the dependent sum∑
X

L has the interpretation of the compactly supported sections of L (this is of course the default interpretation

of
∑

in the traditional yoga of six functors, see the citations in [May05]). Therefore the linear dual D
∑
X

L is

interpreted as the space of distributional sections. In a general Verdier-Grothendieck context of six functors
these may be different from the genuine sections (of the dual bundle), but here in the Wirthmüller context
they coincide.

In the terminology of [Law86] the type of states
∏
X

L would be “intensive”, while
∑
X

L would be “extensive”.

We now turn to the definition of fundamental classes that allow to integrate such sections against a
measure and then we use this to define secondary integral transforms acting on spaces of sections.

5.5.4 Fundamental classes and Measures

We discuss here how to axiomatize basic measure theory in dependent homotopy-type theory, such as to
define integrals of sections of linear types (remark 5.5.12) along maps of contexts that are equipped with a
measure. In terms of linear logic and linear type theory the construction here is a variant and generalization
of the duality structure reflected by the orthocomplementarity in the original BvN quantum logic [BvN36]
and more generally in “dagger-structure” in linear type theory. We postpone discussion of this to 5.5.6. Let
throughout

Mod(−)

��
H

be a model for linear homotopy-type theory, def. 3.2.5.

Definition 5.5.13. A fiberwise twisted fundamental class on a morphism f : X −→ Y in H is (if it exists)
a choice of dualizable object τ ∈ Mod(Y ) (the twist) such that f!f

∗Dτ is dualizable, together with a choice
of equivalence of the form

f!f
∗(1Y )

'−→ D(f!f
∗(Dτ)) ' f∗f∗(τ) .
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Remark 5.5.14. This is a specialization of the assumption in (4.3) of [May05]. There it is emphasized that
for many constructions the assumption that f!f

∗1X be dualizable is, while typically verified in applications,
not necessary. However, it is necessary for the definition of secondary integral transforms in def. 5.5.28
below, and therefore we do require it.

Remark 5.5.15. If here Y ' ∗ is the terminal object, so that f : X → ∗ is the essentially unique terminal
morphism, then we usually denote a fundamental class on this morphism by [X].

Proposition 5.5.16 (Wirthmüller isomorphism). Given a fiberwise fundamental class, def. 5.5.13, on a
morphism f : X → Y , then for dualizable A ∈ Mod(Y ) there is a canonical natural equivalence

f∗f
∗DA ' D(f!f

∗A)
'−→ f!f

∗((DA)⊗ (Dτ))

and hence a canonical natural transformation

f!f
∗A −→ D(f!f

∗((DA)⊗ (Dτ))) ' f∗f∗D((DA)⊗ (Dτ)))

which is an equivalence if f!f
∗A is dualizable.

Proof. The canonical map itself is the composite

f∗f
∗DA

'
��

(f∗f
∗DA)⊗ (D1Y ) // (f∗f∗DA)⊗ (Df!f

∗1Y )

'
��

(f∗f
∗DA)⊗ (f!f

∗Dτ)

'
��

f!((f
∗f∗f

∗DA)⊗ (f∗Dτ)) // f!((f
∗DA)⊗ (f∗Dτ))

'
��

f!f
∗(DA⊗ Dτ)

,

where the first is the unit equivalence for 1Y ' D1Y , the second is tensoring with the dual of the (f! a f∗)-
counit, the third is tensoring with the dual of the defining equivalence of a fundamental class, the fourth is
the projection formula of Frobenius reciprocity, def. 3.2.2, the fifth comes from the (f∗ a f∗)-counit and the
last one finally is the strong monoidalness of f∗.

That this total composite is an equivalence is prop. 4.13 in [May05], specialised to twists of the form as
in def. 5.5.13, following remark 5.5.14. �

Remark 5.5.17. If the twist in prop. 5.5.16 vanishes (is the tensor unit) then a Wirthmüller isomorphism
means that f! coincides with f∗ on objects in the image of f∗. Since f! is the left adjoint and f∗ the right
adjoint of f∗, this means that in this situation f∗ has a two-sided adjoint, hence an “ambidextrous” adjoint.
The condition f! ' f∗ together with a further coherence condition is called “ambidexterity” in Construction
4.1.8 of [HoLu14].

The central construction obtained from a Wirthmüller-type six-operations context that we need below is
now the following.27 Let f : X −→ Y be a morphism of contexts in a linear homotopy-type theory with
associated base change Wirthmüller morphism (f! a f∗ a f∗) = (

∑
X a f∗ a

∏
X), def. 3.2.1,

27While this text was being composed, essentially def. 5.5.18 for the special case of vanishing twist and in the specific model
of ∞-module bundles over homotopy types appeared as Construction 4.0.7 and Notation 4.1.6 of [HoLu14].
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Definition 5.5.18. Given a fiberwise fundamental class, def. 5.5.13, on f and given A ∈ Mod(Y ) a
dualizable object such that also f!f

∗A is dualizable, write

[f ] : (−)⊗ τ −→ f!f
∗(−)

for the natural transformation given as the composite

[f ]A : A⊗ τ
D(εD(A⊗τ)) // Df!f

∗(D(A⊗ τ))
' // f!f

∗A ,

where the first morphism is the dual of the (f! a f∗)-counit on D(A ⊗ τ), and where the second morphism
is the equivalence of prop. 5.5.16.

We will usually also refer to [f ] as the fundamental class, whence the notation.
The dual of the Y -dependent sum of the fundamental class we call the induced measure on f and write

dµf (A) := D

(∑
Y

[f ]A

)
: D

(∑
Y

f!f
∗A

)
−→ D

(∑
Y

A⊗ τ

)
.

Remark 5.5.19. By remark 5.5.4 the fundamental class in def. 5.5.18 is equivalently the composite

[f ]A : A⊗ τ
ηA⊗τ // f∗f∗(A⊗ τ)

' // f!f
∗A .

In this form the fundamental class here is manifestly related to what appears in remark 4.1.7 of [HoLu14].

Remark 5.5.20. The fundamental class morphism in def. 5.5.18 is reverse to the (f! a f∗)-counit. We may
think of it as the “Umkehr map” of the counit and find in the following that this naturally induces Umkehr
maps for other morphisms.

Remark 5.5.21. A measure on a map f : X → Y in def. 5.5.18 is to be thought of as a Y -parameterized
collection of measures on all of the (homotopy-)fibers of the map. This is explicitly so in the internal linear
logic, in which the fundamental class reads

y : Y, A(y) : Type ` [f ](y) : A(y)⊗ τ(y)→
∑

x∈f−1(y)

A(f(x)) .

Externally this fiberwise property is directly visible in the model of dependent homotopy type theory given
by bundles of spectra over ∞-groupoids, this is prop. 4.3.5 in [HoLu14].

5.5.5 Secondary integral transforms

We discuss now how a correspondence of contexts in linear homotopy-type theory which is equipped with a
fiberwise fundamental class on its right leg and with a linear map between linear homotopy-types pulled back
to its corrrespondence space (a secondary integral kernel) naturally induces a secondary integral transform.

Examples include ordinary matrices in linear algebra, example 6.2.30, pull-push in twisted generalized co-
homology by twisted Pontryagin-Thom Umkehr maps, example 6.2.31 and in particular the “ambidexterity”
in stable homotopy theory of [HoLu14], example 6.2.32.

Throughout, let Mod be a linear homotopy-type theory. A secondary linear integral transform is supposed
to be a linear function between linear spaces of sections, remark 5.5.12, which is induced from an integral
kernel or matrix given by a linear map between linear bundles L over some correspondence space.
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Definition 5.5.22. Given a dependent linear homotopy-type theory Mod, then a prequantum integral kernel
is a correspondence

Z
i1

~~

i2

  
X1 X2

of contexts – the arity – together with linear types A1 ∈ Mod(X1) and A2 ∈ Mod(X2) – the coefficients –
and a linear function of the form

ξ : i∗1A1 ←− i∗2A2 ,

the integral kernel itself. A quantum integral kernel or amplimorphism is a correspondence and linear types
as above and a morphism

Ξ :
∑
Z

i∗1A1 ←−
∑
Z

i∗2A2 .

Remark 5.5.23. So if ξ is a pre-quantum integral kernel then Ξ :=
∑
Z

ξ is the corresponding quantum

integral kernel.

Further below in prop. 5.5.55 we find a more abstract, more conceptual origin of prequantum integral
kernels. For the moment we are content with pointing out that a typical source of prequantum integral
kernels are correspondences dependent on a context of moduli for certain linear types [?, Nui13]:

Example 5.5.24. Let B be some base context and V ∈ Mod(B) a B-dependent linear type. Then every
correspondence in H/B canonically induces an invertible prequantum integral kernel, def. 5.5.22 as follows.
In H (under dependent sum) the correspondence in H/B is a diagram of the form

Y
i2

  

i1

~~
X1

χ1   

X2

χ2~~
B

ξ{�

.

Hence putting
Ai := χ∗i V

gives the prequantum integral kernel

ξ : (i1)∗A1
'←− (i2)∗A2 .

Example 5.5.25. For
Z

i1

~~

i2

  
X1 X2

a correspondence in H and A2 ∈ Mod(X1) any linear type, then setting

A1 :=
∑
i1

(i2)∗A1
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yields a non-invertible prequantum integral kernel, where

ξ = η(i2)∗A1
: (i1)∗

∑
i1

(i2)∗A1 ←− (i2)∗A1

is the unit of the (
∑
i2

a (i2)∗)-adjunction. This we may call the universal (non-invertible) pre-quantization

of the original correspondence and the given A1.

Example 5.5.26. In the model of linear homotopy-type theory given by an E∞-ring E as in example 6.2.28

EMod(−)

��
Grpd∞

a function between two linear types is a cocycle in bivariant generalized E-cohomology. Therefore in this
case a prequantum integral kernel as in def. 5.5.22 is a correspondence equipped with a cocycle on its
correspondence space. This is, broadly, the structure of motives. Indeed, we see below in ?? that the
secondary integral transform in EMod for E = KU may be given by KK-theory classes which were argued
by Alain Connes to be the K-theoretic analog of motives, a point of view that has been made precise in
[Mah13].

In order to apply an integral kernel as a linear map to the spaces of sections of its coefficient bundles,
the idea is to “pull” these sections up along one of the two legs of the correspondence, apply there the map
that defines the integral kernel, and then “push” the result down along the other leg. Notice that:

Remark 5.5.27. For S ∈ CRing∞ the sphere spectrum regarded as an E∞-ring let SMod(−) be the
corresponding model of linear homotopy-type theory from example 6.2.28. Given f : X −→ Y a morphism
in ∞Grpd then forming the suspension spectra yields a morphism of the form

Σ∞+ f : Σ∞+ X −→ Σ+Y .

As in example 5.5.11 we have that

Σ∞+ X '
∑
X

1X ,

where now 1X is the trivial spherical fibration (trivial S-line bundle) over X. Under this identification the
above morphism is given by the (

∑
X

a X∗)-counit ε:

Σ∞+ X '
∑
X

1X '
∑
Y

∑
f

f∗1Y

∑
Y

ε1Y

−→
∑
Y

1Y ' Σ∞+ Y .

Generally for E ∈ CRing∞ any E∞-ring, then this construction yields the map that is called “pushforward
in generalized E-homology” along f

E•(X) −→ E•(Y ) .

The image of this under dualization D is the “pullback in generalized E-cohomology” along f

E•(Y ) −→ E•(X) .

Beware that these operations are often denoted by “f∗” and “f∗”, respectively, but that for us these symbols
denote push/pull not of sections but of the E-module bundles themselves, and that sections are pull/pushed
instead via the (dual of) the counit, as above.
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Our central notion is now the following, which generalizes the above to general linear homotopy-type
theory, general twists and combines it with Umkehr maps in order to produce a secondary “pull-tensor-push
integral transform” on cohomology. 28

Definition 5.5.28. Given a prequantum integral kernel ξ or quantum kernel Ξ as in def. 5.5.22 and a
fiberwise fundamental class, def. 5.5.13, on the right leg i2, with induced fundamental class [i2], def. 5.5.18,
then we say that the morphism

D
∫
Z

Ξ dµi2 :
∑
X1

A1
oo

∑
X1

εA1 ∑
X1

(i1)!(i1)∗A1
oo ' ∑

Z

(i1)∗A1
oo Ξ ∑

Z

(i2)∗A2
oo ' ∑

X2

(i2)!(i2)∗A2
oo

∑
X2

[i2]A2∑
X2

A2 ⊗ τ

is the induced dual secondary integral transform. The dual morphism∫
Z

Ξ dµi2 : D
∑
X1

A1 −→ D
∑
X2

(A2 ⊗ τ)

we call the corresponding secondary integral transform.

Example 5.5.29. Consider the simple case of a prequantum integral kernel whose underlying correspondence
has as right leg an identity

X

id

  

f

~~
Y X

,

where the linear types on the base spaces are the unit types and the integral kernel itself is the identity
ξ = id : id∗1X = 1X → 1X = f∗1Y . Then the right leg idX is trivially oriented with vanishing twist and
with this choice the secondary integral transform formula in def. 5.5.28 reduces to to being map

D
∫
X

dµid :
∑
Y

1Y

∑
Y

ε

←−
∑
Y

f!f
∗1X

∼←−
∑
X

1X .

This we recognize as the operation considered in (4.3) of [PoSh12]. We had discussed the meaning of this
operation in 5.5.3 above.

Remark 5.5.30. If the coefficients A1 and A2 in def. 5.5.28 are dualizable with duals L1 and L2, respectively,
then by linear de Morgan duality, prop. 5.5.3, and by remark 5.5.12, the secondary integral transform of
def. 5.5.28 is a linear function between the linear spaces of sections of the dual coefficients:∫

Z

Ξ dµi2 : ΓX(L1) −→ ΓY (L2 ⊗ Dτ) .

Example 6.2.30 below shows how basic linear algebra is a special case of def. 5.5.28. This is elementary
in itself, but turns out to be directly the blueprint for the more sophisticated example 6.2.31 to follow, which
in turn is the context in which one finds genuine quantum physics by example ??. In view of these examples,
we make the following observation on the conceptual interpretation of the construction in def. 5.5.28, which
the reader with no tolerance for more philosophical considerations is urged to skip and ignore.

Remark 5.5.31 (logical interpretation of the secondary integral transform). These examples show that we
may think of X and Y in def. 5.5.28 as phase spaces and, if A1 and A2 are dualizable, think of the linear
types L1 and L2 as pre-quantum line bundles on these (see also section 1.2.10 in [?], surveyed in [?]). Hence
by the BHK correspondence (as reviewed in ??), in the underlying linear logic L1 represents a proposition

28While this text was being composed, essentially def. 5.5.28 for the special case of vanishing twist and in the specific model
of ∞-module bundles over homotopy types appeared as Notation 4.1.6 of [HoLu14].
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about elements of X (and L2 about elements of Y ): L1 may be thought of as the linear proposition that
the given system is in state x ∈ X of its phase space. For a proposition in classical logic the fiber of L1 over
some x ∈ X would be either empty or inhabited, indicating that the system either is in that state or not.
Now in linear logic this fiber is a linear space, namely what in physics is a space of phases. In this vein we
have the following stages of interpreting the expression

∑
X

L1:

1. in logic this expression is the existential quantification ∃
x∈X

L1(x) asserting that “there is a state x

occupied by the physical system”;

2. in type theory this expression denotes the collection (type) of all states that the system can be in;

3. in homotopy-type theory this expression denotes the homotopy-type of all such states, hence properly
taking their gauge equivalences and higher gauge equivalences into account;

4. finally in linear homotopy-type theory this expression is the linear space of all states (with gauge
equivalence taken into account) obtained not by disjointly collecting them all but by linearly adding
up their phases.

An analogous comment applies to the middle terms in the composite function in 5.5.28, Ξ =
∑
Z

ξ. Here now

the correspondence space Z is to be interpreted as a space of paths (trajectories) from X and Y , with z ∈ Z
being a path going from p1(z) ∈ X to p2(z) ∈ Y . Hence in analogy to the above we have that

∑
Z

ξ has the

following interpretations:

1. in logic it means “that there is a path”;

2. in type theory it means “the collection of all paths”;

3. in homotopy-type theory it means “the collection of all paths with gauge transformations accounted
for”;

4. finally in linear homotopy-type theory it means “the sum of the phases of all possible paths”.

5.5.6 Quantum operations

Above in ?? we discussed how quantum logic is linear logic, the logic of closed symmetric monoidal categories.
For core constructions in quantum physics and quantum computation, one considers an additional structure
on these categories, namely what is called a strongly compact [AbCo04] or dagger-compact (†-compact)
structure [Sel07]. Here we discuss how the concept of fundamental classes in dependent linear type theory that
we introduced in 5.5.4 naturally induces †-structure in the special case where the twist vanishes. Conversely,
we may hence regard the concept of fundamental classes in def. 5.5.13 as a generalization of †-structure.

Remark 5.5.32. In the special case that the twist τ in a fiberwise fundamental class on f , def. 5.5.13
vanishes, in that τ ' 1D, then this is then equivalent to an identification of the linear type

Vf := f!f
∗(1D)

with its dual
Vf

'−→ V ∗f .

This way an untwisted fiberwise fundamental class on f is equivalently a non-degenerate inner product

〈−,−〉 : Vf ⊗ Vf −→ 1D .

In this spirit we say that:
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Definition 5.5.33. For A ∈ Mod(X) dualizable, a choice of fiberwise inner product is a choice of equivalence

A
'−→ DA .

If this is the inverse of its dual morphism, we say the inner product is symmetric (axiom (T5) in [Sel10]).

The corresponding pairing we write

〈−,−〉A : A⊗A '−→ A⊗ DA ev−→ 1X

and often we find it convenient to use “〈−,−〉A” also for the original equivalence itself. In this notation the
symmetry condition is that 〈−,−〉A ' D〈−,−〉−1

A .
If X ' ∗ we may call a fiberwise inner product over X just an “inner product” or “global inner product”,

for emphasis. The following examples show how a fiberwise inner product induces a global one.

Example 5.5.34. If A ∈ Mod(X) is equipped with a fiberwise inner product 〈−,−〉A, def. 5.5.33, and if
X (hence the terminal morphism X → ∗) is equipped with an untwisted fundamental class [X], def. 5.5.13,
then

∑
X

A ∈ Mod(∗) is naturally equipped with the inner product given by the composite

〈−,−〉∑
X

A :
∑
X

A

∑
X

〈−,−〉A
−→

∑
X

DA '−→
∏
X

DA '−→ D
∑
X

A ,

where the second equivalence is the Wirthmüller isomorphism induced by the fundamental class (by the
second clause in prop. 4.13 of [May05], using that

∑
X

1X is dualizable by our assumption on fundamental

classes, see remark 5.5.14) and the last one is parameterized linear De Morgan duality, prop. 5.5.3.

Example 5.5.35. If A ∈ Mod(X) is equipped with a fiberwise inner product, def. 5.5.33, and f : Y → X is
equipped with an untwisted fiberwise fundamental class, def. 5.5.13, then this induces on f!f

∗A a fiberwise
inner product given as the composite

〈−,−〉f!f∗A : f!f
∗A '

// Df!f
∗DA '

Df!f
∗〈−,−〉−1

A // Df!f
∗A

of the induced Wirthmüller isomorphism, prop. 5.5.16, and the image of the fiberwise fundamental class
under Df!f

∗(−).

A simple but fundamental fact is that between objects that are equipped with (fiberwise) inner products,
every morphism has a canonical reversal:

Definition 5.5.36. Given a morphism f : A −→ B between linear types equipped with fiberwise inner
product, def. 5.5.33, then we say its transpose f† is the composite

f† : B '
〈−,−〉B// DB

Df // DA '
〈−,−〉−1

A // A .

Some comments on this basic abstract construction of †-structure are in section 4 of [Sel10].
We may now relate the choice of a fiberwise fundamental class to the transpose of the pushforward along

the map.

Proposition 5.5.37. Let A ∈ Mod(X) be dualizable and equipped with a fiberwise symmetric inner product
〈−,−〉A, def. 5.5.33, and let f : Y −→ X be a morphism of contexts equipped with an untwisted fiberwise
fundamental class, def. 5.5.13. Then the respective morphism [f ], def. 5.5.18, is the transpose, def. 5.5.36,
of the (

∑
f a f∗)-counit:

[f ] ' ε†f ,
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hence, by remark 5.5.19
ε†f ' ηf .

Proof. By naturality of the counit we have

A
DεDA //

D〈−,−〉−1
A

��

[f ]A

''
Df!f

∗DA

Df!f
∗〈−,−〉−1

A

��

' // f!f
∗A

DA DεA // Df!f
∗A

〈−,−〉−1
f!f
∗A

99 ,

where the square on the left is the image under D of the naturality square of the (f! a f∗)-counit on the

fiberwise inner product 〈−,−〉−1
A : DA '→ A, and where the diagonal equivalence on the right is the inverse

of the map in example 5.5.35. By symmetry of the fiberwise inner product on X the left vertical map is
equivalent to 〈−,−〉A and hence the bottom composite of the diagram exhibits [f ]A as the transpose of DεA.
�

Corollary 5.5.38. If X itself (hence X → ∗) is equipped with an untwisted fundamental class [X] then

∑
X

[f ] '

(∑
X

ε

)†
Proof. Combining example 5.5.34 and prop. 5.5.37. �

Therefore:

Remark 5.5.39. If A ∈ Mod(X) is equipped with a fiberwise symmetric inner product 〈−,−〉A and f :
Y −→ X is equipped with untwisted fiberwise fundamental classes, def. 5.5.13, then the formula for the
secondary integral transform D

∫
Z

Ξdµ in def. 5.5.28 of a prequantum integral kernel on a correspondence

Z
i1

~~

i2

  
X1 X2

becomes

D
∫
Z

Ξdµ '
∑
X

εi1A1
◦ Ξ ◦

∑
X

(εi2A2
)† .

If moreover X itself is equipped with a fundamental class then this becomes

D
∫
Z

Ξdµ '

(∑
X

εi1A1

)
◦ Ξ ◦

(∑
X

εi2A2

)†
.

This kind of operation plays a special role both in abstract quantum physics as well as in generalized
cohomology theory:
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Remark 5.5.40. In particular for the case that i1 = i2 and A1 = A2 (so that in example 6.2.30 the integral
kernel is a square matrix) then the map

Ξ 7→ D
∫
Z

Ξdµ '

(∑
X

εA

)
◦ Ξ ◦

(∑
X

εA

)†
(which we identify as the path integral quantization map for the integral kernel Ξ) is what is called a
(completely positive) “quantum operation”, see [Sel07].

Remark 5.5.41. In the model of linear homotopy-type theory by generalized cohomology theory, def. 6.2.28,
the self-duality of 5.5.33 is Poincaré duality (in general with a twist) and the induced transpose maps in def.
5.5.36 are the “Umkehr maps” or “wrong way maps” in generalized cohomology.

Specifically the literature on KK-theory knows that forming Umkehr maps in K-theory is given by forming
transpose morphisms of the “right way”-morphisms in the symmetric monoidal category KK, see [BMRS07].
Definition 2.1 in [BMRS07] defines (somewhat implicitly) a fundamental class to be a choice of self-duality in
KK (Poincaré duality in KK) and section 3.3 there defines construction of Umkehr maps as the corresponding
construction of transposes, hence of the dagger-operation as in def. 5.5.36. Under this identification the re-
formulation of secondary integral transforms via dagger operations in remark 5.5.39 corresponds to formula
(5.6) in [BMRS07].

5.5.7 Quantum states

Consider a model
Mod

��
H

for linear homotopy-type theory, def. 3.2.5. We observe that this naturally comes equipped with a higher
directed notion of linear types, too.

Definition 5.5.42. For every type X ∈ H the symmetric monoidal category Mod(X) is canonically a
module category over the symmetric monoidal category Mod(∗), via the action

Mod(∗)×Mod(X) −→ Mod(X)

given by
(τ,A) 7→ (X∗τ)⊗A .

A functor F : Mod(X) −→ Mod(Y ) is called Mod(∗)-linear if it respects this action.

Remark 5.5.43. That def. 5.5.42 indeed defines an action is equivalent to the fact that

X∗ : Mod(∗) −→ Mod(X)

is a strong monoidal functor, by the axioms of linear homotopy-type theory, def. 3.2.5.

Proposition 5.5.44. For f : X −→ Y any map in H, then pullback

f∗ : Mod(X)←− Mod(Y )

is a Mod(∗)-linear functor, def. 5.5.42, as is the sum along the fibers of f∑
f

: Mod(X) −→ Mod(Y ) .
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Proof. For A ∈ Mod(Y ) and τ ∈ Mod(∗) we naturally have

f∗(τ ·A) = f∗((Y ∗τ)⊗A)

' (f∗Y ∗τ)⊗ f∗A
' (Y ∗τ)⊗ f∗A
= τ · f∗A

,

where we used that f∗ is strong monoidal. For A ∈ Mod(X) and τ ∈ Mod(∗) we have∑
f

(τ ·A) =
∑
f

((X∗τ)⊗A)

'
∑
f

((f∗Y ∗τ)⊗A)

' (Y ∗τ)⊗
∑
f

A

= τ ·
∑
f

A .

,

where the last equivalence is Frobenius reciprocity. �
To reflect this we may say:

Definition 5.5.45. Write
Mod2 ∈ (∞, 2)Cat

for the (∞, 2)-category of Mod(∗)-linear ∞-categories of the form Mod(X) for some X ∈ H, and Mod(∗)-
linear functors between them.

In 5.5.8 we consider a kind of quantum field theory that does have directed spaces of quantum states
given by 2-modules of the form Mod(X). For this to satisfy the axioms of a TQFT, we will need to require
two extra properties on the ambient model for linear homotopy-type theory.

Definition 5.5.46. Given a model Mod(−)→ H for linear homotopy-type theory, def. 3.2.5, one says that
it satisfies the Beck-Chevalley condition if for all ∞-pullback squares in H

Z

h

~~

f

  
X1

k   

X2

g
~~

Y

the composition

f!h
∗ −→ f1h

∗k∗k!
'−→ f!f

∗g∗k! −→ g∗k!

is an equivalence (between pull-push Mod(X1) → Mod(X2) along the upper half and push-pull along the
lower half).

Example 5.5.47. The models for linear homotopy-type theory H∆1 cod→ H, example 6.1.4, and EMod(−)→
∞Grpd, example 6.2.28, satisfy the Beck-Chevalley condition, def. 5.5.46.

Proof. The first statement is equivalently the pasting law for ∞-pullbacks in H. The second appears as
prop. 4.3.3 in [HoLu14]. �
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Definition 5.5.48. We say a model Mod(−)→ H for linear homotopy-type theory, def. 3.2.5, is 2-monoidal
if for all X,Y ∈ H we have

Mod(X × Y ) ' Mod(X)⊗Mod(∗) Mod(Y )

Example 5.5.49. For E ∈ CRing∞ any E∞-ring, then the model of linear homotopy-type theory EMod(−)→
∞Grpd is 2-monoidal, def. 5.5.48.

Proof. Since X ∈ ∞Grpd ↪→ (∞, 1)Cat is small and EMod(∗) ∈ (∞, 1)Cat is locally presentable, this
follows from basic properties of the symmetric monoidal∞-category of locally presentable∞-categories [?].29

�

Proposition 5.5.50. In a model Mod(−) → H for linear homotopy-type theory, def. 3.2.5, consider
f1 : X1 → Y1 and f2 : X2 → Y2 in H and Ai ∈ Mod(Xi) and Bi ∈ Mod(Yi). Then

(f1 × f2)∗(p∗1B1)⊗ (p∗2B2) ' (p∗1f
∗
1B1)⊗ (p∗2f

∗
2B2) .

If the Beck-Chevalley condition, def. 5.5.46, holds then also∑
f1×f2

(p∗1A1)⊗ (p∗2A2) ' (p∗1
∑
f1

A1)⊗ (p∗2
∑
f2

A2) .

Proof. The first one follows immediately from the fact that pullback is required to be strong monoidal.
The second one follows using Frobenius reciprocity and the Beck-Chevalley, as is shown in lemma 3.2 of
[PoSh12]. �

Corollary 5.5.51. If the given model for linear homotopy-type theory, def. 6.1.4, satisfies the Beck-Chevalley
condition, def. 5.5.46 and is 2-monoidal, def. 5.5.48, then the (∞, 2)-functor

TQFTd+1 : Corr1(H) −→ Mod2

given by sending correspondence to their linear polynomial functors, def. 5.5.5, is monoidal.

5.5.8 Anomaly cancellation of the path integral measure

Given a correspondence

X1
oo i1 Z

i2 // X2

we defined in def. 5.5.28 an integral kernel based on this corrrespondence to be data of the form

ξ : i∗1A1 ←− i∗2A2 .

One may ask where this form of data comes from. In example 5.5.24 and then more specifically in example
?? we gave a class of constructions that occur naturally in practice which do yield this kind of data. But
here we want to go one step further and understand this data as being in turn the boundary field theory
data of a TQFT of yet one more dimension higher.

Moreover, so far the TQFTτd which we obtained correspondence-wise by quantization via secondary
integral transforms may be “anomalous” in that its correspondence-wise construction does not actually
extend to a monoidal functor

TQFTτd : Bordn
exp(

i
~S)dµ

// Corr(H)

∫
(−)dµ// Mod(∗) .

29 Thanks to Thomas Nikolaus for discussion of this point.
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Here we show that the condition that TQFTτd is quantum anomaly free means that it is itself the boundary
field theory of yet another TQFTd+1.30

Definition 5.5.52. For Mod(−) → H a model for linear homotopy-type theory, which satisfies Beck-
Chevalley, def. 5.5.46, and is 2-monoidal, def. 5.5.48, write

TQFTd+1 : Corr1(H) −→ Mod2

for the (∞, 1)-functor from the (∞, 1)-category of correspondences in H to the (∞, 2)-category of 2-modules,
def.5.5.45, given by sending homotopy-types X to their ∞-categories Mod(X) of linear homotopy-types

dependent on them, and sending correspondences X1
i1← Z

i2→ X2 as above to their linear polynomial
functors

Mod(X1) oo

∑
i1

◦i∗2

Mod(X2)

as in def. 5.5.5.

Remark 5.5.53. That def. 5.5.52 indeed gives a monoidal (∞, 2)-functor is the content of cor. 5.5.51.

Proposition 5.5.54. In a linear homotopy-type theory which satisfies Beck-Chevalley, def. 5.5.46, and is
2-monoidal, def. 5.5.48, then the functor TQFTd+1 in def. 5.5.52 is monoidal.

Proof. By assumption of 2-monoidalness it suffices to see that for X1
i1← Z

i2→ X2 and X̃1
ĩ1← Z̃

ĩ2→ X̃2

two correspondences in H, and (p∗1A)⊗ (p∗2Ã) ∈ Mod(X2 × X̃2), then∑
i1×ĩ1

(i2 × ĩ2)∗
(

(p∗1A)⊗ (p∗2Ã)
)
'

(
p∗1
∑
i1

i∗2A1

)
⊗

(
p∗2
∑
i1

ĩ∗2Ã

)
.

Given the assumption of Beck-Chevalley, this is the statement of prop.5.5.50. �

We now consider boundary conditions for TQFTd+1. For that purpose write

1d+1 : Corr(H) −→ Mod2 ,

for the (∞, 2)-functor which sends every correspondence to the identity functor on Mod(∗).

Proposition 5.5.55. A Mod(∗)-linear natural transformation

exp( i~S) : 1d+1 −→ TQFTd+1

is over each correspondence X1 ← Z → X2 equivalently a prequantum integral kernel, def. 5.5.22.

Proof. Consider the naturality square

Mod(∗) oo id

1∗ 7→A1

��

Mod(∗)

1∗ 7→A2

��
Mod(X1) oo ∑

i1

◦i∗2
Mod(X2)

bj

exp(
i
~S)

.

Here by Mod(∗)-linearity the vertical functors are fixed by their image of the tensor unit, which we denote
by A1, A2 respectively. Therefore the unit component of this natural transformation on this A2 has to be a
morphism in Mod(X1) of the form

exp( i~S)A2
:
∑
i1

i∗2A2 −→ A1 .

30The result here is joint with Joost Nuiten.
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On a general object τ ∈ Mod(∗) the component of the transformation has to be of the form

exp( i~S)A2⊗τ :
∑
i1

(i∗2A2 ⊗ Z∗τ) '
∑
i1

(i∗2A2 ⊗ i∗1X∗1 τ) −→ A1 ⊗X∗1 τ

which by Frobenius reciprocity, def. 3.2.2, is equivalently of the form

exp( i~S)A2⊗τ : (
∑
i1

i∗2A2)⊗X∗1 τ −→ A1 ⊗X∗1 τ .

By linearity this is fixed to be exp( i~S)A2⊗τ ' exp( i~S)A2
⊗ idτ and hence the transformation is equivalent

to the data consisting of A1, A2 and exp( i~S)A2
. Finally observe that by the (

∑
i1

a i∗1)-adjunction the datum

exp( i~S)A2
is equivalently given by its adjunct ξ : i∗2A2 −→ i∗1A1 , which is the integral kernel in question. �

Definition 5.5.56. Given a choice of untwisted fiberwise fundamental class on i2, def. 5.5.13, consider the
transformation

D
∫

(−)dµ : TQFTd+1 −→ 1d+1

restricted to the given correspondence X1
i1← Z

i2→ X2 whose component there is

Mod(X1) oo

∑
i1

◦i∗2

∑
X1
��

Mod(X2)∑
X2
��

Mod(∗) oo
id

Mod(∗)

∑
X2

[i2]

bj

,

where the transformation filling this diagram is the X2-dependent sum of the given fundamental class [i2]
on i2, def. 5.5.18.

Combining this we obtain a twisted

TQFTτd := D
∫

exp( i~S) dµ : Corr(H) −→ Mod(∗)

as the unit component of the composite of these two transformations, hence as a defect from the trivial (d+1)-
dimensional theory to itself. It sends a correspondence to the unit component of the pasting composite of
natural transformations as follows

Mod(∗) oo id

1∗ 7→A1

��

Mod(∗)

1∗ 7→A2

��
Mod(X1) oo

∑
i1

◦i∗2∑
X1
��

Mod(X2)∑
X2
��

Mod(∗) oo
id

Mod(∗)

bj
exp(

i
~S)

∑
X2

[i2]

bj

.

Proposition 5.5.57. The unit component of this pasting composite

D
∫

exp( i~S)dµ : 1d+1

exp(
i
~S)
−→ FQFTd+1

D
∫

(−)dµi2−→ 1d+1
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is the dual secondary integral transform

D
∫
Z

ξdµi2 :
∑
X1

A1 ←−
∑
X2

A2

which is associated by def. 5.5.28 to the integral kernel ξ corresponding to exp( i~S) via the proof of prop.
5.5.55.

Proof. The pasting natural transformation here has as unit component the map

∑
X1

A1

∑
X1

exp(
i
~S)

←−
∑
X1

∑
i1

i∗2A2

∑
X2

[i2]

←−
∑
X2

A2

By the general formula for adjuncts we have that ξ and exp( i~S) are related by

exp( i~S) : A1
ε←−
∑
i1

i∗1A1

∑
i1

ξ

←−
∑
i1

i∗2A2 .

Inserting this into the first expression manifestly yields the secondary integral transform formula of def.
5.5.28, up to canonical equivalence. �

Remark 5.5.58. (consistent orientations and quantum anomalies) Proposition 5.5.57 provides a succinct
formulation of what it takes to choose fiberwise fundamental classes, def. 5.5.13, on a system of correspon-
dences consistently, namely such that the operation of secondary integral transforms is functorial in the
correspondences: the condition is that

∫
(−)dµ : FQFTd+t −→ 1d+1 is indeed a natural transformation,

hence indeed a boundary condition for the tautological (d + 1)-dimensional theory. The existence of such
consistent orientations is the central obstruction to the existence of the quantization process, and such ob-
structions to quantization are known in the physics literature as quantum anomalies. A clean account of
quantum anomalies as traditionally considered is in [Fre86]; for quantum anomalies from the perspective as
considered here see also [Fr00]. Therefore finding consistent orientations is quantum anomaly cancellation.
The problem of finding consistent orientations for integral transforms given by pull-push had previously been
highlighted in [FHT07] for the special case of pull-push in equivariant K-theory.
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6 Externalization

In this section we consider representations, hence models of the abstract axiomatic theory developed in 4 and
of the structures 5 implied by these. Hence we construct specific cohesive ∞-toposes, 4.1, and differential
cohesive ∞-toposes, 4.2, and discuss the incarnation of the general abstract structures 5.1, 5.2, 5.2, 5.3 in
these representations.

We start with a generic class of models

• 6.1 – parameterized homotopy-types;

which give towers of new cohesive ∞-toposes

H∆1

→ · · · → T (n)H→ · · · → HTH

over given one H, the Goodwillie-jet ∞-toposes of H. Where a generic H is a cohesive version of homotopy
theory and non-abelian cohomology, its tangent (1-jet) ∞-topos TH extends H by its stabilization given
by stable cohesive homotopy-types (cohesive spectrum objects) and hence also accommodates the cohesive
stable homotopy theory and stable (meaning: generalized Eilenberg-Steenrod-type) cohesive cohomology.
This construction can be considered in particular for all of the specific models to follow, which are:

• 6.2 – discrete homotopy types;

• 6.3 – Euclidean-topological homotopy types;

• 6.4 – smooth homotopy types;

• 6.5 – formal smooth homotopy types;

• 6.6 – supergeometric homotopy types;

• 6.7 – further models.

These cohesive ∞-toposes fit into a diagram of geometric morphisms of the following form:

cohesion differential cohesion
base
∞-topos

supergeometry SmoothSuper∞Grpd �
� //

��

FormalSuper∞Grpd //

��

Super∞Grpd

��
differential geometry Smooth∞Grpd �

� // FormalSmooth∞Grpd // ∞Grpd

.

In the bottom right we have plain ∞-groupoids, modelling discrete cohesion, 6.2. The bottom left is the
cohesive ∞-topos of smooth ∞-groupoids, 6.4 and the middle entry on the bottom is the cohesive ∞-topos
formal smooth cohesion, 6.5. The total bottom row exhibits the latter as a model for differential cohesion in
the sense of 4.2. This we regard as the standard model for higher differential geometry. The top row shows
the supergeometric refinement of this situation. See below in 6.6 for more discussion of the top row of this
diagram.

Finally we indicate further models of the axioms which we do not discuss here in more detail at the
moment

• – complex-analytic cohesion;

• – pointed arithmetic cohesion.
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6.1 Parameterized homotopy types

We discuss here, given any cohesive ∞-topos H, new ∞-toposes of objects parameterized over those of H,
which are cohesive over H.

• 6.1.1 – Bundles of homotopy-types;

• 6.1.2 – Bundles of pointed homotopy-types;

• 6.1.3 – Bundles of stable homotopy-types

The first of these is just the arrow category H∆[1] of H. While simple in itself, this is conceptually
noteworthy as the ∞-topos whose intrinsic cohomology is twisted nonabelian cohomology in H according to
the discussion in 5.1.13, and because it serves an illustrative purpose: it is a simple but non-trivial model of
cohesion that illuminates the central notions, such as cohesive homotopy-types, by elementary combinatorial
reasoning.

The second is the variant of the first where all bundles are equipped with a global section. The intrinsic
cohomology is still twisted cohomology, but now for pointed coefficient bundles.

The third is the “fiberwise stabilization” of the second, the tangent ∞-topos TH of parameterized spec-
trum objects in H. This is the class of cohesive ∞-toposes whose intrinsic intrinsic differential cohomology
accommodates the stable (hence: generalized Eilenberg-Steenrod-type) differential cohomology in H in the
sense of [HoSi05] and generally is the twisted differential stable cohomology developed in [BNV13].

There is in fact a whole tower of ∞-toposes interpolating between these two examples

H∆[1] // · · · // T (n)H // · · · // TH

��
H

,

where T (n)H ' Excn(∞Grpd∗/,H) is the ∞-category of n-excisive ∞-endofunctors. (This goes back to
[Jo08b, section 35], it follows with theorem 1.8 in [Go03] and more explicitly with theorem 6.1.1.10, remark
6.1.1.11 in [L-Alg], which in turn were communicated by Charles Rezk.31) In terms of intrinsic cohomology
this chain interpolates stagewise between general non-abelian twisted differential cohomology in H on the left
and twisted stable (generalized Eilenberg-Steenrod-type) differential cohomology in H on the right. Since
the higher Chern-Weil theory discussed here may be regarded as approximating the former by the latter, one
may think of the intermediate stages here as the home of a tower of intermediate higher Chern-Weil theory.
But for the moment we do not explore this further.

6.1.1 Bundles of homotopy-types

We discuss a class of examples of cohesive ∞-toposes that are obtained from a given cohesive ∞-topos H by
passing to the∞-topos HD of interval-shaped diagrams in it. The cohesive interpretation of an object in HD

is as a bundle of H-cohesive ∞-groupoids all whose fibers are regarded as being geometrically contractible.

Proposition 6.1.1. Let H be a cohesive ∞-topos. Let D be a small category with initial object ⊥ and
terminal object >.

There is an adjoint triple of ∞-functors

D
⊥ //
oo p
>
// ∗

obtained from the inclusion of the terminal and the initial object.

31Thanks to Charles Rezk for discussion of this point.
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The ∞-functor ∞-category HD (D-shaped diagrams in H) is a cohesive ∞-topos, exhibited by the com-
posite adjoint quadruple

(Π a Disc a Γ a coDisc) : HD

>∗ //
oo p∗

⊥∗ //
oo

⊥∗
? _
H

ΠH //
oo DiscH

ΓH
//

oo
coDiscH

? _
∞Grpd .

Proof. Each of the first three functors induces an adjoint triple (p! a p∗ a p∗), etc., where p∗ is given by
precomposition, p! by left ∞-Kan extension and p∗ by right ∞-Kan extension (use for instance [L-Topos],
A.2.8). In particular therefore >∗ preserves finite products (together with all small ∞-limits). The adjoint-
ness (⊥ a p a >) implies that p! ' >∗ and ⊥! ' p∗. This yields the adjoint quadruple as indicated. Finally
it is clear that >∗p∗ ' id, which means that p∗ is full and faithful, and by adjointness so is ⊥∗. �
The following simple example not only illustrates the above proposition, but also serves as a useful toy

example for the notion of cohesion itself.

Example 6.1.2. For H any cohesive ∞-topos, also its arrow category H∆[1] is cohesive.
In particular, for H =∞Grpd (see 6.2 for a discussion of ∞Grpd as a cohesive ∞-topos), the arrow ∞-

category ∞Grpd∆[1] is cohesive. This is equivalently the ∞-category of ∞-presheaves on the interval ∆[1],
which in turn is equivalent to the ∞-category of ∞-sheaves on the topological spaces called the Sierpinski
space

Sierp = ({0, 1},Opens = (∅ ↪→ {1} ↪→ {0, 1}))

(see for instance [Joh02], B.3.2.11):

∞Grpd∆[1] ' PSh∞(∆[1]) ' Sh∞(Sierp) .

We call this the Sierpinski ∞-topos.
Notice that the Sierpinski space, as a topological space,

1. is contractible;

2. is locally contractible;

3. has a focal point (a point whose only open neighbourhood is the entire space).

The Sierpinski ∞-topos is 0-localic (def.3.1.3), being the image of the Sierpinski space under the embedding
of topological spaces into ∞-toposes. Accordingly the cohesion of Sh∞(Sierp) may be traced back to these
three properties, which imply, in this order, that Sh∞(Sierp) is, as an ∞-topos,

1. ∞-connected;

2. locally ∞-connected;

3. local.

So the Sierpinski space is the “abstract cohesive blob” on which the cohesion of Sh∞(Sierp) is modeled: it
is the abstract “point with an open neighbourhood”.

While the cohesion encoded by the Sierpinski ∞-topos is very simple, it may be instructive to make the
geometric interpretation fully explicit (the reader may want to compare the following with the more detailed
discussions of the meaning of the functor Π on a cohesive ∞-topos below in 5.2.3):

an object of Sh∞(Sierp) is a morphism [P → X] in ∞Grpd. The functor Π sends this to its domain

Π([P → X]) ' X .

In particular
Π([P → ∗]) ' ∗ .
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Therefore Π sees [P → ∗] as being cohesively/geometrically contractible and sees a bundle [P → X] as
having cohesively/geometrically contractible fibers. At the same time, for X ∈ ∞Grpd, we have

Disc(X) ' [X
id→ X] ,

which says that the base of such a bundle is regarded by the cohesion of the Sierpinski ∞-topos as being
discrete. Accordingly, we may interpret [P → X] as describing a discrete ∞-groupoid X to which are
attached cohesively contractible blobs, being the fibers of the morphism P → X.

Even though they are geometrically contractible, these fibers have inner structure: this is seen by Γ,
which takes the underlying ∞-groupoid to be the total space of the bundle

Γ([P → X]) ' P .

Finally a codiscrete object is one of the form

coDisc(Q) ' [Q→ ∗] ,

which is entirely cohesively contractible, for any inner structure.

The following simple fact is worth recording:

Proposition 6.1.3. Let H be a cohesive ∞-topos and regard the Sierpinski ∞-topos HI , example 6.1.2, as
a cohesive ∞-topos over H. Then

1. the full sub-∞-category of HI on those objects for which pieces have points, def. 4.1.16, is canonically
identified with the ∞-category of effective epimorphisms in H, hence with the ∞-category of groupoid
objects in H, def. 5.1.124;

2. the full sub-∞-category of HI on those objects which have one point per piece, def. 4.1.16, is canonically
identified with H itself.

Proposition 6.1.4. Via the codomain fibration [L-Topos, 2.4.7], the Sierpinski ∞-topos over any ∞-topos
H, from example 6.1.2,

H∆1

cod

��
H

is a model for linear homotopy-type theory, according to def. 3.2.5.

Proof. We have to show that for f : X1 −→ X2 any morphism in H, the induced étale geometric
morphism on slice toposes is a cartesian Wirthmüller context, def. 3.2.1, between the slice toposes:

(
∑
f

a f∗ a
∏
f

) : (H/X1
, ×X1

, X1) −→ (H/X2
, ×X2

, X2) .

The left adjoint f! =
∑
f (dependent sum) sends slice objects (A→ X1) to the composite (A→ X1

f→ X2).
Therefore by prop 3.2.3 it is sufficient to exhibit Frobenius reciprocity in the form

A×X1
f∗B ' A×X2

B .

But this is equivalently the pasting law for pullbacks in H:

A×X2
B ' A×X1

f∗B

��

// f∗B

��

// B

��
A // X1

f // X2

�
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Remark 6.1.5. The dependent linear homotopy-type theory in prop. 6.1.4 is degenerate, in that the tensor
product of the “linear” types is in fact Cartesian. This changes as we make the parameterized types pointed,
below in 6.1.2.

6.1.2 Bundles of pointed homotopy-types

We now consider bundles of homotopy types equipped with a global section.

Definition 6.1.6. Write

sec :=


e

��
x

??

id
// x


for the category containing two objects and two nontrivial morphisms between them, as indicated, whose
composite is the identity. For H an ∞-topos, write

Hsec := [sec,H]

for the ∞-presheaf ∞-topos on sec over H, i.e. the ∞-category of bundles with global sections in H, also
called ex-objects [MaSi06] in H. Evaluation at x ∈ sec induces a morphism

Hsec

cod
��

H

.

Remark 6.1.7. By prop. 6.1.1, Hsec is cohesive over H. For X ∈ H an object, then the fiber of the fibration
in def. 6.1.6 over X is the ∞-category of pointed objects, prop. 2.2.6, in the slice topos over X:

Hsec
x ' H

X/
/X ' (HX)∗/ .

An object in H
X/
/X may be interpreted a bundle over X which is equipped with a global section.

Proposition 6.1.8. The fibration in def. 6.1.6 equipped with fiberwise smash product (prop. 2.2.8 via
remark 6.1.7) exhibits Hsec as a model for linear homotopy-type theory, in the sense of def. 3.2.5.

For 1-categories this statement appears as [Shul08, examples 12.13 and13.7] and in [Shul12c, example
2.33]. The argument for ∞-categories is directly analogous.
Proof. For f : X −→ Y any morphism in H then the base change inverse image f∗ : H/Y −→ H/X preserves

pointedness, and the pushout functor f! : HX/ −→ HY/ preserves co-pointedness. These two functors hence

form an adjoint pair (f! a f∗) : H
X/
/X −→ H

Y/
/Y .

By prop. 2.2.8, the fibers from remark 6.1.7 are closed symmetric monoidal∞-categories (H
/X
/X ,∧X , X

∐
X)

under the smash product ∧X . Since colimits in the under-over category H
X/
/X are computed as colimits in

H of diagrams with an initial object adjoined, and since by the Giraud axioms in the topos H pullback

preserves these colimits, it follows that f∗ : H
Y/
/Y → H

X/
/X preserves colimits. Since by prop. 2.2.6 H

X/
/X is

presentably monadic over H/X (via the maybe-monad ∗
∐

(−), def. 2.2.5) we have, by [AR94, 2.78], that

H
X/
/X and H

Y/
/Y are locally presentable categories, so that by the adjoint functor theorem it follows that f∗

has also a right adjoint f∗ : H
X/
/X → H

Y/
/Y .

To see that f∗ is a strong monoidal functor observe that the smash product is, by prop. 2.2.8, given by
a pushout over coproducts and products in the slice topos. Due to the above, these are all preserved by f∗.
To see that f∗ is also a strong closed functor, observe that the internal hom on pointed objects is a fiber
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product of cartesian internal homs. These are preserved according to example 6.1.4, and the fiber product
is preserved since f∗ preserves all limits. Hence f∗ preserves also the internal homs of pointed objects.

This means that for each f : X → Y in H we do have a Wirthmüller context, def. 3.2.1,

(
∑
f

a f∗ a
∏
f

) : (H
X/
/X , ∧X , X

∐
X) −→ (H

Y/
/Y , ∧Y , Y

∐
Y ) .

�

Definition 6.1.9. Write ∞Grpdfin for the ∞-category of finite ∞-groupoids, those that are obtained from

the point by finite ∞-colimits. Write ∞Grpd
∗/
inf for the ∞-category of pointed finite ∞-groupoids. Finally,

for H an ∞-topos, write

H[X∗] := [∞Grpd
∗/
fin,H]

for the ∞-topos of ∞-presheaves on ∞Grpd
∗/
fin with values in H.

Remark 6.1.10. The ∞-topos H[X∗] from def. 6.1.9 regarded as an ∞-topos over H, is the classifying
∞-topos for pointed objects, prop. 2.2.6, hence may be thought of as obtained from H by adjoining a generic
pointed object, see example 2.2.20.

Definition 6.1.11. Write
i : sec −→∞Grpd

∗/
fin

for the∞-functor between the∞-categories of def. 6.1.6 and def. 6.1.9 which picks the 0-sphere S0, regarded
as a bundle with global section over ∗.

Since this is a full inclusion, it induces, via Kan extension, two full inclusions of ∞-toposes:

Hsec
� � //
oo� � // H[X∗] .

If H is differentially cohesive, 4.2, then inside each category of sectioned bundles H
X/
/X we find the full

subcategory InfExt(X) ↪→ H
X/
/X of infinitesimal extensions of X, according to def. 5.3.42.

Proposition 6.1.12. Given a differentially cohesive ∞-topos H, then the assignment (def. 5.3.42)

X 7→ InfExt(X)

of the non-unital symmetric monoidal∞-category of infinitesimal extensions, def. 5.3.5, to any object X ∈ H
is a model for non-unital linear homotopy-type theory in the sense of 3.2 inside the model of prop. 6.1.8

InfExt(X) �
� //

$$

Hsec

cod}}
H

.

Proof. We need to check that the base change functors in the proof of prop. 6.1.8 restrict to infinitesimal
extensions. By lemma 5.3.44 it follows that f! and f∗ preserve infinitesimal extensions and that the restriction
of f∗ to InfExt(X) still preserves colimits. Therefore to see that f∗ restricts it is sufficient to see that

InfExt(X) is locally presentable. Since it is the essential fiber of =X : H
X/
/X → H/=(X) over the singleton

subcategory on id=(X) this statement follows by corollary A.2.6.5 in [L-Topos]. �
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6.1.3 Bundles of stable homotopy-types

We discuss here how given a cohesive ∞-topos H, there is its tangent ∞-topos TH which is itself cohesive
over T∞Grpd and which is an extension of H by the stabilization Stab(H) of H, hence by the∞-category of
spectrum objects in H [L-Alg]. We observe that this is the class of ∞-toposes whose intrinsic cohomology is
twisted stable cohomology and that the stable homotopy-types inside TH all canoninically sit in the system of
homotopy fiber sequences characteristic of (stable) differential cohomology (an observation due to [BNV13]).

The following goes back to theorem 1.8 in [Go03], see section 7.1.1 and section 8.3 in [L-Alg]. We present
it in the fashion of section 35 of [Jo08b].

Definition 6.1.13. Let seq be the diagram ∞-category of the form

seq :=



...

��
· · · // xn−1

//

��

∗

��

id

""
∗

id
""

// xn //

��

∗

��
∗ // xn+1

//

��

· · ·

...

x�

x�



,

where n ranges over Z. For C an ∞-category, write

Cseq := Func(seq, C)

for the ∞-category of ∞-functors from seq.

Remark 6.1.14. For C an ∞-category with finite ∞-limits, an ∞-functor E• : seq −→ C is equivalently

1. a choice of object B ∈ C (the image of the zero-object of seq);

2. a collection {En ∈ C/B}n∈Z of objects in the slice of C over B, def. 5.1.25 (the images of the xn ∈ seq);

3. for each n ∈ Z a choice of homotopy from the zero-map 0n : En −→ En+1 to itself, which by the
universal property of the ∞-fiber product is equivalently a map

En −→ ΩBEn+1

into the loop space object, def. 5.1.148, of En+1 ∈ C/C .

One might call such a collection of data a spectrum object over B, but better to call it a pre-spectrum object
over B.

Definition 6.1.15. For C an ∞-category with finite ∞-limits, an object E• ∈ Cseq, def. 6.1.13, over B ∈ C
for which the morphisms of remark 6.1.14 are equivalences

En
'−→ ΩBEn+1 , n ∈ Z

we call an Ω-spectrum object over B or just spectrum object over B. We write

TC ↪→ Cseq

for the full sub-∞-category of Cseq, def. 6.1.13, on the Ω-spectrum objects and call this the Goodwillie-tangent
∞-category of C, or just tangent ∞-category, for short.
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The following observation is originally due to Georg Biedermann, see section 35 of [Jo08b].

Proposition 6.1.16. For H an ∞-topos, the inclusion TH ↪→ Hseq is left exact reflective, hence it has a
left adjoint ∞-functor (“spectrification”) which preserves finite ∞-limits

TH
oo lex
� � // Hseq .

Proof. By a small object argument in the presentable ∞-category H, one finds that the left adjoint
exists and is given by a sufficiently long transfinite composite of looping maps id −→ Ω. This transfinite
composition is an example of a filtered ∞-colimit and in an ∞-topos these preserve finite ∞-limits, for
instance by example 7.1.1.8 in [L-Alg]. �
It therefore follows that

Proposition 6.1.17. For H an ∞-topos also its tangent ∞-category TH, def. 6.1.17, is an ∞-topos, to be
called its tangent ∞-topos.

Proof. By prop. 6.1.16 TH is a left exact reflective sub-∞-category of an ∞-topos, and so by the very
definition 3.1.1 is itself an ∞-topos. �

Proposition 6.1.18. If H is an ∞-topos which is cohesive, def. 4.1.8, then its tangent ∞-topos TH, prop.
6.1.17, is cohesive over T∞Grpd and infinitesimally cohesive def. 4.1.21, over H. Moreover, the cohesive
structure maps fit into a diagram of the form

Stab(H)

Πsp //
oo Discsp ? _

Γsp //
oo coDiscsp ? _

� _

��

Spectra� _

��
H

d //
oo tot TH

TΠ //
oo TDisc ? _

TΓ //
oo T coDisc ? _

base

��

OO

� ?

T∞Grpd

base

��

OO

� ?
H

Π //
oo Disc ? _

Γ //
oo coDisc ? _

∞Grpd

,

where

• Stab(H) is the stabilization of H, the stable ∞-category of spectrum object in H [L-Alg];

• Spectra = Stab(∞Grpd) is the stable ∞-category of spectra;

• base is the ∞-functor that sends a bundle of spectra to its base homotopy-type, exhibiting the infinites-
imal cohesion of TH over H;

• its left and also right adjoint is the ∞-functor that assigns the 0-bundle of spectra to a given base
homotopy-type;

• tot is the ∞-functor which sends a bundle E• of spectra in a slice of H to Ω∞E• = E0:
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• d is its left adjoint

Proof. To see that TH is cohesive over H observe that the prolongation of the right adjoints (Disc a
Γ a coDisc) to presheaves over seq, as in the proof of prop. 6.1.17, immediately descent to TH, since they
preserve ∞-limits and hence the loop space objects involved in the definition of spectrum objects. The
prolongation of Π may fail to preserve these but by the lex reflection of spetrum objects inside pre-spectrum
objects it follows that the composition of the prolongation of Π with spectrification is left adjoint to the
prolongation of Disc and does preserve finite ∞-limits and hence finite ∞-products. This establishes the
cohesion (TΠ a TDisc a TΓ a T coDisc).

That TH is infinitesimal cohesive over H follows from the fact that spectrum objects contain a zero-
object.

Finally the left adjoint d to tot is due to section 7.3 of [L-Alg]. �

Remark 6.1.19. In [L-Alg, section 7.3] the left adjoint d : C → TC of the total space∞-functor is identified
as the co-tangent complex ∞-functor if the objects of the ∞-category C are interpreted as algebras of some
kind. But in our case the objects of H are instead to be interpreted as spaces of some kind, while it would be
the objects of the opposite category C = Hop that behave like generalized algebras. Therefore in the above
d should instead be thought of as a tangent complex ∞-functor.

To capture the fact that tangent cohesion involves stable homotopy theory, it is useful to introduce the
following terminology (following Joyal)

Definition 6.1.20. Given an ∞-topos E , then an object X ∈ E is called a stable homotopy-type or just
stable if the canonical morphism

X −→ ΩΣX

into the loop space objects, def. 5.1.148, of its suspension object ΣX := ∗
∐
X

∗ is an equivalence.

Example 6.1.21. In ∞Grpd ' Top[{weak hom. equiv.−1}] the only stable homotopy-type is the point.

Example 6.1.22. In a tangent∞-topos TH all the objects in the inclusion Stab ↪→ TH are stable homotopy-
types.

We now discuss the various general abstract structures induced by cohesion, 5.2, realized in Goodwillie-
tangent cohesion.

• 6.1.3.1 – Cohomology

• 6.1.3.2 – Differential cohomology

6.1.3.1 Cohomology We discuss the notion of intrinsic cohomology, 5.1.10, realized in parameterized
stable cohesive homotopy-types.

The following proposition says that the intrinsic cohomology of tangent∞-toposes, as discussed generally
in 5.1.10, is twisted stable cohomology, the stable version of the twisted cohomology discussed in 5.1.13.

Proposition 6.1.23. For TH a tangent ∞-topos, prop. 6.1.17, and for

• X ∈ H ↪→ TH a homotopy-type

• E ∈ Stab(H) ↪→ TH a stable homotopy type
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then the internal hom
[X,E]TH ∈ TH

is equivalent to the mapping spectrum

[X,E]TH ' [Σ∞X,E]Stab(H) ∈ Stab(H) ↪→ TH .

Proof. With TH ↪→ Hseq as in the proof of prop. 6.1.17, X ∈ TH is the constant seq-diagram on
X ∈ H, while E is a diagram with base point the terminal object. From this the statement follows from the
general formula for internal homs of diagram ∞-categories and the ∞-Yoneda lemma. �
More generally, one is interested in local coefficients of spectra, def. 5.1.260, as follows.

Example 6.1.24. Let E ∈ Stab(H) be equipped with the structure of an E∞-ring [L-Alg], and write
GL1(E) ∈ Stab(H) for the abelian ∞-group (connective spectrum) of units of E [ABGHR08]. Then there
is the universal associated bundle of stable homotopy-types, as discussed in 5.1.12,

E//GL1(E)

��
BGL1(E)

 ∈ Stab(H/BGL1(E)) ↪→ TH .

This is the universal E-line ∞-bundle [ABG10a].

Proposition 6.1.25. For X ∈ H ↪→ TH a cohesive homotopy-type and for E//GL1(E) ∈ TH a universal
E-line ∞-bundle as in prop. 6.1.24, then the internal mapping space

[X,E//GL1(E)]TH ∈ TH

is the bundle of spectra in H whose base homotopy-type is the space [X,BGL1(E)]H of twists of E-cohomology
on X (as discussed in 5.1.13) and whose total space is the collection of all twisted E-cohomology spectra
E•(X) of X where the fiber over a twist χ ∈ [X,BGL1(E)] is Eχ(X):

[X,E//GL1(E)]TH '


E•(X)

��
[X,BGL1(E)]


Proof. This follows with a variation of the argument in the proof of prop. 6.1.23. An elegant formal

homotopy-type-theoretic proof has been written out by Mike Shulman in [nLab:tangent cohesion]. �

6.1.3.2 DifferentialCohomology We discuss the realization of the general abstract notion of differen-
tial cohomology, def. 5.2.13, realized in tangent cohesive ∞-toposes.

The following is the central formal observation of [BNV13], there considered in Stab(H) for H =
Smooth∞Grpd as in 6.4 below.

Proposition 6.1.26. For H a cohesive ∞-topos, stable homotopy-type (def. 6.1.22)

E ∈ Stab(H) ↪→ TH

604



in TH sits in a diagram of the form

ΠdRΩE

##

// [dRΣE

%%
ΠdR[ΩE

99

&&

E

θE

<<

""

Π[dRΣE

[E

;;

// ΠE

ΠθE

99

,

where

• Π and [ are the cohesion modalities of TH and ΠdR and [dR are the de Rham modalities of TH as
defined in 5.2.10;

• the diagonals are the homotopy fiber sequences of the Maurer-Cartan form on E, 5.2.12, (using that
E is a stable homotopy-type by example 6.1.22);

• the two squares are ∞-pullback squares;

• the bottom morphism is the points-to-pieces transform, def. 4.1.14.

Proof. This is a special case of prop. 2.2.17. The diagram exists as a homotopy-commutative diagram
by the naturality of the Π-unit and the [-counit. To see that the right square, the Π-naturality square of
the Maurer-Cartan form of E, is an ∞-pullback, observe that it extends to a diagram of the form

[E

'
��

// E

��

θE // [dRΣE

��
Π([E) // ΠE

ΠθE // Π([dRΣE)

,

where, by stability of Stab(H) and using that Π preserves∞-colimits, both rows are homotopy fiber sequences
def. 5.1.178. But by cohesion the morphism [E −→ Π[E is an equivalence, and hence by the homotopy-fiber
characterization of homotopy pullbacks exhibits the naturality square on the right as a homotopy pullback.
The argument for the other square is dual this reasoning. �

Remark 6.1.27. By the discussion of higher Galois theory in 5.2.7, we find that the right diagram in prop.
6.1.26 says equivalently that the Maurer-Cartan form, 5.2.12, exhibits every stable cohesive homotopy-type
as a locally constant ∞-stack over its de Rham coefficient homotopy-type.

Remark 6.1.28. Diagrams as in prop. 6.1.26 have been known to be characteristic of differential cohomology
theories, see for instance prop. 4.57 in [Bun12], where this is referred to as “the differential cohomology
diagram”. Prop. 6.1.26 shows that this diagram is naturally and generally induced for every stable cohesive
homotopy-type, just by the axioms of cohesion and stability.

The existence of this diagram for every stable homotopy-type makes the concepts of “cohesive” (e.g.
“smooth”, 6.4) and “differential” merge into a single concept for stable homotopy-types: it says that every
cohesive stable homotopy-type E is the differential coefficients of some differential cohomology theory whose
underlying Eilenberg-Steenrod type cohomology theory is represented by the spectrum Π(E) and whose de
Rham coefficients are [dRΣE.

See 1.1.3.2 for more exposition.
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6.2 Geometrically discrete homotopy types

For completeness, and because it serves to put some concepts into a useful perspective, we record aspects
of the case of discrete cohesion, hence of plain ∞-groupoids explicitly regarded as geometrically discrete
∞-groupoids.

After briefly observing the trivial construction

• 6.2.1 – Construction

we discuss some of the general abstract structures in cohesive ∞-toposes, 5.2, in the context of discrete
cohesion.

• 6.2.2 – Geometric homotopy

• 6.2.3 – Groups

• 6.2.4 – Cohomology

• 6.2.5 – Principal bundles

• 6.2.6 – Twisted cohomology

• 6.2.7 – Representations and associated bundles

• 6.2.8 – Stabilizer groups

• 6.2.9 – Dependent linear homotopy types

• 6.2.10 – Secondary integral transforms

6.2.1 Construction

Observation 6.2.1. The terminal ∞-sheaf ∞-topos ∞Grpd is trivially a cohesive ∞-topos, where each of
the defining four ∞-functors (Π a Disc a Γ a coDisc) :∞Grpd→∞Grpd is an equivalence of ∞-categories.

Definition 6.2.2. In the context of cohesive ∞-toposes we say that ∞Grpd defines discrete cohesion and
refer to its objects as discrete ∞-groupoids.

More generally, given any other cohesive ∞-topos

(Π a Disc a Γ a coDisc) : H→∞Grpd

the inverse image Disc of the global section functor is a full and faithful∞-functor and hence embeds∞Grpd
as a full sub-∞-category of H. We say X ∈ H is a discrete ∞-groupoid if it is in the image of Disc.

This generalizes the traditional use of the terms discrete space and discrete group:

• a discrete space is equivalently a 0-truncated discrete ∞-groupoid;

• a discrete group is equivalently a 0-truncated group object in discrete ∞-groupoids.

6.2.2 Geometric homotopy

We discuss geometric homotopy and path∞-groupoids, 5.2.3, in the context of discrete cohesion, 6.2. Using
sSetQuillen as a presentation for∞Grpd this is entirely trivial, but for the equivalent presentation by TopQuillen

it becomes effectively a discussion of the classical Quillen equivalence TopQuillen ' sSetQuillen from the point
of view of cohesive ∞-toposes. It may be useful to make this explicit.

By the homotopy hypothesis-theorem the∞-toposes Top and∞Grpd are equivalent, hence indistinguish-
able by general abstract constructions in∞-topos theory. However, in practice it can be useful to distinguish
them as two different presentations for an equivalence class of ∞-toposes. For that purpose consider the
following
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Definition 6.2.3. Define the quasi-categories

Top := N(TopQuillen)◦

and
∞Grpd := N(sSetQuillen)◦ .

Here on the right we have the standard model structure on topological spaces, TopQuillen, and the standard
model structure on simplicial sets, sSetQuillen, and N((−)◦) denotes the homotopy coherent nerve of the
simplicial category given by the full sSet-subcategory of these simplicial model categories on fibrant-cofibrant
objects.

For

(| − | a Sing) : TopQuillen

oo |−|

Sing
// sSetQuillen

the standard Quillen equivalence given by the singular simplicial complex-functor and geometric realization,
write

(L| − | a RSing) : Top
oo L|−|

RSing
//∞Grpd

for the corresponding derived∞-functors (the image under the homotopy coherent nerve of the restriction of
| − | and Sing to fibrant-cofibrant objects followed by functorial fibrant-cofibrant replacement) that constitute
a pair of adjoint ∞-functors modeled as morphisms of quasi-categories.

Since this is an equivalence of ∞-categories either functor serves as the left adjoint and right ∞-adjoint
and so we have

Observation 6.2.4. Top is exhibited as a cohesive ∞-topos by

(Π a Disc a Γ a coDisc) : Top

LSing //
oo R|−|

LSing //
oo

R|−|

∞Grpd

In particular a presentation of the intrinsic fundamental ∞-groupoid is given by the familiar singular sim-
plicial complex construction

Π(X) ' RSingX .

Notice that the topology that enters the explicit construction of the objects in Top here does not show
up as cohesive structure. A topological space here is a model for a discrete ∞-groupoid, the topology only
serves to allow the construction of SingX. For discussion of ∞-groupoids equipped with genuine topological
cohesion see 6.3.

6.2.3 Groups

Discrete ∞-groups may be presented by simplicial groups. See 5.1.9.2.

6.2.4 Cohomology

We discuss the general notion of cohomology in cohesive∞-toposes, 5.1.10, in the context of discrete cohesion.
Cohomology in Top is the ordinary notion of (nonabelian) cohomology. The equivalence to∞Grpd makes

manifest in which way this is equivalently the cohomology of groups for connected, homotopy 1-types, the
cohomology of groupoids for general 1-types and generally, of course, the cohomology of ∞-groups.
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6.2.4.1 Group cohomology

Proposition 6.2.5. For G a (discrete) group, A a (discrete) abelian group, the group cohomology of G with
coefficients in the trivial G-module A is

Hn
grp(G,A) ' π0Disc∞Grpd(BG,BnA) .

The case of group cohomology with coefficients in a non-trivial module is a special case of twisted coho-
mology in Disc∞Grpd. This is discussed below in 6.2.6.

6.2.5 Principal bundles

We discuss the general notion of principal∞-bundles in cohesive∞-toposes, 5.1.11, in the context of discrete
cohesion.

There is a traditional theory of strictly principal Kan simplicial bundles, i.e. simplicial bundles with G
action for which the shear map is an isomorphism instead of more generally a weak equivalence. A classical
reference for this is [May67]. A standard modern reference is section V of [GoJa99]. We now compare this
classical theory of strictly principal simplicial bundles to the theory of weakly principal simplicial bundles
from 5.1.11.4.

Definition 6.2.6. Let G be a simplicial group and X a Kan simplicial set. A strictly G-principal bundle
over X is a morphism of simplicial sets P → X equipped with a G-action on P over X such that

1. the G action is degreewise free;

2. the canonical morphism P/G → X out of the ordinary (1-categorical) quotient is an isomorphism of
simplicial sets.

A morphism of stricly G-principal bundles over X is a map P → P ′ respecting both the G-action as well as
the projection to X.

Write sGBund(X) for the category of strictly G-principal bundles.

In [GoJa99] this is definition V3.1, V3.2.

Lemma 6.2.7. Every morphism in sGBund(X) is an isomorphism.

In [GoJa99] this is remark V3.3.

Observation 6.2.8. Every strictly G-principal bundle is evidently also a weakly G-principal bundle, def.
5.1.222. In fact the strictly principal G-bundles are precisely those weakly G-principal bundles for which the
shear map is an isomorphism. This identification induces a full inclusion of categories

sGBund(X) ↪→ wGBund(X) .

Lemma 6.2.9. Every morphism of weakly principal Kan simplicial bundles is a weak equivalence on the
underlying Kan complexes.

Proposition 6.2.10. For G a simplicial group, the category sSetG of G-actions on simplicial sets and G-
equivariant morphisms carries the structure of a simplicial model category where the fibrations and weak
equivalences are those of the underlying simplicial sets.

This is theorem V2.3 in [GoJa99].

Corollary 6.2.11. For G a simplicial group and X a Kan complex, the slice category sSetG/X carries a
simplicial model structure where the fibrations and weak equivalences are those of the underlying simplicial
sets after forgetting the map to X.
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Lemma 6.2.12. Let G be a simplicial group and P → X a weakly G-principal simplicial bundle. Then the
loop space Ω(P→X)Ex∞N(wGBund(X)) has the same homotopy-type as the derived hom space RHomsSetG/X(P, P ).

Proof. By theorem V2.3 of [GoJa99] and lemma 6.2.9 the free resolution P f of P from corollary 5.1.240
is a cofibrant-fibrant resolution of P in the slice model structure of corollary 6.2.11. Therefore the derived
hom space is presented by the simplicial set of morphisms HomsSetG/X(P f ·∆•, P f ) and all these morphisms
are equivalences. Therefore by prop. 2.3 in [DwKa84a] this simplicial set is equivalent to the loop space of
the nerve of the subcategory of sSetG/X on the weak equivalences connected to P f . By lemma 6.2.9 this
subcategory is equivalent (isomorphic even) to the connected component of wGBund(X) on P . �

Proposition 6.2.13. Under the simplicial nerve, the inclusion of observation 6.2.8 yields a morphism

NsGBund(X)→ NwGBund(X) ∈ sSetQuillen

which is

• for all G and X an isomorphism on connected components;

• not in general a weak equivalence.

Proof. Let P → X be a weakly G-principal bundle. To see that it is connected in wGBund(X) to some
strictly G-principal bundle, first observe that by corollary 5.1.240 it is connected via a morphism P f → P
to the bundle

P f := Rec(X ← P/hG
f→WG) ,

which has free G-action, but does not necessarily satisfy strict principality. Since, by theorem 5.1.234, the
morphism P/hG→ X is an acyclic fibration of simplicial sets it has a section σ : X → P/hG (every simplicial
set is cofibrant in sSetQuillen). The bundle

P s := Rec(X
id← X

f◦σ→ WG)

is strictly G-principal, and with the morphism

(P s → P f ) := Rec



P/hG

∼

||||

f

##
X WG

X

id

bbbb
σ

OO

f◦σ

;;


we obtain (non-naturally, due to the choice of section) in total a morphism P s → P f → P of weakly
G-principal bundles from a strictly G-principal replacement P s to P .

To see that the full embedding of strictly G-principal bundles is also injective on connected components,
notice that by lemma 6.2.12 if a weakly G-principal bundle P with degreewise free G-action is connected by
a zig-zag of morphisms to some other weakly G-principal bundle P , then there is already a direct morphism
P → P ′. Since all strictly G-principal bundles have free action by definition, this shows that two of them
that are connected in wGBund(X) are already connected in sGBund(X).

To see that in general NsGBund(X) nevertheless does not have the correct homotopy-type, it is sufficient
to notice that the category sGBund(X) is always a groupoid, by lemma 6.2.7. Therefore NsGBund(X) it is
always a homotopy 1-type. But by theorem 5.1.238 the object NwGBund(X) is not an n-type if G is not
an (n− 1)-type. �
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Corollary 6.2.14. For all Kan complexes X and simplicial groups G there is an isomorphism

π0NsGBund ' H1(X,G) := π0∞Grpd(X,BG)

between the isomorphism classes of strictly G-principal bundles over X and the first nonabelian cohomology
of X with coefficients in G.

But this isomorphism on cohomology does not in general lift to an equivalence on cocycle spaces.

Proof. By prop. 6.2.13 and remark 5.1.239. �

Remark 6.2.15. The first statement of corollary 6.2.14 is the classical classification result for strictly
principal simplicial bundles, for instance theorem V3.9 in [GoJa99].

6.2.6 Twisted cohomology

We discuss the notion of twisted cohomology, 5.1.13, in the context of discrete cohesion.
Specifically, we discuss here ∞-group cohomology for discrete ∞-groups with coefficients in a module

according to 5.1.14.

For G a (discrete) group and A a (discrete) group equipped with a G-action, write BnA//G for the
n-groupoid which is given by the crossed complex, def. 1.2.96 of groups

BnA//G := [A→ 1→ · · · → 1→ G]

coming from the given G-action on A. There is a canonical morphism

BnA//G→ BG .

Proposition 6.2.16. We have a fiber sequence

BnA→ BnA//G→ BG

in Disc∞Grpd.

In view of remark 5.1.246 this fiber sequence exhibits a BnA-fiber bundle which is associated to the
universal G-principal ∞-bundle, 6.2.5.

In generalization of prop. 6.2.5 we have

Proposition 6.2.17. The group cohomology of G with coefficients in the module A is naturally identified
with the id-twisted cohomology of BG, relative to BnA//G,

Hn
grp(G,A) ' π0Disc∞Grpd[id](BG,B

nA//G) .

Remark 6.2.18. Equivalently this says that group cohomology with coefficients in nontrivial modules A
describes the sections of the bundle BnA//G.

610



6.2.7 Representations and associated bundles

We discuss canonical representations of automorphism ∞-groups in Disc∞Grpd, following 5.1.14.

For all of the following, fix a regular uncountable cardinal κ.

Definition 6.2.19. Write Core∞Grpdκ for the core (the maximal ∞-groupoid inside) the full sub-∞-
category of ∞Grpd on the κ-small ∞-groupoids, [L-Topos] def. 5.4.1.3. We regard this canonically as an
object

Core∞Grpdκ ∈ ∞Grpd .

Remark 6.2.20. We have
Core∞Grpdκ '

∐
i

BAut(Fi) ,

where the coproduct ranges over all κ-small homotopy-types [Fi] and where Aut(Fi) is the automorphism
∞-group of any representative Fi of [Fi].

Lemma 6.2.21. For X a κ-small ∞-groupoid, and f : Y → X a morphism in ∞Grpd, the following are
equivalent

1. for all objects x ∈ X the homotopy fiber Yx := Y ×X {x} of f is κ-small;

2. Y is κ-small.

Proof. The implication 1. ⇒ 2. is stated for ∞-categories, and assuming that f is presented by a
Cartesian fibration of simplicial sets, as prop. 5.4.1.4 in [L-Topos]. But by prop. 2.4.2.4 there, every
Cartesian fibration between Kan complexes is a right fibration; and by prop. 2.1.3.3 there over a Kan
complex every right fibration is a Kan fibration. Finally, by the Quillen model structure every morphism of
∞-groupoids is presented by a Kan fibration. Therefore the condition that f be presented by a Cartesian
morphism is automatic in our case.

For the converse, assume that all homotopy fibers are κ-small. We may write X as the ∞-colimit of the
functor constant on the point, over itself ([L-Topos], corollary 4.4.4.9 )

X ' lim
−→x∈X

{x} .

Since ∞Grpd is an ∞-topos, its ∞-colimits are preserved by ∞-pullback. Therefore we have an ∞-pullback
diagram

lim
−→x∈X

Yx
' //

f

��

Y

f

��
lim
−→x∈X

{x} ' // X

.

that exhibits Y as the ∞-colimit over X of the homotopy fibers of f . By corollary 5.4.1.5 in [L-Topos], the
κ-small ∞-groupoids are precisely the κ-compact objects of ∞Grpd. By corollary 5.3.4.15 there, κ-compact
objects are closed under κ-small ∞-colimits. Therefore the above ∞-colimit exhibits Y as a κ-small ∞-
groupoid. �

Definition 6.2.22. Write ̂Core∞Grpdκ → Core∞Grpdκ for the ∞-pullback

̂Core∞Grpdκ //

��

Z|∞Grpd

��
Core∞Grpd //∞Grpd
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of the universal right fibration Z|∞Grpd →∞Grpd, as in [L-Topos] above prop. 3.3.2.5., along the canonical
map that embeds κ-small ∞-groupoids into all ∞-groupoids.

Proposition 6.2.23. The morphism ̂Core∞Grpdκ → Core∞Grpdκ is the κ-compact object-classifier, sec-
tion 6.1.6 of [L-Topos], in ∞Grpd.

Proof. By prop. 3.3.2.5 in [L-Topos] the universal right fibration classifies right fibrations; and for
[X] : ∗ → ∞Grpd the name of an ∞-groupoid X, the homotopy fiber

Z ×∞Grpd {[X]} ' X

is equivalent to X. As in the proof of lemma 6.2.21, every morphism between∞-groupoids is represented by
a Cartesian fibration. Since moreover every morphism out of an ∞-groupoid into ∞Grpd factors essentially

unqiquely through Core∞Grpd it follows that ̂Core∞Grpdκ → Core∞Grpdκ classifies morphisms of ∞-
groupoids with κ-small homotopy fibers. By lemma 6.2.21 and using again that κ-compact objects in
∞Grpd are κ-small ∞-groupoids, these are precisely the relatively κ-compact morphisms from def. 6.1.6.4
of [L-Topos]. �

Remark 6.2.24. By remark 6.2.20 we have that ̂Core∞Grpdκ → Core∞Grpdκ decomposes as a coproduct
of morphisms

∐
[Fi]

ρi indexed by the κ-small homotopy types. According to prop. 6.2.23 the (essentially

unique) homotopy fiber of ρi is equivalent to the κ-small ∞-groupoid Fi itself. Therefore by def. 5.1.189 we
may write

ρi : Fi//Aut(Fi)→ BAut(Fi)

and identify this with the canonical representation of Aut(Fi) on Fi, exhibited, by example 5.1.246, as the
universal Fi-fiber bundle which is ρi-associated to the universal Aut(Fi)-principal bundle.

In terms of this perspective we have the following classical result.

Corollary 6.2.25. For X a connected ∞-groupoid, every morphism P → X in ∞Grpd with κ-small small
homotopy fibers F (over one and hence, up to equivalence, over each object x ∈ X) arises as the F -fiber
bundle ρ-associated to an Aut(F )-principal ∞-bundle, 5.1.11, given by an ∞-pullback of the form

P //

��

F//Aut(F )

��
X // BAut(F )

.

More discussion of discrete principal and discrete associated ∞-bundles is in 5.2.7 and 6.2.5.

Example 6.2.26. Let G be a discrete group (a 1-group), let V be a set, and let ρ : G×V → X be an action
of G on X.

The action groupoid, def. 1.2.77, of this action looks like

V//G '
{
v

g−→ ρ(g)(v) | v ∈ V, g ∈ G
}
.

The evident functor from the action groupoid down to the action groupoid of the trivial action of G on the
point

∗//G '
{
∗ g−→ ∗ | g ∈ G

}
.

is evidently a fibration, and so one immediately finds that V is indeed its homotopy fiber.
Notice that, conversely, given any groupoid G equipped with a functor to the action groupoid of G acting

on the point, then its homotopy fiber need not be a set, it will in general itself be a groupoid, but then it is
that groupoid which is equipped with a G-action.
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6.2.8 Stabilizer groups

We discuss the general concept of stabilizer groups, 5.1.17, realized in geometrically discrete ∞-groupoids.

Example 6.2.27. Consider a discrete group G acting on a set V . By example 6.2.26 the corresponding
homotopy quotient V//G looks like

V//G '
{
v

g−→ ρ(g)(v) | v ∈ V, g ∈ G
}
.

From this it is manifest that given any point v ∈ V , then the loop space object Ωv(V//G) (as in the abstract
definition of stabilizer groups in def. 5.1.289 consists of those g ∈ G such that ρ(g)(v) = v. This is of course
the tradtitional definition of stabilizers.

6.2.9 Dependent linear homotopy types

Example 6.2.28. Let V be a closed symmetric monoidal∞-category with all small∞-limits and∞-colimits,
such as V = EMod for E ∈ CRing∞. For X an ∞-groupoid, write

V(X) := Func(X,V)

for the ∞-category of ∞-functors X → V (also called V-local systems on the homotopy type X). For
f : X −→ Y a morphism of ∞-groupoids, the pullback (precomposition) ∞-functor f∗ : V(Y ) → V(X)
has a left and right ∞-adjoint f! and f∗, given by left and right ∞-Kan extension ([L-Topos] 4.3), hence
constitutes an adjoint triple

(
∑
f

a f∗ a
∏
f

) : V(X)

f! //
oo f∗

f∗

//
V(Y ) .

These are Wirthmüller contexts, def. 3.2.1 and hence make

V(−)

��
Grpd∞

a model for linear homotopy-type theory, def. 3.2.5.

Proof. That f! and f∗ are given by∞-Kan extension is prop. 4.3.3.7 in [L-Topos]. We need to show that
f∗ is strong closed, hence by prop. 3.2.3 that (f! a f∗) satisfies Frobenius reciprocity. To that end notice
that by the very definitions 4.3.2.2 and 4.3.3.2 in [L-Topos] to which prop. 4.3.3.7 there appeals, ∞-Kan is
given pointwise at y ∈ Y given by ∞-colimit over the homotopy fiber f−1(y) ↪→ X:

(f!A)(y) ' lim
−→x∈f−1(y)

A(x) .

(For X and Y just 1-groupoids and V locally presentable this follows, with [L-Topos] A.3.3, also from the
more traditional fact that homotopy Kan extension is pointwise/strong [Ci10].) Hence for f : X → Y , and
for A,B ∈ V(Y ) we have naturally in x ∈ X the equivalences

f!((f
∗B)⊗A) = lim

−→x∈f−1(y)
(f∗B(x)⊗A(x))

' lim
−→x∈f−1(y)

(B(y)⊗A(x))

' B(y)⊗ lim
−→x∈f−1(y)

A(x)

= (B ⊗ f!A)(x)

.
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�
For reference notice that example 6.2.28 reduces to the following special cases.

Example 6.2.29. For E = S the sphere spectrum, then EMod(−) = SMod(−) ' Spectra(−) is the theory
of parameterized spectra. This was shown to be a model for linear homotopy-type theory, def. 3.2.5, in
[MaSi06] and [ABGHR08] (under the translation in [ABG10a]).

6.2.10 Secondary integral transforms

We discuss the realization in Disc∞Grpd, via example 6.2.29, of the general abstract concept of secondary
integral transforms 5.5.5.

Example 6.2.30 (matrix calculus). Let k be a field, let H = Set be the category of sets, and for X ∈ Set let
Mod(X) := kMod(X) = Vectk(X) be the category of X-parameterized vector bundles. This is a model for
linear homotopy-type theory by example 6.2.30. For X ∈ FinSet ↪→ Set a finite set, then an X-dependent
linear type A ∈ Vectk(X) is an (unordered) |X|-tuple of vector spaces, where |X| is the cardinality of X.
The dependent sum produces the direct sum of these:∑

X

A ' ⊕
x∈X

Ax ∈ Vectk .

Consider then X1, X2 ∈ FinSet ↪→ Set two finite sets of cardinality n1 and n2, respectively, and consider
the projection correspondence

X1 ×X2

p1

zz

p2

$$
X1 X2

.

Here for A ∈ [Y,Vectk] an n2-tuple of vector spaces, then (p2)!(p2)∗A is the n2-tuple whose value over
y ∈ X2 is (Ay)⊕

n1 ' Ay ⊗ kn1 . The counit (p2)!(p2)∗A→ A is the morphism that over each y ∈ Y is given
by forming the sum of n1 vectors in Ay.

There is an untwisted fiberwise fundamental class on p2, given by the canonical choice of identification
kn1 ' (kn1)∗ (“regard row-vectors as column vectors”). With this choice the equivalence of prop. 5.5.16
is over y ∈ Y the induced isomorphism Ay ⊗ kn1 ' Ay ⊗ (kn1)∗. The induced fundamental class of def.
5.5.18 is over each y ∈ Y the diagonal Ay → (Ay)⊕

n1
. Dually, the induced measure is over each y ∈ Y the

map dµAy : D(A⊕
n1

y )→ D(Ay) which is the addition operation on n1 covectors. This exhibits the canonical
“counting measure” on the finite set X1.

An n1 × n2-matrix K ∈ Matk(n1, n2) is equivalently a diagram of functors of the form

X1 ×X2

p1

zz

p2

$$
X1

kX $$

X2

kYzz
Vectk

Kv~

.

This defines a (dual) prequantum integral kernel, def. 5.5.22 between A1 = 1X1 and A2 = 1X2 the line
bundle on X1 and X2, respectively, with the morphism

ξ : (i2)∗1X2 = 1X1×X2 −→ 1X1×X2 = (i1)∗1X1

given over (x, y) ∈ X1 ×X2 by multiplication with the matrix element Kx,y.
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The induced integral kernel

∑
X1

1X1

∑
X1

ε

←−
∑

X1×X2

1X1×X2

Ξ←−
∑

X1×X2

1X1×X2

∑
X2

[i2]

←−
∑
X2

1X2

sends a vector

v =


v1

v2

...
vn2

 ∈∑
X2

1X2 ' kn2

first via the diagonal along X1 to the image under
∑

X1×X2

of


v1 v1 · · · v1

v2 v2 · · · v2

...
vn2

vn2
· · · vn2

 ∈ 1X1×X2

then via the integral kernel itself to the image under
∑

X1×X2

of


K1,1v1 K2,1v1 · · · Kn1,1v1

K1,2v2 K2,2v2 · · · Kn1,2v2

...
K1,n2vn2 K2,n2vn2 · · · Kn1,n2vn2

 ∈ 1X1×X2

and then via summation over X2 to the image under
∑
X1

of

 K1,1v1 +K1,2v2 + · · ·+K1,n2
vn2

K2,1v1 +K2,2v2 + · · ·+K2,n2
vn2

...Kn1,1v1 +Kn1,2v2 + · · ·+Kn1,n2
vn2

 ∈ 1Y1
,

hence to the matrix product

K · v ∈
∑
X1

1X1
' kn1 .

The previous example 6.2.30 considered linear types given by k-modules over sets, for k a commutative
ring (a field). This setup has an evident refinement to (stable) homotopy theory, where sets are refined to
∞-groupoids, commutative rings to E∞-rings, and modules to module spectra over these. This homotopy-
theoretic refinement of linear algebra used to be advertised as “brave new algebra”, especially when presented
in terms of model categories of structured ring spectra. In the intrinsic formulation of ∞-category theory it
is called “higher algebra” in [?].

The following example 6.2.31 shows how twisted Umkehr maps in generalized cohomology as in [ABG10a]
and section 4.1.4 [Nui13] are an example of the general concept of secondary integral transforms in dependent
linear homotopy-type theory of def. 5.5.28.

Example 6.2.31 (pull-push in twisted generalized cohomology). Let E ∈ CRing∞ be an E∞-ring spectrum
with ∞-category of ∞-modules denoted EMod. For X ∈ ∞Grpd write

EMod(X) := Func(X,EMod)
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for the ∞-category of ∞-functors from X to EMod. An object in here is sometimes known as an X-
parameterized module spectrum, and sometimes as a local system of E-modules on X.

For f : X −→ Y a morphism of ∞-groupoids, there is an induced adjoint triple

(
∑
f

a f∗ a
∏
f

) : EMod(X)

f! //
oo f∗

f∗

//
EMod(Y ) ,

where f! and f∗ are left and right homotopy Kan extension along f , respectively. By example 6.2.28 this
exhibits EMod as a linear homotopy-type theory.

For X,Y, Z ∈ ∞Grpd three homotopy types, consider a diagram of ∞-functors of the form

Z
g

{{

f

##
X

α ##

Y

β{{
EMod

ξw�

.

This induces a prequantum integral kernel, def. 5.5.22, of the form

EMod(Z)

f∗

&&

g∗

xx
EMod(X)

(p1)∗ ''

EMod(Y )

(p2)∗ww
EMod

with ξ : f∗β −→ g∗α . Comparison with the discussion in [ABG10a] shows that (p1)!α ' E•+α(X) is the
α-twisted E-homology spectrum of X, and D((p1)!α) ' E•+α(X) the α-twisted E-cohomology spectrum.
Similarly for (Y, β).

We may decompose the above slice correspondence ξ as

Z
f

##

g

{{
f∗β

��

X

α ##

Y

β{{
EMod

ξ

z�

.

Consider then the definition for push-forward along the right leg of this diagram the way it appears as def.
4.1.24 in [Nui13]. We show that this is a special case of the general def. 5.5.28.

To that end, notice that in def. 4.1.24 in [Nui13] a choice of fundamental class is taken to be a choice of
γ ∈ EMod(Y ) together with an equivalence

f!f
∗β

'−→ D(f!f
∗γ) .

In the language used here this is a Wirthmüller isomorphism, prop. 5.5.16, for a choice of fiberwise funda-
mental class, def. 5.5.13, under the identification

γ = D(β ⊗ τ) .
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Indeed, prop. 4.1.27 in [Nui13] recovers this identification of τ for the case that f comes from a proper
surjective submersion of smooth manifolds; and remark 4.1.28 there observes that when such f is E-orientable
then γ = d is the degree shift by the dimension of the fibers, as familiar from the classical Poincaré-Thom
collapse map.

Then further in def. 4.1.24 in [Nui13] the corresponding secondary integral transform is taken to be the
composite

E•+f
∗β(Z) D(p!f!f

∗β)

'
��

dµf

''
D(p!D(f!f

∗γ))
p!Dεγ

// Dp!(Dγ) E•−γ(Y )

Comparison identifies the dashed diagonal composite morphism above indeed as the induced measure dµf
in the sense of def. 5.5.18, as indicated. By the discussion in [Nui13] this identifies the secondary integral
transform here as given by the twisted Umkehr maps in generalized cohomology due to [?]∫

i2

ξ dµi2 : E•+α(X) −→ E•+β+τ (Y ) ,

The following example spells out how the construction considered in [HoLu14] is a special case of the
above.

Example 6.2.32. Let C be a stable ∞-category with all limits and colimits, for instance the ∞-category
EMod of ∞-modules over some E∞-ring, in which case the following is a special case of example 6.2.31. For
X,Y ∈ ∞Grpd two homotopy types and f : X −→ Y a morphism between them, consider the prequantum
integral kernel, def. 5.5.22, given by the correspondence

[X, C]
f∗

##

f∗

{{
[Y, C]

id ##

[Y, C]

id{{
[Y, C]

=
w�

and by a choice of objects C,D ∈ Func(X, C) and a choice of a morphism

ξ := f!u : f!f
∗C −→ f!f

∗D .

Suppose this f is such that it carries a functorial un-twisted fundamental class, hence according to def.
5.5.18 a natural transformation

µ := [f ] : id −→ f!f
∗ .

Then according to def. 5.5.28 the dual secondary integral transformation induced by this data is the mor-
phism

D
∫
f

ξ dµf : D
ε←− f!f

∗D
f!(u)←− f!f

∗C
µ←− C .

This is the notion of integration considered in Notation 4.1.6 of [HoLu14] (almost exactly denoted there by
the same symbols as here, only that we call it the dual integration map, following the interpretation in the
examples above).
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6.3 Topological homotopy types

We discuss here Euclidean-topological cohesion, modeled on Euclidean topological spaces and continuous
maps between them. This subsumes the homotopy theory of simplicial topological spaces.

After discussing the construction in

• 6.3.1 – Construction

we discuss some of the general abstract structures in any cohesive ∞-topos, 5.2, realized in ETop∞Grpd.

• 6.3.2 – Stalks

• 6.3.3 – Groups

• 6.3.5 – Geometric homotopy

• 6.3.6 – R1-homotopy / The standard continuum

• 6.3.7 – Manifolds

• 6.3.8 – Cohomology

• 6.3.9 – Principal ∞-bundles

• 6.3.11 – Extensions, Obstructions and Twisted bundles

• 6.3.12 – Universal coverings and geometric Whitehead towers

6.3.1 Construction

Definition 6.3.1. Let CartSptop be the site whose underlying category has as objects the Cartesian spaces
Rn, n ∈ N equipped with the standard Euclidean topology and as morphisms the continuous maps between
them; and whose coverage is given by good open covers.

Proposition 6.3.2. The site CartSptop is an ∞-cohesive site (def 4.1.31).

Proof. Clearly CartSploc has finite products, given by Rk × Rl ' Rk+l, and clearly every object has a
point ∗ = R0 → Rn. In fact CartSptop(∗,Rn) is the underlying set of the Cartesian space Rn.

Let {Ui → U} be a good open covering family in CartSptop. By the very definition of good cover it

follows that the Čech nerve C(
∐
i Ui → U) ∈ [CartSpop, sSet] is degreewise a coproduct of representables.

The condition lim
−→

C(
∐
i Ui)

'→ lim
−→

U = ∗ follows from the nerve theorem [Bors48], which asserts that

lim
−→

C(
∐
i Ui → U) ' SingU , and using that, as a topological space, every Cartesian space is contractible.

The condition lim
←−

C(
∐
i Ui)

'→ lim
←−

U = CartSploc(∗, U) is immediate. Explicitly, for (xi0 ∈ Ui0 , · · · , xin ∈
Uin) a sequence of points in the covering patches of U such that any two consecutive ones agree in U , then
they all agree in U . So the morphism of simplicial sets in question has the right lifting property against all
boundary inclusions ∂∆[n]→ ∆[n] and is therefore is a weak equivalence. �

Definition 6.3.3. Define
ETop∞Grpd := Sh∞(CartSptop)

to be the ∞-category of ∞-sheaves on CartSptop.

Proposition 6.3.4. The ∞-category ETop∞Grpd is a cohesive ∞-topos.

Proof. This follows with prop. 6.3.2 by prop. 4.1.32. �
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Definition 6.3.5. We say that ETop∞Grpd defines Euclidean-topological cohesion. An object in ETop∞Grpd
we call a Euclidean-topological ∞-groupoid.

Definition 6.3.6. Write TopMfd for the category whose objects are topological manifolds that are

• finite-dimensional;

• paracompact;

• with an arbitrary set of connected components (hence not assumed to be second-countable);

and whose morphisms are continuous functions between these. Regard this as a (large) site with the standard
open-cover coverage.

Proposition 6.3.7. The ∞-topos ETop∞Grpd is equivalently that of hypercomplete ∞-sheaves ([L-Topos],
section 6.5) on TopMfd

ETop∞Grpd ' Ŝh∞(TopMfd) .

Proof. Since every topological manifold admits an cover by open balls homeomorphic to a Cartesian
space, we have that CartSptop is a dense sub-site of TopMfd. By theorem C.2.2.3 in [Joh02] it follows that
the sheaf toposes agree

Sh(CartSptop) ' Sh(TopMfd) .

From this it follows directly that the Joyal model structures on simplicial sheaves over both sites (see [Jard87])
are Quillen equivalent. By [L-Topos], prop 6.5.2.14, these present the hypercompletions

Ŝh∞(CartSptop) ' Ŝh∞(TopMfd) .

of the corresponding∞-sheaf∞-toposes. By [Hoy13] we have that Cech∞-sheaves on both sides are already
hypercomplete, so that

Sh∞(CartSptop) ' Ŝh∞(TopMfd) .

�

Definition 6.3.8. Let TopcgH be the 1-category of compactly generated and Hausdorff topological spaces
and continuous functions between them.

Proposition 6.3.9. The category TopcgH is cartesian closed.

See [Stee67]. We write [−,−] : Topop
cgH × TopcgH → TopcgH for the corresponding internal hom-functor.

Definition 6.3.10. There is an evident functor

j : TopcgH → ETop∞Grpd

that sends each topological space X to the 0-truncated ∞-sheaf (ordinary sheaf) represented by it

j(X) : (U ∈ CartSptop) 7→ HomTopcgH(U,X) ∈ Set ↪→∞Grpd .

Corollary 6.3.11. The functor j exhibits TopMfd as a full sub-∞-category of ETop∞Grpd

j : TopMfd ↪→ ETop∞Grpd

Proof. By prop. 6.3.7 this is a special case of the ∞-Yoneda lemma. �
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Remark 6.3.12. While, according to prop. 6.3.7, the model categories [CartSpop
top, sSet]proj,loc and

[TopMfdop, sSet]proj,loc are both presentations of ETop∞Grpd, they lend themselves to different computa-
tions: in the former there are more fibrant objects, fewer cofibrant objects than in the latter, and vice
versa.

In 4.1.2.3 we gave a general discussion concerning this point, here we amplify specific detail for the present
case.

Proposition 6.3.13. Let X ∈ [TopMfdop, sSet] be an object that is globally fibrant, separated and locally
trivial, meaning that

1. X(U) is a non-empty Kan complex for all U ∈ TopMfd;

2. for every covering {Ui → U} in TopMfd the descent morphism X(U)→ [TopMfdop, sSet](C({Ui}), X)
is a full and faithful ∞-functor;

3. for contractible U we have π0[TopMfdop, sSet](C({Ui}), X) ' ∗.

Then the restriction of X along CartSptop ↪→ TopMfd is a fibrant object in the local model structure
[CartSpop

top, sSet]proj,loc.

Proof. The fibrant objects in the local model structure are precisely those that are Kan complexes over
every object and for which the descent morphism is an equivalence for all covers. The first condition is given
by the first assumption. The second and third assumptions imply the second condition over contractible
manifolds, such as the Cartesian spaces. �

Example 6.3.14. Let G be a topological group, regarded as the presheaf over TopMfd that it represents.
Write W̄G for the simplicial presheaf on TopMfd given by the nerve of the topological groupoid (G

→→ ∗).
(We discuss this in more detail in 6.3.3 below.)

The fibrant resolution of W̄G in [TopMfdop, sSet]proj,loc is (the rectification of) its stackification: the
stack GBund of topological G-principal bundles. But the canonical morphism

W̄G→ GBund

is a full and faithful functor (over each object U ∈ TopMfd): it includes the single object of W̄G as the
trivial G-principal bundle. The automorphisms of the single object in W̄G over U are G-valued continuous
functions on U , which are precisely the automorphisms of the trivial G-bundle. Therefore this inclusion is
full and faithful, the presheaf W̄G is a separated prestack.

Moreover, it is locally trivial: every Čech cocycle for a G-bundle over a Cartesian space is equivalent
to the trivial one. Equivalently, also π0GBund(Rn) ' ∗. Therefore W̄G, when restricted CartSptop, does
become a fibrant object in [CartSpop

top, sSet]proj,loc.
On the other hand, letX ∈ TopMfd be any non-contractible manifold. Since in the projective model struc-

ture on simplicial presheaves every representable is cofibrant, this is a cofibrant object in [Mfdop, sSet]proj,loc.However,
it fails to be cofibrant in [CartSpop

top, sSet]proj,loc. Instead, there a cofibrant replacement is given by the Čech
nerve C({Ui}) of any good open cover {Ui → X}.

This yields two different ways for computing the first nonabelian cohomology

H1
ETop(X,G) := π0ETop∞Grpd(X,BG)

in ETop∞Grpd on X with coefficients in G:

1. · · · ' π0[Mfdop, sSet](X, GBund) ' π0GBund(X);

2. · · · ' π0[CartSpop
top, sSet](C({Ui}), W̄G) ' H1(X,G).
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In the first case we need to construct the fibrant replacement GBund. This amounts to constructing G-
principal bundles over all paracompact manifolds and then evaluate on the given one, X, by the 2-Yoneda
lemma. In the second case however we cofibrantly replace X by a good open cover, and then find the Čech
cocycles with coefficients in G on that.

For ordinary G-bundles the difference between the two computations may be irrelevant in practice,
because ordinary G-principal bundles are very well understood. However, for more general coefficient objects,
for instance general topological simplicial groupsG, the first approach requires to find the full∞-sheafification
to the∞-sheaf of all principal∞-bundles, while the second approach requires only to compute specific coycles
over one specific base object. In practice the latter is often all that one needs.

We discuss a few standard techniques for constructing cofibrant resolutions in [CartSpop
top, sSet]proj,loc.

Proposition 6.3.15. Let
X ∈ TopMfd ↪→ [CartSpop

top, sSet]proj,loc

be a topological manifold and let {Ui → X} be a good open cover. Then the Čech nerve

C({Ui}) :=

∫ [n]∈∆

∆[n] ·
∐

i0,··· ,in

j(Ui0) ∩ · · · ∩ j(Uin)

(where j : TopMfd ↪→ [CartSpop, sSet] is the Yoneda embedding) equipped with the canonical projection
C({Ui})→ X is a cofibrant resolution of X.

Proof. The morphism is clearly a stalkwise weak equivalence. Therefore it is a weak equivalence in the
local model structure by theore, 3.1.16.

Moreover, by the very definition of good open cover the non-empty finite intersections of the Ui are
themselves represented by objects in CartSpop. Therefore the Čech nerve is degreewise a coproduct of
representables. Also, its degeneracies split off as a direct summand in each degree. By [Dug01] this means
that it is cofibrant in the global projective model structure. But the cofibrations do not change under left
Bousfield localization to the local model structure, therefore it is cofibrant also there. �

Proposition 6.3.16.
X• ∈ TopMfd∆op

↪→ [CartSpop
top, sSet]proj,loc

be a simplicial manifold, such that there is a choice U of good open covers {Un,i → Xn}i in each degree which
are simplicially compatible in that they arrange into a morphism of bisimplicial presheaves

C(U)•,• → X• .

Then ∫ [n]∈∆

∆[n] · C(U)n,• → X• ,

where ∆ : ∆op → sSet is given by ∆[n] := N(∆/[n]), is a cofibrant resolution in [CartSpop
top]proj,loc.

Proof. First consider ∫ [n]∈∆

∆[n] · C(U)n,• → X•

with the ordinary simplex in the integrand. Over ach object U ∈ CartSptop the coend appearing here is
isomorphic to the diagonal of the given bisimplicial set. Since the diagonal sends degreewise weak equivalences
to weak equivalences, prop. 6.3.15 implies that this is a weak equivalence in the local model structure.

Let ∆→ ∆ be the canonical projection. We claim that the induced morphism∫ [n]∈∆

∆[n] · C(U)n,• →
∫ [n]∈∆

∆[n] · C(U)n,•
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is a global projective weak equivalence, and hence in particular also a local projective weak equivalence.
This follows from the fact that∫ ∆

(−) · (−) : [∆, sSetQuillen]Reedy × [∆op, [CartSpopop , sSet]inj]Reedy → [CartSpopop , sSet]inj]Reedy

is a left Quillen bifunctor prop. 5.1.13. Since every object in [∆op, [CartSpopop , sSet]inj]Reedy is cofibrant, and
since ∆→ ∆ is a Reedy equivalence between Reedy cofibrant objects, the coend over the tensoring preserves
this weak equivalence and produces a global injective weak equivalence which is also a global projective weak
equivalence.

This shows that the morphism is question is a weak equivalence. To see that it is a cofibrant resolution
use that ∆ is also cofibrant in [∆, sSet]proj and that also∫ ∆

(−) · (−) : [∆, sSetQuillen]proj × [∆op, [CartSpopop , sSet]proj]inj → [CartSpopop , sSet]proj]

is a left Quillen bifunctor, prop. 5.1.13. By prop. 6.3.15 we have a cofibration ∅ ↪→ C(U)•,• in [∆op, [CartSpopop , sSet]proj]inj,

which is therefore preserved by
∫∆

∆ · (−). Again using that global projective cofibrations are also local
projective cofibrations, the claim follows. �

6.3.2 Stalks

We discuss the points of ETop∞Grpd.

Proposition 6.3.17. For every n ∈ N there is a topos point

p(n) : Set
oo p(n)∗

p(n)∗

// Sh(Mfd)

as well as a corresponding ∞-topos point

p(n) : ∞Grpd
oo p(n)∗

p(n)∗

// ETop∞Grpd ,

where the inverse image p(n)∗ forms the stalk at the origin of Rn:

p(n)∗ : X 7→ lim
−→
k∈N

X(Dn(1/k)) .

Here for r ∈ R≥0 we denote by Dn(r) ↪→ Rn the inclusion of the standard open n-disk of radius r. In
particular

p(0) ' (Γ a coDisc) .

The collection of topos points {p(n)}n∈N exhibits the topos Sh(Mfd) and the ∞-topos ETop∞Grpd (hence
the sites CartSp and Mfd) as having enough points, def. 3.1.13.

These points form a tower of retractions

p(0)
oo
� � //

((

p(1)
oo
� � //

""

· · · oo� � // p(n)
oo
� � //

||

· · ·

p(∞)

.
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The inductive limit p(∞) := lim
−→
n

p(n) over the tower of inclusions is the topos point whose inverse image is

given by
p(∞)∗X = lim

−→
n

lim
−→
k

X(Dn(1/k)) .

This point alone forms a set of enough points: a morphism f : X → Y is an equivalence precisely if p(∞)∗f
is.

Proof. For convenience, we discuss this in terms of the 1-topos. The discussion for the ∞-topos is
verbatim the same.

First it is clear that for all n ∈ N the functor p(n)∗ is indeed the inverse image of a geometric morphism:
being given by a filtered colimit, it commutes with all colimits and with finite limits.

To see that these points are enough to detect isomorphisms of sheaves, notice the following construction.
For A ∈ Sh(Mfd) and X ∈ Mfd, we obtain a sheaf Ã ∈ Sh(Mfd/opX) on the slice site of open embeddings
into X by restriction of A. The topos Sh(Mfd/opX) clearly has enough points, given by the ordinary stalks
at the ordinary points x ∈ X, formed as

px(n)∗Ã = lim
−→k

Ã(Dn
x (1/k)) ,

where Dn
x (r) ↪→ Rn

φ
↪→ X is a disk of radius r around x in any coordinate patch φ containing X. (Because if

a morphism of sheaves on Mfd/opX is an isomorphism on an open disk around every point of X, then it is
an isomorphism on the covering given by the union of all these disks, hence is an isomorphism of sheaves).
Notice that by defintion of Ã the above stalk is in fact independent of the point x and coincides with p(n)∗

applied to the original A:
· · · ' lim

−→k

A(Dn(1/k)) =: p(n)∗A .

So if for a morphism f : A → B in Sh(Mfd) all the p(n)∗f are isomorphisms, then for every X ∈ Mfd the
induced morphism f̃ : Ã→ B̃ is an isomorphism, hence is an isomorphism f̃(X) = f(X) on global sections.
Since this is true for all X, it follows that f is already an isomorphism. This shows that {p(n)}n∈N is a set
of enough points of Sh(Mfd).

To see that these points sit in a sequence of retractions as stated, choose a tower of inclusions

R0 ↪→ R1 ↪→ R2 ↪→ · · · ∈ Mfd ,

where each morphism is isomorphic to Rn × R0 (id,0)→ Rn × R1.
This induces for each n ∈ N and r ∈ R an inclusion of disks Dn(r) → Dn+1(r), which regards Dn(r) as

an equatorial plane of Dn+1(r), and it induces a projection Dn+1(r), which together exhibit a retraction

Dn //

id

55Dn+1 // Dn .

All this is natural with respect to the inclusions Dn( 1
k+1 )→ Dn( 1

k ). Therefore we have induced morphisms

lim
−→k

X(Dn(1/k)) //

id

22
lim
−→k

X(Dn+1(1/k)) // lim
−→k

X(Dn(1/k)) .

Since these are natural in X, they consistute natural transformations

p(n)∗ //

id

44p(n+ 1)∗ // p(n)∗
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of inverse images, hence morphisms

p(n) //

id

44p(n+ 1) // p(n)

of geometric morphisms.
Finally, since equivalences are stable under retract, it follows that p(n)∗f is an equivalence if p(n + 1)∗

is. Similarly, for every n ∈ N we have a retract

p(n) //

id

66p(∞) // p(n)

seen by noticing that each p(n) naturally forms a co-cone under the above tower of inclusions. So an
isomorphism under p(∞)∗ implies one under all the p(n). �

6.3.3 Groups

We discuss cohesive ∞-group objects, def 5.1.9, realized in ETop∞Grpd: Euclidean-topological ∞-groups.

Recall that by prop. 5.1.170 every ∞-group object in ETop∞Grpd has a presentation by a presheaf of
simplicial groups. Among the presentations for concrete ∞-groups in ETop∞Grpd are therefore simplicial
topological groups.

Write sTopcgH for the category of simplicial objects in TopcgH, def. 6.3.8. For X,Y ∈ sTopcgH, write

sTopcgH(X,Y ) :=

∫
[k]∈∆

[Xk, Yk] ∈ TopcgH

for the hom-object, where in the integrand of the end [−,−] is the internal hom of TopcgH.

Definition 6.3.18. We say a morphism f : X → Y of simplicial topological spaces is a global Kan fibration
if for all n ∈ N and 0 ≤ k ≤ n the canonical morphism

Xn → Yn ×sTopcgH(Λ[n]i,Y ) sTopcgH(Λ[n]i, X)

in TopcgH has a section, where Λ[n]i ∈ sSet ↪→ sTopcgH is the ith n-horn regarded as a discrete simplicial
topological space.

We say a simplicial topological space X• is a (global) Kan simplicial space if the unique morphism X• → ∗
is a global Kan fibration, hence if for all n ∈ N and all 0 ≤ i ≤ n the canonical continuous function

Xn → sTopcgH(Λ[n]i, X)

into the topological space of ith n-horns admits a section.

This global notion of topological Kan fibration is considered for instance in [BrSz89], def. 2.1, def. 6.1. In
fact there a stronger condition is imposed: a Kan complex in Set automatically has the lifting property not
only against all full horn inclusions but also against sub-horns; and in [BrSz89] all these fillers are required
to be given by global sections. This ensures that with X globally Kan also the internal hom [Y,X] ∈ sTopcgH

is globally Kan, for any simplicial topological space Y . This is more than we need and want to impose here.
For our purposes it is sufficient to observe that if f is globally Kan in the sense of [BrSz89], def. 6.1, then
it is so also in the above sense.

For G a simplicial group, there is a standard presentation of its universal simplicial bundle by a mor-
phism of Kan complexes traditionally denoted WG→ W̄G. This construction has an immediate analog for
simplicial topological groups. A review is in [RoSt12].
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Proposition 6.3.19. Let G be a simplicial topological group. Then

1. G is a globally Kan simplicial topological space;

2. W̄G is a globally Kan simplicial topological space;

3. WG→ W̄G is a global Kan fibration.

Proof. The first and last statement appears as [BrSz89], theorem 3.8 and lemma 6.7, respectively, the
second is noted in [RoSt12]. �
Let for the following Tops ⊂ TopcgH be any small full subcategory. Under the degreewise Yoneda embedding

sTops ↪→ [Topop
s , sSet] simplicial topological spaces embed into the category of simplicial presheaves on Tops.

We equip this with the projective model structure on simplicial presheaves [Topop
s , sSet]proj.

Proposition 6.3.20. Under this embedding a global Kan fibration, def. 6.3.18, f : X → Y in sTops maps
to a fibration in [Topop

s , sSet]proj.

Proof. By definition, a morphism f : X → Y in [Topop
s , sSet]proj is a fibration if for all U ∈ Tops and all

n ∈ N and 0 ≤ i ≤ n diagrams of the form

Λ[n]i · U //

��

X

f

��
∆[n] · U // Y

have a lift. This is equivalent to saying that the function

Hom(∆[n] · U,X)→ Hom(∆[n] · U, Y )×Hom(Λ[n]i·U,Y ) Hom(Λ[n]i · U,X)

is surjective. Notice that we have

Hom[Topop
s ,sSet](∆[n] · U,X) = HomsTops(∆[n] · U,X)

=

∫
[k]∈∆

HomTops(∆[n]k × U,Xk)

=

∫
[k]∈∆

HomTops(U, [∆[n]k, Xk])

= HomTop(U,

∫
[k]∈∆

[∆[n]k, Xk])

= HomTops(U, sTop(∆[n], X))

= HomTops(U,Xn)

and analogously for the other factors in the above morphism. Therefore the lifting problem equivalently says
that the function

HomTop(U, Xn → Yn ×sTops(Λ[n]i,Y ) sTops(Λ[n]i, X) )

is surjective. But by the assumption that f : X → Y is a global Kan fibration of simplicial topological
spaces, def. 6.3.18, we have a section σ : Yn ×sTops(Λ[n]i),Y sTops(Λ[n]i, X)→ Xn. Therefore HomTops(U, σ)
is a section of our function. �
In section 6.3.5 we use this in the discussion of geometric realization of simplicial topological groups.

In summary, we find that WG → W̄G is a presentation of the universal G-principal ∞-bundle, 1.2.6.4.
).

Proposition 6.3.21. Let G ∈ ETop∞Grpd be a group object presented in [CartSpop
top, sSet]proj,loc by a

simplicial topological group (to be denoted by the same symbol) which is degreewise a topological manifold.
Then its delooping BG, def. 5.1.152, is presented by W̄G.
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Proof. By prop. 6.3.19 and prop. 6.3.20 the morphism WG→ W̄G is a fibration presentation of ∗ → BG
in [CartSpop

top, sSet]proj. Since W̄G is evidently connected, and since we have an ordinary pullback diagram

G //

��

WG

��
∗ // W̄G

,

it follows with the discussion in 5.1.1.2.1 that this presents in ETop∞Grpd the ∞-pullback

G //

��

∗

��
∗ // BG

that defines the delooping BG. �

6.3.4 Representations

We discuss the intrinsic notion of ∞-group representations, 5.1.14, realized in the context ETop∞Grpd.

We make precise the role of topological action groupoids, introduced informally in 1.2.6.1.

Proposition 6.3.22. Let X be a toplogical manifold, and G a topological group. Then the category of
continuous G-actions on X in the traditional sense is equivalent to the category of G-actions on X in the
cohesive ∞-topos ETop∞Grpd, according to def. 5.1.189.

Proof. For ρ : X ×G→ X a given G-action, define the action groupoid

X//G := ( X ×G
ρ //

p1

// X )

with the evident composition operation. This comes with the evident morphism of topological groupoids

X//G→ ∗//G ' BG ,

with BG as in prop. 6.4.19. It is immediate that regarding this as a morphism in [CartSpop
top, sSet]proj in the

canonical way, this is a fibration. Therefore, by 5.1.9, the homotopy fiber of this morphism in Smooth∞Grpds
is given by the ordinary fiber of this morphism in simplicial presheaves. This is manifestly X.

Accordingly this construction constitutes an embedding of the traditional G actions on X into the cat-
egory RepG(X) from def. 5.1.189. By turning this argument around, one finds that this embedding is
essentially surjective. �

Remark 6.3.23. Let X,∈∈ TopMfd, G a topological group, and let ρ : X×G→ X be a continuous action.
Write X//G ∈ ETop∞Grpd for the corresponding action groupoid. As a simplicial topological space the
action groupoid is

X//G =

 X ×G×G
(ρ,id) //
(id,·) //

(p1,p2)
// X ×G

ρ //
p1

// X


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6.3.5 Geometric homotopy

We discuss the intrinsic geometric homotopy, 5.2.3, in ETop∞Grpd.

• 6.3.5.1 – Geometric realization of topological ∞-groupoids;

• 6.3.5.2 – Fundamental path ∞-groupoids

6.3.5.1 Geometric realization of topological ∞-groupoids We start by recalling some facts about
geometric realization of simplicial topological spaces.

Definition 6.3.24. For X• ∈ sTopcgH a simplicial topological space, write

• |X•| :=
∫ [k]∈∆

∆k
Top ×Xk for its geometric realization;

• ‖X•‖ :=
∫ [k]∈∆+ ∆k

Top ×Xk for its fat geometric realization,

where in the second case the coend is over the subcategory ∆+ ↪→ ∆ spanned by the face maps.

See [RoSt12] for a review.

Proposition 6.3.25. Ordinary geometric realization | − | : sTopcgH → TopcgH preserves pullbacks. Fat
geometric realization preserves pullbacks when regarded as a functor ‖ − ‖ : sTopcgH → TopcgH/‖ ∗ ‖.

Definition 6.3.26. We say

• a simplicial topological space X ∈ sTopcgH, def. 6.3.8, is good if all degeneracy maps si : Xn → Xn+1

are closed Hurewicz cofibrations;

• a simplicial topological group G is well pointed if all units in : ∗ → Gn are closed Hurewicz cofibrations.

The notion of good simplicial topological spaces goes back to [Seg73]. For a review see [RoSt12].

Proposition 6.3.27. For X ∈ sTops a good simplicial topological space, its ordinary geometric realization
is equivalent to its homotopy colimit, when regarded as a simplicial diagram:

sTops
� � // [Topop

s , sSet]proj
hocolim // TopQuillen .

Proof. Write ‖ − ‖ for the fat geometric realization. By standard facts about geometric realization of
simplicial topological spaces [Seg70] we have the following zig-zag of weak homotopy equivalences

‖X•‖

'
��

‖ |Sing(X•)| ‖
'oo

'
��
'
��

|X•| | |Sing(X•)| |
iso
|diagSing(X•)•|

' // |hocolimnSingXn|

.

By the Bousfield-Kan map, the object on the far right is manifestly a model for the homotopy colimit
hocolimnXn. �

Proposition 6.3.28. For X ∈ TopMfd and {Ui → X} a good open cover, the Čech nerve C({Ui}) :=∫ [k]∈∆
∆[k] ·

∐
i0,··· ,in Ui0 ×X · · · × Uin is cofibrant in [CartSpop

top, sSet]proj,loc and the canonical projection
C({Ui})→ X is a weak equivalence.
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Proof. Since the open cover is good, the Čech nerve is degreewise a coproduct of representables, hence is
a split hypercover in the sense of [DHS04], def. 4.13. Moreover

∐
i Ui → X is directly seen to be a generalized

cover in the sense used there (below prop. 3.3) By corollary A.3 there, C({Ui})→ X is a weak equivalence.
�

Proposition 6.3.29. Let X be a paracompact topological space that admits a good open cover by open
balls (for instance the topological space underlying a smooth manifold). Write i(X) ∈ ETop∞Grpd for
its incarnation as a 0-truncatd Euclidean-topological ∞-groupoid. Then Π(X) := Π(i(X)) ∈ ∞Grpd is
equivalent to the standard fundamental∞-groupoid of X, presented by the singular simplicial complex SingX :
[k] 7→ HomTopcgH

(∆k, X)
Π(X) ' SingX .

Equivalently, under geometric realization L| − | : ∞Grpd → Top we have that there is a weak homotopy
equivalence

X ' |Π(X)| .

Proof. By the proof of prop. 4.1.32 we have an equivalence Π(−) ' L lim
−→

to the derived functor of the

sSet-colimit functor lim
−→

: [CartSpop, sSet]proj,loc → sSetQuillen.

To compute this derived functor, let {Ui → X} be a good open cover by open balls, hence homeomor-
phically by Cartesian spaces. By goodness of the cover the Čech nerve C(

∐
i Ui → X) ∈ [CartSpop, sSet] is

degreewise a coproduct of representables, hence a split hypercover. By [DHS04] we have that in this case
the canonical morphism

C(
∐
i

Ui → X)→ X

is a cofibrant resolution of X in [CartSpop, sSet]proj,loc. Accordingly we have

Π(X) ' (L lim
−→

)(X) ' lim
−→

C(
∐
i

Ui → X) .

Using the equivalence of categories [CartSpop, sSet] ' [∆op, [CartSpop,Set] and that colimits in presheaf
categories are computed objectwise, and finally using that the colimit of a representable functor is the point
(an incarnation of the Yoneda lemma) we have that Π(X) is presented by the Kan complex that is obtained
by contracting in the Čech nerve C(

∐
i Ui) each open subset to a point.

The classical nerve theorem [Bors48] asserts that this implies the claim. �
Regarding Top itself as a cohesive ∞-topos by 6.2.2, the above proposition may be stated as saying that for

X a paracompact topological space with a good covering, we have

ΠETop∞Grpd(X) ' ΠTop(X) .

Proposition 6.3.30. Let X• be a good simplicial topological space that is degreewise paracompact and
degreewise admits a good open cover, regarded naturally as an object X• ∈ sTopcgH → ETop∞Grpd.

We have that the intrinsic Π(X•) ∈ ∞Grpd coincides under geometric realization L|− | :∞Grpd
'→ Top

with the ordinary geometric realization of simplicial topological spaces |X•|Top∆op from def. 6.3.25:

|Π(X•)| ' |X•| .

Proof. Write Q for Dugger’s cofibrant replacement functor, prop. 3.1.22, on [CartSpop, sSet]proj,loc. On
a simplicially constant simplicial presheaf X it is given by

QX :=

∫ [n]∈∆

∆[n] ·

( ∐
U0→···→Un→X

U0

)
,
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where the coproduct in the integrand of the coend is over all sequences of morphisms from representables
Ui to X as indicated. On a general simplicial presheaf X• it is given by

QX• :=

∫ [k]∈∆

∆[k] ·QXk ,

which is the simplicial presheaf that over any Rn ∈ CartSp takes as value the diagonal of the bisimplicial
set whose (n, r)-entry is

∐
U0→···→Un→Xk CartSptop(Rn, U0). Since coends are special colimits, the colimit

functor itself commutes with them and we find

Π(X•) ' (L lim
−→

)X•

' lim
−→

QX•

'
∫ [n]∈∆

∆[k] · lim
−→

(QXk) .

By general facts about the Reedy model structure on bisimplicial sets, this coend is a homotopy colimit over
the simplicial diagram lim

−→
QX• : ∆→ sSetQuillen

· · · ' hocolim∆ lim
−→

QX• .

By prop. 6.3.29 we have for each k ∈ N weak equivalences lim
−→

QXk ' (L lim
−→

)Xk ' SingXk, so that

· · · ' hocolim∆SingX•

'
∫ [k]∈∆

∆[k] · SingXk

' diag Sing(X•)•

.

By prop. 6.3.27 this is the homotopy colimit of the simplicial topological space X•, given by its geometric
realization if X• is proper. �

6.3.5.2 Fundamental path ∞-groupoids We discuss the general abstract notion of path∞-groupoid,
5.2.3, realized in ETop∞Grpd.

Proposition 6.3.31. Let X be a paracompact topological space admitting a good open cover, canonically
regarded as an object of ETop∞Grpd, then the path ∞-groupoid

∫
(X) is presented by the simplicial presheaf

Disc SingX ∈ [CartSpop, sSet] which is constant on the singular simplicial complex of X:

Disc SingX : (U, [k]) 7→ SingX .

Proof. By definition we have
∫

(X) = Disc Π(X). By prop. 6.3.29 Π(X) ∈ ∞Grpd is presented by
SingX. By prop. 4.1.32 the ∞-functor Disc is presented by the left derived functor of the constant presheaf
functor. Since every object in sSetQuillen is cofibrant this is just the plain constant presheaf functor. �

A more natural presentation of the idea of a topological path ∞-groupoid may be one that remembers
the topology on the space of k-dimensional paths:

Write
∆•Top : ∆ −→ TopMfd ↪→ ETop∞Grpd

for the standard topological simplices organized as a cosimplicial topological space.
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Definition 6.3.32. For X a paracompact topological space admitting a good open cover, write SingX ∈
[CartSpop, sSet] for the simplicial presheaf given by

SingX := lim
−→

[∆•Top, X] : (U, [k]) 7→ HomTop(U ×∆k, X) .

Proposition 6.3.33. Also SingX of def. 6.3.32, is a presentation of
∫
X.

Proof. For each U ∈ CartSp the canonical inclusion of simplicial sets

SingX → Sing(X)(U)

is a weak homotopy equivalence, because U is continuously contractible. Therefore the canonical inclusion
of simplicial presheaves

Disc SingX → SingX

is a weak equivalence in [CartSpop, sSet]proj,loc. �

Remark 6.3.34. Typically one is interested in mapping out of
∫

(X). While Disc SingX is always cofibrant
in [CartSpop, sSet]proj, the relevant resolutions of Sing(X) may be harder to determine.

Below in prop. 6.4.36 we see that the construction in def. 6.3.32 yields a presentation of
∫

generally.

6.3.5.3 Examples We discuss some examples related to the geometric realization of topological ∞-
groupoids.

Proposition 6.3.35. Let K and G be topological groups whose underlying topological space is a manifold.
Consider a morphism of topological groups f : K → G that is a homotopy equivalence of the underlying
topological manifolds. Then

ΠBf : Π(BK) // Π(BG)

is a weak equivalence.

Proof. By prop. 6.3.21 the delooping BG is presented in [CartSptopop , sSet]proj,loc by (BGch) : n 7→ G×n.
Therefore Π(K×n) → Π(G×n) is an equivalence in ∞Grpd. By the discussion in 5.1.9 we have that the
delooping BK is the ∞-colimit

BK ' lim
→ n

K×n

and similarly for BG. The morphism of moduli stacks is the ∞-colimit of the component inclusions

c ' lim
→ n

(K×n → G×n) .

Since Π is left adjoint, it commutes with these colimits, so that Π(c) is exhibited as an ∞-colimit over
equivalences, hence as an equivalence. �

Proposition 6.3.36. Let X be a topological manifold, equipped with a continuous action ρ : X ×G→ X of
a group in TopMfd. Then the geometric realization of the corresponding action groupoid, def. 6.3.22, is the
Borel space

Π(X//G) ' |X//G| = X ×G EG .
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Proof. By remark 6.3.23 the action groupoid as an object in TopMfd∆op

↪→ [CartSpTop, sSet] is

X//G =

 X ×G×G
(ρ,id) //
(id,·) //

(p1,p2)
// X ×G

ρ //
p1

// X

 .

Accordingly

EG := G//G =

 G×G×G
(·,id) //
(id,·) //

(p1,p2)
// G×G

· //
p1

// X

 .

Therefore we have an isomorphism
X//G = X ×G EG .

By prop. 6.3.25 geometric realization preserves the product involved here, and, being given by a coend, it
preserves the quotient involved, so that we have isomorphisms

|X//G| = |X ×G EG| = X ×G EG .

�
Below in 6.3.8.3 we discuss how the cohomology of the Borel space is related to the equivariant cohomology

of X.

6.3.6 R1-homotopy / The standard continuum

We discuss that the standard continuum real line R ∈ SmoothMfd ↪→ ETop∞Grpd regarded in Euclidean-
topological cohesion is indeed a contiuum A1-line object in the general abstract sense of 5.2.3.

Proposition 6.3.37. The real line R1 ∈ TopMfd ↪→ ETop∞Grpd is a geometric interval, def. 5.2.48,
exhibiting the cohesion of ETop∞Grpd.

Proof. Since CartSptop is a site of definition for ETop∞Grpd and is both ∞-cohesive (prop. 6.3.2) and
the syntactic category of a Lawvere algebraic theory, with

A1 = R1 ,

the claim follows with prop. 5.2.51. �

Remark 6.3.38. The statement of prop. 6.3.37 is the central claim of the notes [Dug99], where it essentially
appears stated as theorem 3.4.3.

6.3.7 Manifolds

We discuss the realization of the general abstract notion of manifolds in a cohesive ∞-topos in 5.2.9 realized
in Euclidean-topological cohesion.

With A := R ∈ TopMfd ↪→ ETop∞Grpd the standard line object exhibiting the cohesion of ETop∞Grpd
according to prop. 6.3.37, def. 5.2.56 is equivalent to the traditional definition of topological manifolds.

6.3.8 Cohomology

We dicuss aspects of the intrinsic cohomology (5.1.10) in ETop∞Grpd.
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6.3.8.1 Čech cohomology We expand on the way that the intrinsic cohomology in ETop∞Grpd is
expressed in terms of traditional Čech cohomology over manifolds, further specializing the general discussion
of 3.1.5.

Proposition 6.3.39. For

1. X ∈ TopMfd ↪→ ETop∞Grpd

2. A ∈ [CartSpop, sSet]proj,loc → ETop∞Grpd

with A fibrant, then the intrinsic cocycle∞-groupoid ETop∞Grpd(X,A) is given by the Čech hyper-cohomology
cocycles on X with coefficients in the simplicial presheaf A.

Proof. Let {Ui → X} be a good open cover. By prop. 6.3.28 its Čech nerve C({Ui})
'→ X is a cofibrant

replacement for X (it is a split hypercover [Dug01] and hence cofibrant because the cover is good, and it is
a weak equivalence because it is a generalized cover in the sense of [DHS04]). Since [CartSpop, sSet]proj,loc is
a simplicial model category, it follows that the cocycle ∞-groupoid in question is given by the Kan complex
[CartSpop, sSet](C({Ui}), A). One checks that its vertices are Čech cocycles as claimed, its edges are Čech
homotopies, and so on. �

6.3.8.2 Nonabelian cohomology with constant coefficients

Definition 6.3.40. Let A ∈ ∞Grpd be any discrete ∞-groupoid. Write |A| ∈ TopcgH for its geometric
realization. For X any topological space, the nonabelian cohomology of X with coefficients in A is the set
of homotopy classes of maps X → |A|

HTop(X,A) := π0Top(X, |A|) .

We say Top(X, |A|) itself is the cocycle ∞-groupoid for A-valued nonabelian cohomology on X.
Similarly, for X,A ∈ ETop∞Grpd two Euclidean-topological ∞-groupoids, write

HETop(X,A) := π0ETop∞Grpd(X,A)

for the intrinsic cohomology of ETop∞Grpd on X with coefficients in A.

Proposition 6.3.41. Let A ∈ ∞Grpd , write DiscA ∈ ETop∞Grpd for the corresponding discrete topo-
logical ∞-groupoid. Let X be a paracompact topological space admitting a good open cover, regarded as
0-truncated Euclidean-topological ∞-groupoid.

We have an isomorphism of cohomology sets

HTop(X,A) ' HETop(X,DiscA)

and in fact an equivalence of cocycle ∞-groupoids

Top(X, |A|) ' ETop∞Grpd(X,DiscA) .

Proof. By the (Π a Disc)-adjunction of the locally ∞-connected ∞-topos ETop∞Grpd we have

ETop∞Grpd(X,DiscA) ' ∞Grpd(Π(X), A) '
|−| // Top(|ΠX|, |A|) .

From this the claim follows by prop. 6.3.29. �
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6.3.8.3 Equivariant cohomology

Proposition 6.3.42. Given an action ρ : X×G→ X of a topological group G on a topological manifold X,
as in prop. 6.3.36, n ∈ N and K a discrte group, abelian if n ≥ 2, then the G-equivariant cohomology, def.
5.1.176, of X with coefficients in K is the cohomology of the Borel space, prop. 6.3.36, with values in K

Hn
G(X,K) ' Hn(X ×G EG,K) .

Proof. The equivariant cohomology is the cohomology of the action groupoid

Hn
G(X,K) ' π0ETop∞Grpd(X//G,BnK) .

Since K is assumed discrete, this is equivalently, as in prop. 6.3.41,

· · · ' π0∞Grpd(Π(X//G),BnK)

By prop. 6.3.36 this is
· · · ' π0Top(X ×G EG,BnK) ' Hn(X ×G EG,K) .

�

6.3.9 Principal bundles

We discuss principal ∞-bundles, 5.1.11, with topological structure and presented by topological simplicial
principal bundles.

Proposition 6.3.43. If G is a well-pointed simplicial topological group, def. 6.3.26, then both WG and W̄G
are good simplicial topological spaces.

Proof. For W̄G this is [RoSt12] prop. 19. For WG this follows with their lemma 10, lemma 11, which
says that WG = Dec0W̄G and the observations in the proof of prop. 16 that Dec0X is good if X is. �

Proposition 6.3.44. For G a well-pointed simplicial topological group, the geometric realization of the
universal simplicial principal bundle WG→ W̄G

|WG| → |W̄G|

is a fibration resolution in TopQuillen of the point inclusion ∗ → B|G| into the classifying space of the
geometric realization of G.

This is [RoSt12], prop. 14.

Proposition 6.3.45. Let X• be a good simplicial topological space and G a well-pointed simplicial topological
group. Then for every morphism

τ : X → W̄G

the corresponding topological simplicial principal bundle P over X is itself a good simplicial topological space.

Proof. The bundle is the pullback P = X ×W̄GWG in sTopcgH

P //

��

W̄G

��
X

τ // W̄G

.
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By assumption on X and G and using prop. 6.3.43 we have that X, W̄G and WG are all good simplicial
spaces. This means that the degeneracy maps of P• are induced degreewise by morphisms between pullbacks
in TopcgH that are degreewise closed cofibrations, where one of the morphisms in each pullback is a fibration.
This implies that also these degeneracy maps of P• are closed cofibrations. �

Proposition 6.3.46. The homotopy colimit operation

sTops ↪→ [Topop
s , sSet]proj

hocolim→ TopQuillen

preserves homotopy fibers of morphisms τ : X → W̄G with X good and G well-pointed (def. 6.3.26) and
globally Kan (def. 6.3.18).

Proof. By prop. 6.3.19 and prop. 6.3.20 we have that WG → W̄G is a fibration resolution of the
point inclusion ∗ → W̄G in [Topop, sSet]proj. By general properties of homotopy limits this means that the
homotopy fiber of a morphism τ : X → W̄G is computed as the ordinary pullback P in

P //

��

WG

��
X

τ // W̄G

(since all objects X, W̄G and WG are fibrant and at least one of the two morphisms in the pullback diagram
is a fibration) and hence

hofib(τ) ' P .
By prop. 6.3.19 and prop. 6.3.45 it follows that all objects here are good simplicial topological spaces.
Therefore by prop. 6.3.27 we have

hocolimP• ' |P•|
in Ho(TopQuillen). By prop. 6.3.25 we have that

· · · = |X•| ×|W̄G| |WG| .

But prop. 6.3.44 says that this is again the presentation of a homotopy pullback/homotopy fiber by an
ordinary pullback

|P | //

��

|WG|

��
|X| τ // |W̄G|

,

because |WG| → |W̄G| is again a fibration resolution of the point inclusion. Therefore

hocolimP• ' hofib(|τ |) .

Finally by prop. 6.3.27 and using the assumption that X and W̄G are both good, this is

· · · ' hofib(hocolimτ) .

In total we have shown
hocolim(hofib(τ)) ' hofib(hocolim(τ)) .

�

We now generalize the model of discrete principal ∞-bundles by simplicial principal bundles over simpli-
cial groups, from 6.2.4, to Euclidean-topological cohesion.

Recall from prop. 4.1.35 that over any ∞-cohesive site Π preserves homotopy pullbacks over discrete
objects. The following proposition says that on ETop∞Grpd it preserves also a large class of ∞-pullbacks
over non-discrete objects.
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Theorem 6.3.47. Let G be a well-pointed simplicial group object in TopMfd which degreewise admits a good
open cover. Then the ∞-functor Π : ETop∞Grpd→∞Grpd preserves homotopy fibers of all morphisms of
the form X → BG that are presented in [CartSpop

top, sSet]proj by morphism of the form X → W̄G with X
fibrant

Π(hofib(X → W̄G)) ' hofib(Π(X → W̄G)) .

Proof. By prop. 5.1.9 we may discuss the homotopy fiber in the global model structure on simplicial

presheaves. Write QX
'→ X for the global cofibrant resolution given by QX : [n] 7→

∐
{Ui0→···→Uin→Xn}

Ui0 ,

where the Uik range over CartSptop [Dug01]. This has degeneracies splitting off as direct summands, and
hence is a good simplicial topological space that is degreewise in TopMfd. Consider then the pasting of two
pullback diagrams of simplicial presheaves

P ′

����

' // P //

����

WG

����
QX

' // X // W̄G

.

Here the top left morphism is a global weak equivalence because [CartSpop
top, sSet]proj is right proper. Since the

square on the right is a pullback of fibrant objects with one morphism being a fibration, P is a presentation
of the homotopy fiber of X → W̄G. Hence so is P ′, which is moreover the pullback of a diagram of good
simplicial spaces. By prop. 6.3.30 we have that on the outer diagram Π is presented by geometric realization
of simplicial topological spaces | − |. By prop. 6.3.44 we have a pullback in TopQuillen

|P | //

��

|WG|

����
|QX| // |W̄G|

which exhibits |P | as the homotopy fiber of |QX| → |W̄G|. But this is a model for |Π(X → W̄G)|. �

6.3.10 Gerbes

We discuss ∞-gerbes, 5.1.19, in the context of Euclidean-topological cohesion, with respect to the cohesive
∞-topos H := ETop∞Grpd from def. 6.3.3.

For X ∈ TopMfd write
X := H/X

for the slice of H over X, as in remark 5.1.177. This is equivalently the∞-category of∞-sheaves on X itself

X ' Sh∞(X) .

By remark 5.1.177 this comes with the canonical étale essential geometric morphism

(X! a X∗ a X∗) : H/X

X! //
oo X∗

X∗

// H .

Any topological group G is naturally an object G ∈ Grp(H) ⊂ ∞Grp(H) and hence as an object

X∗G ∈ Grp(X ) .
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Under the identification X ' Sh∞(X) this is the sheaf of grpups which assigns sets of continuous functions
from open subsets of X to G:

X∗G : (U ⊂ X) 7→ C(U,G) .

Since the inverse image X∗ commutes with looping and delooping, we have

X∗BG ' BX∗G .

On the left BG is the abstract stack of topological G-principal bundles, regarded over X, on the right is the
stack over X of X∗G-torsors.

More generally, an arbitrary group object G ∈ Grp(X ) is (up to equivalence) any sheaf of groups on X,
and BG ∈ X is the corresponding stack of G-torsors over X. (A detailed discussion of these is for instance
in [Br06]. )

Definition 6.3.48. Let G = U(1) := R/Z and n ∈ N, n ≥ 1. Write Bn−1U(1) ∈ ∞Grp(H) for the
topological circle n-group.

A Bn−1U(1)-n-gerbe we call a circle n-gerbe.

Proposition 6.3.49. The automorphism ∞-groups, def. 5.1.155, of the circle n-groups, def. 6.3.48, are
given by the following crossed complexes (def. 1.2.97)

AUT(U(1)) ' [U(1)
0→ Z2] ,

AUT(BU(1)) ' [U(1)
0→ U(1)

0→ Z2] .

Here Z2 acts on the U(1) by the canonical action via Z2 ' AutGrp(U(1)).
The outer automorphism ∞-groups, def. 5.1.336 are

Out(U(1)) ' Z2 ;

Out(BU(1)) ' [U(1)
0→ Z2] .

Hence both ∞-groups are, of course, their own center.

With prop. 5.1.333 it follows that

π0U(1)Gerbe(X) ' H1(X, [U(1)
0→ Z2)

π0BU(1)Gerbe(X) ' H1(X, [U(1)
0→ U(1)

0→ Z2) .

Notice that this classification is different (is richer) than that of U(1) bundle gerbes and U(1) bundle 2-
gerbes. These are really models for BU(1)-principal 2-bundles and B2U(1)-principal 3-bundles on X, and
hence instead have the classification of prop. 5.1.207:

π0BU(1)Bund(X) ' H1(X, [U(1)→ 1]) ' H2(X,U(1)) ,

π0B
2U(1)Bund(X) ' H1(X, [U(1)→ 1→ 1]) ' H3(X,U(1)) .

Alternatively, this is the classification of the U(1)-1-gerbes and BU(1)-2-gerbes with trivial band, def. 5.1.340,
in H1(X,Out(U(1))) and H1(X,Out(BU(1))).

π0U(1)Gerbe∗∈H1(X,Out(U(1)))(X) ' H2(X,U(1)) ,

π0BU(1)Gerbe∗∈H1(X,Out(U(1)))(X) ' H3(X,U(1)) .
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6.3.11 Extensions, Obstructions and Twisted Bundles

We discuss realizations of the general abstract theory of extensions, obstructions and twisted bundles, 5.1.18,
in Euclidean-topological cohesion.

Example 6.3.50 (projective representations). Let K be a field, V be a K-vector space. Write GL(V ) for
the general linear group of V and PGL(V ) = GL(V )/K× for its projective group, where K× = K − {0} is
the group of units in K. Then the traditional short exact sequence

1→ K× −→ GL(V ) −→ PGL(V )→ 1

classified by a group 2-cocycle [c] ∈ H2
Grp(PGL(V ),K×) is reflected in a homotopy fiber sequence of the

form

BK× −→ BGL(V ) −→ BPGL(V )
c−→ B2K× .

Applying prop. 5.1.312 to this situation with X = BG the delooping of any other group reproduces the clas-
sical statement that projective representation ρ of G induce linear representations ρ̂ of the central extension
Ĝ of G which is classified by c(ρ):

K× //

��

BĜ
ρ̂ //

��

BGL //

��

∗

��
∗ x // BG

c(ρ)

55
ρ // BĜ

c // BG.
.

6.3.12 Universal coverings and geometric Whitehead towers

We discuss geometric Whitehead towers (5.2.5) in ETop∞Grpd.

Proposition 6.3.51. Let X be a pointed paracompact topological space that admits a good open cover. Then
its ordinary Whitehead tower X(∞) → · · ·X(2) → X(1) → X(0) = X in Top coincides with the image under
the intrinsic fundamental ∞-groupoid functor |Π(−)| of its geometric Whitehead tower ∗ → · · ·X(2) →
X(1) → X(0) = X in ETop∞Grpd:

|Π(−)| : (X(∞) → · · ·X(2) → X(1) → X(0) = X) ∈ ETop∞Grpd

7→ (∗ → · · ·X(2) → X(1) → X(0) = X) ∈ Top
.

Proof. The geometric Whitehead tower is characterized for each n by the fiber sequence

X(n) → X(n−1) → Bn
∫
n
(X)→

∫
n
(X)→

∫
(n−1)

(X) .

By the above prop. 6.3.29 we have that
∫
n
(X) ' Disc(SingX). Since Disc is right adjoint and hence

preserves homotopy fibers this implies that B
∫
n
(X) ' BnDiscπn(X), where πn(X) is the ordinary nth

homotopy group of the pointed topological space X.
Then by prop. 6.3.47 we have that under |Π(−)| the space X(n) maps to the homotopy fiber of

|Π(X(n−1))| → Bn|Discπn(X)| = Bnπn(X).
By induction over n this implies the claim. �
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6.4 Smooth homotopy types

We discuss smooth cohesion.
After discussing the construction in

• 6.4.1 – Construction

we discuss the various general abstract structures in a cohesive ∞-topos, 5.2, realized in Smooth∞Grpd.

• 6.4.2 – Concrete objects

• 6.4.3 – Groups

• 6.4.4 – Groupoids

• 6.4.5 – Geometric homotopy

• 6.4.6 – Cohomology

• 6.4.7 – Principal bundles

• 6.4.8 – Group representations

• 6.4.9 – Associated bundles

• 6.4.10 – Sections of associated bundles and Twisted bundles

• 6.4.11 – Reduction of structure groups

• 6.4.12 – Flat connections and local systems

• 6.4.13 – de Rham cohomology

• 6.4.14 – Exponentiated Lie algebras

• 6.4.15 – Maurer-Cartan forms and curvature characteristic forms

• 6.4.16 – Differential cohomology

• 6.4.17 – Chern-Weil homomorphism

• 6.4.18 – Holonomy

• 6.4.19 – Chern-Simons functionals

• 6.4.20 – Wess-Zumino-Witten functionals

• 6.4.21 – Prequantum geometry

6.4.1 Construction

Definition 6.4.1. Write SmoothMfd for the category whose objects are smooth manifolds that are

• finite-dimensional;

• paracompact;

• with arbitrary set of connected components;

and whose morphisms are smooth functions between these.
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Notice the evident forgetful functor

i : SmoothMfd→ TopMfd

to the category of topological manifolds, from def. 6.3.6.

Definition 6.4.2. For X ∈ SmoothMfd, say an open cover {Ui → X} is a differentiably good open cover if
each non-empty finite intersection of the Ui is diffeomorphic to a Cartesian space Rn.

Proposition 6.4.3. Every paracompact smooth manifold admits a differentiably good open cover.

Proof. This is a folk theorem. A detailed proof is in the appendix of [FSS10]. �
Notice that the statement here is a bit stronger than the familiar statement about topologically good open

covers, where the intersections are only required to be homeomorphic to a ball.

Definition 6.4.4. Regard SmoothMfd as a large site equipped with the coverage of differentiably good open
covers. Write SmoothCartSp ↪→ SmoothMfd for the full sub-site on Cartesian spaces.

Proposition 6.4.5. Differentiably good open covers do indeed define a coverage and the Grothendieck topol-
ogy generated from it is the standard open cover topology.

Proof. For X a paracompact smooth manifold, {Ui → X} an open cover and f : Y → X any smooth
function from a paracompact manifold Y , the inverse images {f−1(Ui)→ Y } form an open cover of Y . Since∐
i f
−1(U1) is itself a paracompact smooth manifold, there is a differentiably good open cover {Kj →

∐
i Ui},

hence a differentiably good open cover {Kj → Y } such that for all j there is an i(j) such that we have a
commuting square

Kj
//

��

Ui(j)

��
Y

f // X

.

�

Proposition 6.4.6. SmoothCartSp is an ∞-cohesive site.

Proof. By the same kind of argument as in prop. 6.3.2. �

Definition 6.4.7. The ∞-topos of smooth ∞-groupoids is the ∞-sheaf ∞-topos on SmoothCartSp:

Smooth∞Grpd := Sh∞(SmoothCartSp) .

Since SmoothCartSp is similar to the site CartSptop from def. 6.3.1, various properties of Smooth∞Grpd
are immediate analogs of the corresponding properties of ETop∞Grpd from def. 6.3.3.

Proposition 6.4.8. Smooth∞Grpd is a cohesive ∞-topos.

Proof. With prop. 6.4.6 this follows by prop. 4.1.32. �

Proposition 6.4.9. Smooth∞Grpd is equivalent to the hypercompletion of the ∞-sheaf ∞-topos over
SmoothMfd:

Smooth∞Grpd ' Ŝh∞(SmoothMfd) .
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Proof. Observe that SmoothCartSp is a small dense sub-site of SmoothMfd. With this the claim follows
as in prop. 6.3.7. �

Corollary 6.4.10. The canonical embedding of smooth manifolds as 0-truncated objects of Smooth∞Grpd
extends to a full and faithful ∞-functor

SmoothMfd ↪→ Smooth∞Grpd.

Proof. With prop. 6.4.9 this follows from the ∞-Yoneda lemma. �

Remark 6.4.11. By example 3.1.25 there is an equivalence of ∞-categories

Smooth∞Grpd ' LWSmoothMfd∆op

,

where on the right we have the simplicial localization of the category of simplicial smooth manifolds (with
arbitrary set of connected components) at the stalkwise weak equivalences.

This says that every smooth ∞-groupoid has a presentation by a simplicial smooth manifold (not in
general a locally Kan simplicial manifold, though) and that this identification is even homotopy-full and
faithful.

Consider the canonical forgetful functor

i : SmoothCartSp→ CartSptop

to the site of definition for the cohesive ∞-topos ETop∞Grpd of Euclidean-topological ∞-groupoids, def.
6.3.3.

Proposition 6.4.12. The functor i extends to an essential geometric morphism

(i! a i∗ a i∗) : Smooth∞Grpd

i! //
oo i∗

i∗
// ETop∞Grpd

such that the ∞-Yoneda embedding is factored through the induced inclusion SmoothMfd
i
↪→ Mfd as

SmoothMfd �
� //

i

��

Smooth∞Grpd

i!

��
Mfd �

� // ETop∞Grpd

Proof. Using the observation that i preserves coverings and pullbacks along morphism in covering fami-
lies, the proof follows the steps of the proof of prop. 4.2.3. �

Corollary 6.4.13. The essential global section ∞-geometric morphism of Smooth∞Grpd factors through
that of ETop∞Grpd

(ΠSmooth a DiscSmooth a ΓSmooth) : Smooth∞Grpd

i! //
oo i∗

i∗
// ETop∞Grpd

ΠETop //
oo DiscETop

ΓETop

// ∞Grpd

Proof. This follows from the essential uniqueness of the global section ∞-geometric morphism, prop
3.1.7, and of adjoint ∞-functors. �
The functor i! here is the forgetful functor that forgets smooth structure and only remembers Euclidean

topology-structure.
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6.4.2 Concrete objects

We discuss the general notion of concrete objects in a cohesive ∞-topos, 5.2.2, realized in Smooth∞Grpd.
The following definition generalizes the notion of smooth manifold and has been used as a convenient

context for differential geometry. It goes back to [So79] and, in a slight variant, to [Chen77]. The formulation
of differential geometry in this context is carefully exposed in [Ig-Z13]. The sheaf-theoretic formulation of
the definition that we state is amplified in [BaHo09].

Definition 6.4.14. A sheaf X on SmoothCartSp is a diffeological space if it is a concrete sheaf in the sense
of [Dub79]: if for every U ∈ SmoothCartSp the canonical function

X(U) ' Sh(U,X)
Γ→ Set(Γ(U),Γ(X))

is an injection.

The following observations are due to [CaSc].

Proposition 6.4.15. Write Conc(Smooth∞Grpd)≤0 for the full subcategory on the 0-truncated concrete
objects, according to def. 5.2.8. This is equivalent to the full subcategory of Sh(SmoothCartSp) on the
diffeological spaces:

DiffeolSpace ' Conc(Smooth∞Grpd)≤0 .

Proof. Let X ∈ Sh(SmoothCartSp) ↪→ Smooth∞Grpd be a sheaf. The condition for it to be a concrete
object according to def. 5.2.8 is that the (Γ a coDisc)-unit

X → coDiscΓX

is a monomorphism. Since monomorphisms of sheaves are detected objectwise this is equivalent to the
statement that for all U ∈ SmoothCartSp the morphism

X(U) ' Smooth∞Grpd(U,X)→ Smooth∞Grpd(U, coDiscΓX) ' ∞Grpd(ΓU,ΓX)

is a monomorphism of sets, where in the first step we used the ∞-Yoneda lemma and in the last one
the (Γ a coDisc)-adjunction. This is manifestly the defining condition for concrete sheaves that define
diffeological spaces. �

Corollary 6.4.16. The canonical embedding SmoothMfd ↪→ Smooth∞Grpd from prop. 6.4.10 factors
through diffeological spaces: we have a sequence of full and faithful ∞-functors

SmoothMfd ↪→ DiffeolSpace ↪→ Smooth∞Grpd .

Definition 6.4.17. Write DiffeolGrpd ↪→ SmoothGrpd for the full sub-∞-category on those smooth ∞-
groupoids that are represented by a groupoid object internal to diffeological spaces.

Proposition 6.4.18. There is a canonical equivalence

DiffeolGrpd ' Conc(Smooth∞Grpd)≤1

identifying diffeological groupoids with the concrete 1-truncated smooth ∞-groupoids.

Proof. By definition, an object X ∈ Smooth∞Grpd is concrete precisely if there exists a 0-concrete
object U , and an effective epimorphism U → X such that U ×X U is itself 0-concrete. By prop. 6.4.15 both
U and U ×X U are equivalent to diffeological spaces. Therefore the groupoid object ( U ×X U //

//
U )

internal to Smooth∞Grpd comes from a groupoid object internal to diffeological spaces. By Giraud’s axioms
for ∞-toposes, X is equivalent to (the ∞-colimit over) this groupoid object:

X ' lim
→

( U ×X U //
//
U ) .

�
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6.4.3 Groups

We discuss some cohesive ∞-group objects, according to 5.1.9, in Smooth∞Grpd.

Let G ∈ SmoothMfd be a Lie group. Under the embedding SmoothMfd ↪→ Smooth∞Grpd this is
canonically identifed as a 0-truncated ∞-group object in Smooth∞Grpd. Write BG ∈ Smooth∞Grpd for
the corresponding delooping object.

Proposition 6.4.19. A fibrant presentation of the delooping object BG in the projective local model structure
on simplicial presheaves [CartSpop

smooth, sSet]proj,loc is given by the simplicial presheaf that is the nerve of the
one-object Lie groupoid

BGch := (G
→→ ∗)

regarded as a simplicial manifold and canonically embedded into simplicial presheaves:

BGch : U 7→ N(C∞(U,G)
→→ ∗) .

Proof. This is essentially a special case of prop. 6.3.13. The presheaf is clearly objectwise a Kan
complex, being objectwise the nerve of a groupoid. It satisfies descent along good open covers {Ui →
Rn} of Cartesian spaces, because the descent ∞-groupoid [SmoothCartSpop, sSet](C({Ui}),BG) is · · · '
GBund(Rn) ' GTrivBund(Rn): an object is a Čech 1-cocycle with coefficients in G, a morphism a Čech
coboundary. This yields the groupoid of G-principal bundles over U , which for the Cartesian space U is
however equivalent to the groupoid of trivial G-bundles over U .

To show that BG is indeed the delooping object of G it is sufficient by prop. 5.1.9 to compute the
∞-pullback G ' ∗ ×BG ∗ ∈ Smooth∞Grpd in the global model structure [CartSpop, sSet]proj. This is
accomplished by the ordinary pullback of the fibrant replacement diagram

G //

��

N(G×G
p1·p2→→
p1

G)

p2

��
∗ // N(G

→→ ∗)

.

�

Proposition 6.4.20. For G a Lie group, BG is a 1-concrete object in H.

Proof. Since BGch is fibrant in [CartSpop, sSet]proj,loc and since G presents a concrete sheaf, this follows
with prop. 5.2.12. �

Definition 6.4.21. Write equivalently
U(1) = S1 = R/Z

for the circle Lie group, regarded as a 0-truncated ∞-group object in Smooth∞Grpd under the embedding
prop. 6.4.10.

For n ∈ N the n-fold delooping BnU(1) ∈ Smooth∞Grpd we call the circle Lie (n+ 1)-group.

Write
U(1)[n] := [· · · → 0→ C∞(−, U(1))→ 0→ · · · → 0] ∈ [SmoothCartSpop,Ch•≥0]

for the chain complex of sheaves concentrated in degree n on U(1). Recall the right Quillen functor Ξ :
[SmoothCartSpop,Ch+]proj → [SmoothCartSpop, sSet]proj from prop. 3.1.35.
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Proposition 6.4.22. The simplicial presheaf Ξ(U(1)[n]) is a fibrant representative in [SmoothCartSpop, sSet]proj,loc

of the circle Lie (n+ 1)-group BnU(1).

Proof. First notice that since U(1)[n] is fibrant in [SmoothCartSpop,Ch•]proj we have that ΞU(1)[n] is
fibrant in the global model structure [CartSpop, sSet]proj. By prop. 5.1.9 we may compute the ∞-pullback
that defines the loop space object in Smooth∞Grpd in terms of a homotopy pullback in this global model
structure.

To that end, consider the global fibration resolution of the point inclusion ∗ → Ξ(U(1)[n]) given under Ξ
by the morphism of chain complexes

[C∞(−, U(1))
Id //

Id

��

C∞(−, U(1)) //

��

0 //

��

· · · // 0]

��
[C∞(−, U(1)) // 0 // 0 // · · · // 0]

.

The underlying morphism of chain complexes is clearly degreewise surjective, hence a projective fibration,
hence its image under Ξ is a projective fibration. Therefore the homotopy pullback in question is given by
the ordinary pullback

Ξ[0→ C∞(−, U(1))→ 0→ · · · → 0] //

��

Ξ[C∞(−, U(1))
Id→ C∞(−, U(1))→ 0→ · · · → 0]

��
Ξ[0→ 0→ 0→ · · · → 0] // Ξ[C∞(−, U(1))→ 0→ 0→ · · · → 0]

,

computed in [CartSpop,Ch+] and then using that Ξ is the right adjoint and hence preserves pullbacks. This
shows that the loop object ΩΞ(U(1)[n]) is indeed presented by Ξ(U(1)[n− 1]).

Now we discuss the fibrancy of U(1)[n] in the local model structure. We need to check that for all
differentiably good open covers {Ui → U} of a Cartesian space U we have that the mophism

C∞(U,U(1))[n]→ [CartSpop, sSet](C({Ui}),Ξ(U(1)[n]))

is an equivalence of Kan complexes, where C({Ui}) is the Čech nerve of the cover. Observe that the Kan
complex on the right is that whose vertices are cocycles in degree-n Čech cohomology (see [FSS10] for more
on this) with coefficients in U(1) and whose morphisms are coboundaries between these.

We proceed by induction on n. For n = 0 the condition is just that C∞(−, U(1)) is a sheaf, which clearly
it is. For general n we use that since C({Ui}) is cofibrant, the above is the derived hom-space functor which
commutes with homotopy pullbacks and hence with forming loop space objects, so that

π1[SmoothCartSpop, sSet](C({Ui}),Ξ(U(1)[n])) ' π0[SmoothCartSpop, sSet](C({Ui}),Ξ(U(1)[n− 1]))

by the above result on delooping. So we find that for all 0 ≤ k ≤ n that πk[CartSpop, sSet](C({Ui}),Ξ(U(1)[n]))
is the Čech cohomology of U with coefficients in U(1) in degree n− k. By standard facts about Čech coho-
mology (using the short exact sequence of abelian groups Z→ U(1)→ R and the fact that the cohomology
with coefficients in R vanishes in positive degree, for instance by a partition of unity argument) we have that
this is given by the integral cohomology groups

π0[CartSpop, sSet](C({Ui}),Ξ(U(1)[n])) ' Hn+1(U,Z)

for n ≥ 1. For the contractible Cartesian space all these cohomology groups vanish.
So we find that Ξ(U(1)[n])(U) and [SmoothCartSpop, sSet](C({Ui}),ΞU(1)[n]) both have homotopy

groups concentrated in degree n on U(1). The above looping argument together with the fact that U(1) is a
sheaf also shows that the morphism in question is an isomorphism on this degree-n homotopy group, hence
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is indeed a weak homotopy equivalence. �
Notice that in the equivalent presentation of Smooth∞Grpd by simplicial presheaves on the large site

SmoothMfd the objects Ξ(U(1)[n]) are far from being locally fibrant. Instead, their locally fibrant re-
placements are given by the n-stacks of circle n-bundles.

6.4.4 Groupoids

We discuss aspects of the general abstract theory of groupoid objects, 5.1.8, realized in the context of smooth
cohesion.

6.4.4.1 Group of bisections We discuss the general notion of groups of bisections of 5.1.8.1.2, realized
in smooth cohesion.

Let
X = X1 //

//
X0 ∈ Grpd(SmoothMfd) ↪→ Smooth∞Grpd

be a Lie groupoid, regarded canonically as smooth ∞-groupoid and equipped with the atlas given by the
canonical inclusion

iX : X0
// // X

of the manifold of objcts.

Proposition 6.4.23. The group of bisections BiSectX(X0) ∈ Grp(Smooth∞Grpd) of this groupoid object,
according to def, 5.1.131, is equivalent to the traditional diffeological group of bisections of Lie groupoid
theory and the canonical morphism of def. 5.1.133.

Proof. First observe that the hom-groupoid Smooth∞GrpdX(X0, X0) is equivalently given by that of
Grpd(SmoothMfd)/X(X0, X0). This follows for instance from prop. 5.1.33, according to which we have a
homotopy pullback diagram

H/X(U ×X0, X0) //

��

H(U ×X0, X0)

H(U×X0,iX)

��
∗ `iX // H(U ×X0, X)

for each U ∈ CartSp ↪→ Smooth∞Grpd. Here the top right morphism set is equivalent to SmoothMfd(U ×
X0, X0). The bottom right morphism set is a priori given by morphisms out of the Cech nerve of a good
open over of U × X0. But since the right and bottom morphism both hit elements in there which come
from direct maps out of U ×X0, also the gauge transformations between them are given by globally defined
smooth functions U ×X0 → X1.

With this now it remains to observe that a diagram

U ×X0
φ //

iX ##

X0

iX}}
X0

w�

of smooth groupoids is equivalently

1. a smoothly U -paramaterized collection of smooth function φu : X0 → X0;

2. for each such a smooth choice of morphisms x→ φ(x) in X1for all x ∈ x0.

This is precisely the traditional description of the group of bisections of X. �
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6.4.4.2 Atiyah groupoids We discuss the general notion of Atiyah groupoids, 5.1.8.1.3, realized in
smooth cohesion.

Let G ∈ Grp(Top) ↪→ Grp(Smooth∞Grpd) be a Lie group, and write BG ∈ ETop∞Grpd for its internal
delooping, as in 6.4.3 above. Let X ∈ SmoothMfd ↪→ Smooth∞Grpd be a smooth manifold. Let P → X be
any G-principal bundle over X and write g : X → BG for the, essentially unique, morphism that modulates
it (discussed in more detail in 6.4.7 below).

The following definition is traditional

Definition 6.4.24. The Atiyah Lie groupoid of the G-principal bundle P → X is the Lie groupoid

At(P ) :=
(
P ×G P

//
// X
)
,

with composition defined by the evident composition of pairs of representatives. [s2, s3] ◦ [s1, s2] := [s1, s3].

Remark 6.4.25. Here P ×U(1)P = (P ×P )/U(1) is the quotient of the cartesian product of the total space
of the bundle with itself by the diagonal action of G on both factors. So if (x1, x2) ∈ X×X is fixed then the
morphisms in At(P )x1,x2

with this source and target form the space (Px1
× Px2

)/G. But this is canonically
isomorphic to the space of G-torsor homomorphisms (over the point) Px1 → Px2 :

At(P )x1,x2
= GTor(Px1

, Px2
) .

We now discuss that this traditional construction is indeed a special case of the general discussion in
5.1.8.1.3.

Proposition 6.4.26. For P → X a smooth G-principal bundle with modulating map g : X → BG as above,
its Atiyah groupoid in Smooth∞Grpd in the sense of def. 5.1.140 is canonically represented by the traditional
Atiyah groupoid construction of def. 6.4.24, under the canonical embedding LieGrpd→ Smooth∞Grpd.

Proof. By prop. 5.1.70 we have that im1(g) is given by the ∞-colimit over its Čech nerve. Since
X ∈ Smooth∞Grpd is 0-truncated and BG ∈ Smooth∞Grpd is 1-truncated, this Čech nerve is given by a
2-coskeletal simplicial smooth manifold:

im1(g) ' lim
−→

(
· · ·

////// X ×
BG

X
//
// X

)
.

Therefore by prop. 5.1.17 this simplicial diagram, regarded under the embedding SmoothMfd∆op

→ Smooth∞Grpd,
is equivalently the 1-image of g. It is then sufficient to observe that

X ×
BG

X ' P ×G P .

To see this, observe that (since the∞-hom functor H(U,−) preserves homotopy limits) for every U ∈ CartSp
the U -plots of the object on the left are equivalently pairs of smooth functions r, l : U → X equipped with a
morphism of G-principal bundles l∗P → r∗P . By remark 6.4.25 this are equivalently the U -plots of P ×G P .
�

6.4.5 Geometric homotopy

We discuss the intrinsic fundamental ∞-groupoid construction, 5.2.3, and the induced notion of geometric
realization, realized in Smooth∞Grpd.

• 6.4.5.1 – Geometric realization of simplicial smooth spaces;

• 6.4.5.2 – Co-Tensoring of smooth ∞-Stacks over homotopy-types of manifolds;

• 6.4.5.3 – Fundamental smooth path ∞-groupoids
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6.4.5.1 Geometric realization of simplicial smooth spaces

Proposition 6.4.27. If X ∈ Smooth∞Grpd is presented by X• ∈ SmoothMfd∆op

↪→ [SmoothCartSpop, sSet],
then its image i!(X) ∈ ETop∞Grpd under the relative topological cohesion morphism, prop. 6.4.12, is pre-

sented by the underlying simplicial topological space X• ∈ TopMfd∆op

↪→ [CartSpop
top, sSet].

Proof. Let first X ∈ SmoothMfd ↪→ SmoothMfd∆op

be simplicially constant. Then there is a differen-
tiably good open cover, 6.4.3, {Ui → X} such that the Čech nerve projection∫ [k]∈∆

∆[k] ·
∐

i0,··· ,ik

Ui0 ×X · · · ×X Uik

 '→ X

is a cofibrant resolution in [SmoothCartSpop, sSet]proj,loc which is degreewise a coproduct of representables.
That means that the left derived functor LLani on X is computed by the application of Lani on this coend,
which by the fact that this is defined to be the left Kan extension along i is given degreewise by i, and since
i preserves pullbacks along covers, this is

(LLani)X ' Lani

∫ [k]∈∆

∆[k] ·
∐

i0,··· ,ik

Ui0 ×X · · · ×X Uik


=

∫ [k]∈∆

∆[k] ·
∐

i0,··· ,ik

Lani(Ui0 ×X · · · ×X Uik)

'
∫ [k]∈∆

∆[k] ·
∐

i0,··· ,ik

i(Ui0 ×X · · · ×X Uik)

'
∫ [k]∈∆

∆[k] ·
∐

i0,··· ,ik

(i(Ui0)×i(X) · · · ×i(X) i(Uik))

' i(X)

,

The last step follows from observing that we have manifestly the Čech nerve as before, but now of the
underlying topological spaces of the {Ui} and of X.

The claim then follows for general simplicial spaces by observing thatX• =
∫ [k]∈∆

∆[k]·Xk ∈ [SmoothCartSpop, sSet]proj,loc

presents the ∞-colimit over X• : ∆op → SmoothMfd ↪→ Smooth∞Grpd and the left adjoint ∞-functor i!
preserves these. �

Corollary 6.4.28. If X ∈ Smooth∞Grpd is presented by X• ∈ SmoothMfd∆op

↪→ [SmoothCartSpop, sSet],
then the image of X under the fundamental ∞-groupoid functor, 5.2.3,

Smooth∞Grpd
Π //∞Grpd

|−|
'
// Top

is weakly homotopy equivalent to the geometric realization of (a Reedy cofibrant replacement of) the underlying
simplicial topological space

|Π(X)| ' |QX•| .

In particular if X is an ordinary smooth manifold then

Π(X) ' SingX

is equivalent to the standard fundamental ∞-groupoid of X.
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Proof. By prop. 6.4.13 the functor Π factors as ΠX ' ΠETopi!X. By prop. 6.4.27 this is ΠEtop applied
to the underlying simplicial topological space. The claim then follows with prop. 6.3.30. �

Remark 6.4.29. The statement of prop. 6.4.28 generalizes to non-Hausdorff smooth manifolds. This
strengthening of the statement is established in [Car15, thm. 1.1].

Corollary 6.4.30. The ∞-functor Π : Smooth∞Grpd → ∞Grpd preserves homotopy fibers of morphisms
that are presented in [SmoothCartSpop, sSet]proj by morphisms of the form X → W̄G with X fibrant and G
a simplicial group in SmoothMfd.

Proof. By prop. 6.4.13 the functor factors as ΠSmooth ' ΠETop ◦ i!. By prop. 6.4.27 i! assigns the
underlying topological spaces. If we can show that this preserves the homotopy fibers in question, then the
claim follows with prop. 6.3.47. We find this as in the proof of the latter proposition, by considering the
pasting diagram of pullbacks of simplicial presheaves

P ′

����

' // P //

����

WG

����
QX

' // X // W̄G

.

Since the component maps of the right vertical morphisms are surjective, the degreewise pullbacks in
SmoothMfd that define P ′ are all along transversal maps, and thus the underlying objects in TopMfd are the
pullbacks of the underlying topological manifolds. Therefore the degreewise forgetful functor SmoothMfd→
TopMfd presents i! on the outer diagram and sends this homotopy pullback to a homotopy pullback. �

6.4.5.2 Co-Tensoring of smooth ∞-Stacks over homotopy-types of manifolds

Example 6.4.31. There is a natural equivalence [Π(S1), X] ∼= LX between the moduli stack of maps from
the homotopy-type of the circle S1 to X and the free loop space object of X. Namely, the free loop space
object LX is defined as the homotopy pullback of its diagonal map along itself

LX := X ×
X×X

X ,

i.e., as the object defined by the homotopy pullback diagram

LX //

��

X

∆X

��
X

∆X

// X ×X .

One then notices that S1 is obtained by gluing two segments (which are contractible) along their endpoints,
which amount to saying that at the level of homotopy-types we have an equivalence

Π(S1) ' ∗
∐
∗
∐
∗

∗ ,

and uses the fact that [−, X] preserves homotopy limits. Here the top
∐

denotes pushout, while the bottom
one denotes disjoint union (itself viewed as an instance of a pushout). One can similarly see that the
∞-groupoid corresponding to the 2-sphere S2 can be viewed as

Π(S2) ' ∗
∐
∗
∐
∗
∐
∗
∗

∗ .

One can iterate in an obvious way to get the higher cases.
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The above example immediately generalizes from circles to arbitrary n-spheres.

Definition 6.4.32. For X an object in H and for n ∈ N, the free n-sphere space object of X is

[Π(Sn), X] .

An (n + 1)-sphere is obtained by gluing two (n + 1)-disks along their common boundary, which is an
n-sphere. Since the disks are contractible, from a homotopy-type point of view, this amount to the natural
equivalence

Π(Sn+1) ' ∗
∐

Π(Sn)

∗ .

Applying the internal homs to X to this equivalence and recalling that [−, X] preserves homotopy limits,
one obtains the following result.

Proposition 6.4.33. For all n ∈ N we have a natural homotopy pullback square

[Π(Sn+1), X]

��

// X

��
X // [Π(Sn), X] .

Proof. We may use that for all n we have

Π(Sn+1) ' ∗
∐

Π(Sn)

∗ .

From this the statement follows by using that [−, X] : Hop → H preserves homotopy limits. The above
statement is standard, one can see it for instance by presenting the situation in the standard model structure
on simplicial sets, there replacing one of the maps from the n-sphere to the point by the cofibration given
by the inclusion of the n-phere as the boundary of the (n + 1)-disk, and finally computing the ordinary
(1-categorical) cofiber of that. �

6.4.5.3 Fundamental smooth path ∞-groupoids We discuss the general abstract notion of path
∞-groupoid, 5.2.3, realized in Smooth∞Grpd.

The presentation of
∫

(X) in ETop∞Grpd, 6.3.5.2 has a direct refinement to smooth cohesion:
Write

∆•smooth : ∆ −→ SmoothMfd ↪→ Smooth∞Grpd

for the standard smooth simplices (smooth manifolds with boundary and corners) organized as a cosimplicial
smooth manifold (with boundary and corners).

Definition 6.4.34. For X ∈ SmoothMfd write SingX ∈ [CartSpop, sSet] for the simplicial presheaf given
by

SingX := lim
−→

[∆•smooth, X] : (U, [k]) 7→ HomSmoothMfd(U ×∆k, X) .

Proposition 6.4.35. The simplicial presheaf SingX is a presentation of
∫

(X) ∈ Smooth∞Grpd.

Proof. This reduces to the argument of prop. 6.3.33 after using the Steenrod approximation theorem
[Wock09] to refine continuous paths to smooth paths �
This is actually true fully generally:
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Proposition 6.4.36. For any X ∈ Smooth∞Grpd there is a natural equivalence∫
X ' lim

−→
[∆•smooth, X] .

Proof. On the level of ∞-presheaves this is [BNV13, lemma 7.5]. That the ∞-presheaves of the form
lim
−→

[∆•smooth, X] are in fact ∞-sheaves is shown in [Pa]. �

6.4.6 Cohomology

We discuss the intrinsic cohomology, 5.1.10, in Smooth∞Grpd.

• 6.4.6.1 – Cohomology with constant coefficients;

• 6.4.6.2 – Refined Lie group cohomology.

6.4.6.1 Cohomology with constant coefficients

Proposition 6.4.37. Let A ∈ ∞Grpd, write DiscA ∈ Smooth∞Grpd for the corresponding discrete smooth

∞-groupoid. Let X ∈ SmoothMfd
i
↪→ Smooth∞Grpd be a paracompact topological space regarded as a

0-truncated Euclidean-topological ∞-groupoid.
We have an isomorphism of cohomology sets

HTop(X,A) ' HSmooth(X,DiscA)

and in fact an equivalence of cocycle ∞-groupoids

Top(X, |A|) ' Smooth∞Grpd(X,DiscA) .

More generally, for X• ∈ SmoothMfd∆op

presenting an object X ∈ Smooth∞Grpd we have

HSmooth(X•,DiscA) ' HTop(|X|, |A|) .

Proof. This follows from the (Π a Disc)-adjunction and prop. 6.4.28. �

6.4.6.2 Refined Lie group cohomology The cohomology of a Lie group G with coefficients in a Lie
group A was historically originally defined in terms of cocycles given by smooth functions G×n → A, by
naive analogy with the situation discussed in 6.2.4.1. In the language of simplicial presheaves on CartSp
these are morphisms of simplicial presheaves of the form BGch → BnA, with the notation as in 6.4.3. This
is clearly not a good definition, in general, since while BnA will be fibrant in [CartSpop, sSet]proj,loc, the
object BGch in general fails to be cofibrant, hence the above naive definition in general misses cocycles.

A refined definition of Lie group cohomology was proposed in [Seg70] and later independently in [Bry00].
The following theorem asserts that the definitions given there do coincide with the intrinsic cohomology of
the stack BG in the cohesive ∞-topos Smooth∞Grpd.

Theorem 6.4.38. For G ∈ SmoothMfd ↪→ Smooth∞Grpd a Lie group and A either

1. a discrete abelian group

2. the additive Lie group of real numbers R
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the intrinsic cohomology of G in Smooth∞Grpd coincides with the refined Lie group cohomology of Segal
[Seg70][Bry00]

Hn
Smooth∞Grpd(BG,A) ' Hn

Segal(G,A) .

In particular we have in general

Hn
Smooth∞Grpd(BG,Z) ' Hn

Top(BG,Z)

and for G compact and n ≥ 1 also

Hn
Smooth∞Grpd(BG,U(1)) ' Hn+1

Top (BG,Z) .

Proof. The statement about constant coefficients is a special case of prop. 6.4.37. The statement about
real coefficients is a special case of a more general statement in the context of formal smooth ∞-groupoids
that will be proven as prop. 6.5.45. The last statement finally follows from this using that Hn

Segal(G,R) ' 0
for positive n and G compact and using the fiber sequence, def. 5.1.178, induced by the short sequence
Z→ R→ R/Z ' U(1). �

6.4.7 Principal bundles

We discuss principal ∞-bundles, 5.1.11, realized in smooth ∞-groupoids.

The following proposition asserts that the notion of smooth principal ∞-bundle reproduces traditional
notions of smooth bundles and smooth higher bundles.

Proposition 6.4.39. For G a Lie group and X ∈ SmoothMfd, we have that

Smooth∞Grpd(X,BG) ' GBund(X)

is equivalent to the groupoid of smooth principal G-bundles and smooth morphisms between these, as tradi-
tionally defined, where the equivalence is established by sending a morphism g : X → BG in Smooth∞Grpd
to the corresponding principal ∞-bundle P → X according to prop. 5.1.196.

For n ∈ N and G = Bn−1U(1) the circle Lie n-group, def. 6.4.21, and X ∈ SmoothMfd, we have that

Smooth∞Grpd(X,BnU(1)) ' U(1)(n− 1)BundGerb(X)

is equivalent to the n-groupoid of smooth U(1)-bundle (n− 1)gerbes.

Proof. Presenting Smooth∞Grpd by the local projective model structure [CartSpop, sSet]proj,loc on sim-
plicial presheaves over the site of Cartesian spaces, we have that BG is fibrant, by prop. 6.4.19, and that a cofi-
brant replacement for X is given by the Čech nerve C({Ui}) of any differentiably good open cover {Ui → X}.
The cocycle ∞-groupoid in question is then presented by the simplicial set [CartSpop, sSet](C({Ui}),BG)
and this is readily seen to be the groupoid of Čech cocycles with coefficients in BG relative to the chosen
cover.

This establishes that the two groupoids are equivalent. That the equivalence is indeed established by
forming homotopy fibers of morphisms has been discussed in 1.2.6 (observing that by the discussion in 1.2.6.4
the ordinary pullback of the morphism EG → BG serves as a presentation for the homotopy pullback of
∗ → BG). �
This establishes the situation for smooth nonabelian cohomology in degree 1 and smooth abelian cohomology

in arbitrary degree. We turn now to a discussion of smooth nonabelian cohomology “in degree 2”, the case
where G is a Lie 2-group: G-principal 2-bundles.

When G = AUT(H) the automorphism 2-group of a Lie group H (see below) these structures have the
same classification as smooth H-1-gerbes, def. 5.1.330. To start with, note the general abstract notion of
smooth 2-groups:
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Definition 6.4.40. A smooth 2-group is a 1-truncated group object in H = Sh∞(CartSp). These are
equivalently given by their (canonically pointed) delooping 2-groupoids BG ∈ H, which are precisely, up to
equivalence, the connected 2-truncated objects of H.

For X ∈ H any object, G2Bundsmooth(X) := H(X,BG) is the 2-groupoid of smooth G-principal 2-
bundles on G.

We consider the presentation of smooth 2-groups by Lie crossed modules, def. 1.2.81, according to prop.

5.1.172. Write [G1
δ→ G0] for the 2-group which is the groupoid

G0 ×G1
p1

//
p1(−)·δ(p2(−)) //

G0

equipped with a strict group structure given by the semidirect product group structure on G0 ×G1 that is
induced from the action ρ. The commutativity of the above two diagrams is precisely the condition for this
to be consistent. Recall the examples of crossed modules, starting with example 1.2.86.

We discuss sufficient conditions for the delooping of a crossed module of presheaves to be fibrant in the
projective model structure. Recall also the conditions from prop. 4.1.48.

Proposition 6.4.41. Suppose that the smooth crossed module (G1 → G0) is such that the quotient π0G =
G0/G1 is a smooth manifold and the projection G0 → G0/G1 is a submersion.

Then B(G1 → G0) is fibrant in [CartSpop, sSet]proj,loc.

Proof. We need to show that for {Ui → Rn} a good open cover, the canonical descent morphism

B(C∞(Rn, G1)→ C∞(Rn, G0))→ [CartSpop, sSet](C({Ui}),B(G1 → G0))

is a weak homotopy equivalence. The main point to show is that, since the Kan complex on the left is
connected by construction, also the Kan complx on the right is.

To that end, notice that the category CartSp equipped with the open cover topology is a Verdier site in
the sense of section 8 of [DHS04]. By the discussion there it follows that every hypercover over Rn can be
refined by a split hypercover, and these are cofibrant resolutions of Rn in both the global and the local model
structure [CartSpop, sSet]proj,loc. Since also C({Ui})→ Rn is a cofibrant resolution and since BG is clearly
fibrant in the global structure, it follows from the existence of the global model structure that morphisms
out of C({Ui}) into B(G1 → G0) capture all cocycles over any hypercover over Rn, hence that

π0[CartSpop, sSet](C({Ui}),B(G1 → G0)) ' H1
smooth(Rn, (G1 → G0))

is the standard Čech cohomology of Rn, defined as a colimit over refinements of covers of equivalence classes
of Čech cocycles.

Now by prop. 4.1 of [NW11a] (which is the smooth refinement of the statement of [BaSt09] in the
continuous context) we have that under our assumptions on (G1 → G0) there is a topological classifying
space for this smooth Čech cohomology set. Since Rn is topologically contractible, it follows that this is the
singleton set and hence the above descent morphism is indeed an isomorphism on π0.

Next we can argue that it is also an isomorphism on π1, by reducing to the analogous local trivialization
statement for ordinary principal bundles: a loop in [CartSpop, sSet](C({Ui}),B(G1 → G0)) on the trivial
cocycle is readily seen to be a G0//(G0nG1)-principal groupoid bundle, over the action groupoid as indicated.
The underlying G0 nG1-principal bundle has a trivialization on the contractible Rn (by classical results or,
in fact, as a special case of the previous argument), and so equivalence classes of such loops are given gy
G0-valued smooth functions on Rn. The descent morphism exhibits an isomorphism on these classes.

Finally the equivalence classes of spheres on both sides are directly seen to be smooth ker(G1 → G0)-
valued functions on both sides, identified by the descent morphism. �
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Corollary 6.4.42. For X ∈ SmoothMfd ⊂ H a paracompact smooth manifold, and (G1 → G0) as above,
we have for any good open cover {Ui → X} that the 2-groupoid of smooth (G1 → G0)-principal 2-bundles is

(G1 → G0)Bund(X) := H(X,B(G1)) ' [CartSpop, sSet](C({Ui}),B(G1 → G0))

and its set of connected components is naturally isomorphic to the nonabelian Čech cohomology

π0H(X,B(G1 → G0)) ' H1
smooth(X, (G1 → G0)) .

In particular, for G = AUT(H), BG ∈ H is the moduli 2-stack for smooth H-gerbes, def. 5.1.323.

Proposition 6.4.43. For A→ Ĝ→ G a central extension of Lie groups such that Ĝ→ G is a locally trivial
A-bundle, we have a long fiber sequence in Smooth∞Grpd of the form

A→ Ĝ→ G→ BA→ BĜ→ BG
c→ B2A ,

where the morphism c is presented by the span of simplicial presheaves

B(A→ Ĝ)c //

'
��

B(A→ 1)c B2Ac

BGch

coming from crossed complexes, def. 1.2.96, as indicated.

Proof. We need to show that

BĜch

��

// ∗

��
BGch

c // B2A

is an ∞-pullback. To that end, we notice that we have an equivalence

B(A→ Ĝ)c
'→ BGch

and that the morphism of simplicial presheaves B(A
id→ A)c → B2Ac is a fibration replacement of ∗ → B2Ac,

both in [CartSpop, sSet]proj.
By prop. 5.1.9 it is therefore sufficient to observe the ordinary pullback diagram

B(1→ A)c

��

// B(A
id→ A)c

��
B(A→ Ĝ) // B(A→ 1)c

.

�

6.4.8 Group representations

We discuss the intrinsic notion of ∞-group representations, 5.1.14, realized in the context Smooth∞Grpd.

We make precise the role of action Lie groupoids, introduced informally in 1.2.6.1.
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Proposition 6.4.44. Let X be a smooth manifold, and G a Lie group. Then the category of smooth G-
actions on X in the traditional sense is equivalent to the category of G-actions on X in the cohesive ∞-topos
Smooth∞Grpd, according to def. 5.1.189.

Proof. For ρ : X ×G→ X a given G-action, define the action Lie groupoid

X//G := ( X ×G
ρ //

p1

// X )

with the evident composition operation. This comes with the evident morphism of Lie groupoids

X//G→ ∗//G ' BG ,

with BG as in prop. 6.4.19. It is immediate that regarding this as a morphism in [CartSpop, sSet]proj in the
canonical way, this is a fibration. Therefore, by 5.1.9, the homotopy fiber of this morphism in Smooth∞Grpds
is given by the ordinary fiber of this morphism in simplicial presheaves. This is manifestly X.

Accordingly this construction constitutes an embedding of the traditional G actions on X into the cat-
egory RepG(X) from def. 5.1.189. By turning this argument around, one finds that this embedding is
essentially surjective. �

6.4.9 Associated bundles

We discuss aspects of the general notion of associated ∞-bundles, 5.1.12, realized in the context of smooth
cohesion.

We have been discussing the n-stacks BnU(1) of circle n-bundles in 6.4.16, but without any substantial
change in the theory we could also use the n-stacks BnC× which are the n-fold delooping in H of the cohesive
mutliplicative group of non-zero complex numbers. Under geometric realization | − | : H // ∞Grpd

the canonical map BnU(1) → BnC× becomes an equivalence. Nevertheless, some constructions are more
naturally expressed in terms of U(1)-principal n-bundles, while other are more naturally expressed in terms
of C×-principal n-bundles (bundle (n−1)-gerbes). Notably the latter is naturally identified with the 2-stack
2LineC of complex line 2-bundles.

To interpret this, we say that for R a ring (or more generally an E∞-ring), a 2-vector space over R is, if it
admits a 22-basis, a category AMod of modules over an R-algebra A (the algebra A is the given 2-basis), and
that a 2-linear map between 2-vector space is a functor AMod→ BMod which is induced by tensoring with
a B-A-bimodule. This identifies a 2-category 2VectR of algebras, bimodules and bimodule homomorphisms
which we call the 2-category of 2-vector spaces over R (appendix A of [Sc08a], section 4.4. of [ScWa08],
section 7 of [FHLT09]). This 2-category is naturally braided monoidal. Write then

2LineR
� � // 2VectR

for the full sub-2-category on those objects which are invertible under this tensor product: the 2-lines over
R. This is necessarily a 2-groupoid, the Picard 2-groupoid over R, and with the inherited monoidal structure
it is a 3-group, the Picard 3-group of R. Its homotopy groups have a familiar algebraic interpretation:

• π0(2LineR) is the Brauer group of R;

• π1(2LineR) is the ordinary Picard group of R (of ordinary R-lines);

• π2(2LineR) ' R× is the group of units.

If we take the base ring R to be the ring of suitable k-valued functions on some space X, then 2VectR is the
2-category of k-2-vector spaces over that vary over X, hence of complex 2-vector bundles. This construction
is natural in R, hence in X, and it restricts to 2-lines and hence to 2-line bundles over k. Hence there is
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a 2-stack 2Linek ∈ H of 2-line bundles over k. If k here is algebraically closed, such as k = C, then there
is, up to equivalence, only a single 2-line, and only a single invertible bimodule, and hence we find that
2Linek ' B2k× In particular we have an equivalence

2LineC ' B2C× .

Therefore the 2-stack 2LineC is of interest in particular in situations where this equivalence no longer
holds. This is notably so in the context of supergeometric cohesion; this is discussed below in 6.6.6.

6.4.10 Sections of associated bundles and twisted bundles

We discuss here aspects of the realization in smooth ∞-grouoids of the general concept of sections of asso-
ciated bundles and of twisted bundles according to 5.1.13.

More examples of twisted cohomology, 5.1.13, and the corresponding twisted principal∞-bundles, realized
in Smooth∞Grpd, below in 7.1.

• 6.4.10.1 – Sections of vector bundles – twisted 0-bundles

• 6.4.10.2 – Sections of 2-bundles – twisted vector bundles and twisted K-classes

6.4.10.1 Sections of vector bundles – twisted 0-bundles We discuss here how traditional sections
of vector bundles arise as the degenerate case of twisted n-bundles for n = 0.

So we consider coefficient ∞-bundles such as

C // C//U(1)

��
BU(1)

,

where

• BU(1) is the smooth moduli stack of smooth circle bundles;

• C is the complex plane, regarded as a smooth manifold.

By 5.1.14 this corresponds equivalently to a representation of the Lie group U(1) on C, and this we take
to be the canonical such representation. Accordingly, the above bundle is indeed the universal complex line
bundle over the base space of the universal U(1)-principal bundle.

It will be meaningful and useful to think of C itself as a moduli ∞-stack: it is the smooth moduli 0-stack
of complex 0-vector bundles, where, therefore, a complex 0-vector bundle on a smooth space X is simply a
smooth function ∈ C∞(X,C). Accordingly, we should find that such 0-vector bundles can be twisted by
a principal U(1)-bundle and indeed, by feeding the above coefficient ∞-bundle through the definition of
twisted ∞-bundles in 5.1.18, one finds, as we discuss below, that a twisted 0-bundle is a smooth section of
the associated line bundle, hence, by local triviality of the line bundle, locally a complex-valued function,
but globally twisted by the twisting circle bundle.

Let G be a Lie group, V a vector space and ρ : V × G → V a smooth representation of G on V in the
traditional sense. We discuss how this is an ∞-group representation in the sense of def. 5.1.189.

Definition 6.4.45. Write

V//G := V ×G
p1 //
ρ
// V

for the action groupoid of ρ, the weak quotient of V by G, regarded as a smooth ∞-groupoid V//G ∈
Smooth∞Grpd.
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Notice that this is equipped with a canonical morphism V//G→ BG and a canonical inclusion V → V//G.

Proposition 6.4.46. We have a fiber sequence

V → V//G→ BG

in Smooth∞Grpd.

Proof. One finds that in the canonical presentation by simplicial presheaves as in 6.4.3, the morphism
V//Gch → BGch is a fibration in [CartSpop, sSet]proj. Therefore by prop. 5.1.9 the homotopy fiber is given
by the ordinary fiber of this presentation. This ordinary fibe is V . �

Remark 6.4.47. By remark 5.1.246 we may think of the fiber sequence

V //

��

V//G

��
∗ // BG

as the vector bundle over the classifying stack BG which is ρ-associated to the universal G-principal bundle.

More formally, the next proposition shows that the ρ-associated bundles according to def. 5.1.246 are
the ordinary associated vector bundles.

Proposition 6.4.48. Let X be a smooth manifold and P → X be a smooth G-principal bundle. If g : X →
BG is a cocycle for P as in 6.4.7, then the ρ-associated vector bundle P ×G V → X is equivalent to the
homotopy pullback of V//G→ BG along G:

P ×G V //

��

V//G

��
X

g // BG

.

Proof. By the discussion in 6.4.7 we may present g by a morphism in [CartSpop, sSet]proj,loc of the form

C({Ui})
g //

'
��

BGch

X

,

where C({Ui}) is the Čech nerve of a good open cover of X. Since V//Gch → BGch is a fibration in
[CartSpop, sSet]proj, by prop. 5.1.9 its ordinary pullback of simplicial presheaves along g presents the ho-
motopy pullback in question. By inspection one finds that this is the Lie groupoid whose space of ob-
jects is

∐
i Ui × V and which has a unique morphism from (x ∈ Ui, σi(x) ∈ V ) to (x ∈ Uj , σj(x)) if

σj(x) = ρ(gij(x))(σi(x)).
Due to the uniqueness of morphisms, the evident projection from this Lie groupoid to the smooth manifold

P×GV which is the total space of the V -bundle ρ-accociated to P is a weak equivalence in [CartSpop, sSet]proj,
hence in [CartSpop, sSet]proj,loc. So P ×G V is indeed (one representative of) the homotopy pullback in
question. �
Since therefore all the information about ρ is encoded in the bundle V ↪→ V//G → BG, we may identify

that bundle with the action. Accordingly we write

ρ : V//G→ BG .
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Regarding ρ then as a universal local coefficient bundle, we obtain the corresponding twisted cohomology,
5.1.13, and twisted ∞-bundles, 5.1.18. We show now that the general statement of prop. 5.1.255 on twisted
cohomology in terms of sections of associated ∞-bundles reduces for twists relative to ρ to the standard
notion of spaces of sections.

Proposition 6.4.49. Let P → X be a G-principal bundle over a smooth manifold X. Then the ∞-groupoid
of P -twisted cocycles relative to ρ, equivalently the ∞-groupoid of P -twisted V -0-bundles is equivalent to the
ordinary set of sections of the vector bundle E → X which is ρ-associated to P :

ΓX(E) ' H/BG(g, ρ) .

Here g : X → BG is the morphism classifying P .

Proof. The hom ∞-groupoid of the slice ∞-topos over BG is the ∞-pullback

H/BG(g, ρ) //

��

H(X,V//G)

��
∗

[g] // H(X,BG)

.

Since the Čech nerve C({Ui}) of the good cover {Ui → X} is a cofibrant representative ofX in [CartSpop, sSet]proj,loc,
and since BGch and V//Gch from above are fibrant representatives of BG and V//G, respectively, by the
properties of simplicial model categories the right vertical morphism here is presented by the morphism of
Kan complexes.

[CartSpop, sSet](C({Ui}), V//Gch)→ [CartSpop, sSet](C({Ui}),BGch) .

Moreover, since this is the simplicial hom out of a cofibrant object into a fibration, the properties of simplicial
model categories imply that this morphism is indeed a Kan fibration. It follows with prop. 5.1.4 that the
ordinary fiber of this morphism over [g] is a Kan complex that presents the twisted cocycle ∞-groupoid in
question.

Since V//Gch → BGch is a faithful functor of groupoids, this fiber is a set, meaning a constant simplicial
set. A V//Gch-valued cocycle is a collection of smooth functions {σi : Ui → V }i and smooth functions
{gij : Ui,j → G}i,j , satisfying the condition that on all Uij we have σj = ρ(gij)(σi). This is a vertex in the
fiber precisely if the second set of functions is that given by the cocycle g which classifies P . In this case this
condition is precisely that which identifies the {σi}i as a section of the associated vector bundle, expressed
in terms of the local trivialization that corresponds to g.

In conclusion, this shows that H/BG(g, ρ) is an ∞-groupoid equivalent to set of sections of the vector
bundle ρ-associated to P . �

6.4.10.2 Sections of 2-bundles – twisted vector bundles and twisted K-classes We construct
now a coefficient ∞-bundle of the form

BU // (BU)//BU(1)

dd

��
B2U(1)

,

where

• B2U(1) is the smooth moduli 2-stack for smooth circle 2-bundles / bundle gerbes;

656



• BU = lim
−→n

BU(n) is the inductive ∞-limit over the smooth moduli stacks of smooth unitary rank-n

vector bundles (equivalently: U(n)-principal bundles).

Equivalently, this is a smooth ∞-action of the smooth circle 2-group BU(1) on the smooth ∞-stack BU .
This may be thought of as the canonical 2-representation of the circle 2-group BU(1), def. 6.3.48, being

the higher analogue to the canonical representation of the circle group U(1) on the complex plane C, discussed
above in 6.4.10.1.

We show that the notion of twisted cohomology induced by this local coefficient bundle according to
5.1.13 is reduced twisted K-theory and that the notion of twisted ∞-bundles induced by it according to
5.1.18 are ordinary twisted vector bundles also known as bundle gerbe modules. (See for instance chapter 24
of [May99] for basics of K-theory that we need here, and see for instance [CBMMS02] for a discussion of
twisted K-theory in terms of twisted bundles.)

This not only shows how the traditional notion of twisted K-theory is reproduced from the perspective of
cohomology in an ∞-topos. It also refines the traditional constructions to the smooth context. Notice that
there is a slight clash of terminology, as traditionally the term smooth K-theory is often used synonymously
with differential K-theory. However, there is a geometric refinement in between bare (twisted) K-classes
and differential (twisted) K-classes, namely smooth cocycle spaces of smooth (twisted) vector bundles and
smooth gauge transformations between them. This is the smooth refinement of the situation that we find
here, by regarding (twisted) K-theory as (twisted) cohomology internal to the ∞-topos Smooth∞Grpd.

The construction of the traditional topological classifying space for reduced K0 proceeds as follows. For
n ∈ N, let BU(n) be the classifying space of the unitary group in complex dimension n. The inclusion of
groups U(n)→ U(n+ 1) induced by the inclusion Cn → Cn+1 by extension by 0 in the, say, last coordinate
gives an inductive system of topological spaces

∗ // · · ·BU(n) //// BU(n+ 1) // · · · .

Definition 6.4.50. Write
BU := lim

−→n

BU(n)

for the homotopy colimit in TopQuillen.

Notice that by prop. 6.4.19 and prop. 6.3.30 we have, for each n ∈ N, a smooth refinement of BU(n) ∈
Top ' ∞Grpd to a smooth moduli stack BU(n) ∈ Smooth∞Grpd. This refines the set [X,BU(n)] of
equivalences classes of rank-n unitary vector bundles to the groupoid H(X,BU(n)) of unitary bundles and
smooth gauge transformations between them.

We therefore consider now similarly a smooth refinement to moduli ∞-stacks of the inductive limit BU .

Definition 6.4.51. Write
BU := lim

−→n

BU(n)

for the ∞-colimit in Smooth∞Grpd over the smooth moduli stacks of smooth U(n)-principal bundles.

Proposition 6.4.52. The canonical morphism

lim
−→n

BU(n)→ B lim
−→n

U(n)

is an equivalence in Smooth∞Grpd.

Proof. Write BU(n)ch := N( U(n) //// ∗ ) ∈ [CartSpop, sSet] for the standard presentation of the

delooping, prop. 6.4.19. Observe then that the diagram n 7→ BU(n)ch is cofibrant when regarded as an
object of [(N,≤), [CartSpop, sSet]inj,loc]proj, because, by example 5.1.12, a cotower is projectively cofibrant
if it consists of monomorphisms and if the first object, and hence all objects, are cofibrant. Therefore the
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∞-colimit is presented by the ordinary colimit over this diagram. Since this is a filtered colimit, it commutes
with finite limits of simplicial presheaves:

lim
−→n

BU(n)ch = lim
−→n

N( U(n) //// ∗ )

= N( lim
−→n

U(n) //// ∗ )

= (B lim
−→n

U(n))ch .

�

Proposition 6.4.53. The smooth object BU is a smooth refinement of the topological space BU in that it
reproduces the latter under geometric realization, 6.3.5.1:

|BU | ' BU .

Proof. By prop. 6.3.29 for every n ∈ N we have

|BU(n)| ' BU(n) .

Moreover, by the discussion at 6.3.5.1, up to the equivalence Top ' ∞Grpd the geometric realization is
given by applying the functor Π : Smooth∞Grpd → ∞Grpd. That is a left ∞-adjoint and hence preserves
∞-colimits:

|BU | ' | lim
−→n

BU(n)|

' lim
−→n

|BU(n)|

' lim
−→n

BU(n)

' BU .
�

Corollary 6.4.54. For X ∈ SmoothMfd ↪→ Smooth∞Grpd, the intrinsic cohomology of X with coefficients
in the smooth stack BU is the reduced K-theory K̃(X):

H1
smooth(X,U) := π0H(X,BU) ' K̃(X) .

Proof. By prop. 6.3.39 the set π0H(X,BU) is the Čech cohomology of X with coefficients in the stable
unitary group U . By classification theory (as discussed in [RoSt12]) this is isomorphic to the set of homotopy
classes of maps π0Top(X,BU) into the classifying space BU for reduced K-theory. �

Proposition 6.4.55. Let X be a compact smooth manifold. Then

H(X,BU) ' lim
−→n

H(X,BU(n))

and
H(X,BPU) ' lim

−→n

H(X,BPU(n)) .

Proof. That X is a compact manifold means by def. 5.1.92 that it is a representably compact object in
the site SmoothMfd. Since X is in particular paracompact, prop. 5.1.98 says that it is also a representably
paracompact object in the site, def. 5.1.97. With this the statement is given by prop. 5.1.99. �
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We now discuss twisted bundles induced by the local coefficient bundles ddn : BPU(n) → B2U(1) for
every n ∈ N. This is immediately generalized to general central extensions.

So let U(1) → Ĝ → G be any U(1)-central extension of a Lie group G and let c : BG → B2U(1) the
classifying morphism of moduli 2-stacks, according to prop. 5.1.188, sitting in the fiber sequence

BĜ // BG

c

��
B2U(1)

.

Proposition 6.4.56. Let U(1) → Ĝ → G be a group extension of Lie groups. Let X ∈ SmoothMfd ↪→
Smooth∞Grpd be a smooth manifold with differentiably good open cover {Ui → X}.

1. Relative to this data every twisting cocycle [α] ∈ H2
Smooth(X,U(1)) is a Čech-cohomology representative

given by a collection of functions

{αijk : Ui ∩ Uj ∩ Uk → U(1)}

satisfying on every quadruple intersection the equation

αijkαikl = αjklαijl .

2. In terms of this cocycle data, the twisted cohomology H1
[α](X, Ĝ) is given by equivalence classes of

cocycles consisting of

(a) collections of functions
{gij : Ui ∩ Uj → Ĝ}

subject to the condition that on each triple overlap the equation

gij ġjk = gik · αijk

holds, where on the right we are injecting αijk via U(1) → Ĝ into Ĝ and then form the product
there;

(b) subject to the equivalence relation that identifies two such collections of cocycle data {gij} and
{g′ij} if there exists functions

{hi : Ui → Ĝ}

and
{βij : Ui ∩ Uj → Û(1)}

such that
βijβjk = βik

and
g′ij = h−1

i · gij · hj · βij .

Proof. We pass to the standard presentation of Smooth∞Grpd by the projective local model structure
on simplicial presheaves over the site SmoothCartSp. There we compute the defining ∞-pullback by a
homotopy pullback, according to remark 5.1.10.

Write BĜch,B
2U(1)ch ∈ [CartSpop, sSet] etc. for the standard models of the abstract objects of these

names by simplicial presheaves, as discussed in 6.4.3. Write accordingly B(U(1) → Ĝ)ch for the delooping
of the crossed module 2-group associated to the central extension Ĝ→ G.
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By prop. 5.1.188, in terms of this the characteristic class c is represented by the ∞-anafunctor

B(U(1)→ Ĝ)ch
c //

'
��

B(U(1)→ 1)ch = B2U(1)ch

BGch

,

where the top horizontal morphism is the evident projection onto the U(1)-labels. Moreover, the Čech nerve
of the good open cover {Ui → X} forms a cofibrant resolution

∅ ↪→ C({Ui})
'→ X

and so α is presented by an ∞-anafunctor

C({Ui})
α //

'
��

B2U(1)c

X

.

Using that [CartSpop, sSet]proj is a simplicial model category this means in conclusion that the homotopy
pullback in question is given by the ordinary pullback of simplicial sets

H1
[α](X, Ĝ) //

��

∗

α

��
[CartSpop, sSet](C({Ui}),B(U(1)→ Ĝ)c)

c∗ // [CartSpop, sSet](C({Ui}),B2U(1)c)

.

An object of the resulting simplicial set is then seen to be a simplicial map g : C({Ui}) → B(U(1) → Ĝ)c
that assigns

g :

(x, j)

##
(x, i) //

;;

(x, k)

7→

∗
gjk(x)

��
∗

gik(x)
//

gij(x)
??

∗
αijk(x)��

such that projection out along B(U(1)→ Ĝ)c → B(U(1)→ 1)c = B2U(1)c produces α.
Similarily for the morphisms. Writing out what these diagrams in B(U(1)→ Ĝ)c mean in equations, one

finds the formulas claimed above. �

6.4.11 Reduction of structure groups

We discuss the realization in smooth∞-groupoids of the general abstract concept of reduction and extension
of structure groups according to 5.1.18.

Let G be a Lie group and let K ↪→ G be a Lie subgroup. Write

c : BK → BG

for the induced morphism of smooth moduli stacks of smooth principal bundles, according to prop. 6.4.19.
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Observation 6.4.57. The action groupoid G//K, def. 1.2.77, is 0-truncated, hence the canonical morphism
to the smooth manifold quotient

G//K
'→ G/K

is an equivalence in Smooth∞Grpd.
We have a fiber sequence of smooth stacks

G/K → BK → BG .

This is presented by the evident sequence of simplicial presheaves

G//K → ∗//K → ∗//G .

Proof. The equivalence follows because the action of a subgroup is free. The fiber sequence may be
computed for instance with the factorization lemma, prop. 5.1.5. �
In applications, an important class of examples is the following.

Observation 6.4.58. For G a conneced Lie group, let K ↪→ G be the inclusion of its maximal compact
subgroup. Then c : BK → BG is a Π-equivalence, def. 5.2.35 (hence becomes an equivalence under
geometric realization, def. 5.2.14). Therefore, while the groupoids of K,G-principal bundles are different
and

H(X,BK)→ H(X,BG)

is not an equivalence, unless G is itself already compact, it does induce an isomorphism on connected
components (nonabelian cohomology sets)

H1(X,K)
'→ H1(X,G) .

In the following discussion this difference between the classifying spaces BG ' Π(BG) ' Π(BK) ' BK and
their smooth refinements is crucial.

Theorem 6.3.47 in the present case says that Π(G/K) ' ∗ contractible. This recovers the classical
statement that, as a topological space, G is a product of its maximal compact subgroup with a contractible
space.

Proof. It is a classical fact that the maximal compact subgroup inclusion K ↪→ G is a homotopy equiv-
alence on the underlying topological spaces. The statement then follows by prop. 6.3.35. �

Given a subgroup inclusion K ↪→ G and a G-principal bundle P , a standard question is whether the
structure group of P may be reduced to K.

Definition 6.4.59. Let K ↪→ G be an inclusion of Lie groups and let X ∈ Smooth∞Grpd be any object
(for instance a smoot manifold). Let g : X → BG be a smooth classifying morphism for a G-principal bundle
P → X.

A choice of reduction of the structure group of G along K ↪→ G (or K-reduction for short) is a choice of
lift gred and a choice of homotopy (gauge transformation) η of smooth stacks in the diagram

BK

c

��
X

g
//

gred

==

BG
η'��

.

For (gred, η) and (g′red, η
′) two K-reductions of P , an isomorphism of K-reductions from the first to the

second is a natural transformation of morphisms of smooth stacks

X

gred

((

g′red

77BKρ�� ,
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hence a choice of gauge transformation between the corresponding K-principal bundles, such that

BK

c

��
X

g
//

g′red

==
gred ,,

BG
η′
'
��

ρ'��
=

BK

c

��
X

g
//

gred

==

BG
η'��

.

With the obvious notion of composition of such isomorphisms, this defines a groupoid of K-reductions of P .

Remark 6.4.60. The crucial information is in the choice of the smooth transformation η. Notably in the
case that K ↪→ G is the inclusion of a maximal compact subgroup as in observation 6.4.58 the underlying
reduction problem after geometric realization in the homotopy theory of topological spaces is trivial: all
bundles involved in the above are equivalent. The important information in η is about how they are chosen
to be equivalent, and smoothly so.

Below in 7.1.3.1 we see that in the case that P = TX is the tangent bundle of a manifold, η is identified
with a choice of vielbein or soldering form.

Comparison with the discussion in 5.1.13 reveals that therefore structure group reduction is a topic in
twisted nonabelian cohomology. In particular, we may apply def. 5.2.118 to form the groupoid of all choices
of reductions.

Proposition 6.4.61. For g : X → BG (the cocycle for) a G-principal bundle P → X, the groupoid of
K-reductions of P according to def. 6.4.59 is the groupoid of [g]-twisted c-structures, def. 5.2.118, hence the
homotopy pullback cStruc[g](X) in

cStruc[g](X)

��

// ∗

g

��
H(X,BK)

H(X,c) // H(X,BG)

,

where
c : BK → BG

is the induced morphism of smooth moduli stacks.

Proof. Using that BK and BG are 1-truncated objects in H := Smooth∞Grpd, by construction, one
sees that the groupoid defined in def. 6.4.59 is equivalently the hom-groupoid H/BG(g, c) in the slice ∞-
topos H/BG. Using this, the statement is a special case of prop. 5.1.256. �

Remark 6.4.62. By observation 6.4.57 we may equivalently speak of cStrucg(X) as the groupoid of twisted
G//K-structures on X (where the latter is given by a corresponding groupoid-principal bundle).

If we think, according to remark 6.4.60, of a choice of K-reduction as a choice of vielbein or soldering
form, then this says that locally their moduli space is the cose G/K (while globally there may be a twist).

The morphism c as above always has a canonical differential refinement

ĉ : BKconn → BGconn

given by prop. 1.2.114. Accordingly, we may also apply def. 5.2.119 to the case of structure group reduction.

Definition 6.4.63. For K → G a Lie subgroup inclusion, and for ∇ : X → BGconn (a cocycle for )
a G-principal bundle with connection on X, we say the groupoid of K-reductions of ∇ is the groupoid
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ĉStruc[∇](X) of twisted differential ĉ-structures, given as the homotopy pullback

ĉStruc[∇](X)

��

// ∗

∇
��

H(X,BKconn)
H(X,ĉ) // H(X,BGconn)

.

However, here the differential refinement does not change the homotopy-type of the twisted cohomology

Proposition 6.4.64. For P a G-principal bundle with connection ∇ the groupoid of K-reductions of ∇ is
equivalent to the groupoid of K-reductions of just P

ĉStruc[∇](X) ' cStruc[P ](X) .

Remark 6.4.65. This degeneracy of notions does not hold for twisted structures controled by higher groups.
That it holds in the special case of ordinary K-reductions is an incarnation of a classical fact in differential
geometry: as we will see in 7.1.3.1 below, for reductions of tangent bundle structure it comes down to the
fact that for every choice of Riemannian metric and torsion there is a unique metric-compatible connection
with that torsion. Prop. 6.4.64 may be understood as stating this in the fullest generality of G-principal
bundles for G a Lie group.

6.4.12 Flat connections and local systems

We discuss the intrinsic notion of flat ∞-connections, 5.2.6, realized in Smooth∞Grpd.

Proposition 6.4.66. Let X,A ∈ Smooth∞Grpd be any two objects and write |X| ∈ Top for the intrinsic
geometric realization, def. 5.2.14. We have that the flat cohomolog in Smooth∞Grpd of X with coefficients
in A is equivalent to the ordinary cohomology in Top of |X| with coefficients in underlying discrete object of
A:

HSmooth,flat(X,A) ' H(|X|, |ΓA|) .

Proof. By definition we have

Hflat(X,A) ' H(
∫
X,A) ' H(DiscΠX,A) .

Using the (Disc) a Γ-adjunction this is

· · ·π0∞Grpd(ΠX,ΓA) .

Finally applying the equivalence | · | :∞Grpd→ Top this is

· · · ' H(|ΠX|, |ΓA|) .

The claim hence follows as in prop. 6.4.37. �

Let G be a Lie group regarded as a 0-truncated ∞-group in Smooth∞Grpd. Write g for its Lie algebra.
Write BG ∈ Smooth∞Grpd for its delooping. Recall the fibrant presentation BGch ∈ [SmoothCartSpop, sSet]proj,loc

from prop. 6.4.19.

Proposition 6.4.67. The object [BG ∈ Smooth∞Grpd has a fibrant presentation [BGch ∈ [CartSpop, sSet]proj,loc

given by the groupoid of Lie-algebra valued forms

[BGch = N

 C∞(−, G)× Ω1
flat(−, g)

adp1
(p2)+p−1

1 dp1//

p2
// Ω1

flat(−, g)


and this is such that the canonical morphism [BG→ BG is presented by the canonical morphism of simplicial
presheaves [BGch → BGch which is a fibration in [SmoothCartSpop, sSet]proj.
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Before giving the proof, we make

Remark 6.4.68. This means that a U -parameterized family of objects of [BGch is given by a Lie-algebra
valued 1-form A ∈ Ω1(U) ⊗ g whose curvature 2-form FA = ddRA + [A,∧A] = 0 vanishes, and a U -
parameterized family of morphisms g : A → A′ is given by a smooth function g ∈ C∞(U,G) such that
A′ = adg(A) + g−1dg, where adgA = g−1Ag is the adjoint action of G on its Lie algebra, and where
g−1dg := g∗θ is the pullback of the Maurer-Cartan form on G along g. In other words prop. 6.4.67 exhibits
[BG, for G a Lie group, as the smooth action groupoid, hence as the homotopy quotient of the action of G
by gauge transformations

A 7→ g−1Ag + g−1dg .

This is the traditional incarnation of the general relation [BG ' ([dRBG)//G which holds for every∞-group
in every cohesive ∞-topos by remark 5.2.60.

Proof. of prop. 6.4.67. By the proof of prop. 4.1.32 we have that [BG is presented by the simplicial
presheaf that is constant on the nerve of the one-object groupoid

Gdisc
//
// ∗ ,

for the discrete group underlying the Lie group G. The canonical morphism of that into BGch is however
not a fibration. We claim that the canonical inclusion N( Gdisc

//
// ∗ )→ [BGc factors the inclusion into

BGch by a weak equivalence followed by a global fibration.
To see the weak equivalence, notice that it is objectwise an equivalence of groupoids: it is essentially

surjective since every flat g-valued 1-form on the contractible Rn is of the form gdg−1 for some function
g : Rn → G (let g(x) = P exp(

∫ x
0

)A be the parallel transport of A along any path from the origin to
x). Since the gauge transformation automorphism of the trivial g-valued 1-form are precisely given by the
constant G-valued functions, this is also objectwise a full and faithful functor. Similarly one sees that the
map [BGch → BG is a fibration.

Finally we need to show that [BGch is fibrant in [SmoothCartSpop, sSet]proj,loc. This is implied by
theorem 4.1.41. More explicitly, this can be seen by observing that this sheaf is the coefficient object that
in Čech cohomology computes G-principal bundles with flat connection and then reasoning as above: every
G-principal bundle with flat connection on a Cartesian space is equivalent to a trivial G-principal bundle
whose connection is given by a globally defined g-valued 1-form. Morphisms between these are precisely G-
valued functions that act on the 1-forms by gauge transformations as in the groupoid of Lie-algebra valued
forms. �

Let now BnU(1) be the circle (n + 1)-Lie group, def. 6.4.21. Recall the notation and model category
presentations as discussed there.

Proposition 6.4.69. For n ≥ 1 a fibration presentation in [CartSpop, sSet]proj of the canonical morphism
[BnU(1) → BnU(1) in Smooth∞Grpd is given by the image under Ξ : [CartSpop,Ch+] → [CartSpop, sSet]
of the morphism of chain complexes

C∞(−, U(1))
ddR //

��

Ω1(−)
ddR //

��

· · · ddR // Ωncl(−)

��
C∞(−, U(1)) // 0 // · · · // 0

,

where at the top we have the flat Deligne complex.

Proof. It is clear that the morphism of chain complexes is an objectwise surjection and hence maps to
a projective fibration under Ξ. It remains to observe that the flat Deligne complex is a presentation of
[BnU(1):
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By the proof of prop. 4.1.32 we have that [ = Disc ◦ Γ is presented in the model category on fibrant
objects by first evaluating on the point and then extending back to a constant simplicial presheaf. Since
ΞU(1)[n] is indeed globally fibrant, a fibrant presentation of [BnU(1) is given by the constant presheaf
U(1)const[n] : U 7→ Ξ(U(1)[n]).

The inclusion U(1)const[n]→ U(1)[n] is not yet a fibration. But by a basic fact of abelian sheaf cohomology

– using the Poincaré lemma – we have a global weak equivalence U(1)const[n]
'→ [C∞(−, U(1))

ddR→ · · · ddR→
Ωncl(−)] that factors this inclusion by the above fibration. This completes the proof.

For emphasis, we repeat this argument in more detail. The factorization of U(1)const[n] → U(1)[n] into
a weak equivalence followed by a fibration that we are looking at is over each object Rq ∈ CartSp in the site
given by the morphisms of chain complexes whose components are show on the following diagram.

U(1) //
� _

��

0

��

// 0

��

// · · · // 0

��
C∞(Rq, U(1))

ddRlog //

id

��

Ω1(Rq) ddR //

��

Ω2(Rq) ddR //

��

· · · ddR // Ωncl(Rq)

��
C∞(Rq, U(1)) // 0 // 0 // · · · // 0

.

It is clear that this commutes. It is also clear that the lower vertical morphisms are all surjections, so the
lower row exhibits a fibration of chain complexes. In order for the top row to exhibit a weak equivalence of
chain complexes – a quasi-isomorphism – we need it to induce an isomorphism on all chain homology groups.

The chain homology of the top complex is evidently concentrated in degree n, where it is U(1), as a
discrete group.

The chain homology of the middle complex in degree n is the kernel of the differential ddRlog : C∞(Rq, U(1))→
Ω1(Rq). This kernel manifestly consists of the constant U(1)-valued functions. Since Rq is connected, these
are naturally identified with the group U(1) itself. This identification is indeed what the top left vertical
morphism exhibits.

The chain homology of the middle complex in degree 0 ≤ k < n is the de Rham cohomology Hn−k
dR (Rq).

But this vanishes, since Rq is smoothly contractible (the Poincaré lemma).
Therefore the homology groups of the top and of the middle chain complex coincide. And by this

discussion, the top vertical morphisms induce isomorphisms on these homology groups. �

We discuss presentations of [BG for G more generally the Lie integration of an L∞-algebra g further
below in 6.4.14.3.

6.4.13 de Rham cohomology

We discuss the intrinsic notion of de Rham cohomology in a cohesive ∞-topos, 5.2.10, realized in the
context Smooth∞Grpd. Here it reproduces the traditional notion of de Rham cohomology with abelian and
nonabelian group coefficients, as well as its equivariant and simplicial refinements.

Let G be a Lie group. Write g for its Lie algebra.

Proposition 6.4.70. The object [dRBG ∈ Smooth∞Grpd has a fibrant presentation in [SmoothCartSpop, sSet]proj,loc

by the sheaf [BGch := Ω1
flat(−, g) of flat Lie algebra-valued forms

[BGch : U 7→ Ω1
flat(U, g) .
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Proof. By prop. 6.4.67 we have a fibration [BGch → BGch in [SmoothCartSpop, sSet]proj given by the
morphism of sheaves of groupoids

C∞(−, G)
(−)∗θ //

id

��

Ω1
flat(−, g)

��
C∞(−, G) // 0

,

which models the canonical inclusion [BG→ BG. Therefore by prop. 5.1.4 we obtain a presentation for the
defining ∞-pullback

[dRBG := ∗ ×BG [BG

in Smooth∞Grpd by the ordinary pullback

[dRBGch ' ∗ ×BGch
[BGch

in [CartSpop, sSet]proj. This is manifestly equal to Ω1
flat(−, g). This is fibrant in [CartSpop, sSet]proj,loc

because it is a sheaf. �

Remark 6.4.71. Another equivalent way to compute the homotopy fiber in prop. 6.4.70 is to produce
the fibration resolution specifically by the factorization lemma, prop. 5.1.5. This yields for the de Rham
coefficients of the Lie group G the presentation

[dRBG ' G/(Gdisc) ,

where on the right we have the quotient (of sheaves, hence in Smooth∞Grpd) of the Lie group G (the
sheaf C∞(−, G)) by the underlying geometrically discrete group (the sheaf constant on the underyling set
of G). In other words, over a U ∈ CartSp the value of G/(Gdisc) is the set of equivalence classes of smooth
functions g : U → G, where two are regarded as equivalent if they differ by multiplication with a constant
such function.

By the general theory this sheaf must be equivalent, hence isomorphic, to the one of prop. 6.4.70.

Indeed, Gdisc is the kernel of the map (−)∗θ : C∞(−, G) // Ω1
flat (−, g) which sends g : U → G to the

pullback of the Maurer-Cartan form along g, often written g−1ddRg . Moreover this map is surjective, since

for A ∈ Ω1
flat(U, g) any flat g-valued form the function P exp(

∫ (−)

x0
A) : U → G that sends a point x ∈ U to

the parallel transport of A along any path from any fixed basepoint x0 ∈ U is a preimage. Hence we have
the image factorization

(−)∗θ : G // // G/(Gdisc)
' // Ω1

flat(−, g) .

In words this says that a flat differential Lie-algebra valued form on a Cartesian space Rk is equivalently a
smooth function from that space to G “without remembering the origin of this function”. What is noteworthy
about this is that this second, equivalent, description, no longer refers to differentials.

Indeed, this second description of the de Rham coefficient object of a group object is valid for any site,
in particular for instance for the Euclidean-topological cohesion of 6.3.

For n ∈ N, let now BnU(1) be the circle Lie (n+ 1)-group of def. 6.4.21. Recall the notation and model
category presentations from the discussion there.

Proposition 6.4.72. A fibrant representative in [CartSpop, sSet]proj,loc of the de Rham coefficient object
[dRBnU(1) from def. 5.2.59 is given by the truncated ordinary de Rham complex of smooth differential
forms

[dRBnU(1)chn := Ξ[Ω1(−)
ddR−→ Ω2(−)

ddR−→ · · · → Ωn−1(−)
ddR−→ Ωncl(−)] .
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Proof. By definition and using prop. 5.1.9 the object [dRBnU(1) is given by the homotopy pullback in
[CartSpop, Ch•≥0]proj of the inclusion U(1)const[n] → U(1)[n] along the point inclusion ∗ → U(1)[n]. We
may compute this as the ordinary pullback after passing to a resolution of this inclusion by a fibration. By
prop. 6.4.69 such a fibration replacement is given by the map from the flat Deligne complex. Using this we
find the ordinary pullback diagram

Ξ[0→ Ω1(−)→ · · · → Ωncl(−)] //

��

Ξ[C∞(−, U(1))→ Ω1(−)→ · · · → Ωncl(−)]

��
Ξ[0→ 0→ · · · → 0] // Ξ[C∞(−, U(1))→ 0→ · · · → 0]

.

�

Proposition 6.4.73. Let X be a smooth manifold regarded under the embedding SmoothMfd ↪→ Smooth∞Grpd.
Write Hn

dR(X) for the ordinary de Rham cohomology of X.
For n ∈ N we have isomorphisms

π0Smooth∞Grpd(X, [dRBnU(1)) '

 Hn
dR(X) |n ≥ 2

Ω1
cl(X) |n = 1

0 |n = 0

Proof. Let {Ui → X} be a differentiably good open cover. The Čech nerve C({Ui})→ X is a cofibrant
resolution of X in [CartSpop, sSet]proj,loc. Therefore we have for all n ∈ N

Smooth∞Grpd(X, [dRBnU(1)) ' [CartSpop, sSet](C({Ui}),Ξ[Ω1(−)
ddR→ · · · → Ωncl(−)]) .

The right hand is the ∞-groupoid of cocylces in the Čech hypercohomology of the truncated complex of
sheaves of differential forms. A cocycle is given by a collection

(Ci, Bij , Aijk, · · · , Zi1,··· ,in)

of differential forms, with Ci ∈ Ωncl(Ui), Bij ∈ Ωn−1(Ui ∩ Uj), etc. , such that this collection is annihilated
by the total differential D = ddR± δ, where ddR is the de Rham differential and δ the alternating sum of the
pullbacks along the face maps of the Čech nerve.

It is a standard result of abelian sheaf cohomology that such cocycles represent classes in de Rham
cohomology of n ≥ 2. For n = 1 and n = 0 our truncated de Rham complex degenerates to [dRBU(1)chn =
Ξ[Ω1

cl(−)] and [dRU(1)chn = Ξ[0], respectively, which obviously has the cohomology as claimed above. �

Remark 6.4.74. Recall from the discussion in 5.2.10 that the failure of the intrinsic de Rham cohomology
of Smooth∞ to coincide with traditional de Rham cohomology in degree 0 and 1 is due to the fact that the
intrinsic de Rham cohomology in degree n is the home for curvature classes of circle (n − 1)-bundles. For
n = 1 these curvatures are not to be taken modulo exact forms. And for n = 0 they vanish.

Definition 6.4.75. For n ∈ N, write Ωncl ∈ Sh(CartSp) ↪→ Smooth∞Grpd for the ordinary sheaf of smooth
closed differential n-forms. By prop. 6.4.72 this has a canonical morphism

Ωncl → [dRBnU(1)

into the de Rham coefficient object for Bn−1U(1), given in the presentation of the latter as a simplicial
presheaf according to prop. 6.4.72 by the inclusion of the simplicial presheaf that is simplicially constant on
the degree-0 component.
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Proposition 6.4.76. The morphisms of def. 6.4.75 are differential form objects in the sense of def. 5.2.70
with respect to the standard line object R.

Proof. By the discussion in ?? the R1-manifolds are precisely the objects in the inclusion SmoothMfd ↪→
Sh∞(SmoothMfd) ' Smooth∞Grpd. This means by def. 5.2.70 that we need to check that for each smooth
manifold Σ the morphism

[Σ,Ωncl]→ [Σ, [dRBnU(1)]

is an effective epimorphism. By prop. 5.1.67 this is equivalent to the 0-truncation of the moprhism being an
epimorphism in the sheaf topos Sh(CartSp). By the characterization of internal homs in turn, for this it is
sufficient that for each U ∈ CartSp the function Ωncl(Σ×U)→ π0H(Σ×U, [dRBnU(1)) is a surjection. This
is the case by prop. 6.4.73. �

We discuss the equivariant version of smooth de Rham cohomology.

Proposition 6.4.77. Let X be a smooth manifold equipped with a smooth action by a Lie group G. Write
X//G for the corresponding action Lie groupoid, prop. 6.4.45. Then for n ≥ 2 we have an isomorphism

π0Smooth∞Grpd(X//G, [dRBnR) ' Hn
dR,G(X) ,

where on the right we have ordinary G-equivariant de Rham cohomology of X.

6.4.14 Exponentiated Lie algebras

We discuss the intrinsic notion of exponentiated ∞-Lie algebras, 5.2.11, realized in Smooth∞Grpd.

• 6.4.14.1 – Lie integration;

• 6.4.14.2 – Examples;

• 6.4.14.3 – Flat coefficients;

• 6.4.14.4 – de Rham coefficients;

6.4.14.1 Lie integration Recall the characterization of L∞-algebras, def. 1.2.150, by dual dg-algebras,
prop. 1.2.152 – their Chevalley-Eilenberg algebras–, and the characterization of the category L∞Alg as the
full subcategory

L∞
CE
↪→ dgAlgop .

We describe now a presentation of the exponentiation of an L∞ algebra to a smooth ∞-group. The
following somewhat technical definition serves to control the smooth structure on these exponentiated objects.

Definition 6.4.78. For k ∈ N regard the k-simplex ∆k as a smooth manifold with corners in the standard
way. We think of this embedded into the Cartesian space Rk in the standard way with maximal rotation
symmetry about the center of the simplex, and equip ∆k with the metric space structure induced this way.

A smooth differential form ω on ∆k we say has sitting instants along the boundary if, for every (r < k)-
face F of ∆k there is an open neighbourhood UF of F in ∆k such that ω restricted to U is constant in the
directions perpendicular to the r-face on its value restricted to that face.

More generally, for any U ∈ CartSp a smooth differential form ω on U×∆k is said to have sitting instants
if there is 0 < ε ∈ R such that for all points u : ∗ → U the pullback along (u, Id) : ∆k → U ×∆k is a form
with sitting instants on ε-neighbourhoods of faces.

Smooth forms with sitting instants form a sub-dg-algebra of all smooth forms. We write Ω•si(U ×∆k) for
this sub-dg-algebra.
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We write Ω•si,vert(U ×∆k) for the further sub-dg-algebra of vertical differential forms with respect to the

projection p : U ×∆k → U , hence the coequalizer

Ω•≥1(U)
p∗ //
0
// Ω•si(U ×∆k) // Ω•si,vert(U ×∆k) .

Definition 6.4.79. For g ∈ L∞ write exp(g) ∈ [SmoothCartSpop, sSet] for the simplicial presheaf defined
over U ∈ CartSp and n ∈ N by

exp(g) : (U, [n]) 7→ HomdgAlg(CE(g),Ω•si,vert(U ×∆n))

with the evident structure maps given by pullback of differential forms.

This definition of the ∞-groupoid associated to an L∞-algebra realized in the smooth context appears
in [FSS10] and in similar form in [Roy10] as the evident generalization of the definition in Banach spaces in
[Hen08] and for discrete ∞-groupoids in [Ge09], which in turn goes back to [Hin97].

Proposition 6.4.80. The objects exp(g) ∈ [SmoothCartSpop, sSet] are

1. connected;

2. Kan complexes over each U ∈ CartSp.

Proof. That exp(g)0 = ∗ follows from degree-counting: Ω•si,vert(U ×∆0) = C∞(U) is entirely in degree
0 and CE(g) is in degree 0 the ground field R.

To see that exp(g) has all horn-fillers over each U ∈ CartSp observe that the standard continuous horn
retracts f : ∆k → Λki are smooth away from the preimages of the (r < k)-faces of Λ[k]i.

For ω ∈ Ω•si,vert(U × Λ[k]i) a differential form with sitting instants on ε-neighbourhoods, let therefore

K ⊂ ∂∆k be the set of points of distance ≤ ε from any subface. Then we have a smooth function

f : ∆k \K → Λki \K .

The pullback f∗ω ∈ Ω•(∆k \K) may be extended constantly back to a form with sitting instants on all of
∆k. The resulting assignment

(CE(g)
A→ Ω•si,vert(U × Λki )) 7→ (CE(g)

A→ Ω•si,vert(U × Λki )
f∗→ Ω•si,vert(U ×∆n))

provides fillers for all horns over all U ∈ CartSp. �

Definition 6.4.81. We say that the loop space object Ω exp(g) is the smooth ∞-group exponentiating g.

Proposition 6.4.82. The objects exp(g) ∈ Smooth∞Grpd are geometrically contractible,

Π exp(g) ' ∗ ,

and hence are indeed exponentiated ∞-Lie algebras in the sense of def. 5.2.72.

Proof. Observe that every simplicial presheaf X is the homotopy colimit over its component presheaves
Xn ∈ [SmoothCartSpop,Set] ↪→ [SmoothCartSpop, sSet]

X ' Llim
→ n

Xn .

(Use for instance the injective model structure for which X• is cofibrant in the Reedy model structure
[∆op, [SmoothCartSpop, sSet]inj,loc]Reedy ). Therefore it is sufficient to show that in each degree n the 0-
truncated object exp(g)n is geometrically contractible.
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To exhibit a geometric contraction, def. 5.2.16, choose for each n ∈ N, a smooth retraction

ηn : ∆n × [0, 1] −→ ∆n

of the n-simplex: a smooth map such that ηn(−, 1) = Id and ηn(−, 0) factors through the point. We claim
that this induces a diagram of presheaves

exp(g)n

(id,1)

��

id

''
exp(g)n × [0, 1]

η∗n // exp(g)n

exp(g)n //

(id,0)

OO

∗

OO

,

where over U ∈ CartSp the middle morphism is given by

η∗n : (α, f) 7→ (f, ηn)∗α ,

where

• α : CE(g)→ Ω•si,vert(U ×∆n) is an element of the set exp(g)n(U),

• f is an element of [0, 1](U);

• (f, ηn) is the composite morphism

U ×∆n (id,f)×id−→ U × [0, 1]×∆n (id,ηn)−→ U ×∆n

• (f, η)∗α is the postcomposition of α with the image of (f, ηn) under Ω•vert(−).

Here the last item is well defined given the coequalizer definition of Ω•vert because (f, ηn) is a morphism of
bundles over U

U ×∆n
(id,f)×id //

��

U × [0, 1]×∆n id×ηn //

��

U ×∆n

��
U

id // U
id // U

.

Similarly, for h : K → U any morphism in SmoothCartSp the naturality condition for a morphism of
presheaves follows from the fact that the composites of bundle morphisms

K ×∆n h×id //

��

U ×∆n
(id,f)×id //

��

U × [0, 1]×∆n
(id,ηn) //

��

U ×∆n

��
K

h // U
id // U

id // U

and

K ×∆n
((id,f◦h)×id //

��

K × [0, 1]×∆n id×ηn //

��

K ×∆n h×id //

��

U ×∆n

��
K

id //K
id // K

h // U

coincide.
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Moreover, notice that the lower morphism in our diagram of presheaves indeed factors through the point
as indicated, because for an L∞-algebra g we have that the Chevalley-Eilenberg algebra CE(g) is in degree
0 the ground field algebra algebra R, so that there is a unique morphism CE(g)→ Ω•vert(U ×∆0) ' C∞(U)
in dgAlg.

Finally, since [0, 1] is a contractible paracompact manifold, we have that Π([0, 1]) ' ∗ by prop. 6.3.29.
Therefore the above diagram of presheaves presents a geometric homotopy in Smooth∞Grpd from the
identity map to a map that factors through the point. It follows by prop 5.2.17 that Π(exp(g)n) ' ∗ for all
n ∈ N. And since Π preserves the homotopy colimit exp(g) ' Llim

−→n
exp(g)n we have that Π(exp(g)) ' ∗,

too. �
We may think of exp(g) as the smooth geometrically ∞-simply connected Lie integration of g. Notice

however that exp(g) ∈ Smooth∞Grpd in general has nontrivial and interesting homotopy sheaves. The
above statement says that its geometric homotopy groups vanish .

6.4.14.2 Examples of exponentiated L∞-Algebras Let g ∈ L∞ be an ordinary (finite dimensional)
Lie algebra. Standard Lie theory provides a simply connected Lie group G integrating g. Write BG ∈
Smooth∞Grpd for its delooping. According to prop. 6.4.19 this is presented by the simplicial presheaf
BGch ∈ [SmoothCartSpop, sSet].

Proposition 6.4.83. The operation of parallel transport P exp(
∫
−) : Ω1([0, 1], g)→ G yields a weak equiv-

alence (in [SmoothCartSpop, sSet]proj)

P exp(

∫
−) : cosk3 exp(g) ' cosk2 exp(g) ' BGch .

Proof. Notice that a flat smooth g-valued 1-form on a contractible space X is after a choice of basepoint
canonically identified with a smooth function X → G. The claim then follows from the observation that by
the fact that G is simply connected any two paths with coinciding endpoints have a continuous homotopy
between them, and that for smooth paths this may be chose to be smooth, by the Steenrod approximation
theorem [Wock09]. �
Let now n ∈ N, n ≥ 1.

Definition 6.4.84. Write
bn−1R ∈ L∞

for the L∞-algebra whose Chevalley-Eilenberg algebra is given by a single generator in degree n and vanishing
differential. We call this the line Lie n-algebra.

Observation 6.4.85. The discrete ∞-groupoid underlying exp(bn−1R) is given by the Kan complex that
in degree k has the set of closed differential n-forms with sitting instants on the k-simplex

Γ(exp(bn−1R)) : [k] 7→ Ωnsi,cl(∆
k)

Definition 6.4.86. We write equivalently

BnRsmp := exp(bn−1R) ∈ [SmoothCartSpop, sSet] .

Proposition 6.4.87. We have that BnRsmp is indeed a presentation of the smooth line n-group BnR, from
6.4.21.

Concretely, with BnRchn ∈ [SmoothCartSpop, sSet] the standard presentation given under the Dold-Kan
correspondence by the chain complex of sheaves concentrated in degree n on C∞(−,R) the equivalence is
induced by the fiber integration of differential n-forms over the n-simplex:∫

∆•
: BnRsmp

'→ BnRsmp .
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Proof. First we observe that the map∫
∆•

: (ω ∈ Ωnsi,vert,cl(U ×∆k)) 7→
∫

∆k

ω ∈ C∞(U,R)

is indeed a morphism of simplicial presheaves exp(bn−1R)→ BnRchn on. Since it goes between presheaves of
abelian simplicial groups, by the Dold-Kan correspondence it is sufficient to check that we have a morphism
of chain complexes of presheaves on the corresponding normalized chain complexes.

The only nontrivial degree to check is degree n. Let λ ∈ Ωnsi,vert,cl(∆
n+1). The differential of the

normalized chains complex sends this to the signed sum of its restrictions to the n-faces of the (n + 1)-
simplex. Followed by the integral over ∆n this is the piecewise integral of λ over the boundary of the
n-simplex. Since λ has sitting instants, there is 0 < ε ∈ R such that there are no contributions to this
integral in an ε-neighbourhood of the (n − 1)-faces. Accordingly the integral is equivalently that over the
smooth surface inscribed into the (n + 1)-simplex. Since λ is a closed form on the n-simplex, this surface
integral vanishes, by the Stokes theorem. Hence

∫
∆•

is indeed a chain map.
It remains to show that

∫
∆•

: coskn+1 exp(bn−1R)→ BnRchn is an isomorphism on simplicial homotopy
groups over each U ∈ CartSp. This amounts to the statement that

• a smooth family of closed n < k-forms with sitting instants on the boundary of ∆k+1 may be extended
to a smooth family of closed forms with sitting instants on ∆k+1

• a smooth family of closed n-forms with sitting instants on the boundary of ∆n+1 may be extended
to a smooth family of closed forms with sitting instants on ∆n+1 precisely if their smooth family of
integrals over ∂∆n+1 vanishes.

To demonstrate this, we want to work with forms on the (k + 1)-ball instead of the (k + 1)-simplex. To
achieve this, choose again 0 < ε ∈ R and construct the diffeomorphic image of Sk × [1 − ε, 1] inside the
(k+ 1)-simplex as indicated by the above construction: outside an ε-neighbourhood of the corners the image
is a rectangular ε-thickening of the faces of the simplex. Inside the ε-neighbourhoods of the corners it bends
smoothly. By the Steenrod-approximation theorem [Wock09] the diffeomorphism from this ε-thickening of
the smoothed boundary of the simplex to Sk × [0, 1] extends to a smooth function from the (k + 1)-simplex
to the (k + 1)-ball. By choosing ε smaller than each of the sitting instants of the given n-form on ∂∆k, we
have that this n-form vanishes on the ε-neighbourhoods of the corners and is hence entirely determined by
its restriction to the smoothed simplex, identified with the (k + 1)-ball.

It is now sufficient to show: a smooth family of smooth n-forms ω ∈ Ωnvert,cl(U ×Sk) extends to a smooth

family of closed n-forms ω̂ ∈ Ωnvert,cl(U×Bn+1) that is radially constant in a neighbourhood of the boundary

for all n < k and for n = k precisely if its smooth family of integrals
∫
Sn
ω = 0 ∈ C∞(U,R) vanishes.

Notice that over the point this is a direct consequence of the de Rham theorem: all k < n forms are
exact on Sk and n-forms are exact precisely if their integral vanishes. In that case there is an (n− 1)-form
A with ω = dA. Choosing any smoothing function f : [0, 1]→ [0, 1] (smooth, surjective non,decreasing and
constant in a neighbourhood of the boundary) we obtain a n-form f ∧ A on (0, 1]× Sn, vertically constant
in a neighbourhood of the ends of the interval, equal to A at the top and vanishing at the bottom. Pushed
forward along the canonical (0, 1] × Sn → Dn+1 this defines a form on the (n + 1)-ball, that we denote by
the same symbol f ∧A. Then the form ω̂ := d(f ∧A) solves the problem.

To complete the proof we have to show that this argument does extend to smooth families of forms in
that we can find suitable smooth families of the form A in the above discussion. This may be accomplished
for instance by invoking Hodge theory: If we equip Sk with a Riemannian metric then the refined form of
the Hodge theorem says that we have an equality

id− πH = [d, d∗G] ,

of operators on differential forms, where πH is the orthogonal projection on harmonic forms and G is the
Green operator of the Hodge-Laplace operator. For ω an exact form its harmonic projection vanishes so that
this gives a homotopy

ω = d(d∗Gω) .
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This operation ω 7→ d∗Gω depends smoothly on ω. �

6.4.14.3 Flat coefficients for exponentiated L∞-algebras We consider now the flat coefficient ob-
ject, 5.2.6, [ exp(g) of exponentiated L∞-algebras exp(g), 6.4.14.

Definition 6.4.88. Write [ exp(g)smp or equivalently exp(g)flat for the simplicial presheaf given by

[ exp(g)smp : (U, [n]) 7→ HomdgAlg(CE(g),Ω•si(U ×∆n)) .

Proposition 6.4.89. The canonical morphism [ exp(g)smp → exp(g) in Smooth∞Grpd is presented in
[SmoothCartSpop, sSet] by the composite

const Γ exp(g)
' // [ exp(g)smp

// // exp(g) ,

where the first morphism is a weak equivalence and the second a fibration in [SmoothCartSpop, sSet]proj.

We prove the properties of the two morphisms of prop. 6.4.89 separately in two lemmas:

Lemma 6.4.90. The canonical inclusion

constΓ(exp(g)) −→ [ exp(g)smp

is a weak equivalence in [CartSpop, sSet]proj.

Proof. The morphism in question is on each object U ∈ CartSp the morphism of simplicial sets

HomdgAlg(CE(g),Ω•si(∆
k)) −→ HomdgAlg(CE(g),Ω•si(U ×∆k)) ,

which is given by pullback of differential forms along the projection U ×∆k → ∆k.
To show that for fixed U this is a weak equivalence in the standard model structure on simplicial sets we

produce objectwise a left inverse

FU : HomdgAlg(CE(g),Ω•si(U ×∆•)) −→ HomdgAlg(CE(g),Ω•si(∆
•))

and show that this is an acyclic fibration of simplicial sets. The statement then follows by the 2-out-of-3-
property of weak equivalences.

We take FU to be given by evaluation at 0 : ∗ → U , i.e. by postcomposition with the morphisms

Ω•(U ×∆k)
Id×0∗−→ Ω•(∗ ×∆k) = Ω•(∆k) .

(This is, of course, not natural in U and hence does not extend to a morphism of simplicial presheaves. But
for our argument here it need not.) The morphism FU is an acyclic Kan fibration precisely if all diagrams
of the form

∂∆[n] //

��

Hom(CE(g),Ω•si(U ×∆•))

FU

��
∆[n] // Hom(CE(g),Ω•si(∆

•))

have a lift. Using the Yoneda lemma over the simplex category and since the differential forms on the
simplices have sitting instants, we may, as above, equivalently reformulate this in terms of spheres as follows:
for every morphism CE(g)→ Ω•si(D

n) and morphism CE(g)→ Ω•si(U × Sn−1) such that the diagram

CE(g) //

��

Ω•(U × Sn−1)

��
Ω•si(D

n) // Ω•(Sn−1)
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commutes, this may be factored as

CE(g)

&&
Ω•si(U ×Dn) //

��

Ω•(U × Sn−1)

��
Ω•(Dn) // Ω•(Sn−1)

.

(Here the subscript “si” denotes differential forms on the disk that are radially constant in a neighbourhood
of the boundary.)

This factorization we now construct. Let first f : [0, 1]→ [0, 1] be any smoothing function, i.e. a smooth
function which is surjective, non-decreasing, and constant in a neighbourhood of the boundary. Define a
smooth map U × [0, 1] → U by (u, σ) 7→ u · f(1 − σ), where we use the multiplicative structure on the
Cartesian space U . This function is the identity at σ = 0 and is the constant map to the origin at σ = 1. It
exhibits a smooth contraction of U .

Pullback of differential forms along this map produces a morphism

Ω•(U × Sn−1) −→ Ω•(U × Sn−1 × [0, 1])

which is such that a form ω is sent to a form which in a neighbourhood (1 − ε, 1] of 1 ∈ [0, 1] is constant
along (1− ε, 1]× U on the value (0, IdSn−1)∗ω.

Let now 0 < ε ∈ R some value such that the given forms CE(g) → Ω•si(D
k) are constant a distance

d ≤ ε from the boundary of the disk. Let q : [0, ε/2] → [0, 1] be given by multiplication by 1/(ε/2) and
h : Dk

1−ε/2 → Dn
1 the injection of the n-disk of radius 1− ε/2 into the unit n-disk.

We can then glue to the morphism

CE(g) // Ω•(U × Sn−1) // Ω•(U × [0, 1]× Sn−1)
id×q∗×id
'

// Ω•(U × [0, ε/2]× Sn−1)

to the morphism

CE(g)→ Ω•(Dn) // Ω•(U × {1} ×Dn)
h∗

'
// Ω•(U × {1} ×Dn

1−ε/2)

by smoothly identifying the union [0, ε/2]× Sn−1
∐
Sn−1 Dn

1−ε/2 with Dn (we glue a disk into an annulus to

obtain a new disk) to obtain in total a morphism

CE(g) −→ Ω•(U ×Dn)

with the desired properties: at u = 0 the homotopy that we constructed is constant and the above con-
struction hence restricts the forms to radius ≤ 1− ε/2 and then extends back to radius ≤ 1 by the constant
value that they had before. Away from 0 the homotopy in the remaining ε/2 bit smoothly interpolates to
the boundary value. �

Lemma 6.4.91. The canonical morphism

[ exp(g)smp −→ exp(g)

is a fibration in [SmoothCartSpop, sSet]proj.
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Proof. Over each U ∈ CartSp the morphism is induced from the morphism of dg-algebras

Ω•(U) −→ C∞(U)

that discards all differential forms of non-vanishing degree.
It is sufficient to show that for

CE(g)→ Ω•si,vert(U × (Dn × [0, 1]))

a morphism and
CE(g)→ Ω•si(U ×Dn)

a lift of its restriction to σ = 0 ∈ [0, 1] we have an extension to a lift

CE(g)→ Ω•si,vert(U × (Dn × [0, 1])) .

From these lifts all the required lifts are obtained by precomposition with some evident smooth retractions.
The lifts in question are obtained from solving differential equations with boundary conditions, and exist

due to the existence of solutions of first order systems of partial differential equations and the identity
d2

dR = 0. �

We have obtained now two different presentations for the flat coefficient object [BnR:

1. [BnRchn – prop. 6.4.69;

2. [BnRsmp – prop. 6.4.89;

There is an evident degreewise comparison map

(−1)•+1

∫
∆•

: [BnRsimp −→ [BnRchn

that sends a closed n-form ω ∈ Ωncl(U ×∆k) to (−1)k+1 times its fiber integration
∫

∆k ω.

Proposition 6.4.92. This map yields a morphism of simplicial presheaves∫
: [BnRsmp −→ [BnRchn

which is a weak equivalence in [CartSpop, sSet]proj.

Proof. First we check that we have a morphism of simplicial sets over each U ∈ CartSp. Since both
objects are abelian simplicial groups we may, by the Dold-Kan correspondence, check the statement for
sheaves of normalized chain complexes.

Notice that the chain complex differential on the forms ω ∈ Ωncl(U ×∆k) on simplices sends a form to the
alternating sum of its restriction to the faces of the simplex. Postcomposed with the integration map this is
the operation ω 7→

∫
∂∆k ω of integration over the boundary.

Conversely, first integrating over the simplex and then applying the de Rham differential on U yields

ω 7→ (−1)k+1dU

∫
∆k

ω = −
∫

∆k

dUω

=

∫
∆k

d∆kω

=

∫
∂∆k

ω

,
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where we first used that ω is closed, so that ddRω = (dU + d∆k)ω = 0, and then used Stokes’ theorem.
Therefore we have indeed objectwise a chain map.

By the discussion of the two objects we already know that both present the homotopy-type of [BnR.
Therefore it suffices to show that the integration map is over each U ∈ CartSp an isomorphism on the
simplicial homotopy group in degree n.

Clearly the morphism ∫
∆n

: Ω•si,cl(U ×∆n) −→ C∞(U,R)

is surjective on degree n homotopy groups: for f : U → ∗ → R constant, a preimage is f ·vol∆n , the normalized
volume form of the n-simplex times f . Moreover, these preimages clearly span the whole homotopy group
πn([BnR) ' Rdisc (they are in fact the images of the weak equivalence constΓ exp(bn−1R)→ [BnRsmp ) and
the integration map is injective on them. Therefore it is an isomorphism on the homotopy groups in degree
n. �

6.4.14.4 de Rham coefficients for exponentiated L∞-algebras We now consider the de Rham
coefficient object [dR exp(g), 5.2.10, of exponentiated L∞-algebras exp(g) according to def. 6.4.79.

Proposition 6.4.93. For g ∈ L∞ a representive in [CartSpop, sSet]proj of the de Rham coefficient object
[dR exp(g) is represented by the simplicial presheaf

[dR exp(g)smp : (U, [n]) 7→ HomdgAlg(CE(g),Ω•≥1,•
si (U ×∆n)) ,

where the notation on the right denotes the dg-algebra of differential forms on U×∆n that (apart from having
sitting instants on the faces of ∆n) are along U of non-vanishing degree.

Proof. By prop. 6.4.89 we may present the defining∞-pullback [dRBnR := ∗×BnR[B
nR in Smooth∞Grpd

by the ordinary pullback

[dRBnRsmp
//

��

[BnRsmp

��
∗ // BnR

in [SmoothCartSpop, sSet]. �
We have discussed now two different presentations for the de Rham coefficient object [BnR:

1. [dRBnRchn – prop. 6.4.72;

2. [dRBnRsmp – prop 6.4.93;

There is an evident degreewise map

(−1)•+1

∫
∆•

: [dRBnRsmp −→ [dRBnRchn

that sends a closed n-form ω ∈ Ωncl(U ×∆k) to (−1)k+1 times its fiber integration
∫

∆k ω.

Proposition 6.4.94. This map yields a morphism of simplicial presheaves∫
: [dRBnRsmp −→ [dRBnRchn

which is a weak equivalence in [CartSpop, sSet]proj.
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Proof. This morphism is the morphism on pullbacks induced from the weak equivalence of diagrams

∗ //

=

��

exp(bn−1R) oo

∫
'
��

[BnRsmp∫
'
��

∗ // BnRchn
oo [BnRchn

.

Since both of these pullbacks are homotopy pullbacks by the above discussion, the induced morphism between
the pullbacks is also a weak equivalence. �

6.4.15 Maurer-Cartan forms and curvature characteristic forms

We discuss the universal curvature forms, 5.2.12, in Smooth∞Grpd.
Specifically, we discuss the canonical Maurer-Cartan form on the following special cases of (presentations

of) smooth ∞-groups.

• 6.4.15.1 – ordinary Lie groups:

• 6.4.15.2 – circle n-groups Bn−1U(1);

• 6.4.15.3 – simplicial Lie groups.

Notice that, by the discussion in 3.1.6, the case of simplicial Lie groups also subsumes the case of crossed
modules of Lie groups, def. 1.2.81, and generally of crossed complexes of Lie groups, def. 1.2.96.

6.4.15.1 Canonical form on an ordinary Lie group

Proposition 6.4.95. Let G be a Lie group with Lie algebra g.
Under the identification

Smooth∞Grpd(X, [dRBG) ' Ω1
flat(X, g)

from prop. 6.4.70, for X ∈ SmoothMfd, we have that the canonical morphism

θ : G→ [dRBG

in Smooth∞Grpd corresponds to the ordinary Maurer-Cartan form on G.

Proof. We compute the defining double ∞-pullback

G //

θ
��

∗

��
[dRBG //

��

[BG

��
∗ // BG

in Smooth∞Grpd as a homotopy pullback in [SmoothCartSpop, sSet]proj. In prop. 6.4.70 we already modeled
the lower ∞-pullback square by the ordinary pullback

[dRBGch
//

��

[BGch

��
∗ // BGch

.
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A standard fibration replacement of the point inclusion ∗ → [BG is given by replacing the point by the
presheaf that assigns groupoids of the form

Q : U 7→


A0 = 0

g1

{{

g2

##
A1

h // A2

 ,

where on the right the commuting triangle is in ([dRBGch)(U) and here regarded as a morphism from (g1, A1)
to (g2, A2). And the fibration Q→ [BGch is given by projecting out the base of these triangles.

The pullback of this along [dRBGch → [BGch is over each U the restriction of the groupoid Q(U) to its
set of objects, hence is the sheaf

U 7→


A0 = 0

g

��
g∗θ

 ' C
∞(U,G) = G(U) ,

equipped with the projection
tU : G→ [dRBGch

given by
tU : (g : U → G) 7→ g∗θ .

Under the Yoneda lemma (over SmoothMfd) this identifies the morphism t with the Maurer-Cartan form
θ ∈ Ω1

flat(G, g). �

6.4.15.2 Canonical form on the circle n-group We consider now the canonical differential form on
the circle Lie (n+ 1)-group, def. 6.4.21. Below in 6.4.16 this serves as the universal curvature class on the
universal circle n-bundle.

Definition 6.4.96. For n ∈ N, write

BnU(1)diff,chn := DK


U(1)

ddR // Ω1 // · · · // Ωn−1 ddR // Ωn

⊕ ⊕ ⊕
0 //

::

Ω1

ddR

//
−id

99

Ω2 // · · ·
ddR

// Ωn
(−1)nid

99

 ∈ [CartSpop, sSet]

for the simplicial presheaf which is the image under the Dold-Kan map, prop. 3.1.35, of the chain complex on
the right as induicated. (Here we display morphisms between direct sums of presheaves of chain complexes
by their matrix components, as usual). Write moreover

curvchn : BnU(1)diff,chn → [dRBn+1U(1)chn

for the morphism of simplicial presheaves which is the image under the Dold-Kan map, prop. 3.1.35 of the
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morphism of sheaves of chain complexes which in components is given by

BnU(1)diff,chn

curvchn

��
[dRBn+1U(1)chn

:= DK



U(1)
ddR // Ω1 // · · · // Ωn−1 ddR // Ωn

ddR

��

⊕ ⊕ ⊕
0 //

::

��

Ω1

ddR

//
−id

99

(−1)nid

��

Ω2 //

(−1)nid

��

· · ·
ddR

// Ωn
(−1)nid

88

(−1)nid

��
0 // Ω1 ddR // Ω2 // · · · // Ωn

ddR // Ωn+1
cl



Proposition 6.4.97. The evident projection morphism

BnU(1)diff,chn
' // BnU(1)chn

is a weak equivalence in [CartSp, sSet]proj. Moreover, the span

BnU(1)diff,chn
curvchn //

'
��

[dRBn+1U(1)chn

BnU(1)chn

is a presentation in [CartSpop, sSet]proj,loc of the universal curvature characteristic, def. 5.2.85, curv :
BnU(1)→ [dRBn+1U(1) in Smooth∞Grpd.

Proof. By prop. 5.1.9 we may present the defining ∞-pullback

BnU(1) //

curv

��

∗

��
[dRBn+1U(1)

��

// [Bn+1U(1)

��
∗ // Bn+1U(1)

in Smooth∞Grpd by a homotopy pullback in [CartSpop, sSet]proj. We claim that there is a commuting
diagram

[0→ C∞(−,U(1))
⊕Ω1(−)

ddR−Id→ Ω1(−)
⊕Ω2(−)

ddR+Id→ · · · ddR+Id→ Ωn(−)] //

(p2,p2,··· ,ddR)

��

[C∞(−, U(1))
ddR+Id→ C∞(−,U(1))

⊕Ω1(−)

ddR−Id→ · · · Ωn−1(−)
⊕Ωn(−)

ddR+Id→ Ωn(−)]

(Id,p2,p2,··· ,p2,ddR)

��

[0→ Ω1(−)
ddR→ Ω2(−)

ddR→ · · · ddR→ Ωn+1
cl (−)] //

��

[C∞(−, U(1))
ddR→ Ω1(−)

ddR→ Ω2(−)
ddR→ · · · ddR→ Ωn+1

cl (−)]

��
[0→ 0→ 0→ · · · → 0] // [C∞(−, U(1))→ 0→ 0→ · · · → 0]

in [CartSpop,Ch+]proj, where
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• the objects are fibrant models for the corresponding objects in the above ∞-pullback diagram;

• the two right vertical morphisms are fibrations;

• the two squares are pullback squares.

This implies that under the right adjoint Ξ we have a homotopy pullback as claimed. In full detail, the
diagram of morphisms of sheaves that exhibits this diagram of morphisms of complexes of sheaves is

U(1)
ddR //

,,

Ω1 // · · · //

,,

Ωn−1 ddR //

,,

Ωn

,,

ddR

��

⊕ ⊕ ⊕
0 //

::

��

,,

Ω1

ddR

//
−id

99

(−1)nid

��

,,

Ω2 //

(−1)nid

��

,,

· · ·
ddR

// Ωn
(−1)nid

88

(−1)nid

��

,,

U(1)
ddR // Ω1 // · · · // Ωn−1 ddR // Ωn

ddR

��

⊕ ⊕ ⊕
U(1)

ddR

//
id

99

(−1)nid

��

Ω1

ddR

//

−id

::

(−1)nid

��

Ω2 //

(−1)nid

��

· · ·
ddR

// Ωn
(−1)nid

88

(−1)nid

��

0 //

��

--

Ω1 ddR //

��

--

Ω2 //

��

--

· · · // Ωn
ddR //

��

--

Ωn+1
cl

��

--U(1)
ddR //

id

��

Ω1 ddR //

��

Ω2 //

��

· · · // Ωn
ddR //

��

Ωn+1
cl

��

0 //

--

0 //

--

0 //

--

· · · // 0 //

--

0

--U(1) // 0 //// 0 // · · · // 0 // 0

That the lower square here is a pullback is prop. 6.4.72. For the upper square the same type of reasoning
applies. The main point is to find the chain complex in the top right such that it is a resolution of the
point and maps by a fibration onto our model for [BnU(1). This is the mapping cone of the identity on
the Deligne complex, as indicated. The vertical morphism out of it is manifestly surjective (by the Poincaré
lemma applied to each object U ∈ CartSp) hence this is a fibration. �

In prop. 6.4.93 we had discussed an alternative equivalent presentation of de Rham coefficient objects
above. We now formulate the curvature characteristic in this alternative form.

Observation 6.4.98. We may write the simplicial presheaf [dRBn+1Rsmp from prop.6.4.93 equivalently as
follows

[dRBn+1Rsmp : (U, [k]) 7→


Ω•si,vert(U ×∆k) 0oo

Ω•si(U ×∆k)

OO

CE(bnR)oo

OO


,

where on the right we have the set of commuting diagrams in dgAlg of the given form, with the vertical
morphisms being the canonical projections.

Definition 6.4.99. Write W(bn−1R) ∈ dgAlg for the Weil algebra of the line Lie n-algebra, defined to be
free commutative dg-algebra on a single generator in degree n, hence the graded commutative algebra on a
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generator in degree n and a generator in degree (n+ 1) equipped with the differential that takes the former
to the latter.

We write also inn(bn−1) for the L∞-algebra corresponding to the Weil algebra

CE(inn(bn−1)) := W(bn−1R)

Proposition 6.4.100. We have the following properties of W(bn−1R)

1. There is a canonical natural isomorphism

HomdgAlg(W(bn−1R),Ω•(U)) ' Ωn(U)

between dg-algebra homomorphisms A : W(bn−1R)→ Ω•(X) from the Weil algebra of bn−1R to the de
Rham complex and degree-n differential forms, not necessarily closed.

2. There is a canonical dg-algebra homomorphism W(bn−1R) → CE(bn−1R) and the differential n-form
corresponding to A factors through this morphism precisely if the curvature ddRA of A vanishes.

3. The image under exp(−)
exp(inn(bn−1)R)→ exp(bnR)

of the canonical morphism W(bn−1R) ← CE(bnR) is a fibration in [SmoothCartSpop, sSet]proj that
presents the point inclusion ∗ → Bn+1R in Smooth∞Grpd.

Definition 6.4.101. Let BnRdiff,smp ∈ [SmoothCartSpop, sSet] be the simplicial presheaf defined by

BnRdiff,smp : (U, [k]) 7→


Ω•si,vert(U ×∆k) CE(bn−1R)

Avertoo

Ω•si(U ×∆k)

OO

W(bn−1R)
Aoo

OO


,

where on the right we have the set of commuting diagrams in dgAlg as indicated.

This means that an element of BnRdiff,smp(U)[k] is a smooth n-form A (with sitting instants) on U ×∆k

such that its curvature (n+ 1)-form ddRA vanishes when restricted in all arguments to vector fields tangent

to ∆k. We may write this condition as ddRA ∈ Ω•≥1,•
si (U ×∆k).

Observation 6.4.102. There are canonical morphisms

BnRdiff,smp

curvsmp//

'
��

[dRBnRsmp

BnRsmp

in [SmoothCartSpop, sSet], where the vertical map is given by remembering only the top horizontal morphism
in the above square diagram, and the horizontal morphism is given by forming the pasting composite

curvsmp :


Ω•si,vert(U ×∆k) CE(bn−1R)

Avertoo

Ω•si(U ×∆k)

OO

W(bn−1R)
Aoo

OO



7→


Ω•si,vert(U ×∆k) CE(bn−1R)

Avertoo 0oo

Ω•si(U ×∆k)

OO

W(bn−1R)
Aoo

OO

CE(bnR)oo

OO



.
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Proposition 6.4.103. This span is a presentation in [SmoothCartSpop, sSet] of the universal curvature
characteristics curv : BnR→ [dRBn+1R, def. 5.2.85, in Smooth∞Grpd.

Proof. We need to produce a fibration resolution of the point inclusion ∗ → [Bn+1Rsmp in [SmoothCartSpop, sSet]proj

and then show that the above is the ordinary pullback of this along [dRBn+1Rsmp → [Bn+1Rsmp.
We claim that this is achieved by the morphism

(U, [k]) : {Ω•si(U ×∆k)←W(bn−1R)} 7→ {Ω•si(U ×∆k)←W(bn−1R)← CE(bnR)} .

Here the simplicial presheaf on the left is that which assigns the set of arbitrary n-forms (with sitting instants
but not necessarily closed) on U × ∆k and the map is simply given by sending such an n-form A to the
(n+ 1)-form ddRA.

It is evident that the simplicial presheaf on the left resolves the point: since there is no condition on
the forms every form on U ×∆k is in the image of the map of the normalized chain complex of a form on
U ×∆k+1: such is given by any form that is, up to a sign, equal to the given form on one n-face and 0 on
all the other faces. Clearly such forms exist.

Moreover, this morphism is a fibration in [SmoothCartSpop, sSet]proj, for instanxce because its image
under the normalized chains complex functor is a degreewise surjection, by the Poincaré lemma.

Now we observe that we have over each (U, [k]) a double pullback diagram in Set
Ω•si,vert(U ×∆k) CE(bn−1R)

Avertoo

Ω•si(U ×∆k)

OO

W (bn−1R)
Aoo

OO


→


Ω•si,vert(U ×∆k) W(bn−1R)oo

Ω•si(U ×∆k)

OO

W(bn−1R)oo

id

OO


↓ ↓

Ω•si,vert(U ×∆k) 0oo

Ω•si(U ×∆k)

OO

CE(bnR)oo

OO


→


Ω•si,vert(U ×∆k) CE(bnR)oo

Ω•si(U ×∆k)

OO

CE(bnR)oo

id

OO


↓ ↓

Ω•si,vert(U ×∆k) oo 0

Ω•si(U ×∆k)

OO

oo 0

OO


→


Ω•si,vert(U ×∆k) CE(bnR)oo

Ω•si(U ×∆k)

OO

0oo

OO



,

hence a corresponding pullback diagram of simplicial presheaves, that we claim is a presentation for the
defining double ∞-pullback for curv.

The bottom square is the one we already discussed for the de Rham coefficients. Since the top right
vertical morphism is a fibration, also the top square is a homotopy pullback and hence exhibits the defining
∞-pullback for curv. �

Corollary 6.4.104. The degreewise map

(−1)•+1

∫
∆•

: BnRdiff,smp → BnRdiff,chn
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that sends an n-form A ∈ Ωn(U×∆k) and its curvature dA to (−1)k+1 times its fiber integration (
∫

∆k A,
∫

∆k dA)
is a weak equivalence in [SmoothCartSpop, sSet]proj.

Proof. Since under homotopy pullbacks a weak equivalence of diagrams is sent to a weak equivalence.
See the analagous argument in the proof of prop. 6.4.94. �

6.4.15.3 Canonical form on a simplicial Lie group Above we discussed the canonical differential
form on smooth∞-groups G for the special cases where G is a Lie group and where G is a circle Lie n-group.
These are both in turn special cases of the situation where G is a simplicial Lie group. This we discuss now.

Proposition 6.4.105. For G a simplicial Lie group the flat de Rham coefficient object [dRBG is presented
by the simplicial presheaf which in degree k is given by Ω1

flat(−, gk), where gk = Lie(Gk) is the Lie algebra of
Gk.

Proof. Let
Ω1

flat(−, g•)//G• =
(

Ω1
flat(−, g•)× C∞(−, G•)

→→ Ω1
flat(−, g•)

)
be the presheaf of simplicial groupoids which in degree k is the groupoid of Lie-algebra valued forms with
values in Gk from theorem. 1.2.114. As in the proof of prop. 6.4.70 we have that under the degreewise nerve
this is a degreewise fibrant resolution of presheaves of bisimplicial sets

N
(
Ω1

flat(−, g•)//G•
)
→ N ∗ //G• = NB(Gdisc)•

of the standard presentation of the delooping of the discrete group underlying G. By basic properties of
bisimplicial sets [GoJa99] we know that under taking the diagonal

diag : sSet∆ → sSet

the object on the right is a presentation for [dRBG, because (see the discussion of simplicial groups around
prop. 5.1.170 )

diagNB(Gdisc)•
'−→ W̄ (Gdisc) ' [BG .

Now observe that the morphism

diag(NΩ1
flat(−, g•)//G•)→ diagN ∗ //Gdisc

is a fibration in the global model structure. This is in fact true for every morphism of the form

diagN(S•//G•)→ diag ∗ //G•

for S•//G• → ∗//G• a simlicial action groupoid projection with G a simplicial group acting on a Kan complex
S: we have that

(diagN(S//G))k = Sk × (Gk)×k .

On the second factor the horn filling condition is simply that of the identity map diagNBG → diagNBG
which is evidently solvable, whereas on the first factor it amounts to S → ∗ being a Kan fibration, hence to
S being Kan fibrant.

But the simplicial presheaf Ω1
flat(−, g•) is indeed Kan fibrant: for a given U ∈ CartSp we may use parallel

transport to (non-canonically) identify

Ω1
flat(U, gk) ' SmoothMfd∗(U,Gk) ,

where on the right we have smooth functions that send the origin of U to the neutral element. But since G•
is Kan fibrant and has smooth global fillers also SmoothMfd∗(U,G•) is Kan fibrant.
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In summary this means that the defining homotopy pullback

[dRBG := [BG×BG ∗

is presented by the ordinary pullback of simplicial presheaves

diagNΩ1
flat(−, g•)× diagNBG•∗ = Ω1(−, g•) .

�

Proposition 6.4.106. For G a simplicial Lie group the canonical differential form, def. 5.2.79,

θ : G→ [dRBG

is presented in terms of the above presentation for [dRBG by the morphism of simplicial presheaves

θ• : G• → Ω1
flat(−, g•)

which is in degree k the presheaf-incarnation of the Maurer-Cartan form of the ordinary Lie group Gk as in
prop. 6.4.95.

Proof. Continuing with the strategy of the previous proof we find a fibration resolution of the point
inclusion ∗ → [BG by applying the construction of the proof of prop. 6.4.95 degreewise and then applying
diag ◦N .

The defining homotopy pullback
G //

��

∗

��
[dR

// [BG

for θ is this way presented by the ordinary pullback

G• //

��

diagN(Ω1
flat(−, g•))triv//G•)

��
Ω1

flat(−, g•) // diagN(Ω1
flat(−, g•)//G•)

of simplicial presheaves, where Ω1
flat(−, gk) is the set of flat g-valued forms A equipped with a gauge trans-

formation 0
g→ A. As in the above proof one finds that the right vertical morphism is a fibration, hence

indeed a resolution of the point inclusion. The pullback is degreewise that from the case of ordinary Lie
groups and thus the result follows. �

We can now give a simplicial description of the canonical curvature form θ : BnU(1) → [dRBn+1U(1)
that above in prop. 6.4.97 we obtained by a chain complex model:

Example 6.4.107. The canonical form on the circle Lie n-group

θ : Bn−1U(1)→ [dRBnU(1)

is presented by the simplicial map

Ξ(U(1)[n− 1])→ Ξ(Ω1
cl(−)[n− 1])

which is simply the Maurer-Cartan form on U(1) in degree n.
The equivalence to the model we obtained before is given by noticing the equivalence in hypercohomology

of chain complexes of abelian sheaves

Ω1
cl(−)[n] ' (Ω1(−)

ddR→ · · · ddR→ Ωncl(−))

on CartSp.
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6.4.16 Differential cohomology

We discuss the intrinsic differential cohomology, defined in 5.2.13 for any cohesive ∞-topos, realized in the
context Smooth∞Grpd, with coefficients in the circle Lie (n+ 1)-group BnU(1), def. 6.4.21.

We show here that the general concept reproduces the Deligne-Beilinson complex, 1.2.138, and generalizes
it to a complex for equivariant differential cohomology for ordinary and twisted notions of equivariance.

• 6.4.16.1 – The n-groupoid of circle-principal n-connections;

• 6.4.16.2 – The universal moduli n-stack of circle-principal n-connections;

• 6.4.16.3 – The smooth moduli of connections over a given base

• 6.4.16.4 – Cup product in differential cohomology

• 6.4.16.5 – Equivariant circle n-bundles with connection;

The disucssion here proceeds in the un-stabilized cohesive ∞-topos Smooth∞Grpd. By embedding this
into its tangent cohesive∞-topos TSmooth∞Grpd, def. 6.1.17, one obtains the characteristic curvature long
exact sequences discussed below from the general abstract discussion of prop. 6.1.3.2

6.4.16.1 The smooth n-groupoid of circle-principal n-connections Here we discuss some basic
facts about differential cohomology with coefficients in the circle n-group, def. 6.3.48, that are independent
of a notion of manifolds and global differential form objects as in 5.2.13.2. Further below in 6.4.16.2 we do
consider these structures and show that BnU(1)conn is presented by the Deligne complex.

Here we discuss first that intrinsic differential cohomology in Smooth∞Grpd has the abstract properties
of traditional ordinary differential cohomology, [HoSi05], then we establish that both notions indeed coincide
in cohomology. The intrinsic definition refines this ordinary differential cohomology to moduli ∞-stacks.

By def. 5.2.90 we are to consider the ∞-pullback

Hdiff(X,BnU(1)) //

��

HdR(X,Bn+1U(1))

��
H(X,BnU(1))

curv // HdR(X,Bn+1U(1))

,

where the right vertical morphism picks one point in each connected component. Moreover, using prop.
6.4.72 in def. 5.2.95, we are entitled to the following bigger object.

Definition 6.4.108. For n ∈ N write BnU(1)conn for the ∞-pullback

BnU(1)conn
//

��

Ωn+1
cl (−)

��
BnU(1)

curv // [dRBn+1U(1)

in Smooth∞Grpd. The cocycle ∞-groupoid over some X ∈ Smooth∞Grpd with coefficients in BnU(1)conn

is the ∞-pullback

H(X,BnU(1)conn) ' H′diff(X,BnU(1))
F //

c

��

Ωn+1
cl (X)

��
H(X,BnU(1))

curv // HdR(X,Bn+1U(1))

.
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We call Hdiff(X,BnU(1)) and its primed version the cocycle∞-groupoid for ordinary smooth differential
cohomology in degree n .

Proposition 6.4.109. For n ≥ 1 and X ∈ SmoothMfd, the abelian group H ′
n
diff(X) sits in the following

short exact sequences of abelian groups

• the curvature exact sequence

0→ Hn(X,U(1)disc)→ H ′
n
diff(X,U(1))

F→ Ωn+1
cl,int(X)→ 0

• the characteristic class exact sequence

0→ Ωncl/Ω
n
cl,int(X)→ H ′

n
diff(X,U(1))

c→ Hn+1(X,Z)→ 0 .

Here Ωncl,int denotes closed forms with integral periods.

Proof. For the curvature exact sequence we invoke prop. 5.2.93, which yields (for Hdiff as for H ′diff)

0→ Hn
flat(X,U(1))→ H ′

n
diff(X,U(1))

F→ Ωn+1
cl,int(X)→ 0 .

The claim then follows by using prop. 6.4.66 to get Hn
flat(X,U(1)) ' Hn(X,U(1)disc).

For the characteristic class exact sequence, we have with 5.2.94 for the smaller group Hn
diff (the fiber over

the vanishing curvature (n+ 1)-form F = 0) the sequence

0→ Hn
dR(X)/Ωncl,int(X)→ H ′

n
diff(X,U(1))

c→ Hn+1(X,Z)→ 0

where we used prop. 6.4.73 to identify the de Rham cohomology on the left, and the fact that X is
paracompact to identify the integral cohomology on the right. Since Ωncl,int(X) contains the exact forms
(with all periods being 0 ∈ Z), the leftmost term is equivalently Ωncl(X)//Ωncl,int(X). As we pass from Hdiff

to the bigger H ′diff , we get a copy of a torsor over this group, for each closed form F , trivial in de Rham
cohomology, to a total of ∐

F∈Ωn+1
cl (X)

{ω|dω = F}/Ωncl,int ' Ωn(X)/Ωncl,int(X) .

This yields the curvature exact sequence as claimed. �
If we invoke standard facts about Deligne cohomology, then prop. 6.4.109 is also implied by the follow-

ing proposition, which asserts that in Smooth∞Grpd the groups H ′
•
diff not only share the above abstract

properties of ordinary differential cohomology, but indeed coincide with it.

Theorem 6.4.110. For X ∈ SmoothMfd ↪→ Smooth∞Grpd a paracompact smooth manifold we have that
the connected components of the object Hdiff(X,BnU(1)) are given by

Hn
diff(X,U(1)) ' ( H(X,Z(n+ 1)∞D ) )×Ωn+1

cl (X) H
n+1
dR,int(X) .

Here on the right we have the subset of Deligne cocycles that picks for each integral de Rham cohomology
class of X only one curvature form representative.

For the connected components of H′diff(X,BnU(1)) we get the complete ordinary Deligne cohomology of
X in degree n+ 1:

H ′
n
diff(X,U(1)) ' H(X,Z(n+ 1)∞D )

Proof. Choose a differentiably good open cover, def. 6.4.2, {Ui → X} and let C({Ui}) → X in
[CartSpop, sSet]proj be the corresponding Čech nerve projection, a cofibrant resolution of X.
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Since the presentation of prop. 6.4.97 for the universal curvature class curvchn : BnU(1)diff,chn →
[dRBn+1U(1)chn is a global fibration and C({Ui}) is cofibrant, also

[Cartpop, sSet](C({Ui}),Bn
diffU(1))→ [Cartpop, sSet](C({Ui}), [dRBnU(1))

is a Kan fibration by the fact that [CartSpop, sSet]proj is an sSetQuillen-enriched model category. Therefore
the homotopy pullback in question is computed as the ordinary pullback of this morphism.

By prop. 6.4.72 we can assume that the morphism Hn+1
dR (X) → [CartSpop, sSet](C({Ui}), [dRBn+1)

picks only cocycles represented by globally defined closed differential forms F ∈ Ωn+1
cl (X). We see that the

elements in the fiber over such a globally defined (n+ 1)-form F are precisely the cocycles with values only
in the upper row complex of BnU(1)diff,chn

C∞(−, U(1))
ddR→ Ω1(−)

ddR→ · · · ddR→ Ωn(−) ,

such that F is the de Rham differential of the last term. This is the Deligne-Beilinson complex, def. 1.2.138,
for Deligne cohomology in degree (n+ 1). �
In terms of def. 5.2.95 we have the object BnU(1)conn – the moduli n-stack of circle n-bundles with connection

– which presents H′diff(−,BnU(1))

H′diff(−,BnU(1)) ' H(−,BnU(1)conn) .

6.4.16.2 The universal moduli n-stack of circle-principal n-connections

Definition 6.4.111. For n ∈ N and k ≤ n write

Ωk≤•≤ncl := DK

(
Ωk

ddR // Ωk+1 // · · · ddR // Ωn−1 ddR // Ωncl

)
.

Write

BnU(1)connk,chn := DK

(
U(1)Ω1 ddR // // · · · ddR // Ωk // 0 // · · · // 0

)
for the simplicial presheaf which is the image under the Dold-Kan map of the chain complex concentrated
in degrees n through (n− k), as indicated. Notice that

BnU(1)conn0,chn = BnU(1)chn ,

and we write
BnU(1)conn,chn := BnU(1)connn,chn .

Proposition 6.4.112. The object BnU(1)connk ∈ Smooth∞Grpd is presented in [CartSpop, sSet]proj,loc by
BnU(1)connk,chn.

Proof. By prop. 6.4.97 the defining ∞-pullback

BnU(1)connk
F(−) //

��

Ωk≤•≤ncl

��
BnU(1)

curv // [dRBn+1U(1)

is presented by the homotopy pullback of presheaves of chain complexes

BnU(1)diff,chn

curvchn

��

oo BnU(1)connk,chn

��
[dRBn+1U(1)chn

oo Ωk≤•≤ncl
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(rotated here just for readability in the following) which in components is given as follows

U(1)
ddR // · · · ddR // Ω1 // · · · //ll Ωn−1 ddR //ll Ωn ll

ddR

��

⊕ ⊕ ⊕
Ω1 ddR //

��

ll

(−1)nid

��

· · ·
ddR

// Ωk //

(−1)nid

��

ll · · ·
ddR

// Ωn
(−1)nid

88

(−1)nid

��

ll

U(1)
ddR // · · · ddR // Ωk // · · · // Ωn−1 ddR // Ωn

ddR

��

⊕ ⊕ ⊕
0 //

��

· · · // Ωk+1 ddR //

(−1)nid

��

· · ·
ddR

// Ωn
(−1)nid

88

(−1)nid

��

Ω1 ddR //mm · · · ddR //mm Ωk+1 ddR //mm · · · // Ωn
ddR //mm Ωn+1

cl
mm

0 // · · · // Ωk+1 ddR // · · · ddR // Ωn
ddR // Ωn+1

cl

.

This shows that BnU(1)connk is presented by the chain complex appearing on the top right here. The
canonical projection morphism from this pullback to BnU(1)connk,chn is clearly a weak equivalence. �

Remark 6.4.113. In particular this means that BnU(1)conn is presented by the Deligne complex

BnU(1)conn ' DK

(
U(1)

ddR // Ω1 ddR // · · · // Ωn−1 ddR // Ωn
)

The above proof of theorem 6.4.110 makes a statement not only about cohomology classes, but about
the full moduli n-stacks:

Proposition 6.4.114. The object BnU(1)conn ∈ H from def. 6.4.108 is presented by the simplicial presheaf
which is the image under the Dold-Kan map Ξ, def. 3.1.35, of the Deligne complex in the corresponding
degree.

The canonical morphism BnU(1)conn → BnU(1) is similarly presented via Dold-Kan of the evident
morphism of chain complexes of sheaves

C∞(−, U(1))
ddRlog //

id

��

Ω1(−)
ddR //

��

· · · ddR // Ωn(−)

��
C∞(−, U(1)) // 0 // · · · // 0

.

Proposition 6.4.115. The moduli stack BU(1)conn of circle bundles (i.e. circle 1-bundles) with connection
is 1-concrete, def. 5.2.8.

Proof. Observing that the presentation by the Deligne complex under the Dold-Kan map is fibrant in
[CartSpop, sSet]proj,loc and is the concrete sheaf presented by U(1) in degree 1, this follows with prop. 5.2.12.
�

6.4.16.3 The smooth moduli of connections over a given base We discuss the moduli stacks of
higher principal connections, over a fixed X ∈ Smooth∞Grpd, following the general abstract discussion in
5.2.13.4.
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For n ∈ N and with BnU(1)conn ∈ Smooth∞Grpd the universal moduli stack for circle n-bundles
with connection, def. 6.4.96, and for X ∈ Smooth∞Grpd, one may be tempted to regard the internal
hom/mapping space [X,BnU(1)conn] as the moduli stack of circle n-bundles with connection on X. However,
for U ∈ CartSp an abstract coordinate system, U -plots and their k-morphisms in [X,BnU(1)conn] are circle
principal n-connections and their k-fold gauge transformations on U × X, and this is not generally what
one would want the U -plots of the moduli stack of such connections on X to be. Rather, that moduli stack
should have

1. as U -plots smoothly U -parameterized collections {∇u} of n-connections on X;

2. as k-morphisms smoothly U -parameterized collections {φu} of gauge transformations between them.

The first item is equivalent to: a single n-connection on U ×X such that its local connection n-forms have
no legs along U .

But the second item is different: a gauge transformation of a single n-connection ∇ on U ×X needs to
respect the curvature of the connection along U , but a family {φu} of gauge tranformations between the
restrictions ∇|u of ∇ to points of the coordinate patch U need not.

In order to capture this correctly, the concretification-process that yields the moduli spaces of differential
forms is to be refined to a process that concretifies the higher stack [X,BnU(1)conn] degreewise in stages.

Definition 6.4.116. For n, k ∈ N and k ≤ n write BnU(1)connk for the ∞-pullback in

BnU(1)connk

��

// Ωn+1≤•≤k
cl

��
BnU(1)

curv // [dRBn+1U(1)

.

By the universal property of the ∞-pullback, the canonical tower of morphisms

Ωn+1
cl

// Ωn+1≤•≤n
cl

// · · · // Ωn+1≤•≤1
cl

' // [dRBn+1U(1)

induces a tower of morphisms

BnU(1)conn
' // BnU(1)connn

// BnU(1)connn−1 // · · · // BnU(1)conn0
' // BnU(1) .

Proposition 6.4.117. We have

BnU(1)connk ' DK

(
U(1)

ddR // Ω1 ddR // · · · ddR // Ωk
ddR // 0 // · · · // 0

)
where the chain complex on the right is concentrated in degrees n through n− k. Under this equivalence the
canonical morphism BnU(1)connk+1 → BnU(1)connk is equivalent to the image under DK to the chain map

U(1)
ddR //

id

��

Ω1 ddR //

id

��

· · · ddR //

id

��

Ωk+1 ddR //

id

��

Ωk //

��

0 //

��

· · · //

��

0

��
U(1)

ddR // Ω1 ddR // · · · ddR // Ωk+1 ddR // 0 // 0 // · · · // 0

Proof. By the presentation of curv as in prop. 6.4.97. �
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Definition 6.4.118. For X ∈ H and n ∈ N, n ≥ 1, the moduli of circle-principal n-connections on X is the
iterated ∞-fiber product

(Bn−1U(1))Conn(X)

:= ]1[X,BnU(1)connn ] ×
]1[X,BnU(1)connn−1 ]

]2[X,BnU(1)connn−1 ] ×
]2[X,BnU(1)connn−2 ]

· · · ×
]n[X,BnU(1)conn0 ]

[X,BnU(1)conn0 ] ,

of the morphisms

]k[X,BnU(1)connn−k+1 ] // ]k[X,BnU(1)connn−k ]

which are the image under ]k, def. 5.2.6, of the image under the internal hom [X,−] of the canonical
projections of prop. 6.4.116, and of the morphisms

]k+1[X,BnU(1)connn−k ] // ]k[X,BnU(1)connn−k ]

of def. 5.2.6.

6.4.16.3.1 Moduli of smooth principal 1-connections We discuss the general notion of moduli
of G-principal connections, def. 5.2.105 for the special case that G is a 0-truncated group.

For G = U(1) the circle group, the special case of def. 6.4.118 is the following.

Definition 6.4.119. For X ∈ Smooth∞Grpd, the moduli of circle-principal connections is given by the
∞-pullback

U(1)Conn(X) //

��

]2[X,BU(1)]

��

' [X,BU(1)]

]1[X,BU(1)conn]
]1[X,UBU(1)] // ]1[X,BU(1)]

,

where UBU(1) : BU(1)conn → BU(1) is the canonical forgetful morphism.

Of course we have the analogous construction for G any Lie group:

Definition 6.4.120. For X ∈ Smooth∞Grpd, the moduli of G-principal connections is given by the ∞-
pullback

GConn(X) //

��

]2[X,BG]

��

' [X,BG]

]1[X,BGconn]
]1[X,UBG] // ]1[X,BG]

,

where UBG : BGconn → BG is the canonical forgetful morphism.

Proposition 6.4.121. For X ∈ SmoothMfd ↪→ Smooth∞Grpd, the smooth groupoid U(1)Conn(X) of
def. 6.4.119 is indeed the smooth moduli object/moduli stack of circle-principal connections on X; in that
its U -plots of are smoothly U -parameterized collections of smooth circle-principal connections on X and
its morphisms of U -plots are smoothly U -parameterized collections of smooth gauge transformation between
these, on X.

Proof.
By the discussion of n-images in 5.1.4.2.2 and using arguments as for the concretification of moduli of

differential forms above in 6.4.16.3, we have:

• ]1[X,BU(1)conn] has as U -plots smoothly U -parameterized U(1)-principal connections on X that have
a lift to a U(1)-principal connection on U × X, and morphisms are discretely Γ(U)-parameterized
collections of gauge transformations of these connections on X.
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• ]1[X,BU(1)] looks similarly, just without the connection information;

• ]1[X,UBU(1)conn
] simply forgets the connection data on the collections of bundles-with-connection; the

point to notice is that over each chart U it is a fibration (i.e. an isofibration of groupoids): given a
Γ(U)-parameterized collection of gauge transformations out of a smoothly U -parameterized collection
of bundles and then a smooth choice of smooth connections on these bundles, the Γ(U) collection of
gauge transformations of course also acts on these connections;

• ]2[X,BU(1)] ' [X,BU(1)] (because if two gauge transformations of bundles on U × X coincide on
each point of U as gauge tranformations on X, then they were already equal).

From the third item it follows that we may compute equivalently simply the pullback in the 1-category
of groupoid-valued presheaves on CartSp. This means that a U -plot of the pullback is a smoothly U -
parameterized collection {∇u} of U(1)-principal connections on X which admits a lift to a U(1)-principal
connection on U × X, and that a morphism between such as a Γ(U)-parameterized collection of gauge
transformations {φu} of connections, such that their underlying collection of gauge transformations of bundles
is a smoothly U -parameterized family. But gauge transformations of 1-connections are entirely determined
by the underlying gauge transformation of the underlying bundle, and so this just means that also the
morphism of U -plots of the pullback are smoothly U -paramezerized collections of gauge transformations.

Consider then the functor from U(1)Conn(X)U to this pullback which forgets the lift to a connection
on U × X. This is natural in U and hence to complete the proof we need to see that for each U it is an
equivalence of groupoids. By the above it is clearly fully faithful, so it remains to see that it is essentially
surjective, hence that every smoothly U -parameterized collection of connections on X comes from a single
connection on X×U . To this end, consider a smoothly U -parameterized collection {∇u}u∈U of U(1)-principal
connections on X. Choosing a differentiably good open cover {Ui → X} of X the collection of connections
is equivalently given by a collection of cocycle data

{guij ∈ C∞(Ui ∩ Uj , U(1)), Aui ∈ Ω1(Ui)}u∈U

with Auj = Aui + dX logguij on Ui ∩ Uj for all i, j in the index set and all u ∈ U . To see that this is the
restriction of a single such cocycle datum on {Ui × U → X × U} we use the standard formula for the
existence of connections on a given bundle represented by a given cocycle, but applied just to the U -factor.
So let {ρi ∈ C∞(Ui × U)} be a partition of unity on X × U subordinate to the chosen cover and define
Ai ∈ Ω1(Ui × U) by

Ai(u) := Aui +
∑
i0

ρi0dU loggi0i(u)

for each u ∈ U . This is clearly a lift on each patch, and it does constitute a cocycle for a connection on
X × U since on each U × (Ui ∩ Uj) we have:

Aj(u)−Ai(u) =
∑
i0

ρi0
(
Auj + dU loggi0j(u)−Aui − dU loggi0i(u)

)
= Auj −Aui +

∑
i0

ρi0dU log(gii0(u)gi0j(u))

= dX loggij(u) + dU loggji(u)

= dloggij(u)

.

�

Proposition 6.4.122. For G ∈ Grp(Smth∞Grp) a 0-truncated group object and for X ∈ Smth∞Grpd, we
have an equivalence

Ω (GConn(X)) ' G
in Smooth∞Grpd, between the loop space object of the moduli object of G def. 6.4.120, and G itself.
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Proof. For X a smooth manifold and G a Lie group, this is straightforward to check by inspection of the
stack Ω (GConn(X)). Its U -plots are the smoothly U -parameterized collections of gauge transformations of
the trivial G-principal connection on X. Any such is a constant G-valued function on X, hence an element
of G, and so these form the set C∞(U,G) of U -plots of G.

Generally, the statement follows abstractly from prop. 5.1.77. By that proposition and using that Ω
commutes over ∞-fiber products (since both are ∞-limits) we have

Ω (GConn(X)) ' Ω]1[X,BGconn] ×
Ω]1[X,BG]

Ω[X,BG]

' ]Ω[X,BGconn] ×
]Ω[X,BG]

Ω[X,BG]

' ][X,ΩBGconn] ×
][X,ΩBG]

[X,ΩBG]

' ][X, [G] ×
][X,G]

[X,G]

' ]G ×
][X,G]

[X,G]

.

This last∞-fiber product is one of 0-truncated object hence is the ordinary fiber products of the correspond-
ing sheaves. The U -plots of the left factor are discretely Γ(U)-parameterized collections of elements of G,
the inclusion of these into ][X,G] is as Γ(U)-parameterized collections of constant G-valued functions on G,
and the right factor picks out among these those that are smoothly parameterized over X × U , hence over
U . This is the statement to be shown. �

6.4.16.3.2 Moduli of smooth principal 2-connections We discuss the general notion of moduli
of G-principal connections, def. 5.2.105 for the special case that G is a 1-truncated group.

Proposition 6.4.123. Given X ∈ SmoothMfd ↪→ Smooth∞Grpd, the moduli 2-stack (BU(1))Conn(X) of
circle 2-bundles with connection on X, given by the ∞-limit in

(BU(1))Conn(X) //

��

[X,B2U(1)]

��
]2[X,B2U(1)conn1 ]

��

// ]2[X,B2U(1)]

]1[X,B2U(1)conn] // ]1[X,B2U(1)conn1 ]

is equivalent to the 2-stack which assigns to any U ∈ CartSp the 2-groupoid whose objects, morphisms,
and 2-morphisms are smoothly U -parameterized collections of circle-principal connections and their gauge
transformations on X.

Proof. By a variant of the pasting law, we may compute the given ∞-limit as the pasting composite of
three ∞-pullbacks:

(BU(1))Conn(X) //

��

//

��

[X,B2U(1)]

��
//

��

]2[X,B2U(1)conn1 ]

��

// ]2[X,B2U(1)]

]1[X,B2U(1)conn] // ]1[X,B2U(1)conn1 ]

.
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Since this is a finite ∞-limit, we may compute it in ∞-presheaves over CartSp, hence as a homotopy
pullback in [CartSpop, sSet]proj. For {Ui → X}i∈I any choice of differentiable good open cover of X, our
standard model for the mapping stacks appearing in the diagram are given by the Deligne complex, according
to prop. 6.4.114. Since this takes values, under the Dold-Kan map, in strict ∞-groupoids, we find the ]-
images by prop. 5.1.89. In this standard presentation all simplicial presheaves appearing in the diagram are
fibrant and the two horizontal morphisms are fibrations. Therefore we conclude that the∞-limit in question
is in fact given by the pasting composite of three 1-categorical pullbacks of these presheaves of strict 2-
groupoids. Using that pullbacks of presheaves of 2-groupoids are computed objectwise and degreewise, we
find that the pullback presheaf is over U ∈ CartSp given by the following strict 2-groupoid:

• objects are smoothly U -parameterized collections of Deligne cocycles {Bui , Auij , guijk}i,j,k∈I,u∈Γ(U) on
X, such that there exists a lift to a single cocycle on X × U (this is the structure of the ob-
jects of ]1[X,B2U(1)conn]) and equipped with a choice of lift of the restricted BU(1)conn1-cocycle
{0, Auij , guijk}u∈U to a single restricted cocycle {0, Aij , gijk} on U × X (this is the structure of the

objects of ]2[X,B2U(1)conn1 ]);

• morphisms are smoothly U -parameterized collections of morphisms of cocycles on X such that there
exists a lift to a morphism of restricted cocycles on X × U ;

• 2-morphisms are smoothly U -parameterized collections of 2-gauge transformations, hence 2-gauge
transformations on X × U .

This is almost verbatim the 2-groupoid claimed in the proposition, except for the appearance of the existence
and choice of lifts. We need to show that up to equivalence these drop out.

Consider therefore the canonical 2-functor from the 2-groupoid thus described to the one consisting
degreewise of genuine smoothly U -parameterized collections of cocycles and transformations, which forgets
the lift and the existence of lifts. This 2-functor is clearly natural in U , hence is a morphism of simplicial
presheaves. It is now sufficient to show that over each U this is an equivalence of 2-groupoids.

To see that this 2-functor is fully faithful, notice that by the strict abelian group structure on all objects
we may restrict to considering the homotopy groups that are based at the 0-cocycle. But the automorphism
groupoid of the trivial circle-principal 2-connection is that of flat circle-principal 1-connections. Hence fully
faithfulness of this 2-functor amouts to the statement of prop. 6.4.121.

Therefore it remains to check essential surjectivity of the forgetful 2-functor. To this end, observe that the
underlying circle-principal 2-bundles of a collection of 2-connections smoothly parameterized by a Cartesian
(hence topologically contractible) space necessarily have the same class at all points u ∈ U and so every
object in the pullback 2-groupoid is equivalent to one for which {guijk} is in fact independent of u. It is then
sufficient to show that any such is in the image of the above forgetful 2-functor.

So consider a smoothly parameterized collection of Deligne cocycles on {Ui → X}i∈I of the form
{Bui , Auij , gijk}u∈U . Since now gijk is constant on U , we can obtain a lift of the 1-form part simply by

defining for i, j ∈ I a 1-form Aij ∈ Ω1(U × (Ui ∩ Uj)) by declaring that at u ∈ U it is given by

Aij(u) := Auij .

Next we need to similarly find a lift {Bi ∈ Ω2(U × Ui)}i∈I . For that, choose now a partition of unity
{ρi ∈ C∞(Ui)}i of X, subordinate to the given cover and set

Bi(u) := Bui +
∑
i0

ρi0dUAi0i(u) .

This is clearly patchwise a lift and we check that it satisfies the cocycle condition by computing for each
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i, j ∈ I, u ∈ U :

Bj(u)−Bi(u) = Buj −Bui +
∑
i0

ρi0dU (Ai0j −Ai0i)(u)

= dXAij(u) +
∑
i0

ρi0dU (Aij − dX loggi0ij)(u)

= dU×XAij

,

where in the second but last step we used that at each u the Auij satisfy their cocycle condition and where
in the last step we used again that g··· is constant on U on X.

So the 2-functor is also essentially surjective and this completes the proof. �

6.4.16.4 Cup product in differential cohomology We discuss refining the cup product from ordinary
cohomology to the universal moduli stacks for differential cohomology from 6.4.16.2. The basic ideas can
be found in [HoSi05]. We refine the discussion there from differential cohomology classes to higher moduli
stacks of differential cocycles.

Proposition 6.4.124. The cup product in integral cohomology

(−) ∪ (−) : Hk+1(−,Z)×H l+1(−,Z)→ Hk+l+2(−,Z)

has a smooth and differential refinement to the moduli ∞-stacks BnU(1)conn, prop. 6.4.114, for circle n-
bundles with connection

(−)∪̂(−) : BkU(1)conn ×BlU(1)conn → Bk+l+1U(1)conn .

Proof. By the discussion in 6.4.16 we have that BkU(1)conn is presented by the simplicial presheaf

ΞZ∞D [k + 1] ∈ [CartSpop, sSet]. ,

which is the image of the Deligne-Beilinson complex, def. 1.2.138, under the Dold-Kan correspondence,
prop. 3.1.6. A lift of the cup product to the Deligne complex is given by the Deligne-Beilinson cup product
[Del71][Bel85]. Since the Dold-Kan functor Ξ : [CartSpop,Ch•] → [CartSpop, sSet] is right adjoint, it pre-
serves products and hence this cup product. �

Example 6.4.125. Applications of this construction to higher dimensional Chern-Simons theories are dis-
cussed below in ??.

6.4.16.5 Equivariant circle n-bundles with connection We highlight some aspects of the equivariant
version, def. 5.1.176, of smooth differential cohomology.

Observation 6.4.126. Let G be a Lie group acting on a smooth manifold X. Then the Deligne complex,
def. 1.2.138, computes the correct G-equivariant differential cohomology on X if and only if the G-equivariant
de Rham cohomology of X, prop. 6.4.77, coincides with the G-invariant Rham cohomology of X.

Proof. By prop. 6.4.77 we have that the G-equivariant de Rham cohomology of X is given for n ≥ 1 by

Hn+1
dR,G(X) ' π0H(X//G, [dRBn+1R) .

Observe that π0H(X//G,Ωncl(−)) is set of G-invariant closed differential n-forms on X (which are in par-
ticular equivariant, but in general do not exhaust the equivariant cocycles). By prop. 6.4.110 the Deligne
complex presents the homotopy pullback of Ωn+1

cl (−) → [dRBn+1R along the universal curvature map on
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BnU(1). If therefore the inclusion π0H(X//G,Ωn+1
cl (−)) → π0H(X//G, [dRBn+1R) of invariant into equiv-

ariant de Rham cocycles is not surjective, then there are differential cocycles on X//G not presented by the
Deligne complex. �
In other words, if the G-invariant de Rham cocycles do not exhaust the equivariant cocycles, then X//G is

not de Rham-projective, and hence the representable variant, def. 5.2.95, of differential cohomology does not
apply. The correct definition of differential cohomology in this case is the more general one from def. 5.2.90,
which allows the curvature forms themselves to be in equivariant cohomology.

6.4.17 Chern-Weil homomorphism

We discuss the general abstract notion of Chern-Weil homomorphism, 5.2.14, realized in Smooth∞Grpd.
This discussion overlaps with the discussion in the introduction in 1.2.9, 1.2.10.

Recall that for A ∈ Smooth∞Grpd a smooth∞-groupoid regarded as a coefficient object for cohomology,
for instance the delooping A = BG of an ∞-group G we have general abstractly that

• a characteristic class on A with coefficients in the circle Lie n-group, 6.4.21, is represented by a
morphism

c : A −→ BnU(1) ;

• the (unrefined) Chern-Weil homomorphism induced from this is the differential characteristic class
given by the composite

cdR : A
c−→ BnU(1)

curv−→ [dRBn+1R

with the universal curvature characteristic, 5.2.12, on BnU(1), or rather: is the morphism on coho-
mology

H1
Smooth(X,G) := π0Smooth∞Grpd(X,BG)

π0((cdR)∗)−→ π0Smooth∞Grpd(X, [dRBn+1R) ' Hn+1
dR (X)

induced by this.

By prop. 6.4.102 we have a presentation of the universal curvature class BnR→ [dRBn+1R by a span

BnRdiff,smp

curvsmp//

'
��

[dRBn+1Rsmp

BnRsmp

in the model structure on simplicial presheaves [SmoothCartSpop, sSet]proj, given by maps of smooth families
of differential forms. We now insert this in the above general abstract definition of the ∞-Chern-Weil
homomorphism to deduce a presentation of that in terms of smooth families L∞-algebra valued differential
forms.

The main step is the construction of a well-suited composite of two spans of morphisms of simplicial
presheaves (of two ∞-anafunctors): we consider presentations of characteristic classes c : BG → BnU(1)
in the image of the exp(−) map, def. 6.4.79, and presented by trunactions and quotients of morphisms of
simplicial presheaves of the form

exp(g)
exp(µ)−→ exp(bn−1R) .

Then, using the above, the composite differential characteristic class cdR is presented by the zig-zag

BnRdiff,smp

curvsmp//

'
��

[dRBn+1Rsmp

exp(g)
exp(µ) // BnRsmp

695



of simplicial presheaves. In order to efficiently compute which morphism in Smooth∞Grpd this presents we
need to construct, preferably naturally in the L∞-algebra g, a simplicial presheaf exp(g)diff that fills this
diagram as follows:

exp(g)diff
exp(µ,cs)//

'
��

BnRdiff,smp

curvsmp//

'
��

[dRBn+1Rsmp

exp(g)
exp(µ) // BnRsmp

.

Given this, exp(g)diff,smp serves as a new resolution of exp(g) for which the composite differential character-
istic class is presented by the ordinary composite of morphisms of simplicial presheaves curvsmp ◦ exp(µ, cs).

This object exp(g)diff we shall see may be interpreted as the coefficient for pseudo-∞-connections with
values in g.

There is however still room to adjust this presentation such as to yield in each cohomology class special
nice cocycle representatives. This we will achieve by finding naturally a subobject exp(g)conn ↪→ exp(g)diff

whose inclusion is an isomorphism on connected components and restricted to which the morphism curvsmp ◦
exp(µ, cs) yields nice representatives in the de Rham hypercohomology encoded by [dRBn+1Rsmp, namely
globally defined differential forms. On this object the differential characteristic classes we will show factors
naturally through the refinements to differential cohomology, and hence exp(g)conn is finally identified as a
presentation for the coefficient object for ∞-connections with values in g.

Let g ∈ L∞
CE
↪→ dgAlgop be an L∞-algebra, def. 1.2.150.

Definition 6.4.127. A L∞-algebra cocycle on g in degree n is a morphism

µ : g→ bn−1R

to the line Lie n-algebra.

Remark 6.4.128. Dually this is equivalently a morphism of dg-algebras

CE(g)←− CE(bn−1R) : µ ,

which we denote by the same letter, by slight abuse of notation. Such a morphism is naturally identified
with its image of the single generator of CE(bn−1R), which is a closed element

µ ∈ CE(g)

in degree n, that we also denote by the same letter. Therefore L∞-algebra cocycles are precisely the ordinary
cocycles of the corresponding Chevalley-Eilenberg algebras.

Remark 6.4.129. After the injection of smooth ∞-groupoids into formal smooth ∞-groupoids, discussed
below in 6.5, there is an intrinsic abstract notion of cohomology of∞-Lie algebras. Proposition 6.5.47 below
asserts that the above definition is indeed a presentation of that abstract cohomological notion.

Definition 6.4.130. For µ : g→ bn−1R an L∞-cocycle as in def. 6.4.127, write

exp(µ) : exp(g) −→ BnR

for the morphism of smooth ∞-stacks from exp(g) as in def. 6.4.79 to the n-fold delooping, def. 5.1.152, of
the additive R, given by the composite

exp(g) −→ exp(bn−1R)
'−→ BnR ,

where the first morphism is the one given componentwise by composition with µ(
Ω•si,vert(U ×∆n)← CE(g)

)
7→
(

Ω•si,vert(U ×∆n)← CE(g)
µ← CE(bn−1R)

)
and where the second is the equivalence of prop. 6.4.87.
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Proposition 6.4.131. For µ an L∞-algebra (n+1)-cocycle according to def. 6.4.127, then its exponentiation
exp(µ) in def. 6.4.130 descends to the (n + 1)-truncation BG := τn exp(g), def. 5.1.47, as a cocycle with
values in Bn+1(R/Γ), where Γ ↪→ R is the discrete group of periods of µ: we have a commuting diagram

exp(g)

��

exp(µ) // exp(bnR)

��
BG

c // Bn+1(R/Γ)

.

This is proven in [FSS10].

Remark 6.4.132. On the one hand, under looping, def. 5.1.148, prop. 6.4.131 may be thought of as
providing n-truncated Lie integration of L∞-cocycles to ∞-group homomorphisms

Ωc : G −→ Bn(R/Γ) .

In such looped form this plays a role in the construction of Wess-Zumino-Witten terms, see 6.4.20 below.
On the other hand, before looping and in view of theorem 5.1.207, exp(µ) induces a morphism that sends
G-principal ∞-bundles to Bn(R/Γ)-principal ∞-bundles on any base space X:

H(X, c) : H(X,BG) −→ H(X,Bn(R/Γ)) .

Now, by prop. 6.3.39, for X a smooth manifold and Γ ' Z ↪→ R, then π0H(X,Bn(R/Γ)) ' Hn+1(X,Z)
is the ordinary integral cohomology of X in degree n + 1. Hence on connected componets this morphism
becomes

H(X, c) : H1(X,G) −→ Hn+1(X,Z)

which is an assignment of integral cohomology classes to classes of G-principal ∞-bundles over X. These
are the integral universal characteristic classes encoded by exp(µ). (Various examples of this are discussed
below in 7.1.2.)

We next discuss the further refinement of these characteristic classes obtained by Lie integration, to a
differential characteristic classes exhibiting Chern-Weil homomorphisms for principal ∞-bundles.

Definition 6.4.133. For µ : g → bn−1R an L∞-algebra cocycle with n ≥ 2, write gµ for the L∞-algebra
whose Chevalley-Eilenberg algebra is generated from the generators of CE(g) and one single further generator
b in degree (n− 1), with differential defined by

dCE(gµ)|g∗ = dCE(g) ,

and
dCE(gµ) : b 7→ µ ,

where on the right we regard µ as an element of CE(g), hence of CE(gµ), by observation 6.4.128.

Remark 6.4.134. Below in prop. 6.5.49 we show that, in the context of formal smooth cohesion 6.5, gµ is
indeed the extension of g classified by µ in the general sense of 5.1.18.

Definition 6.4.135. For g ∈ L∞Alg an L∞-algebra, its Weil algebra W(g) ∈ dgAlg is the unique represen-
tative of the free dg-algebra on the dual cochain complex underlying g such that the canonical projection
g∗•[1]⊕ g∗•[2]→ g∗•[1] extends to a dg-algebra homomorphism

CE(g)←W(g) .
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Since W(g) is itself in L∞Algop ↪→ dgAlg we can identify it with the Chevalley-Eilenberg algebra of an
L∞-algebra. That we write inn(g) or eg:

W(g) :=: CE(eg) .

In terms of this the above canonical morphism reads

g→ eg .

Remark 6.4.136. This notation reflects the fact that eg may be regarded as the infinitesimal groupal model
of the universal g-principal ∞-bundle.

Proposition 6.4.137. For n ∈ N, n ≥ 2 we have a pullback in L∞Alg

bn−1R //

��

ebn−1R

��
∗ // bbn−1R

.

Proof. Dually this is the pushout diagram of dg-algebras that is free on the short exact sequence of
cochain complexes concentrated in degrees n and n+ 1 as follows:

0n+1

〈c〉n

dCE(bn−1R)

OO

←


〈d〉n+1

〈c〉n

dCE(ebn−1R) '

OO

←


〈d〉n+1

0n

dCE(bbn−1R)

OO

 .

�

Proposition 6.4.138. The L∞-algebra gµ from def. 6.4.133 fits into a pullback diagram in L∞Alg

gµ //

��

ebn−2R

��
g

µ // bbn−2R

and this exhibits gµ → g as the homotopy fiber of µ.

Proof. The first statement follows by inspection. The second follows with [FRS13b, theorem B.0.8]. �

Proposition 6.4.139. Let µ : g→ bnR be a degree-n cocycle on an L∞-algebra and gµ the L∞-algebra from
def. 6.4.133.

We have that exp(gµ) → exp(g) presents the homotopy fiber of exp(µ) : exp(g) → exp(bn−1R) in
[CartSpop, sSet]proj,loc.

Since exp(bn−1R) ' BnR by prop. 6.4.87, this means that exp(gµ) is the Bn−1R-principal ∞-bundle
classified by exp(µ) in that we have an ∞-pullback

exp(gµ) //

��

∗

��
exp(g)

exp(µ) // BnR
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in Smooth∞Grpd.
Proof. Since exp : L∞Alg → [CartSpop, sSet] preserves pullbacks (being given componentwise by a hom-
functor) it follows from 6.4.138 that we have a pullback diagram

exp(gµ) //

��

exp(ebn−1R)

��
exp(g)

exp(µ) // exp(bn−1R)

.

The right vertical morphism is a fibration resolution of the point inclusion ∗ → exp(bn−1R). Hence this is a
homotopy pullback in [CartSpop, sSet]proj and the claim follows with prop. 5.1.9. �
We now come to the definition of differential refinements of exponentiated L∞-algebras.

Definition 6.4.140. For g ∈ L∞ define the simplicial presheaf exp(g)diff ∈ [SmoothCartSpop, sSet] by

exp(g)diff : (U, [k]) 7→


Ω•si,vert(U ×∆k) CE(g)oo

Ω•(U ×∆k)

OO

W(g)oo

OO

 ,

where on the left we have the set of commuting diagrams in dgAlg as indicated, with the vertical morphisms
being the canonical projections.

Proposition 6.4.141. The canonical projection

exp(g)diff → exp(g)

is a weak equivalence in [SmoothCartSpop, sSet]proj.
Moreover, for every L∞-algebra cocycle it fits into a commuting diagram

exp(g)diff

exp(µ)diff//

'
��

exp(bn−1R)diff

'
��

BnRdiff,smp

'
��

exp(g)
exp(µ) // exp(bn−1R) BnRsmp

for some morphism exp(µ)diff .

Proof. Use the contractibility of the Weil algebra. �

Definition 6.4.142. Let G ∈ Smooth∞Grpd be a smooth n-group given by Lie integration, 6.4.14, of an
L∞ algebra g, in that the delooping object BG is presented by the (n + 1)-coskeleton simplicial presheaf
coskn+1 exp(g), def. 5.1.53.

Then for X ∈ [SmoothCartSp, sSet]proj any object and X̂ a cofibrant resolution, we say that

[SmoothCartSpop, sSet](X̂, coskn+1 exp(g)diff)

is the Kan complex of pseudo-n-connections on G-principal n-bundles.

We discuss now subobjects that pick out genuine ∞-connections.

Definition 6.4.143. An invariant polynomial on an L∞-algebra g is an element 〈−〉 ∈ W(g) in the Weil
algebra, such that
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1. dW(g)〈−,−〉 = 0;

2. 〈−〉 ∈ ∧•g∗[1] ↪→W (g);

hence such that it is a closed element built only from shifted generators of W(g).

Proposition 6.4.144. For g an ordinary Lie algebra, this definition of invariant polynomial is equivalent
to the traditional one (for instance [AzIz95]).

Proof. Let {ta} be a basis of g∗ and {ra} the corresponding basis of g∗[1]. Write {Cabc} for the structure
constants of the Lie bracket in this basis.

Then for P = P(a1,··· ,ak)r
a1 ∧ · · · ∧ rak ∈ ∧rg∗[1] an element in the shifted generators, the condition that

its image under dW(g) is in the shifted copy is equivalent to

Cbc(a1
Pb,··· ,ak)t

c ∧ ra1 ∧ · · · ∧ rak = 0 ,

where the parentheses around indices denotes symmetrization, so that this is equivalent to∑
i

Cbc(aiPa1···ai−1bai+1··· ,ak) = 0

for all choice of indices. This is the component-version of the defining invariance statement∑
i

P (t1, · · · , ti−1, [tc, ti], ti+1, · · · , tk) = 0

for all t• ∈ g. �

Observation 6.4.145. For the line Lie n-algeba we have

inv(bn−1R) ' CE(bnR) .

This allows us to identify an invariant polynomial 〈−〉 of degree n+ 1 with a morphism

inv(g)
〈−〉←− inv(bn−1R)

in dgAlg.

Remark 6.4.146. Write ι : g → Der•(W(g)) for the identification of elements of g with inner graded
derivations of the Weil-algebra, induced by contraction. For v ∈ g write

Lx := [dW(g), ιv] ∈ der•(W(g))

for the induced Lie derivative. Then the fist condition on an invariant polynomial 〈−〉 in def. 6.4.143 is
equivalent to

ιv〈−〉 = 0 ∀v ∈ g

and the second condition implies that
Lv〈−〉 = 0 ∀v ∈ g .

In Cartan calculus [Cart50a][Cart50b] elements satisfying these two conditions are called basic elements
or basic forms. By prop. 6.4.144 on an ordinary Lie algebra the basic forms are precisely the invariant
polynomials. But on a general L∞-algebra there can be non-closed basic forms. Our definition of invariant
polynomials hence picks the closed basic forms on an L∞-algebra.
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Definition 6.4.147. We say that an invariant polynomial 〈−〉 on g is in transgression with an L∞-algebra
cocycle µ : g → bn−1R if there is a morphism cs : W(bn−1R) → W(g) such that we have a commuting
diagram

CE(g) oo
µ

CE(bn−1R)

W(g) oo
cs

OO

W(bn−1R)

OO

inv(g) oo
〈−〉

OO

inv(bn−1R)

OO

CE(bnR)

hence such that

1. dW(g)cs = 〈−〉;

2. cs|CE(g) = µ.

We say that cs is a Chern-Simons element exhibiting the transgression between µ and 〈−〉.
We say that an L∞-algebra cocycle is transgressive if it is in transgression with some invariant polynomial.

Observation 6.4.148. We have

1. There is a transgressive cocycle for every invariant polynomial.

2. Any two L∞-algebra cocycles in transgression with the same invariant polynomial are cohomologous.

3. Every decomposable invariant polynomial (the wedge product of two non-vanishing invariant polyno-
mials) transgresses to a cocycle cohomologous to 0.

Proof.

1. By the fact that the Weil algebra is free, its cochain cohomology vanishes and hence the definition
property dW(g)〈−〉 = 0 implies that there is some element cs ∈ W (g) such that dW(g)cs = 〈−〉. Then
the image of cs along the canonical dg-algebra homomorphism W(g) → CE(g) is dCE(g)-closed hence
is a cocycle on g. This is by construction in transgression with 〈−〉.

2. Let cs1 and cs2 be Chern-Simons elements for the to given L∞-algebra cocycles. Then by assumption
d(g)(cs1 − cs2) = 0. By the acyclicity of W(g) there is then λ ∈ W(g) such that cs1 = cs2 + dW(g)λ.
Since W(g)→ CE(g) is a dg-algebra homomorphism this implies that also µ1 = µ2 + dCE(g)λ|CE(g).

3. Given two nontrivial invariant polynomials 〈−〉1 and 〈−〉2 let cs1 ∈ W(g) be any element such that
dW(g)cs1 = 〈−〉1. Then cs1,2 := cs1 ∧ 〈−〉2 satisfies dW(g)cs1,2 = 〈−〉1 ∧ 〈−〉2. By the first observation
the restriction of cs1,2 to CE(g) is therefore a cocycle in transgression with 〈−〉1 ∧ 〈−〉2. But by the
definition of invariant polynomials the restriction of 〈−〉2 vanishes, and hence so does that of cs1,2.
The claim the follows with the second point above.

�
The following notion captures the equivalence relation induced by lifts of cocycles to Chern-Simons elements

on invariant polynomials.

Definition 6.4.149. We say two invariant polynomials 〈−〉1, 〈−〉2 ∈ W(g) are horizontally equivalent if
there exists ω ∈ ker(W(g)→ CE(g)) such that

〈−〉1 = 〈−〉2 + dW(g)ω .

Observation 6.4.150. Every decomposable invariant polynomial is horizontally equivalent to 0.
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Proof. By the argument of prop. 6.4.148, item iii): for 〈−〉 = 〈−〉1 ∧ 〈−〉2 let cs1 be a Chern-Simons
element for 〈−〉1. Then cs1 ∧ 〈−〉2 exhibits a horizontal equivalence 〈−〉 ∼ 0. �

Proposition 6.4.151. For g an L∞-algebra, µ : g → bnR a cocycle in transgression to an invariant
polynomial 〈〉 on g and gµ the corresponding shifted central extension, 6.4.133, we have that

1. 〈−〉 defines an invariant polynomial also on gµ, by the defining identification of generators;

2. but on gµ the invariant polynomial 〈−〉 is horizontally trivial.

Proof. �

Definition 6.4.152. For g an L∞-algebra we write inv(g) for the free graded algebra on horizontal equiv-
alence classes of invariant polynomials. We regard this as a dg-algebra with trivial differential This comes
with an inclusion of dg-algebras

inv(g)→W (g)

given by a choice of representative for each class.

Observation 6.4.153. The algebra inv(g) is generated from indecomposable invariant polynomials.

Proof. By observation 6.4.150. �

Definition 6.4.154. Define the simplicial presheaf exp(g)ChW ∈ [SmoothCartSpop, sSet] by the assignment

exp(g)ChW : (U, [k]) 7→



Ω•si,vert(U ×∆k) oo
Avert

CE(g)

Ω•si(U ×∆k) oo
A

OO

W(g)

OO

Ω•(U)

OO

oo 〈FA〉
inv(g)

OO


,

where on the right we have the set of horizontal morphisms in dgAlg making commuting diagrams with the
canonical vertical morphisms as indicated.

We call 〈FA〉 the curvature characteristic forms of A.

Let

exp(g)diff

(exp(µi,csi))i //

'
��

∏
i exp(bni−1R)diff

((curvi)smp) // ∏
i [dRBni

smp

exp(g)

be the presentation, as above, of the product of all differental refinements of characteristic classes on exp(g)
induced from Lie integration of transgressive L∞-algebra cocycles.
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Proposition 6.4.155. We have that exp(g)ChW is the pullback in [SmoothCartSpop, sSet] of the globally
defined closed forms along the curvature characteristics induced by all transgressive L∞-algebra cocycles:

exp(g)ChW

exp(µ,cs) //

��

∏
ni

Ωni+1
cl (−)

��
exp(g)diff,smp

(curvi)i//

'
��

∏
i [dRBni+1Rsmp

exp(g)

.

Proof. By prop. 6.4.103 we have that the bottom horizontal morphims sends over each (U, [k]) and for
each i an element

Ω•si,vert(U ×∆k) oo
Avert

CE(g)

Ω•si(U ×∆k)

OO

oo A
W(g)

OO

of exp(g)(U)k to the composite(
Ω•si(U ×∆k)

A←−W(g)
csi←−W(bni−1R)←− inv(bniR) = CE(bniR))

)
=

(
Ω•si(U ×∆k)

〈FA〉i←− CE(bniR)

)
regarded as an element in [dRBni+1

smp (U)k. The right vertical morphism Ωni+1(U)→ [dRBni+1Rsmp(U) from
the constant simplicial set of closed (ni + 1)-forms on U picks precisely those of these elements for which
〈FA〉 is a basic form on the U ×∆k-bundle in that it is in the image of the pullback Ω•(U)→ Ω•si(U ×∆k).
�

This way the abstract differential refinement recovers the notion of ∞-connections from Lie integration
discussed before in 1.2.9.6.

6.4.18 Holonomy

We discuss the general notion of higher holonomy, 6.4.18, realized in smooth cohesion.

Let n, k ∈ N with k ≤ n. For

Σk ∈ SmoothMfd ↪→ Smooth∞Grpd

a closed manifold equipped with an orientation, the ordinary fiber integration of differential forms∫
Σk

: Ωn(Σk × U) // Ωn−k(U)

is natural in U ∈ CartSp ∈ SmoothMfd and hence comes from a morphism of smooth spaces∫
Σk

: [Σk,Ω
n] // Ωn−k

in Smooth∞Grpd. Similarly, transgression in ordinary cohomology constitutes a morphism in Smooth∞Grpd.
This induces a fiber integration formula also on cocoycles in BnU(1)conn. The following statement expresses
this situtation in detail. This is theorem 3.1 of [GoTe00], where we observe that under the Dold-Kan
correspondence it induces the following statement about smooth moduli stacks.

703



Definition 6.4.156 (Planck’s constant). We label embeddings of abelian groups

1
2π~ : Z ↪→ R

by
~ ∈ R− {0}

such that the embedding sends 1 ∈ Z to 1
2π~ ∈ R.

Remark 6.4.157. This constant 2π~ is what in physics is called Planck’s constant. With this constant
chosen and under the canonical identification R/Z ' U(1) the corresponding quotient map is

R �
� // R

exp
(
i
~ (−)

)
// // U(1) .

Proposition 6.4.158 (fiber integration of differential cocycles). For Σk a closed oriented manifold, we have
horizontal morphisms making the following diagram commute

[Σk,B
nU(1)conn]

exp
(
i
~
∫
Σk

(−)
)
//

��

Bn−kU(1)conn

��
[Σk,Ω

n+1
cl ]

∫
Σk

(−)
//

[Σk,L
n+1
tYM)]

��

Ωn+1−k
cl

��
[Σk, [B

n+1U(1)]
exp
(
i
~
∫
Σk

(−)
)
// [Bn+1−kU(1) .

Moreover, for Σk a compact oriented manifold with boundary ∂Σk of dimension (k − 1) we have a natural
homotopy of this form:

[Σk,B
nU(1)conn]

(−)|∂Σ

uu

∫
Σk

[Σk,F(−)]

((
[∂Σk,B

nU(1)conn]

exp
(
i
~
∫
∂Σ

(−)
)

))

Ωn−k+1 ,

vv
Bn−k+1U(1)conn

exp
(
i
~
∫
Σ

(−)
)

qy

,

which is such that when ∂Σk = ∅ then the homotopy filling this diagram coincides with the above integration
map under the identification

Bn−kU(1)conn ' ∗ ×
Bn−k+1U(1)conn

Ωn−k+1
cl ;

hence such that for the case of empty boundary we have

[Σk,B
nU(1)conn]

xx

∫
Σ

[Σ,F(−)]

((
∗

&&

Ωn−k+1

vv
Bn−k+1U(1)conn

exp
(
i
~
∫
Σ

(−)
)

rz

'

[Σk,B
nU(1)conn]

∫
Σ

[Σ,F(−)]

����

exp
(
i
~
∫
Σk

(−)
)

��
Bn−kU(1)conn

xx

F(−)

((
∗

0 &&

Ωn−k+1 .

vv
Bn−k+1U(1)cl
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Proof. For the first statement, we need to produce for each U ∈ CartSp ↪→ SmoothMfd a map

H(U × Σk,B
nU(1)conn) −→ H(U,Bn−kU(1)conn)

such that this is natural in U . By the discussion of BnU(1)conn in 6.4.16.2, after a choice of good open
cover U of Σk (inducing the good cover U ×U of Σk ×U) this is given, under the Dold-Kan correspondence
DK(−), by a chain map of the form

Cn(U × U,U(1)→ · · · → Ωn)
D //

∫
Σ

��

· · · D //

···

C1(U × U,U(1)→ · · · → Ωn)
D //

∫
Σ

��

Z0(U × U,U(1)→ · · · → Ωn)

∫
Σ

��
0 // · · · // C1(U,U(1)→ · · · → Ωn−k)

D // Z0(U,U(1)→ · · · → Ωn−k) .

In [GoTe00] a map
∫

Σ
as above is defined and theorem 2.1 there asserts that it satisfies the equation∫

Σ

◦ D − (−1)k D ◦
∫

Σ

=

∫
∂Σ

◦ (−)|∂Σ (?)

in (and this is important) the chain complex C•(U ×U,U(1)→ · · · → Ωn−k). For ∂Σk = ∅ this asserts that∫
Σ

is a chain map as needed for the above.
Next, for the more general statement in the presence of a boundary, we need to interpret formula (?) as

a chain homotopy taking place in C•(U × U,U(1)→ · · · → Ωn−k+1):

· · · D // C1(U × U,U(1)→ · · · → Ωn)
D //

∫
Σ

ss

Z0(U × U,U(1)→ · · · → Ωn)

∫
Σ

ss
C2(U,U(1)→ · · · → Ωn−k+1)

D // C1(U,U(1)→ · · · → Ωn−k+1)
D // Z0(U,U(1)→ · · · → Ωn−k+1) .

The subtlety to be taken care of now is that the equation in theorem 2.1 of [GoTe00] holds in the chain
complex C•(U × U,U(1)→ · · · → Ωn−k) instead of in C•(U × U,U(1)→ · · · → Ωn−k+1) as we need it here.
But the difference is only that in the latter complex the Deligne differential of an (n − k)-form on single
patches differs from that in the former by the de Rham differential d of that differential form, which is by
definition absent in the former case. But by degree-counting this difference appears only in the map

D : C1(U,U(1)→ · · · → Ωn−k+1)→ Z0(U,U(1)→ · · · → Ωn−k+1) = Ωn−k+1(U) .

Therefore, we may absorb it by modifying the integration chain map in degree 0. To that end, notice that
for A ∈ Z0(U × U,U(1)→ · · · → Ωn−k) with curvature form FA, then

(0, · · · , 0,
∫

Σ

(FA)i) = (0, . . . , 0, (

∫
∂Σ

A|∂Σ)i − dU (

∫
Σ

A)i) ∈ Z0(U,U(1)→ · · · → Ωn−k+1) .

Therefore, there is a natural chain map

· · · D // C1(U × U,U(1)→ · · · → Ωn)
D //

��

Z0(U × U,U(1)→ · · · → Ωn)

A7→(
∫
∂Σ
A|∂Σ)i−d(

∫
Σ
A)i)

��
· · · // 0 //

��

Ωn−k+1(U)

=

��
· · · D // C1(U,U(1)→ · · · → Ωn−k+1)

D // Z0(U,U(1)→ · · · → Ωn−k+1) ,
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which under DK(−) presents the map denoted

[Σk,B
nU(1)conn]

∫
Σ
F(−)// Ωn−k+1 // Bn−k+1U(1)conn

in the above statement. This is now manifestly so that adding its negative to the right of equation (?) makes
this equation define a chain homotopy in C•(U × U,U(1)→ · · · → Ωn−k+1) of the form

[D,

∫
Σ

] :

∫
∂Σ

(−)|∂Σ ⇒ ωΣ .

�

Remark 6.4.159. These maps express the relative higher holonomy and parallel transport of n-form con-
nections, respectively. The second statement says that the parallel transport of an n-connection over a
k-dimensional manifold with boundary is a section of the Bn−kU(1)-principal bundle underlying the trans-
gression of the underlying Bn−1U(1)-principal connection to the mapping space out of the boundary ∂Σk.
The section trivializes that underlying bundle and hence identifies a globally defined connection (n− k+ 1)-
form. This is the form ωΣ in the above diagram.

Definition 6.4.160. For
L : Fields→ BnU(1)conn

and Σk ∈ SmoothMds ↪→ Smooth∞Grpd an oriented smooth manifold of dimension k ≤ n with boundary
∂Σk, we say that the transgression exp

(
i
~
∫

Σ
LCS

)
of L to the mapping space out of Σ is the diagram obtained

by composing the mapping space construction [Σ,−] : H → H with the fiber integration exp
(
i
~
∫

Σ
(−)
)

of
Prop. 6.4.158:

[Σk,Fields]

''

(−)|∂Σ

vv
[∂Σk,Fields]

exp
(
i
~
∫
∂Σk

L
)

((

Ωn−k+1

ww
Bn−k+1U(1)conn

exp
(
i
~
∫
Σk

L
)

rz

:=

[Σk,Fields]
(−)|∂Σk

uu

[Σk,∇]

))
[∂Σk,Fields]

[∂Σk,∇] ))

[Σk,B
nU(1)conn]

(−)|∂Σ

uu ((
[∂Σk,B

nU(1)conn]

exp
(
i
~
∫
∂Σ

(−)
)

))

Ωn−k+1 .

vv
Bn−k+1U(1)conn

exp
(
i
~
∫
Σ

(−)
)

qy

Example 6.4.161. If X ∈ SmoothMfd ↪→ Smooth∞Grpd is a smooth manifold and ∇ : X → BnU(1)conn

is an n-connection on X, and for Σn a closed oriented n-dimensional manifold, then the transgression

exp

(
i
~

∫
Σ

∇
)

: [Σ, X]→ U(1)

is the n-volume holonomy function of ∇. For n = 1, hence ∇ is a U(1)-principal connection, and Σ = S1,
this is the traditional notion of holonomy function of a principal connection along closed curves in X.

We now relate this construction to the abstract characterization of higher holonomy of def. 5.2.129
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Theorem 6.4.162. If Σ ↪→ SmoothMfd ↪→ Smooth∞Grpd is a closed manifold of dimension dimΣ ≤ n
then the intrinsic integration by truncation, def. 5.2.129, takes values in

τ≤n−dimΣH(Σ,BnU(1)conn) ' Bn−dimΣU(1) ' K(U(1), n− dim(Σ)) ∈ ∞Grpd .

Moreover, in the case dimΣ = n, then the morphism

exp(iSc(−)) : H(Σ, Aconn)→ U(1)

is obtained from the Lagrangian Lc by forming the volume holonomy of circle n-bundles with connection
(fiber integration in Deligne cohomology)

Sc(−) =

∫
Σ

Lc(−) .

Proof. Since dimΣ ≤ n we have by prop. 6.4.73 that H(Σ, [dRBn+1R) ' Hn+1
dR (Σ) ' ∗. It then follows

by prop. 5.2.92 that we have an equivalence

Hdiff(Σ,BnU(1)) ' Hflat(Σ,B
nU(1)) =: H(

∫
(Σ),BnU(1))

with the flat differential cohomology on Σ, and by the (Π a Disc a Γ)-adjunction it follows that this is
equivalently

· · · ' ∞Grpd(Π(Σ),ΓBnU(1))

' ∞Grpd(Π(Σ), BnU(1)disc)
,

where BnU(1)disc is an Eilenberg-MacLane space · · · ' K(U(1), n). By prop. 6.4.27 we have under | − | :
∞Grpd ' Top a weak homotopy equivalence |Π(Σ)| ' Σ. Therefore the cocycle ∞-groupoid is that of
ordinary cohomology

· · · ' Cn(Σ, U(1)) .

By general abstract reasoning it follows that we have for the homotopy groups an isomorphism

πiHdiff(Σ,BnU(1))
'→ Hn−i(Σ, U(1)) .

Now we invoke the universal coefficient theorem. This asserts that the morphism∫
(−)

(−) : Hn−i(Σ, U(1))→ HomAb(Hn−i(Σ,Z), U(1))

which sends a cocycle ω in singular cohomology with coefficients in U(1) to the pairing map

[c] 7→
∫

[c]

ω

sits inside an exact sequence

0→ Ext1(Hn−i−1(Σ,Z), U(1))→ Hn−i(Σ, U(1))→ HomAb(Hn−i(Σ,Z), U(1))→ 0 ,

But since U(1) is an injective Z-module we have

Ext1(−, U(1)) = 0 .

This means that the integration/pairing map
∫

(−)
(−) is an isomorphism∫

(−)

(−) : Hn−i(Σ, U(1)) ' HomAb(Hn−i(Σ,Z), U(1)) .
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For i < (n− dimΣ), the right hand is zero, so that

πiHdiff(Σ,BnU(1)) = 0 for i < (n− dimΣ) .

For i = (n− dimΣ), instead, Hn−i(Σ,Z) ' Z, since Σ is a closed dimΣ-manifold and so

π(n−dimΣ)Hdiff(Σ,BnU(1)) ' U(1) .

�

More generally, using fiber integration in Deligne hypercohomology as in [GoTe00], we get for compact
oriented closed smooth manifolds Σ of dimension k a natural morphism

exp(2πi

∫
σ

(−)) : [Σ,BnU(1)conn]→ Bn−kU(1)conn .

6.4.19 Chern-Simons functionals

We discuss the realization of the intrinsic notion of Chern-Simons functionals, 5.2.14, in Smooth∞Grpd.

The proof of theorem 6.4.162 shows that for dimΣ = n and exp( i~L) : Aconn → BnU(1)conn an (Chern-
Simons) Lagrangian, we may think of the composite

exp( i~S) : H(Σ, Aconn)
exp(iL)−→ H(Σ,BnU(1)conn)

∫
[Σ]

(−)
−→ U(1)

as being indeed given by integrating the Lagrangian over Σ in order to obtain the action

S(−) =

∫
Σ

L(−) .

We consider precise versions of this statement in 7.2.

6.4.20 Wess-Zumino-Witten terms

We discuss the realization of Wess-Zumino-Witten terms, 5.2.15, in Smooth∞Grpd.

Recall from the discussion there that given a group cocycle c : BG −→ Bn+1U(1), then WZW terms are
canonical once a choice of nonabelian refinement of the Hodge filtration for Bn+1U(1) has been made. The
following observes that when c arises by Lie integration of an L∞-algebra cocycle via prop. 6.4.131, then
this induces a canonical such choice.

Definition 6.4.163. For g an L∞-algebra, write

Ω1
flat(−, g) ∈ Smooth∞Grpd

for the object presented by the simplicial presheaf that is simplicially constant on the sheaf which is given
by

Ω1(U, g) := HomdgALg(CE(g),Ω•(U))

as in def. 6.4.79. Write moreover
Ω1

flat(−, g) −→ [dR exp(g)

for the morphism presented by the canonical degree-0 inclusion of the simplicial presheaf from prop. 6.4.93.
Finally, given a truncation BG := τp+1 exp(g), def. 5.1.49, consider the composite

Ω1
flat(−, g) // [dR exp(g)

[dR(τp+1) // [dRBG .
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Proposition 6.4.164. For µ : g −→ bp+1R an L∞-cocycle, def. 6.4.127, with Ωc : G −→ Bp+1(R/Γ)
its Lie integration according to prop. 6.4.131, then the construction in def. 6.4.163 provides a compatible
refinement of the canonical Hodge filtration on Bp+1(R/Γ) in the sense of def. 5.2.120, in that it produces
a diagram of the form

Ω1
flat(−, g)

µ //

��

Ω1
flat(−, bp+1R) = Ωp+2

cl

��
[dRBG

[dRc
// [dRBp+2(R/Γ)

'
}�

.

Proof. By prop. 6.4.93 we have a diagram of the form

Ω1
flat(−, g)

µ //

��

Ω1
flat(−, bp+1R) = Ωp+2

cl

��
[dR exp(g)

[dR exp(µ)
// [dRBp+2R

'
��

and by prop. 6.4.131 we have a diagram of the form

exp(g)
exp(µ) //

��

Bp+2R

��
BG

c // Bp+2(R/Γ)

'
y�

.

Pasting the image under [dR of the latter to the former gives the diagram in question. �

Remark 6.4.165. Proposition 6.4.164 implies via prop. 5.2.122 that every L∞-algebra cocycle canonically
induces a higher WZW term.

Definition 6.4.166. Given an L∞-algebra cocycle µ1 : g1 → bp1+1R, def. 6.4.127, with g2 := µ∗1eb
p1R its

homotopy fiber presented as in prop. 6.4.138, and given a second cocycle µ2 : g2 → bp2+1R on this homotopy
fiber

g2

��

µ2 // bp2+1R

g1
µ1 // bp1+1R

we say that the tuple (µ1, µ2) is a pair of consecutive L∞-cocycles is if

1. p2 > p1;

2. the truncated Lie integrations
ci : BGi −→ Bpi+1(R/Γi)

of these cocycles via prop. 6.4.130 preserve the extension property in that

G2 −→ G1
Ωc1−→ Bp1+1(R/Γ1)

is again a homotopy fiber sequence.
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Remark 6.4.167. The issue of the second clause in def. 6.4.166 is to do with the truncation degrees: the
universal untruncated Lie integration exp(−) of def. 6.4.130 preserves homotopy fiber sequences, but if there
are non-trivial cocycles on g in between µ1 and µ2, then these will remain as nontrivial homotopy groups in
the higher-degree truncation BG2 := τp2

exp(g2) [Hen08, theorem 6.4] but they will be truncated away in
BG1 := τp1

exp(g1) and will hence spoil the preservation of the homotopy fibers through Lie integration.

Proposition 6.4.168. Given a pair (µ1, µ2) of consecutive L∞-cocycles, def. 6.4.166, then a compatibilty,
in the sense of def. 5.2.124, between the two refinements Ω1

flat(−, g1) and Ω1
flat(−, g2) of the Hodge filtrations

as given by prop. 6.4.163 is given by taking (see def. 1.2.176, def. 6.4.135)

Ω1(−,Bp1(R/Γ)) := Ω1(−, bp1R) = Ω1
flat(−, ebp1R) = HomdgAlg(W (bp1R),Ω•(−))

with the morphism Ω1(−, bp1)
d−→ Ω2

cl(−, bp1) being the canonical one induced by the morphism ebp1R →
bp1+1R.

Proof. The left square in def. 5.2.124 exists and is a pullback by prop. 6.4.138. That the right square
in def. 5.2.124 commutes is here the statement that for every Cartesian space Rn exact p1 + 2-forms on Rn
are naturally equivalent to 0 in H(U, [dRBp1+2R). This follows immediately with prop. 6.4.72. �

Remark 6.4.169. Prop. 6.4.168 says, via prop. 5.2.125, that every two consecutive L∞-algebra cocycles,
def. 6.4.166,

g2

��

µ2 // bp2+1R

g1
µ1 // bp1+1R

canonically Lie integrate to two consecutive WZW terms, prop. 5.2.122, one defined on the differential
extension induced by the other

G̃2

LWZW2 //

��

Bp2+1(R/Γ2)conn

G̃1
LWZW1

// Bp1+1(R/Γ1)conn

, .

This is the form of a stage in the brane bouquet below in 8.1.2.

6.4.21 Prequantum geometry

We discuss the notion of cohesive prequantization, 5.2.17, realized in the model of smooth cohesion.

What is traditionally called (geometric) prequantization is the refinement of symplectic 2-forms to cur-
vature 2-forms on line bundles with connection. Formally: for

H2
diff(X)

curv // Ω2
int(X) �

� // Ω2
cl(X)

the morphism that sends a class in degree-2 differential cohomology over a smooth manifold X to its curvature
2-form, geometric prequantization of some ω ∈ Ω2

cl(X) is a choice of lift ω̂ ∈ H2
diff(X) through this morphism.

One says that ω̂ is (the class of) a prequantum line bundle or quantization line bundle with connection for
ω. See for instance [WeXu91].

By the curvature exact sequence for differential cohomology, prop. 6.4.109, a lift ω̂ exists precisely if ω
is an integral differential 2-form. This is called the quantization condition on ω. If it is fulfilled, the group
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of possible choices of lifts is the topological (for instance singular) cohomology group H1(X,U(1)). Notice
that the extra non-degeneracy condition that makes a closed 2-form a symplectic form does not appear in
prequantization.

The concept of geometric prequantization has an evident generalization to closed forms of degree n+1 for
any n ∈ N. For ω ∈ Ωn+1

cl (X) a closed differential (n+1)-form on a manifold X, a geometric prequantization
is a lift of ω through the canonical morphism

Hn+1
diff (X)

curv // Ωn+1
int (X) �

� // Ωn+1
cl (X) .

Since the elements of the higher differential cohomology group Hn+1
diff (X) are classes of circle n-bundles with

connection (equivalently circle bundle (n − 1)-gerbes with connection) on X, we may speak of such a lift
as a prequantum circle n-bundle. Again, the lift exists precisely if ω is integral and the group of possible
choices is Hn(X,U(1)). Higher geometric prequantization for n = 2 has been considered in [Rog11a]. By the
discussion in 6.4.16 we may consider circle n-bundles with connection not just over smooth manifolds, but
over any smooth ∞-groupoid (smooth ∞-stack) and hence consider, generally, geometric prequantization of
higher forms on higher smooth stacks.

This section draws from [FRS13b].

• 6.4.21.1 – n-Plectic manifolds and their Hamiltonian vector fields

• 6.4.21.2 – Prequantization of n-plectic manifolds

• 6.4.21.3 – The L∞-algebra of local observables

• 6.4.21.4 – The Kostant-Souriau L∞-cocycle

• 6.4.21.5 – The Kostant-Souriau-Heisenberg L∞-extension

• 6.4.21.6 – Ordinary symplectic geometry and its pre-quantization;

• 6.4.21.7 – 2-Plectic geometry and its pre-quantization.

• 6.4.21.8 – Truncation of higher Poisson brackets and Dickey bracket on conserved currents

6.4.21.1 n-Plectic manifolds and their Hamiltonian vector fields In [BHR08] the following ter-
minology has been introduced.

Definition 6.4.170. A pre-n-plectic manifold (X,ω) is a smooth manifold X equipped with a closed (n+1)-
form ω ∈ Ωn+1

cl (X). If the contraction map ω̂ : TX → ΛnT ∗X is injective, then ω is called non-degenerate
or n-plectic and (X,ω) is called an n-plectic manifold.

Example 6.4.171. For n = 1 an n-plectic manifold is equivalently an ordinary symplectic manifold.

Example 6.4.172. Let G be a compact connected simple Lie group. Equipped with its canonical left
invariant differential 3-form ω := 〈−, [−,−]〉 this is a 2-plectic manifold.

Definition 6.4.173. Let (X,ω) be a pre-n-plectic manifold. If a vector field v and an (n− 1)-form H are
related by

ιvω + dH = 0

then we say that v is a Hamiltonian field for H and that H is a Hamiltonian form for v.
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Definition 6.4.174. We denote by

Hamn−1(X) ⊆ X(X)⊕ Ωn−1(X)

the subspace of pairs (v,H) such that ιvω+dH = 0. We call this the space of Hamiltonian pairs. The image
XHam(X) ⊆ X(X) of the projection Hamn−1(X)→ X(X) is called the space of Hamiltonian vector fields of
(X,ω).

Ωn−1
Ham

// XHam(X) �
� // X (X) .

Remark 6.4.175. Given a pre-n-plectic manifold (X,ω) We have a short exact sequence of vector spaces

0→ Ωn−1
cl (X)→ Hamn−1(X)→ XHam(X)→ 0,

i.e., closed (n− 1)-forms are Hamiltonian, with zero Hamiltonian vector field.

Remark 6.4.176. It is immediate from the definition that Hamilton vector fields preserve the pre-n-plectic
form ω, i.e., Lvω = 0. Indeed, since ω is closed, we have Lvω = dιvω = −d2Hv = 0. Therefore the integration
of a Hamiltonian vector field gives a diffeomorphism of X preserving the pre-n-plectic form: a Hamiltonian
n-plectomorphism.

Lemma 6.4.177. The subspace XHam(X) is a Lie subalgebra of X(X).

6.4.21.2 Prequantization of n-plectic manifolds Let BnU(1)conn be the moduli n-stack of U(1)-
principal n-connection from prop. 6.4.112. The realization of def. 5.2.130 in the present situation is

Definition 6.4.178. Let (X,ω) be a pre-n-plectic manifold, def. 6.4.170. A prequantization of (X,ω) is a
lift

BnU(1)conn

F

��
X

ω //

∇
::

Ωn+1(−)cl.

We call the triple (X,ω,∇) a prequantized pre-n-plectic manifold.

6.4.21.3 The L∞-algebra of local observables We consider now the Lie differentiation of the Quan-
tomorphism ∞-group of a pre-quantized n-plectic smooth manifold.

Definition 6.4.179. We call the Lie n-algebra L∞(X,ω) of def. 1.3.159 the L∞-algebra of local observables
on (X,ω).

Remark 6.4.180. The projection map of def. 6.4.174 uniquely extends to a morphism of L∞-algebras of
the form

L∞(X,ω)

πL

��
XHam(X)

,

i.e., local observables of (X,ω) cover Hamiltonian vector fields. Below in 6.4.21.4 we turn to the classification
of this map by an L∞-algebra cocycle.

Example 6.4.181. If n = 1 then (X,ω) is a pre-symplectic manifold and the chain complex underlying
L∞(X,ω) is

Ham0(X) = {v +H ∈ X(X)⊕ C∞(X;R) | ιvω + dH = 0},
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and the Lie bracket is
[v1 +H1, v2 +H2] = [v1, v2] + ιv1∧v2ω.

If moreover ω is non-degenerate so that (X,ω) is symplectic, then the projection v+H 7→ H is a linear iso-

morphism Ham0(X)
'→ C∞(X;R). It is easy to see that under this isomorphism L∞(X,ω) is the underlying

Lie algebra of the usual Poisson algebra of functions. See also Prop. 2.3.9 in [Br93].

6.4.21.4 The Kostant-Souriau L∞-cocycle We discuss the realization of the general cocycle of def.
5.2.145, classifying the quantomorphism group extension, under Lie differentiation, 6.5.2.5.

Definition 6.4.182. For X a smooth manifold, denote by BH(X, [Bn−1R) the abelian Lie (n+ 1)-algebra
given by the chain complex

Ω0(X)
d−→ Ω1(X)

d−→ · · · d−→ Ωn−1(X)
d−→ dΩn−1(X),

with dΩn−1(X) in degree zero.

Remark 6.4.183. The complex of def. 6.4.182 serves as a resolution of the cocycle complex

Ω0(X)
d−→ Ω1(X)

d−→ · · · d−→ Ωn−1
cl (X) −→ 0 ,

for the de Rham cohomology of X up to degree n− 1 once delooped (i.e., shifted).

Proposition 6.4.184. Let (X,ω) be a pre-n-plectic manifold. The multilinear maps

ω[1] : v 7→ −ιvω; ω[2] : v1∧v2 7→ ιv1∧v2
ω; · · · ω[n+1] : v1∧v2∧· · · vn+1 7→ −(−1)(

n+1
2 )ιv1∧v2∧···∧vn+1

ω

define an L∞-morphism
ω[•] : XHam(X) −→ BH(X, [Bn−1R) ,

and hence an L∞-algebra (n+ 1)-cocycle on the Lie algebra of Hamiltonian vector fields, def. 6.4.174, with
values in the abelian (n+ 1)-algebra of def. 6.4.182.

This is due to [FRS13b, prop. 3.2.3].

Definition 6.4.185. The degree (n+ 1) higher Kostant-Souriau L∞-cocycle associated to the pre-n-plectic
manifold (X,ω) is the L∞-morphism

ω[•] : XHam(X) // BH(X, [Bn−1R)

given in Prop. 6.4.184.

If ρ : g→ XHam(X) is an L∞-morphism encoding an action of an L∞-algebra g on (X,ω) by Hamiltonian
vector fields, then we call the composite ρ∗ω[•] the corresponding Heisenberg L∞-algebra cocycle. This
terminology is motivated by example 6.4.186 below.

Example 6.4.186. Let V be a vector space equipped with a skew-symmetric multilinear form ω : Λn+1V →
R. Since V is an abelian Lie group, we obtain via left-translation of ω a unique closed invariant form, which
we also denote as ω. By identifying V with left-invariant vector fields on V , the Poincare lemma implies
that we have a canonical inclusion

jV : V ↪→ XHam(V )

of V regarded as an abelian Lie algebra into the Hamiltonian vector fields on (V, ω) regarded as a pre n-plectic
manifold. Since V is contractible as a topological manifold, we have, by remark 6.4.183, a quasi-isomorphism

BH(V ; [Bn−1R)
' // R[n]
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of abelian L∞-algebras, given by evaluation at 0. Under this equivalence the restriction of the L∞-algebra
cocycle ω[•] of def. 6.4.185 along jV is an L∞-algebra map of the form

j∗V ω[•] : V // R[n]

whose single component is the linear map

ι(−)ω : ∧n+1V → R .

For n = 1 and (V, ω) an ordinary symplectic vector space the map ι(−)ω : V ∧ V → R is the traditional
Heisenberg cocycle.

6.4.21.5 The Kostant-Souriau-Heisenberg L∞-extension We consider here the cohesive quanto-
morphism and Heinseberg group extensions from 5.2.17.5 after Lie differentiation as extensions of L∞-
algebras.

Proposition 6.4.187. If (X,ω) is a pre-n-plectic manifold, then the projection map πL : L∞(X,ω) →
Xham(X) (remark 6.4.180) and the higher Kostant-Souriau L∞-cocycle ω[•] (def. 6.4.185) form a homotopy
fiber sequence of L∞-algebras, and hence fit into a homotopy pullback diagram of the form

L∞(X,ω)

πL

��

// 0

��
XHam(X)

ω[•] // BH(X, [Bn−1R).

This is due to [FRS13b, theorem 3.3.1].
If a Lie algebra g acts on an n-plectic manifold by Hamiltonian vector fields, then the Kostant-Souriau L∞-

extension of XHam(X), discussed above in 6.4.21.5, restricts to an L∞-extension of g. This is a generalization
of Kostant’s construction [Kos70] of central extensions of Lie algebras to the context of L∞-algebras. Perhaps
the most famous of these central extensions is the Heisenberg Lie algebra, which is the inspiration behind
the following terminology:

Definition 6.4.188. Let (X,ω) be a pre-n-plectic manifold and let ρ : g → XHam(X) be a Lie algebra
homomorphism encoding an action of g on X by Hamiltonian vector fields. The corresponding Heisenberg
L∞-algebra extension heisρ(g) of g is the extension classified by the composite L∞-morphism ω[•] ◦ρ, i.e. the
homotopy pullback on the left of

heisρ(g) //

��

L∞(X,ω) //

��

0

��
g

ρ // XHam(X)
ω[•] // BH(X, [Bn−1R)

.

Remark 6.4.189. It is natural to call an L∞-morphism with values in the L∞-algebra of observables of a
pre-n-plectic manifold (X,ω) an ‘L∞ co-moment map’, which generalizes the familiar notion in symplectic
geometry. Hence, one could say that an action ρ of a Lie algebra g on a pre-n-plectic manifold (X,ω) via
Hamiltonian vector fields naturally induces such a co-moment map from the Heisenberg L∞-algebra heisρ(g).

6.4.21.6 Ordinary symplectic geometry and its prequantization We discuss how the general
abstract notion of higher geometric prequantization reduces to the traditional notion of geometric prequati-
zation when interpreted in the smooth context and for n = 1.

The following is essentially a re-derivation of the discussion in section II.3 and II.4 of [Br93] (based on
[Kos70]) from the abstract point of view of 5.2.17.

The traditional definition of Hamiltonian vector fields is the following.

714



Definition 6.4.190. Let (X,ω) be a smooth symplectic manifold. A Hamiltonian vector field on X is a
vector field v ∈ Γ(TX) whose contraction with the symplectic form ω yields an exact form, hence such that

∃h ∈ C∞(X) : ιvω = ddRh .

Here a choice of function h is called a Hamiltonian for v.

Proposition 6.4.191. Let X be a smooth manifold which is simply connected, and let ω ∈ Ω2(X)int be an
integral symplectic form on X. Then regarding (X,ω) as a symplectic 0-groupoid in Smooth∞Grpd, the
general definition 5.2.150 reproduces the standard notion of Hamiltonian vector fields, def. 6.4.190 on the
symplectic manifold (X,ω).

Proof. A Hamiltonian symplectomorphism is an equivalence φ : X → X that fits into a diagram

X
φ //

ω̂ $$

X

ω̂zz
BU(1)conn

αs{

in Smooth∞Grpd. To compute the Lie algebra of the group of these diffeomorphisms, we need to consider
smooth 1-parameter families of such and differentiate them.

Assume first that the connection 1-form in ω̂ is globally defined A ∈ Ω1(X) with dA = ω. Then the
existence of the above diagram is equivalent to the condition

(φ(t)∗A−A) = dα(t) ,

where α(t) ∈ C∞(X). Differentiating this at 0 yields the Lie derivative

LvA = dα′ ,

where v is the vector field of which t 7→ φ(t) is the flow and where α′ := d
dtα. By Cartan calculus this is

equivalently
ddRιvA+ ιvddRA = dα′

and using that A is the connection on a prequantum circle bundle for ω

ιvω + d(ιvA− α′︸ ︷︷ ︸
h

) = 0 .

This says that for v to be Hamiltonian, its contraction with ω must be exact. This is precisely the definition
of Hamiltonian vector fields. The corresponding Hamiltonian function is h = ιvA− α′.

We now discuss the general case, where the prequantum bundle is not necessarily trivial. After a choice
of cover that is compatible with the flows of vector fields, the argument proceeds by slight generalization of
the previous argument.

We may assume without restriction of generality that X is connected. Choose then any base point x0 ∈ X
and let

P∗X := [I,X]×X {x0}
be the based smooth path space of X, regarded as a diffeological space, def. 6.4.14, where I ⊂ R is the
standard closed interval. This comes equipped with the smooth endpoint evaluation map

p : P∗X → X .

Pulled back along this map, every circle bundle has a trivialization, since P∗X is topologically contractible.
The corresponding Čech nerve C(P∗X → X) is the simplicial presheaf that starts out as

· · · // //// P∗X ×X P∗X
p1 //
p2

// P∗X ,
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where in first degree we have a certain smooth version of the based loop space of X. Any diffeomorphism
φ = exp(v) : X → X lifts to an automorphism of the Čech nerve by letting

P∗φ : P∗X → P∗X

be given by
P∗φ(γ) : (t ∈ [0, 1]) 7→ exp(tv)(γ(t))

and similarly for P∗φ : P∗X ×X P∗X → P∗X ×X P∗X. If φ = exp(tv) for v a vector field on X, we will write
v also for the vector fields induced this way on the components of the Čech nerve.

With these preparations, every elements of the group in question is presented by a diagram of simplicial
presheaves of the form

C(P∗X → X)
P∗φ //

ω̂ ''

C(P∗X → X)

ω̂ww
BU(1)conn

αqy
.

Here the vertical (diagonal) morphisms now exhibit Čech-Deligne cocycles with transition function

g ∈ C∞(P∗X ×X P∗X)

and connection 1-form
A ∈ Ω1(P∗X) ,

satisfiying
p∗2A− p∗1A = ddRlogg .

For φ(t) = exp(tv) a 1-parameter family of diffeomorphisms, the homotopy in this diagram is a gauge
transformation given by a function α(t) ∈ C∞(P∗X,U(1)) such that

p∗2α(t) · g · p∗1α(t)−1 = exp(tv)∗g

and
exp(tv)∗A−A = ddRlogα(t) .

Differentiating this at t = 0 and writing α′ := α′(0) as before, this yields

p∗2α
′ − p∗1α′ = Lvlogg

and
LvA = ddRα

′ .

The latter formula says that on P∗X ιvω is exact

ιvp
∗ω + ddR(ιvA− α′) .

But in fact the function on the right descends down to X, because by the formulas above we have

p∗2(α′ − ιvA)− p∗1(α′ − ιvA) = Lvlogg − ιv(p∗2A− p∗1A)

= 0 .
.

Write therefore h ∈ C∞(X) for the unique function such that p∗h = α′ − ιvA, then this satisfies

ιvω = dh

on X. �
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Corollary 6.4.192. For G = U(1) ∈ Grp(Smooth∞Grpd) the smooth circle group and for X ∈ SmoothMfd ↪→
Smooth∞Grpd a connected smooth manifold, theorem 5.2.143 reproduces the traditional quantomorphism
group as a U(1)-extension of the traditional group of Hamiltonian symplectomorphisms, as discussed for
instance in [RaSch81, Vi11].

The traditional definition of the Poisson-bracket Lie algebra associated with a symplectic manifold (X,ω)
is the following.

Definition 6.4.193. Let (X,ω) be a smooth symplectic manifold. Then its Poisson-bracket Lie algebra is
the Lie algebra whose underlying vector space is C∞(X), the space of smooth function on X, and whose Lie
bracket is given by

[h1, h2] := ιv2
ιv1
ω

for all h1, h2 ∈ C∞(X) and for v1, v2 the corresponding Hamiltonian vector fields, def. 6.4.190.

Proposition 6.4.194. The general definition of Poisson ∞-Lie algebra, def. 5.2.150, applied to the sym-
plectic manifold (X,ω) regarded as a symplectic smooth 0-groupoid, reproduces the traditional definition of
the Lie algebra underlying the Poisson algebra of (X,ω).

Proof. The smooth group AutH/BU(1)conn
(ω̂) is manifestly a subgroup of the semidirect product group

Diff(X) n C∞(X), where the group structure on the second factor is given by addition, and the action of
the first factor on the second is the canonical one by pullback. Accordingly, its Lie algebra may be identified
with that of pairs (v, α) in Γ(TX) × C∞(X) such that, with the notation as in the proof of prop. 6.4.191,
ιvA− α is a Hamiltonian for v; and the Lie bracket is given by

[ (v1, α1) , (v2, α2) ] = ([v1, v2] , Lv1
α2 − Lv2

α1) .

It remains to check that with this bracket the map

φ : h 7→ ιvA− h

is a Lie algebra isomorphism from the Poisson-bracket Lie algebra, def. 6.4.193. For this notice that, from
the basic property of ddR

ιv2ιv1ω = ιv2ιv1ddRA

ιv1ddRιv2A− ιv2ddRιv1A− ι[v1,v2]A

= 2ιv2ιv1ω − ι[v1,v2]A+ Lv2α1 − Lv1α2

.

Subtracting ιv2
ιv1
ω = ιv2

ιv1
ddRA on both sides yields

ι[v1,v2]A− ιv2
ιv1
ω = Lv1

α2 − Lv2
α1 .

This gives that φ is a Lie algebra homomorphism:

φ([(v1, h1), (v2, h2)]) = φ(([v1, v2], ιv2
ιv1
ω))

= ([v1, v2], ι[v1,v2]A− ιv2
ιv1
ω))

= ([v1, v2],Lv1
α2 − Lv2

α1)

= [φ(v1, h1), φ(v2, h2)]

.

�
We recover the following traditional facts from the general notions of 5.2.17.

Remark 6.4.195. The Poisson-bracket group of the symplectic manifold (X, ω̂) according to def. 5.2.150
is a central extension by U(1) of the group of hamiltonian symplectomorphisms: we have a short exact
sequence of smooth groups

U(1)→ Poisson(X, ω̂)→ HamSympl(X, ω̂) .
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On Lie algebras this exhibits the Poisson-bracket Lie algebra as a central extension of the Lie algebra of
Hamiltonian vector fields.

R→ poisson(X, ω̂)→ Xham(X, ω̂) .

If (X,ω) is a symplectic vector space in that X is a vector space and the symplectic differential form ω is
constant with respect to (left or right) translation along X, then the Heisenberg Lie algebra is the sub Lie
algebra

heis(X, ω̂) ↪→ poisson(X, ω̂)

on the constant and the linear functions, see remark 5.2.151.
Traditional literature knows different conventions about which Lie group to pick by default as the one

integrating a Heisenberg Lie algebra (the unique simply-connected one or one of its discrete quotients). By
remark 5.2.151 the inclusion

Heis(X, ω̂) ↪→ Poisson(X, ω̂)

picks the one where the central part is integrated to the circle group:

Heis(X, ω̂) ' X × U(1) .

If in this decomposition we write the canonical generator in

heis(X, ω̂) ' X ⊕ u(1)

of the summand u(1) = Lie(U(1)) as “i” then the Lie bracket on heis(X, ω̂) is given on any two f, g ∈ X by

[f, g] = iω(f, g) .

Specifically for the special case X = R2 with canonical basis vectors denoted q̂ and p̂, and with ω the
canonical symplectic form, the only nontrivial bracket in heis(X, ω̂) among these generators is

[q̂, p̂]heis = i .

The image of this equation under the map heis(X, ω̂)→ XHam(X, ω̂) is

[q, p]X = 0 ,

where now q, p denote the Hamiltonian vector fields associated with q̂ and p̂, respectively. The lift from the
latter to the former equation is, historically, the archetypical hallmark of quantization.

Proposition 6.4.196. For (X,ω) an ordinary prequantizable symplectic manifold and ∇ : X → BU(1) any
choice of prequantum bundle, def. 5.2.130, let V := C and let ρ be the canonical representation of U(1).

Then def. 5.2.156 reduces to the traditional definition to prequantum operators in geometric quantization
(e.g. [BaWe97, p.94]).

Proof. According to the discussion in 6.4.10.1 the space of sections ΓX(E) is that of the ordinary sections
of the ordinary associated line bundle.

Notice that part of the statement there is that the standard presentation of ρ : V//U(1) → BU(1) by a
morphism of simplicial presheaves V//U(1)ch → BU(1)ch is a fibration. In particular this means, as used
there, that the∞-groupoid of sections up to homotopy is presented already by the Kan complex (which here
is just a set) of strict sections σ

V//U(1)ch

ρ

��
C({Ui})

c //

σ

88

'
��

BGch

X
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and it is these that directly identify with the ordinary sections of the line bundle E → X.
Now, a Hamiltonian diffeomorphism in the general sense of def. 5.2.156 takes such a section σ to the

pasting composite

V//U(1)conn

ρconn

��

X

∇
%%

σ
99

X
∇

//

φ

??

BU(1)conn

α

��

.

By the above, to identify this with a section of the line bundle in the ordinary sense, we need to find an
equivalent homotopy-section whose homotopy is, however, trivial, hence a strict section which is equivalent
to this as a homotopy section.

Inspection shows that there is a unique such equivalence whose underlying natural transformations has
components induced by the inverse of α. Then for h : X → C a given function and t 7→ (φ(t), α(t)) the
family of Hamiltonian diffeomorphism associated to it by prop. 6.4.191, the proof of that proposition shows
that the infinitesimal difference between the original section σ and this new section is

i∇vhσ + h · σ ,

where vh is the ordinary Hamiltonian vector field induced by h. This is the traditional formula for the action
of the prequantum operator ĥ on prequantum states. �

6.4.21.7 2-Plectic geometry and its prequantization We consider now the general notion of higher
geometric prequantization, 5.2.17, specialized to the case of closed 3-forms on smooth manifolds, canonically
regarded in Smooth∞Grpd. We show that this reproduces the 2-plectic geometry and its prequantization
studied in [Rog11a].

The following two definitions are from [Rog11a], def. 3.1, prop. 3.15.

Definition 6.4.197. A 2-plectic structure on a smooth manifold X is a smooth closed differential 3-form
ω ∈ Ω3

cl(X), which is non-degenerate in that the induced morphism

ι(−)ω : Γ(TX)→ Ω2(X)

has trivial kernel.

Definition 6.4.198. Let (X,ω) be a 2-plectic manifold. Then a 1-form h ∈ Ω1(X) is called Hamiltonian if
there exists a vector field v ∈ Γ(TX) such that

ddRh = ιvω .

If this vector field exists, then it is unique and is called the Hamiltonian vector field corresponding to α. We
write vh to indicate this. We write

Ω1(X)Ham ↪→ Ω1(X)

for the vector space of Hamiltonian 1-forms on (X,ω).
The Lie 2-algebra of Hamiltonian vector fields L∞(X,ω) is the (infinite-dimensional) L∞-algebra, def.

1.2.150, whose underlying chain complex is

· · · // 0 // C∞(X)
ddR // Ω1

Ham(X) ,
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whose non-trivial binary bracket is
[−,−] : (h1, h2) 7→ ιvh2

ιvh1
ω

and whose non-trivial trinary bracket is

[−,−,−] : (h1, h2, h3) 7→ ιvh1
ιvh2

ιvh3
ω .

Proposition 6.4.199. Let (X,ω) be a 2-plectic smooth manifold, canonically regarded in Smooth∞Grpd.
Then for ω̂ : X → B2U(1)conn any prequantum circle 2-bundle with connection (see 6.4.16) for ω, its Poisson
Lie 2-algebra, def. 5.2.150, is equivalent to the Lie 2-algebra L∞(X,ω) from def. 6.4.198:

poisson(X, ω̂) ' L∞(X,ω) .

Proof. As in the proof of prop. 6.4.191, we first consider the case that ω is exact, so that there exists a
globally defined 2-form A ∈ Ω2(X) with ddRA = ω. The general case follows from this by working on the
path fibration surjective submersion, in straightforward generalization of the strategy in the proof of prop.
6.4.191.

By def. 5.2.150, an object of the smooth 2-group Poisson(X, ω̂) is a diagram of smooth 2-groupoids

X
φ //

A %%

X

Ayy
B2U(1)conn

αs{
,

such that map φ is a diffeomorphism. Given φ, such diagrams correspond to α ∈ Ω1(X) such that

(φ∗A−A) = ddRα . (6.1)

Morphisms in the 2-group may go between two such objects (f) : (φ, α1)→ (φ, α2) with the same φ and are
given by f ∈ C∞(X,U(1)) such that

α2 = α1 + ddRlogf .

Under the 2-group product the objects (φ, α) form a genuine group with multiplication given by

(φ1, α1) · (φ2, α2) = (φ2 ◦ φ1, α1 + φ∗1α2) .

Similarly the group product on two morphisms (f1), (f2) : (φ, α1)→ (φ, α2) is given by

(f1) · (f2) = f1 · φ∗f2 .

Therefore this is a strict 2-group, def. 1.2.81, given by the subobject of the crossed module

C∞(X,U(1))
(0,ddRlog) // Diff(X) n Ω1(X)

on those pairs of vector fields and 1-forms that satisfy (6.1). Here Diff(X)nΩ1(X) is the semidirect product
group induced by the pullback action on the additive group of 1-forms, and its action on C∞(X,U(1)) is
again by the pullback action of the Diff(X)-factor.

Therefore the L∞-algebra poisson(X, ω̂) may be identified with the subobject of the corresponding strict
Lie 2-algebra given by the differential crossed module, def. 1.2.82,

C∞(X)
ddR // Γ(TX)⊕ Ω1(X)
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on those pairs (v, α) ∈ Γ(TX)× Ω1(X) for which

LvA = ddRα ,

hence, by Cartan’s formula, for which
h := α− ιvA

is a Hamiltonian 1-form for v, def. 6.4.198. Here Γ(TX)⊕Ω1(X) is the semidirect product Lie algebra with
bracket

[(v1, α1), (v2, α2)] = ([v1, v2],Lv2α1 − Lv1α2)

and its action on f ∈ C∞(X) is by Lie derivatives of the Γ(TX)-summand:

[(v, α), f ] = −Lvf .

For emphasis, we write Ω1
Ham,p ⊂ Γ(TX)⊕Ω1(X) for the vector space of pairs (v, α) with α−ιvA Hamiltonian.

The map φ : (α, v) 7→ α− ιvA consistutes a vector space isomorphism

φ : Ω1
Ham,p

'→ Ω1
Ham

and for the moment it is useful to keep this around explicitly. So poisson(X, ω̂) is given by the differential
crossed module on the top of the diagram

C∞(X)
ddR //

=

��

Ω1
Ham,p(X)
� _

��
C∞(X)

ddR // Γ(TX)⊕ Ω1(X)

,

with brackets induced by this inclusion into the crossed module on the bottom.
It remains to check that with these brackets the chain map

C∞(X)
id //

ddR

��

C∞(X)

ddR

��
Ω1(X)Ham,p

φ // Ω1(X)Ham

[−,−] ([−,−]′, J)

is a Lie 2-algebra equivalence from the strict brackets [−,−] to the brackets ([−,−]′, [−,−,−]′) of def. 6.4.198.
This is a special case of this main result in [FRS13b]. �

Proposition 6.4.200. For G = BU(1) ∈ Grp(Smooth∞Grpd) the smooth circle 2-group consider X ∈
SmoothMfd ↪→ Smooth∞Grpd a connected and simply connected smooth manifold. Then from prop. 5.2.13.4
and example 5.2.13.4 one obtains an equivalence of smooth group stacks

U(1)FlatConn(X) ' BU(1) .

Generally, for n ≥ 1 and for G = BnU(1) ∈ Grp(Smooth∞Grpd) the smooth circle (n + 1)-group, there is
for X an n-connected smooth manifold an equivalence of smooth ∞-groups

(Bn−1U(1))FlatConn(X) ' BnU(1) .
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Proof. We use the description of U(1)FlatConn(X) given by prop. 5.2.13.4 and example 5.2.13.4.
First notice then that on a simply connected manifold there is up to equivalence just a single flat connection,
hence U(1)FlatConn(X) is pointed connected. Moreover, an auto-gauge transformation from that single flat
connection (any one) to itself is a U(1)-valued function which is constant on X. But therefore by prop. 5.2.13.4
the U -plots of the first homotopy sheaf of U(1)FlatConn(X) are smoothly U -parameterized collections
of constant U(1)-valued functions on X, hence are smoothly U -parameterized collections of elements in
U(1), hence are smooth U(1)-valued functions on U . These are, by definition, equivalently the U -plots of
automorphisms of the point in BU(1).

The other cases work analogously. �

Remark 6.4.201. Therefore in the situation of prop. 6.4.200 the quantomorphism ∞-group is a smooth
2-group extension by the circle 2-group BU(1). The archetypical example of BU(1)-extensions is the smooth
String 2-group, def. 7.1.10. Indeed, this occurs as the Heisenberg 2-group extension of the WZW sigma-model
regarded as a local 2-dimensional quantum field theory. This we turn to in 7.5.1 below.

6.4.21.8 Truncation of higher Poisson brackets and Dickey bracket on conserved currents
We discuss truncation of the Poisson bracket L∞-algebras, def. 1.3.159, 6.4.179, to Lie 1-algebras and the
relation of the result to the traditional Dickey bracket.

This section appeared in [SaSc15]. Its formulation owes a lot to Domenico Fiorenza.

For the simple special case of chain complexes of vector spaces in non-negative degree (in the homological
degree conventions), 0-truncation is the functor

τ≤0 : Ch• −→ Vect

which sends a chain complex (· · ·V2
∂1→ V1

∂0→ V0) to its degree-0 homology group

τ≤0V• = V0/im(∂0) = H0(V•) .

Lemma 6.4.202. The 0-truncation functor τ≤ 0 on chain complexes induces a functor

τ≤0 : L∞-alg≥0 → Lie

where L∞-alg≥0 denotes the category of L∞-algebras concentrated in nonnegative degrees, with L∞-morphisms
as morphisms, and Lie denotes the category of Lie algebras with Lie algebra morphisms. More explicitly,
τ≤0 maps an L∞-algebra (g,d, {−,−} , {−,−,−} , · · · ) concentrated in nonpositive degrees to the Lie algebra
(H0(g), {−,−}) and an L∞-morphism f : g→ h to the Lie algebra morphism H0(f1) : H0(g)→ H0(h), where
f1 is the linear component of f . Moreover, the natural morphism of chain complexes g→ τ≤0g is a natural
linear and surjective L∞-morphism

(g,d, {−,−} , {−,−,−} , · · · )→ (H0(g), {−,−}) . (6.2)

Proof. Since the chain complex g is concentrated in nonnegative degrees, the chain complex τ≤0g con-
sists of the vector space H0(g) concentrated in degree zero. All the statements in the lemma then follow
straightforwardly from this. �

Remark 6.4.203. Naturality of the linear L∞-morphism (6.2) means that for any L∞-morphism f : g→ h
between L∞-algebras concentrated in nonnegative degree we have a commutative diagram of L∞-morphisms

g

��

f // h

��
H0(g)

H0(f1)// H0(h) .

722



Definition 6.4.204. Let (X,ω) be a pre-(p+ 1)-plectic manifold. Write

Pois(X,ω) := τ≤0Pois∞(X,ω)

for the 0-truncation of Pois∞(X,ω) ' Poisdg(X,ω).

Notice that using def. 1.3.159 this is the quotient Pois∞(X,ω) → H0Pois∞(X,ω) by exact current
p-forms. We now characterize this 0-truncation.

Proposition 6.4.205. Let (X,ω) be a pre-(p + 1)-plectic manifold. Then the Lie 1-algebra of currents,
Def. 6.4.204, is a central extension of the Hamiltonian vector fields by the abelian Lie algebra Hp

dR(X) of
de Rham p-forms. In other words, writing Pois(X,ω) for H0Pois∞(X,ω), there is a short exact sequence
of Lie algebras

0→ Hp
dR(X) −→ Pois(X,ω) −→ VectHam(X,ω)→ 0 ,

and Hp
dR(X) is central in Pois(X,ω).

Proof. From the short exact sequence of chain complexes given by Prop. ??

0→ H(X, [BpR)→ Pois∞(X,ω)→ VectHam(X,ω)→ 0 ,

we get the long exact sequence in homology

0→ Hp
dR(X)→ Pois(X,ω)→ VectHam(X,ω)→ 0

and, by Lemma 6.4.202, this is a short exact sequence of Lie algebras. The fact that Hp
dR(X) is central in

Pois(X,ω) is immediate from Equation (??). �

Remark 6.4.206. For the special case when X is the jet bundle of a field bundle, when the de Rham
differentials appearing everywhere are constrained to be the corresponding horizontal differentials, and under
the assumption that the cohomology of this horizontal de Rham complex is concentrated in degree 0, then
another L∞-stucture on the truncated de Rham complex appearing in Def. 1.3.159 has been constructed
in [BFLS98]. Inspection of the construction around Theorem 7 there shows that this L∞-algebra is L∞-
equivalent to its 0-truncation Pois(X,ω) which under these assumptions is the Dickey algebra [D91]. Hence
for all purposes of homotopy theory the algebra in [BFLS98] is this 0-truncation.

In order to further compare Corollary 6.4.205 to existing literature, we consider now a choice of Hamil-
tonian current forms for each symmetry generator:

Proposition 6.4.207. Under a choice of linear splitting J : v 7→ (v, Jv) of the natural projection Ωpω(X)→
VectHam(X,ω) from def. 6.4.174, the Lie bracket on de Rham cohomology classes of currents in Pois(X,ω),
corollary 6.4.205, is isomorphic to

{v + [α], w + [β]} = [v, w] + [Lv∆w − Lw∆v −∆[v,w]] .

Proof. The splitting induces a linear isomorphism

VectHam(X,ω)⊕Hp
dR(X)

∼−→ Pois(X,ω)

v + [α] 7→ (v, Jv − α)

and the Lie bracket on VectHam(X,ω)⊕Hp
dR(X) reads

{v + [α], w + [β]} = [v, w] + [J[v,w] − ιv∧wω] .

Since ιvω = −dJv, one has
ιv∧wω = −ιwdJv = −LwJv + dιwJv
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and
ιv∧wω = −ιw∧vω = ιvdJw = LvJw − dιvJw .

Hence, combining, we can write

ιv∧wω =
1

2
(LvJw − LwJv)−

1

2
d(ιvJw − ιwJv)

and so

{v + [α], w + [β]} = [v, w] + [J[v,w] −
1

2
(LvJw − LwJv)] .

If, moreover, a global potential θ for the pre-n-plectic form ω is given, i.e., if one has a p-form θ with dθ = ω
then, writing Jv = ivθ −∆v, one finds

J[v,w] −
1

2
(LvJw − LwJv) = Lv∆w − Lw∆v −∆[v,w] + d-exact terms .

Therefore, finally, we get the desired expression

{v + [α], w + [β]} = [v, w] + [Lv∆w − Lw∆v −∆[v,w]] .

�

Remark 6.4.208. We may interpret results appearing in [AGIT89, p. 8] as a shadow of Prop. 6.4.207 for
the special case of super p-brane sigma-models (in which case the elements in Hd−1

dR (X) are interpreted as
the brane charges). See section 1.4.4.3.
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6.5 Formal smooth homotopy types

We discuss ∞-groupoids equipped with formal smooth cohesion, a refinement of smooth cohesion, 6.4, in
which infinitesimal smooth spaces exist explicitly.

After discussing the construction in

• 6.5.1 – Construction

we discuss the general abstract structures in cohesive∞-toposes, 5.2 and in differentially cohesive∞-toposes,
5.3, realized in FormalSmooth∞Grpd.

• 6.5.2 – Infinitesimal neighbourhoods and Lie algebras;

• 6.5.3 – Cohomology;

• 6.5.4 – Infinitesimal path groupoid and de Rham sapces;

• 6.5.5 – Local diffeomorphism;

• 6.5.6 – Manifolds and étale groupoids;

• 6.5.7 – Infinitesimal extensions and Modules;

• 6.5.8 – Cartan geometry;

• 6.5.9 – Definite forms.

• 6.5.10 – Partial differential equations;

• 6.5.11 – Prequantum local Lagrangian field theory.

6.5.1 Construction

Notice that the category SmoothCartSp, def. 6.4.4, is (the syntactic category of) a finitary algebraic theory:
a Lawvere theory (see chapter 3, volume 2 of [Borc94]).

Definition 6.5.1. Write
SmoothAlg := Alg(SmoothCartSp)

for the category of algebras over the algebraic theory SmoothCartSp: the category of product-preserving
functors SmoothCartSp→ Set.

These algebras are traditionally known as C∞-rings or C∞-algebras [KaKrMi87].

Proposition 6.5.2. The map that sends a smooth manifold X to the product-preserving functor

C∞(X) : Rk 7→ SmoothMfd(X,Rk)

extends to a full and faithful embedding

SmoothMfd ↪→ SmoothAlgop .

Proposition 6.5.3. Let A be an ordinary (associative) R-algebra that as an R-vector space splits as R⊕ V
with V finite dimensional as an R-vector space and nilpotent with respect to the algebra structure. There is
a unique lift of A through the forgetful functor SmoothAlg→ AlgR.
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Proof. Use Hadamard’s lemma. �

Remark 6.5.4. In the context of synthetic differential geometry the algebras of prop. 6.5.3 are usually
called Weil algebras. In other contexts however the underlying rings are known as local Artin rings, see for
instance [L-Lie].

Definition 6.5.5. Write
InfSmoothLoc ↪→ SmoothAlgop

for the full subcategory of the opposite of smooth algebras on those of the form of prop. 6.5.3. We call this
the category of infinitesimal smooth loci or of infinitesimally thickened points.

Write
FormalSmoothCartSp := SmoothCartSp n InfSmoothLoc ↪→ SmoothAlgop

for the full subcategory of the opposite of smooth algebras on those that are products

X ' U ×D

in SmoothAlgop of an object U in the image of SmoothCartSp ↪→ SmoothMfd ↪→ SmoothAlgop and an
object D in the image of InfSmoothLoc ↪→ SmoothAlgop.

Define a coverage on FormalSmoothCartSp whose covering families are precisely those of the form {Ui×
D

(fi,id)→ U ×D} for {Ui
fi→ U} a covering family in SmoothCartSp.

Remark 6.5.6. This definition appears in [Kock86], following [Dub79b]. The sheaf topos

Sh(FormalSmoothCartSp) ↪→ FormalSmooth∞Grpd

over this site is equivalent to the Cahiers topos [Dub79b] which is a model of some set of axioms of synthetic
differential geometry (see [Law97] for the abstract idea, where also the relation to the axiomatics of cohesion
is vaguely indicated). Therefore the following definition may be thought of as describing the ∞-Cahiers
topos providing a higher geometry version of this model of synthetic differential smooth geometry.

Definition 6.5.7. The ∞-topos of formal smooth ∞-groupoids is

FormalSmooth∞Grpd := Sh(∞,1)(FormalSmoothCartSp) .

Proposition 6.5.8. FormalSmooth∞Grpd is a cohesive ∞-topos.

Proof. Using that the covering families of FormalSmoothCartSp do by definition not depend on the
infinitesimal smooth loci D and that these each have a single point, one finds that FormalSmoothCartSp is
an ∞-cohesive site, def. 4.1.31, by reducing to the argument as for CartSptop, prop. 6.3.2. The claim then
follows with prop. 4.1.32. �

Definition 6.5.9. Write FormalSmoothMfd for the category of formal smooth manifolds – manifolds mod-
eled on FormalSmoothCartSp, equipped with the induced site structure.

Proposition 6.5.10. We have an equivalence of ∞-categories

FormalSmooth∞Grpd ' Ŝh(∞,1)(FormalSmoothMfd)

with the hypercomplete ∞-topos over formal smooth manifolds.

Proof. By definition FormalSmoothCartSp is a dense sub-site of FormalSmoothMfd. The statement then
follows as in prop. 6.3.7. �

Write i : SmoothCartSp ↪→ FormalSmoothCartSp for the canonical embedding.
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Proposition 6.5.11. The functor i∗ given by restriction along i exhibits FormalSmooth∞Grpd as differ-
ential structure, def. 4.2.1, of Smooth∞Grpd, in that we have a quadruple of adjoint ∞-functors

(i! a i∗ a i∗ a i!) : Smooth∞Grpd→ FormalSmooth∞Grpd ,

such that i! is full and faithful and preserves the terminal object.

Proof. We observe that SmoothCartSp ↪→ FormalSmoothCartSp is an infinitesimal neighbourhood of
sites, according to def. 4.2.8. The claim then follows with prop. 4.2.9. �

More generally, we may consider a sequence of orders of infinitesimals.

Definition 6.5.12. For k ∈ N, write

FormalSmoothCartSp(k) ↪→ FormalSmoothCartSp

for the full subcategory of formal smooth Cartesian spaces, def. 6.5.5, on those objects for which the nilpotent
ideal V in their function algebra is nilpotent of order k, i.e. V k+1 = 0. Regard this as a site with the induced
sub-coverage.

Write
FormalSmooth∞Grpd(k) := Sh(∞,1)(FormalSmoothMfd(k)) .

By iterating prop. 6.5.11 we have

Proposition 6.5.13. The sequence of inclusions

Smooth∞Grpd

FormalSmooth∞Grpd(0)

� � //
oo
� � //
oo

FormalSmooth∞Grpd(1)

� � //
oo
� � //
oo

FormalSmooth∞Grpd(2)

� � //
oo
� � //
oo

· · ·
� � //
oo
� � //
oo

FormalSmooth∞Grpd(∞)

FormalSmooth∞Grpd

is a sequence of orders of differential structures as in def. 4.2.7.

6.5.2 Infinitesimal neighbourhoods and Lie algebras

We discuss explicit presentations for first order formal cohesive∞-groupoids, 5.3.6, realized in FormalSmooth∞Grpd.
We call these L∞-algebroids, subsuming the traditional notion of L∞-algebras [LaMa95].

In the standard presentation of FormalSmooth∞Grpd by simplicial presheaves over formal smooth man-
ifolds these L∞-algebroids are presheaves in the image of the monoidal Dold-Kan correspondence [CaCo04]
of semi-free differential graded algebras. This construction amounts to identifying the traditional description
of Lie algebras, Lie algebroids and L∞-algebras by their Chevalley-Eilenberg algebras, def. 1.2.150, as a con-
venient characterization of the corresponding cosimplicial algebras whose formal dual simplicial presheaves
are manifest presentations of infinitesimal smooth ∞-groupoids.

• 6.5.2.1 – Infinitesimal neighbourhoods and relative cohesion

• 6.5.2.2 – Lie Algebroids and smooth commutative dg-algebras;

• 6.5.2.3 – Infinitesimal smooth homotopy types;

• 6.5.2.4 – Lie 1-algebroids as infinitesimal simplicial presheaves

• 6.5.2.5 – Lie differentiation
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6.5.2.1 Infinitesimal neighbourhoods and Relative cohesion

Definition 6.5.14. Write
Inf∞Grpd := PSh∞(InfSmoothLoc)

for the ∞-category of ∞-presheaves on the site of infinitesimal smooth loci of def. 6.5.5 (formal duals of
Weil algebras/local Artin algebras).

Proposition 6.5.15. We have an ∞-pushout diagram of ∞-toposes of the form

Smooth∞Grpd
i∗ //

Γ

��

FormalSmooth∞Grpd

��
∞Grpd // Inf∞Grpd

.

This exhibits FormalSmooth∞Grpd as being cohesive relative to Inf∞Grpd, def. 5.3.62,

Smooth∞Grpd

� � //
oo
� � //
oo

''

gg

5 U
''

gg
FormalSmooth∞Grpd

//
oo ? _

//
oo

��

OO

� ?��

OO Inf∞Grpd

ww

77


*

ww

77

∞Grpd

Proof. By [L-Topos, prop. 6.3.2.3]∞-pushouts of∞-toposes are computed as∞-limits of the underlying
∞-categories with respect to the corresponding inverse image functors. Hence we have to show that there is
an ∞-pullback diagram of ∞-categories of the form

Smooth∞Grpd oo
i∗

OO

Disc

FormalSmooth∞GrpdOO

∞Grpd oo Inf∞Grpd

.

Since inverse images preserve ∞-colimits in the ∞-topos, we may compute this kernel on generators, hence
on objects in the site, under the ∞-Yoneda embedding. By prop. 4.1.32 and prop. 4.2.9 this reduces to the
diagram

SmoothCartSp FormalSmoothCartSp
poo

∗

∗

OO

InfSmoothLoc
� ?

OO

oo

.

This is an evident pullback of categories, exhibiting the infinitesimal smooth loci as the objects in the kernel
of the map that forgets infinitesimal thickening. �

Proposition 6.5.16. The relative cohesion FormalSmooth∞Grpd → Inf∞Grpd of prop. 6.5.15 realizes
the full inclusion of properly infinitesimal object, def. 5.3.47, according to the general abstract situation of
prop 5.3.62.
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Proof. Since [rel in def. 5.3.58 preserves ∞-colimits, it is sufficient to check that it agrees with the
relative flat modality

FormalSmooth∞Grpd→ Inf∞Grpd ↪→ FormalSmooth∞Grpd

on representables, hence on formal manifolds X, for which in turn it is sufficient to check that for all formal
Cartesian spaces U ×D we naturally have

H(U ×D, [relX) ' H(D,X).

Since the hom-functor H(U×D,−) preserves the homotopy pullback defining [relX, it is sufficient to observe
that the right hand here is the limit over

H(U ×D,X)

��
H(U ×D, [X) // H(U ×D,=X)

which by adjunction is indeed equivalently the limit over

H(U ×D,X)

��
H(∗, X) // H(U,X)

.

�

6.5.2.2 Lie algebroids and smooth commutative dg-algebras Recall the characterization of L∞-
algebra structures in terms of dg-algebras from prop. 1.2.152.

Definition 6.5.17. Let
CE : L∞Algd ↪→ cdgAlgop

R

be the full subcategory on the opposite category of cochain dg-algebras over R on those dg-algebras that are

• graded-commutative;

• concentrated in non-negative degree (the differential being of degree +1 );

• in degree 0 of the form C∞(X) for X ∈ SmoothMfd ;

• semifree: their underlying graded algebra is isomorphic to an exterior algebra on an N-graded locally
free projective C∞(X)-module;

• of finite type;

We call this the category of L∞-algebroids over smooth manifolds.

More in detail, an object a ∈ L∞Algd may be identified (non-canonically) with a pair (CE(a), X), where

• X ∈ SmoothMfd is a smooth manifold – called the base space of the L∞-algebroid ;

• a is the module of smooth sections of an N-graded vector bundle of degreewise finite rank;
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• CE(a) = (∧•C∞(X)a
∗, da) is a semifree dg-algebra on a∗ – a Chevalley-Eilenberg algebra – where

∧•C∞(X)a
∗ = C∞(X) ⊕ a∗0 ⊕

((
a∗0 ∧C∞(X) a

∗
0

)
⊕ a∗1

)
⊕ · · ·

with the kth summand on the right being in degree k.

Definition 6.5.18. An L∞-algebroid with base space X = ∗ the point is an L∞-algebra g, def. 1.2.150, or
rather is the pointed delooping of an L∞-algebra. We write bg for L∞-algebroids over the point. They form
the full subcategory

L∞Alg ↪→ L∞Algd .

The following fact is standard and straightforward to check.

Proposition 6.5.19. 1. The full subcategory L∞Alg ↪→ L∞Algd from def. 6.5.17 is equivalent to the
traditional definition of the category of L∞-algebras and “weak morphisms” / “sh-maps” between them.

2. The full subcategory LieAlgd ↪→ L∞Algd on the 1-truncated objects is equivalent to the traditional
category of Lie algebroids (over smooth manifolds).

3. In particular the joint intersection LieAlg ↪→ L∞Alg on the 1-truncated L∞-algebras is equivalent to
the category of ordinary Lie algebras.

We now construct an embedding of L∞Algd into FormalSmooth∞Grpd. Below in 6.5.2.3 we show that
this embedding exhibitsthe above algebraic data as a presentation of formal smooth ∞-groupoids which are
infinitesimal objects in the abstract intrinsic sense of 6.5.2.3.

Remark 6.5.20. The functor
Ξ : Ch•+(R)→ Vect∆

R

of the Dold-Kan correspondence, prop. 3.1.35, from non-negatively graded cochain complexes of vector
spaces to cosimplicial vector spaces is a lax monoidal functor and hence induces a functor (which we will
denote by the same symbol)

Ξ : dgAlg+
R → Alg∆

R

from non-negatively graded commutative cochain dg-algebras to cosimplicial commutative algebras (over R).

Definition 6.5.21. Write
ΞCE : L∞Algd→ (CAlg∆

R )op

for the restriction of the functor Ξ from remark 6.5.20 along the defining inclusion CE : L∞Algd ↪→ dgAlgop
R .

There are several different ways to present ΞCE explicitly in components. Below we make use of the
following fact, pointed out in [CaCo04] (see the discussion around equations (26) and (49) there).

Proposition 6.5.22. The functor ΞCE from def. 6.5.21 is given as follows.
For a ∈ L∞Algd, the underlying cosimplicial vector space of ΞCE(a) is

ΞCE(a) : [n] 7→
n⊕
i=0

CE(a)i ⊗ ∧iRn .

The product of the R-algebra structure on this space in degree n is given on homogeneous elements (ω, x), (λ, y) ∈
CE(a)i ⊗ ∧iRn in the tensor product by

(ω, x) · (λ, y) = (ω ∧ λ, x ∧ y) .

(Notice that Ξa is indeed a commutative cosimplicial algebra, since ω and x in (ω, x) are by definition in
the same degree.)
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To define the cosimplicial structure, let {vj}nj=1 be the canonical basis of Rn and consider and set v0 := 0
to obtain a set of vectors {vj}nj=0. Then for α : [k]→ [l] a morphism in the simplex category, set

α : vj 7→ vα(j) − vα(0)

and extend this skew-multilinearly to a map α : ∧•Rk → ∧•Rl. In terms of all this the action of α on
homogeneous elements (ω, x) in the cosimplicial algebra is defined by

α : (ω, x) 7→ (ω, αx) + (daω, vα(0) ∧ α(x))

Remark 6.5.23. The commutative algebras appearing here may be understood geometrically as being
algebras of functions on spaces of infinitesimal based simplices. This we discuss in more detail in 6.5.2.4
below, see prop. 6.5.33 there.

We now refine the image of Ξ to cosimplicial smooth algebras, def. 6.5.1. Notice that there is a canonical
forgetful functor

U : SmoothAlg→ CAlgR

from the category of smooth algebras to the category of commutative associative algebras over the real
numbers.

Proposition 6.5.24. There is a unique factorization of the functor ΞCE : L∞Algd→ (CAlg∆
R )op from def.

6.5.21 through the forgetful functor (SmoothAlg∆
R )op → (CAlg∆

R )op such that for any a over base space X
the degree-0 algebra of smooth functions C∞(X) lifts to its canonical structure as a smooth algebra

(SmoothAlg∆)op

U
��

L∞Algd

ΞCE

77

// (CAlg∆
R )op

.

Proof. Observe that for each n the algebra (ΞCE(a))n is a finite nilpotent extension of C∞(X). The
claim then follows with the fact that C∞ : SmoothMfd → CAlgop

R is faithful and using Hadamard’s lemma
for the nilpotent part. �

Proposition 6.5.25. The functor ΞCE preserves limits of L∞-algebras. It preserves pullbacks of L∞-
algebroids if the two morphisms in degree 0 are transveral maps of smooth manifolds.

Proof. The functor Ξ : cdgAlg+
R → CAlg∆

R evidently preserves colimits. This gives the first statement.
The second follows by observing that the functor from smooth manifolds to the opposite of smooth algebras
preserves transversal pullbacks. �

6.5.2.3 Infinitesimal smooth groupoids We discuss how the L∞-algebroids from def. 6.5.17 serve to
present the intrinsically defined infinitesimal smooth ∞-groupoids from 5.3.6.

Definition 6.5.26. Write i : L∞Algd→ FormalSmooth∞Grpd for the composite ∞-functor

L∞Algd
ΞCE // (SmoothAlg∆)op j // [FormalSmoothCartSpop, sSet]

PQ // ([FormalSmoothCartSpop, sSet]loc)◦

'
��

FormalSmooth∞Grpd

,
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where the first morphism is the monoidal Dold-Kan correspondence as in prop. 6.5.24, the second is degree-
wise the external Yoneda embedding

SmoothAlgop → [FormalSmoothCartSp,Set] ,

and PQ is any fibrant-cofibrant resolution functor in the local model structure on simplicial presheaves.

We discuss now that L∞Algd is indeed a presentation for objects in FormalSmooth∞Grpd satisfying the
abstract axioms from 5.3.6.

Lemma 6.5.27. For a ∈ L∞Algd and i(a) ∈ [FormalSmoothMfdop, sSet]proj,loc its image in the presentation
for FormalSmooth∞Grpd, we have that(∫ [k]∈∆

∆[k] · i(a)k

)
'→ i(a)

is a cofibrant resolution, where ∆ : ∆→ sSet is the fat simplex.

Proof. The coend over the tensoring∫ [k]∈∆

(−)·(−) : [∆, sSetQuillen]proj×[∆op, [FormalSmoothMfdop, sSet]proj,loc]inj → [FormalSmoothMfdop, sSet]proj,loc

for the projective and injective global model structure on functors on the simplex category and its opposite
is a left Quillen bifunctor, prop. 5.1.13. We have moreover

1. The fat simplex is cofibrant in [∆, sSetQuillen]proj, prop. 5.1.15.

2. The object i(a)• ∈ [∆op, [FormalSmoothMfdop, sSet]proj,loc]inj is cofibrant, because every representable
FormalSmoothMfd ↪→ [FormalSmoothMfdop, sSet]proj,loc is cofibrant.

�

Proposition 6.5.28. Let g be an L∞-algebra, regarded as an L∞-algebroid bg ∈ L∞Algd over the point by
the embedding of def. 6.5.17. Then i(bg) ∈ FormalSmooth∞Grpd is an infinitesimal object, def. 4.1.21, in
that it is geometrically contractible

Πbg ' ∗

and has as underlying discrete ∞-groupoid the point

Γbg ' ∗ .

Proof. We present now FormalSmooth∞Grpd by [FormalSmoothCartSpop, sSet]proj,loc. Since FormalSmoothCartSp
is an ∞-cohesive site by prop. 6.5.8, we have by the proof of prop. 4.1.32 that Π is presented by the left
derived functor L lim→ of the degreewise colimit and Γ is presented by the left derived functor of evaluation
on the point.

With lemma 6.5.27 we can evaluate

(L lim
→

)i(bg) ' lim
→

∫ [k]∈∆

∆[k] · (bg)k

'
∫ [k]∈∆

∆[k] · lim
→

(bg)k

=

∫ [k]∈∆

∆[k] · ∗

,
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because each (bg)n ∈ InfPoint ↪→ SmoothCartSp is an infinitesimally thickened point, hence representable
and hence sent to the point by the colimit functor.

That this is equivalent to the point follows from the fact that ∅ → ∆ is an acylic cofibration in
[∆, sSetQuillen]proj, and that∫ [k]∈∆

(−)× (−) : [∆, sSetQuillen]proj × [∆op, sSetQillen]inj → sSetQuillen

is a Quillen bifunctor, using that ∗ ∈ [∆op, sSetQuillen]inj is cofibrant.
Similarly, we have degreewise that

Hom(∗, (bg)n) = ∗
by the fact that an infinitesimally thickened point has a single global point. Therefore the claim for Γ follows
analogously. �

Proposition 6.5.29. Let a ∈ L∞Algd ↪→ [FormalSmoothCartSp, sSet] be an L∞-algebroid, def. 6.5.17,
over a smooth manifold X, regarded as a simplicial presheaf and hence as a presentation for an object in
FormalSmooth∞Grpd according to def. 6.5.26.

We have an equivalence
=(a) ' =(X) .

Proof. Let first X = U ∈ FormalSmoothCartSp be a representable. Then according to prop. 6.5.27 we
have that

â :=

(∫ k∈∆

∆[k] · ak

)
' a

is cofibrant in [FormalSmoothCartSpop, sSet]proj. Therefore, by prop. 4.2.9, we compute the derived functor

=(a) ' i∗i∗a
' L((−) ◦ p)L((−) ◦ i)a
' ((−) ◦ ip)â

with the notation as used there. In view of def. 6.5.21 we have for all k ∈ N that ak = X ×D where D is an
infinitesimally thickened point. Therefore ((−) ◦ ip)ak = ((−) ◦ ip)X for all k and hence ((−) ◦ ip)â ' =(X).

For general X choose first a cofibrant resolution by a split hypercover that is degreewise a coproduct of
representables (which always exists, by the cofibrant replacement theorem of [Dug01]), then pull back the
above discussion to these covers. �

6.5.2.4 Lie 1-algebroids as infinitesimal simplicial presheaves We characterize Lie 1-algebroids
(E → X, ρ, [−,−]) as precisely those formal smooth ∞-groupoids that under the presentation of def. 6.5.26
are locally, on any chart U → X of their base space, given by simplicial smooth loci of the form

U × D̃(k, 2) //
//
//
U × D̃(k, 1) //

//
U

where k = rank(E) is the dimension of the fibers of the Lie algebroid and where D̃(k, n) is the smooth locus
of infinitesimal k-simplices based at the origin in Rn. (These smooth loci have been highlighted in section
1.2 of [Kock10]).

The following definition may be either taken as an informal but instructive definition – in which case the
next definition 6.5.31 is to be taken as the precise one – or in fact it may be already itself be taken as the
fully formal and precise definition if one reads it in the internal logic of any smooth topos with line object
R – which for the present purpose is the Cahiers topos [Dub79b] Sh(FormalSmoothCartSp) with line object
R, remark 6.5.6.
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Definition 6.5.30. For k, n ∈ N, an infinitesimal k-simplex in Rn based at the origin is a collection
(~εa ∈ Rn)ka=1 of points in Rn, such that each is an infinitesimal neighbour of the origin

∀a : ~εa ∼ 0

and such that all are infinitesimal neighbours of each other

∀a, a′ : (~εa − ~εa′) ∼ 0 .

Write D̃(k, n) ⊂ Rk·n for the space of all such infinitesimal k-simplices in Rn.

Equivalently:

Definition 6.5.31. For k, n ∈ N, the smooth algebra

C∞(D̃(k, n)) ∈ SmoothAlg

is the unique lift through the forgetful functor U : SmoothAlg → CAlgR of the commutative R-algebra
generated from k × n many generators

(εja)1≤j≤n,1≤a≤k

subject to the relations
∀a, j, j′ : εjaε

j′

a = 0

and
∀a, a′, j, j′ : (εja − ε

j
a′)(ε

j′

a − ε
j′

a′) = 0 .

Remark 6.5.32. In the above form these relations are the manifest analogs of the conditions ~εa ∼ 0 and
(~εa − ~εa′) ∼ 0. But by multiplying out the latter set of relations and using the former, we find that jointly
they are equivalent to the single set of relations

∀a, a′, j, j′ : εjaε
j′

a′ + εja′ε
j′

a = 0 ,

which of course is equivalent to

∀a, a′, j, j′ : εjaε
j′

a′ + εj
′

a ε
j
a′ = 0 .

In this expression the roles of the two sets of indices is manifestly symmetric. Hence another equivalent way
to state the relations is to say that

∀a, a′, j : εjaε
j
a′ = 0

and
∀a, a′, j, j′ : (εja − εj

′

a )(εja′ − ε
j′

a′) = 0

This appears around (1.2.1) in [Kock10].
The following proposition identifies these algebras of functions on spaces of infinitesimal based simplices

with the algebras that appear in the component expression of the monoidal Dold-Kan correspondence, as
displayed in prop. 6.5.22.

Proposition 6.5.33. For all k, n ∈ N we have a natural isomorphism of real commutative and hence of
smooth algebras

φ : C∞(D̃(k, n))
' // ⊕ni=0(∧iRk)⊗ (∧iRn) ,

where on the right we have the algebras that appear degreewise in def. 6.5.21, where the product is given on
homogeneous elements by

(ω, x) · (λ, y) = (ω ∧ λ, x ∧ y) .
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Proof. Let {ta} be the canonical basis for Rk and {ei} the canonical basis for Rn. We claim that an
isomorphism is given by the assignment which on generators is

φ : εia 7→ (ta, e
i) .

To see that this defines indeed an algebra homomorphism we need to check that it respects the relations on
the generators. By remark 6.5.32 for this it is sufficient to observe that for all pairs of pairs of indices we
have

φ(εiaε
i′

a′) = (ta ∧ ta′ , ei ∧ ei
′
)

= −(ta′ ∧ ta, ei ∧ ei
′
)

= −φ(εia′ε
i′

a )

.

�

Remark 6.5.34. The proof of prop. 6.5.33 together with remark 6.5.32 may be interpreted as showing how
the skew-linearity which is the hallmark of traditional Lie theory arises in the synthetic differential geometry
of infinitesimal simplices. In the context of the tangent Lie algebroid, discussed as example 6.5.37 below, this
pleasant aspect of Kock’s “combinatorial differential forms” had been amplified in [BM00]. See also [Stel10].

Proposition 6.5.35. For a ∈ L∞Alg a 1-truncated object, hence an ordinary Lie algebroid of rank k over
a base manifold X, its image under the map i : L∞Alg → (SmoothAlg∆)op, def. 6.5.26, is such that its
restriction to any chart U → X is, up to isomorphism, of the form

i(a)|U : [n] 7→ U × D̃(k, n) .

Proof. Apply prop. 6.5.33 in def. 6.5.21, using that by definition CE(a) is given by the exterior algebra
on locally free C∞(X) modules, so that

CE(a|U ) ' (∧•C∞(U)Γ(U × Rk)∗, da|U )

' (C∞(U)⊗ ∧•Rk, da|U )
.

�

Example 6.5.36 (Lie algebra as infinitesimal simplicial complex). For G a Lie group, consider the simplicial
manifold

BGch =
(

G×G // //// G
//
// ∗
)
∈ SmoothMfd∆op

↪→ [CartSpfsmooth, sSet]

which presents the internal delooping BG by prop. 6.3.21. Consider then the subobject (as simplicial formal
manifolds)

D̃(k, 2)
� � i2 //

������

G×G

������
D̃(k, 1) �

� i1 //

����

G

����
∗ i0 // ∗

(Bg)ch
� � // (BG)ch

,

735



where k = dim(G), defined as follows:

1. i1 includes the first order infinitesimal neighbourhood of the neutral element of G, hence synthetically
{g ∈ G|g ∼1 0}.

2. i2 includes the space of pairs of points in G which are first order neighbours of the neutral element and
of each other: {(g1, g2) ∈ G×G|g1 ∼1 e, g2 ∼1 e, g1 ∼ g2}.

This is implicitly the inclusion that is used in [Kock10] in the discussion of Lie algebras in synthetic differential
geometry. By the above discussion the above identifies D̃(k, 1) ' g = Te(G) as the Lie algebra of G and
D̃(k, 2) ' g ∧ g. Then formula 6.8.2 in [Kock10]together with theorem 6.6.1 there show how the group
product on the right turns into the Lie bracket on the left.

More in detail, formula 6.8.2 in [Kock10] says that for g1, g2 ∼1 e and g1 ∼1 g2 we have

g1 · g2 = g1 + g2 +
1

2
{g1, g2} −

3

2
e ,

where {g1, g2} = g1g2g
−1
1 g−1

2 is the group commutator. Theorem 6.6.1 in [Kock10] identifies this on the
given elements infinitesimally close to e with the Lie bracket on these elements.

Example 6.5.37 (tangent Lie algebroid as infinitesimal simplicial complex). For X a smooth manifold and
TX its tangent Lie algebroid, its incarnation as a simplicial smooth locus via def. 6.5.26, prop. 6.5.35 is
the simplicial complex of infinitesimal simplices {(x0, · · · , xn) ∈ Xn|∀i, j : xi ∼ xj} in X. The normalized
cosimplicial function algebra of this complex is called the algebra of combinatorial differential forms in
[Kock10]. The corresponding normalized chain dg-algebra is observed there to be isomorphic to the de
Rham complex of X, which here is a direct consequence of the monoidal Dold-Kan correspondence. This is
made explicit in [Stel10].

Notice that accordingly for g any L∞-algebra, flat g-valued differential forms are equivalently morphisms
of dg-algebras

Ω•(X)← CE(g) : A

as well as (“synthetically”) morphisms
TX → g

of simplicial objects in the Cahiers topos Sh(FormalSmoothCartSp).

6.5.2.5 Lie differentiation We discuss the realization of the abstract concepts of Lie differentiation,
remark 5.3.59, realized in formal smooth cohesion. Here Lie differentiation is the process that sends a pointed
connected formal differential homotopy-type to its infinitesimal approximation by an higher Lie algebra, an
L∞-algebra. The supergeometric analog of this discussion is below in 6.6.5.

Proposition 6.5.38. Write
L∞Alggen ↪→ Inf∞Grpd1

for the full sub-∞-category on those objects which are sent by Γ to the point. The full subcategory on these
∞-presheaves which send pushouts of infinitesimally thickened points to homotopy pullbacks is the∞-category
of L∞-algebras

L∞Alg ↪→ L∞Alggen

Proof. By the central result of [L-Lie]. �
Therefore we say that
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Definition 6.5.39. The composite ∞-functor

Lie : Grp(Smooth∞Grpd) ' Smooth∞Grpd
∗/
≥1

i
∗/
!−→ Smooth∞Grpd

∗/
≥1

j∗−→ L∞Alggen

is ∞-Lie differentiation.

Remark 6.5.40. By the Artin-Lurie representability theorem [L-Rep] a sufficient condition for the Lie
differentiation Lie(BG) of def. 6.5.39 to land in the full sub-∞-category L∞Alg ↪→ L∞Alggen of genuine
L∞-algebras, prop. 6.5.38, is that BG by a geometric ∞-stack. The development of a genuine ∞-Lie theory
would consist of exhibiting Lie integration exp(−) as a suitable adjoint, or similar, to the restriction of Lie(−)
to geometric ∞-stacks 32

6.5.3 Cohomology

We discuss aspects of the intrinsic cohomology, 5.1.10, in FormalSmooth∞Grpd.

• 6.5.3.1 – Cohomology localization;

• 6.5.3.2 – Lie group cohomology

• 6.5.3.3 – ∞-Lie algebroid cohomology

• 6.5.3.4 – Infinitesimal principal ∞-bundles / extensions of L∞-algebroids

6.5.3.1 Cohomology localization

Observation 6.5.41. The canonical line object of the Lawvere theory CartSpsmooth (the free algebra on
the singleton) is the real line

A1
SmoothCartSp = R .

We shall write R also for the underlying additive group

Ga = R

regarded canonically as an abelian ∞-group object in FormalSmooth∞Grpd. For n ∈ N write BnR ∈
FormalSmooth∞Grpd for its n-fold delooping. For n ∈ N and X ∈ FormalSmooth∞Grpd write

Hn
shdiff(X,R) := π0FormalSmooth∞Grpd(X,BnR)

for the cohomology group of X with coefficients in the canonical line object in degree n.

Definition 6.5.42. Write
Lsdiff ↪→ FormalSmooth∞Grpd

for the cohomology localization of FormalSmooth∞Grpd at R-cohomology: the full sub-∞-category on the
W -local objects with respect to the class W of morphisms that induce isomorphisms in all R-cohomology
groups.

Proposition 6.5.43. Let Ab∆
proj be the model structure on cosimplicial abelian groups, whose fibrations are

the degreewise surjections and whose weak equivalences the quasi-isomorphisms under the normalized cochain
functor.

The transferred model structure along the forgetful functor

U : SmoothAlg∆ → Ab∆

exists and yields a cofibrantly generated simplicial model category structure on cosimplicial smooth algebras
(cosimplicial C∞-rings).

32I am grateful to Joost Nuiten for discussion of this point.
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See [Stel10] for an account.

Proposition 6.5.44. Let j : (SmoothAlg∆)op → [FormalSmoothCartSp, sSet] be the prolonged external
Yoneda embedding.

1. This constitutes the right adjoint of a simplicial Quillen adjunction

(O a j) : (SmoothAlg∆)op oo O

j
// [FormalSmoothCartSp, sSet]proj,loc ,

where the left adjoint O(−) = C∞(−,R) degreewise forms the algebra of functions obtained by homming
presheaves into the line object R.

2. Restricted to simplicial formal smooth manifolds of finite truncation along

FormalSmoothMfd∆op

fintr ↪→ (SmoothAlg∆)op

the right derived functor of j is a full and faithful ∞-functor that factors through the cohomology
localization and thus identifies a full reflective sub-∞-category

(FormalSmoothMfd∆op

)◦fintr ↪→ Lsdiff ↪→ FormalSmooth∞Grpd .

3. The intrinsic R-cohomology of any object X ∈ FormalSmooth∞Grpd is computed by the ordinary
cochain cohomology of the Moore cochain complex underlying the cosimplicial abelian group of the
image of the left derived functor (LO)(X) under the Dold-Kan correspondence:

Hn
FormalSmooth(X,R) ' Hn

cochain(N•(LO)(X)) .

Proof. By prop. 6.5.10 we may equivalently work over the site FormalSmoothMfd. The proof there is
given in [Stel10], following [Toë06]. �

6.5.3.2 Lie group cohomology

Proposition 6.5.45. Let G ∈ SmoothMfd ↪→ Smooth∞Grpd ↪→ FormalSmooth∞Grpd be a Lie group.
Then the intrinsic group cohomology in Smooth∞Grpd and in FormalSmooth∞Grpd of G with coeffi-

cients in

1. discrete abelian groups A;

2. the additive Lie group A = R

coincides with Segal’s refined Lie group cohomology [Seg70], [Bry00].

Hn
Smooth(BG,A) ' Hn

FormalSmooth(BG,A) ' Hn
Segal(G,A) .

Proof. For discrete coefficients this is shown in theorem 6.4.38 for HSmooth, which by the full and faithful
embedding then also holds in FormalSmooth∞Grpd.

Here we demonstrate the equivalence for A = R by obtaining a presentation for Hn
FormalSmooth(BG,R)

that coincides explicitly with a formula for Segal’s cohomology observed in [Bry00].
Let therefore BGch ∈ [∆op, [FormalSmoothCartSpop,Set be the standard presentation of BG ∈ FormalSmooth∞Grpd

by the nerve of the Lie groupoid (G
→→ ∗) as discussed in 6.4.3. We may write this as

BGch =

∫ [k]∈∆

∆[k] ·G×k .
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By prop. 6.5.44 the intrinsic R-cohomology of BG is computed by the cochain cohomology of the cochain
complex of the underlying simplicial abelian group of the value (LO)BGch of the left derived functor of O.

In order to compute this we shall build and compare various resolutions, as in prop. 6.3.16, moving back
and forth through the Quillen equivalences

[∆op, D]inj
oo id

id
// [∆op, D]Reedy

oo id

id
// [∆op, D]proj

between injective, projective and Reedy model structures on functors with values in a combinatorial model
category D, with D either sSetQuillen or with D itself the injective or projective model structure on simplicial
presheaves over FormalSmoothCartSp.

To begin with, let ( QBGch)•
' // (G×• ) ∈ [∆op, [CartSpop, sSet]proj]Reedy be a Reedy-cofibrant reso-

lution of the simplicial presheaf BGch with respect to the projective model structure. This is in particular
degreewise a weak equivalence of simplicial presheaves, hence∫ [k]∈∆

∆[k] · (QBGch)k
'→
∫ [k]∈∆

∆[k] ·G×k = BGc

exists and is a weak equivalence in [FormalSmoothCartSpop, sSet]inj, hence in [FormalSmoothCartSpop, sSet]proj,
hence in [FormalSmoothCartSpop, sSet]proj,loc, because

1. ∆ ∈ [∆, sSetQuillen]Reedy is cofibrant in the Reedy model structure;

2. every simplicial presheafX is Reedy cofibrant when regarded as an objectX• ∈ [∆op, [CartSpop, sSet]inj]Reedy;

3. the coend over the tensoring∫ ∆

: [∆, sSetQuillen]Reedy×[∆op, [FormalSmoothCartSpop, sSet]inj]Reedy → [FormalSmoothCartSpop, sSet]inj

is a left Quillen bifunctor ([L-Topos], prop. A.2.9.26 ), hence in particular a left Quillen functor in one
argument when the other argument is fixed on a cofibrant object, hence preserves weak equivalences
between cofibrant objects in that case.

To make this a projective cofibrant resolution we further pull back along the Bousfield-Kan fat simplex
projection ∆→ ∆ with ∆ := N(∆/(−)) to obtain∫ [k]∈∆

∆[k] · (QBGch)k
'→
∫ [k]∈∆

∆[k] · (QBGch)k
'→ BGch ,

which is a weak equivalence again due to the left Quillen bifunctor property of
∫∆

(−) · (−), now applied
with the second argument fixed, and the fact that ∆→ ∆ is a weak equivalence between cofibrant objects in
[∆, sSet]Reedy. (This is the Bousfield-Kan map). Finally, that this is indeed cofibrant in [CartSpop, sSet]proj

follows from

1. the fact that the Reedy cofibrant (QBGch)• is also cofibrant in [∆op, [CartSpop, sSet]proj]inj;

2. the left Quillen bifunctor property of∫ ∆

: [∆, sSetQuillen]proj×[∆op, [FormalSmoothCartSpop, sSet]proj]inj → [FormalSmoothCartSpop, sSet]proj ;

3. the fact that the fat simplex is cofibrant in [∆, sSet]proj.
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The central point so far is that in order to obtain a projective cofibrant resolution of BGch we may form
a compatible degreewise projective cofibrant resolution but then need to form not just the naive diagonal∫∆

∆[−] · (−) but the fattened diagonal
∫∆

∆[−] · (−). In the remainder of the proof we observe that for
computing the left derived functor of O, the fattened diagonal is not necessary after all.

For that observe that the functor

[∆op,O] : [∆op, [FormalSmoothCartSpop, sSet]proj,loc]→ [∆op, (SmoothAlg∆)op]

preserves Reedy cofibrant objects, because the left Quillen functor O preserves colimits and cofibrations
and hence the property that the morphisms LkX → Xk out of latching objects lim

−→s+→k
Xs are cofibrations.

Therefore we may again apply the Bousfield-Kan map after application of O to find that there is a weak
equivalence

(LO)(BGch) '
∫ [k]∈∆

∆[k] · O((QBGch)k) '
∫ [k]∈∆

∆[k] · O((QBGch)k)

in (SmoothAlg∆)op to the object where the fat simplex is replaced back with the ordinary simplex. Therefore
by prop. 6.5.44 the R-cohomology that we are after is equivalently computed as the cochain cohomology of
the image under the left adjoint

(N•)opUop : (SmoothAlg∆)op → (Ch•)op

(where U : SmoothAlg∆ → Ab∆ is the forgetful functor) of∫ [k]∈∆

∆[k] · O(QBGch)k ∈ (SmoothAlg∆)op ,

which is

(N•)op

∫ [k]∈∆

∆[k] · UopO((QBGch)k) ∈ (Ch•)op ,

Notice that

1. for S•,• a bisimplicial abelian group we have that the coend
∫ [k]∈∆

∆[k] ·S•,k ∈ (Ab∆)op is isomorphic
to the diagonal simplicial abelian group and that forming diagonals of bisimplicial abelian groups sends
degreewise weak equivalences to weak equivalences;

2. the Eilenberg-Zilber theorem asserts that the cochain complex of the diagonal is the total complex of
the cochain bicomplex: N•diagS•,• ' totC•(S•,•);

3. the complex N•O(QBGch)k) – being the correct derived hom-space between G×k and R – is related
by a zig-zag of weak equivalences to Γ(G×k , I(k)), where I(k) is an injective resolution of the sheaf of
abelian groups R

Therefore finally we have
Hn

FormalSmooth(G,R) ' Hn
cochainTotΓ(G×• , I•• ) .

On the right this is manifestly Hn
Segal(G,R), as observed in [Bry00]. �

Corollary 6.5.46. For G a compact Lie group we have for n ≥ 1 that

Hn
FormalSmooth∞Grpd(G,U(1)) ' Hn

Smooth∞Grpd(G,U(1)) ' Hn+1
Top (BG,Z) .

Proof. For G compact we have, by [Blan85], that Hn
Segal(G,R) ' 0. The claim then follows with prop.

6.5.45 and theorem 6.4.38 applied to the long exact sequence in cohomology induced by the short exact
sequence Z→ R→ R/Z = U(1). �
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6.5.3.3 ∞-Lie algebroid cohomology We discuss the intrinsic cohomology, 5.1.10, of∞-Lie algebroids,
6.5.2, in FormalSmooth∞Grpd.

Proposition 6.5.47. Let a ∈ L∞Algd be an L∞-algebroid. Then its intrinsic real cohomoloogy in FormalSmooth∞Grpd

Hn(a,R) := π0FormalSmooth∞Grpd(a,BnR)

coincides with its ordinary L∞-algebroid cohomology: the cochain cohomology of its Chevalley-Eilenberg
algebra

Hn(a,R) ' Hn(CE(a)) .

Proof. By prop. 6.5.44 we have that

Hn(a,R) ' HnN•(LO)(i(a)) .

By lemma 6.5.27 this is

· · · ' HnN•

(∫ [k]∈∆

∆[k] · O(i(a)k)

)
.

Observe that O(a)• is cofibrant in the Reedy model structure [∆op, (SmoothAlg∆
proj)

op]Reedy relative to the
opposite of the projective model structure on cosimplicial algebras: the map from the latching object in
degree n in SmoothAlg∆)op is dually in SmoothAlg ↪→ SmoothAlg∆ the projection

⊕ni=0CE(a)i ⊗ ∧iRn → ⊕n−1
i=0 CE(a)i ⊗ ∧iRn

hence is a surjection, hence a fibration in SmoothAlg∆
proj and therefore indeed a cofibration in (SmoothAlg∆

proj)
op.

Therefore using the Quillen bifunctor property of the coend over the tensoring in reverse to lemma 6.5.27
the above is equivalent to

· · · ' HnN•

(∫ [k]∈∆

∆[k] · O(i(a)k)

)
with the fat simplex replaced again by the ordinary simplex. But in brackets this is now by definition the
image under the monoidal Dold-Kan correspondence of the Chevalley-Eilenberg algebra

· · · ' Hn(N•ΞCE(a)) .

By the Dold-Kan correspondence we have hence

· · · ' Hn(CE(a)) .

�

Remark 6.5.48. It follows that an intrinsically defined degree-n R-cocycle on a is indeed presented by a
morphism in L∞Algd

µ : a→ bnR ,

as in def. 6.4.127. Notice that if a = bg is the delooping of an L∞- algebra g this is equivalently a morphism
of L∞-algebras

µ : g→ bn−1R .
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6.5.3.4 Extensions of L∞-algebroids We discuss the general notion of extensions of cohesive ∞-
groups, 5.1.18, for infinitesimal objects in FormalSmooth∞Grpd: extensions of L∞-algebras, def. 6.5.17.

Proposition 6.5.49. Let µ : bg → bn+1R be an (n + 1)-cocycle on an L∞-algebra g. Then under the
embedding of def. 6.5.26 the L∞-algebra gµ of def. 6.4.133 is the extension classified by µ, according to the
general definition 5.1.302.

Proof. We need to show that
bgµ → g

µ→ bn+1R

is a fiber sequence in FormalSmooth∞Grpd. By prop. 6.4.138 this sits in a pullback diagram of L∞-algebras
(connected L∞-algebroids)

bgµ //

��

ebnR

��
bg

µ // bn+1R

.

By prop. 6.5.25 this pullback is preserved by the embedding into [FormalSmoothCartSpop, sSet]proj. Here
the right vertical morphism is found to be a fibration replacement of the point inclusion ∗ → bn+1R. By the
discussion in 5.1.1.2.1 this identifies bgµ as the homotopy fiber of µ. �

6.5.4 Infinitesimal path groupoid and de Rham spaces

We discuss the intrinsic notion of infinitesimal geometric paths in objects in a ∞-topos of infinitesimal
cohesion, 5.3.1, realized in FormalSmooth∞Grpd.

Observation 6.5.50. For U×D ∈ SmoothCartSpnInfinSmoothLoc = FormalSmoothCartSp ↪→ FormalSmooth∞Grpd
we have that

<(U ×D) ' U

is the reduced smooth locus: the formal dual of the smooth algebra obtained by quotienting out all nilpotent
elements in the smooth algebra C∞(K ×D) ' C∞(K)⊗ C∞(D).

Proof. By the model category presentation of < = LLani◦Ri∗ of the proof of prop. 6.5.11 and using that
every representable is cofibrant and fibrant in the local projective model structure on simplicial presheaves
we have

<(U ×D) ' (LLani)(Ri∗)(U ×D)

' (LLani)i
∗(U ×D)

' (LLani)U

' LaniU

' U

,

where we are using again that i is a full and faithful functor. �

Corollary 6.5.51. For X ∈ SmoothAlgop → FormalSmooth∞Grpd a smooth locus, we have that =(X) is
the corresponding de Rham space, the object characterized by

FormalSmooth∞Grpd(U ×D,=(X)) ' SmoothAlgop(U,X) .
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Proof. By the (< a =)-adjunction relation we have

FormalSmooth∞Grpd(U ×D,=(X)) ' FormalSmooth∞Grpd(<(U ×D), X)

' FormalSmooth∞Grpd(U,X)
.

�

6.5.5 Local diffeomorphism

We discuss the general concept of local diffeomorphisms, 5.3.3, realized in the differential ∞-topos i :
Smooth∞Grpd ↪→ FormalSmooth∞Grpd. given by prop. 6.5.11.

We will write i : H ↪→ Hth for short.

Proposition 6.5.52. A morphism f : X → Y in FormalSmooth∞Grpd is a local diffeomorphism in
the general sense of def. 5.3.19 precisely if for all infinitesimall thickened points D ∈ InfSmoothLoc ↪→
FormalSmooth∞Grpd the canonical diagrams

[D,X]
[D,f ] //

��

[D,Y ]

��
X

f // Y

(given by applying the internam hom [−,−] in the first argument to the unique point inclusio ∗ → D and in
the second to f) are ∞-pullbacks under i∗.

Proof. The defining ∞-pullback diagram of def. 5.3.19 induces and is detected by ∞-pullback diagrams
for all U ×D ∈ FormalSmoothCartSp of the form

Hth(U ×D,X)

��

// Hth(U ×D,Y )

��
Hth(U ×D, i∗i∗X) // Hth(U ×D, i∗i∗Y )

.

By the ∞-Yoneda lemma, the (i∗ a i∗)-adjunction, the definition of i and the formula for the internal hom,
this is equivalent to the diagram

H(U, i∗[D,X])

��

// H(U, i∗[D,Y ])

��
H(U, i∗X) // H(U, i∗Y )

being an ∞-pullback for all U ∈ CartSp. By one more application of the ∞-Yoneda lemma this is the
statement to be proven. �

Remark 6.5.53. Since i∗ is right adjoint and hence preserves ∞-pullbacks, it is sufficient for a morphism
f ∈ FormalSmooth∞Grpd to be formally étale that

[D,X]
[D,f ] //

��

[D,Y ]

��
X

f // Y
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is an ∞-pullback in FormalSmooth∞Grpd. In this form, when restricted to 0-truncated objects, formally
étale morphisms are axiomatized in [Kock06], around p. 82, in a topos for synthetic differential geometry,
such as the Cahier topos τ≤0FormalSmooth∞Grpd ' Sh(CartSp) considered here.

We now discuss in more detail the special case of formally étale maps between objects that are presented
by simplicial smooth manifolds.

Proposition 6.5.54. Consider an object X ∈ Smooth∞Grpd and a presentation by a simplicial smooth
manifold X• (which always exists by prop. 3.1.22) under the canonical inclusion X• ∈ SmoothMfd∆op

↪→
[SmoothCartSpop, sSet] −→ FormalSmooth∞Grpd. Then i!X is presented by the same simplicial smooth
manifold, under the canonical inclusion

X• ∈ SmoothMfd∆op

↪→ [FormalSmoothCartSpop, sSet] −→ FormalSmooth∞Grpd .

Proof. By prop. 6.4.9 and prop. 6.5.10 we may equivalently work over the sites of all smooth manifolds
and formal smooth manifolds (instead of just over Cartesian spaces and formal Cartesian spaces). Since
the canonical inclusion SmoothManifold ↪→ FormalSmoothManifold is still an infinitesimal neighbourhood
inclusion of sites, the construction of i! is still verbatim as in the proof of prop. 6.5.11. This gives the
statement in question for simplicially constant simplicial manifolds.

By prop. 5.1.17, after regarding X• as a simplicial presheaf, it is a specific realization of the ho-
motopy colimit over the simplicial diagram which is X• regarded as a functor ∆op → SmoothMfd ↪→
[SmoothMfdop, sSet]. Since i! is left adjoint it may be taken inside this homotopy colimit, and so the general
claim follows with the previous statement. �

Proposition 6.5.55. Let f : X → Y be a morphism in SmoothMfd, a smooth function between finite
dimensional paracompact smooth manifolds, regarded, by cor. 6.4.10, as a morphism in Smooth∞Grpd.
Then

• f is a submersion ⇔ f is formally i-smooth;

• f is a local diffeomorphism ⇔ f is formally i-étale;

• f is an immersion ⇔ f is formally i-unramified;

where on the left we have the traditional notions, and on the right those of def. 5.3.16.

Proof. By lemma 6.5.54 the canonical diagram

i!X
i!f //

��

i!Y

��
i∗X

i∗f // i∗Y

in FormalSmooth∞Grpd is presented in [FormalSmoothCartSpop, sSet]proj,loc by the diagram of presheaves

U ×D 7→

FSmthMfd(U ×D,X)
FSmthMfd(U×D,f) //

��

FSmthMfd(U ×D,Y )

��
FSmthMfd(U,X)

FSmthMfd(U,f) // FSmthMfd(U, Y )

,

where FSmthMfd is the category of formal smooth manifolds from def. 6.5.9, U is an ordinary smooth
manifold and D an infinitesimal smooth loci, def. 6.5.5.

744



Consider this first for the case that D := D ↪→ R is the first order infinitesimal neighbourhood of the origin
in the real line. Restricted to this case the above diagram of presheaves is that represented on SmoothMfd
by the diagram of smooth manifolds

TX
df //

��

TY

��
X

f // Y

,

where on the top we have the tangent bundles of X and Y and the differential of f mapping between them.
Since pullbacks of presheaves are computed objectwise, f being formally smooth/étale/unramified implies

that the canonical morphism
TX → X ×Y TY = f∗TY

is an epi-/iso-/mono-morphism, respectively. This by definition means that f is a submersion/local diffeo-
morphism/immersion, respectively.

Conversely, by the inverse function theorem for differentiable functions, f being a submersion means that
it is locally a projection, f being a local isomorphism means that it is in particular étale, and f being an
immersion means that it is locally an embedding, hence that the infinitesimal extension in each case extends
to an extension of germs, hence in particular to an extension by infinitesimals of any order. This implies
once it holds for first-order infinitesimal D then also for D any other infinitesimal smooth locus, (so that
[D,X], [D,Y ] are bundles of possibly higher order formal curves) the morphism

[D,X]→ X ×Y [D,Y ]

is an epi-/iso-/mono-morphism, respectively. �

6.5.6 Manifolds and étale groupoids

We discuss the general concept of manifolds and étale groupoids in a differential ∞-topos, 5.3.10, realized

in Smooth∞Grpd
i
↪→ FormalSmooth∞Grpd.

Lemma 6.5.56. Let Rn ∈ SmoothMfd ↪→ Smooth∞Grpd be the n-dimensional Cartesian space, for n ∈ N.
Then any morphism into Rn which is both a formally étale morhism, def. 5.3.16, and a 1-monomorphisms,
def. 5.1.58

U �
�

(−> // Rn

exhibits the inclusion of its domain as an open subset of Rn.

Proof. Since the morphism is a monomorphism, U is 0-truncated, def. 5.1.47, and its points are included
as a subset of the points of Rn. Since it is formally étale, with every point also an open neighbourhood of
that point in Rn is contained in U , for otherwise not all tangent vectors in Rn would be represented by
curves in U . �

Corollary 6.5.57. A 0-truncated object X ∈ H is a Rn-manifold in the sense of def. 5.3.88 precisely if it
is an n-dimensional smooth manifold in the traditional sense.

Definition 6.5.58. Call a simplicial smooth manifold X ∈ SmoothMfd∆op

an étale simplicial smooth man-
ifold if it is fibrant as an object of [CartSpop, sSet]proj and if moreover all face and degeneracy morphisms
are local diffeomorphisms.

Example 6.5.59. The nerve of an étale Lie groupoid in the traditional sense is an étale simplicial smooth
manifold, see for instance [MoPr97, Carc12].
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Proposition 6.5.60. Let X ∈ FormalSmooth∞Grpd be presented by by an étale simplicial manifold, def.
6.5.58, via the map

X• ∈ SmoothMfd∆op

−→ Smooth∞Grpd
i!
↪→ FormalSmooth∞Grpd .

Then every ordinary open cover {
Rn Ui

� � //? _oo X0

}
i∈I

of the manifold X0 by open subsets of Cartesian spaces induces a correspondence in FormalSmooth∞Grpd∐
i∈I
Ui

et

}}
et
!! !!

// X0

��
Rn X

which exhibits X as an Rn-manifold according to def. 5.3.86.

Proof. It is clear that the right map ∐
i

Ui −→ X0 −→ X ,

is a 1-epimorphism: being the canonical atlas of X as presented by X• according to remark 5.1.78, further
covered by

∐
i Ui.

Moreover, for each i ∈ I the maps Rn ← Ui → X0 are local diffeomorphisms in the abstract sense, since
they are so in the traditional sense and by prop. 6.5.55. Then with prop. 5.3.30 also

∐
i Ui → X is a local

diffeomorphism.
Hence it remains to see that X0 → X is a local diffeomorphism. For that we need to check that i!X0

is the ∞-pullback i∗X0 ×i∗X i!X. By prop. 5.1.9, lemma 6.5.54 and prop. 5.1.82 it is sufficient to show
for the décalage replacement Dec0X → X of the atlas, that i!Dec0X is the ordinary pullback of simplicial
presheaves (i∗Dec0X) ×i∗X i!X. Since pullbacks of simplicial presheaves are computed degreewise, this is
the case by prop. 6.5.55 if for all n ∈ N the morphism (Dec0X)n → Xn is an étale morphism of smooth
manifolds, in the traditional sense. By prop. 5.1.81 this morphism is the face map dn+1 of X. This is indeed
étale by the very assumption that X is an étale simplicial smooth manifold. �

6.5.7 Infinitesimal extension and modules

We discuss the general concept of infinitesimal extensions and modules from 5.3.5 realized in FormalSmooth∞Grpd.

Example 6.5.61. Consider a smooth manifold X and those of its infinitesimal extensions

E

��
X

which are representable in that E is formally dual to the smooth C∞(E) = C∞(X) ⊕N for N a nilpotent
ideal over C∞(X). If already N ·N = 0 then C∞(E) is the square-0 extension of C∞(X) induced from the
module N .

These maps E → X are manifestly =-equivalences hence define object in InfExt(X) according to def.
5.3.42.

746



A morphism between two such objects in InfExt(X) is a commuting diagram of smooth algebras of the
form

C∞(X)

ww ''
C∞(X)⊕N1

//

''

C∞(X)⊕N2

ww
C∞(X)

where the vertical maps are the canonical inclusions and projections, respectively. For square-0 extensions
this is equivalently a homomorphism of C∞(X)-modules N1 −→ N2.

In this fashion Mod(X) faithfully contains the ordinary category of module bundles over X.

Proposition 6.5.62. For C∞(X)-modules E1, E2, the ordinary tensor product E1 ⊗C∞(X) E2 coincides
with the smash tensor product in InfExt(X), def. ?? under the embedding Ei 7→ C∞(X) ⊕ Ni of example
6.5.61:

C∞ (E1 ∧X E2) ' C∞(X)⊕ (N1 ⊗N2) .

Proof. We have
C∞(E1 ×X E2) = (C∞ (X)⊕N1)

∐
C∞(X)

(C∞ (X)⊕N2)

' C∞(X)⊕ (N1 ⊕N2)⊕ (N1 ⊗N2)

and
C∞(E1

∐
X

E2) = (C∞ (X)⊕N1)×C∞(X) (C∞ (X)⊕N2)

' C∞(X)⊕ (N1 ⊕N2)

.

With this the claim follows. �

6.5.8 Cartan geometry

We discuss the realization of the abstract formalization of Cartan geometry, 5.3.12, implemented in Smooth∞Grpd.

A Cartan connection on a smooth manifold is a principal connection subject to an extra constraint that
identifies a component of the connection at each point with the tangent space of the base manifold at that
point. The archetypical application of this notion is to the formulation of the field theory of gravity, 7.1.7.1.

Consider an inclusion of Lie groups H ↪→ G. Write h ↪→ g for the induced inclusion of Lie algebras.
The traditional definition of a Cartan geometry is this:

Definition 6.5.63. A (H ↪→ G)-Cartan connection on a smooth manifold X is

1. a G-principal connection ∇ on X

2. equipped with a reduction of its structure group along H ↪→ G

such that

• Cartan condition: at each point x ∈ X and for each local trivialization around that point, the
induced map

TxX
∇−→ g −→ g/h

is a linear isomorphism.
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Remark 6.5.64. Depending on which model one uses for describing principal connections, def 6.5.63,
translates to the following component descriptions

1. In terms of Ehresmann connections One equivalent realization of G-principal connection on a
G-principal bundle P → X is as a g-valued differential form A on P which is suitably G-equivariant
and restricts fiberwise to the Maurer-Cartan form. This description of principal connections is called
Ehresmann connection, due to [Ehre51] (reviewed in [Marle14]). The formalization of Cartan’s original
semi-rigorous ideas [Cart23], and in fact the terminology “Cartan connection”, is also due to [Ehre51].
In this model, def. 6.5.63 says the following [Marle14, def. 4]: a Cartan connection is a G-Ehresmann
connection A on a G-principal bundle P → X together with an H-principal bundle Q → X and a
homomorphism of H-bundles i : Q → P such that ı∗A induces isomorphisms i∗Aq(−) : TqQ ' q for
each point q ∈ Q.

This version of the definition is often stated without mentioning A explicitly, for instance in [Sha97,
section 5.3 def. 3.1] [CaSl09, section 1.5.1]. Beware that A is an Ehresmann principal connection form,
while i∗A is not.

2. In terms of Cech cocycle data Alternatively, a G-principal connection is equivalently a Cech 1-
cocycle given by a choice of cover U :=

∐
i Ui → X, a choice of g-valued 1-form A on U , a choice of

smooth G-valued functions g on double intersections U ×X U such that

(a) Aj = g−1
ij (Ai + d)gij on Ui ∩ Uj

(b) gijgjk = gik on Ui ∩ Uj ∩ Uk.

In terms of this def. 6.5.63 says that an (H ↪→ G)-Cartan connection is just this kind of data, but with
the G-valued functions restricted to H-valued functions. and such that

TxUi
Ai−→ g→ g/h

is a linear isomorphism. In this form the definition appears in [Sha97, section 5.1 def. 1.3 section 5.2]
and [CaSl09, section 1.5.4]

Definition 6.5.65. Given an (H
i→ G)-Cartan connection (∇,∇X), def. 6.5.63, then its torsion is the

projection of the curvature F∇ under g→ g/h.

Hence if U // // X is a cover of the base manifold X over which the underlying G-principal bundle is
trivialized (here U may be the total space of the G-principal bundle if one sticks with Ehresmann connections)
such that the curvature F∇ is represented by a 2-form

ω ∈ Ω2(U , g)

then the 2-form τ representing the torsion is the projection of that

τ := coim(i∗)(ω) ∈ Ω2(U , g/h) .

6.5.9 Definite forms

We discuss the implementation of the general abstract concept of definite forms 5.3.13 implented in FormalSmooth∞Grpd.

6.5.9.1 G2-Manifolds Consider on V = R7 the associative 3-form φ. This is equivalently a morphism
of the form

φ : R7 −→ Ω3
cl

and we might decide to use this in place of a WZW term. Then of course the stabilizer group of its restriction
to the infinitesimal disk is the exceptional Lie group G2

StabGL(R7)(φ) = G2 .

First consider the following traditional phenomenon.
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Definition 6.5.66. For X a smooth 7-manifold, then a 3-form σ ∈ Ω3(X), is definite if over any trivializing
atlas U → X for the frame bundle we have

σ|U = φabcE
a ∧ Eb ∧ Ec ,

where the right hand denotes the contraction of the components of the associative 3-form φ ∈ Ω3(R7) with
the vielbein field E ∈ Ω1(U,R7) that corresponds to the local trivialization.

Proposition 6.5.67. For X a smooth manifold, then a G2-structure on X, def. ??, is equivalently a definite
3-form, def. 6.5.66.

Proof. This is immediate and standard , but we spell out the construction of the first statement for
comparison with the general abstract theorems.

There exists a universal vielbein field Eu ∈ Ω1(Fr(X),R7) on the frame bundle, such that E is the pullback
of this along the given trivializing section. This means that φabcE

a ∧ Eb ∧ Ec ∈ Ω3(U) descends to/comes
from a 3-form on X precisely if the transition function g : U ×X U → GL(7) of the local trivialization
preserves it. But via the nature of the universal vielbein this transition function relates the vielbein fields as

p∗2E = g · (p∗1E)

and so it preserves the 3-form on U precisely if the transition function g preserves φ, hence precisely if it
takes values in G2 ↪→ O(7) ↪→ GL(7). �
Now we observe that this is a special case of the general theory in higher differential cohesive geometry. Let

H = FormalSmooth∞Grpds be the model of higher differential cohesive geometry constructed in 6.5. By
the discussion in 1.2.3, a smooth 3-form on a smooth 7-manifold X is equivalently a morphism σ : X −→ Ω3

in this H.

Proposition 6.5.68. The 3-form σ is definite in the traditional sense of prop. 6.5.66 precisely if σ : X → Ω3

is definite on φ according to def. 5.3.120.

Proof. The key fact to observe is that a homotopy

∗

φ
��

U

����

88

Ω3(D7)

��
X

σ // Ω3(D7)//GL(7)

'
v~

is equivalently the choice of Ea in def. 6.5.66. �

Hence we get a first order infinitesimal globalization of φ to a 7-manifold as

[relU

et

!!
et

||
R7

φ !!

X

σ}}
Ω3

cl

corresponds to torsion-free G2-structure on X hence to G2-manifold structure on X.
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6.5.10 Partial differential equations

We discuss the realization of the general abstract concept of PDEs according to section 5.3.9 in formal
smooth homotopy types.

We discuss how the category PDEΣ (theorem 1.3.12) of partial differential equations on sections of smooth
bundles sits inside a homotopy theory (an ∞-category) PDEΣ(H) that contains complexes of sheaves over
PDEΣ, as well as PDEs on sections of stacky bundles. This is used below in 6.5.11 to construct Euler-
Lagrange p-gerbes, which constitute globally defined prequantum local Lagrangian field theories. Moreover,
considering such EL p-gerbes on genuinely stacky bundles means to consider such prequantum local La-
grangian theories with gauge symmetries and higher gauge symmetries-of-symmetries.

Definition 6.5.69. Write SmoothCartSp for the category of smooth manifolds of the form Rn, for n ∈ N,
regarded as a site with the standard coverage by open covers. Similarly, write FormalSmoothCartSp for the
site of formal Cartesian spaces. This is the full subcategory

FormalSmoothCartSp ↪→ CAlgop
R

of that of commutative R-algebras on those of the form C∞(Rn)⊗C∞(D), where C∞(Rn) is the algebra of
smooth functions on Rn for any n ∈ N, and where C∞(D) ' R ⊕ V with V nilpotent. We regard this as a

site by taking the coverings to be of the form {Ui×D (φi,id)−→ X×D}, for {Ui
φi−→ X} an ordinary open cover.

We consider now the sheaf toposes and ∞-toposes over these sites (??).

Definition 6.5.70. Write
SmoothSet := Sh(SmoothCartSp)

for the sheaf topos over the site of smooth manifolds from def. 6.5.69. Write

Smooth∞Grpd := Sh∞(SmoothCartSp)

for the homotopy theory of simplicial sheaves over this site. Similarly, write

FormalSmoothSet := Sh(FormalSmoothCartSp)

and
FormalSmooth∞Grpd := Sh∞(FormalSmoothCartSp)

Proposition 6.5.71. There is a system of fully faithful inclusions of categories and ∞-categories of spaces
as follows

Set �
� //� _

��

∞Grpd� _

��
SmoothMfd� _

ι

��

� � // SmoothMfd �
� // SmoothSet� _

ι!

��

� � // Smooth∞Grpd� _

ι!

��

=: H<

ι!

��
FormalSmoothMfd

� � // FormalSmoothSet
� � // FormalSmooth∞Grpd =: H

Moreover, the canonical embedding of the category of smooth Cartesian spaces into that of formal smooth
Cartesian spaces is coreflective, i.e. it has a right adjoint (given by forgetting the infinitesimal thickening)

SmoothCartSp
� � ι //oo FormalSmoothCartSp .
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This adjoint pair induces an adjoint quadruple of functors and compatibly of ∞-functors

SmoothSet� _

��

OO

τ0

� � ι! //
oo ι∗� �

ι∗ //
oo

ι!

FormalSmoothSet� _

��

OO

τ0

Smooth∞Grpd

� � ι! //
oo ι∗� �

ι∗ //
oo

ι!

FormalSmooth∞Grpd

.

Definition 6.5.72. We write
(< a =) := (ι! ◦ ι∗ a ι∗ ◦ ι∗) : H −→ H

for the induced adjoint pair of an ∞-comonad < and ∞-monad = acting on H.

Example 6.5.73. For X × D ∈ H represented by a formal smooth manifold, then <(X × D) ' X, hence
< is the operation of reduction of infinitesimal thickening. Accordingly, by adjointness, a space of the form
=X is characterized by the property that probing it by any formal smooth manifold is equivalent to probing
it just by the underlying reduced manifold

U × D −→ =X
U −→ X

.

Hence =X may be thought of as obtained from X by “identifying all infinitesimal close points”. From this
perspective the adjunction unit

ηΣ : Σ −→ =Σ

has the interpretation of sending all infinitesimal neighbours of a global point x : ∗ → X to that global point.

Proposition 6.5.74. For all Σ ∈ H, the =-unit is an epimorphism

ηΣ : Σ // // =Σ .

Proof. We need to check that ηΣ becomes a surjection of sets of connected components of stalk ∞-
groupoids. But in fact for any simplicial presheaf representing Σ, ηΣ is already an epimorphism in simplicial
degree 0 over all objects in the site FormalSmoothMfd, by example 6.5.73. This implies the claim.

Corollary 6.5.75. For all Σ ∈ H, pullback along the =-unit

(ηΣ)∗ : H/=Σ −→ H/Σ

is a conservative functor, def. ??.

Proof. By using prop. 6.5.74 in prop. ??.

Definition 6.5.76. For any Σ ∈ H, write

(T∞Σ a J∞Σ ) := ((ηΣ)∗ ◦ (ηΣ)! a (ηΣ)∗(ηΣ)∗) : H/=Σ −→ H/=Σ

for the adjoint pair of a monad and comonad that is induced, via example ??, from the base change adjoint
triple, def. ?? along the unit ηΣ of the monad =, def. 6.5.72.

Proposition 6.5.77. For Σ ∈ SmoothMfd ↪→ H, the comonad J∞Σ of def. 6.5.76 restricts to pro-finite
dimensional smooth bundles along the canonical inclusion

SmoothMfd↓Σ ↪→ H/Σ

and coincides there with the jet comonad 1.3.8 of prop. 1.3.8.
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Proof. It is straightforward to analyze the action of the left adjoint T∞Σ : (ηΣ)∗ ◦ (ηΣ)!. One finds that
this sends any open U ↪→ Σ to the infinitesimal disk bundle T∞U . By adjunction it follows that the sections
U → J∞E over Σ are equivalently maps T∞U → E over Σ. These pick over each point σ ∈ U ↪→ Σ a
section of E over the infinitesimal neighbourhood Dσ, hence a jet at that point.

By theorem 1.3.12 this means that the coalgebras of J∞Σ whose underlying objects are in SmoothMfd↓Σ ↪→
H/Σ form the category of partial differential equations with free variables in Σ. In the present context it
makes sense and is convenient to slightly generalize this traditional category by allowing the solution bundles
to these differential equations to be not just smooth manifolds, but formal smooth manifolds.

Proposition 6.5.78. For every Σ ∈ FormalSmoothSet, there is an equivalence of categories between the
category of coalgebras, def. ?? of the jet comonad J∞Σ on formal smooth sets, and the slice category of formal
smooth sets over Σ:

EM(J∞Σ |FormalSmoothSet) ' FormalSmoothSet/=Σ .

Proof. Via prop. 6.5.74 this follows from comonadic descent, prop. ??.
From this we get the following refinement of the classical situation summarized in remark 1.3.14.

Corollary 6.5.79. For Σ ∈ SmoothMfd ↪→ FormalSmoothSet, there are canonical inclusions of categories

DiffOpΣ ↪→ PDEΣ ↪→ FormalSmoothSet/=Σ .

Here:

1. PDEΣ is equivalently the preimage under (ηΣ)∗ of the category of pro-finite dimensional smooth bundles
over Σ:

FormalSmoothMfd↓Σ� _

��

oo U

F
// PDEΣ ' ((ηΣ)∗)−1(FormalSmoothMfd↓Σ)� _

��
FormalSmoothSet/Σ

oo (ηΣ)∗

(ηΣ)∗

// FormalSmoothSet/=Σ

2. the total inclusion of the category DiffOpΣ of bundles and differential operators over Σ is equivalently
the full subcategory of FormalSmoothSet/=Σ on the objects in the direct image of the base change along
the counit of the jet comonad

FormalSmoothMfd↓Σ ↪→ FormalSmoothSet/Σ
(ηΣ)∗−→ FormalSmoothSet/=Σ .

Proof. By theorem 1.3.12, proposition 6.5.78 and prop. 1.3.9.
The analog of proposition 6.5.78 still holds for the full ∞-category

Proposition 6.5.80. For any Σ ∈ SmoothMfd ↪→ H there is an equivalence of ∞-categories between that
of ∞-coalgebras over the jet ∞-comonad over Σ, and the slice over =Σ:

EM(J∞Σ ) ' H/=Σ .

Proof. Via prop. 6.5.74 this follows from ∞-comonadic descent, prop. ??.

Remark 6.5.81. In view of theorem 1.3.12 we may think for any Σ ∈ SmoothMfd ↪→ H of an ∞-coalgebra
over J∞Σ : HΣ → H/Σ as a higher stacky partial differential equation with variables in Σ. Hence we also
write

PDEΣ(H) := EM(J∞Σ ) .

We connect now the traditional theory of PDEs to that of homotopy PDEs by establishing how the latter
is presented by homotopy colimits of the former.
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Lemma 6.5.82. Let K ∈ FormalSmoothMfd and f : K −→ =Σ a morphism in FormalSmoothSet. Then
the pullback (ηΣ)∗K is still in FormalSmoothMfd ↪→ FormalSmoothSet.

Proof. We may check this on a local chart U of K. For this the pullback is U × Dp+1, where Dp+1 is
the formal disk in Σ.

Definition 6.5.83. Hence by corollary 6.5.79 there is a canonical subcategory inclusion

FormalSmoothMfd/=Σ ↪→ PDEΣ .

We consider PDEΣ as equipped with the pre-topology that makes this the inclusion of a dense subsite, hence
we consider a presheaf on PDEΣ to be a sheaf if its restriction along this site inclusion is.

Proposition 6.5.84. For any Σ ∈ H, a small site of definition for the ∞-topos PDEΣ(H) is given by the
comma-category FormalSmoothCartSp/=Σ equipped with the coverage that regards a collection of morphisms
over =Σ as covering if they are covering in FormalSmoothCartSp after forgetting the maps to =Σ. Similarly
a large site of definition is given by the slice category FormalSmoothSet/=Σ

PDEΣ(H) ' Sh∞(FormalSmoothCartSp/=Σ) ' Sh∞(FormalSmoothSet/=Σ) .

Proof. See the proof in the nLab entry on slice ∞-toposes.
We now have the following homotopy theoretic version of the classical situation in remark 1.3.14.

Proposition 6.5.85. We have

HOO

'

Σ∗ // H/ΣOO
'

oo U

F
// PDEΣ(H)

OO

'

Sh∞(FormalSmoothMfd)
(Σ!)

∗'(Σ∗)! // Sh∞(FormalSmoothMfd/Σ)
oo U!

U∗'F!
// Sh∞(PDEΣ)

We discuss a canonical lift of ordinary differential cohomology from H to PDEΣ(H). We show that the
classical Euler-Lagrange complex, def. 1.3.34, is what provides a well-adapted Hodge filtration on constant
real coefficients in this case.

But first recall the standard Poincaré lemma in its stacky incarnation (where DK denotes the Dold-Kan
correspondence, prop. ??).

Definition 6.5.86. Write
[Bp+2R ' Bp+2[R := DK(R[p+ 2]) ∈ H

and
Ω•≤p+2

dR,cl := DK(Ω0 d→ Ω1 d→ · · · → Ωp+2
cl ) ∈ H .

Proposition 6.5.87 (Poincaré lemma). The canonical inclusion of chain complexes induces an equivalence

Bp+2[R '−→ Ω•≤p+2
dR,cl

in H.

Proof. A map of sheaves of chain complexes is such an equivalence if when evaluated on any object in
the site, there is a covering of that object such that when pulled back to any member of the covering, the
morphism becomes a quasi-isomorphism of chain complexes. Here we may cover any manifold by a good
open cover whose elements are diffeomorphic to a Cartesian space Rn, and the traditional statement of the
Poincaré lemma then gives that all closed elements in Ω•≥1

dR (Rn) are exact, hence that the cohomology of
Ω•(Rn) is concentrated in degree 0 on Ω0

dR(Rn)cl ' R, hence that the canonical inclusion of this cohomology
group is a quasi-isomorphism.
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The Poincaré lemma, prop. 6.5.87, induces a filtration on [Bp+2R. In the complex-analytic case this is
called the Hodge filtration, and so we will just call it that here, too.

Definition 6.5.88. The Hodge filtration induces a morphism

Ωp+2
cl −→ [Bp+2R

in H.

This induces ordinary differential cohomology:

Proposition 6.5.89. There is a homotopy exact hexagon in Stab(H) of the form

Ω•≤p+1 ddR //

((

Ωp+2
cl

$$
[BpR

&&

88

Bp+1(R/~Z)conn

''

curv

77

[Bp+2R

[Bp+1(R/~Z)
β

//

66

Bp+2Z

::

where the top right morphism is that of def. 6.5.88.

Proof. The general structure is amplified in [BNV13]; a detailed derivation for this case of ordinary
differential cohomology is in the nLab entry on the Deligne complex.

Next we consider cohomology in PDEΣ(H) with coefficients in objects of H that are canonically lifted
as follows:

Definition 6.5.90. Write

(−)Σ : H
Σ∗−→ H/Σ

F−→ PDEΣ(H) .

Example 6.5.91. The object (Ωk)Σ ∈ PDEΣ(H) modulates differential forms on the underlying bundles
of PDEs.

E −→ (Ωk)Σ =
F (Σ∗(Ωk))

Σ!(U(E)) −→ Ωk

Specifically for cofree PDEs this gives the differential forms on the jet bundle:

(Ωk)Σ(E) ' Ωk(J∞(E)) .

Remark 6.5.92. From example 6.5.91 it follows that sending the heaxgon in prop. 6.5.89 along (−)Σ to
(Bp+1(R/~Z))Σ exhibits ordinary differential cohomology on the underlying bundles of PDEs , in particular
on the jet bundles of cofree PDEs.

However, below in sections 6.5.11 and 6.5.11.2 we are interested in differential cocycles on jet bundles
only via all their pullbacks along sections. By def. 1.3.20 and prop. 1.3.21 is is precisely only the horizontal
component of differential forms which matters under these pullbacks.

This means that the standard Hodge filtration, under prolongation to PDEs, produces differential cocycles
with redundant information.

We now observe that after prolonging to PDEs, there is a different Hodge filtration which accurately
picks the non-redundant horizontal components.
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Definition 6.5.93. By proposition 1.3.36, the functorial construction of Euler-Lagrange complexes, def.
1.3.34 constitutes a presheaf of chain complexes on DiffOpΣ

E 7→ DK[Ω0
H(J∞E)

dH−→ Ω1
H(J∞E)

dH−→ · · · dH−→ Ωp+1
H (J∞E)

δV−→ Ωp+1,1
S (J∞E)cl] .

When regarded in degrees 0 to p+ 2 we denote this by

Ω•≤p+2
ELΣ,cl ∈ PSh(DiffOpΣ,Ch•)

DK−→ PSh∞(DiffOpΣ)
i!−→ Sh∞(PDEΣ) .

Proposition 6.5.94 (variational Poincaré lemma). There is an equivalence

(Bp+2[R)Σ ' Ω•≤p+2
ELΣ,cl

in PDEΣ(H<) between the constant R-coefficients in degree (p + 2) prolonged to homotopy PDEs via def.
6.5.90), and the Euler-Lagrange complex according to def. 6.5.93. .

Proof. By prop.6.5.87 we may equivalently show that

(Ω•≤p+2
dR,cl )Σ ' Ω•≤p+2

ELΣ,cl .

Then by prop. 6.5.85 it is sufficient to show that

U∗((Σ!)
∗(Ω•≤p+2

dR,cl )) ' Ω•≤p+2
ELΣ,cl

in Sh∞(PDEΣ). There is an implicit ∞-sheafification in these expressions, by definition, but since the
precomposition maps (Σ!)

∗ ' (Σ∗)! and U∗ ' F! come from left Quillen functors given by corollary ??, they
commute with the left Bousfield localization that presents this ∞-sheafification. Therefore it is sufficient
that we prove this equivalence already at the level of ∞-presheaves.

Now by adjunction, the presheaf on the left evaluates on a representable F(E) as follows:

Hom(F(E),U∗((Σ!)
∗(Ω•≤p+2

dR,cl ))) ' Hom(U(F(E)), (Σ!)
∗(Ω•≤p+2

dR,cl ))

' Hom(Σ!(U(F(E))),Ω•≤p+2
dR,cl )

' Hom(J∞Σ E,Ω•≤p+2
dR,cl )

' Ω•≤p+2
dR,cl (J∞Σ E)

With this we may reduce to classical statements about the variational bicomplex: Prop. 1.3.16 says that the
functoriality of the above assignment is the same as that in prop. 1.3.36, hence the claim is now given by
theorem 1.3.38.

Definition 6.5.95. The resolution in prop. 6.5.94 induces a morphism

Ωp+1,1
S,cl −→ ([Bp+2R)Σ .

We consider the homotopy pullback of that morphism along the morphism ([Bp+2Z)Σ → ([Bp+2R)Σ

from coefficients for integral cohomology to coefficients for real cohomology.

Definition 6.5.96. For p+ 1 ∈ N write

Bp+1
H (R/Z)conn ∈ Sh∞(DiffOpΣ)

i!−→ Sh∞(PDEΣ) ' PDEΣ(H)

for the ∞-stack which is the image under the Dold-Kan correspondence DK, prop. ??, of the left Kan
extension, def. ??, along the inclusion i : DiffOpΣ ↪→ PDEΣ (remark 1.3.14) of the Euler-Lagrane complex
of def. 6.5.93, directly truncated after the horizontal p + 1-form and with a copy of Z injected into the
horizontal 0-forms:

Bp+1
H (R/Z)conn ' DK[Z 2π~

↪→ Ω0
H

dH−→ Ω1
H

dH−→ · · · dH−→ Ωp+1
H ] .
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Theorem 6.5.97. In Stab(PDEΣ(H<)) there is an exact hexagon of the form

Ω•≤p+1
H

δV //

&& &&

Ωp+1,1
S,cl

""
([Bp+1R)Σ

::

%%

Bp+1
H (R/~Z)conn

curv
::

$$

([Bp+1R)Σ

([Bp+1(R/~Z))Σ
βΣ

//

88

(Bp+2Z)Σ

<<

where the top right morphism is that of def. 6.5.95.

Proof. In view of the variational Poincaré lemma, prop. 6.5.94, we obtain this hexagon in Stab(Sh∞(DiffOpΣ))
from the Euler-Lagrange complex in direct analogy to the corresponding hexagon for the ordinary Deligne
complex, prop. 6.5.89. Sending it by the Yoneda extension Sh∞(DiffOpΣ) → PDEΣ(H) preserves the
homotopy pushouts, hence, by stability, the full homotopy exactness.

Remark 6.5.98. By the universal property of homotopy fibers, the exactness of the right square in the
hexagon in prop. 6.5.97 means in particular that the curving of the Euler-Lagrange p-gerbe is precisely the
obstruction to it being flat, in that the dashed morphism in the following diagram

([Bp+1(R/~Z))Σ

��
E

L //

Lflat

99

Bp+1
H (R/~Z)conn

curv // Ωp+1
S

exists, and then uniquely so up to a contractible space of choices of equivalences, precisely if the horizontal
composite is zero.

Proposition 6.5.99. There are equivalences

PDEΣ(H)(Σ,Bp+1
H (R/~Z)conn)

'−→ PDEΣ(H)(Σ, ([Bp+1(R/~Z))Σ)
'−→ H(Σ, [Bp+1(R/~Z)) .

Proof. The first equivalence is obtained via remark 6.5.98 from the fact that every morphism Σ→ Ωp+1,1
S

is zero. The second equivalence is the combined hom-equivalence of the adjunctions (U a F ) and (Σ! a Σ∗)
in view of def. 6.5.90.

We have a canonical comparison map between ordinary differential cohomology, prop. 6.5.89, prolonged
to PDEs, and the Euler-Lagrange differential cohomology of prop. 6.5.97:

Definition 6.5.100. By example 6.5.91, projection of differential forms on jet bundles to the horizontal
and their source form part, which is natural over DiffOpΣ by prop. 1.3.36, constitutes projection operations
that intertwine the de Rham differential with the variational Euler differential:

(Ω•≤p+1)Σ

����

(ddR)Σ // (Ωp+2
cl )

����
Ω•≤p+1
H

δV // Ωp+1,1
S

.

Via the universal properties of the exactness of the hexagons in prop. 6.5.89 and prop. 6.5.97 this induces
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a projection of differential cohomology coefficients,

(Ω•≤p+1)Σ
ddR //

** **

{{ %%

(Ωp+2
cl )Σ

)) ))

##

Ω•≤p+1
H

δV //

%%

Ωp+1,1
S

""

([Bp+1R)Σ

##

(Bp+1(R/~Z)conn)Σ

curv

99

%%

H
** **

([Bp+2R)Σ

([Bp+1R)Σ

99

%%

Bp+1
H (R/~Z)conn

curv

;;

$$

([Bp+1R)Σ

([Bp+1(R/~Z))Σ
βΣ

//

99

(Bp+2Z)Σ

;;

([Bp+1(R/~Z))Σ
βΣ

//

99

(Bp+2Z)Σ

<<

which we denote
H : (Bp+1(R/~Z)conn)Σ −→ Bp+1(R/~Z)conn .

6.5.11 Prequantum local Lagrangian field theory

This section draws from [KhaSc].
The following is the prequantum analog of def. 1.3.42.

Definition 6.5.101. Given E ∈ H/Σ then

1. a pre-quantum local Lagrangian on E is a morphism in Sh∞(DiffOpΣ) of the form

L : E −→ Bp+1
H (R/Z)conn ,

2. the Euler-Lagrange form of such L is the curvature

EL := δV L : E
L−→ Bp+1

H (R/Z)conn
δV−→ Ωp+1,1

S .

3. the Euler-Lagrange equations of L is the homotopy fiber of EL

E := fib(EL) .

Remark 6.5.102 (terminology). We also say that the pair (E,L) is (or defines) a prequantum field theory.
Given a source form EL : E −→ Ωp+1

S we also say that a prequantum Lagrangian L : E → Bp+1
H (R/~Z)conn

is a prequantization of EL if δV L ' EL, i.e. if L is a lift of EL through the curvature map:

Bp+1
H (R/~Z)conn

curv

��
E

L

99

EL
// Ωp+1

H
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Proposition 6.5.103. For ω ∈ Ωp+1,1
S (E) a source form, then the partial differential equation E induced

by it via def. 1.3.39 is equivalently the kernel in PDEΣ(H) ' Sh∞(PDEΣ) of the representing morphism
ω : E −→ Ωp+1,1

S :

E

ker(ω)

��
E

ω // Ωp+1,1
S

Proof. Since this is a statement about a limit of 0-truncated objects in PDEΣ(H) ' Sh∞(PDEΣ), we
may consider the question equivalently is the sheaf 1-topos Sh(PDEΣ). Now unwinding the definitions, one
sees that for a representable F ∈ PDEΣ to map through the kernel of ω is equivalent to it mapping through
the equalizer of the differential operator ω̃ that corresponds to it under the isomorphism in prop. 1.3.26 with
the 0-morphism, as in prop. 1.3.40:

F

i

��

0=i∗ω

""
E

ω
// Ωp+1,1

S

'

F

i

��

i∗0̃=i∗ω̃

''
E

0̃ //

ω̃
// ∧p+1T ∗Σ×Σ V

∗E

But since these equalized morphisms are morphism in the site PDEΣ, and since the Yoneda embedding
PDEΣ ↪→ Sh(PDEΣ) preserves limits, we may compute the fiber equivalently in PDEΣ as this equalizer.
With this the statement is given by prop. 1.3.40.

6.5.11.1 Prequantum covariant phase space We discuss the prequantum version of of the (pre-
)symplectic covariant phase space from section 1.3.1.6.2.

Since the covariant phase space consists of fields in codimension-1, hence on p-dimensional submanifolds
Σp ↪→ Σ, we produce yet another Hodge filtration of ([Bp+2R)Σ, now the one which has minimal kernel
when pulled back along sections in dimension p.

Definition 6.5.104. The Lepage complex is the chain complex (of presheaves on DiffOpΣ)

Ω•L :=



· · · dH //

dV

''

Ωp−1
H

dV

((

dH //

⊕

Ωp
H

dV

''

dH //

⊕

Ωp+1
H

dV

((

⊕
coim(I(dV ⊕dH ))

· · ·
dH

// Ωp−2,1
ker(dV ) dH

// Ωp−1,1
ker(dV ) dH

// Ωp,1

dH

//

dV
''

Ωp+1,1
S,ker(δV )

⊕

Ωp,2
cl,ker(dV )


,

which is the total complex of the “2-term outer rim” of the augmented variational bicomplex, prop. 1.3.35.

This constitutes yet another Hodge filtration for ([Bp+2R)Σ and further factors the projection in def.
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6.5.100

(Ω•≤p+1)Σ

����

(ddR)Σ // (Ωp+2
cl )Σ

����
Ω•≤p+1
L

//

����

Ωp+1,1
S,ker(δV ) ⊕Ωp,2

ker(dV )

����
Ω•≤p+1
H

δV // Ωp+1,1
S,ker(δV )

.

Accordingly, induced from this is the corresponding differential coefficients Bp+1
L (R/~Z)conn in direct

analogy to the big diagram in def. 6.5.100.
Given a globally defined local Lagrangian

L : E −→ Ω•≤p+1
H

then a lift of this through the Lepage complex such that the curvatures commute

Ω•≤p+1
L

//

����

Ωp+1,1
S,ker(δV ) ⊕Ωp,2

ker(dV )

����
E

L //

L+θ
<<

Ω•≤p+1
H

δV // Ωp+1,1
S,ker(δV )

.

is a choice of θ in dL = EL + dHθ (remark 1.3.43). Indeed, the lifted curvature coefficients are precisely so
as to ask for a Lepage form for L of vertical degree ≤ 2.

Now by the yoga of the big diagram in def. 6.5.100 this gives us the right “Lepage gerbes” as lifts

Bp+1
L (R/~Z)conn

����
E

L //

L+Θ

99

Bp+1
H (R/~Z)conn

Pulling these Lepage gerbes back along sections on a codimension-1 Cauchy surface Σp ↪→ Σ (which
makes the contribution of L disappear and retains only the contribution of θ) is precisely a prequantization
for the canonical symplectic structure on the covariant phase space (even off-shell).

Definition 6.5.105. Given a morphism f : X −→ Y in H, we say that the formal normal bundle N∞Y X ∈
H/Y of X in Y is the formal étalification of f , hence the homotopy pullback in

N∞Y X

(pb)etf

��

// =X

=f
��

Y // =Y

Proposition 6.5.106. Jet bundles are preserved by pullback along inclusions of formal normal bundles, def.
6.5.105, i.e. for f : X → Y a morphism and E ∈ H/Y a bundle, then

(etf)∗J∞Y E ' J∞X f∗E .
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Proof. The homotopy pullback in def. 6.5.105 induces a square of base change operations

H/N∞Y XOO

(etf)∗(etf)∗

��

oo
(η=N∞

Y
X)∗

(η=N∞
Y
X)∗

// H/=N∞Y XOO

(=etf)∗(=etf)∗

��
H/Y

oo (η=Y )∗

(η=Y )∗

// H/=Y

.

By Beck-Chevalley this implies that

(=etf)∗(η=Y )∗ ' (η=N∞Y X)∗(etf)∗ .

Using this we find
(etf)∗J∞Y E := (etf)∗(η=Y )∗(η=Y )∗E

' (η=N∞Y X)∗(=etf)∗(η=Y )∗E

' (η=N∞Y X)∗(η=N∞Y X)∗(etf)∗E

=: J∞Y (etf)∗E .

Definition 6.5.107. Given a Lepage p-gerbe Θ : E −→ Bp+1
L (R/~Z)conn, then given a codimension-1

submanifold Σp ↪→ Σ of spacetime/worldvolume, the corresponding covariant phase space is the transgression∫
Σp

[N∞Σ Σp,Θ] : [N∞Σ Σp, E ] −→ B(R/~Z)conn .

6.5.11.2 Globally defined local action functionals Assume here that Σ is a closed (p+1)-dimensional
smooth manifold.

Proposition 6.5.108. The connected components of the hom-space from Σ into the (p + 1)-fold delooping
of the discrete circle group is isomorphic to that same discrete circle group

τ0H<(Σ, [Bp+1(R/~Z)) ' [R/~Z .

Moreover, under this identification and the Poincaré lemma, prop. 6.5.87, the 0-truncation map coincides
with (p+ 1)-volume holonomy of p-gerbes on Σ:

H<(Σ, [Bp+1(R/~Z))

π0

))
'

��

[(R/~Z)

H<(Σ,Bp+1(R/~Z)conn)

∫
Σ

55

Definition 6.5.109. Given a prequantum local Lagrangian L : E −→ Bp+1
Σ (R/~Z)conn (def. 6.5.101), and

given a section φ : Σ −→ E, then the action function induced by L at φ is

exp( i~SL(−)) : ΓΣ(E)
' // PDEΣ(H)(Σ, E)

(−)∗L // PDEΣ(H)(Σ,Bp+1
H (R/~Z)conn)

' // H<(Σ, [Bp+1(R/~Z))
π0 // [(R/~Z) ,
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where the first equivalence is as in example 1.3.15, the second equivalence is from prop. 6.5.99, and the last
map is from prop. 6.5.108.

A smooth function
ΓΣ(E) −→ R/~Z

(on the diffeological space of smooth sections, def. 1.3.46) is called a (globally defined) local action functional
if its restriction to points (forgetting the smooth structure) arises from a prequantum Lagrangian in this
fashion.

6.5.11.3 Sigma-models

Definition 6.5.110. A prequantum field theory, def. 6.5.101, L : E → Bp+1
H (R/~Z), is a sigma model if E

is in the image of (−)Σ : H −→ PDEΣ(H), def. 6.5.90, for some X ∈ H. In this case X is called the target
space of the sigma model.

Remark 6.5.111. By adjointness, field configurations of sigma-models are equivalently maps from Σ to X:

Σ −→ (X)Σ = F (Σ∗(X))
Σ ' U(Σ) −→ Σ∗(X)

Σ ' Σ!Σ −→ X

As such, sigma-models may be thought of as describing the dynamics of trajectories of shape Σ in X. In
practice this arises in two guises:

1. Σ models spacetime and X is a moduli space of certain scalar fields on Σ.

2. X models spacetime and Σ models the worldvolume of a p-brane propagating in X.

Definition 6.5.112. A WZW-type Lagrangian LWZW for a sigma-model, def. 6.5.110, with target space X
is a prequantum Lagrangian, def. 6.5.101, which is the image under

H/Bp+1(R/~Z)conn

(−)Σ−→ H/(Bp+1(R/~Z)conn)Σ

H!−→ (PDEΣ(H))/Bp+1(R/~Z)conn
,

(where the first morphism is def. 6.5.90, the second is postcomposition with the projection from def. 6.5.100),

of some principal connection X
∇−→ Bp+1(R/~Z)conn:

Σ×X

LWZW

��
Bp+1
H (R/~Z)conn

 = H! ◦ F ◦ Σ∗


X

∇
��

Bp+1(R/~Z)conn

 .
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6.6 Supergeometric homotopy types

We discuss∞-groupoids equipped with discrete super cohesion, with smooth super cohesion and formal super
cohesion, where “super” is in the sense of superalgebra and supergeometry (see for instance [DelMor99] for a
review of traditional superalgebra and supergeometry).

After discussing the construction in

• 6.6.1 – Construction

we discuss the various general abstract structures in a cohesive ∞-topos, 5.2, realized in Super∞Grpd and
SmoothSuper∞Grpd.

• 6.6.4 – A0|1-Localization and the Odd Continuum

• 6.6.5 – Infinitesimal neighbourhoods and Lie algebras

• 6.6.6 – Associated bundles

• 6.6.7 – Exponentiated ∞-Lie algebras

6.6.1 Construction

We first introduce discrete super∞-groupoids which have super-grading but no smooth structure. This is the
canonical context in which (higher) superalgebra takes place: an R-module internal to super ∞-groupoids is
externally a chain complex of super vector spaces and an R-algebra internal to super∞-groupoids is externally
a real superalgebra. Then we add smooth structure by passing further to smooth super ∞-groupoids. This
is the canonical context for supergeometry. Notably the traditional category of smooth supermanifolds
faithfully embeds into smooth super ∞-groupoids. Finally we further refine to formal super ∞-groupoids
where the smooth structure is refined by explicit commutative infinitesimals in addition to the super/graded
infinitesimals of supergeometry. In summary, this yields a super-refinement of three cohesive structures
discussed before:

supergeometric
refinement

differential
geometry

discussed
in section

Super∞Grpd Disc∞Grpd 6.2
SmoothSuper∞Grpd Smooth∞Grpd 6.4
FormalSuper∞Grpd FormalSmooth∞Grpd 6.5

Accordingly, the canonical site of definition of the most inclusive of these cohesive ∞-toposes, which is
FormalSuper∞Grpd, contains objects denoted Rp⊕s|q – formal super Cartesian spaces – that have three
gradings:

• an ordinary dimension p;

• an order s of their infinitesimal thickening;

• an odd super dimension q.

In terms of the formally dual function algebras C∞(Rp⊕k|l) on these objects, k is the number of commuting
nilpotent generators, while q is the number of graded-commuting nilpotent generators. In this sense super-
geometry may be understood as a Z2-graded variant of synthetic differential geometry. This is a perspective
that had been explored in [Yet88] and more recently in [CaRo12].

Of course ∞-groupoids X over this synthetic supergeometric site have furthermore their homotopy the-
oretic degree, their simplicial grading when modeled by simplicial presheaves

X : (Rp⊕s|q,∆k) 7→ Xk(Rp⊕s|q) ∈ Set .
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While for some applications it is useful to regard all these “kinds of dimension” as being on equal
footing, for other applications it is useful to order them more hierarchically. Specifically the role played
by supergeometry in applications is well reflected by the perspective where smooth/synthetic differential
supergeometry is regarded as ordinary smooth/synthetic differential geometry but internal to the “bare
super context”, which is the context parameterized over just the superpoints R0|q. This perspective on
supergeometry had been proposed independently in 1984 in [Schw84], [Mol84] and [Vor84]. A review is in
the appendix of [KonSch00], whose main part discusses aspects of those synthetic differential superspaces in
this language.

In terms of (higher) topos theory this perspective means that passing from higher differential geometry
to higher supergeometry is to change the base ∞-topos from that of ordinary geometrically discrete ∞-
groupoids Disc∞Grpd ' ∞Grpd ' LwheTop to that of “super ∞-groupoids” Super∞Grp := Sh∞({R0|q}q)
which still have no finite continuous/smooth geometric structure but which do have super-grading.

We find below the ∞-toposes for differential-, synthetic differential- and supergeometry to arrange in a
diagram of geometric morphisms of the form

SmoothSuper∞Grpd �
� //

��

FormalSuper∞Grpd //

��

Super∞Grpd

��
Smooth∞Grpd

� � // FormalSmooth∞Grpd // ∞Grpd

.

Here the bottom line is the differential cohesion over the base of discrete ∞-groupoids discussed in 6.5. The
top line is the super-refinement exhibited by differential cohesion, but now over the base Super∞Grpd of
discrete but “super” ∞-groupoids. This diagram of ∞-toposes we present by a diagram of sites which, with
the above notation for formal super Cartesian spaces, looks as follows.

{Rp|q}p,q �
� //

��

{Rp⊕s|q}p,s,q //

��

{R0|q}q

��
{Rp}p �

� // {Rp⊕s}p,s // {∗}

.

6.6.2 Super smooth ∞-groupoids

Definition 6.6.1. Let GrassmannAlgR be the category whose objects are finite dimensional free Z2-graded
commutative R-algebras (Grassmann algebras). Write

SuperPoint := GrassmannAlgop
R

for its opposite category. For q ∈ N we write R0|q ∈ SuperPoint for the object corresponding to the free
Z2-graded commutative algebra on q generators and speak of the superpoint of order q.

We think of SuperPoint as a site by equipping it with the trivial coverage.

Definition 6.6.2. Write

SuperSet := Sh(SuperPoint) ' PSh(SuperPoint)

for the topos of presheaves over SuperPoint.

Definition 6.6.3. Write

Super∞Grpd := Sh∞(SuperPoint) ' PSh∞(SuperPoint)

for the ∞-topos of ∞-sheaves over SuperPoint. We say an object X ∈ Super∞Grpd is a super ∞-groupoid.

Proposition 6.6.4. The ∞-topos Super∞Grpd is infinitesimal cohesive, def. 4.1.21 over ∞Grpd.
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Proof. The ordinary point in SuperPoints is both the terminal object but also the initial object, since
superpoints are infinitesimally thickened points in that they only have one global actual point. Therefore
the statement follows with prop. 4.1.24. �
We regard higher superalgebra and higher supergeometry as being the higher algebra and geometry over

the base ∞-topos ([Joh02], chapter B3) Super∞Grpd instead of over the canonical base ∞-topos ∞Grpd.
Except for the topos-theoretic rephrasing, this perspective has originally been suggested in [Schw84] and
[Mol84].

Proposition 6.6.5. The ∞-topos Super∞Grpd is cohesive, def. 4.1.8.

Super∞Grpd

Π //
oo Disc ?

_

Γ //
oo
coDisc

? _
∞Grpd .

Proof. The site SuperPoint is ∞-cohesive, according to def. 4.1.31. Hence the claim follows by prop.
4.1.32. �

Proposition 6.6.6. The inclusion Disc : ∞Grpd ↪→ Super∞Grpd exhibits the collection of super ∞-
groupoids as forming an infinitesimal cohesive neighbourhood, def. 4.2.1, of the discrete ∞-groupoids, 6.2.

Proof. Observe that the point inclusion i : Point := ∗ ↪→ SuperPoint is both left and right adjoint to the
unique projection p : SuperPoint→ Point. Therefore we have even a periodic sequence of adjunctions

(· · · a i∗ a p∗ a i∗ a p∗ a · · · ) : Super∞Grpd→∞Grpd ,

and p∗ ' Disc ' coDisc is full and faithful. �

Definition 6.6.7. Write R ∈ Super∞Grpd for the presheaf SuperPointop → Set ↪→∞Grpd given by

R : R0|q 7→ C∞(R0|q) := (Λq)even ,

which sends the order-q superpoint to the underlying set of the even subalgebra of the Grassmann algebra
on q generators.

Remark 6.6.8. The object R ∈ Super∞Grpd is canonically equipped with the structure of an internal ring
object. Morever, under both Π and Γ it maps to the ordinary real line R ∈ Set ↪→∞Grpd while respecting
the ring structures on both sides.

The following observation is due to [Mol84].

Proposition 6.6.9. The theory of ordinary (linear) R-algebra internal to the 1-topos

SuperSet = Super0Grpd ↪→ Super∞Grpd

is equivalent to the theory of R-superalgebra in Set.

Definition 6.6.10. Write sCartSp for the full subcategory of that of supermanifolds on those that are super
Cartesian spaces: {Rp|q}p,q∈N. Regard this as a site by equipping it with the coverage whose covering families

are of the form {Ui × R0|q (p1,id)−→ Rp|q} for {Ui → Rp} a differentiably good open cover, def. 6.4.2.

Remark 6.6.11. A morphism Rp1|q1 → Rp2|q2 in CartSpsuper is equivalently a tuple consisting of p2 even

elements and q2 odd elements of the superalgebra C∞(Rp1|q1). In particular, under the restricted Yoneda
embedding the line of def. 6.6.7 is R ' R1|0.

Definition 6.6.12. Write

SmoothSuper∞Grpd := Sh∞(sCartSpsmooth) .

An object in this ∞-topos we call a smooth super ∞-groupoid.
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6.6.3 Super formal smooth ∞-groupoids

Definition 6.6.13. Write
FormalSmoothCartSp ↪→ CAlgop

R

for the full subcategory on those formal duals of commutative R-algebras which are tensor products of an
algebra C∞(Rn) of smooth functions on a Cartesian space of some dimension n ∈ N with an R-algebra of
the form R⊕ V for V a finite dimensional nilpotent ideal. Write

SuperFormalSmoothCartSp ↪→ sCAlgop
R

for the full subcategory on those formal duals of super-commutative super-R-algebras which are tensor
products C∞(Rp) ⊗R (R ⊕ V ) ⊗R ∧•Rq of such an even graded algebra formally dual to an object in
FormalSmoothCartSp with a Grassmann algebra.

Regard both these categories as sites by equipping them with the coverage whose cover famlies are those

of the form {Ui ×D
(φi,id)−→ U ×D} for {Ui

φi−→ X} a differentially good open cover of Cartesian spaces.

The following is immediate but conceptually important. One place where this has been stated explicitly
is [CaRo12, example 3.18]

Proposition 6.6.14. The canonical full inclusion of the categories of def. 6.6.13 has a left adjoint, given
by projecting out the even-graded subalgebra, and a right adjoint, given by quotienting out the ideal generated
by the odd-graded elements

FormalSmoothCartSp
oo
� � //
oo

SuperFormalSmoothCartSp

Definition 6.6.15. Write

SuperFormalSmooth∞Grpd := Sh∞(SuperFormalSmoothCartSp)

for the hypercomplete ∞-topos over the site of def. 6.6.13.

Proposition 6.6.16. Equipped with the (co-)monads induced by the adjoint quadruple given by Kan exten-
sion of the bireflective inclusion of sites of prop. 6.6.14

FormalSmooth∞Grpd
oo
� � //
oo
� � //

SuperFormalSmooth∞Grpd

and with the elastic structure on FormalSmooth∞Grpd given by prop. 6.5.11, then SuperFormalSmooth∞Grpd,
def. 6.6.15, is solid substance, in the sense of def. 4.3.1.

Proof. First of all SuperSmooth∞Grpd is cohesive over ∞Grpd since SuperFormalCartSp is an ∞-
cohesive site, def. 4.1.31, by the same argument as in the proof of prop. 6.5.8. Second, the composite
inclusion of sites

SmoothCartSp �
� //
oo

FormalSmoothCartSp
� � //
oo

SuperFormalSmoothCartSp

still exhibits an infinitesimal neighbourhood site, def. 4.2.8 so that prop. 4.2.9 gives that the induced
inclusion

Smooth∞Grpd

� � //
oo
� � //
oo

SuperFormalSmooth∞Grpd

exhibits elasticity. In view of this the composite adjoints

Smooth∞Grpd

� � //
oo
� � //
oo

FormalSmooth∞Grpd

oo
� � //
oo
� � // SuperFormalSmooth∞Grpd
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lift the (= a <) operations of FormalSmooth∞Grpd and provides the resolution followed by further opposi-
tion expressed by

⇒ a

∨

 

∨

 a

∨

Rh

∨

= a <

.

It remains to check that  = ' =. Testing this on a representable U ×Ds with U ∈ SmoothCartSp and Ds

a superpoint with even infinitesimally thickened point D, we find by adjointness that

H(U ×Ds,
 
=X) ' H(

⇒
U ×Ds,=X)

' H(U ×D,=X)

' H(<(U ×D), X)

' H(U,X)

' H(<(U ×Ds), X)

' H(U ×Ds,=X) ,

where we used that, by the above composite inclusion of infinitesimal neighbourhood sites, reduction <
contracts away both super as well as even-graded infinitesimal thickening. �

6.6.4 A0|1-Localization and the Odd Continuum

Proposition 6.6.17. The odd line

R0|1 ∈ SuperCartSp ↪→ SuperFormalSmoothCartSp ↪→ SuperFormalSmooth∞Grpd

exhibits the solidity of SuperFormalSmooth∞Grpd, def. 6.6.15, in the sense of def. .

Proof. By definition 6.6.13, the objects of the site SuperFormalSmoothCartSp are of the form Rp ×
D × (R0|1)q for p, q ∈ N and for D ∈ InfPoint an infinitesimally thickened point, hence with Rp × D ∈
FormalSmoothCartSp. Therefore the proof of prop. 5.2.51 generalizes immediately to this situation, with the
trivial reference site ∗ replaced by FormalSmoothCartSp. This shows that the left adjoint of the localization
adjunction is given on representatives by contracting away the powers of the odd line:

Rp ×D × R0|q 7→ Rp ×D .

This is the same action on representables as that of the third adjoint counting from the top in prop. 6.6.16,
which is left Kan extension of (and hence agrees on representables with) the operation which on formal dual
algebras quotients out the ideal generated by the odd part. Since both∞-functors are left adjoints and hence
preserve ∞-colimits, they are equivalent as soon as they agree on representables this way. The statement
then follows by the essential uniqueness of the right adjoint. �

6.6.5 Infinitesimal neighbourhoods and Lie algebras

We discuss the implementation of the general discussion of infinitesimal neighbourhoods and relative cohesion,
5.3.6, in supergeometric cohesion. This proceeds directly analogous to the discussion in form formal smooth
cohesion in 6.5.2.5, with the commuting infinitesimals there simply replaced by the Z/2Z-graded commuting
infinitesimals of supergeometry.
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Proposition 6.6.18. We have a commuting diagram of cohesive ∞-toposes which exhibits Super∞Grpd as
an ∞-pushout

SmoothSuper∞Grpd

×
Πsuper //

oo Discsuper ? _

Γsuper //
oo

coDiscsuper

? _
OO

i!

?�

i∗

��

OO

i∗

?�

i!

��

Super∞GrpdOO

i!

?�

i∗

��

OO

i∗

?�

i!

��
Smooth∞Grpd

× Π //
oo Disc ? _

Γ //
oo

coDisc
? _

∞Grpd

.

Hence
Smooth∞Grpd ↪→ SmoothSuper∞Grpd −→ Super∞Grpd

exhibits differential and relative cohesion on smooth super ∞-groupoids, def. 4.2.1, def. 5.3.62.

Proof. By def. 6.6.10 the arguments of 6.4 apply verbatim at the stage of each fixed superpoint, and
this gives the cohesion over Super∞Grpd, hence the top vertical adjoint quadruple in the above. The right
vertical morphisms exhibit infinitesimal cohesion by prop. 6.6.4. That the resulting diagram is an∞-pushout
follows now with the same argument as in the proof of prop. 6.5.15. �
For emphasis we shall refer to the objects of Super∞Grp as discrete super ∞-groupoids: these refine discrete

∞-groupoids, 6.2 with super-cohesion and are themselves further refined by smooth super∞-groupoids with
smooth cohesion.

6.6.6 Associated bundles

We discuss aspects of the general notion of associated fiber ∞-bundles, 5.1.12, realized in the context of
supergeometric cohesion.

In 6.4.9 above we discussed the 2-stack 2LineC of smooth complex line 2-bundles. Since the B-field that
the bosonic string is charged under has moduli in the differential refinement B2C×conn, we may hence say
that it is given by 2-connections on complex 2-line bundles. However, a careful analysis (due [DiFrMo11]
and made more explicit in [Fr99]) shows that for the superstring the background B-field is more refined.
Expressed in the language of higher stacks the statement is that it is a connection on a complex super -
2-line bundle. Precisely, in the language of stacks for supergeometry we are to pass to the higher topos
SmoothSuper∞Grpd ' Sh∞(SuperMfd) on the site of smooth supermanifolds, 6.6. Internal to that the
term algebra now means superalgebra and hence the 2-stack

2sLineC ∈ SmoothSuper∞Grpd

now has global points that are identified with complex Azumaya superalgebras. Of these it turns out there
is, up to equivalence, not just one, but two: the canonical super 2-line and its “superpartner”. Moreover,
there are now, up to equivalence, two different invertible 2-linear maps from each of these super-lines to
itself. In summary, the homotopy sheaves of the super 2-stack of super line 2-bundles are

• π0(2sLineC) ' Z2,

• π1(2sLineC) ' Z2,

• π2(2sLineC) ' C× ∈ Sh(SuperMfd).

(where in the last line we emphasize that the homotopy sheaf is that represented by C× as a smooth (super-
)manifold). With the discussion in 5.2.3 it follows that the geometric realization of this 2-stack has homotopy
groups
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• π0(|2sLineC|) ' Z2,

• π1(|2sLineC|) ' Z2,

• π2(|2sLineC|) ' 0,

• π3(|2sLineC|) ' Z.

These are precisely the correct coefficients for the twists of complex K-theory, witnessing the fact that the
B-field background of the superstring twists the Chan-Paton bundles on the D-branes.

The braided monoidal structure of 2sVectC induces on 2sLineC the structure of a braided 3-group. There-
fore the above general abstract definition of universal moduli for differential cocycles/higher connections
produces a moduli 3-stack B(2sLineC)conn which is the supergeometric refinement of the coefficient object
B3C×conn for the extended Lagrangian of bosonic 3-dimensional Chern-Simons theory. Therefore for G a
super-Lie group a super-Chern-Simons theory that induces the super-WZW action functional on G is given
by an extended Lagragian which is a map of higher moduli stacks of the form

L : BGconn
// B(2sLineC)conn .

By the canonical inclusion B3C×conn → B(2sLineC)conn every bosonic extended Lagrangian of 3-d Chern-
Simons type induces such a supergeometric theory with trivial super-grading part.

6.6.7 Exponentiated Lie algebras

According to prop. 6.6.9 the following definition is justified.

Definition 6.6.19. A super L∞-algebra is an L∞-algebra, def. 1.2.150, internal to the topos SuperSet, def.
6.6.2, over the ring object R from def. 6.6.7.

Observation 6.6.20. The Chevalley-Eilenberg algebra CE(g), def. 1.2.153, of a super L∞-algebra g is
externally

• a graded-commutative algebra over R on generators of bigree in (N+,Z2) – the homotopical degree degh
and the super degree degs;

• such that for any two generators a, b the product satisfies

ab = (−1)defh(a)degh(b)+defs(a)degs(b) ba ;

• and equipped with a differential dCE of bidegree (1, even) such that d2
CE = 0.

Examples 6.6.21. • Every ordinary L∞-algebra is canonically a super L∞-algebra where all element
are of even superdegree.

• Ordinary super Lie algebras are canonically identified with precisely the super Lie 1-algebras.

• For every n ∈ N there is the super line super Lie (n+ 1)-algebra bnR0|1 characterized by the fact that
its Chevalley-Eilenberg algebra has trivial differential and a single generator in bidegree (n, odd).

• For g any super L∞-algebra and µ : g → bnR a cocycle, its homotopy fiber is the super L∞-algebra
extension of g, as in def. 6.4.133.

Below in 7.1.7.2 we discuss in detail a class of super L∞-algebras that arise by higher extensions from
a super Poincaré Lie algebra.
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Observation 6.6.22. The Lie integration

exp(g) ∈ [SmoothCartSp× SuperPoint, sSet] = [SuperPoint, [SmoothCartSp, sSet

of a super L∞-algebra g according to 6.4.14 is a system of Lie integrated ordinary L∞-algebras

exp(g) : R0|q 7→ exp((g⊗R Λq)even) ,

where Λq = C∞(R0|q) is the Grassmann algebra on q generators.
Over each U ∈ CartSp this is the discrete super ∞-groupoid given by

exp(g)U : R0|q 7→ HomdgsAlg(CE(g⊗ Λq)even,Ω
•
vert(U × R0|q ×∆•)) ,

where on the right we have super differential forms vertical with respect to the projection U ×R0|q ×∆n →
U × R0|q of supermanifolds.

Proof. The first statement holds by the proof of prop. 6.6.9. The second statement is an example of a
stadard mechanism in superalgebra: Using that the category sVect of finite-dimensional super vector space
is a compact closed category, we compute

HomdgsAlg(CE(g),Ω•vert(U × R0|q ×∆n)) ' HomdgsAlg(CE(g), C∞(R0|q)⊗ Ω•vert(U ×∆n))

' HomdgsAlg(CE(g),Λq ⊗ Ω•vert(U ×∆n))

⊂ HomCh•(sVect)(g
∗[1],Λq ⊗ Ω•vert(U ×∆n))

' HomCh•(sVect)(g
∗[1]⊗ (Λq)∗,Ω•vert(U ×∆n))

' HomCh•(sVect)((g⊗ Λq)
∗[1],Ω•vert(∆

n))

' HomCh•(sVect)((g⊗ Λq)
∗[1]even,Ω

•
vert(U ×∆n))

⊃ HomdgsAlg(CE((g⊗k Λq)even),Ω•vert(U ×∆n))

.

Here in the third step we used that the underlying dg-super-algebra of CE(g) is free to find the space of
morphisms of dg-algebras inside that of super-vector spaces (of generators) as indicated. Since the differential
on both sides is Λq-linear, the claim follows. �
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6.7 Further models

There are various further models of the axioms of cohesive homotopy theory which are of interest, but which
we are not discussing in detail here at the moment. The following gives brief indications with some pointers.

6.7.1 Complex-analytic homotopy types

We discuss ∞-groupoids equipped with complex analytic cohesion.

Definition 6.7.1. Write CMfd for the category of complex analytic manifolds equipped with the standard
Grothendieck topology of open covers.

Definition 6.7.2. Write
CAnalytic∞Grpd := Sh∞(CMfd)

for the hypercomplete ∞-topos over the site of complex analytic manifolds, def. 6.7.1.

Proposition 6.7.3. The ∞-topos CAnalytic∞Grpd of def. 6.7.2 is cohesive over ∞Grpd.

Proof. The site of complex polydiscs is a dense subset of CMfd. Since every complex manifold may
be covered by complex polydiscs, one finds that the hypercomplete localization is equivalently that at split
hypercovers by polydiscs. From here on the proof proceeds verbatim as that of prop. 4.1.32. �
One finds this result also in [HoQu12].

6.7.2 Pointed arithmetic homotopy types

A model of differential cohesion in arithmetic geometry exists, whose differential hexagons subsume the
classical fracture squares of homotopy theory and some key structures seen in the function field analogy,
revolving around the Weil uniformization theorem. For discussion of this see [Sc14e].
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7 Physics

We discuss here the formulation of key aspects of physics in the models for higher differential geometry
obtained in 6. In particular we discuss aspects of local prequantum higher gauge field theory and applications
in string theory [SaSc11a, FSS13a].

• 7.1 – Fields

• 7.2 – Chern-Simons field theory

• 7.3 – Wess-Zumino-Witten field theory

• 7.5 – Prequantum geometry

• 7.4 – Local boundary and defect field theory

• 7.6 – Quantization

7.1 Fields

We discuss various examples of twisted ∞-bundles, 5.1.18, and the corresponding twisted differential struc-
tures, 5.2.14, and interpret these examples as twisted prequantum (boundary) fields, 5.2.18.6, that may
appear in in local prequantum field theory, 5.2.18, and notably in string theory [Sc12].

Most of these appear in various guises in string theory, which we survey in

• 7.1.5 – Twisted topological c-structures in String theory.

Below we discuss the following differential refinements and applications.

• 7.1.1 – Definition and overview

• 7.1.3 – Reduction of structure groups

– 7.1.3.1 – Orthogonal/Riemannian structure

– 7.1.3.2 – Type II generalized geometry

– 7.1.3.3 – U-duality geometry / exceptional generalized geometry

• 7.1.4 –Orientifolds and higher orientifolds

• 7.1.5 – Twisted topological structures in quantum anomaly cancellation

• 7.1.6 – Tisted differential structures in quantum anomaly cancellation

– 7.1.6.1 – Twisted differential c1-structures

– 7.1.6.2 – Twisted differential spinc-structures

– 7.1.6.3 – Higher differential spin structures: string and fivebrane structures

• 7.1.7 – Supergravity

• 7.1.8 – The supergravity C-field

The discussion in this section draws from [FiSaScI], which in turn draws from the examples discussed in
[SSS09c], [FSS12b].
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7.1.1 Introduction and Overview

We start with an exposition and overview of the notion of twisted fields in local prequantum field theory.
This section is taken from [FSS13a]. See also the lecture notes [Sc12].

While twisted higher (gauge) fields embody much of the subtle structure in string theory backgrounds,
actually basic example of them secretly appear all over the place in traditional field theory. For instance
the field of gravity in general relativity is a (pseudo-)Riemannian metric on spacetime, and there is no such
thing as a moduli stack of (pseudo-)Riemannian metrics on the site of smooth manifolds This is nothing but
the elementary fact that a (pseudo-)Riemannian metric cannot be pulled back along an arbitrary smooth
morphism between manifolds, but only along local diffeomorphisms. Translated into the language of stacks,
this tells us that (pseudo-)Riemannian metrics is a stack on the étale site of smooth manifolds, but not on the
smooth site. 33 Yet we can still look at (pseudo-)Riemannian metrics on a smooth n-dimensional manifold X
from the perspective of the topos H of stacks over the smooth site, and indeed this is the more comprehensive
point of view. Namely, working in H also means to work with all its slice toposes (or over-toposes) H/S

over the various objects S in H. For the field of gravity this means working in the slice H/BGL(n;R) over the
stack BGL(n;R).

Notice that this terminology is just a concise and rigorous way of expressing a familiar fact from Rieman-
nian geometry: endowing a smooth n-manifold X with a pseudo-Riemannian metric of signature (p, n− p)
is equivalent to performing a reduction of the structure group of the tangent bundle of X to O(p, n− p). In-
deed, one can look at the tangent bundle (or, more precisely, at the associated frame bundle) as a morphism
τX : X → BGL(n;R).

7.1.1.1 Example: Orthogonal structures. The above reduction is then the datum of a homotopy lift
of τX

BO(p, n− p)

��
X

τX
//

oX

99

BGL(n;R) ,
e��

where the vertical arrow
OrthStrucn : BO(p, n− p) // BGL(n;R)

is induced by the inclusion of groups O(p, n − p) ↪→ GL(n;R). Such a commutative diagram is precisely a
map

(oX , e) : τX // OrthStrucn

in the slice H/BGL(n;R). The homotopy e appearing in the above diagram is precisely the vielbein field
(frame field) which exhibits the reduction, hence which induces the Riemannian metric. So the moduli
stack of Riemannian metrics in n dimensions is OrthStrucn, not as an object of the ambient cohesive
topos H, but of the slice H/BGL(n). Indeed, a map between manifolds regarded in this slice, namely a
map (φ, η) : τY → τX , is equivalently a smooth map φ : Y → X in H, but equipped with an equivalence
η : φ∗τX → τY . This includes in particular the local diffeomorphisms. In this way the slicing formalism
automatically knows along which kinds of maps metrics may be pulled back.

7.1.1.2 Example: (Exceptional) generalized geometry. If we replace in the above example the map
OrthStrucn with inclusions of other maximal compact subgroups, we similarly obtain the moduli stacks for
generalized geometry (metric and B-field) as appearing in type II superstring backgrounds (see, e.g., [Hi11]),
given by

typeII : B(O(n)×O(n)) // BO(n, n) ∈ H/BO(n,n)

33See [Carc12] for a comprehensive treatment of the étale site of smooth manifolds and of the higher topos of higher stacks
over it.
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and of exceptional generalized geometry appearing in compactifications of 11-dimensional supergravity [Hull07],
given by

ExcSugran : BKn
// BEn(n) ∈ H/BEn(n)

,

where En(n) is the maximally non-compact real form of the Lie group of rank n with E-type Dynkin diagram,
and Kn ⊆ En(n) is a maximal compact subgroup. For instance, a manifold X in type II-geometry is
represented by τgen

X : X → BO(n, n) in the slice H/BO(n,n), which is the map modulating what is called the
generalized tangent bundle, and a field of generalized type II gravity is a map (ogen

X , e) : τgen
X → typeII to

the moduli stack in the slice. One checks that the homotopy e is now precisely what is called the generalized
vielbein field in type II geometry. We read off the kind of maps along which such fields may be pulled back:
a map (φ, η) : τgen

Y → τgen
X is a generalized local diffeomorphism: a smooth map φ : Y → X equipped with

an equivalence of generalized tangent bundles η : φ∗τgen
X → τgen

Y . A directly analogous discussion applies to
the exceptional generalized geometry.

Furthermore, various topological structures are generalized fields in this sense, and become fields in the
more traditional sense after differential refinement.

7.1.1.3 Example: Spin structures. The map SpinStruc : BSpin → BGL is, when regarded as
an object of H/BGL, the moduli stack of spin structures. Its differential refinement SpinStrucconn :
BSpinconn → BGLconn is such that a domain object τ∇X ∈ H/GLconn

is given by an affine connection,
and a map (∇Spin, e) : τ∇X → SpinStrucconn is precisely a Spin connection and a Lorentz frame/vielbein
which identifies ∇ with the corresponding Levi-Civita connection.

This example is the first in a whole tower of higher Spin structure fields [SSS09a, SSS09b, SSS09c], each
of which is directly related to a corresponding higher Chern-Simons theory. The next higher example in this
tower is the following.

7.1.1.4 Example: Heterotic fields. For n ≥ 3, let Heterotic be the map

Heterotic : BSpin(n)
(p,

1
2p1)

// BGL(n;R)×B3U(1)

regarded as an object in the slice H/BGL(n;R)×B3U(1). Here p is the morphism induced by

Spin(n)→ O(n) ↪→ GL(n;R)

while 1
2p1 : BSpin(n) → B3U(1) is the morphism of stacks underlying the first fractional Pontrjagin class,

7.1.2.8. To regard a smooth manifold X as an object in the slice H/BGL(n;R)×B3U(1) means to equip it with a
U(1)-3-bundle aX : X → B3U(1) in addition to the tangent bundle τX : X → BGL(n;R). A Green-Schwarz
anomaly-free background field configuration in heterotic string theory is (the differential refinement of) a
map (sX , φ) : (τX ,aX)→ Heterotic, i.e., a homotopy commutative diagram

X

(τX ,aX) ''

sX // BSpin

Heteroticvv
BGL(n)×B3U(1) .

φpx

The 3-bundle aX serves as a twist: when aX is trivial then we are in presence of a String structure on X; so
it is customary to refer to (sX , φ) as to an aX -twisted String structure on X, in the sense of [Wa08, SSS09c].
The Green-Schwarz anomaly cancellation condition is then imposed by requiring that aX (or rather its
differential refinement) factors as

X −→ BSU
c2 // B3U(1) ,

where c2(E) is the morphism of stacks underlying the second Chern class. Notice that this says that the
extended Lagrangians of Spin- and SU-Chern-Simons theory in 3-dimensions, as discussed above, at the same
time serve as the twists that control the higher background gauge field structure in heterotic supergravity
backgrounds.
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7.1.1.5 Example: Dual heterotic fields. Similarly, the morphism

DualHeterotic : BString(n)
(p,

1
6p2)

// BGL(n;R)×B7U(1)

governs field configurations for the dual heterotic string. These examples, in their differentially refined
version, have been discussed in [SSS09c]. The last example above is governed by the extended Lagrangian
of the 7-dimensional Chern-Simons-type higher gauge field theory of String-2-connections. This has been
discussed in [FSS12b].

There are many more examples of (quantum) fields modulated by objects in slices of a cohesive higher
topos. To close this brief discussion, notice that the previous example has an evident analog in one lower
degree: a central extension of Lie groups A→ Ĝ→ G induces a long fiber sequence

A −→ Ĝ −→ G −→ BA −→ BĜ −→ BG
c // B2A

in H, where c is the group 2-cocycle that classifies the extension. If we regard this as a coefficient object
in the slice H/B2A, then regarding a manifold X in this slice means to equip it with an (BA)-principal 2-
bundle (an A-bundle gerbe) modulated by a map τAX : X → B2A; and a field (φ, η) : τAX → c is equivalently
a G-principal bundle P → X equipped with an equivalence η : c(E) ' τAX with the 2-bundle which obstructs

its lift to a Ĝ-principal bundle (the “lifting gerbe”). The differential refinement of this setup similarly yields
G-gauge fields equipped with such an equivalence. A concrete example for this is discussed below in section
1.3.4.

This special case of fields in a slice is called a twisted (differential) Ĝ-structure in [SSS09c] In more
generality, the terminology twisted (differential) c-structures is used in [SSS09c] to denote spaces of fields
of the form H/S(σX , c) for some slice topos H/S and some coefficient object (or “twisting object”) c; see
also the exposition in [Sc12]. In fact in full generality (quantum) fields in slice toposes are equivalent to
cocycles in (generalized and parameterized and possibly non-abelian and differential) twisted cohomology.
The constructions on which the above discussion is built is given in some generality in [NSS12a].

In many examples of twisted (differential) structures/fields in slices the twist is constrained to have a
certain factorization. For instance the twist of the (differential) String-structure in a heterotic background
is constrained to be the (differential) second Chern-class of a (differential) E8 × E8-cocycle; or for instance
the gauging of the 1d Chern-Simons fields on a knot in a 3d Chern-Simons theory bulk is constrained to be
the restriction of the bulk gauge field, as discussed in section 1.4.1.5. Another example is the twist of the
Chan-Paton bundles on D-branes, discussed below in section 1.3.4, which is constrained to be the restriction
of the ambient Kalb-Ramond field to the D-brane. In all these cases the fields may be thought of as being
maps in the slice topos that arise from maps in the arrow topos H∆1

. A moduli stack here is a map of
moduli stacks

Fieldsbulk+def : Fieldsdef
// Fieldsbulk

in H; and a domain on which such fields may be defined is an object Σbulk ∈ H equipped with a map (often,
but not necessarily, an inclusion) Σdef → Σbulk, and a field configuration is a square of the form

Σdef
φdef //

��

Fieldsdef

Fields

��
Σbulk

φbulk

// Fieldsbulk

'v~

in H. If we now fix φbulk then (φbulk)|Σdef
serves as the twist, in the above sense, for φdef . If Fieldsdef is

trivial (the point/terminal object), then such a field is a cocycle in relative cohomology : a cocycle φbulk on
Σbulk equipped with a trivialization (φbulk)|Σdef

of its restriction to Σdef .
The fields in Chern-Simons theory with Wilson loops displayed in section 1.4.1.5 clearly constitute an

example of this phenomenon. Another example is the field content of type II string theory on a 10-dimensional
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spacetime X with D-brane Q ↪→ X, for which the above diagram reads

Q //
� _

��

BPUconn

ddconn

��
X

B // B2U(1)conn ,

v~

discussed further below in section 1.3.4. In 7.1.8 we discuss how the supergravity C-field over an 11-
dimensional Hořava-Witten background with 10-dimensional boundary X ↪→ Y is similarly a relative cocyle,
with the coefficients controled, once more, by the extended Chern-Simons Lagrangian

ĉ : B(E8 × E8)conn
// B3U(1)conn ,

now regarded in H(∆1).

The following table lists some of main (classes of) examples. The left column displays a given extension
of smooth ∞-groups, to be regarded as a bundle of coefficients with typical ∞-fiber shown on the far left.
The middle column names the principal∞-bundles, or equivalently the nonabelian cohomology classes, that
are classified by the base of these extensions. These are to be thought of as twisting cocycles. The right
column names the corresponding twisted ∞-bundles, or eqivalently the corresponding twisted cohomology
classes.
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extension /
∞-bundle of coefficients

twisting ∞-bundle /
twisting cohomology

twisted ∞-bundle /
twisted cohomology

V // V//G

ρ

��
BG

ρ-associated
V -∞-bundle

section

GL(d)/O(d) // BO(d)

��
BGL(d)

tangent bundle
orthogonal structure /
Riemannian geometry

O(d)\O(d, d)/O(d) // B(O(d)×O(d))

��
BO(d, d)

generalized
tangent bundle

generalized (type II)
Riemannian geometry

BU(n) // BPU(n)

dd

��
B2U(1)

circle 2-bundle /
bundle gerbe

twisted vector bundle /
bundle gerbe module

B2U(1) // BAut(BU(1))

��
BZ2

double cover
orientifold structure /

Jandl bundle gerbe

B2ker(G) // BAut(BG)

��
BOut(G)

band (lien)
nonabelian (Giraud-Breen)

G-∞-gerbe

BString // BSpin

1
2p1

��
B3U(1)

circle 3-bundle /
bundle 2-gerbe

twisted
String 2-bundle

Q // B(T× T∗)

〈c1∪c1〉
��

B3U(1)

circle 3-bundle /
bundle 2-gerbe

twisted
T-duality structure

BFivebrane // BString

1
6p2

��
B7U(1)

circle 7-bundle
twisted

Fivebrane 6-bundle

[BnU(1) // BnU(1)

curv

��
[dRBn+1U(1)

curvature
(n+ 1)-form

circle n-bundle
with connection
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The following table lists smooth twisting ∞-bundles c that become identities under geometric realization,
def. 6.3.24, (the last one on 15-coskeleta). This means that the twists are purely geometric, the underlying
topological structure being untwisted.

universal twisting ∞-bundle twisted cohomology relative twisted cohomology

BO(d)

��
BGL(d)

Riemannian geometry,
orthogonal structure

BO(d)×O(d)

��
BO(d, d)

type II NS-NS generalized geometry

BHn

��
BEn(n)

U-duality geometry,
exceptional generalized geometry

BPU(H)

dd��
B2U(1)

twisted U(n)-principal bundles

Freed-Witten anomaly cancellation
on Spinc-branes:
B-field
with twisted gauge bundles on D-branes

BE8

2a��
B3U(1)

twisted String(E8)-principal 2-bundles
M5-brane anomaly cancellation:
C-field
with twisted gauge 2-bundles on M5-branes

The following table lists smooth twisted ∞-bundles that control various quantum anomaly cancellations in
string theory.

universal twisting ∞-bundle twisted cohomology relative twisted cohomology

BSO
W3��

B2U(1)

twisted Spinc-structure

BPU(H)× SO

dd−W3��
B2U(1)

general Freed-Witten anomaly cancellation:
B-field
with twisted gauge bundles on D-branes

BSpin
1
2p1��

B3U(1)

twisted String-2-bundles;
heterotic Green-Schwarz
anomaly cancellation

BString
1
6p2��

B7U(1)

twisted Fivebrane-7-bundles;
dual heterotic Green-Schwarz
anomaly cancellation
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The following table lists twisting ∞-bundles that encode geometric structure preserving higher supersym-
metry.
universal twisting ∞-bundle twisted cohomology relative twisted cohomology

BU(d, d)

��
BO(2d, 2d)

generalized complex geometry

BSU(3)× SU(3)

��
BO(6, 6)

d = 6, N = 2 type II compactification

BSU(7)

��
BE7(7)

d = 7, N = 1 11d sugra compactification

778



7.1.2 Spin-structures

For any n ∈ N, the Lie group Spin(n) is the universal simply connected cover of the special orthogonal group
SO(n). Since π1SO(n) ' Z2, it is an extension of Lie groups of the form

Z2 → Spin(n)→ SO(n) .

The lift of an SO(n)-principal bundle through this extension to a Spin(n)-principal bundle is a called a choice
of spin structure. A classical textbook on the geometry of spin structures is [LaMi89].

We discuss how this construction is only one step in a whole tower of analogous constructions involving
smooth n-groups for various n. These are higher smooth analogs of the Spin-group and define higher analogs
of smooth spin structures.

The Spin-group carries its name due to the central role that it plays in the description of the physics of
quantum spinning particles. In 1.4.2.5 we indicated how the higher spin structures to be discussed here are
similarly related to spinning quantum strings and 5-branes. More in detail, this requires twisted higher spin
structures, which we turn to below in 5.2.14.

• 7.1.2.1 – Overview: the smooth and differential Whitehead tower of BO

• 7.1.2.2 – Orienation structure

• 7.1.2.3 – Spin structure

• 7.1.2.4 – Smooth string structure and the String-2-group

• 7.1.2.5 – Smooth fivebrane structure and the Fivebrane-6-group

• 7.1.2.6 – Higher Spinc-structures

• 7.1.2.7 – Spinc as a homotopy fiber product in Smooth∞Grpd

• 7.1.2.8 – Smooth Stringc2

7.1.2.1 Overview: the smooth and differential Whitehead tower of BO We survey the construc-
tions and results about the smooth and differential refinement of the Whitehead tower of BO, to be discussed
in the following.

By definition 5.2.22 applied in ∞Grpd ' Top, the first stages of the Whitehead tower of the classifying
space BO of the orthogonal group, together with the corresponding obstruction classes is constructed by
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iterated pasting of homotopy pullbacks as in the following diagram:

...

BFivebrane

��

// · · · // ∗

��
BString

��

· · ·
1
6p2

// B8Z //// ∗

��
BSpin

��

· · ·
1
2p1

// B4Z // ∗

��
BSO

��

· · · w2 //

�� ��

B2Z2
//

��

∗

��
BO //

��

w1

11· · · // τ≤8BO // τ≤4BO // τ≤2BO // τ≤1BO ' BZ2

BGL

.

Here the bottom horizontal tower is the Postnikov tower, def. 5.1.50, of BO and all rectangles are homotopy
pullbacks.

For X a smooth manifold, there is a canonically given map X → BGL, which classifies the tangent
bundle TX. The lifts of this classifying map through the above Whitehead tower correspond to structures
on X as indicated in the following diagram:

BFivebrane

��
BString

��

1
6p2

// B7U(1) ' K(Z, 8) second fractional Pontryagin class

BSpin

��

1
2p1

// B3U(1) ' K(Z, 4) first fractional Pontryagin class

BSO

��

w2 // B2Z2 ' K(Z2, 2) second Stiefel-Whitney class

BO

��

w1 //

'
��

BZ2 ' K(Z2, 1) first Stiefel-Whitney class

X TX //

44orientation structure

99
spin structure

<<

string structure

;;

fivebrane structure

88

BGL

.

Here the horizontal morphisms denote representatives of universal characteristic classes, such that each
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sub-diagram of the shape

BĜ

��
BG

c // BnK

is a fiber sequence, def. 5.1.178.
The lifting problem presented by each of these steps is exemplified in terms of a smooth manifold X,

which comes with a canonical map X → BGL that classifies the tangent bundle TX of X.
In the first step, since the BO → BGL is a weak equivalence in Top ' ∞Grpd, we may always factor

X → BGL, up to homotopy, through BO. The homotopy class of the resulting composite X → BO
w1→ BZ2

is the first Stiefel-Whitney class of the manifold. The fact that BSO is the homotopy fiber of w1 means, by
the universal property of the homotopy pullback, that the further lift to a map X → BSO exists precisely
if the first Stiefel-Whitney class vanishes. While this is a classical fact, it is useful to make its relation to
homotopy pullbacks explicit here, since this illuminates the following steps in this tower as well as all the
steps in the smooth and differential refinements to follow.

Next, if the first Stiefel-Whitney class of X vanishes, then any choice of orientation, hence any choice
of lift X → BSO induces the composite map X → BSO

w2→ B2Z2, whose homotopy class is the second
Stiefel-Whitney class of X equipped with that orientation. If that class vanishes, there exists a choice of lift

X → BSpin, which is a choice of spin structure on X. The resulting composite X → BSpin
1
2p1

→ B3U(1)
is a representative of the first fractional Pontryagin class. If this vanishes, there exists a choice of lift

X → BString, which equips X with a string structure. The induced composite X → BString
1
6p2

→ B7U(1) is
a representative of the second fractional Pontryagin class of X. If that vanishes, there exists a choice of lift
X → BFivebrane, which is a choice of fivebrane srructure on X.

In this or slightly different terminology, this is a classical construction in homotopy theory. We show
in the following that this tower has a smooth lift from topological spaces through the geometric realization
functor, 6.4.5,

Smooth∞Grpd
Π // ∞Grpd

|−|
'
// Top

to smooth ∞-groupoids, of the form

BFivebrane

��
BString

��

1
6p2

// B7U(1)

BSpin

��

1
2p1

// B3U(1)

BSO

��

w2 // B2Z2

BO

��

w1 //

��

BZ2

X TX //

metric structure

44orientation structure

99
spin structure

<<

string structure

;;

fivebrane structure

88

BGL

Here BnU(1) is the smooth circle (n+ 1)-group, def. 6.4.21, the smooth classifying n-stack of smooth circle
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n-bundles. This is such that still all diagrams of the form

BĜ

��
BG

c // BnK

are fiber sequences, now in the cohesive ∞-topos Smooth∞Grpd, exhibiting the smooth moduli ∞-stack
BĜ as the homotopy fiber of the smooth universal characteristic map c which is a smooth refinement of the
corresponding ordinary characteristic map c.

The corresponding choices of lifts now are more refined than before, as they correspond to smooth
structures. In the first step, the choice of lift from a morphism X → BGL to a morphism X → BSO encodes
now genuine information, namely a choice of Riemannian metric on X. This is discussed in 7.1.3.1 below.

Further up, a choice of lift X → BSpin is a choice of smooth Spin-principal bundle on X. Next, the
object denoted String is a smooth 2-group, and a lift X → BString is a choice of smooth String-principal
2-bundle on X. The object denoted Fivebrane is a smooth 6-group and a choice of lift X → BFivebrane is
a choice of smooth Fivebrane-principal 6-bundle.

One consequence of the smooth refinement, which is important for the twisted such structures discussed
below in 5.2.14, is that the spaces of choices of lifts are much more refined than those of the ordinary non-
smooth case. Another consequence is that it allows us to proceed and next consider a differential refinement,
def. 5.2.113:

we show that the above smooth Whitehead tower further lifts to a differential Whitehead tower of the
form

BFivebraneconn

��
BStringconn

��

1
6 p̂2

// B7U(1)conn

BSpinconn

��

1
2 p̂1

// B3U(1)conn

BSOconn

��

w2 // B2Z2

BOconn

��

w1 //

��

BZ2

X TX //

metric and affine connection

44

99
spin connection

;;

string 2−connection

::

fivebrane 6−connection

77

BGLconn

,

where BnU(1)conn is the moduli n-stack of circle n-bundles with connection, according to 6.4.16. Still, all
diagrams of the form

BĜconn

��
BGconn

ĉ // BnKconn

are fiber sequences in Smooth∞Grpd, exhibiting the smooth moduli∞-stack BĜconn, def. 5.2.113, of higher
Ĝ-connections as the homotopy fiber of the differential refinement ĉ of the given characteristic map c. Choices
of lifts through this tower correspond to choices of smooth higher connections on smooth higher bundles.
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7.1.2.2 Orienation structure Before going to higher degree beyond the Spin-group, it is instructive to
first consider a lower degree. The special orthogonal Lie group itself is a kind of extension of the orthogonal
Lie group. To see this clearly, consider the smooth delooping BSO(n) ∈ Smooth∞Grpd according to 6.4.3.

Proposition 7.1.1. The canonical morphism SO(n) ↪→ O(n) induces a long fiber sequence in Smooth∞Grpd
of the form

Z2 → BSO(n)→ BO(n)
w1→ BZ2 ,

where w1 is the universal smooth first Stiefel-Whitney class from example 1.2.145.

Proof. It is sufficient to show that the homotopy fiber of w1 is BSO(n). This implies the rest of the
statement by prop. 5.1.179.

To see this, notice that by the discussion in 5.1.10 we are to compute the Z2-principal bundle over the
Lie groupoid BSO(n) that is classified by the above injection. By observation 5.1.219 this is accomplished
by forming a 1-categorical pullback of Lie groupoids

Z2//O(n)

��

// Z2//Z2

��
∗//O(n) // ∗//Z2

.

One sees that the canonical projection

Z2//O(n)
'→ ∗//SO(n)

is a weak equivalence (it is an essentially surjective and full and faithful functor of groupoids). �

Definition 7.1.2. For X ∈ Smooth∞Grpd any object equipped with a morphism rX : X → BO(n), we say
a lift oX of r through the above extension

BSO(n)

��
X

r //

oX

;;

BO(n)

is an orientation structure on (X, rX).

7.1.2.3 Spin structure

Proposition 7.1.3. The classical sequence of Lie groups Z2 → Spin→ SO induces a long fiber sequence in
Smooth∞Grpd of the form

Z2 → Spin→ SO→ BZ2 → BSpin→ BSO
w2→ B2Z2 ,

where w2 is the universal smooth second Stiefel-Whitney class from example 1.2.146.

Proof. It is sufficient to show that the homotopy fiber of w2 is BSpin(n). This implies the rest of the
statement by prop. 5.1.179.

To see this notice that the top morphism in the stanard anafunctor that presents w2

B(Z2 → O(n))ch
//

'
��

B(Z2 → 1)ch B2Z2

BSO(n)
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is a fibration in [CartSpop, sSet]proj. By proposition 5.1.9 this means that the homotopy fiber is given by the
1-categorical pullback of simplicial presheaves

B(Z2 → O(n))ch
//

��

∗

��
B(Z2 → O(n))ch

w2 // B(Z2 → 1)ch

.

The canonical projection

B(Z2 → O(n))ch
'→ BSO(n)ch

is seen to be a weak equivalence. �

Definition 7.1.4. For X ∈ Smooth∞Grpd an object equipped with orientation structure oX : X →
BSO(n), def. 7.1.2, we say a choice of lift ôX in

BSpin

��
X

oX //

ôX

;;

BSO(n)

equips (X, oX) with spin structure.

7.1.2.4 Smooth string structure and the String-2-group The sequence of Lie groupoids

· · · → BSpin(n)→ BSO(n)→ BO(n)

discussed in 7.1.2.2 and 7.1.2.3 is a smooth refinement of the first two steps of the Whitehead tower of BO(n).
We discuss now the next step. This is no longer presented by Lie groupoids, but by smooth 2-groupoids.

Write so(n) for the special orthogonal Lie algebra in dimension n. We shall in the following notationally
suppress the dimension and just write so. The simply connected Lie group integrating so is the Spin-group .

Proposition 7.1.5. Pulled back to BSpin the universal first Pontryagin class p1 : BO → B4Z is 2 times a
generator 1

2p1 of H4(BSpin,Z)

BSpin
1
2p1 //

��

B4Z

·2
��

BO
p1 // B4Z

.

We call 1
2p1 the first fractional Pontryagin class .

This is due to [Bott58]. See [SSS09b] for a review.

Definition 7.1.6. Write BString for the homotopy fiber in Top ' ∞Grpd of the first fractional Pontryagin
class

BString //

��

∗

��
BSpin

1
2p1 // B4Z

.

Its loop space is the string group
String := O〈7〉 := ΩBString .
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This is defined up to equivalence as an ∞-group object, but standard methods give a presentation by a
genuine topological group and often the term string group is implicitly reserved for such a topological group
model. See also the review in [Scho10].

We now discuss smooth refinements of 1
2p1 and of String as lifts through the intrinsic geometric realization,

def. 5.2.14, Π : Smooth∞Grpd→∞Grpd in Smooth∞Grpd, 6.4.

Proposition 7.1.7. We have a weak equivalence

cosk3(exp(so))
'→ BSpinc

in [SmoothCartSpop, sSet]proj, between the Lie integration, def. 6.4.79, of so and the standard presentation,
6.4.3, of BSpin.

Proof. By prop. 6.4.83. �

Corollary 7.1.8. The image of BSpin ∈ Smooth∞Grpd under the fundamental ∞-groupoid/geometric
realization functor Π, 6.3.5, is the classifying space BSpin of the topological Spin-group

|ΠBSpin| ' BSpin .

Proof. By prop. 6.3.30 applied to prop. 6.4.19. �

Theorem 7.1.9. The image under Lie integration, prop. 6.4.131, of the canonical Lie algebra 3-cocycle

µ = 〈−, [−,−]〉 : so→ b2R

on the semisimple Lie algebra so of the Spin group is a morphism in Smooth∞Grpd of the form

1

2
p1 := exp(µ) : BSpin→ B3U(1)

whose image under the fundamental∞-groupoid∞-functor/ geometric realization, 6.3.5, Π : Smooth∞Grpd→
∞Grpd is the ordinary fractional Pontryagin class 1

2p1 : BSpin→ B4Z in Top, and up to equivalence exp(µ)
is the unique lift of 1

2p1 from Top to Smooth∞Grpd with codomain B3U(1). We write 1
2p1 := exp(µ) and

call it the smooth first fractional Pontryagin class.
Moreover, the corresponding refined differential characteristic class, 6.4.17,

1

2
p̂1 : Hconn(−,BSpin)→ Hdiff(−,B3U(1)) ,

wich we call the fractional Pontryagin class, is in cohomology the corresponding ordinary refined Chern-Weil
homomorphism [HoSi05]

[
1

2
p̂1] : H1

Smooth(X,Spin)→ H4
diff(X)

with values in ordinary differential cohomology that corresponds to the Killing form invariant polynomial
〈−,−〉 on so.

Proof. This is shown in [FSS10].
Using corollary. 7.1.7 and unwinding all the definitions and using the characterization of smooth de

Rham coefficient objects, 6.4.13, and smooth differential coefficient objects, 6.4.16, one finds that the post-
composition with exp(µ, cs)diff induces on Čech cocycles precisely the operation considered in [BrMc96b],
and hence the conclusion follows essentially as by the reasoning there: one reads off the 4-curvature of the
circle 3-bundle assigned to a Spin bundle with connection ∇ to be ∝ 〈F∇∧F∇〉, with the normalization such
that this is the image in de Rham cohomology of the generator of H4(BSpin) ' Z ' 〈 12p1〉.

Finally that 1
2p1 is the unique smooth lift of 1

2p1 follows from theorem 6.4.38. �
By the unique smooth refinement of the first fractional Pontryagin class, 7.1.9, we obtain a smooth refinement

of the String-group, def. 7.1.6.

785



Definition 7.1.10. Write BString for the homotopy fiber in Smooth∞Grpd of the smooth refinement of
the first fractional Pontryagin class from prop. 7.1.9:

BString //

��

∗

��
BSpin

1
2 p1 // B3U(1)

.

We say its loop space object is the smooth string 2-group

Stringsmooth := ΩBString .

We speak of a smooth 2-group because Stringsmooth is a categorical homotopy 1-type in Smooth∞Grpd,
being an extension

BU(1)→ Stringsmooth → Spin

of the categorical 0-type Spin by the categorical 1-type BU(1) in Smooth∞Grp.

Proposition 7.1.11. The categorical homotopy groups of the smooth String 2-group, πn(BString) ∈ Sh(CartSp),
are

π1(BString) ' Spin

and
π2(BString) ' U(1) .

All other categorical homotopy groups are trivial.

Proof. Notice that by construction the non-trivial categorical homotopy groups of BSpin and B3U(1)
are π1BSpin = Spin and π3B

3U(1) = U(1), respectively. Using the long exact sequence of homotopy sheaves
(use [L-Topos] remark 6.5.1.5,with X = ∗ the base point) applied to def. 7.1.10, we obtain the long exact
sequence of pointed objects in Sh(CartSp)

· · · → πn+1(B3U(1))→ πn(BString)→ πn(BSpin)→ πn(B3U(1))→ πn−1(BString)→ · · ·

this yields for n = 0
0→ π1(BString)→ Spin→ 0

and for n = 2
0→ U(1)→ π2(BString)→ 0

and for n ≥ 3
0→ πn(BString)→ 0 .

�
However the geometric homotopy-type, 5.2.3, of BString is not bounded, in fact it coincides with that of the

topological string group:

Proposition 7.1.12. Under intrinsic geometric realization, 6.4.5, | − | : Smooth∞Grpd
Π→ ∞Grp

|−|→ Top
the smooth string 2-group maps to the topological string group

|Stringsmooth| ' String .

Proof. Since B3U(1) has a presentation by a simplicial object in SmoothMfd, prop. 6.4.30 asserts that

|Stringsmooth| ' hofib|1
2
p1| .
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The claim then follows with prop. 7.1.9

· · · ' hofib
1

2
p1

and def. 7.1.6
· · · ' String .

�
Notice the following important subtlety:

Proposition 7.1.13. There exists an infinite-dimensional Lie group String1smooth whose underlying topo-
logical group is a model for the String group in Top, def. 7.1.6.

This is due to [NSW11], by a refinement of a construction in [Stol96].

Remark 7.1.14. However, BString1smooth itself is not a model for def. 7.1.10, because it is an internal
1-type in Smooth∞Grpd, hence because π2BStringsmooth = 0. In [NSW11] a smooth 2-group with the
correct internal homotopy groups based on String1smooth is given, but it is not clear yet whether or not this
is a model for def. 7.1.10.

We proceed by discussing concrete presentations of the smooth string 2-group.

Definition 7.1.15. Write
string := soµ

for the L∞-algebra extension of so induced by µ according to def 6.4.133.
We call this the string Lie 2-algebra

Observation 7.1.16. The indecomposable invariant polynomials on string are those of so except for the
Killing form:

inv(string) = inv(so)/(〈−,−〉) .

Proof. As a special case of prop. 6.4.151. �

Proposition 7.1.17. The smooth ∞-groupoid that is the Lie integration, def. 6.4.79, of soµ is a model for
the smooth string 2-group

BString ' cosk3 exp(soµ) .

Notice that this statement is similar to, but different from, the statement about the untruncated expo-
nentiated L∞-algebras in prop. 6.4.139.
Proof. By prop. 7.1.9 an explicit presentation for BString is given by the pullback

BStringc //

��

EB2U(1)c

��
cosk3 exp(so)

∫
∆• exp(µ)

// B3U(1)c

in [CartSpop, sSet], where B3U(1)c is the simplicial presheaf whose 3-cells form the space U(1), and where
EB2U(1) is the simplicial presheaf whose 2-cells form U(1) and whose 3-cells form the space of arbitrary
quadruples of elements in U(1). The right vertical morphism forms the oriented sum of these quadruples.

Since all objects are 3-truncated, it is sufficient to consider the pullback of the simplices in degrees 0 to
3. In degrees 0 to 1 the morphism EB2U(1) → B3U(1)c is the identity, hence in these degrees BStringc
coincides with cosk3 exp(so). In degree 2 the pullback is the product of cosk3(so)2 with U(1), hence the
2-cells of BStringc are pairs (f, c) consisting of a smooth map f : ∆2 → Spin (with sitting instants) and an
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elemement c ∈ U(1). Finally a 3-cell in BStringc is a pair (σ, {ci}) of a smooth map σ : ∆3 → Spin and four
labels ci ∈ U(1), subject to the condition that the sum of the labels is the integral of the cocycle µ over σ:

c4c2c
−1
1 c−1

3 =

∫
∆3

σ∗µ(θ) modZ ,

(with θ the Maurer-Cartan form on Spin).
The description of the cells in cosk3 exp(gµ) is similar: a 2-cells is a pair (f,B) consisting of a smooth

function f : ∆2 → Spin and a smooth 2-form B ∈ Ω2(∆2) (both with sitting instants), and a 3-cell is a pair
consisting of a smooth function σ : ∆3 → Spin and a 2-form B̂ ∈ Ω2(∆3) such that dB̂ = σ∗µ(θ).

There is an evident morphism

p :

∫
∆•

: cosk3(soµ)→ BStringc

that is the identity on the smooth maps from simplices into the Spin-group and which sends the 2-form
labels to their integral over the 2-faces

p2 : (f,B) 7→ (f, (

∫
∆2

B)modZ) .

We claim that this is a weak equivalence. The first simplicial homotopy group on both sides is Spin itself
(meaning: the presheaf on CartSp represented by Spin). The nontrivial simplicial homotopy group to check
is the second. Since π2(Spin) = 0 every pair (f,B) on ∂∆3 is homotopic to one where f is constant. It follows
from prop. 6.4.87 that the homotopy classes of such pairs where also the homotopy involves a constant map
∂∆3 × ∆1 → Spin are given by R, being the integral of the 2-forms. But then moreover there are the
non-constant homotopies in Spin from the constant 2-sphere to itself. Since π3(Spin) = Z and µ(θ) is an
integral form, this reduces the homotopy classes to U(1) = R/Z. This are the same as in BStringc and the
integration map that sends the 2-forms to elements in U(1) is an isomorphism on these homotopy classes. �

Remark 7.1.18. Propositions 7.1.17 and 7.1.12 together imply that the geometric realization |cosk3 exp(soµ)|
is a model for BString in Top

| exp(soµ)| ' BString.

With slight differences in the technical realization of exp(gmu) this was originally shown in [Hen08, theorem
8.4]. For the following discussion however the above perspective, realizing cosk3 exp(soµ) as a presentation
of the homotopy fiber of the smooth first fractional Pontryagin class, def 7.1.10, is crucial.

We now discuss three equivalent but different models of the smooth String 2-group by diffeological strict
2-groups, hence by crossed modules of diffeological groups. See [BCSS07] for the general notion of strict
Fréchet-Lie 2-groups and for discussion of one of the following models.

Definition 7.1.19. For (G1 → G0) a crossed module of diffeological groups (groups of concrete sheaves on
CartSp) write

Ξ(G1 → G0) ∈ [CartSpop, sSet]

for the corresponding presheaf of simplicial groups.

There is an evident strictification of BStringc from the proof of prop 7.1.17 given by the following
definition. For the notion of thin homotopy classes of paths and disks see [ScWa08].

Definition 7.1.20. Write
Ω̂thSpin→ PthSpin ,

for the crossed module where
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• PthSpin is the group whose elements are thin-homotopy classes of based smooth paths in G and whose
product is obtained by rigidly translating one path so that its basepoint matches the other path’s
endpoint and then concatenating;

• Ω̂thSpin is the group whose elements are equivalence classes of pairs (d, x) consisting of thin homotopy
classes of disks d : D2 → G in G with sitting instant at a chosen point on the boundary, together with
an element x ∈ R/Z. Two such pairs are taken to be equivalent if the boundary of the disks has the
same thin homotopy classes and if the labels x and x′ differ, in R/Z, by the integral

∫
D3 f

∗µ(θ) over
any 3-ball f : D3 → G cobounding the two disks. The product is given by translating and then gluing
of disks at their basepoint (so that their boundary paths are being concatenated, hence multiplied in
PthSpin) and adding the labels in R/Z.

The map from Ω̂thSpin to PthSpin is given by sending a disk to its boundary path.

The action of PthSpin on ΩthSpin is given by whiskering a disk by a path and its reverse path.

Proposition 7.1.21. Let
BStringc → BΞ(Ω̂thSpin→ PthSpin)

be the morphism that sends maps to Spin to their thin-homotopy class. This is a weak equivalence in
[CartSpop, sSet]proj.

We produce now two equivalent crossed modules that are both obtained as central extensions of path
groups. This is joint with Danny Stevenson, based on results in [MuSt03].

The following proposition is standard.

Proposition 7.1.22. Let H ⊂ G be a normal subgroup of some group G and lat Ĥ → H be a central
extension of groups such that the conjugation action of G on H lifts to an automorphism action α : G →
Aut(Ĥ) on the central extension. Then (Ĥ → G) with this α is a crossed module.

We construct classes of examples of this type from central extensions of path groups.

Proposition 7.1.23. Let G ⊂ Γ be a simply connected normal Lie subgroup of a Lie group Γ. Write PG
for the based path group of G whose elements are smooth maps [0, 1] → G starting at the neutral element
and whose product is given by the pointwise product in G. Consider the complex with differential d ± δ of
simplicial forms on BGch. Let (F, a, β) be a triple where
i. a ∈ Ω1(G×G) such that δa = 0;
ii. F is a closed integral 2-form on G such that δF = da;
iii. β : Γ→ Ω1(G) such that, for all γ, γ1, γ2 ∈ Γ,

• γ∗F = F + dβγ ;

• (γ1)∗βγ2 − βγ1γ2 + βγ1 = 0;

• a = γ∗a+ δ(βγ);

• for all based paths f : [0, 1]→ G, f∗βγ = (f, γ−1)∗a+ (γ, fγ−1)∗a.

1. Then the map c : PG×PG→ U(1) given by c : (f, g) 7→ cf,g := exp

(
2πi

∫
0,1

(f, g)∗a

)
is a group 2-cocycle

leading to a central extension P̂G = PGn U(1) with product (γ1, x1) · (γ2, x2) = (γ1 · γ2, x1x2cγ1,γ2
).

2. Since G is simply connected every loop in G bounds a disk D. There is a normal subgroup N ⊂ P̂G
consisting of pairs (γ, x) with γ(1) = e and x = exp(2πi

∫
D
F ) for any disk D in G such that ∂D = γ.

3. Finally, G̃ := P̂G/N is a central extension of G by U(1) and the conjugation action of Γ on G lifts to
G̃ by setting α(γ)(f, x) := (α(γ)(f), x exp(∈f βγ)) such that Cent(G,Γ, F, a, β) := (G̃→ Γ) is a Lie crossed
module and hence a strict Lie 2-group of the type in prop. 7.1.22.
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Proof. All statements about the central extension Ĝ can be found in [MuSt03]. It remains to check that
the action α : Γ → Aut(G̃) satisfies the required axioms of a crossed module, in particular the condition
α(t(h))(h′) = hh′h−1. For this we have to show that

α(h(1))([f, z]) = [h, 1][f, z]

[
h−1, exp(−

∫
(h,h−1)

a)

]
,

where h denotes a based path in PG, so that [h, 1] represents an element of G̃. By definition of the product
in G̃, the right hand side is equal to[

hfh−1, z exp

(∫
(h,f)

a+

∫
(hf,h−1)

a−
∫

(h,h−1)

a

)]
.

This is not exactly in the form we want, since the left hand side is equal to
[
h(1)fh(1)−1, z exp(

∫
f
βh)
]
.

Therefore, we want to replace hfh−1 with the homotopic path h(1)fh(1)−1. An explicit homotopy between
these two paths is given by H(s, t) = h((1− s)t+ s)f(t)h((1− s)t+ s)−1. Therefore, we have the equality[

hfh−1, z exp

(∫
(h,f)

a+

∫
(hf,h−1)

a−
∫

(h,h−1)

a

)]

=

[
h(1)fh(1)−1, z exp

(∫
(h,f)

a+

∫
(hf,h−1)

a−
∫

(h,h−1)

a+

∫
H∗F

)]
.

Using the relation δ(F ) = da and the fact that the pullbacks of F along the maps [0, 1] × [0, 1] → G,
(s, t) 7→ h((1− s)t+ s) vanish, we see that∫

H∗F =

∫
(f,h(1)−1)

a−
∫

(f,h−1)

a+

∫
(h,h−1)

a+

∫
(h(1),fh(1)−1)

a−
∫

(h,fh−1)

a .

Therefore the sum of integrals ∫
(h,f)

a+

∫
(hf,h−1)

a−
∫

(h,h−1)

a+

∫
H∗F

can be written as∫
(h,f)

a+

∫
(hf,h−1)

a−
∫

(h,h−1)

a+

∫
(f,h(1)−1)

a−
∫

(f,h−1)

a+

∫
(h,h−1)

a+

∫
(h(1),fh(1)−1)

a−
∫

(h,fh−1)

a .

Using the condition δ(a) = 0, we see that this simplifies down to
∫

(f,h(1)−1)
a+

∫
(h(1),fh(1)−1)

a. Therefore, a

sufficient condition to have a crossed module is the equation f∗βh = (f, h(1))∗a+ (h(1), fh(1)−1)∗a . �

Proposition 7.1.24. Given triples (F, a, β) and (F ′, a′, β′) as above and given b ∈ Ω1(G) such that

F ′ = F + db , (7.1)

a′ = a+ δ(b) (7.2)

and for all γ ∈ Γ
βγ + γ∗b = b+ β′γ , (7.3)

then there is an isomorphism Cent(G,Γ, F, a, β) ' Cent(G,Γ, F ′, a′, β′) .

790



In [BCSS07] the following special case of this general construction was considered.

Definition 7.1.25. Let G be a compact, simple and simply-connected Lie group with Lie algebra g. Let 〈·, ·〉
be the Killing form invariant polynomial on g, normalized such that the Lie algebra 3-cocycle µ := 〈·, [·, ·]〉
extends left invariantly to a 3-form on G which is the image in deRham cohomology of one of the two
generators of H3(G,Z) = Z. Let ΩG be the based loop group of G whose elements are smooth maps
γ : [0, 1] → G with γ(0) = γ(1) = e and whose product is by pointwise multiplication of such maps. Define
F ∈ Ω2(ΩG), a ∈ Ω1(ΩG× ΩG) and β : Γ→ Ω1(ΩG)

F (γ,X, Y ) :=

∫ 2π

0

〈X,Y ′〉dt

a(γ1, γ2, X1, X2) :=

∫ 2π

0

〈X1, γ̇2γ
−1
2 〉dt

β(p)(γ,X) :=

∫ 2π

0

〈p−1ṗ, X〉dt

This satisfies the axioms of prop. 7.1.23 and we write

StringBCSS(G) := ΞCent(ΩG,PG,F, α, β)

for the corresponding diffeological strict 2-group. If G = Spin we write just StringBCS for this.

There is a variant of this example, using another cocycle on loop groups that was given in [Mic87].

Definition 7.1.26. With all assumptions as in definition 7.1.25 define now

F (γ,X, Y ) :=
1

2

∫ 2π

0

〈γ−1γ̇, [X,Y ]〉dt

a(γ1, γ2, X1, X2) :=
1

2

∫ 2π

0

(
〈X1, γ̇2γ

−1
2 〉 − 〈γ

−1
1 γ̇1, γ2X2γ

−1
2 〉
)
dt

β(p)(γ,X) :=
1

2

∫ 2π

0

〈γ−1p−1ṗγ + p−1ṗ, X〉dt

This satisfies the axioms of proposition 7.1.23 and we write

StringMick(G) := ΞCent(ΩG,PG,F, α, β)

for the corresponding 2-group. If G = Spin we write just StringMick for this.

Proposition 7.1.27. There is an isomorphism of 2-groups StringBCSS(G)
' // StringMick(G) .

Proof. We show that b ∈ Ω1(ΩG) defined by b(γ,X) := 1
4π

∫ 2π

0
〈γ−1γ̇, X〉dt satisfies the conditions of

prop. 7.1.24 and hence defines the desired isomorphism.

• Proof of equation 7.1: We calculate the exterior derivative db. To do this we first calculate the deriva-

tive Xb(y): if γt = γetX then to first order in t, γ−1
t γ̇t is equal to γ−1γ̇ + t[γ−1γ̇, X] + tX ′. Therefore

Xb(Y ) =
1

2

∫ 2π

0

(
〈γ−1γ̇, [X,Y ]〉+ 〈X ′, Y 〉

)
dt .

Hence db is equal to

1

2

∫ 2π

0

(
〈γ−1γ̇, [X,Y ]〉+ 〈X ′, Y 〉+ 〈γ−1ċ, [X,Y ]〉 − 〈Y ′, X〉 − 〈γ−1γ̇, [X,Y ]〉

)
,

which is easily seen to simplify down to

−
∫ 2π

0

〈X,Y 〉dt+
1

2

∫ 2π

0

〈γ−1γ̇, [X,Y ]〉dt .
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• Proof of equation 7.2: We get

1

2

∫ 2π

0

{
〈γ2γ̇

−1
2 , X2〉 − 〈γ−1

2 γ−1
1 γ̇1γ2, γ

−1
2 X1γ2〉 − 〈γ−1

2 γ−1
1 γ̇1γ2, X2〉

−〈γ−1
2 γ̇2, γ

−1
2 X1γ2〉 − 〈γ−1

2 γ̇2, X2〉+ 〈γ−1
1 γ̇1, X1〉

}
dt ,

which is equal to
1

2

∫ 2π

0

{
−〈γ−1

1 γ̇1, γ2X2γ
−1
2 〉 − 〈γ̇2γ

−1
2 , X1〉

}
dt ,

which in turn equals

1

2

∫ 2π

0

{
〈X1, γ̇2γ

−1
2 〉 − 〈γ

−1
1 γ̇1, γ2X2γ

−1
2 〉
}
dt− 1

2π

∫ 2π

0

〈X1, γ̇2γ
−1
2 〉dt .

• Proof of equation 7.3: we get

p∗b(γ; γX) = b(pγp−1; pγp−1(pXp−1))

=
1

2

∫ 2π

0

〈pγp−1(ṗγp−1 + pγ̇p−1 − pγp−1ṗp−1, pXp−1〉dt

=
1

2

∫ 2π

0

〈pγ−1p−1ṗγp−1 + pγ−1γ̇p−1 − ṗp−1, pXp−1〉dt

=
1

2

∫ 2π

0

〈γ−1p−1ṗγ + γ−1γ̇ − p−1ṗ, X〉dt

= b(γ, γX) +
1

2

∫ 2π

0

〈γ−1p−1ṗγ − p−1ṗ, X〉dt

= b(γ, γX) +
1

2

∫ 2π

0

〈γ−1p−1ṗγ + p−1ṗ, X〉dt− 1

2π

∫ 2π

0

〈p−1ṗ, X〉dt

The three conditions in proposition 7.1.24 are satisfied and, therefore, the desired isomorphism is established.
�

Proposition 7.1.28. The strict 2-group StringMick from definition 7.1.26 is equivalent to the model Ξ(Ω̂thSpin→
Pth)Spin from def. 7.1.20.

Proof. We define a morphism F : BStringMick → BΞ(Ω̂thSpin → Pth)Spin. Its action on 1- and
2-morphisms is obvious: it sends parameterized paths γ : [0, 1] → G = Spin. to their thin-homotopy
equivalence class

F : γ 7→ [γ]

and similarly for parameterized disks. On the R/Z-labels of these disks it acts as the identity.
The subtle part is the compositor measuring the coherent failure of this assignment to respect composition:

Define the components of this compositor for any two parameterized based paths γ1, γ2 : [0, 1] → G with
pointwise product (γ1 ·γ2) : [0, 1]→ G and images [γ1], [γ2], [γ1 ·γ2] in thin homotopy classes to be represented
by a parameterized disk in G

γ2

��

γ1

??

γ1·γ2

//
dγ1,γ2��
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equipped with a label xγ1,γ2 ∈ R/Z to be determined. Notice that this triangle is a diagram in Ξ(Ω̂thSpin→
Pth)Spin, so that composition of 1-morphisms is concatenation γ1 ◦ γ2 of paths. A suitable disk in G is
obtained via the map

D2 a // [0, 1]2
(s1,s2)7→γ1(s1)·γ2(s2) // G ,

where a is a smooth surjection onto the triangle {(s1, s2)|s2 ≤ s1} ⊂ [0, 1]2 such that the lower semi-circle
of ∂D2 = S1 maps to the hypotenuse of this triangle. The coherence law for this compositor for all triples
of parameterized paths γ1, γ2, γ3 : [0, 1]→ G amounts to the following: consider the map

D3 a // [0, 1]3
(s1,s2,s3) 7→γ1(s1)·γ2(s2)·γ3(s3) // G ,

where the map a is a smooth surjection onto the tetrahedron {(s3 ≤ s2 ≤ s1)} ⊂ [0, 1]3 . Then the coherence
condition

•
γ2 // •

γ3

��
•

γ1

OO

γ1·γ2

??

γ1·γ2·γ3

// •

{
s3=0
s2≤s1

}
�!

{
s1=s2
s3≤s1

}
	�

=

•
γ2 //

γ2·γ3

��

•

γ3

��
•

γ1

OO

γ1·γ2·γ3

// •

{
s1=1
s3≤s2

}
}�

{
s2=s3
s2≤s1

}

�

requires that the integral of the canonical 3-form on G pulled back to the 3-ball along these maps accounts
for the difference in the chosen labels of the disks involved:∫

D3

(b ◦ a)∗µ =

∫
s3≤s2≤s1

(γ1 · γ2 · γ3)∗µ = xγ1,γ2
+ xγ1·γ2,γ3

− xγ1,γ2·γ3
− xγ2,γ3

∈ R/Z .

(Notice that there is no further twist on the right hand side because whiskering in BΞ(Ω̂thG→ PthG) does
not affect the labels of the disks.) To solve this condition, we need a 2-form to integrate over the triangles.
This is provided by the degree 2 component of the simplicial realization (µ, ν) ∈ Ω3(G)× Ω2(G×G) of the
first Pontryagin form as a simplicial form on BGch:

for g a semisimple Lie algebra, the image of the normalized invariant bilinear polynomial 〈·, ·〉 under the
Chern-Weil map is (µ, ν) ∈ Ω3(G)× Ω2(G×G) with

µ := 〈θ ∧ [θ ∧ θ]〉

and
ν := 〈θ1 ∧ θ̄2〉 ,

where θ is the left-invariant canonical g-valued 1-form on G and θ̄ the right-invariant one.
So, define the label assigned by our compositor to the disks considered above by

xγ1,γ2
:=

∫
s2≤s1

(γ1, γ2)∗ν .

To show that this assignment satisfies the above condition, use the closedness of (µ, ν) in the complex of
simplicial forms on BGch: δµ = dν and δν = 0. From this one obtains

(γ1 · γ2 · γ3)∗µ = −d(γ1 · γ2, γ3)∗ν = −d(γ1, γ2 · γ3)∗ν

and
(γ1, γ2 · γ3)∗ν = (γ1 · γ2, γ3)∗ν + (γ1, γ2)∗ν − (γ2, γ3)∗ν .
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Now we compute as follows: Stokes’ theorem gives∫
s3≤s2≤s1

(γ1 · γ2 · γ3)∗µ =

 ∫
s3=0,s2≤s1

+

∫
s1=s2,s3≤s1

−
∫

s1=1,s3≤s2

−
∫

s2=s3,s2≤s1

 (γ1, γ2 · γ3)∗ν .

The first integral is manifestly equal to xγ1,γ2 . The last integral is manifestly equal to −xγ1,γ2·γ3 . For the
remaining two integrals we rewrite

· · · = xγ1,γ2
− xγ1,γ2·γ3

+

 ∫
s1=s2,s3≤s1

−
∫

s1=1,s3≤s2

 ((γ1 · γ2, γ3)∗ν + (γ1, γ2)∗ν − (γ2, γ3)∗ν) .

The first term in the integrand now manifestly yields xγ1·γ2,γ3 − xγ2,γ3 . The second integrand vanishes on
the integration domain. The third integrand, finally, gives the same contribution under both integrals and
thus drops out due to the relative sign. So in total what remains is indeed

· · · = xγ1,γ2
− xγ1,γ2·γ3

+ xγ1·γ2,γ3
− xγ2,γ3

.

This establishes the coherence condition for the compositor.

Finally we need to show that the compositor is compatible with the horizontal composition of 2-
morphisms. We consider this in two steps, first for the horizontal composition of two 2-morphisms both
starting at the identity 1-morphism in BStringMick(G) – this is the product in the loop group Ω̂G centrally
extended using Mickelsson’s cocycle – then for the horizontal composition of an identity 2-morphism in
BStringMick(G) with a 2-morphism starting at the identity 1-morphisms – this is the action of PG on Ω̂G.
These two cases then imply the general case.

• Let (d1, x1) and (d2, x2) represent two 2-morphisms in BStringMick starting at the identity 1-morphisms.
So

di : [0, 1]→ ΩG

is a based path in loops in G and xi ∈ U(1). We need to show that

•

Id

%%

γ1

CC

γ1·γ2

CC•

Id

%%

γ2

CC•(d1,x1)

��
(d2,x2)

��

(dγ1,γ2 ,xγ1,γ2 )
��

= •

Id

%%

γ1·γ2

CC•

Id

%% •

(d1·d2,x1+x2+ρ(d1,d2))

��

as a pasting diagram equation in BΞ(Ω̂thG → PthG). Here on the left we have gluing of disks in G
along their boundaries and addition of their labels, while on the right we have the pointwise product
from definition 7.1.26 of labeled disks as representing the product of elements Ω̂G.

There is an obvious 3-ball interpolating between the disk on the left and on the right of the above
equation:

({s2 ≤ s1} ⊂ [0, 1]3)→ G

(s1, s2, t) 7→ (d1(t, s1) · d2(t, s2))

•

Id

%%

γ1

CC

γ1·γ2

CC•

Id

%%

γ2

CC•{s2=0}
��

{s1=0}
��

{t=1}
��

, •

Id

%%

γ1·γ2

CC•

Id

%% •

{s1=s2}

��

.
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The compositor property demands that the integral of the canonical 3-form over this ball accounts for
the difference between xγ1,γ2 and ρ(γ1, γ2)

ρ(d1, d2) =

∫
s2≤s1
0≤t≤1

(d1 · d2)∗µ+

∫
s2≤s1

(γ1, γ2)∗ν .

Now use again the relation between µ and dν to rewrite this as

· · · =
∫

s2≤s1
0≤t≤1

((d1)∗µ+ (d2)∗µ− d(d1, d2)∗ν) +

∫
s2≤s1

(γ1, γ2)∗ν .

The first two integrands vanish. The third one leads to boundary integrals

· · · = −

 ∫
s2=0

+

∫
s1=0

 (d1, d2)∗ν −
∫
t=1
s2≤s1

(d1, d2)∗ν +

∫
s2≤s1

(γ1, γ2)∗ν +

∫
0≤t≤1
s1=s2

(d1, d2)∗ν .

The first two integrands vanish on their integration domain. The third integral cancels with the fourth
one. The remaining fifth one is indeed the 2-cocycle on PΩG from definition 7.1.26.

• The second case is entirely analogous: for γ1 a path and (d2, x2) a centrally extended loop we need to
show that

•

γ1

%%

γ1

CC

γ1·γ2

CC•

Id

%%

γ2

CC•Id

��
(d2,x2)

��

(dγ1,γ2
,xγ1,γ2

)
��

= •

γ1

%%

γ1·γ2

CC•

Id

%% •

(γ1·d2,x1+x2+λ(γ1,d2))

��

.

There is an obvious 3-ball interpolating between the disk on the left and on the right of the above
equation:

({s2 ≤ s1} ⊂ [0, 1]3)→ G

(s1, s2, t) 7→ (γ1(s1) · d2(t, s2))

•

γ1

%%

γ1

CC

γ1·γ2

CC•

Id

%%

γ2

CC•{s2=0}
��

{s1=0}
��

{t=1}
��

, •

γ1

%%

γ1·γ2

CC•

Id

%% •

{s1=s2}

��

.

The compositor property demands that the integral of the canonical 3-form over this ball accounts for
the difference between xγ1,γ2 and λ(γ1, γ2)

λ(γ1, d2) =

∫
s2≤s1
0≤t≤1

(d1 · d2)∗µ+

∫
s2≤s1

(γ1, γ2)∗ν .

This is essentially the same computation as before, so that the result is

· · · =
∫

0≤t≤1
s1=s2

(γ1, d2)∗ν .

This is indeed the quantity from definition 7.1.26.
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�
Applied to the case G = Spin in summary this shows that all these strict smooth 2-groups are indeed

presentations of the abstractly defined smooth String 2-group from def. 7.1.10.

Theorem 7.1.29. We have equivalences of smooth 2-groups

String ' Ωcosk3 exp(soµ) ' StringBCSS ' StringMick .

Notice that all the models on the right are degreewise diffeological and in fact Fréchet, but not degreewise
finite dimensional. This means that neither of these models is a differentiable stack or Lie groupoid in the
traditional sense, even though they are perfectly good models for objects in Smooth∞Grpd. Some authors
found this to be a deficiency. Motivated by this it has been shown in [Scho10] that there exist finite
dimensional models of the smooth String-group. Observe however the following:

1. If one allows arbitrary disjoint unions of finite dimensional manifolds, then by prop. 3.1.22 every
object in Smooth∞Grpd has a presentation by a simplicial object that is degreewise of this form, even
a presentation which is degreewise a union of just Cartesian spaces.

2. Contrary to what one might expect, it is not the degreewise finite dimensional models that seem to
lend themselves most directly to differential refinements and differential geometric computations with
objects in Smooth∞Grpd, but the models of the form coskn exp(g). See also the discussion in 7.1.6.3
below.

7.1.2.5 Smooth fivebrane structure and the Fivebrane-6-group We now climb up one more step
in the smooth Whitehead tower of the orthogonal group, to find a smooth and differential refinement of the
Fivebrane group [SSS09b].

Proposition 7.1.30. Pulled back along BString→ BO the second Pontryagin class is 6 times a generator
1
6p2 of H8(BString,Z) ' Z:

BString

1
6p2

//

��

B8Z

·6
��

BSpin
p2 // B8Z

.

This is due to [Bott58]. We call 1
6p2 the second fractional Pontryagin class .

Definition 7.1.31. Write BFivebrane for the homotopy fiber of the second fractional Pontryagin class in
Top ' ∞Grpd

BFivebrane //

��

∗

��
BString

1
6p2

// B8Z

.

Write
Fivebrane := ΩBFivebrane

for its loop space, the topological fivebrane ∞-group.

This is the next step in the topological Whitehead tower of O after String, often denoted O〈7〉. For a
discussion of its role in the physics of super-Fivebranes that gives it its name here in analogy to String =
O〈3〉 see [SSS09b]. See also [DHH10], around remark 2.8. We now construct smooth and then differential
refinements of this object.
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Theorem 7.1.32. The image under Lie integration, prop. 6.4.131, of the canonical Lie algebra 7-cocycle

µ7 = 〈−, [−,−], [−,−], [−,−]〉 : soµ3
→ b6R

on the string Lie 2-algebra soµ3
, def. 7.1.15, is a morphism in Smooth∞Grpd of the form

1
6p2 : BString→ B7U(1)

whose image under the fundamental∞-groupoid∞-functor/ geometric realization, 6.3.5, Π : Smooth∞Grpd→
∞Grpd is the ordinary second fractional Pontryagin class 1

6p2 : BString → B8Z in Top. We call 1
6 p̂2 :=

exp(µ7) the second smooth fractional Pontryagin class
Moreover, the corresponding refined differential characteristic cocycle, 6.4.17,

1
6 p̂2 : Hconn(−,BSpin)→ Hdiff(−,B7U(1)) ,

induces in cohomology the ordinary refined Chern-Weil homomorphism [HoSi05]

[ 1
6 p̂2] : H1

Smooth(X,String)→ H4
diff(X)

of 〈−,−,−,−〉 restricted to those Spin-principal bundles P that have String-lifts

[P ] ∈ H1
smooth(X,String) ↪→ H1

smooth(X,Spin) .

Proof. This is shown in [FSS10]. The proof is analogous to that of prop. 7.1.9. �

Definition 7.1.33. Write BFivebrane for the homotopy fiber in Smooth∞Grpd of the smooth refinement
of the second fractional Pontryagin class, prop. 7.1.32:

BFivebrane //

��

∗

��
BString

1
6p2

// B7U(1)

.

We say its loop space object is the smooth fivebrane 6-group

Fivebranesmooth := ΩBFivebrane .

This has been considered in [SSS09c]. Similar discussion as for the smooth String 2-group applies.
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7.1.2.6 Higher Spinc-structures In 7.1.2 we saw that the classical extension

Z2 → Spin(n)→ SO(n)

is only the first step in a tower of smooth higher spin groups.
There is another classical extension of SO(n), not by Z2 but by the circle group [LaMi89]:

U(1)→ Spinc(n)→ SO(n) .

Here we discuss higher smooth analogs of this construction.
This section draws form [FSS12b].

We find below that Spinc is a special case of the following simple general notion, that turns out to be
useful to identify and equip with a name.

Definition 7.1.34. Let H be an ∞-topos, G ∈ ∞Grp(H) an ∞-group object, let A be an abelian group
object and let

p : BG→ Bn+1A

be a characteristic map. Write Ĝ→ G for the extension classified by p, exhibited by a fiber sequence

BnA→ Ĝ→ G

in H. Then for H ∈ ∞Grp(H), any other ∞-group with characteristic map of the same form

c : BH → Bn+1A

we write
Ĝc := Ω (BGp ×c BH) ∈ ∞Grp(H)

for the loop space object of the ∞-pullback

BĜc //

��

BH

c

��
BG

p // Bn+1A

.

Remark 7.1.35. Since the Eilenberg-MacLane object Bn+1A is tself an ∞-group object, by the Mayer-
Vietoris fiber sequence in H, prop. 5.1.182, the object BĜc is equivalently the homotopy fiber of the
difference (p− c) of the two characteristic maps

BĜc //

��

∗

��
BG×BH

p−c // BnA

.

7.1.2.7 Spinc as a homotopy fiber product in Smooth∞Grpd A classical definition of Spinc is the
following (for instance [LaMi89]).

Definition 7.1.36. For each n ∈ N the Lie group Spinc(n) is the fiber product of Lie groups

Spinc(n) := Spin(n)×Z2
U(1)

= (Spin(n)× U(1))/Z2 ,

where the quotient is by the canonical subgroup embeddings.
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We observe now that in the context of Smooth∞Grpd this Lie group has the following intrinsic charac-
terization.

Proposition 7.1.37. In Smooth∞Grpd we have an ∞-pullback diagram of the form

BSpinc //

��

BU(1)

c1mod2

��
BSO

w2 // B2Z2

,

where the right morphism is the smooth universal first Chern class, example 1.2.142, composed with the
mod-2 reduction BZ → BZ2, and where w2 is the smooth universal second Stiefel-Whitney class, example
1.2.146.

Proof. By the discussion at these examples, these universal smooth classes are represented by spans of
simplicial presheaves

B(Z→ R)ch
c1 //

'
��

B(Z→ 1)ch B2Z

BU(1)ch

and
B(Z2 → Spin)ch

//

'
��

B(Z2 → 1)ch B2(Z2)ch

BSOch

.

Here both horizontal morphism are fibrations in [SmoothCartSpop, sSet]proj. Therefore by prop. 5.1.9 the
∞-pullback in question is given by the ordinary fiber product of these two morphisms. This is

B(Z→ Spin× R)ch
//

��

B(Z→ R)ch

��
B(Z mod2→ Spin)ch

��

// B(Z→ 1)ch

��
B(Z2 → Spin)ch

// B(Z2 → 1)ch

,

where the crossed module (Z ∂→ Spin× R) is given by

∂ : n 7→ (n mod 2, n) .

Since this is a monomorphism, including (over the neutral element) the fiber of a locally trivial bundle we
have an equivalence

B(Z→ Spin× R)
'→ B(Z2 → Spin× U(1))

'→ B(Spin×Z2
U(1))

in [CartSpop, sSet]proj. On the right is, by def. 7.1.36, the delooping of Spinc. �

Remark 7.1.38. Therefore by def. 7.1.34 we have

Spinc ' Spinc1mod2 ,

which is the very motivation for the notation in that definition.
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Remark 7.1.39. From prop. 7.1.37 we obtain the following characterization of Spinc-structures in H =
Smooth∞Grpd over a smooth manifold expressed in terms of traditional Čech cohomology, 6.3.8.1.

For X ∈ SmoothMfd, the fact that H(X,−) preserves ∞-limits implies from prop. 7.1.37 that we have
an ∞-pullback of cocycle ∞-groupoids

H(X,BSpinc) //

��

H(X,BU(1))

c1mod2

��
H(X,BSO)

w2 // H(X,B2Z2)

.

Picking any choice of differentiably good open cover {Ui → X} of X and using the standard presentation of
the coeffcient moduli stacks appearing here by sheaves of groupoids as discussed in 6.4.3, each of the four
∞-groupoids appearing here is canonically identified with the groupoid (or 2-groupoid in the bottom right)
of Čech cocycles and Čech coboundaries with respect to the given cover and with coefficients in the given
group. Moreover, in this presentation the right vertical morphism of the above diagram is clearly a fibration,
and so by prop. 5.1.4 the ordinary pullback of these groupoids is already the correct∞-pullback, hence is the
groupoid H(X,BSpinc) of Spinc-structure on X. So we read off from the diagram and the construction in
the above proof: given a Čech 1-cocycle for an SO-structure on X the corresponding Spinc-structure is a lift
to a (Z→ R)-valued Čech cocycle of the Z2-valued Čech 2-cocycle that represents the second Stiefel-Whitney
class, as described in 1.2.146, through the evident projection (Z→ R)→ (Z2 → ∗) that by example. 1.2.142
presents the universal first Chern class.

7.1.2.8 Smooth Stringc2 We consider smooth 2-groups of the form Stringc, according to def. 7.1.34,
where BU(1)→ String→ Spin in Smooth∞Grpd is the smooth String-2-group extension of the Spin-group
from def. 7.1.10.

In [Sa10c] the following notion is introduced.

Definition 7.1.40. Let

pc1 : BSpinc → BSpin
1
2p1→ K(Z, 4)

in Top ' ∞Grpd, where the first map is induced on classifying spaces by the defining projection, def. 7.1.36,
and where the second represents the fractional first Pontryagin class from prop. 7.1.5.

Then write Stringc for the topological group, well defined up to weak homotopy equivalence, that models
the loop space of the homotopy pullback

BStringc //

��

(BU(1))× (BU(1))

c1∪c1
��

BSpinc
pc1 // K(Z, 4)

in Top.

This construction, and the role it plays in [Sa10c], is evidently an example of general structure of def.
7.1.34, the notation of which is motivated from this example. We consider now smooth and differential
refinements of such objects.

To that end, recall from theorem. 7.1.9 the smooth refinement of the first fractional Pontryagin class

1

2
p1 : BSpin→ B3U(1)

and from def. 7.1.10 the defining fiber sequence

BString // BSpin
1
2 p1 // B3U(1) .
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The proof of theorem 7.1.9 rests only on the fact that Spin is a compact and simply connected simple Lie
group. The same is true for the special unitary group SU and the exceptional Lie group E8.

Proposition 7.1.41. The first two non-vanishing homotopy groups of E8 are

π3(E8) ' Z

and
π15(E8) ' Z .

This is a classical fact[BoSa58]. It follows with the Hurewicz theorem that

H4(BE8,Z) ' Z .

Therefore the generator of this group is, up to sign, a canonical characteristic class, which we write

[a] ∈ H4(BE8,Z)

corresponding to a characteristic map a : BE8 → K(Z, 4). Hence we obtain analogously the following
statements.

Corollary 7.1.42. The second Chern-class

c2 : BSU→ K(Z, 4)

has an essentially unique lift through Π : Smooth∞Grpd→∞Grpd ' Top to a morphism of the form

c2 : BSU→ B3U(1)

and a representative is provided by the Lie integration exp(µsu
3 ) of the canonical Lie algebra 3-cocycle µsu

3 :
su→ b2R

c2 ' exp(µsu
3 ) .

Similarly the characteristic map
a : BE8 → K(Z, 4)

has an essentially unique lift through Π : Smooth∞Grpd→∞Grpd ' Top to a morphism of the form

a : BE8 → B3U(1)

and a representative is provided by the Lie integration exp(µe8
3 ) of the canonical Lie algebra 3-cocycle µe8

3 :
e8 → b2R

a ' exp(µe8
3 ) .

Therefore we are entitled to the following special case of def. 7.1.34.

Definition 7.1.43. The smooth 2-group

Stringc2 ∈ ∞Grp(Smooth∞Grpd)

is the loop space object of the ∞-pullback

BStringc2 //

��

BSU

c2

��
BSpin

1
2 p1 // B3U(1)

.
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Analogously, the smooth 2-group

Stringa ∈ ∞Grp(Smooth∞Grpd)

is the loop space object of the ∞-pullback

BStringa //

��

BE8

a

��
BSpin

1
2 p1 // B3U(1)

.

Remark 7.1.44. By prop. 5.1.182, Stringa is equivalently the homotopy fiber of the difference 1
2p1 − a

BStringa //

��

∗

��
B(Spin× E8)

1
2 p1−a // B3U(1)

.

We consider now a presentation of Stringa by Lie integration, as in 6.4.14.

Definition 7.1.45. Let
(so⊗ e8)µso

3 −µ
e8
3
∈ L∞Alg

be the L∞-algebra extension, according to def. 6.4.133, of the tensorproduct Lie algebra so ⊗ e8 by the
difference of the canonical 3-cocycles on the two factors.

Proposition 7.1.46. The Lie integration, def. 6.4.79, of the Lie 2-algebra (so⊗e8)µso
3 −µ

e8
3

is a presentation

of Stringa:

Stringa ' τ2 exp
(
so⊗ e8)µso

3 −µ
e8
3

)
Proof. With remark 7.1.44 this is directly analogous to prop. 7.1.17. �

Remark 7.1.47. Therefore a 2-connection on a Stringa-principal 2-bundle is locally given by

• an so-valued 1-form ω;

• an e8-valued 1-form A;

• a 2-form B;

such that the 3-form curvature of B is, locally, the sum of the de Rham differential of B with the difference
of the Chern-Simons forms of ω and A, respectively:

H3 = dB + cs(ω)− cs(A) .

We discuss the role of such 2-connections in string theory below in 7.1.6.3.2 and 7.2.9.3.

7.1.3 Reduction of structure groups

7.1.3.1 Orthogonal/Riemannian structure For X a smooth manifold, we discuss the traditional
notion of Riemannian structure or equivalently of orthogonal structure on X as a special case of c-twisted
cohomology for suitable c. This perspective on ordinary Riemannian geometry proves to be a useful starting
point for generalizations.
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Let X be a smooth manifold of dimension d. Its tangent bundle TX is associated to an essentially
canonical GL(d)-principal bundle. We write

TX : X → BGL(d)

for the corresponding classifying morphism, where BGL(d) is the smooth moduli stack of smooth GL(d)-
principal bundles.

Consider the defining inclusion of Lie groups

O(d) ↪→ GL(d)

and the induced morphism of the corresponding moduli stacks

orth : BO(d)→ BGL(d) .

The general observation 6.4.57 here reads

Observation 7.1.48. The homotopy fiber of orth is the quotient manifold GL(d)/O(d). We have a fiber
sequence of smooth stacks

GL(d)/O(d) // BO(d)
orth // BGL(d) .

Notice that O(d) ↪→ GL(d) is a maximal compact subgroup inclusion, so that observation 6.4.58 applies.
Definition 6.4.61 now becomes

Definition 7.1.49. Write orthStrucTX for the groupoid of TX-twisted orth-structures on X, hence the
homotopy pullback in

orthStruc(X) //

��

∗

TX

��
H(X,BO(d))

H(X,orth)
// H(X,BGL(d))

'

ow
.

Proposition 7.1.50. The groupoid orthStrucTX(X) is naturally identified with the groupoid of choices of
vielbein fields (soldering forms) on TX.

Proof. Let {Ui → X} be any good open cover of X by coordinate patches Rd ' Ui. Let C({Ui}) be the
corresponding Čech groupoid. There is then a canonical span of simplicial presheaves

C({Ui})
TXch //

'
��

BGL(d)ch

X

.

presenting TX. Moreover, every morphism g : X → BO(d) has a presentation by a similar span gch with
values in BO(d).

An object in orthStrucTX(X) is

1. a cocycle gch for an O(d)-principal bundle as above;

2. over each Ui an element e|Ui ∈ C∞(Ui,GL(d))

such that e is compatible, on double overlaps, with the left O(d)-action by the transition functions gch and
the right GL(d)-action by the transitiuon functions TXch.

A morphism e → e′ in orthStrucTX(X) is a gauge transformation gch → g′ch of O(d)-principal bundles
whose left action takes e to e′.
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From this it is clear that
e = {eaµ}a,µ∈{1,··· ,d}

is a choice of vielbein. �
There is an evident differential refinement of orth

ˆorth : BO(d)conn → BGL(d)conn .

Definition 7.1.51. Let ConnTX → H(X,BGL(d)conn) be the left vertical morphism in the homotopy
pullback

ConnTX //

��

∗

TX

��
H(X,BGL(d)conn) // H(X,BGL(d))

,

where the bottom map is the morphism that forgets the connection.

This morphism may be thought of as the inclusion of connections on the tangent bundle into the groupoid
of all GL(d)-principal connections.

Proposition 7.1.52. The homotopy pullback in

ˆorthStrucTX,conn(X)

��

// ConnTX

��
H(X,BO(d)conn)

H(X, ˆorth) // H(X,BGL(d)conn)

or equivalently that in

ˆorthStrucTX,conn(X)

��

// ∗

TX

��
H(X,BO(d)conn) // H(X,BGL(d))

is equivalent to the set of pairs of Riemannian metrics on X and correspondingly metric-compatible connec-
tions on TX.

Proof. The two pullbacks are equivalent by def. 7.1.51 and the pasting law, prop. 5.1.2.
Consider the first version. As in the proof of prop. 7.1.50 an object in the groupoid has an underlying

choice of vielbein e. This now being a morphism of bundles with connection, it related, locally on each Ui,
the goven connection form Γ on TX with a connection form ω on the O(d)-principal bundle, via

ωab = eaαΓαβ(e−1)bβ + eaαddR(e−1)bβ .

But since ω is by definition an orthogonal connection, by this isomorphism Γ is a metric-compatible connec-
tion. �

7.1.3.2 Type II NS-NS generalized geometry The target space geometry for type II superstrings in
the NS-NS sector is naturally encoded by a variant of “generalized complex geometry” with metric structure,
discussed for instance in [GMPW08]. We discuss here how this type II NS-NS generalized geometry is a special
case of twisted c-structures as in 7.1.3.
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Definition 7.1.53. Consider the Lie group inclusion

O(d)×O(d)→ O(d, d)

of those orthogonal transformations, that preserve the positive definite part or the negative definite part of
the bilinear form of signature (d, d), respectively.

If O(d, d) is presented as the group of 2d × 2d-matrices that preserve the bilinear form given by the
2d× 2d-matrix

η :=

(
0 idd

idd 0

)
then this inclusion sends a pair (A+, A−) of orthogonal n× n-matrices to the matrix

(A+, A−) 7→ 1√
2

(
A+ +A− A+ −A−
A+ −A− A+ +A−

)
.

The inclusion of Lie groups induces the corresponding morphism of smooth moduli stacks of principal
bundles

TypeII : B(O(d)×O(d))→ BO(d, d) .

Observation 6.4.57 here becomes

Observation 7.1.54. There is a fiber sequence of smooth stacks

O(d, d)/(O(d)×O(d)) // B(O(d)×O(d))
TypeII // BO(d, d) .

Definition 7.1.55. There is a canonical embedding

GL(d) ↪→ O(d, d) .

In the above matrix presentation this is given by sending

a 7→
(
a 0
0 a−T

)
,

where in the bottom right corner we have the transpose of the inverse matrix of the invertble matrix a.

Observation 7.1.56. We have a homotopy pullback of smooth stacks

GL(d)\\O(d, d)//(O(d)×O(d)) //

��

BGL(d)

��
B(O(d)×O(d)) // BO(d, d)

.

Definition 7.1.57. Under inclusion def. 7.1.53 the tangent bundle of a d-dimensional manifold X defines
an O(d, d)-cocycle

TX ⊗ T ∗X : X
TX // BGL(d) // BO(d, d) .

The vector bundle canonically associated to this composite cocycles may canonically be identified with
the tensor product vector bundle TX ⊗ T ∗X, and so we will refer to this cocycle by these symbols, as
indicated.

Therefore we may canonically consider the groupoid of TX⊗T ∗X-twisted TypeII-structures, according
to def. 6.4.61:
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Definition 7.1.58. Write TypeIIStrucTX⊗T∗X(X) for the homotopy pullback

TypeIIStrucTX⊗T∗X(X) //

��

∗

TX⊗T∗X
��

H(X,B(O(d)×O(d)))
H(X,TypeII) // H(X,BO(d, d))

.

Proposition 7.1.59. The groupoid TypeIIStrucTX⊗T∗X(X) is that of “generalized vielbein fields” on X,
as considered for instance around equation (2.24) of [GMPW08] (there only locally, but the globalization is
evident).

In particular, its set of equivalence classes is the set of type-II generalized geometry structures on X.

Proof. This is directly analogous to the proof of prop. 7.1.50. �
Over a local patch Rd ' Ui ↪→ X, the most general such generalized vielbein (hence the most general

O(d, d)-valued function) may be parameterized as

E =
1

2

(
(e+ + e−) + (e−T+ − e−T− )B (e−T+ − e−T− )

(e+ − e−)− (e−T+ + e−T− )B (e−T+ + e−T− )

)
,

where e+, e− ∈ C∞(Ui,O(d)) are thought of as two ordinary vielbein fields, and where B is any smooth
skew-symmetric n× n-matrix valued function on Rd ' Ui.

By an O(d) × O(d)-transformation this can always be brought into a form where e+ = e− =: 1
2e such

that

E =

(
e 0

−e−TB e−T

)
.

The corresponding “generalized metric” over Ui is

ETE =

(
eT Be−1

0 e−1

)(
e 0

−e−TB e−T

)
=

(
g −Bg−1B Bg−1

−g−1B g−1

)
,

where
g := eT e

is the metric (over Rq ' Ui a smooth function with values in symmetric n×n-matrices) given by the ordinary
vielbein e.

7.1.3.3 U-duality geometry / exceptional generalized geometry The scalar and bosonic fields of
11-dimensional supergravity compactified on tori to dimension d locally have moduli spaces identified with
the quotients En(n)/Hn of the split real form En(n) in the E-series of exceptional Lie groups by their maximal
compact subgroups Hn, where n = 11−d. The canonical action of En(n) on this coset space – or of a certain
discrete subgroup En(n)(Z) ↪→ En(n) – is called the U-duality global symmetry of the supergravity, or of its
string UV-completion, respectively [HT94].

In [Hull07] it was pointed out that therefore the geometry of the field content of compactfied supergravity
should be encoded by a exceptional generalized geometry which in direct analogy to the variant of generalized
complex geometry that controls the NS-NS sector of type II strings, as discussed above in 7.1.3.2, is encoded
by vielbein fields that exhibit reduction of a structure group along the inclusion Hn ↪→ En(n).

By the general discussion in 7.1.3, we have that all these geometries are encoded by twisted differential
c-structures, where

c : BHn → BEn(n)

is the induced morphism of smooth moduli stacks.
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7.1.4 Orientifolds and higher orientifolds

We discuss the notion of circle n-bundles with connection over double covering spaces with orientifold
structure (see [SSW05] and [DiFrMo11] for the notion of orientifolds for 2-bundles).

Proposition 7.1.60. The smooth automorphism 2-group of the circle group U(1) is that corresponding to
the smooth crossed module (as discussed in 3.1.6)

AUT(U(1)) ' [U(1)→ Z2] ,

where the differential U(1)→ Z2 is trivial and where the action of Z2 on U(1) is given under the identification
of U(1) with the unit circle in the plane by reversal of the sign of the angle.

This is an extension of smooth ∞-groups, def. 5.1.302, of Z2 by the circle 2-group BU(1):

BU(1)→ AUT(U(1))→ Z2 .

Proof. The nature of AUT(U(1)) is clear by definition. Let BU(1) → AUT(U(1)) be the evident
inclusion. We have to show that its delooping is the homotopy fiber of BAUT(U(1))→ BZ2.

Passing to the presentation of Smooth∞Grpd by the model structure on simplicial presheaves [SmoothCartSpop, sSet]proj,loc

and using prop. 5.1.9, it is sufficient to show that the simplicial presheaf B2U(1)c from 6.4.3 is equivalent to
the ordinary pullback of simplicial presheaves BAUT(U(1))c×BZ2 EZ2 of the Z2-universal principal bundle,
as discussed in 1.2.6.

This pullback is the 2-groupoid whose

• objects are elements of Z2;

• morphisms σ1 → σ2 are labeled by σ ∈ Z2 such that σ2 = σσ1;

• all 2-morphisms are endomorphisms, labeled by c ∈ U(1);

• vertical composition of 2-morphisms is given by the group operation in U(1),

• horizontal composition of 1-morphisms with 1-morphisms is given by the group operation in Z2

• horizontal composition of 1-morphisms with 2-morphisms (whiskering) is given by the action of Z2 on
U(1).

Over each U ∈ CartSp this 2-groupoid has vanishing π1, and π2 = U(1). The inclusion of B2U(1) into this
pullback is given by the evident inclusion of elements in U(1) as endomorphisms of the neutral element in
Z2. This is manifestly an isomorphism on π2 and trivially an isomorphism on all other homotopy groups.
Therefore it is a weak equivalenc. �

Observation 7.1.61. A U(1)-gerbe in the full sense Giraud (see [L-Topos], section 7.2.2) as opposed to a
U(1)-bundle gerbe / circle 2-bundle is equivalent to an AUT(U(1))-principal 2-bundle, not in general to a
circle 2-bundle, which is only a special case.

More generally we have:

Proposition 7.1.62. For every n ∈ N the automorphism (n + 1)-group of BnU(1) is given by the crossed
complex (as discussed in 3.1.6)

AUT(BnU(1)) ' [U(1)→ 0→ · · · → 0→ Z2]

with U(1) in degree n+ 1 and Z2 acting by automorphisms. This is an extension of smooth ∞-groups

Bn+1U(1) // AUT(BnU(1)) // Z2 .
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With slight abuse of notation we also write

BnU(1)//Z2 := BAUT(Bn−1U(1)) .

Definition 7.1.63. Write
Jn : Bn+1U(1)//Z2 → BZ2

for the corresponding universal characteristic map.

Definition 7.1.64. For X ∈ Smooth∞Grpd, a double cover X̂ → X is a Z2-principal bundle.
For n ∈ N, n ≥ 1, an orientifold circle n-bundle (with connection) is an AUT(Bn−1U(1))-principal ∞-

bundle (with ∞-connection) on X that extends X̂ → X (by def. 5.1.302) with respect to the extension of
Z2 by AUT(BnU(1)), prop. 7.1.62.

This means that relative to a cocycle g : X → BZ2 for a double cover X̂, the structure of an orientifold
circle n-bundle is a factorization of this cocycle as

g : X
ĝ→ BAUT(Bn−1U(1))→ BZ2

where ĝ is the cocycle for the corresponding AUT(BnU(1))-principal ∞-bundle.

Proposition 7.1.65. Every orientifold circle n-bundle (with connection) on X induces an ordinary circle
n-bundle (with connection) P̂ → X̂ on the given double cover X̂ such that restricted to any fiber of X̂ this
is equivalent to AUT(Bn−1U(1))→ Z2.

Proof. There is a pasting diagram of ∞-pullbacks of the form

(U(1)→ · · · → Z2)ρ //

��

P //

��

∗

��
Z2

//

��

X̂ //

��

BnU(1) //

��

∗

��
∗ x // X

g // BnU(1)//Z2

Jn−1 // BZ2

�

Proposition 7.1.66. Orientifold circle 2-bundles over a smooth manifold are equivalent to the Jandl gerbes
introduced in [SSW05].

Proof. By prop. 6.3.39 we have that [U(1)→ Z2]-principal ∞-bundles on X are given by Čech cocycles
relative to any good open cover of X with coefficients in the sheaf of 2-groupoids B[U(1) → Z2]. Writing
this out in components it is straightforward to check that this coincides with the data of a Jandl gerbe (with
connection) over this cover. �

Remark 7.1.67. Orientifold circle n-bundles are not Z2-equivariant circle n-bundles: in the latter case
the orientation reversal acts by an equivalence between the bundle and its pullback along the orientation
reversal, whereas for an orientifold circle n-bundle the orientation reversal acts by an equivalence to the dual
of the pulled-back bundle.
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Proposition 7.1.68. The geometric realization, def. 5.2.14,

R̃ := |B[U(1)→ Z2]|

of B[U(1)→ Z] is the homotopy 3-type with homotopy groups

π0(R̃) = 0 ;

π1(R̃) = Z2 ;

π2(R̃) = 0 ;

π3(R′) = Z

and nontrivial action of π1 on π3.

Proof. By prop. 6.4.27 and the results of 6.3.8 we have

1. specifically

(a) |BZ2| ' BZ2;

(b) |B2U(1)| ' B2U(1) ' K(Z; 3);

where on the right we have the ordinary classifying spaces going by these names;

2. generally geometric realization preserves fiber sequences of nice enough objects, such as those under
consideration, so that we have a fiber sequence

K(Z, 3)→ R̃→ BZ2

in Top.

Since π3(K(Z), 3) ' Z and π1(BZ2) ' Z2 and all other homotopy groups of these two spaces are trivial,
the homotopy groups of R̃ follow by the long exact sequence of homotopy groups associated to our fiber
sequence.

Finally, since the action of Z2 in the crossed module is nontrivial, π1(R̃) must act notriviall on π3(Z). It
can only act nontrivial in a single way, up to homotopy. �
The space

R := Z2 × R̃

is taken to be the coefficient object for orientifold (differential) cohomology as appearing in string theory in
[DiFrMo11].

The following definition gives the differential refinement of BAUT(Bn−1U(1)). With slight abuse of
notation we will also write

BnU(1)//Z2 := BAUT(Bn−1U(1)) .

Definition 7.1.69. For n ≥ 2 write BnU(1)conn//Z2 for the smooth n-stack presented by the presheaf of
n-groupoids which is given by the presheaf of crossed complexes of groupoids

Ωn(−)× C∞(−, U(1))
(id,ddRlog) // Ωn(−)× Ω1(−)

(id,ddR) // · · ·
(id,ddR) // Ωn(−)× Ωn−2(−)

(id,ddR) //

(id,ddR) // Ωn(−)× Ωn−1(−)× Z2 //
//
Ωn(−) ,

where

1. the groupoid on the right has as morphisms (A, σ) : B → B′ between two n-forms B,B′ pairs consisting
of an (n− 1)-form A and an element σ ∈ Z2, such that (−1)σB′ = B + dA;
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2. the bundles of groups on the left are all trivial as bundles;

3. the Ω1(−) × Z2-action is by the Z2-factor only and on forms given by multiplication by ±1 and on
U(1)-valued functions by complex conjugation (regarding U(1) as the unit circle in the complex plane).

Remark 7.1.70. A detailed discussion of B2U(1)conn//Z2 is in [ScWa08] and [ScWa08].

We now discuss differential cocycles with coefficients in BnU(1)conn//Z2 over Z2-quotient stacks / orb-
ifolds. Let Y be a smooth manifold equipped with a smooth Z2-action ρ. Write Y//Z2 for the corresponding
global orbifold and ρ : Y//Z2 → BZ2 for its classifying morphism, hence for the morphism that fits into a
fiber sequence of smooth stacks

Y // Y//Z2
// BZ2 .

Definition 7.1.71. An n-orientifold structure Ĝρ on (Y, ρ) is a ρ-twisted Ĵn-structure on Y//Z2, def. 5.2.118,
hence a dashed morphism in the diagram

Bn+1U(1)conn//Z2

Ĵn

��
Y//Z2

Ĝρ
77

ρ // BZ2

.

Observation 7.1.72. By corollary 7.1.65, an n-orientifold structure decomposes into an ordinary (n + 1)-
form connection Ĝ on a circle (n+ 1)-bundle over Y , subject to a Z2-twisted Z2-equivariance condition

Y
Ĝ //

��

Bn+1U(1)conn
//

��

∗

��
Y//Z2

Ĝρ //

ρ

33Bn+1U(1)conn//Z2
Ĵ // BZ2 .

For n = 1 this reproduces, via observation 7.1.66, the Jandl gerbes with connection from [SSW05], hence
ordinary string orientifold backgrounds, as discussed there. For n = 2 this reproduces background structures
for membranes as discussed below in 7.1.8.7.

7.1.5 Twisted topological structures in quantum anomaly cancellation

We discuss here cohomological conditions arising from anomaly cancellation in string theory, for various
σ-models. In each case we introduce a corresponding notion of topological twisted structures and interpret
the anomaly cancellation condition in terms of these. This prepares the ground for the material in the fol-
lowing sections, where the differential refinement of these twisted structures is considered and the differential
anomaly-free field configurations are derived from these.

• 7.1.5.1 – The type II superstring and twisted Spinc-structures;

• 7.1.5.2 – The heterotic/type I superstring and twisted String-structures;

• 7.1.5.3 – The M2-brane and twisted String2a-structures;

• 7.1.5.4 – The NS-5-brane and twisted Fivebrane-structures;

• 7.1.5.5 – The M5-brane and twisted Fivebrane2a∪2a-structures
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The content of this section is taken from [SSS09c].

The physics of all the cases we consider involves a manifold X – the target space – or a submanifold
Q ↪→ X thereof– a D-brane –, equipped with

• two principal bundles with their canonically associated vector bundles:

– a Spin-principal bundle underlying the tangent bundle TX (and we will write TX also to denote
that Spin-principal bundle),

– and a complex vector bundle E → X – the “gauge bundle” – associated to a SU(n)-principal
bundle or to an E8-principal bundle with respect to a unitary representation of E8;

• and an n-gerbe / circle (n + 1)-bundle with class Hn+2(X,Z) – the higher background gauge field –
denoted [H3] or [G4] or similar in the following.

All these structures are equipped with a suitable notion of connetions, locally given by some differential-form
data. The connection on the Spin-bundle encodes the field of gravity, that on the gauge bundle a Yang-Mills
field and that on the n-gerbe a higher analog of the electromagnetic field.

The σ-model quantum field theory of a super-brane propagating in such a background (for instance the
superstring, or the super 5-brane) has an effective action functional on its bosonic worldvolume fields that
takes values, in general, in the fibers of the Pfaffian line bundle of a worldvolume Dirac operator, tensored
with a line bundle that remembers the electric and magnetic charges of the higher gauge field. Only if this
tensor product anomaly line bundle is trivializable is the effective bosonic action a well-defined starting point
for quantization of the σ-model. Therefore the Chern-class of this line bundle over the bosonic configuration
space is called the global anomaly of the system. Conditions on the background gauge fields that ensure
that this class vanishes are called global anomaly cancellation conditions. These turn out to be conditions
on cohomology classes that are characteristic of the above background fields. This is what we discuss now.

But moreover, the anomaly line bundle is canonicaly equipped with a connection, induced from the
connections of the background gauge fields, hence induced from their differential cohomology data. The
curvature 2-form of this connection over the bosonic configuration space is called the local anomaly of
the σ-model. Conditions on the differential data of the background gauge field that canonically induce a
trivialization of this 2-fom are called local anomaly cancellation conditions. These we consider below in
section 7.1.6.3.

The phenomenon of anomaly line bundles of σ-models induced from background field differential coho-
mology is classical in the physics literature, if only in broad terms. A clear exposition is in [Fr00]. Only
recently the special case of the heterotic string σ-model for trivial background gauge bundle has been made
fully precise in [Bun09], using a certain model [Wal09] for the differential string structures that we discuss
in section 7.1.6.3.

7.1.5.1 The type II superstring and twisted Spinc-structures The open type II string propagating
on a Spin-manifold X in the presence of a background B-field with class [H3] ∈ H3(X,Z) and with endpoints
fixed on a D-brane given by an oriented submanifold Q ↪→ X, has a global worldsheet anomaly that vanishes
if [FrWi99] and only if [EvSa06] the condition

[W3(Q)] + [H3]|Q = 0 ∈ H3(Q;Z) , (7.4)

holds. Here [W3(Q)] is the third integral Stiefel-Whitney class of the tangent bundle TQ of the brane and
[H3]Q denotes the restriction of [H3] to Q.

Notice that [W3(Q)] is the obstruction to lifting the orientation structure on Q to a Spinc-structure. More
precisely, in terms of homotopy theory this is formulated as follows, 7.1.2.7. There is a homotopy pullback
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diagram

BSpinc //

��

∗

��
BSO

W3 // B2U(1)

(7.5)

of topological spaces, where BSO is the classifying space of the special orthogonal group, where B2U(1) '
K(Z, 3) is homotopy equivalent to the Eilenberg-MacLane space that classifies degree-3 integral cohomology,
and where the continuous map denoted W3 is a representative of the universal class [W3] under this classifica-
tion. This homotopy pullback exhibits the classifying space of the group Spinc as the homotopy fiber of W3.
The universal property of the homotopy pullback says that the space of continuous maps Q→ BSpinc is the
same (is homotopy equivalent to) the space of maps oQ : Q→ BSO that are equipped with a homotopy from

the composite Q
oQ // BSOW3

// B3U(1) to the trivial cocycle Q→ ∗ → B3U(1). In other words, for

every choice of homotopy filling the outer diagram of

Q

"" ""

oQ

##

BSpinc //

��

∗

��
BSO

W3 // B2U(1)

there is a contractible space of choices for the dashed arrow such that everything commutes up to homotopy.
Since a choice of map oQ : Q → BSO is an orienation structure on Q, and a choice of map Q → BSpinc

is a Spinc-structure, this implies that [W3(oQ)] is the obstruction to the existence of a Spincstructure on Q
(equipped with oQ.

Moreover, since Q is a manifold, the functor Maps(Q,−) that forms mapping spaces out of Q preserves
homotopy pullbacks. Since Maps(Q,BSO) is the space of orientation structures, we can refine the discussion
so far by noticing that the space of Spinc-structures on Q, Maps(Q,BSpinc), is itself the homotopy pullback
in the diagram

Maps(Q,BSpinc) //

��

∗

��
Maps(Q,BSO)

Maps(Q,W3) // Maps(Q,B2U(1))

. (7.6)

A variant of this characterization will be crucial for the definition of (spaces of) twisted such structures
below.

These kinds of arguments, even though elementary in homotopy theory, are of importance for the inter-
pretation of anomaly cancellation conditions that we consider here. Variants of these arguments (first for
other topological structures, then with twists, then refined to smooth and differential structures) will appear
over and over again in our discussion

So in the case that the class of the B-field vanishes on the D-brane, [H3]|Q = 0, hence that its represen-
tative H3 : Q→ K(Z, 3) factors through the point, up to homotopy, condition (7.4) states that the oriented
D-brane Q must admit a Spinc-structure, namely a choice of null-homotopy η in

Q
oQ //

H3|Q'∗ ''

BSO

W3

��
K(Z, 3)

ηw� . (7.7)
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(Beware that there are such homotopies filling all our diagrams, but only in some cases, such as here, do we
want to make them explicit and given them a name.) If, generally, [H3]Q does not necessarily vanish, then
condition (7.4) still is equivalent to the existence of a homotopy η in a diagram of the above form:

Q
oQ //

H3|Q ''

BSO

W3

��
K(Z, 3)

ηw� . (7.8)

We may think of this as saying that η still “trivializes” W3(oQ), but not with respect to the canonical
trivial cocycle, but with respect to the given reference background cocycle H3|Q of the B-field. Accordingly,
following [Wa08], we may say that such an η exhibits not a Spinc-structure on Q, but an [H3]Q-twisted
Spinc-structure.

For this notion to be useful, we need to say what an equivalence or homotopy between two twisted
Spinc-structures is, what a homotopy between such homotopies is, etc., hence what the space of twisted
Spinc-structures is. But by generalization of (7.6) we naturally have such a space.

Definition 7.1.73. For X a manifold and [c] ∈ H3(X,Z) a degree-3 cohomology class, we say that the
space W3Struc(Q)[c] defined as the homotopy pullback

W3Struc(Q)[H3]|Q cc
//

��

∗

c

��
Maps(Q,BSO)

Maps(Q,W3) // Maps(Q,B2U(1))

, (7.9)

is the space of [c]-twisted Spinc-structures on X, where the right vertical morphism picks any representative
c : X → B2U(1) ' K(Z, 3) of [c].

In terms of this notion, the anomaly cancellation condition (7.4) is now read as encoding existence of
structure:

Observation 7.1.74. On an oriented manifold Q, condition (7.4) precisely guarantees the existence of
[H3]|Q-twisted W3-structure, provided by a lift of the orientation structure oQ on TQ through the left
vertical morphism in def. 7.9.

This makes good sense, because that extra structure is the extra structure of the background field of the
σ-model background, subjected to the condition of anomaly freedom. This we will see in more detail in the
following examples, and then in section 7.1.6.3.

7.1.5.2 The heterotic/type I superstring and twisted String-structures The heterotic/type I
string, propagating on a Spin-manifold X and coupled to a gauge field given by a Hermitean complex vector
bundle E → X, has a global anomaly that vanishes if the Green-Schwarz anomaly cancellation condition
[GrSc]

1

2
p1(TX)− ch2(E) = 0 ∈ H4(X;Z) . (7.10)

holds. Here 1
2p1(TX) is the first fractional Pontryagin class of the Spin-bundle, and ch2(E) is the second

Chern-class of E.
As before, this means that at the level of cocycles a certain homotopy exists. Here it is this homotopy

which is the representative of the B-field that the string couples to.
In detail, write 1

2p1 : BSpin → B3U(1) for a representative of the universal first fractional Pontryagin
class, prop. 7.1.5, and similarly ch2 : BSU → B3U(1) for a representative of the universal second Chern
class, where now B3U(1) ' K(Z, 4) is equivalent to the Eilenberg-MacLane space that classifies degree-4
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integral cohomology. Then if TX : X → BSpin is a classifying map of the Spin-bundle and E : X → BSU
one of the gauge bundle, the anomaly cancellation condition above says that there is a homotopy, denoted
H3, in the diagram

X
E //

TX

��

BSU

ch2

��
BSpin

1
2p1

// B3U(1)

H3|�
. (7.11)

Notice that if both 1
2p1(TX) as well as ch2(E) happen to be trivial, such a homotopy is equivalently a map

H3 : X → ΩB3U(1) ' B2U(1). So in this special case the B-field in the background of the heterotic string
is a U(1)-gerbe, a circle 2-bundle, as in the previous case of the type II string in section 7.1.5.1. Generally,
the homotopy H3 in the above diagram exhibits the B-field as a twisted gerbe, whose twist is the difference
class [ 1

2p1(TX)]− [ch2(E)]. This is essentially the perspective adopted in [Fr00].
For the general discussion of interest here it is useful to slightly shift the perspective on the twist. Recall

that a String structure, 7.1.2.4, on the Spin bundle TX : X → BSpin is a homotopy filling the outer square
of

X

## ##

TX

$$

BString //

��

∗

��
BSpin

1
2p1 // B3U(1)

,

or, which is equivalent by the universal property of homotopy pullbacks, a choice of dashed morphism filling
the interior of this square, as indicated.

Therefore, now by analogy with (7.8), we say that a [ch2(E)]-twisted string structure is a choice of
homotopy H3 filling the diagram (7.11).

This notion of twisted string structures was originally suggested in [Wa08]. For it to be useful, we need
to say what homotopies of twisted String-structures are, homotopies between these, etc. Hence we need to
say what the space of twisted String-structures is. This is what the following definition provides, analogous
to 7.9.

Definition 7.1.75. For X a manifold, and for [c] ∈ H4(X,Z) a degree-4 cohomology class, we say that the
space of c-twisted String-structures on X is the homotopy pullback 1

2p1Struc[c](X) in

1
2p1Struc[c](X) //

��

∗

c

��
Maps(X,BSpin)

Maps(X, 12p1) // Maps(X,B3U(1))

,

where the right vertical morphism picks a representative c of [c].

In terms of this then, we find

Observation 7.1.76. The anomaly cancellation condition (7.10) is, for a fixed gauge bundle E, precisely
the condition that ensures a lift of the given Spin-structure to a [ch2(E)]-twisted String-structure on X,
through the left vertical morphism of def. 7.1.75.

Of course the full background field content involves more than just this topological data, it also consists
of local differential form data, such as a 1-form connection on the bundles E and on TX and a connection
2-form on the 2-bundle H3. Below in section 7.1.6.3 we identify this differential anomaly-free field content
with a differential twisted String-structure.
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7.1.5.3 The M2-brane and twisted String2a-structures The string theory backgrounds discussed
above have lifts to 11-dimensional supergravity/M-theory, where the bosonic background field content con-
sists of just the Spin-bundle TX as well as the C-field, which has underlying it a 2-gerbe – or circle 3-bundle
– with class [G4] ∈ H4(X,Z). The M2-brane that couples to these background fields has an anomaly that
vanishes [Wi97a] if

2[G4] = [
1

2
p1(TX)]− 2[a(E)] ∈ H4(X,Z) , (7.12)

where E → X is an auxiliary E8-principal bundle, whose class is defined by this condition.
Since E8 is 15-coskeletal, this condition is equivalent to demanding that [ 1

2p1(TX)] ∈ H4(X,Z) is further
divisible by 2. In the absence of smooth or differential structure, one could therefore replace the E8-bundle
here by a circle 2-gerbe, hence by a B2U(1)-principal bundle, and replace condition (7.12) by

2[G4] = [
1

2
p1(TX)]− 2[DD2] ,

where [DD2] is the canonical 4-class of this 2-gerbe (the “second Dixmier-Douady class”). While topologically
this condition is equivalent, over an 11-dimensional X, to (7.12), the spaces of solutions of smooth refinements
of these two conditions will differ, because the space of smooth gauge transformations between E8 bundles
is quite different from that of smooth gauge transformations between circle 2-bundles. In the Hořava-
Witten reduction [HoWi96] of the 11-dimensional theory down to the heterotic string in 10 dimensions, this
difference is supposed to be relevant, since the heterotic string in 10 dimensions sees the smooth E3-bundle
with connection.

In either case, we can understand the situation as a refinement of that described by (twisted) String-
structures via a higher analogue of the passage from Spin-structures to Spinc-structures. To that end recall
prop. 7.1.37, which provides an alternative perspective on (7.5).

Due to the universal property of the homotopy pullback, this says, in particular, that a lift from an
orientation structure to a Spinc-structure is a cancelling by a Chern-class of the class obstructing a Spin-
structure. In this way lifts from orientation structures to Spinc-structures are analogous to the divisibility
condition (7.12), since in both cases the obstruction to a further lift through the Whitehead tower of the
orthogonal group is absorbed by a universal “unitary” class.

In order to formalize this we make the following definition.

Definition 7.1.77. For G some topological group, and c : BG → K(Z, 4) a universal 4-class, we say that
Stringc is the loop group of the homotopy pullback

BStringc //

��

BG

c

��
BSpin

1
2p1 // B3U(1)

of c along the first fractional Pontryagin class.

For instance for c = DD2 we have that a Spin-structure lifts to a String2DD2-structure precisely if 1
2p1

is further divisible by 2. Similarly, with a : BE8 → B3U(1) the canonical universal 4-class on E8-bundles
and X a manifold of dimension dimX ≤ 14 we have that a Spin-structure on X lifts to a String2a-structure
precisely if 1

2p1 is further divisible by 2.

BString2a

��

1
4p1

%%

// BE8

2a

��
X //

;;

BSpin
1
2p1 // B3U(1)

. (7.13)

Using this we can now reformulate the anomaly cancellation condition (7.12) as follows.
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Definition 7.1.78. For X a manifold and for [c] ∈ H4(X,Z) a cohomology class, the space ( 1
2p1 −

2a)Struc[c](X) of [c]-twisted String2a-structures on X is the homotopy pullback

( 1
2p1 − 2a)Struc[c](X) //

��

∗

c

��
Maps(X,BSpin× E8)

1
2p1−2a // Maps(X,B3U(1))

,

where the right vertical map picks a cocycle c representing the class [c].

In terms of this definition, we have

Observation 7.1.79. Condition (7.12) is precisely the condition guaranteeing a lift of the given Spin- and
the given E8-principal bundle to a [G4]-twisted String2a-structure along the left vertical map from def. 7.1.78.

There is a further variation of this situation, that is of interest. In the Hořava-Witten reduction of this
situation in 11 dimensions down to the sitation of the heterotic string in 10 dimensions, X has a boundary,
Q := ∂X ↪→ X, and there is a boundary condition on the C-field, saying that the restriction of its 4-class to
the boundary has to vanish,

[G4]|Q = 0 .

This implies that over Q the anomaly-cancellation conditon (7.12) becomes

[
1

2
p1(TX)]|Q = 2[a(E)]|Q ∈ H4(Q,Z) .

Notice that this is the Green-Schwarz anomaly cancellation condition (7.10) of the heterotic string, but refined
by a further cohomological divisibility condition. The following statement says that this may equivalently
be reformulated in terms of String2a structures.

Proposition 7.1.80. For E → X a fixed E8-bundle, we have an equivalence

Maps(X,BString2a)|E ' (
1

2
p1)Struc(X)[2a(E)]

between, on the right, the space of [2a(E)]-twisted String-structures from def. 7.1.75, and, on the left, the
space of String2a-structures with fixed class 2a, hence the homotopy pullback Maps(X,BString2a)×Maps(X,BE8)

{E}.
Proof. Consider the diagram

Maps(X,String2a)|E //

��

∗

E

��
Maps(X,String2a) //

��

Maps(X,BE8)

Maps(X,2a)

��
Maps(X,BSpin)

Maps(X, 12p1) // Maps(X,B3U(1))

The top square is a homotopy pullback by definition. Since Maps(X,−) preserves homotopy pullbacks (for
X a manifold, hence a CW-complex), the bottom square is a homotopy pullback by definition 7.1.77. There-
fore, by the pasting law, also the total rectangle is a homotopy pullback. With def. 7.1.75 this implies the
claim. �
Therefore the boundary anomaly cancellation condition for the M2-brane has the following equivalent for-

mulation.

Observation 7.1.81. For X a Spin-manifold equipped with a complex vector bundle E → X, condition
(7.1.5.3) precisely guarantees the existence of a lift to a String2a-structure through the left vertical map in
the proof of prop. 7.1.80.
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7.1.5.4 The NS-5-brane and twisted Fivebrane-structures The magnetic dual of the (heterotic)
string is the NS-5-brane. Where the string is electrically charged under the B2-field with class [H3] ∈
H3(X,Z), the NS-5-brane is electrically charged under the B6-field with class [H7] ∈ H7(X,Z) [Ch81]. In
the presence of a String-structure, hence when [ 1

2p1(TX)] = 0, the anomaly of the 5-brane σ-model vanishes
[SaSe85] [GaNi85] if the background fields satisfy

[ 1
6p2(TX)] = 8[ch4(E)] ∈ H8(X,Z) , (7.14)

where 1
6p2(TX) is the second fractional Pontryagin class of the String-bundle TX.

It is clear now that a discussion entirely analogous to that of section 7.1.5.2 applies. For the untwisted
case the following terminology was introduced in [SSS09b].

Definition 7.1.82. Write Fivebrane for the loop group of the homotopy fiber BFivebrane of a representative
1
6p2 of the universal second fractional Pontryagin class

BFivebrane //

��

∗

��
BString

1
6p2

// B7U(1)

.

In direct analogy with def. 7.1.75 we therefore have the following notion.

Definition 7.1.83. For X a manifold and [c] ∈ H8(X,Z) a class, we say that the space of [c]-twisted
Fivebrane-structures on X, denoted ( 1

6p2)Struc[c](X), is the homotopy pullback

( 1
6p2)Struc[c](X) //

��

∗

c

��
Maps(X,BString)

Maps(X,
1
6p2)
// Maps(X,B7U(1))

,

In terms of this we have

Observation 7.1.84. For X a manifold with String-structure and with a background gauge bundle E → X
fixed, condition (7.14) is precisely the condition for the existence of [8 ch(E)]-twisted Fivebrane-structure on
X.

7.1.5.5 The M5-brane and twisted Fivebrane2a∪2a-structures The magnetic dual of the M2-brane
is the M5-brane. Where the M2-brane is electrically charged under the C3-field with class [G4] ∈ H4(X,Z),
the M5-brane is electrically charged under the dual C6-field with class [G8] ∈ H8(X,Z).

If X admits a String-structure, then one finds a relation for the background fields analogous to (7.12)
which reads

8[G8] = 4[a(E)] ∪ [a(E)]− [ 1
6p2(TX)] . (7.15)

The Fivebrane-analog of Spinc is then the following.

Definition 7.1.85. For G a topological group and [c] ∈ H8(BG,Z) a universal 8-class, we say that
Fivebranec is the loop group of the homotopy pullback

BFivebranec //

��

BG

c

��
BString

1
6p2

// B3U(1)

.
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In analogy with def. 7.1.78 we have a notion of twisted Fivebranec-structures.

Definition 7.1.86. For X a manifold and for [c] ∈ H8(X,Z) a cohomology class, the space (1
6p2 − 2a ∪

2a)Struc[c](X) of [c]-twisted Fivebrane2a∪2a-structures on X is the homotopy pullback

( 1
6p2 − 2a ∪ 2a)Struc[c](X) //

��

∗

c

��
Maps(X,BString × E8)

1
6p2−2a∪2a

// Maps(X,B7U(1))

,

where the right vertical map picks a cocycle c representing the class [c].

In terms of these notions we thus see that

Observation 7.1.87. Over a manifold X with String-structure and with a fixed gauge bundle E, condition
(7.15) is precisely the condition that guarantees existence of a lift to [8G8]-twisted Fivebrane2a∪2a-structure
through the left vertical morphism in def. 7.1.86.

7.1.6 Twisted differential structures in quantum anomaly cancellation

We discuss now the differential refinements of the twisted topological structures from 7.1.5.
This section draws from [SSS09c].

7.1.6.1 Twisted differential c1-structures We discuss the differential refinement ĉ1 of the universal
first Chern class, indicated before in 1.2.10.1. The corresponding ĉ1-structures are simply SU(n)-principal
connections, but the derivation of this fact may be an instructive warmup for the examples to follow.

For any n ∈ N, let c1 : BU(n) → BU(1) in H = Smooth∞Grpd be the canonical representative
of the universal smooth first Chern class, described in 1.2.142. In terms of the standard presentations
BU(n)ch, BU(1)ch ∈ [CartSpop, sSet] of its domain and codomain from prop. 6.4.19 this is given by the
determinant function, which over any U ∈ CartSp sends

det : C∞(U,U(n))→ C∞(U,U(1)) .

Write BU(n)conn for the differential refinement from prop. 1.2.114. Over a test space U ∈ CartSp the set of
objects is the set of u(n)-valued differential forms

BU(n)conn(U)0 = Ω1(U, u(n))

and the set of morphisms is that of smooth U(n)-valued differential forms, acting by gauge transformations
on the u(n)-valued 1-forms

BU(n)conn(U)1 = Ω1(U, u(n))× C∞(U,U(n)) .

Proposition 7.1.88. The smooth universal first Chern class has a differential refinement

ĉ1 : BU(n)conn → BU(1)conn

given on u(n)-valued 1-forms by taking the trace

tr : u(n)→ u(1) .

The existence of this refinement allows us to consider differential and twisted differential ĉ1-structures.
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Lemma 7.1.89. There is an ∞-pullback diagram

BSU(n)conn

��

// ∗

��
BU(n)conn

// BU(1)conn

in Smooth∞Grpd.

Proof. We use the factorization lemma, 5.1.5, to resolve the right vertical morphism by a fibration

EU(1)conn → BU(1)conn

in [CartSpop, sSet]proj. This gives that an object in EU(1)conn over some test space U is a morphism of the

form 0
g // g−1dUg for g ∈ C∞(U,U(1)), and a morphism in EU(1)conn is given by a commuting diagram

EU(1)conn =


0

g1

{{

g2

##
g−1

1 dUg1
h // g−1

2 dUg2

 ,

where on the right we have h ∈ C∞(U,U(1)) such that hg1 = g2. The morphism to BU(1)conn is given by
the evident projection onto the lower horizontal part of these triangles.

Then the ordinary 1-categorical pullback of EU(1)conn along ĉ1 yields the smooth groupoid ĉ1
∗EU(1)conn

given over any test space U as follows.

• objects are pairs consisting of a u(n)-valued 1-form A ∈ Ω1(U, u(n)) and a smooth function ρ ∈
C∞(U,U(1)) such that

trA = ρ−1dρ ;

• morphisms g : (A1, ρ1) → (A2, ρ2) are labeled by a smooth function g ∈ C∞(U,U(n)) such that
A2 = g−1(A1 + dU )g.

Therefore there is a canonical functor

BSU(n)conn → ĉ1
∗EU(1)conn

induced from the defining inclusion SU(n) → U(n), which hits precisely the objects for which ρ is the
constant function on 1 ∈ U(1) and which is a bijection to the morphisms between these objects, hence is
full and faithful. The functor is also essentially surjective, since every 1-form of the form h−1dh is gauge
equivalent to the identically vanishing 1-form. Therefore it is a weak equivalence in [CartSpop, sSet]proj. By
prop. 5.1.9 this proves the claim. �

Proposition 7.1.90. For X a smooth manifold, we have an ∞-pullback of smooth groupoids

SU(n)Bund∇(X) //

��

∗

��
U(n)Bund∇(X)

ĉ1 // U(1)Bund∇(X)

.

Proof. This follows from lemma 7.1.89 and the facts that for a Lie group G we have H(X,BGconn) '
GBund∇(X) and that the hom-functor H(X,−) preserves ∞-pullbacks. �
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7.1.6.2 Twisted differential spinc-structures As opposed to the Spin-group, which is a Z2-extension
of the special orthogonal group, the Spinc-group, def. 7.1.36, is a U(1)-extension of SO. This means that
twisted Spinc-structures have interesting smooth refinements. These we discuss here.

Two standard properties of Spinc are the following (see [LaMi89]).

Observation 7.1.91. There is a short exact sequence

U(1)→ Spinc → SO

of Lie groups, where the first morphism is the canonical inclusion.

Proposition 7.1.92. There is a fiber sequence

BSpinc(n)→ BSO(n)
W3→ K(Z, 3)

of classifying spaces in Top, where W3 is a representative of the universal third integral Stiefel-Whitney class.

Here W3 is a classical definition, but, as we will show below, the reader can think of it as being defined
as the geometric realization of the smooth characteristic class W3 from example 1.2.148. Before turning to
that, we record the notion of twisted structure induced by this fact:

Definition 7.1.93. For X an oriented manifold of dimension n, a Spinc-structure on X is a trivialization

η : ∗ '→W3(oX) ,

where oX : X → BSO is the given orientation structure.

Observation 7.1.94. This is equivalently a lift ôX of oX :

BSpinc

��
X

oX
//

ôX
;;

BSO

.

Proof. By prop. 7.1.92 and the univsersal property of the homotopy pullback:

X

""

oX

##

ôX

##
BSpinc

��

// ∗

��
BSO

W3 // K(Z, 3)

.

�
From the general reasoning of twisted cohomology, def. 5.1.260, in the language of twisted c-structures, def.

5.2.118, we are therefore led to consider the following.

Definition 7.1.95. The ∞-groupoid of twisted spinc-structures on X is W3Structw(X).

Remark 7.1.96. It follows from the definition that twisted spinc-structures over an orientation structure
oX , def. 7.1.2, are naturally identified with equivalences (homotopies)

η : c
'→W3(oX) ,

where c ∈ ∞Grpd(X,B2U(1)) is a given twisting cocycle.
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In this form twisted spinc-structures have been considered in [Do06] and in [Wa08]. We now establish a
smooth refinement of this situation.

Observation 7.1.97. There is an essentially unique lift in Smooth∞Grpd of W3 through the geometric
realization

| − | : Smooth∞Grpd
Π→∞Grpd

'→ Top

(discussed in 6.4.5) of the form
W3 : BSO→ B2U(1) ,

where BSO is the delooping of the Lie group SO in Smooth∞Grpd and B2U(1) that of the smooth circle
2-group, as in 6.4.3.

Proof. This is a special case of theorem 6.4.38. �

Theorem 7.1.98. In Smooth∞Grpd we have a fiber sequence of the form

BSpinc → BSO
W3→ B2U(1) ,

which refines the sequence of prop. 7.1.92.

We consider first a lemma.

Lemma 7.1.99. A presentation of the essentially unique smooth lift of W3 from observation 7.1.97, is given
by the morphism of simplicial presheaves

W3 : BSOch
w2→ B2Z2

β2→ B2U(1)ch ,

where the first morphism is that of example 1.2.146 and where the second morphism is the one induced from
the canonical subgroup embedding.

Proof. The bare Bockstein homomorphism is presented, by example 1.2.147, by the ∞-anafunctor

B2(Z ·2→ Z)

'
��

// B2(Z→ 1) B3Z

B2Z2

.

Accordingly we need to consider the lift of the morphism

β2 : B2Z2 → B2U(1)

induced form subgroup inclusion to to a comparable ∞-anafunctor. This is accomplished by

B2(Z ·2→ Z)
β̂2 //

'
��

B2(Z ·2→ R)

'
��

B2Z2
β2 // B2U(1)

.
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Since R is contractible, we have indeed under geometric realization, 6.3.5, an equivalence

|B2(Z ·2→ Z)|
|β̂2| //

'
��

|B2(Z ·2→ R)|

'
��

|B2(Z ·2→ Z)| //

'
��

|B2(Z→ 1)|

'
��

|B2Z2|
|β2| // |B3Z|

,

where |β2| is the geometric realization of β2, according to definition 6.3.24.
�

Proof of theorem 7.1.98. Consider the pasting diagram in Smooth∞Grpd

BSpinc //

��

BU(1) //

c1 mod 2

��

∗

��
BSpin

w2 // B2Z2

β2 // B2U(1)

.

The square on the right is an ∞-pullback by prop. 6.4.43. The square on the left is an ∞-pullback by
proposition 7.1.37. Therefore by the pasting law 5.1.2 the total outer rectanle is an ∞-pullback. By lemma
7.1.99 the composite bottom morphism is indeed the smooth lift W3 from observation 7.1.97. �
Therefore we are entitled to the following smooth refinement of def. 7.1.95.

Remark 7.1.100. BSpinc is the moduli stack of Spinc-structures, or, equivalently Spinc-principal bundles.

Definition 7.1.101. For any X ∈ Smooth∞Grpd, the 1-groupoid of smooth twisted spinc-structures
W3Structw(X) is the homotopy pullback

W3Structw(X)

��

// H3(X,Z)

��
Smooth∞Grpd(X,BSO)

W3 // Smooth∞Grpd(X,B2U(1))

.

We briefly discuss an application of smooth twisted spinc-structures in physics.

Remark 7.1.102. The action functional of the σ-model of the open type II superstring on a 10-dimensional
target X has in general an anomaly, in that it is not a function, but just a section of a possibly non-trivial
line bundle over the bosonic configuration space. In [FrWi99] it was shown that in the case that the D-branes
Q ↪→ X that the open string ends on carry a rank-1 Chan-Paton bundle, this anomaly vanishes precisely
if this Chan-Paton bundle is a twisted line bundle exhibiting an equivalence W3(oQ) ' H|Q between the
lifting gerbe of the spinc-structure and the restriction of the background Kalb-Ramond 2-bundle to Q. By the
above discussion we see that this is precisely the datum of a smooth twisted spinc-structure on Q, where the
Kalb-Ramond field serves as the twist. Below in 7.1.6.3.2 we shall see that the quantum anomaly cancellation
for the closed heterotic superstring is analogously given by twisted string-structures, which follow the same
general pattern of twisted c-structures, but in one degree higher.

But in general this quantum anomaly cancellation involves twists mediated by a higher rank twisted
bundle. This situation we turn to now.
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Definition 7.1.103. For X equipped with orientation structure oX , def. 7.1.2, and c ∈ H(X,B2U(1)) a
twisting circle 2-bundle, we say that the 2-groupoid of weakly c-twisted spinc-structures on X is (W3(oX)−c)-
twisted cohomology with respect to the morphism c : BPU → B2U(1) discussed in 6.4.10.

Remark 7.1.104. By the discussion in 6.4.10 in weakly twisted spinc-structure the two cocycles W3(oX)
and c are not equivalent, but their difference is an n-torsion class (for some n) in H3(X,Z) which twists a
unitary rank-n vector bundle on X

Remark 7.1.105. By a refinement of the discussion of [FrWi99] in [Ka99] this structure is precisely what
removes the quantum anomaly from the action functional of the type II superstring on oriented D-branes
that carry a rank n Chan-Paton bundle. A review is in [La09].

Notice that for i : Q → X a Spinc-D-brane inclusion into spacetimes X, the 2-groupoid of B-field and
brane gauge field bundles is the relative (BPU→ B2U(1))-cohomology on i, according to def. 5.1.343.

7.1.6.3 Twisted differential string structures We consider now the obstruction theory for lifts
through the smooth and differential refinement, from 7.1.2, of the Whitehead tower of O.

Definition 7.1.106. For X a Riemannian manifold, equipping it with

1. orientation

2. topological spin structure

3. topological string structure

4. topological fivebrane structure

means equipping it with choices of (homotopy classes of) lifts of the classifying map TX : X → BO of its
tangent bundle through the respective steps of the Whitehead tower of BO

BFivebrane

��

fivebrane structure

BString

��

string structure

BSpin

��

spin structure

BSO

��

orientation

X
TX //

99

BB

GGGG

GG

BO Riemannian structure

.

More in detail:

1. The set (homotopy 0-type) of orientations of a Riemannian manifold is the homotopy fiber of the first
Stiefel-Whitney class

(w1)∗ : Top(X,BO)→ Top(X,BZ2) .

2. The groupoid (homotopy 1-type) of topological spin structures of an oriented manifold is the homotopy
fiber of the second Stiefel-Whitney class

(w2)∗ : Top(X,BSO)→ Top(X,B2Z2) .
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3. The 3-groupoid (homotopy 3-type) of topological string structures of a spin manifold is the homotopy
fiber of the first fractional Pontryagin class

(
1

2
p1)∗ : Top(X,BSpin)→ Top(X,B4Z) ,

4. The 7-groupoid (homotopy 7-type) of topological fivebrane structures of a string manifold is the ho-
motopy fiber of the second fractional Pontryagin class

( 1
6p2)∗ : Top(X,BString)→ Top(X,B8Z) ,

See [SSS09b] for background and the notion of fivebrane structure. Using the results of 7.1.2 we may lift
this setup from discrete ∞-groupoids to smooth ∞-groupoids and discuss the twisted cohomology, 5.1.13,
relative to the smooth fractional Pontryagin classes 1

2p1 and 1
6p2 and their differential refinements 1

2 p̂1 and
1
6 p̂2

Definition 7.1.107. Let X ∈ Smooth∞Grpd be any object.

1. The 2-groupoid of smooth string structures on X is the homotopy fiber of the lift of the first fractional
Pontryagin class 1

2p1 to Smooth∞Grpd, prop. 7.1.9:

String(X)→ Smooth∞Grpd(X,BSpin)
( 1

2 p1)
→ Smooth∞Grpd(X,B3U(1)) .

2. The 6-groupoid of smooth fivebrane stuctures on X is the homotopy fiber of the lift of the second
fractional Pontryagin class 1

6p2 to Smooth∞Grpd, prop. 7.1.32:

Fivebrane(X)→ Smooth∞Grpd(X,BString)
(
1
6p2)
→ Smooth∞Grpd(X,B7U(1)) .

More generally,

1. The 2-groupoid of smooth twisted string sructures on X is the ∞-pullback

Stringtw(X)
tw //

��

H3
smooth(X,U(1))

��
Smooth∞Grpd(X,BSpin)[r]

( 1
2 p1) // Smooth∞Grpd(X,B3U(1))

in ∞Grpd.

2. The 6-groupoid of smooth twisted fivebrane stuctures on X is the ∞-pullback

Fivebranetw(X)
tw //

��

H7
smooth(X,U(1))

��
Smooth∞Grpd(X,BString)[r]

(
1
6 p̂2)

// Smooth∞Grpd(X,B7U(1))

in ∞Grpd.

Finally, with 1
2 p̂1 and 1

4 p̂2 the differential characteristic classes, 5.2.14, we set
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1. The 2-groupoid of smooth twisted differential string sructures on X is the ∞-pullback

Stringtw,diff(X)
tw //

��

H4
diff(X)

��
Smooth∞Grpd(X,BSpinconn)[r]

( 1
2 p̂1) // Smooth∞Grpd(X,B3U(1)conn)

in ∞Grpd.

2. The 6-groupoid of smooth twisted differential fivebrane stuctures on X is the ∞-pullback

Fivebranetw,diff(X)
tw //

��

H8
diff(X)

��
Smooth∞Grpd(X,BStringconn)

(
1
6 p̂2)
// Smooth∞Grpd(X,B7U(1)conn)

in ∞Grpd.

The image of a twisted (differential) String/Fivebrane structure under tw is its twist. The restriction to twists
whose underlying class vanishes we also call geometric string structures and geometric fivebrane structures.

Observation 7.1.108. 1. These ∞-pullbacks are, up to equivalence, independent of the choise of the
right vertical morphism, as long as this hits precisely one cocycle in each cohomology class.

2. The restriction of the n-groupoids of twisted structures to vanishing twist reproduces the untwisted
structures.

The local L∞-algebra valued form data of differential twisted string- and fivebrane structures has been
considered in [SSS09c], as we explain in 7.1.6.3.1. Differential string structures for twists with underlying
trivial class (geometric string structures) have been considered in [Wal09] modeled on bundle 2-gerbes.

We have the following immediate consequences of the definition:

Observation 7.1.109. The spaces of choices of string structures extending a given spin structure S are as
follows

• if [ 1
2p1(S)] 6= 0 it is empty: StringS(X) ' ∅;

• if [ 1
2p1(S)] = 0 it is StringS(X) ' H(X,B2U(1)).

In particular the set of equivalence classes of string structures lifting S is the cohomology set

π0StringS(X) ' H2
Smooth(X,B2U(1)) .

If X is a smooth manifold, then this is ' H3(X,Z).

Proof. Apply the pasting law for ∞-pullbacks, prop. 5.1.2 on the diagram

StringS(X) //

��

String(X) //

��

∗

��
∗ S // H(X,BSpin(n))

1
2 p1 // H(X,B3U(1))

.

The outer diagram defines the loop space object of H(X,B3U(1)). Since H(X,−) commutes with forming
loop space objects we have

StringS(X) ' ΩH(X,B3U(1)) ' H(X,B2U(1)) .
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�
Sometimes it is useful to express string structures on X in terms of circle 2-bundles/bundle gerbes on the

total space of the given spin bundle P → X [Redd06]:

Proposition 7.1.110. A smooth string structure on X over a smooth Spin-principal bundle P → X induces
a circle 2-bundle P̂ on P which restricted to any fiber Px ' Spin is equivalent to the String 2-group extension
String→ Spin.

Proof. By prop. 5.1.312. �

7.1.6.3.1 L∞-Čech cocycles for differential string structures We use the presentation of the∞-
topos Smooth∞Grpd by the local model structure on simplicial presheaves [SmoothCartSpop, sSet]proj,loc to
give an explicit construction of twisted differential string structures in terms of Čech-cocycles with coefficients
in L∞-algebra valued differential forms. We will find a twisted version of the string-2-connections discussed
above in 1.2.9.7.2.

We need the following fact from [FSS10].

Proposition 7.1.111. The differential fractional Pontryagin class 1
2 p̂1 is presented in [SmoothCartSpop, sSet]proj

by the top morphism of simplicial presheaves in

cosk3 exp(so)ChW,smp

exp(µ,cs) //

��

B3R/ZChW,smp

��
cosk3 exp(so)diff,smp

exp(µ,cs) //

'
��

B3R/Zsmp

BSpinc

.

Here the middle morphism is the direct Lie integration of the L∞-algebra cocycle, 6.4.14, while the top
morphisms is its restriction to coefficients for ∞-connections, 6.4.17.

In order to compute the homotopy fibers of 1
2 p̂1 we now find a resolution of this morphism exp(µ, cs)

by a fibration in [SmoothCartSpop, sSet]proj. By the fact that this is a simplicial model category then also
the hom of any cofibrant object into this morphism, computing the cocycle ∞-groupoids, is a fibration, and
therefore, by the general natur of homotopy pullbacks, we obtain the homotopy fibers as the ordinary fibers
of this fibration.

We start by considering such a factorization before differential refinement, on the underlying characteristic
class exp(µ). To that end, we replace the Lie algebra g = so by an equivalent but bigger Lie 3-algebra
(following [SSS09c]). We need the following notation:

• g = so, the special orthogonal Lie algebra (the Lie algebra of the spin group);

• b2R, the line Lie 3-algebra, def. 6.4.84, the single generator in degee 3 of its Chevalley-Eilenberg algebra
we denote c ∈ CE(b2R), dc = 0.

• 〈−,−〉 ∈W(g) is the Killing form invariant polynomial, regarded as an element of the Weil algebra of
so;

• µ := 〈−, [−,−]〉 ∈ CE(g), the degree 3 Lie algebra cocycle, identified with a morphism

CE(g)← CE(b2R) : µ

of Chevalley-Eilenberg algebras; and normalized such that its continuation to a 3-form on Spin is the
image in de Rham cohomology of Spin of a generator of H3(Spin,Z) ' Z;
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• cs ∈W(g) is a Chern-Simons element, def. 6.4.147, interpolating between the two;

• gµ, the string Lie 2-algebra, def. 7.1.15.

Definition 7.1.112. Let (bR→ gµ) denote the L∞-algebra whose Chevalley-Eilenberg algebra is

CE(bR→ gµ) = (∧•(g∗ ⊕ 〈b〉 ⊕ 〈c〉), d) ,

with b a generator in degree 2, and c a generator in degree 3, and with differential defined on generators by

d|g∗ = [−,−]∗

db = −µ+ c

dc = 0

.

Observation 7.1.113. The 3-cocycle CE(g)
µ← CE(b2R) factors as

CE(g) oo
(c7→µ,b 7→0)

CE(bR→ g)← oo
(c 7→c)

CE(CE(b2R) : µ ,

where the morphism on the left (which is the identity when restricted to g∗ and acts on the new generators
as indicated) is a quasi-isomorphism.

Proof. To see that we have a quasi-isomorphism, notice that the dg-algebra is somorphic to the one with
generators {ta, b, c′} and differentials

d|g∗ = [−,−]∗

db = c′

dc′ = 0

,

where the isomorphism is given by the identity on the tas and on b and by

c 7→ c′ + µ .

The primed dg-algebra is the tensor product CE(g) ⊗ CE(inn(bR)), where the second factor is manifestly
cohomologically trivial. �
The point of introducing the resolution (bR → gµ) in the above way is that it naturally supports the

obstruction theory of lifts from g-connections to string Lie 2-algebra 2-connections

Observation 7.1.114. The defining projection gµ → g factors through the above quasi-isomorphism (bR→
gµ)→ g by the canonical inclusion

gµ → (bR→ gµ) ,

which dually on CE-algebras is given by
ta 7→ ta

b 7→ −b

c 7→ 0 .

In total we are looking at a convenient presentation of the long fiber sequence of the string Lie 2-algebra
extension:

(bR→ gµ) //

'

��

b2R

bR // gµ

::

// g

.

(The signs appearing here are just unimportant convention made in order for some of the formulas below to
come out nice.)
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Proposition 7.1.115. The image under Lie integration of the above factorization is

exp(µ) : cosk3 exp(g)→ cosk3 exp(bR→ gµ)→ B3R/Zc

where the first morphism is a weak equivalence followed by a fibration in the model structure on simplicial
presheaves [SmoothCartSpop, sSet]proj.

Proof. To see that the left morphism is objectwise a weak homotopy equivalence, notice that a [k]-cell
of exp(bR→ gµ) is identified with a pair consisting of a based smooth function f : ∆k → Spin and a vertical
2-form B ∈ Ω2

si,vert(U × ∆k), (both suitably with sitting instants perpendicular to the boundary of the
simplex). Since there is no further condition on the 2-form, it can always be extended from the boundary
of the k-simplex to the interior (for instance simply by radially rescaling it smoothly to 0). Accordingly the
simplicial homotopy groups of exp(bR→ gµ)(U) are the same as those of exp(g)(U). The morphism between
them is the identity in f and picks B = 0 and is hence clearly an isomorphism on homotopy groups.

We turn now to discussing that the second morphism is a fibration. The nontrivial degrees of the lifting
problem

Λ[k]i //

��

exp(bR→ gµ)(U)

��
∆[k] // B3R/Zc(U)

are k = 3 and k = 4.
Notice that a 3-cell of B3R/Zc(U) is a smooth function c : U → R/Z and that the morphism exp(bR→

gµ)→ B3R/Zc sends the pair (f,B) to the fiber integration
∫

∆3(f∗〈θ ∧ [θ ∧ θ]〉+ dB).
Given our lifting problem in degree 3, we have given a function c : U → R/Z and a smooth function

(with sitting instants at the subfaces) U × Λ3
i → Spin together with a 2-form B on the horn U × Λ3

i .
By pullback along the standard continuous retract ∆3 → Λ3

i which is non-smooth only where f has
sitting instants, we can always extend f to a smooth function f ′ : U ×∆3 → Spin with the property that∫

∆3(f ′)∗〈θ ∧ [θ ∧ θ]〉 = 0. (Following the general discussion at Lie integration.)
In order to find a horn filler for the 2-form component, consider any smooth 2-form with sitting instants

and non-vanishing integeral on ∆2, regarded as the missing face of the horn. By multiplying it with a suitable
smooth function on U we can obtain an extension B̃ ∈ Ω3

si,vert(U × ∂∆3) of B to all of U × ∂∆3 with the

property that its integral over ∂∆3 is the given c. By Stokes’ theorem it remains to extend B̃ to the interior
of ∆3 in any way, as long as it is smooth and has sitting instants.

To that end, we can find in a similar fashion a smooth U -parameterized family of closed 3-forms C with
sitting instants on ∆3, whose integral over ∆3 equals c. Since by sitting instants this 3-form vanishes in
a neighbourhood of the boundary, the standard formula for the Poincare lemma applied to it produces a
2-form B′ ∈ Ω2

si,vert(U ×∆3) with dB′ = C that itself is radially constant at the boundary. By construction

the difference B̃ − B′|∂∆3 has vanishing surface integral. By the argument in the proof of prop. 6.4.87 it
follows that the difference extends smoothly and with sitting instants to a closed 2-form B̂ ∈ Ω2

si,vert(U×∆3).

Therefore the sum B′ + B̂ ∈ Ω2
si,vert(U × ∆3) equals B when restricted to Λki and has the property that

its integral over ∆3 equals c. Together with our extension f ′, this constitutes a pair that solves the lifting
problem.

The extension problem in degree 4 amounts to a similar construction: by coskeletalness the condition is
that for a given c : U → R/Z and a given vertical 2-form on U × ∂∆3 such that its integral equals c, as well
as a function f : U × ∂∆3 → Spin, we can extend the 2-form and the functionalong U × ∂∆3 → U × ∆3.
The latter follows from the fact that π2Spin = 0 which guarantees a continuous filler (with sitting instants),
and using the Steenrod-Wockel approximation theorem [Wock09] to make this smooth. We are left with the
problem of extending the 2-form, which is the same problem we discussed above after the choice of B̃. �
We now proceed to extend this factorization to the exponentiated differential coefficients, 6.4.17. The direct
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idea would be to use the evident factorization of differential L∞-cocycles of the form

CE(so) oo CE(bR→ string) oo CE(b2R)

W(so) oo

OO

W(bR→ string) oo

OO

W(b2R)

OO

inv(so) oo

OO

inv(bR→ string) oo

OO

inv(b2R)

OO

.

For computations we shall find it convenient to consider this after a change of basis.

Observation 7.1.116. The Weil algebra W(bR→ gµ) of (b2R→ g) is given on the extra shifted generators
{ra = σta, h = σb, g = σc} by

dta = Cabct
b ∧ tc + ra

dra = −Cabctb ∧ ra

db = −µ+ c+ h

dh = σµ− g
dc = g

(where σ is the shift operator extended as a graded derivation).

Definition 7.1.117. Define W̃(bR→ gµ) to be the dg-algebra with the same underlying graded algebra as
W(bR→ gµ) but with the differential modified as follows

dta = Cabct
b ∧ tc + ra

dra = −Cabctb ∧ ra

db = −cs + c+ h

dh = 〈−,−〉 − g
dc = g

.

Moreover, define ˜inv(bR→ string) to be the dg-algebra

˜inv(bR→ string) := (inv(so)⊗ 〈g, h〉)/(dh = 〈−,−〉 − g) .

Observation 7.1.118. We have a commutative diagram of dg-algebras

CE(so) oo ' CE(bR→ string) oo CE(b2R)

W(so) oo '

OO

W̃(bR→ string) oo

OO

W(b2R)

OO

inv(so) oo '

OO

˜inv(bR→ string) oo

OO

inv(b2R)

OO

where W̃ (bR→ string)→W (so) acts as
ta 7→ ta

ra 7→ ra

b 7→ 0
c 7→ cs
h 7→ 0
g 7→ 〈−,−〉
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and we identify W (b2R) = (∧•〈c, g〉, dc = g). The left horizontal morphisms are quasi-isomorphisms, as
indicated.

Definition 7.1.119. We write exp(bR → string) ˜ChW for the simplicial presheaf defined as exp(bR →
string)ChW, but using CE(bR → string) ← W̃(bR → string) ← ˜inv(bR → string) instead of the untwid-
dled version of these algebras.

Proposition 7.1.120. Under differential Lie integration the above factorization, observation 7.1.118, maps
to a factorization

exp(µ, cs) : cosk3 exp(g)ChW
'→ cosk3 exp((bR→ gµ)) ˜ChW → B3U(1)ChW,ch

of exp(µ, cs) in [CartSpop, sSet]proj, where the first morphism is a weak equivalence and the second a fibration.

Proof. We discuss that the first morphism is an equivalence. Clearly it is injective on homotopy groups:
if a sphere of A-data cannot be filled, then also adding the (B,C)-data does not yield a filler. So we need
to check that it is also surjective on homotopy groups: any two choices of (B,C)-data on a sphere are
homotopic: we may interpolate B in any smooth way and then solve the equation dB = −cs(A) + C + H
for the interpolation of C.

We now check that the second morphism is a fibration. It is itself the composite

cosk3 exp(bR→ gµ)ChW → exp(b2R)ChW/Z
∫
∆•→ B3R/ZChW,ch .

Here the second morphism is a degreewise surjection of simplicial abelian groups, hence a degreewise surjec-
tion under the normalized chain complex functor, hence is itself already a projective fibration. Therefore it
is sufficient to show that the first morphism here is a fibration.

In degree k = 0 to k = 3 the lifting problems

Λ[k]i //

��

exp(bR→ gµ) ˜ChW(U)

��
∆[k] // exp(b2R)ChW/Z(U)

may all be equivalently reformulated as lifting against a cylinder Dk ↪→ Dk × [0, 1] by using the sitting
instants of all forms.

We have then a 3-form H ∈ Ω3
si(U × Dk−1 × [0, 1]) and differential form data (A,B,C) on U × Dk−1

given. We may always extend A along the cylinder direction [0, 1] (its vertical part is equivalently a based
smooth function to Spin which we may extend constantly). H has to be horizontal so is already constantly
extended along the cylinder.

We can then use the kind of formula that proves the Poincaré lemma to extend B. Let Ψ : (Dk× [0, 1])×
[0, 1] → (Dk × [0, 1]) be a smooth contraction. Then while d(H − CS(A) − C) may be non-vanishing, by
horizonatlity of their curvature characteristic forms we still have that ι∂tΨ

∗
t d(H−CS(A)−C) vanishes (since

the contraction vanishes).
Therefore the 2-form

B̃ :=

∫
[0,1]

ι∂tΨ
∗
t (H − CS(A)− C)

satisfies dB̃ = (H −CS(A)−C). It may however not coincide with our given B at t = 0. But the difference
B − B̃t=0 is a closed form on the left boundary of the cylinder. We may find some closed 2-form on the
other boundary such that the integral around the boundary vanishes. Then the argument from the proof
of the Lie integration of the line Lie n-algebra applies and we find an extension λ to a closed 2-form on the
interior. The sum

B̂ := B̃ + λ
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then still satisfies dB̂ = H − CS(A)− C and it coincides with B on the left boundary.
Notice that here B̃ indeed has sitting instants: since H, CS(A) and C have sitting instants they are

constant on their value at the boundary in a neighbourhood perpendicular to the boundary, which means
for these 3-forms in the degrees ≤ 3 that they vanish in a neighbourhood of the boundary, hence that the
above integral is towards the boundary over a vanishing integrand.

In degree 4 the nature of the lifting problem

Λ[4]i //

��

cosk3 exp(bR→ gµ)(U)

��
∆[4] // B3R/ZChW,ch

starts out differently, due to the presence of cosk3, but it then ends up amounting to the same kind of
argument:

We have four functions U → R/Z which we may realize as the fiber integration of a 3-form H on
U × (∂∆[4] \ δi∆[3]), and we have a lift to (A,B,C,H)-data on U × (∂∆[4] \ δi(∆[3])) (the boundary of the
4-simplex minus one of its 3-simplex faces).

We observe that we can

• always extend C smoothly to the remaining 3-face such that its fiber integration there reproduces
the signed difference of the four given functions corresponding to the other faces (choose any smooth
3-form with sitting instants and with non-vanishing integral and rescale smoothly);

• fill the A-data horizonatlly due to the fact that π2(Spin) = 0.

• the C-form is already horizontal, hence already filled.

Moreover, by the fact that the 2-form B already is defined on all of ∂∆[4] \ δi(∆[3]) its fiber integral over
the boundary ∂∆[3] coincides with the fiber integral of H − cs(A) − C over ∂∆[4] \ δi(∆[3])). But by the
fact that we have lifted C and the fact that µ(Avert) = cs(A)|∆3 is an integral cocycle, it follows that this
equals the fiber integral of C − cs(A) over the remaining face.

Use then as above the vertical Poincaré lemma-formula to find B̃ on U ×∆3 with sitting instants that
satisfies the equation dB = H − cs(A) − C there. Then extend the closed difference B − B̃|0 to a closed
smooth 2-form on ∆3. As before, the difference

B̂ := B̃ + λ

is an extension of B that constitutes a lift. �

Corollary 7.1.121. For any X ∈ SmoothMfd ↪→ Smooth∞Grpd, for any choice of differentiaby good open
cover with corresponding cofibrant presentation X̂ = C({Ci}) ∈ [SmoothCartSpop, sSet]proj we have that the
2-groupoids of twisted differential string structures are presented by the ordinary fibers of the morphism of
Kan complexes

[CartSpop, sSet](X̂, exp(µ, cs)) :

[CartSpop, sSet](X̂, cosk3 exp(bR→ gµ)ChW)→ [CartSpop, sSet](X̂,B3U(1)ChW) .

over any basepoints in the connected components of the Kan complex on the right, which correspond to the
elements [Ĉ3] ∈ H4

diff(X) in the ordinary differential cohomology of X.

Proof. Since [SmoothCartSpop, sSet]proj is a simplicial model category the morphism [CartSpop, sSet](X̂, exp(µ, cs))

is a fibration because exp(µ, cs) is and X̂ is cofibrant.
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It follows from the general theory of homotopy pullbacks that the ordinary pullback of simplicial presheaves

Stringdiff,tw(X) //

��

H4
diff(X)

��
[CartSpop, sSet](X̂, cosk3 exp(bR→ gµ)ChW) // [CartSpop, sSet](X̂,B3U(1)ChW)

is a presentation for the defining ∞-pullback for Stringdiff,tw(X). �
We unwind the explicit expression for a twisted differential string structure under this equivalence. Any

twisting cocycle is in the above presentation given by a Čech-Deligne-cocycle, as discussed at 6.4.16.

Ĥ3 = ((H3)i, · · · )

with local connection 3-form (H3)i ∈ Ω3(Ui) and globally defined curvature 4-form G4 ∈ Ω4(X).

Observation 7.1.122. A twisted differential string structure on X, twisted by this cocycle, is on patches
Ui a morphism

Ω•(Ui)← W̃(bR→ gµ)

in dgAlg, subject to some horizontality constraints. The components of this are over each Ui a collection of
differential forms of the following structure


Fω = dω + 1

2 [ω ∧ ω]
H3 = ∇B := dB + CS(ω)− C3

G4 = dC3

dFω = −[ω ∧ Fω]
dH3 = G4 − 〈Fω ∧ Fω〉
dG4 = 0


i

ta 7→ ωa

ra 7→ F aω
b 7→ B
c 7→ C3

h 7→ H3

g 7→ G4oo �


ra = dta + 1

2C
a
bct

b ∧ tc
h = db+ cs− c
g = dc
dra = −Cabctb ∧ ra
dh = 〈−,−〉 − g
dg = 0

 .

Here we are indicating on the right the generators and their relation in W̃ (bR→ gµ) and on the left their
images and the images of the relations in Ω•(Ui). This are first the definitions of the curvatures themselves
and then the Bianchi identities satisfied by these.

By prop. 6.4.155 we have that for g an L∞-algebra and

BG := coskn+1 exp(g)

the delooping of the smooth Lie n-group obtained from it by Lie integration, def. 6.4.79 the coefficient for
∞-connections on G-principal ∞-bundles is

BGconn := coskn+1 exp(g)conn .

Proposition 7.1.123. The 2-groupoid of entirely untwisted differential string structures, def. 7.1.107, on
X (the twist being 0 ∈ H4

diff(X)) is equivalent to that of principal 2-bundles with 2-connection over the string
2-group, def. 7.1.10, as discussed in 1.2.9.7.2:

Stringdiff,tw=0(X) ' String2Bund∇(X) .

Proof. By 7.1.6.3.1 we compute Stringdiff,tw=0(X) as the ordinary fiber of the morphism of simplicial
presheaves

[CartSpop, sSet](C({Ui}), cosk3 exp(bR→ gµ))→ [CartSpop, sSet](C({Ui}),B3U(1)diff)
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over the identically vanishing cocycle.
In terms of the component formulas of observation 7.1.122, this amounts to restricting to those cocyles

for which over each U ×∆k the equations

C = 0

G = 0

hold. Comparing this to the explicit formulas for exp(bR → gµ) and exp(bR → gµ)conn in 7.1.6.3.1 we see
that these cocycles are exactly those that factor through the canonical inclusion

gµ → (bR→ gµ)

from observation 7.1.114. �

7.1.6.3.2 The Green-Schwarz mechanism in heterotic supergravity Local differential form
data as in observation 7.1.122 is known in theoretical physics in the context of the Green-Schwarz mechanism
for 10-dimensional supergravity. We conclude with some comments on the meaning and application of this
result (for background and references on the physics story see for instance [SSS09b]).

The standard action functionals of higher dimensional supergravity theories are generically anomalous
in that instead of being functions on the space of field configurations, they are just sections of a line bundle
over these spaces. In order to get a well defined action principle as input for a path-integral quantization to
obtain the corresponding quantum field theories, one needs to prescribe in addition the data of a quantum
integrand. This is a choice of trivialization of these line bundles, together with a choice of flat connection.
For this to be possible the line bundle has to be trivializable and flat in the first place. Its failure to be
tivializable – its Chern class – is called the global anomaly, and its failure to be flat – its curvature 2-form –
is called its local anomaly.

But moreover, the line bundle in question is the tensor product of two different line bundles with con-
nection. One is a Pfaffian line bundle induced from the fermionic degrees of freedom of the theory, the
other is a line bundle induced from the higher form fields of the theory in the presence of higher electric
and magnetic charge. The Pfaffian line bundle is fixed by the requirement of supersymmetry, but there is
freedom in choosing the background higher electric and magnetic charge. Choosing these appropriately such
as to ensure that the tensor product of the two anomaly line bundles produces a flat trivializable line bundle
is called an anomaly cancellation by a Green-Schwarz mechanism.

Concretely, the higher gauge background field of 10-dimensional heterotic supergravity is the Kalb-
Ramond field, which in the absence of fivebrane magnetic charge is modeled by a circle 2-bundle (bundle
gerbe) with connection and curvature 3-form H3 ∈ Ω3

cl(X), satisfying the higher Maxwell equation

dH3 = 0 .

Notice that we may think of a circle 2-bundle as a homotopy from the trivial circle 3-bundle to itself.
In order to cancel the relevant quantum anomaly it turns out that a magnetic background charge density

is to be added to the system whose differential form representative is the difference jmag := 〈F∇SU
∧F∇SU

〉−
〈F∇Spin ∧ F∇Spin〉 between the Pontryagin forms of the Spin-tangent bundle and a given SU-gauge bundle.
This modifies the above Maxwell equation locally, on a patch Ui ⊂ X to

dHi = 〈FAi ∧ FAi〉 − 〈Fωi ∧ Fωi〉 .

Comparing with prop. 7.1.122 and identifying the curvature of the twist with G4 = 〈FAi ∧ FAi〉 we see
that, while such Hi can no longer be the curvature 3-form of a circle 2-bundle, it can be the local 3-form
component of a twisted circle 3-bundle that is part of the data of a twisted differential string-structure. The
above differential form equation exhibits a de Rham homotopy between the two Pontryagin forms. This is
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the local differential aspect of the very defnition of a twisted differential string-structure: a homotopy from
the Chern-Simons circle 3-bundle of the Spin-tangent bundle to a given twisting circle 3-bundle.

For many years the anomaly cancellation for the heterotic superstring was known at the level of precision
used in the physics community, based on a seminal article by Killingback. Recently [Bun09] has given a
rigorous proof in the special case that underlying topological class of the twisting gauge bundle is trivial. This
proof used the model of twisted differential string structures with topologically tivial twist given in [Wal09].
This model is explicitly constructed in terms of bundle 2-gerbes and doees not exhibit the homotopy pullback
property of def. 5.2.14 explicitly. However, the author shows that his model satisfies the abstract properties
following from the universal property of the homotopy pullback.

When we take into account also gauge transformations of the gauge bundle, we should replace the
homotopy pullback defining twisted differential string structurs this by the full homotopy pullback

GSBackground(X) //

��

Hconn(X,BU)

ĉ2

��
Hconn(X,BSpin)

1
2 p̂1 // HdR(X,B3U(1))

.

The look of this diagram makes manifest how in this situation we are looking at the structures that homo-
topically cancel the differential classes 1

2 p̂ and ĉ2 against each other.
Since HdR(X,B3U(1)) is abelian, we may also consider the corresponding Mayer-Vietoris sequence by

realizing GSBackground(X) equivalently as the homotopy fiber of the difference of differential cocycles
1
2 p̂1 − ĉ2.

GSBackground(X) //

��

∗

��
Hconn(X,BSpin×BU)

1
2 p̂1−ĉ2 // HdR(X,B4U(1))

.
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7.1.7 Classical supergravity

Action functionals of supergravity are extensions to super-geometry, 6.6, of the Einstein-Hilbert action func-
tional that models the physics of gravity. While these action functionals are not themselves, generally, of
higher Chern-Simons type, 5.2.14, or of higher Wess-Zumino-Witten type, 5.2.15, some of them are low-
energy effective actions of super string field theory action functionals, that are of this type, as we discuss
below in 7.2.10. Accordingly, supergravity action functionals typically exhibit rich Chern-Simons-like sub-
structures.

A traditional introduction to the general topic can be found in [DeMo99]. A textbook that aims for a
more systematic formalization is [CaDAFr91]. Below in 7.1.7.4 we observe that the discussion of supergravity
there is secretly in terms of ∞-connections, 1.2.9.6, with values in super L∞-algebras, 6.6.7.

• 7.1.7.1 – First-order/gauge theory formulation of gravity

• 7.1.7.2 – Higher extensions of the super Poincaré Lie algebra;

• 7.1.7.4 – Supergravity fields are super L∞-connections

Much of this discussion we re-encounter when we consider super-Minkowski spacetime as a target space
for higher WZW models below in 8.1.2.

7.1.7.1 First-order/gauge theory formulation of gravity The field theory of gravity (“general rel-
ativity”) has a natural first order formulation where a field configuration over a given (d + 1)-dimensional
manifold X is given by a iso(d, 1)-valued Cartan connection, def. 6.5.63. The following statements briefly
review this and related facts (see for instance also the review in the introduction of [Zan05]).

Definition 7.1.124. For d ∈ N, the Poincaré group ISO(d, 1) is the group of auto-isometries of the
Minkowski space Rd,1 equipped with its canonical pseudo-Riemannian metric η.

This is naturally a Lie group. Its Lie algebra is the Poincaré Lie algebra iso(d, 1).

We recall some standard facts about the Poincaré group.

Observation 7.1.125. The Poncaré group is the semidirect product

ISO(d, 1) ' O(d, 1) nRd+1

of the Lorentz group O(d, 1) of linear auto-isometries of Rd,1, and the abelian translation group in (d + 1)
dimensions, with respect to the defining action of O(d, 1) on Rd,1. Accordingly there is a canonical embedding
of Lie groups

O(d, 1) ↪→ ISO(d, 1)

and the corresponding coset space is Minkowski space

ISO(d, 1)/O(d, 1) ' Rd,1 .,

Analogously the Poincaré Lie algebra is the semidirect product

iso(d, 1) ' so(d, 1) nRd,1 ,

Accordingly there is a canonical embedding of Lie algebras

so(d, 1) ↪→ iso(d, 1)

and the corresponding quotient of vector spaces is Minkowski space

iso(d, 1)/so(d, 1) ' Rd,1 .
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Minkowski space Rd,1 is the local model for Lorentzian manifolds.

Definition 7.1.126. A Lorentzian manifold is a pseudo-Riemannian manifold (X, g) such that each tangent
space (TxX, gx) for any x ∈ X is isometric to a Minkowski space (Rd,1, η).

Proposition 7.1.127. Equivalence classes of (O(d, 1) ↪→ ISO(d, 1))-valued Cartan connections, def. 6.5.63,
on a smooth manifold X are in canonical bijection with Lorentzian manifold structures on X.

This follows from the following observations.

Observation 7.1.128. Locally over a patch U → X a iso(d, 1) connection is given by a 1-form

A = (E,Ω) ∈ Ω1(U, iso(d, 1))

with a component
E ∈ Ω1(U,Rd+1)

and a component
Ω ∈ Ω1(U, so(d, 1)) .

If this comes from a (O(d, 1)→ ISO(d, 1))-Cartan connection then E is non-degenerate in that for all x ∈ X
the induced linear map

E : TxX → Rd+1

is a linear isomorphism. In this case X is equipped with the Lorentzian metric

g := E∗η

and Ω is naturally identified with a compatible metric connection on TX. Then curvature 2-form of the
connection

FA = (FΩ, FE) ∈ Ω2(U, iso(d, 1))

has as components the Riemann curvature

FΩ = dΩ +
1

2
[Ω ∧ Ω] ∈ Ω2(U, so(d, 1))

of the metric connection, as well as the torsion

FE = dE + [Ω ∧ E] ∈ Ω2(U,Rd,1) .

Therefore precisely if in addition the torsion vanishes is Ω uniquely fixed to be the Levi-Civita connection
on (X, g).

Therefore the configuration space of gravity on a smooth manifold X may be identified with the moduli
space of iso(d, 1)-valued Cartan connections on X. The field content of supergravity is obtained from this
by passing from the to Poincaré Lie algebra to one of its super Lie algeba extensions, a super Poincaré Lie
algebra.

There are different such extensions. All involve some spinor representation of the Lorentz Lie algebra
so(d, 1) as odd-degree elements in the super Lie algebra The choice of number N of irreps in this represen-
tation. But there are in general more choices, given by certain exceptional polyvector extensions of such
super-Poincaré-Lie algebras which contain also new even-graded elements.

Below we show that these Lie superalgebra polyvector extensions , in turn, are induced from canonical
super L∞-algebra extensions given by exceptional super Lie algebra cocycles, and that the configuration
spaces of higher dimensional supergravity may be identified with moduli spaces of ∞-connections, 1.2.9,
withvalues in a super L∞-algebra, def. 6.6.19. that arise as higher central extensions, def. 6.4.133, of a super
Poincaré Lie algebra.

836



7.1.7.2 L∞-extensions of the super Poincaré Lie algebra The super-Poincaré Lie algebra is the
local gauge algebra of supergravity. It inherits the cohomology of the special orthogonal or Lorentz Lie
algebra so(d, 1), but crucially it exhibits a finite number of exceptional so(d, 1)-invariant cocycles on its
super-translation algebra. The super L∞-algebra extensions induced by these cocycles control the structure
of higher dimensional supergravity fields as well as of super-p-brane σ-models that propagate in a supergravity
background.

• 7.1.7.3 – The super Poincaré Lie algebra;

• 7.1.7.3.1 – M2-brane Lie 3-algebra and the M-theory Lie algebra;

• 7.1.7.3.2 – Exceptional cocycles and the brane scan.

7.1.7.3 The super Poincaré Lie algebra

Definition 7.1.129. For n ∈ N and S a spinor representation of so(n, 1), the corresponding super Poincaré
Lie algebra sIso(n, 1) is the super Lie algebra whose Chevalley-Eilenberg algebra CE(sIso(10, 1) is generated
from

1. generators {ωab} in degree (1, even) dual to the standard basis of so(n, 1),

2. generators {ea} in degree (1, even)

3. and generators {ψα} in degree (1, odd), dual to the spinor representation S

with differential defined by
dCEω

a
b = ωac ∧ ωcd

dCEe
a = ωab ∧ eb +

i

2
ψ̄ ∧ Γaψ

dCEψ =
1

4
ωabΓabψ ,

where {Γa} is the corresponding representation of the Clifford algebra Cln,1 on S, and here and in the
following Γa1···ak is shorthand for the skew-symmetrization of the matrix product Γa1 · · · · · Γak in the k
indices.

7.1.7.3.1 M2-brane Lie 3-algebra and the M-theory Lie algebra We discuss an exceptional
extension of the super Poincaré Lie algebra in 11-dimensions by a super Lie 3-algebra and further by super
Lie 6-algebra. We show that the corresponding automorphism L∞-algebra contains the polyvector extension
called the M-theory super Lie algebra.

Proposition 7.1.130. For (n, 1) = (10, 1) and S the canonical spinor representation, we have an exceptional
super Lie algebra cohomology class in degree 4

[µ4] ∈ H2,2(sIso(10, 1))

with a representative given by

µ4 :=
1

2
ψ̄ ∧ Γabψ ∧ ea ∧ eb .

This is due to [dAFr82].

Definition 7.1.131. The M2-brane super Lie 3-algebra m2branegs is the bR-extension of sIso(10, 1) classified
by µ4, according to prop. 6.4.138

b2R→ m2branegs → siso(10, 1) .
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In terms of its Chevalley-Eilenberg algebra this extension was first considered in [dAFr82].

Definition 7.1.132. The polyvector extension [ACDP03] of sIso(10, 1) – called the M-theory Lie algebra –
is the super Lie algebra obtained by adjoining to sIso(10, 1) generators {Qα, Zab} that transform as spinors
with respect to the existing generators, and whose non-vanishing brackets among themselves are

[Qα, Qβ ] = i(CΓa)αβPa + (CΓab)Z
ab

[Qα, Z
ab] = 2i(CΓ[a)αβQ

b]β .

Proposition 7.1.133. There is a nontrivial degree-7 class [µ7] ∈ H5,2(m2branegs) in the super-L∞-algebra
cohomology of the M2-brane Lie 3-algebra, a cocycle representative of which is

µ7 := −1

2
ψ̄ ∧ Γa1···a5ψ ∧ ea1

∧ · · · ∧ ea5
− 13

2
ψ̄ ∧ Γa1a2ψ ∧ ea1

∧ es2 ∧ c3 ,

where c3 is the extra generator of degree 3 in CE(m2branegs).

This is due to [dAFr82].

Definition 7.1.134. The M5-brane Lie 6-algebra m5branegs is the b5R-extension of m2branegs classified by
µ7, according to prop. 6.4.138

b5R→ m5branegs → m2branegs .

7.1.7.3.2 Exceptional cocycles and the brane scan The exceptional cocycles discussed above
are part of a pattern which traditionally goes by the name brane scan [Duf87].

Proposition 7.1.135. For d, p ∈ N, let sIso(d, 1) be the super Poincaré Lie algebra, def. 7.1.129, and
consider the element

ψ̄Γa0,··· ,ap+1
∧ ψ ∧ ea0 ∧ · · · ∧ eap+1 ∈ CE(sIso(d, 1))

in degree p + 2 of the Chevalley-Eilenberg algebra. This is closed, hence is a cocycle, for the combinations
of D := d+1 and p ≥ 1 precisely where there are non-empty and non-parenthesis entries in the following table.

p = 1 2 3 4 5
D = 11 m2branegs (m5branegs)

10 stringgs ns5branegs

9 ∗
8 ∗
7 ∗
6 ∗ ∗
5 ∗
4 ∗ ∗
3 ∗

The entries in the top two rows are labeled by the name of the extension of sIso(d, 1) that the corre-
sponding cocycle classifies. By prop. 7.1.131 the 7-cocycle that defines m5branegs does not live on the Lie
algebra sIso(10, 1), but only on its Lie 3-algebra extension m2branegs. This is why in the context of the
brane scan it does not appear in the classical literature, which does not know about higher Lie algebras.

An explicitly Lie-theoretic discussion of these cocycles is in chapter 8 of [AzIz95]. The extension

bR→ stringgs → sIso(9, 1)

and its Lie integration has been considered in [Huer11].
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7.1.7.4 Supergravity fields are super L∞-connections Among the varied literature in theoretical
physics on the topic of supergravity the book [CaDAFr91] and the research program that it summarizes,
starting with [dAFr82], stands out as an attempt to identify and make use of a systematic mathematical
structure controlling the general theory. By careful comparison one can see that the notions considered in
that book may be translated into notions considered here under the following dictionary

• “FDA”: the Chevalley-Eilenberg algebra CE(g) of a super L∞-algebra g (def. 6.6.19), def. 6.5.17;

• “soft group manifold”: the Weil algebra W(g) of g, def. 6.4.135

• “field configuration”: g-valued ∞-connection, def. 1.2.9.6

• “field strength”: curvature of g-valued ∞-connection, def. 1.2.176

• “horizontality condition”: second ∞-Ehresmann condition, remark 1.2.185

• “cosmo-cocycle condition”: characterization of g-Chern-Simons elements, def. 6.4.147, to first order in
the curvatures;

All the super L∞-algebras g appearing in [CaDAFr91] are higher shifted central extensions, in the sense of
prop. 6.4.138, of the super-Poincaré Lie algebra.

7.1.7.4.1 The graviton and the gravitino

Example 7.1.136. For X a supermanifold and g = sIso(n, 1) the super Poincaré Lie algebra from def.
7.1.129, g-valued differential form data

A : TX → siso(n, 1)

consists of

1. an Rn+1-valued even 1-form E ∈ Ω1(X,Rn+1) – the vielbein, identified as the propagating part of the
graviton field;

2. an so(n, 1)-valued even 1-form Ω ∈ Ω1(X, so(n, 1)) – the spin connection, identified as the non-
propagating auxiliary part of the graviton field;

3. a spin-representaton -valued odd 1-form Ψ ∈ Ω1(X,S) – identified as the gravitino field.

7.1.7.4.2 The 11d supergravity C3-field

Example 7.1.137. For g = m2branegs the Lie 3-algebra from def. 7.1.131, a g-valued form

A : TX → sugra3(10, 1)

consists in addition to the field content of a siso(10, 1)-connection from example 7.1.136 of

• a 3-form C3 ∈ Ω3(X).

This 3-form field is the local incarnation of what is called the supergravity C3-field. The global nature of
this field is discussed in 7.1.8.

7.1.7.4.3 The magnetic dual 11d supergravity C6-field

Example 7.1.138. For g = m5branegs the 11d-supergravity Lie 6-algebra, def. 7.1.134, a g-valued form

A : TX → sugra6(10, 1)

consists in addition to the field content of a sugra3(10, 1)-connection given in remark 7.1.137 of

• a 6-form C6 ∈ Ω3(X) – the dual supergravity C-field.

The identification of this field content is also due to the analysis of [dAFr82].
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7.1.8 The supergravity C-field

We consider a slight variant of twisted differential c-structures, where instead of having the twist directly
in differential cohomology, it is instead first considered just in de Rham cohomology but then supplemented
by a lift of the structure ∞-group.

We observe that when such a twist is by the sum of the first fractional Pontryagin class with the second
Chern class, and when the second of these two steps is considered over the boundary of the base manifold,
then the differental structures obtained this way exhibit some properties that a differential cohomological
description of the C3-field in 11-dimensional supergravity, 7.1.7.4.2, is expected to have.

This section draws from [FSS12a] and [FSS12b].

The supergravity C-field is subject to a certain Z2-twist [Wi96] [Wi97a], due to a quadratic refinement
of its action functional, which we review below in 7.1.8.1. A formalization of this twist in abelian differential
cohomology for fixed background spin structure has been given in [HoSi05], in terms of differential integral
Wu structures. These we review in 7.1.8.2 and refine them from Z2-coefficients to circle n-bundles. Then we
present a natural moduli 3-stack of C-field configurations that refines this model to nonabelian differential
cohomology, generalizing it to dynamical gravitational background fields, in 7.1.8.4. We discuss a natural
boundary coupling of these fields to E8-gauge fields in 7.1.8.6.

7.1.8.1 Higher abelian Chern-Simons theories with background charge The supergravity C-
field is an example of a general phenomenon of higher abelian Chern-Simons QFTs in the presence of
background charge. This phenomenon was originally noticed in [Wi96] and then made precise in [HoSi05].
The holographic dual of this phenomenon is that of self-dual higher gauge theories, which for the supergravity
C-field is the nonabelian 2-form theory on the M5-brane [FSS12b]. We review the idea in a way that will
smoothly lead over to our refinements to nonabelian higher gauge theory in section 7.1.8.

Fix some natural number k ∈ N and an oriented manifold (compact with boundary) X of dimension
4k + 3. The gauge equivalence class of a (2k + 1)-form gauge field Ĝ on X is an element in the differential
cohomology group Ĥ2k+2(X). The cup product Ĝ ∪ Ĝ ∈ Ĥ4k+4(X) of this with itself has a natural higher
holonomy over X, denoted

exp(iS(−)) : Ĥ2k+2(X) → U(1)

Ĝ 7→ exp(i

∫
X

Ĝ ∪ Ĝ) .

This is the exponentiated action functional for bare (4k+ 3)-dimensional abelian Chern-Simons theory. For
k = 0 this reduces to ordinary 3-dimensional abelian Chern-Simons theory. Notice that, even in this case,
this is a bit more subtle that Chern-Simons theory for a simply-connected gauge group G. In the latter case
all fields can be assumed to be globally defined forms. But in the non-simply-connected case of U(1), instead
the fields are in general cocycles in differential cohomology. If, however, we restrict attention to fields C in
the inclusion H2k+1

dR (X) ↪→ Ĥ2k+2(X), then on these the above action reduces to the familiar expression

exp(iS(C)) = exp(i

∫
X

C ∧ ddRC) .

Observe now that the above action functional may be regarded as a quadratic form on the group Ĥ2k+2(X).
The corresponding bilinear form is the (“secondary”, since X is of dimension 4k + 3 instead of 4k + 4)
intersection pairing

〈−,−〉 : Ĥ2k+2(X)× Ĥ2k+2(X)→ U(1)

(â1, â2) 7→ exp(i

∫
X

â1 ∪ â2) .

But note that from exp(iS(−)) we do not obtain a quadratic refinement of the pairing. A quadratic refinement
is, by definition, a function

q : Ĥ2k+2(X)→ U(1)
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(not necessarily homogenous of degree 2 as exp(iS(−)) is), for which the intersection pairing is obtained via
the polarization formula

〈â1, â2〉 = q(â1 + â2)q(â1)−1q(â2)−1q(0) .

If we took q := exp(iS(−)), then the above formula would yield not 〈−,−〉, but the square 〈−,−〉2, given
by the exponentiation of twice the integral.

The observation in [Wi96] was that for the correct holographic physics, we need instead an action func-
tional which is indeed a genuine quadratic refinement of the intersection pairing. But since the differential
classes in Ĥ2k+2(X) refine integral cohomology, we cannot in general simply divide by 2 and pass from
exp(i

∫
X
Ĝ ∪ Ĝ) to exp(i

∫
X

1
2 Ĝ ∪ Ĝ). The integrand in the latter expression does not make sense in general

in differential cohomology. If one tried to write it out in the “obvious” local formulas one would find that
it is a functional on fields which is not gauge invariant. The analog of this fact is familiar from nonabelian
G-Chern-Simons theory with simply-connected G, where also the theory is consistent only at interger levels.
The “level” here is nothing but the underlying integral class G ∪ G. Therefore the only way to obtain a
square root of the quadratic form exp(iS(−)) is to shift it. Here we think of the analogy with a quadratic
form

q : x 7→ x2

on the real numbers (a parabola in the plane). Replacing this by

qλ : x 7→ x2 − λx

for some real number λ means keeping the shape of the form, but shifting its minimum from 0 to 1
2λ. If we

think of this as the potential term for a scalar field x then its ground state is now at x = 1
2λ. We may say

that there is a background field or background charge that pushes the field out of its free equilibrium.

To lift this reasoning to our action quadratic form exp(iS(−)) on differential cocycles, we need a differ-

ential class λ̂ ∈ H2k+2(X) such that for every â ∈ H2k+2(X) the composite class

â ∪ â− â ∪ λ̂ ∈ H4k+4(X)

is even, hence is divisible by 2. Because then we could define a shifted action functional

exp(iSλ(−)) : â 7→ exp

(
i

∫
X

1

2
(â ∪ â− â ∪ λ̂)

)
,

where now the fraction 1
2 in the integrand does make sense. One directly sees that if this exists, then this

shifted action is indeed a quadratic refinement of the intersection pairing:

exp(iSλ(â+ b̂)) exp(iSλ(â))−1 exp(iSλ(b̂))−1 exp(iSλ(0)) = exp(i

∫
X

â ∪ b̂) .

The condition on the existence of λ̂ here means, equivalently, that the image of the underlying integral class
vanishes under the map

(−)Z2
: H2k+2(X,Z)→ H2k+2(X,Z2)

to Z2-cohomology:
(a)Z2

∪ (a)Z2
− (a)Z2

∪ (λ)Z2
= 0 ∈ H4k+4(X,Z2) .

Precisely such a class (λ)Z2 does uniquely exist on every oriented manifold. It is called the Wu class
ν2k+2 ∈ H2k+2(X,Z2), and may be defined by this condition. Moreover, if X is a Spin-manifold, then every
second Wu class, ν4k, has a pre-image in integral cohomology, hence λ does exist as required above

(λ)Z2
= ν2k+2 .
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It is given by polynomials in the Pontrjagin classes of X (discussed in section E.1 of [HoSi05]). For instance
the degree-4 Wu class (for k = 1) is refined by the first fractional Pontrjagin class 1

2p1

( 1
2p1)Z2

= ν4 .

In the present context, this was observed in [Wi96] (see around eq. (3.3) there).
Notice that the equations of motion of the shifted action exp(iSλ(â)) are no longer curv(â) = 0, but are

now
curv(â) = 1

2curv(λ̂) .

We therefore think of exp(iSλ(−)) as the exponentiated action functional for higher dimensional abelian
Chern-Simons theory with background charge 1

2λ.
With respect to the shifted action functional it makes sense to introduce the shifted field

Ĝ := â− 1
2 λ̂ .

This is simply a re-parameterization such that the Chern-Simons equations of motion again look homogenous,
namely G = 0. In terms of this shifted field the action exp(iSλ(â)) from above equivalently reads

exp(iSλ(Ĝ)) = exp(i

∫
X

1
2 (Ĝ ∪ Ĝ− ( 1

2 λ̂)2)) .

For the case k = 1, this is the form of the action functional for the 7d Chern-Simons dual of the 2-form
gauge field on the 5-brane first given as (3.6) in [Wi96]

In the language of twisted cohomological structures, def. 5.2.118, we may summarize this situation as
follows: In order for the action functional of higher abelian Chern-Simons theory to be correctly divisible,
the images of the fields in Z2-cohomology need to form a twisted Wu-structure, [Sa11b].Therefore the fields
themselves need to constitute a twisted λ-structure. For k = 1 this is a twisted String-structure [SSS09c]
and explains the quantization condition on the C-field in 11-dimensional supergravity.

In [HoSi05] a formalization of the above situation has been given in terms of a notion there called
differential integral Wu structures. In the following section we explain how this follows from the notion of
twisted Wu structures with the twist taken in Z2-coefficients. Then we refine this to a formalization to
twisted differential Wu structures with the twist taken in smooth circle n-bundles.

7.1.8.2 Differential integral Wu structures We discuss some general aspects of smooth and differ-
ential refinements of Z2-valued universal characteristic classes. For the special case of Wu classes we show
how these notions reduce to the definition of differential integral Wu structures given in [HoSi05]. We then
construct a refinement of these structures that lifts the twist from Z2-valued cocycles to smooth circle n-
bundles. This further refinement of integral Wu structures is what underlies the model for the supergravity
C-field in section 7.1.8.

Recall from prop. 7.1.37 the characterization of Spinc as the loop space object of the homotopy pullback

BSpinc //

��

BU(1)

c1 mod 2

��
BSO

w2 // B2Z2

.

For general n ∈ N the analog of the first Chern class mod 2 appearing here is the higher Dixmier-Douady
class mod 2

DDmod 2 : BnU(1)
DD // Bn+1Z mod 2 // Bn+1Z2 .

Let now
νn+1 : BSO→ Bn+1Z2
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be a representative of the universal smooth Wu class in degree n+1, the (Π a Disc)-adjunct of the topological
universal Wu class using that Bn+1Z is discrete as a smooth ∞-groupoid, and using that Π(BSO) ' BSO
is the ordinary classifying space, by prop. 6.3.30.

Definition 7.1.139. Let Spinνn+1 be the loop space object of the homotopy pullback

BSpinνn+1 //

νint
n+1

��

BSO

νn+1

��
BnU(1)

mod 2 // Bn+1Z2

.

We call the left vertical morphism νn+1 appearing here the universal smooth integral Wu structure in degree
n+ 1.

A morphism of stacks
νn+1 : X → BSpinνn+1

is a choice of orientation structure on X together with a choice of smooth integral Wu structure lifting the
corresponding Wu class νn+1.

Example 7.1.140. The smooth first fractional Pontrjagin class 1
2p2, prop. 7.1.5, fits into a diagram

BSpin

$$

1
2p1

$$

u

%%
BSpinν4 //

νint
4

��

BSO

ν4

��
B3U(1)

mod 2 // B4Z2

.

In this sense we may think of 1
2p1 as being the integral and, moreover, smooth refinement of the universal

degree-4 Wu class on BSpin.

Proof. Using the defining property of 1
2p1, this follows with the results discussed in appendix E.1 of

[HoSi05]. �

Proposition 7.1.141. Let X be a smooth manifold equipped with orientation

oX : X → BSO

and consider its Wu-class [νn+1(oX)] ∈ Hn+1(X,Z2)

νn+1(oX) : X
oX // BSO

νn+1 // Bn+1Z2 .

The n-groupoid D̂Dmod2Struc[ν2k](X) of [νn+1]-twisted differential DDmod2-structures, according to def.
5.2.118, hence the homotopy pullback

D̂Dmod2Struc[νn+1](X) //

��

∗

νn+1(oX)

��
H(X,B3U(1)conn)

D̂Dmod 2 // H(X,Bn+1Z2)

,

categorifies the groupoid Ĥn+1
νn+1

(X) of differential integral Wu structures as in def. 2.12 of [HoSi05]: its
1-truncation is equivalent to the groupoid defined there

τ1D̂Dmod2Struct[νn+1](X) ' Ĥn+1
νn+1

(X) .
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Proof. By prop. 6.4.114, the canonical presentation of DDmod2 via the Dold-Kan correspondence is given
by an epimorphism of chain complexes of sheaves, hence by a fibration in [CartSpop, sSet]proj. Precisely, the
composite

D̂Dmod 2 : BnU(1)conn
// BnU(1)

DD // Bn+1Z mod 2 // Bn+1Z2

is presented by the vertical sequence of morphisms of chain complexes

Z �
� //

��

C∞(−,R)
ddRlog //

��

Ω1(−)
ddR //

��

· · · ddR // Ωn(−)

��
Z �
� //

��

C∞(−,R) //

��

0 //

��

· · · // 0

��
Z //

��

0 //

��

0 //

��

· · · // 0

��
Z2

// 0 // 0 // · · · // 0

.

By remark 5.1.10 we may therefore compute the defining homotopy pullback for D̂Dmod2Struct[νn+1](X)
as an ordinary fiber product of the corresponding simplicial sets of cocycles. The claim then follows by
inspection. �

Remark 7.1.142. Explicitly, a cocycle in τ1D̂Dmod2Struct[νn+1](X) is identified with a Čech cocycle with
coefficients in the Deligne complex

( Z �
� // C∞(−,R)

ddRlog // Ω1(−)
ddR // · · · ddR // Ωn(−) )

such that the underlying Z[n+ 1]-valued cocycle modulo 2 equals the given cocycle for νn+1. A coboundary
between two such cocycles is a gauge equivalence class of ordinary Čech-Deligne cocycles such that their
underlying Z-cocycle vanishes modulo 2. Cocycles of this form are precisely those that arise by multiplication
with 2 or arbitrary Čech-Deligne cocycles.

This is the groupoid structure discussed on p. 14 of [HoSi05], there in terms of singular instead of Čech
cohomology.

We now consider another twisted differential structure, which refines these twisting integral Wu structures
to smooth integral Wu structures, def. 7.1.139.

Definition 7.1.143. For n ∈ N, write BnU(1)
νn+1
conn for the homotopy pullback of smooth moduli n-stacks

BnU(1)
νn+1
conn

//

��

BnU(1)conn

��
BSpinνn+1 ×BnU(1)

νint
n+1−2DD

// BnU(1)

,

where ν int
n+1 is the universal smooth integral Wu class from def. 7.1.139, and where 2DD : BnU(1)→ BnU(1)

is the canonical smooth refinement of the operation of multiplication by 2 on integral cohomology.
We call this the moduli n-stack of smooth differential Wu-structures.

By construction, a morphism X → BnU(1)
νn+1
conn classifies also all possible orientation structures and

smooth integral lifts of their Wu structures. In applications one typically wants to fix an integral Wu
structure lifting a given Wu class. This is naturally formalized by the following construction.
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Definition 7.1.144. For X an oriented manifold, and

νn+1 : X → BSpinνn+1

a given smooth integral Wu structure, def. 7.1.139, write Hνn+1
(X,BnU(1)

νn+1
conn ) for the n-groupoid of

cocycles whose underlying smooth integral Wu structure is νn+1, hence for the homotopy pullback

Hνn+1(X,BnU(1)
νn+1
conn ) //

��

H(X,BnU(1)
νn+1
conn )

��
H(X,BnU(1))

(νn+1,id) //

��

H(X,BSpinνn+1 ×BnU(1))

��
∗

νn+1 // H(X,BSpinνn+1)

.

Proposition 7.1.145. Cohomology with coefficients in BnU(1)
νn+1
conn over a given smooth integral Wu struc-

ture coincides with the corresponding differential integral Wu structures:

Ĥn+1
νn+1

(X) ' Hνn+1(X,BnU(1)νn+1
conn ) .

Proof. Let C({Ui}) be the Čech-nerve of a good open cover of X. By prop. 6.4.114 the canonical
presentation of BnU(1)conn → BnU(1) is a projective fibration. Since C({Ui}) is projectively cofibrant and
[CartSpop, sSet]proj is a simplicial model category, the morphism of Čech cocycle simplicial sets

[CartSpop, sSet](C({Ui}),BnU(1)conn)→ [CartSpop, sSet](C({Ui}),BnU(1))

is a Kan fibration. Hence, by remark 5.1.10, its homotopy pullback may be computed as the ordinary
pullback of simplicial sets of this map. The claim then follows by inspection.

Explicitly, in this presentation a cocycle in the pullback is a pair (a, Ĝ) of a cocycle a for a circle n-bundle
and a Deligne cocycle Ĝ with underlying bare cocycle G, such that there is an equality of degree-n Čech
U(1)-cocycles

G = νn+1 − 2a .

A gauge transformation between two such cocycles is a pair of Čech cochains γ̂, α such that γ = 2α (the
cocycle νn+1 being held fixed). This means that the gauge transformations acting on a given Ĝ solving the
above constraint are precisely the all Deligne cocychains, but multiplied by 2. This is again the explicit
description of Ĥνn+1(X) from remark 7.1.142. �

7.1.8.3 Twisted differential String(E8)-structures We discuss smooth and differential refinements of
the canonical degree-4 universal characteristic class

a : BE8 → K(Z, 4)

for E8 the largest of the exceptional semimple Lie algebras.

Proposition 7.1.146. There exists a differential refinement of the canonical integral 4-class on BE8 to
the smooth moduli stack of E8-connections with values in the smooth moduli 3-stack of circle 3-bundles with
3-connection

â : (BE8)conn
// B3U(1)conn .
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Using the L∞-algebraic data provided in [SSS09a], this was constructed in [FSS10].

Proposition 7.1.147. Under geometric realization, prop. 5.2.14, the smooth class a becomes an equivalence

|a| : BE8 '16 B
3U(1) ' K(Z, 4)

on 16-coskeleta.

Proof. By [BoSa58] the 15-coskeleton of the topological space E8 is a K(Z, 4). By [FSS10], a is a smooth
refinement of the generator [a] ∈ H4(BE8,Z). By the Hurewicz theorem this is identified with π4(BE8) ' Z.
Hence in cohomology a induces an isomorphism

π4(BE8) ' [S4, BE8] ' H1(S4, E8)
|a|
' // H4(S4,Z) ' [S4,K(Z, 4)] ' π4(S4) .

Therefore |a| is a weak homotopy equivalence on 16 coskeleta. �

7.1.8.4 The moduli 3-stack of the C-field As we have reviewed above in section 7.1.8.1, the flux
quantization condition for the C-field derived in [Wi97a] is the equation

[G4] = 1
2p1 mod 2 in H4(X,Z) (7.16)

in integral cohomology, where [G4] is the cohomology class of the C-field itself, and 1
2p1 is the first fractional

Pontrjagin class of the Spin manifold X. One can equivalently rewrite (7.16) as

[G4] = 1
2p1 + 2a in H4(X,Z), (7.17)

where a is some degree 4 integral cohomology class on X. By the discussion in section 7.1.8.2, the correct
formalization of this for fixed spin structure is to regard the gauge equivalence class of the C-field as a
differential integral Wu class relative to the integral Wu class νint

4 = 1
2p1, example 7.1.140, of that spin

structure. By prop. 7.1.145 and prop. 7.1.9, the natural refinement of this to a smooth moduli 3-stack of
C-field configurations and arbitrary spin connections is the homotopy pullback of smooth 3-stacks

BnU(1)
νn+1
conn

//

��

B3U(1)conn

��
BSpinconn ×B3U(1)

1
2 p̂1+2DD

// B3U(1)

.

Here the moduli stack in the bottom left is that of the field of gravity (spin connections) together with an
auxiliary circle 3-bundle / 2-gerbe. Following the arguments in [FSS12b] (the traditional ones as well as the
new ones presented there), we take this auxiliary circle 3-bundle to be the Chern-Simons circle 3-bundle of
an E8-principal bundle. According to prop. 7.1.146 this is formalized on smooth higher moduli stacks by
further pulling back along the smooth refinement

a : BE8 → B3U(1)

of the canonical universal 4-class [a] ∈ H4(BE8,Z). Therefore we are led to formalize the E8-model for the
C-field as follows.

Definition 7.1.148. The smooth moduli 3-stack of spin connections and C-field configurations in the
E8-model is the homotopy pullback CField of the moduli n-stack of smooth differential Wu structures
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BnU(1)ν4
conn, def. 7.1.143, to spin connections and E8-instanton configurations, hence the homotopy pull-

back
CField //

��

B3U(1)ν4
conn

��
BSpinconn ×BE8

(u,a) // BSpinν4 ×B3U(1)

, (7.18)

where u is the canonical morphism from example 7.1.140.

Remark 7.1.149. By the pasting law, prop. 5.1.2, CField is equivalently given as the homotopy pullback

CField
Ĝ4 //

��

B3U(1)conn

��
BSpinconn ×BE8

1
2 p1+2a // B3U(1)

. (7.19)

Spelling out this definition, a C-field configuration

(∇so,∇b2R, PE8
) : X → CField

on a smooth manifold X is the datum of

1. a principal Spin-bundle with so-connection (PSpin,∇so) on X;

2. a principal E8-bundle PE8
on X;

3. a U(1)-2-gerbe with connection (PB2U(1),∇B2U(1)) on X;

4. a choice of equivalence of U(1)-2-gerbes between between PB2U(1) and the image of PSpin ×X PE8
via

1
2p1 + 2a.

It is useful to observe that there is the following further equivalent reformulation of this definition.

Proposition 7.1.150. The moduli 3-stack CField from def. 7.1.148 is equivalently the homotopy pullback

CField //

��

Ω4
cl

��
BSpinconn ×BE8

( 1
2 p1+2a)dR // [dRB4R

, (7.20)

where the bottom morphism of higher stacks is presented by the correspondence of simplicial presheaves

BSpinconn × (BE8)diff
//

o
����

BSpindiff × (BE8)diff

(
1
2p1+2a)diff //

o
����

B3U(1)diff
curv //

o
����

[dRB4R

BSpinconn ×BE8
// BSpin×BE8

1
2p1+2a

// B3U(1)

. (7.21)

Moreover, it is equivalently the homtopy pullback

CField //

��

Ω4
cl

��
BSpinconn ×BE8

( 1
4 p1+a)dR // [dRB4R

, (7.22)
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where now the bottom morphism is the composite of the bottom morphism before, postcomposed with the
morphism

1
2 : [dRB4R→ [dRB4R

that is given, via Dold-Kan, by division of differential forms by 2.

Proof. By the pasting law for homotopy pullbacks, prop. 5.1.2, the first homotopy pullback above may
be computed as two consecutive homotopy pullbacks

CField //

��

BnU(1)conn
//

��

Ω4
cl

��
BSpinconn ×BE8

1
2p1+2a

// B3U(1)
curv // [dRB4R

,

which exhibits on the right the defining pullback of def. 6.4.114, and thus on the left the one from def.
7.1.148. The statement about the second homotopy pullback above follows analogously after noticing that

Ω4
cl

1/2 //

��

Ω4
cl

��
[dRB4R

1/2 // [dRB4R

. (7.23)

is a homotopy pullback. �
It is therefore useful to introduce labels as follows.

Definition 7.1.151. We label the structure morphism of the above composite homotopy pullback as

CField
Ĝ4 //

��

B3U(1)conn
G4 //

G4

��

Ω4
cl

��
BSpinconn ×BE8 1

2 p2+2a

// B3U(1)
curv

// [dRB4U(1)

H3

'
u}

'
v~

.

Here Ĝ4 sends a C-field configuration to an underlying circle 3-bundle with connection, whose curvature
4-form is G4.

Remark 7.1.152. These equivalent reformulations show two things.

1. The C-field model may be thought of as containing E8-pseudo-connections. That is, there is a higher
gauge in which a field configuration consists of an E8-connection on an E8-bundle – even though there
is no dynamical E8-gauge field in 11d supergravity – but where gauge transformations are allowed to
freely shift these connections.

2. There is a precise sense in which imposing the quantization condition (7.17) on integral cohomology
is equivalent to imposing the condition [G4]/2 = 1

4p1 + a in de Rham cohomology / real singular
cohomology.

Observation 7.1.153. When restricted to a fixed Spin-connection, gauge equivalence classes of config-
urations classified by CField naturally form a torsor over the ordinary degree-4 differential cohomology
H4

diff(X).

Proof. By the general discussion of differential integral Wu-structures in section 7.1.8.2. �

848



7.1.8.5 The homotopy-type of the moduli stack We discuss now the homotopy-type of the 3-
groupoid

CField(X) := H(X,CField)

of C-field configurations over a given spacetime manifold X. In terms of gauge theory, its 0-th homotopy
group is the set of gauge equivalence classes of field configurations, its first homotopy group is the set of
gauge-of-gauge equivalence classes of auto-gauge transformations of a given configuration, and so on.

Definition 7.1.154. For X a smooth manifold, let

BSpinconn

��
X

PSpin //

∇so

::

BSpin

be a fixed spin structure with fixed spin connection. The restriction of CField(X) to this fixed spin con-
nection is the homotopy pullback

CField(X)PSpin
//

��

CField(X)

��
H(X,BE8)

((PSpin,∇so),id) // H(X,BSpinconn ×BE8)

.

Proposition 7.1.155. The gauge equivalence classes of CField(X)PSpin
naturally surjects onto the differ-

ential integral Wu structures on X, relative to 1
2p1(PSpin) mod 2, (example 7.1.140):

π0CField(X)PSpin
// // Ĥn+1

1
2p1(PSpin)

(X) .

The gauge-of-gauge equivalence classes of the auto-gauge transformation of the trivial C-field configuration
naturally surject onto H2(X,U(1)):

π1CField(X)PSpin
// // H2(X,U(1)) .

Proof. By def. 7.1.148 and the pasting law, prop. 5.1.2, we have a pasting diagram of homotopy pullbacks
of the form

CField(X)PSpin
// //

��

H 1
2p1(PSpin)

(X,BnU(1)ν4
conn) //

��

H(X,BnU(1)ν4
conn)

��
H(X,BE8)

H(X,a) // // H(X,B3U(1))
(∇so,id) // H(X,BSpinconn ×B3U(1))

(u,id) // H(X,BSpinν4 ×B3U(1))

,

where in the middle of the top row we identified, by def. 7.1.144, the n-groupoid of smooth differential Wu
structures lifting the smooth Wu structure 1

2p1(PSpin).
Due to prop. 7.1.145 we are therefore reduced to showing that the top left morphism is surjective on π0.
But the bottom left morphism is surjective on π0, by prop. 7.1.147. Now, the morphisms surjective on

π0 are precisely the effective epimorphisms in ∞Grpd, and these are stable under pullback. Hence the first
claim follows.

For the second, we use that

π1CField(X)PSpin ' π0ΩCField(X)PSpin
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and that forming loop space objects (being itself a homotopy pullback) commutes with homotopy pullbacks
and with taking cocycles with coefficients in higher stacks, H(X,−).

Therefore the image of the left square in the above under Ω is the homotopy pullback

ΩCField(X)PSpin
// //

��

H 1
2p1(PSpin)

(X,BnU(1)ν4
conn)

��
C∞(X,E8)

H(X,Ωa) // // H(X,B2U()1)

,

where in the bottom left corner we used

ΩH(X,BE8) ' H(X,ΩBE8)

' H(X,E8)

' C∞(X,E8)

,

and similarly for the bottom right corner. This identifies the bottom morphism on connected components as
the morphism that sends a smooth function X → E8 to its homotopy class under the homotopy equivalence
E8 '15 B

2U(1) ' K(Z, 3), which holds over the 11-dimensional X.
Therefore the bottom morphism is again surjective on π0, and so is the top morphism. The claim then

follows with prop. 7.1.141. �

7.1.8.6 Boundary moduli of the C-field We consider now ∂X (a neighbourhood of) the boundary
of spacetime X, and discuss a variant of the moduli stack CField that encodes the boundary configurations
of the supergravity C field.

Two different kinds of boundary conditions for the C-field appear in the literature.

• On an M5-brane boundary, the integral class underlying the C-field vanishes. (For instance page 24 of
[Wi96]).

• On the fixed points of a 3-bundle-orientifold, def. 7.1.4, for the case that X has an S1//Z2-orbifold
factor, the C-field vanishes entirely. (This is considered in [HoWi95, HoWi96]. See section 3.1 of [Fal]
for details.)

We construct higher moduli stacks for both of these conditions in the following. In addition to being
restricted, the supergravity fields on a boundary also pick up additional degrees of freedom

• The E8-principal bundle over the boundary is equipped with a connection.

We present now a sequence of natural morphisms of 3-stacks

CFieldbdr′ //

ι′

33CFieldbdr ι // CField

into the moduli stack of bulk C-fields, such that C-field configurations on X with the above behaviour over
∂X correspond to the relative cohomology, def. 5.1.343, with coefficients in ι or ι′,respectively, hence to
commuting diagrams of the form

∂X
φbdr //� _

��

CFieldbdr

ι

��
X

φ // CField

,
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and analogously for the primed case. (This is directly analogous to the characterization of type II supergravity
field configurations in the presence of D-branes as discussed in 7.1.6.2.)

To this end, recall the general diagram of moduli stacks from def. 5.2.113 that relates the characteristic
map 1

2p1 + 2a with its differential refinement 1
2 p̂1 + 2â:

B(Spin× E8)
[ 1

2 p1+2[a //

��

[B3U(1)

��
B(Spin× E8)conn

1
2 p̂1+2â //

��

B3U(1)conn

��
B(Spin× E8)

1
2 p1+2a // B3U(1)

.

The defining ∞-pullback diagram for CField factors the lower square of this diagram as follows

B(Spin× E8)conn

))

##

1
2 p̂1+2â

++
CField

��

Ĝ4 // B3U(1)conn

��
BSpinconn ×BE8

// BSpin×BE8

1
2 p1+2a // B3U(1)

.

Here the dashed morphism is the universal morphism induced from the commutativity of the previous
diagram together with the pullback property of the 3-stack CField. This morphism is the natural map
of moduli which induces the relative cohomology that makes the E8-bundle pick up a connection on the
boundary.

It therefore remains to model the condition that G4 or even Ĝ4 vanishes on the boundary. This condition
is realized by further pulling back along the sequence

∗ 0 // Ω3(−) // B3U(1)conn .

Definition 7.1.156. Write CFieldbdr and CFieldbdr′ , respectively, for the moduli 3-stacks which arise as
homotopy pullbacks in the top rectangles of

CFieldbdr′ //

ι′

&&

��

∗

0

��
CFieldbdr //

ι

%%

��

Ω3(−)

��
B(Spin× E8)conn

1
2 p̂1+2â //

��

B3U(1)conn

CField
Ĝ4 // B3U(1)conn

.

For X a smooth manifold with boundary, we say that the 3-groupoid of C-field configurations with boundary
data on X is the hom ∞-groupoid

HI(∂X → X , CFieldbdr ι→ CField) ,
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in the arrow category of the ambient∞-topos H = Smooth∞Grp, where on the right we have the composite
morphism indicated by the curved arrow above, and analogously for the primed case.

Observation 7.1.157. The moduli 3-stack CFieldbrd is equivalent to is the moduli 3-stack of twisted

String2a-2-connections whose underlying twist has trivial class. The moduli 3-stack CFieldbdr′ is equivalent
to the moduli 3-stack of untwisted String2a-2-connections

CFieldbdr′ ' String2a
conn .

This is presented via Lie integration of L∞-algebras as

CFieldbdr′ ' cosk3 exp((so⊕ e8)µso
3 +µ

e8
3

)conn .

The presentation of CFieldbdr by Lie integration is locally given by


FA = dA+ 1

2 [A ∧A]
H3 = ∇B := dB + CS(A)− C3

G4 = dC3

dFA = −[A ∧ FA]
dH3 = 〈FA ∧ FA〉 − G4

dG4 = 0


i

ta 7→ Aa

ra 7→ F aA
b 7→ B
c 7→ C3

h 7→ H3

g 7→ G4oo �


ra = dta + 1

2C
a
bct

b ∧ tc+
h = db+ cs− c
g = dc
dra = −Cabctb ∧ ra
dh = 〈−,−〉 − g
dg = 0

 ,

where
g = so⊕ e8

and hence
A = ω +Ae8

.

Proof. By definition 5.2.119 and prop. 7.1.46. �

Remark 7.1.158. Notice that with respect to String-connections, there are two levels of twists here:

1. The C-field 3-form twists the String2a-2-connections.

2. For vanishing C-field 3-form, a String2a-2-connection is still a twisted String-2-connection, where the
twist is now by the Chern-Simons 3-bundle with connection of the underlying E8-bundle with connec-
tion.

7.1.8.7 Hořava-Witten boundaries are membrane orientifolds We now discuss a natural formu-
lation of the origin of the Hořava-Witten boundary conditions [HoWi95, HoWi96] in terms of higher stacks
and nonabelian differential cohomology, specifically, in terms of what we call membrane orientifolds. From
this we obtain a corresponding refinement of the moduli 3-stack of C-field configurations which now explicitly
contains the twisted Z2-equivariance of the Hořava-Witten background.

Recall the notion of higher orientifolds and their identification with twisted differential Jn-structures
from 7.1.4.

Observation 7.1.159. Let U//Z2 ↪→ Y//Z2 be a patch on which a given Ĵn-structure has a trivial underlying
integral class, such that it is equivalent to a globally defined (n + 1)-form CU on U . Then the components
of this this 3-form orthogonal to the Z2-action are odd under the action. In particular, if U ↪→ Y sits in the
fixed point set of the action, then these components vanish. This is the Hořava-Witten boundary condition
on the C-field on an 11-dimensional spacetime Y = X × S1 equipped with Z2-action on the circle. See for
instance section 3 of [Fal] for an explicit discussion of the Z2 action on the C-field in this context.
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We therefore have a natural construction of the moduli 3-stack of Hořava-Witten C-field configurations
as follows

Definition 7.1.160. Let CFieldJ(Y ) be the homotopy pullback in

CFieldJ(Y )

��

// ĴStrucρ(Y//Z2)

��
H(Y,B3U(1)conn)

��
H(Y,BSpinconn ×BE8)

H(Y,
1
2p1+2a)

// H(Y,B3U(1)) ,

where the top right morphism is the map Ĝρ 7→ Ĝ from remark 7.1.72.

The objects of CFieldJ(Y ) are C-field configurations on Y that not only satisfy the flux quantization
condition, but also the Hořava-Witten twisted equivariance condition (in fact the proper globalization of
that condition from 3-forms to full differential cocycles). This is formalized by the following.

Observation 7.1.161. There is a canonical morphism CFieldJ(Y )→ CField(Y ), being the dashed mor-
phism in

CFieldJ(Y )

��

// ĴStrucρ(Y//Z2)

��
CField(Y ) //

��

H(Y,B3U(1)conn)

��
H(Y,BSpinconn ×BE8)

H(Y,
1
2p1+2a)

// H(Y,B3U(1)) ,

which is given by the universal property of the defining homotopy pullback of CField, remark 7.1.149.

A supergravity field configuration presented by a morphism Y → CField into the moduli 3-stack of
configurations that satisfy the flux quantization condition in addition satisfies the Hořava-Witten boundary
condition if, as an element of CField(Y ) := H(Y,CField) it is in the image of CFieldJ(Y )→ CField(Y ).
In fact, there may be several such pre-images. A choice of one is a choice of membrane orientifold structure.
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7.2 Prequantum Chern-Simons field theory

We consider the realization of the general abstract ∞-Chern-Simons functionals from 5.2.14 in the context
of smooth, synthetic-differential and super-cohesion. We discuss general aspects of the class of quantum field
theories defined this way and then identify a list of special cases of interest. This section builds on [FRS13a]
and [FS].

• 7.2.1 – Higher extended ∞-Chern-Simons theory

– 7.2.1.1 – Fiber integration and extended Chern-Simons functionals

– 7.2.1.3 – Construction from L∞-cocycles

• 7.2.2 – Higher cup-product Chern-Simons theories

• Examples

– 7.2.3 – Volume holonomy

– 7.2.4 – 1d Chern-Simons functionals

– 7.2.5 – 3d Chern-Simons functionals

∗ 7.2.5.1 – Ordinary Chern-Simons theory

∗ 7.2.5.3 – Ordinary Dijkgraaf-Witten theory

– 7.2.6 – 4d Chern-Simons functionals

∗ 7.2.6.1 – 4d BF theory and topological Yang-Mills theory

∗ 7.2.6.2 – 4d Yetter model

– 7.2.7 – Abelian gauge coupling of branes

– 7.2.8 – Higher abelian Chern-Simons functionals

∗ 7.2.8.1 – (4k + 3)d U(1)-Chern-Simons functionals;

∗ 7.2.8.2 – Higher electric coupling and higher gauge anomalies.

– 7.2.9 – 7d Chern-Simons functionals

∗ 7.2.9.1 – The cup product of a 3d CS theory with itself;

∗ 7.2.9.2 – 7d CS theory on string 2-connection fields;

∗ 7.2.9.3 – 7d CS theory in 11d supergravity on AdS7.

– 7.2.8.2 – Higher electric coupling and higher gauge anomalies

– 7.2.10 – Action of closed string field theory type

– 7.2.11 – AKSZ σ-models

∗ 7.2.11.4 – Ordinary Chern-Simons as AKSZ theory

∗ 7.2.11.5 – Poisson σ-model

∗ 7.2.11.6 – Courant σ-model

∗ 7.2.11.7 – Higher abelian Chern-Simons theory in dimension 4k + 3
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7.2.1 ∞-Chern-Simons field theory

By prop. 7.1.9 the action functional of ordinary Chern-Simons theory [Fr95] for a simple Lie group G may
be understood as being the volume holonomy, 6.4.19, of the Chern-Simons circle 3-bundle with connection
that the refined Chern-Weil homomorphism assigns to any connection on a G-principal bundle.

We may observe that all the ingredients of this statement have their general abstract analogs in any
cohesive∞-topos H: for any cohesive∞-group G and any representatative c : BG→ BnA of a characteristic
class for G there is canonically the induced ∞-Chern-Weil homomorphism, 5.2.14

Lc : Hconn(−,BG)→ Hn
diff(−)

that sends intrinsic G-connections to cocycles in intrinsic differential cohomology with coefficients in A. This
may be thought of as the Lagrangian of the ∞-Chern-Simons theory induced by c.

In the cohesive ∞-topos Smooth∞Grpd of smooth ∞-groupoids, 6.4, we deduced in 6.4.19 a natural
general abstract procedure for integration of Lc over an n-dimensional parameter space Σ ∈ H by a realization
of the general abstract construction described in 5.2.14. The resulting smooth function

exp(Sc) : [Σ,BGconn]→ U(1)

is the exponentiated action functional of ∞-Chern-Simons theory on the smooth ∞-groupoid of field config-
urations. It may be regarded itself as a degree-0 characteristic class on the space of field configurations. As
such, its differential refinement d exp(Sc) : [Σ,BGconn] → [dRBU(1) is the Euler-Lagrange equation of the
theory.

We show that this construction subsumes the action functional of ordinary Chern-Simons theory, of
Dijkgraaf-Witten theory, of BF-theory coupled to topological Yang-Mills theory, of all versions of AKSZ
theory including the Poisson sigma-model and the Courant sigma model in lowest degree, as well as of
higher Chern-Simons supergravity.

7.2.1.1 Fiber integration and extended Chern-Simons functionals We discuss fiber integration
in ordinary differential cohomology refined to smooth higher stacks and how this turns every differential
characteristic maps into a tower of extended higher Chern-Simons action functionals in all codimensions.

This section draws from [FSS12c].

One of the basic properties of ∞-toposes is that they are cartesian closed. This means that:

Fact 7.2.1. For every two objects X,A ∈ H – hence for every two smooth higher stacks – there is another
object denoted [X,A] ∈ H that behaves like the “space of smooth maps from X to A.” in that for every
further Y ∈ H there is a natural equivalence of cocycle ∞-groupoids of the form

H(X × Y,A) ' H(Y, [X,A]) ,

saying that cocycles with coefficients in [X,A] on Y are naturally equivalent to A-cocycles on the product
X × Y .

Remark 7.2.2. The object [X,A] is in category theory known as the internal hom object, but in applications
to physics and stacks it is often better known as the “families version” of A-cocycles on Y , in that for each
smooth parameter space U ∈ SmoothMfd, the elements of [X,A](U) are “U -parameterized families of A-
cocycles on X”, namely A-cocycles on X × U . This follows from the above characterizing formula and the
Yoneda lemma:

[X,A](U)
Yoneda

' // H(U, [X,A])
' // H(X × U,A) .

Notably for G a smooth ∞-group and A = BGconn a moduli ∞-stack of smooth G-principal ∞-bundles
with connection the object

[Σk,BGconn] ∈ H

is the smooth higher moduli stack of G-connection on Σk. It assigns to a test manifold U the ∞-groupoid
of U -parameterized families of G-∞-connections, namely of G-∞-connections on X ×U . This is the smooth
higher stack incarnation of the configuration space of higher G-gauge theory on Σk.
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Example 7.2.3. In the discussion of anomaly polynomials in heterotic string theory over a 10-dimensional
spacetime X one encounters degree-12 differential forms I4 ∧ I8, where Ii is a degree i polynomial in char-
acteristic forms. Clearly these cannot live on X, as every 12-form on X, given by an element in the
hom-∞-groupoid

H(X,Ω12(−))
Yoneda

' // Ω12(X)

is trivial. Instead, these differential forms are elements in the internal hom [X,Ω12(−)], which means that
for every choice of smooth parameter space U there is a smooth 12-form on X ×U , such that this system of
forms transforms naturally in U .

Below we discuss how such anomaly forms appear from morphisms of higher moduli stacks

cconn : BGconn → B11U(1)conn

for BGconn the higher moduli stack of supergravity field configurations by sending the families of moduli of
field configurations on spacetime X to their anomaly form:

[X,BGconn]
[X,cconn] // [X,B11U(1)conn]

[X,curv] // [X,Ω12(−)] .

We now discuss how such families of n-cocycles on some X can be integrated over X to yield (n−dim(X))-
cocycles. Recall from 6.4.18:

Proposition 7.2.4. Let Σk be a closed (= compact and without boundary) oriented smooth manifold of
dimension k. Then for every n ≥ k there is a natural morphism of smooth higher stacks

exp(2πi

∫
Σk

(−)) : [Σk,B
nU(1)conn]→ Bn−kU(1)conn

from the moduli n-stack of circle n-bundles with connection on Σk to the moduli (n − k)-stack of smooth
circle (n− k)-bundles with connection such that

1. for k = n this yields a U(1)-valued gauge invariant smooth function

exp(2πi

∫
Σk

(−)) : [Σn,B
nU(1)conn]→ U(1) ,

which is the n-volume holonomy of a circle n-connection over the “n-dimensional Wilson volume” Σn;

2. for k1, k2 ∈ N with k1 + k2 ≤ n we have

exp(2πi

∫
Σk1

(−)) ◦ exp(2πi

∫
Σk2

(−)) ' exp(2πi

∫
Σk1
×Σk2

(−)) .

Proof. Since BnU(1)conn is fibrant in the projective local model structure [CartSpop, sSet]proj,loc (since
every circle n-bundle with connection on a Cartesian space is trivializable) the mapping stack [Σk,B

nU(1)conn]
is presented for any choice of good open cover {Ui → Σk} by the simplicial presheaf

U 7→ [CartSpop, sSet](Č(U)× U,BnU(1)conn) ,

where Č(U) is the Čech nerve of the open cover {Ui → Σk}. Therefore a morphism as claimed is given by
natural fiber integration of Deligne hypercohomology along product bundles Σk × U → U for closed Σk.
This has been constructed for instance in [GoTe00]. �
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Definition 7.2.5. Let cconn : BGconn → BnU(1)conn be a differential characteristic map. Then for Σk a
closed smooth manifold of dimension k ≤ n, we call

exp(2πi

∫
Σk

[Σk, cconn]) : [Σk,BGconn]
[Σk,cconn] // [Σk,BnU(1)conn]

exp(2πi
∫
Σk

(−))
// Bn−kU(1)conn

the off-shell prequantum (n − k)-bundle of extended cconn-∞-Chern-Simons theory. For n = k we have a
circle 0-bundle

exp(2πi

∫
Σn

[Σn, cconn]) : [Σn,BGconn]
[Σn,cconn] // [Σn,BnU(1)conn]

exp(2πi
∫
Σn

(−))
// U(1) ,

which we call the action functional of the theory.

This construction subsumes several fundamental aspects of Chern-Simons theory:

1. gauge invariance and smoothness of the (extended) action functionals, remark 7.2.6;

2. inclusion of instanton sectors (nontrivial gauge ∞-bundles), remark 7.2.7;

3. level quantization, remark 7.2.8;

4. definition on non-bounding manifolds and relation to (higher) topological Yang-Mills on bounding
manifolds, remark 7.2.9.

We discuss these in more detail in the following remarks, as indicated.

Remark 7.2.6 (Gauge invariance and smoothness). Since U(1) ∈ H is an ordinary manifold (after forget-
ting the group structure), a 0-stack with no non-trivial morphisms (no gauge transformation), the action
functional exp(2πi

∫
Σn

[Σn, cconn]) takes every morphism in the moduli stack of field configurations to the

identity. But these morphisms are the gauge transformations, and so this says that exp(2πi
∫

Σn
[Σn, cconn])

is gauge invariant, as befits a gauge theory action functional. To make this more explicit, notice that

H(Σn,BGconn) ' [Σn,BGconn](∗)

is the evaluation of the moduli stack on the point, hence the ∞-groupoid of smooth families of field config-
urations which are trivially parameterized. Moreover

H1
conn(Σn, G) := π0H(Σn,BGconn)

is the set of gauge equivalent such field configurations. Then the statement that the action functional is both
gauge invariant and smooth is the statement that it can be extended from H1

conn(Σn, G) (supposing that it
were given there as a function exp(iS(−)) by other means) via H(Σn,BGconn) to [Σn,BGconn]

H1
conn(Σn, G)

��

exp(iS(−)) // U(1)

H(Σn,BGconn)

��

gauge invariance

[Σn,BGconn]

exp(2πi
∫
Σn

[Σn,cconn])

;;

smoothness .
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Remark 7.2.7 (Definition on instanton sectors). Ordinary 3-dimensional Chern-Simons theory is often
discussed for the special case only when the gauge group G is connected and simply connected. This yields
a drastic simplification compared to the general case; since for every Lie group the second homotopy group
π2(G) is trivial, and since the homotopy groups of the classifying space BG are those of G shifted up in
degree by one, this implies that BG is 3-connected and hence that every continuous map Σ3 → BG out
of a 3-manifold is homotopic to the trivial map. This implies that every G-principal bundle over Σ3 is
trivializable. As a result, the moduli stack of G-gauge fields on Σ3, which a priori is [Σ3,BGconn], becomes
in this case equivalent to just the moduli stack of trivial G-bundles with (non-trivial) connection on Σ3,
which is identified with the groupoid of just g-valued 1-forms on Σ3, and gauge transformations between
these, which is indeed the familiar configurations space for 3-dimensional G-Chern-Simons theory.

One should compare this to the case of 4-dimensional G-gauge theory on a 4-dimensional manifold Σ4,
such as G-Yang-Mills theory. By the same argument as before, in this case G-principal bundles may be
nontrivial, but are classified enirely by the second Chern class (or first Pontrjagin class) [c2] ∈ H4(Σ4, π(G)).
In Yang-Mills theory with G = SU(n), this class is known as the instanton number of the gauge field.

The simplest case where non-trivial classes occur already in dimension 3 is the non-simply connected
gauge group G = U(1), discussed in section 7.2.5.2 below. Here the moduli stack of fields [Σ3,BU(1)conn]
contains configurations which are not given by globally defined 1-forms, but by connections on non-trivial
circle bundles. By analogy with the case of SU(n)-Yang-Mills theory, we will loosely refer to such field
configurations as instanton field congurations, too. In this case it is the first Chern class [c1] ∈ H2(X,Z)
that measures the non-triviality of the bundle. If the first Chern-class of a U(1)-gauge field configurations
happens to vanish, then the gauge field is again given by just a 1-form A ∈ Ω1(Σ3), the familiar gauge
potential of electromagnetism. The value of the 3d Chern-Simons action functional on such a non-instanton
configuration is simply the familiar expression

exp(iS(A)) = exp(2πi

∫
Σ3

A ∧ ddRA) ,

where on the right we have the ordinary integration of the 3-form A ∧ dA over Σ3.

In the general case, however, when the configuration in [Σ3,BU(1)conn] has non-trivial first Chern class,
the expression for the value of the action functional on this configuration is more complicated. If we pick a
good open cover {Ui → Σ3}, then we can arrange that locally on each patch Ui the gauge field is given by
a 1-form Ai and the contribution of the action functional over Ui by exp(2πi

∫
Σ3
Ai ∧ dAi) as above. But

in such a decomposition there are further terms to be included to get the correct action functional. This is
what the construction in Prop. 7.2.5 achieves.

Remark 7.2.8 (Level quantization). Traditionally, Chern-Simons theory in 3-dimensions with gauge group
a connected and simply connected group G comes in a family parameterized by a level k ∈ Z. This level is
secretly the cohomology class of the differential characteristic map

cconn : BGconn → B3U(1)conn

(constructed in [FSS10]) in
H3

smooth(BG,U(1)) ' H4(BG,Z) ' Z .
So the traditional level is a cohomological shadow of the differential characteristic map that we interpret
as the off-shell prequantum n-bundle in full codimension n (down on the point). Notice that for a general
smooth ∞-group G the cohomology group Hn+1(BG,Z) need not be equivalent to Z and so in general
the level need not be an integer. For for every smooth ∞-group G, and given a morphism of moduli
stacks cconn : BGconn → BnU(1)conn, also every integral multiple kcconn gives an n-dimensional Chern-
Simons theory, “at k-fold level”. The converse is in general hard to establish: whether a given cconn can be
divided by an integer. For instance for 3-dimensional Chern-Simons theory division by 2 may be possible
for Spin-structure. For 7-dimensional Chern-Simons theory division by 6 may be possible in the presence of
String-structure [FSS12b].
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Remark 7.2.9. Ordinary 3-dimensional Chern-Simons theory is often defined on bounding 3-manifolds Σ3

by

exp(iS(∇)) = exp(2πik

∫
Σ4

〈F∇̂ ∧ F∇̂〉) ,

where Σ4 is any 4-manifold with Σ3 = ∂Σ4 and where ∇̂ is any extension of the gauge field configuration
from Σ3 to Σ4. Similar expressions exist for higher dimensional Chern-Simons theories. If one takes these
expressions to be the actual definition of Chern-Simons action functional, then one needs extra discussion for
which manifolds (with desired structure) are bounding, hence which vanish in the respective cobordism ring,
and, more seriously, one needs to include those which are not bounding from the discussion. For example, in
type IIB string theory one encounters the cobordism group ΩSpin

11 (K(Z, 6)) [Wi96], which is proven to vanish
in [KS05], meaning that all the desired manifolds happen to be bounding.

We emphasize that our formula in Prop. 7.2.5 applies generally, whether or not a manifold is bounding.
Moreover, it is guaranteed that if Σn happens to be bounding after all, then the action functional is
equivalently given by integrating a higher curvature invariant over a bounding (n+ 1)-dimensional manifold.
At the level of differential cohomology classes Hn

conn(−, U(1)) this is the well-known property (a review and
further pointers are given in [HoSi05]) which is an explicit axiom in the equivalent formulation by Cheeger-
Simons differential characters: a Cheeger-Simons differential character of degree (n + 1) is by definition
a group homomorphism from closed n-manifolds to U(1) such that whenever the n-manifold happens to
be bounding, the value in U(1) is given by the exponentiated integral of a smooth (n + 1)-form over any
bounding manifold.

With reference to such differential characters Chern-Simons action functions have been formulated for
instance in [Wi96, Wi98c]. The sheaf hypercohomology classes of the Deligne complex that we are concerned
with here are well known to be equivalent to these differential characters, and Čech-Deligne cohoomology
has the advantage that with results such as [GoTe00] invoked in Prop. 7.2.4 above, it yields explicit formulas
for the action functional on non-bounding manifolds in terms of local differential form data.

7.2.1.2 Anomaly cancellation at the integral level We consider here “levels” for higher Chern-
Simons local prequantum field theory, hence local prequantum field theory, in the sense of 5.2.18, of dimension
n with Phases = Bn+1Z. We determine the necessary structure for passing the local prequantum field theory
from framed cobordisms to unframed cobordisms, hence the anomaly cancellation conditions.

To that end, according to the discussion in 5.2.18.5, we are to determine the canonical Π(O(n))-∞-action
on Bn+1Z according to theorem 5.2.163.

Proposition 7.2.10. For n ∈ N, the canonical O-∞-action on Bn+1Z, theorem 5.2.163, factors through
O → π0(O) = Z/2Z and as such is given by inversion.

Proof. By example 2.4.15 in [L-TFT] the O(n)-action on a connective spectrum Ω∞X induced via the
proof of the cobordism hypothsis by regarding it as an (∞, n)-category with duals is induced via the action
of O(n) on n-disks and thus on n-spheres by regarding X as an n-fold loop space.

From this it is clear that π0(O) = Z/2Z acts by inversion, hence it remains to see that that the canonical
SO-∞-action on Bn+1Z is trivial.

To that end notice that the canonical SO-action on a connective spectrum Ω∞X factors through the
J-homomorphism, followed by precomposition (see e.g. section 5 of [1]):

SO × Ω∞X
(J,id) // Ω∞S∞ × Ω∞X

precomp. // Ω∞X .

But by classical results, the image of the J-homomorphism in the stable homotopy groups of spheres
π•(Ω

∞S∞) is pure torsion. This means that the action map

ρ : SO ×Bn+1X
(J,id) // Ω∞S∞ ×Bn+1X

precomp. // Bn+1X .
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factors on πn+1 through a linear action map of abelian groups

πn+1(ρ) : im(J)n+1 ⊕ Z −→ Z ,

where im(J)n+1 is a pure torsion group. As such it must be in the kernel of this linear map to the free group
Z, and hence πn+1(ρ) is just projection onto the second summand.

We need to see that this implies that the action ρ : SO×Bn+1Z→ Bn+1Z itself is equivalently projection
onto the second factor. To that end, first consider the homotopy fiber F of ρ sitting in the homotopy fiber
sequence

F // SO ×Bn+1Z
ρ // Bn+1Z

and consider the corresponding long exact sequence of homotopy groups. In degree (n+ 1) we have

0→ πn+1(F )→ πn+1(SO)⊕ Z (0,id)−→ Z

and hence πn+1(F ) ' πn+1(SO). In degree (n+ 2) we have

πn+1(SO)⊕ Z (0,id)−→ Z→ πn+2(F )→ πn+2(SO)→ 0

and hence πn+2(F ) ' πn+2(SO). Finally in all other degrees k 6= n+ 1 and k 6= n+ 2 we have

0→ πk(F )→ πk(SO)→ 0

and hence πk(F ) ' πk(SO). In conclusion, the fiber inclusion F → SO×Bn+1Z is a homotopy equivalence
onto the first factor in the product. Hence we have a diagram of ∞-groupoids of the form

Ω∞S∞ //

=

��

SO ×Bn+1Z

(id,ρ)

��

ρ // Bn+1Z

=

��
Ω∞S∞ // SO ×Bn+1Z

p2 // Bn+1Z

where the two horizonal rows are homotopy fiber sequences. By the fiberwise characterization of homotopy
pullbacks of bare∞-groupoids, this implies that the square on the right is homotopy Cartesian. This in turn
implies that ρ ' p2, which means that ρ is the trivial action. �

Corollary 7.2.11. Homotopy fixed point structures of the canonical O-action on Bn+1Z are equivalent to
degree-(n+1)-cocycles of the classifying space BO with local Z-coefficients twisted by the universal first Stifel-
Whitney-class (1.2.145). Similarly, homotopy fixed point structures of the canonical SO-action on Bn+1Z
are equivalent to ordinary integral cocycles of degree (n+ 1) on BSO.

Proof. This follows via the discussion in 5.1.14. First of all the O-∞-action on Bn+1Z of prop. 7.2.10 is
equivalently encoded in a homotopy fiber sequence of the form

Bn+1Z // (Bn+1Z)//O

��
BO

α

dd

and a homotopy fixed point is a section α as indicated. In terms of these quotient diagrams, the fact (prop.
7.2.10) that the O action is induced by a Z/2Z-action via the map projection map O → π0(O) means
equivalently that there is a homotopy pullback square as shown on the right here:

Bn+1Z // (Bn+1Z)//O

��

// (Bn+1Z)//(Z/2Z)

��
BO

w1 //

α

dd

B(Z/2Z)

,
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where w1 is the universal first Stiefel-Whitney class (1.2.145). By the universal property of the homotopy
pullback, this means that a homotopy fixed point is equivalently a dashed morphism in

BO

w1 $$

α // (Bn+1Z)//(Z/2Z)

vv
B(Z/2Z)

qy

But this are equivalently cocycles in the degree-(n + 1) cohomology of BO with non-trivially twisted local
Z-coefficients

α ∈ Hn+1(BO,Zt)

(the superscript Zt denotes the essentially unique non-trivially twisted local system of Z-coefficients). �

Remark 7.2.12. In [Ca99] the generators of this cohomology group under cup product are given. They are
given by the Pontryagin classes and the integral Stieffel-Whitney classes (induced via the untwisted and via
the twisted Bockstein from the Z/2Z-SW classes) under cup product.

In conclusion we find the following charactrization of (un-)oriented-topological local prequantum field
theories with integral phases:

Proposition 7.2.13. Unoriented local prequantum field theories with integral phases

exp( i~SL//O(n)) : Bordtn −→ Corrn(H/Bn+1Z)⊗phased

are equivalent to diagrams in H of the form

Fields//Π(O(n))
L//O(n) //

''

(Bn+1Z//(Z/2Z))×BSO(n)

uu
BO(n)

Accordingly, oriented such field theories

exp( i~SL//SO(n)) : (Bordor
n )t −→ Corrn(H/Bn+1Z)⊗phased

are equivalent to choices of Fields ∈ H equipped with SO(n)-∞-action and a choice of equivariant local
Lagrangian, being a map

L//SO(n) : Fields//SO(n) −→ Bn+1Z .

Proof. This is a special case of 5.2.205 further simplified in view of prop. 7.2.10. �

Example 7.2.14. Specialization of this to the case of ordinary 3d Chern-Simons theory is discussed in
7.2.5.1.3.

7.2.1.3 Construction from L∞-cocycles We discuss the construction of ∞-Chern-Simons functionals
from differential refinements of L∞-algebra cocycles.

This section draws from [FiSaScI].

Recall for the following the construction of the ∞-Chern-Weil homomorphism by Lie integration of
Chern-Simons elements, 6.4.17, for L∞-algebroids, 6.5.2.
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A Chern-Simons element cs witnessing the transgression from an invariant polynomial 〈−〉 to a cocycle
µ is equivalently a commuting diagram of the form

CE(a) oo
µ

CE(bnR) cocycle

W(a)

OO

oo cs
W(bnR)

OO

Chern-Simons element

inv(a)

OO

oo 〈−〉 inv(bnR)

OO

invariant polynomial

in dgAlgR. On the other hand, an n-connection with values in a Lie n-algebroid a is a span of simplicial
presheaves

Σ̂

'
��

∇ // cosk exp(a)conn

Σ

with coefficients in the simplicial presheaf coskn+1 exp(a)conn, def. 6.4.154, that sends U ∈ CartSp to the
(n+ 1)-coskeleton, def. 5.1.53, of the simplicial set, which in degree k is the set of commuting diagrams

Ω•vert(U ×∆k) oo
Avert

CE(a) transition function

Ω•(U ×∆k)

OO

oo A W(a)

OO

connection forms

Ω•(U)

OO

oo 〈FA〉 inv(a)

OO

curvature characteristic forms

,

such that the curvature forms FA of the ∞-Lie algebroid valued differential forms A on U ×∆k with values
in a in the middle are horizontal.

If µ is an∞-Lie algebroid cocycle of degree n, then the∞-Chern-Weil homomorphism operates by sending
an ∞-connection given by a Čech cocycle with values in simplicial sets of such commuting diagrams to the
obvious pasting composite

Ω•vert(U ×∆k) oo
Avert

CE(a) oo
µ

CE(bnR) : µ(Avert)

Ω•(U ×∆k)

OO

oo A W(a)

OO

oo cs
W(bnR)

OO

: cs(A) Chern-Simons form

Ω•(U)

OO

oo 〈FA〉 inv(a)

OO

oo 〈−〉 inv(bnR)

OO

: 〈FA〉 curvature

.

Under the map to the coskeleton the group of such cocycles for line n-bundle with connection is quotiented
by the discrete group Γ of periods of µ, such that the ∞-Chern-Weil homomorphism is given by sending the
∞-connection ∇ to

Σ̂

'
��

∇ // coskn exp(a)conn

exp(cs) // Bn(R/Γ)conn

Σ

.
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This presents a circle n-bundle with connection, 6.4.16, whose connection n-form is locally given by the
Chern-Simons form cs(A). This is the Lagrangian of the ∞-Chern-Simons theory defined by (a, 〈−〉) and
evaluated on the given ∞-connection. If Σ is a smooth manifold of dimension n, then the higher holonomy,
6.4.19, of this circle n-bundle over Σ is the value of the Chern-Simons action. After a suitable gauge
transformation this is given by the integral

exp(iS(A)) = exp(i

∫
Σ

cs(A)) ,

the value of the ∞-Chern-Simons action functional on the ∞-connection A.

Proposition 7.2.15. Let g be an L∞-algebra and 〈−, · · · ,−〉 an invariant polynomial on g. Then the ∞-
connections A with values in g that satisfy the equations of motion of the corresponding ∞-Chern-Simons
theory are precisely those for which

〈−, FA ∧ FA ∧ · · ·FA〉 = 0 ,

as a morphism g→ Ω•(Σ), where FA denotes the (in general inhomogeneous) curvature form of A.
In particular for binary and non-degenerate invariant polynomials the equations of motion are

FA = 0 .

Proof. Let A ∈ Ω(Σ× I, g) be a 1-parameter variation of A(t = 0), that vanishes on the boundary ∂Σ.
Here we write t : [0, 1]→ R for the canonical coordinate on the interval.

A(0) is critical if (
d

dt

∫
Σ

cs(A)

)
t=0

= 0

for all extensions A of A(0). Using Cartan’s magic formula and the Stokes theorem the left hand expression
is (

d

dt

∫
Σ

cs(A)

)
t=0

=

(∫
Σ

d

dt
cs(A)

)
t=0

=

(∫
Σ

dι∂tcs(A) +

∫
Σ

ι∂tdcs(A)

)
t=0

=

(∫
Σ

dΣ(ι∂tcs(A)) +

∫
Σ

ι∂t〈FA ∧ · · ·FA〉
)
t=0

=

(∫
∂Σ

ι∂tcs(A) + n

∫
Σ

〈( d
dt
A) ∧ · · ·FA〉

)
t=0

=

(
n

∫
Σ

〈( d
dt
A) ∧ · · ·FA〉

)
t=0

.

Here we used that ι∂tFA = d
dtA and that by assumption this vanishes on ∂Σ. Since d

dtA can have arbitrary
values, the claim follows. �

7.2.2 Higher cup-product Chern-Simons theories

We discuss a class of ∞-Chern-Simons functionals induced from a smooth differential refinement of the
cup-product on integral cohomology.

This section draws from [FSS12c].
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7.2.2.1 General construction A crucial property of the Dold-Kan map, as discussed in 3.1.6, is the
following.

Proposition 7.2.16. Let A,B and C be presheaves of chain complexes concentrated in non-negative degrees,
and let ∪ : A⊗B → C be a morphism of presheaves of chain complexes. Then the Dold-Kan map induces a
natural morphism of simplicial preseheaves ∪DK : DK(A)×DK(B)→ DK(C)

Proof. Both the categories Ch+
• and sAb are monoidal categories under the respective standard tensor

products (on Ch+
• this is given by direct sums of tensor products of abelian groups with fixed total degree

and on sAb by the degreewise tensor product of abelian groups), and the functor Γ is lax monoidal with
respect to these structures, i.e., for any V,W ∈ Ch+

• we have natural weak equivalences

∇V,W : Γ(V )⊗ Γ(W )→ Γ(V ⊗W ) .

These are not isomorphisms, as they would be for a strong monoidal functor, but they are weak equivalences.
The forgetful functor F is the right adjoint to the functor forming degreewise the free abelian group on a
set, therefore it preserves products and hence there are natural isomorphisms

F (V ×W )
'−→ F (V )× F (W ) ,

for all V,W ∈ sAb. Finally, by the definition of tensor product, there are universal natural quotient maps
V,W ∈ sAb

pV,W : V ×W → V ⊗W .

The morphism ∪DK is then defined as the composition indicated in the following diagram:

DK(A)×DK(B)
∪DK // DK(C)

F (Γ(A))× F (Γ(B))

'
��

F (Γ(A)× Γ(B))
F (p) // F (Γ(A)⊗ Γ(B))

F (∇) // F (Γ(A⊗B))
F (Γ(∪)) // F (Γ(C)) .

Given the presentation H ' LW [Cop, sSet], for every presheaf of chain complexes A on C we obtain a
corresponding ∞-stack, the ∞-stackification of the image of A under the Dold-Kan map, which we will
denote by the same symbol: DK(A) ∈ H.

Definition 7.2.17. For A ∈ [Cop,Ab] a sheaf of abelian groups, we write A[n] ∈ [Cop,Ch+
• ] for the corre-

sponding presheaf of chain complexes concentrated on A in degree n, and

BnA ' DK(A[n]) ∈ H

for the corresponding ∞-stack.

In this case the corresponding cohomology

Hn(X,A) = π0H(X,BnA)

is the traditional sheaf cohomology of X with coefficients in A. More generally, if A ∈ [Cop,Ch+
• ] is a sheaf

of chain complexes not necessarily concentrated in one degree, then

H0(X,A) := π0H(X,A)

is what traditionally is called the sheaf hypercohomology of X with coefficients in A. The central coefficient
object in which we are interested here is the sheaf of chain complexes called the Deligne complex, to which
we now turn.

The Beilinson-Deligne cup product is an explicit presentation of the cup product in ordinary differential
cohomology for the case that the latter is modeled by the Čech-Deligne cohomology.
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Definition 7.2.18. The Beilinson-Deligne cup product is the morphism of sheaves of chain complexes

∪BD : Z[p+ 1]∞D ⊗ Z[q + 1]∞D −→ Z[(p+ 1) + (q + 1)]∞D ,

given on homogeneous elements α, β as follows:

α ∪BD β :=


α ∧ β = αβ if deg(α) = p+ 1 .

α ∧ ddRβ if deg(α) ≤ p and deg(β) = 0

0 otherwise .

.

Remark 7.2.19. When restricted to the diagonal in the case that p = q, this means that the cup product
sends a p-form α to the (2p + 1)-form α ∧ ddRα. This is of course the local Lagrangian for cup product
Chern-Simons theory of p-forms. We discuss this case in detail in section 7.2.8.1.

The Beilinson-Deligne cup product is associative and commutative up to homotopy, so it induces an
associative and commutative cup product on ordinary differential cohomology. A survey of this can be found
in [Bry00] (around Prop. 1.5.8 there).

Definition 7.2.20. For p, q ∈ N the morphism of simplicial presheaves

∪conn : BpU(1)conn ×BqU(1)conn → Bp+q+1U(1)conn

is the morphism associated to the Beilinson-Deligne cup product ∪BD : Z[p+1]∞D⊗Z[q+1]∞D −→ Z[p+q+2]∞D
by Proposition 7.2.16.

Since the Beilinson-Deligne cup product is associative up to homotopy, this induces a well defined morphism

Bn1U(1)conn ×Bn2U(1)conn × · · · ×Bnk+1U(1)conn → Bn1+···+nk+1+kU(1)conn.

In particular, if n1 = · · · = nk+1 = 3, we find(
B3U(1)conn

)k+1 → B4k+3U(1)conn.

Furthermore, we see from the explicit expression of the Beilinson-Deligne cup product that, on a local chart
U , if the 3-form datum of a connection on a U(1)-3-bundle is the 3-form C, then the 4k+3-form local datum
for the corresponding connection on the associated U(1)-(4k + 3)-bundle is

C ∧ dC ∧ · · · ∧ dC︸ ︷︷ ︸
k times

. (7.24)

7.2.3 Higher differential Dixmier-Douady class and higher dimensional U(1)-holonomy

The degenerate or rather tautological case of extended∞-Chern-Simons theories nevertheless deserves special
attention, since it appears universally in all other examples: that where the extended action functional is
the identity morphism

(DDn)conn : BnU(1)conn
id // BnU(1)conn ,

for some n ∈ N. Trivial as this may seem, this is the differential refinement of what is called the (higher)
universal Dixmier-Douady class the higher universal first Chern class – of circle n-bundles / bundle (n− 1)-
gerbes, which on the topological classifying space BnU(1) is the weak homotopy equivalence

DDn : BnU(1)
' // K(Z, n+ 1) .

Therefore, we are entitled to consider (DDn)conn as the extended action functional of an n-dimensional ∞-
Chern-Simons theory. Over an n-dimensional manifold Σn the moduli n-stack of field configurations is that
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of circle n-bundles with connection on Σn. In generalization to how a circle 1-bundle with connection has a
holonomy over closed 1-dimensional manifolds, we note that a circle n-connection has a n-volume holonomy
over the n-dimensional manifold Σn. This is the ordinary (codimension-0) action functional associated to
(DDn)conn regarded as an extended action functional:

hol := exp(2πi

∫
Σn

[Σn, (DDn)conn]) : [Σn,B
nU(1)conn]→ U(1) .

This formulation makes it manifest that, for G any smooth ∞-group and cconn : BGconn → BnU(1)conn any
extended ∞-Chern-Simons action functional in codimension n, the induced action functional is indeed the
n-volume holonomy of a family of “Chern-Simons circle n-connections”, in that we have

exp(2πi

∫
Σn

[Σn, cconn]) ' holcconn .

This is most familiar in the case where the moduli ∞-stack BGconn is replaced with an ordinary smooth
oriented manifold X (of any dimension and not necessarily compact). In this case cconn : X → BnU(1)conn

modulates a circle n-bundle with connection ∇ on this smooth manifold. Now regarding this as an extended
Chern-Simons action function in codimension n means to

1. take the moduli stack of fields over a given closed oriented manifold Σn to be [Σn, X], which is simply
the space of maps between these manifolds, equipped with its natural (“diffeological”) smooth structure
(for instance the smooth loop space LX when n = 1 and Σn = S1);

2. take the value of the action functional on a field configuration φ : Σn → X to be the n-volume holonomy
of ∇

hol∇(φ) = exp(2πi

∫
Σn

[Σn, cconn]) : [Σn, X]
[Σn,cconn] // [Σn,BnU(1)conn]

exp(2π
∫
Σn

(−))
// U(1) .

Using the proof of Prop. 7.2.4 to unwind this in terms of local differential form data, this reproduces the
familiar formulas for (higher) U(1)-holonomy.

7.2.4 1d Chern-Simons functionals

We discuss examples of the intrinsic notion of∞-Chern-Simons action functionals, 6.4.19, over 1-dimensional
base spaces.

Example 7.2.21. For some n ∈ N let
tr : u(n)→ u(1) ' R

be the trace function, with respect to the canonical identification of u(n) with the Lie algebra of skew-
Hermitean complex matrices.

This is both a 1-cocycle as well as an invariant polynomial on u(n), the former corresponding to a
degree-1 element in the Chevalley-Eilenberg algebra CE(u(n)) and the latter corresponding to an element
dWc ∈ W(u(n)) of degree 2 in the Weil algebra. Hence c is also the corresponding Chern-Simons element,
def. 6.4.147. By prop. 7.1.88 this controls the universal differential first Chern class.

The corresponding Chern-Simons action functional is defined on the groupoid of u(n)-valued differential
1-forms on a line segment Σ and given by

A 7→
∫

Σ

tr(A) .

Any choice of coordinates Σ ↪→ R canonically identifies A ∈ Ω1(Σ, u(n)) with a u(n)-valued function φ. We
may think of φ̄ :=

∫
Σ
A =

∫
Σ
φdt as the average of this function. In terms of this the action functional is

simply the trace function itself
φ̄ 7→ tr(φ̄) .
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Degenerate as this case is, it is sometimes useful to regard the trace as an example of 1-dimensional Chern-
Simons theory, for instance in the context of large-N compactified gauge theory as discussed in [Na06].

Example 7.2.22. Below in 7.2.11 we discuss in detail how (derived) L∞-algebroids equipped with non-
degenerate binary invariant polynomials of grade 0 (hence total degree 2) give rise to 1-dimensional Chern-
Simons theories.

7.2.5 3d Chern-Simons functionals

We discuss examples of the intrinsic notion of∞-Chern-Simons action functionals, 6.4.19, over 3-dimensional
base spaces. This includes the archetypical example of ordinary 3-dimensional Chern-Simons theory, but
also its discrete analog, Dijkgraaf-Witten theory.

• 7.2.5.1 – Ordinary Chern-Simons theory;

• 7.2.5.2 – Ordinary 3d U(1)-Chern-Simons theory and generalized Bn-geometry

• 7.2.5.3 – Ordinary Dijkgraaf-Witten theory.

7.2.5.1 Ordinary Chern-Simons theory for simply connected simple gauge group We discuss
the action functional of ordinary 3-dimensional Chern-Simons theory (see [Fr95] for a survey) from the point
of view of intrinsic Chern-Simons action functionals in Smooth∞Grpd.

• 7.2.5.1.1 – Extended Lagrangian and action functional

• 7.2.5.1.2 – Extended phase space

• 7.2.5.1.3 – Anomaly cancellation

7.2.5.1.1 Extended Lagrangian and action functional

Theorem 7.2.23. Let G be a simply connected compact simple Lie group. For

[c] ∈ H4(BG,Z) ' Z

a universal characteristic class that generates the degree-4 integral cohomology of the classifying space BG,
there is an essentially unique smooth lift c of the characteristic map c of the form

c : BG→ B3U(1) ∈ Smooth∞Grpd

on the smooth moduli stack BG of smooth G-principal bundles with values in the smooth moduli 3-stack of
smooth circle 3-bundles. The differential refinement

L : BGconn → B3U(1)conn ∈ Smooth∞Grpd

to the moduli stacks of the corresponding n-bundles with n-connections induces over any any closed oriented
3-dimensional smooth manifold Σ a smooth functional

exp(iSCS(−)) := exp(2πi

∫
Σ

[Σ,L]) : [Σ,BGconn]
ĉ // [Σ,B3U(1)conn]

exp(2πi
∫
Σ

(−))
// U(1)

on the moduli stack of G-principal connections on Σ, which on objects A ∈ Ω1(Σ, g) is the exponentiated
Chern-Simons action functional

exp(iSCS(A)) = exp(i

∫
Σ

〈A ∧ ddRA〉+ 1
6 〈A ∧ [A ∧A]〉) .

Proof. This is theorem 7.1.9 combined with 6.4.162. �
For more computational details that go into this see also 7.2.11.4 below
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7.2.5.1.2 The extended phase spaces Let G be a connected and simply connected Lie group. We
discuss the nature of the moduli of G-principal connections GConn(Σ) according to 6.4.16.3 for various
choices of Σ.

Proposition 7.2.24. There is an equivalence

hol : GConn(S1)
' // G//AdG

in Smooth∞Grpd between the moduli stack of G-principal connections on the circle, def. 6.4.120, and the
quotient groupoid of the adjoint action of G on itself. This is given by sending G-principal connections to
their holonomy (for any chosen basepoint on the circle).

Proof. We show that for each U ∈ CartSp the morphism of groupoids holU is an equivalence of groupoids.
For f : U → G a smooth function, since G is connected and U is topologically contractible, we may find

a smooth homotopy
η : [0, 1]× U → G

with η(0) constant on the neutral element in a neighbourhood of {0} × U and with η(1) = f in a neigh-
bourhood of {1} × U . Let then ηd[0,1]η

−1 ∈ Ω1(U × S1, g). This is a connection 1-form on U × S1 whose
holonomy is f . Hence holU is essentially surjective.

Next, consider A,A′ ∈ Ω1(U ×S1, g) two connection 1-forms (legs along S1). Observe that for each point
u ∈ U a gauge transformation gu : Au → A′u is fixed already by its value at the basepoint of S1 and moreover
it has to satisfy

hol(Au) = guhol(A′u)g−1
u .

This is because for every t ∈ [0, 1] the gauge transformation needs to satisfy the parallel transprt naturality
condition

∗
gu(t) // ∗

∗
gu(0)

//

traAu (0,t)

OO

∗

traA′u
(0,t)

OO

∈ ∗//G ,

where traAu(0, t) is the parallel transport of the connection Au along [0, t].
This says that holU is also full and faithful. Hence it is an equivalence. �

Remark 7.2.25. We have a dashed lift in

[S1,BGconn]

conc

��
GConn(S1)

' hol

��
G //

==

G//AdG

,

where the top right morphism is the canonical projection of remark 5.2.105, and where the bottom horizontal
morphism is the canonical projection map.

Proposition 7.2.26. There is an equivalence

GConn(∗) ' BG .
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7.2.5.1.3 Anomaly cancellation We specialize the general discussion of 7.2.1.2 to the case of 3d
Chern-Simons theory.

Example 7.2.27 (3d prequantum Chern-Simons with integral phases). LetG be a simply connected compact
simple Lie group, such as G = SU(k) or G = E8. Regard BG as an object of H = Smooth∞Grpd. We have

Hn+1(BG,Z) ' Hn+1(BG,Z) ' Z .

Write c2 : BG → B4Z for a representative of the generator. (For G = SU(k) this is the universal second
Chern class, whence the notation.)

By prop. 5.2.199 we may regard c2 as a local Lagrangian with integral phases for a 3d framed-topological
local prequantum field theory (a “level”):

exp( i~Sc2) : (Bordfr
3 )t −→ Corr3(H/B4Z)⊗phased .

Then by prop. 7.2.13, in order for this to extend to oriented cobordisms, we need to choose an O(3)-∞-action
on BG. Without further assumptions, the only available such is the trivial action. For that trivial action
we have

(BG)//Π(SO(3)) ' (BG)× (BSO(3)) .

Therefore an oriented-topological extension is a cohomology class on the product of classifying spaces which
restricts to c2 on the first factor:

BG
c2 //

��

B4Z

(BG)× (BSO(3))

L//SO(3)

55

.

By the Künneth theorem and using the assumption on G (which, by the Hurewicz theorem, implies that
H1≤•≤3(BG,Z) = 0), such extensions correspond to choices of classes α ∈ H4(BSO(3),Z) and are given by

L//SO(3) = (c2 + α) : (BG)× (BSO(3))
(c2,α) // (B4Z)× (B4Z)

+ // B4Z .

By classical results (see e.g. [Ca99]) H4(BSO(3),Z) ' Z is generated by the first Pontryagin class p1. Hence
we find that the possible oriented-topological extensions of the framed-topological field theory defined by c2
are labeled by integers κ ∈ Z and are given by

Lκ//SO(3) := (c2 + κ · p1) : (BG)× (BSO(3))
(c2,κ·1) // (B4Z)× (B4Z)

+ // B4Z ,

where p1 : BO(3)→ B4Z is a representative of the first Pontryagin class.
(This is reminiscent of anomaly cancellation in the traditional perturbative path integral quantization of

the c2-CS theory by adding a p1-CS theory “counterterm”, as in (2.20) of [Wi89]).
This now defines an oriented-topological field theory (setting κ = 1 for notational simplicity)

exp( i~S(c2+p1)) : (Bordfr
3 )t −→ Corr3(H/B4Z)⊗phased .

But of course it has now this extra contribution by p1. The field space extension on which this contribution
is universally canceled is the homotopy fiber product

Fields//Π(SO(3)) := (BG)×
(
(B3Z)//Π(SO(3)

)
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of (c1, p1) with (id, 0), as in example 5.2.192. Consider the resulting diagram

Π(Σ)

TΣ⊕R3−k

((

// (BG)× (B3Z)//Π(SO(3)) //

�� ++

(B4Z)× ∗

(id,0)

��
(BG)×BSO(3) (c2,p1) //

��

(B4Z)× (B4Z)

π2

��
(+,id)

&&
BSO(3) p1 // B4Z B4Z

Notice that, by prop. 7.2.10, we have

(B3Z)× (BSO(3)) ' (B3Z)//Π(SO(3)) .

Therefore by prop. 7.2.13 the diagonal in this diagram defines a local oriented-topological field theory. By
example 5.2.187 and example 5.2.192, the moduli of bulk fields of this field theory are the product

Σ 7→ LocG(Σ)× p1Struc(Σ)

of the moduli of flat G-connections with that of p1-structures on Σ. On this we have, in codimension-1 and
in generalization of example 5.2.202, a theta-line bundle

LocG(Σ)× p1Struc(Σ) −→ B2Z

This is again reminiscent of the traditional path integral story, where an “Atiyah 2-framing” structure [At90]
on Σ is needed to cancel a quantum anomaly, which in turn is equivalent to p1-structure, see e.g. p. 6 of
[Fr08].

Indeed, by theorem 5.2.203 the oriented-topological field theory defined this way is equivalently to a
p1-structured-topological field theory (example 5.2.167) with G-gauge fields. By example 5.2.177 the corre-
sponding p1-structure diffeomorphism group of a surface is a Z-extension of the plain diffeomorphism group.
It follows that the topological modular functor as in [?] of the above local topological field theory , i.e. the
restriction of the local 3d TFT to surfaces and their automorphisms, gives a representation of a Z-extended
diffeomorphism group. This is precisely the structure considered for topological modular functors in the
classical discussion of [Seg04] (see there around p. 46).

A variant of this:

Example 7.2.28. By the discussion in [FSS12a] the CS-term on the M2-brane induced from the background
C-field is given by the homotopy pullback in the top right of this diagram:

Π(Σ) //

TΣ⊕R3−k
''

CFields
L//Π(SO(3)) //

��

(B3U(1))×BSO(3)

(DD2,id)

��
(BG)× (BSO(3))

(2c2+p1,id) //

++

(B4Z)× (BSO(3))

��
BSO(3)

Therefore as before, the top horizontal morphism here naturally defines a local oriented-topological field
theory in 3-dimensions. The moduli space of fields for this now is the space of triples of a flat G-connection, a
flat U(1)-3-connection and the tangent SO-structure such that they satisfy the “flux quantization condition”
(integral Wu structure).
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7.2.5.2 Ordinary 3d U(1)-Chern-Simons theory and generalized Bn-geometry Ordinary 3-dimensional
U(1)-Chern-Simons theory on a closed oriented manifold Σ3 contains field configurations which are given by
globally defined 1-forms A ∈ Ω1(Σ3) and on which the action functional is given by the familiar expression

exp(iS(A)) = exp(2πik

∫
Σ3

A ∧ ddRA) .

More generally, though, a field configuration of the theory is a connection ∇ on a U(1)-principal bundle
P → Σ3 and this simple formula is modified, from being the exponential of the ordinary integral of the
wedge product of two differential forms, to the fiber integration in differential cohomology, Def. 7.2.4, of the
differential cup-product, Def. 7.2.20:

exp(iS(∇)) = exp(2πik

∫
Σ3

∇∪conn ∇) .

This defines the action functional on the set H1
conn(Σ3, U(1)) of equivalence classes of U(1)-principal bundles

with connection
exp(iS(−)) : H1

conn(Σ3)→ U(1) .

That the action functional is gauge invariant means that it extends from a function on gauge equivalence
classes to a functor on the groupoid H1

conn(Σ3, U(1)), whose objects are actual U(1)-principal connections,
and whose morphsims are smooth gauge transformations between these:

exp(iS(−)) : H1
conn(Σ3)→ U(1) .

Finally, that the action functional depends smoothly on the connections means that it extends further to the
moduli stack of fields to a morphism of stacks

exp(iS(−)) : [Σ3,BU(1)conn]→ U(1) .

The fully extended prequantum circle 3-bundle of this extended 3d Chern-Simons theory is that of the
two-species theory restricted along the diagonal ∆ : BU(1)conn → BU(1)conn × BU(1)conn. This is the
homotopy fiber of the smooth cup square in these degrees.

According to [Hi12] aspects of the differential geometry of the homotopy fiber of a differential refinement
of this cup square are captured by the “generalized geometry of Bn-type” that was suggested in [Ba11,
section 2.4]. In view of the relation of the same structure to differential T-duality discussed above one is led
to expect that “generalized geometry of Bn-type” captures aspects of the differential cohomology on fiber
products of torus bundles that exhibit auto T-duality on differential K-theory. Indeed, such a relation is
pointed out in [Bo11]34.

7.2.5.3 Ordinary Dijkgraaf-Witten theory Dijkgraaf-Witten theory (see [FrQu93] for a survey) is
commonly understood as the analog of Chern-Simons theory for discrete structure groups. We show that
this becomes a precise and systematic statement in Smooth∞Grpd: the Dijkgraaf-Witten action functional
is that induced from applying the ∞-Chern-Simons homomorphism to a characteristic class of the form
DiscBG→ B3U(1), for Disc :∞Grpd→ Smooth∞Grpd the canonical embeedding of discrete∞-groupoids,
6.2, into all smooth ∞-groupoids.

Let G ∈ Grp→∞Grpd
Disc→ Smooth∞Grpd be a discrete group regarded as an∞-group object in discrete

∞-groupoids and hence as a smooth ∞-groupoid with discrete smooth cohesion. Write BG = K(G, 1) ∈
∞Grpd for its delooping in ∞Grpd and BG = DiscBG for its delooping in Smooth∞Grpd.

We also write ΓBnU(1) ' K(U(1), n). Notice that this is different from BnU(1) ' ΠBU(1), reflecting
the fact that U(1) has non-discrete smooth structure.

34 Thanks, once more, to Alexander Kahle, for discussion of this point, at String-Math 2012.
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Proposition 7.2.29. For G a discrete group, morphisms BG → BnU(1) correspond precisely to cocycles
in the ordinary group cohomology of G with coefficients in the discrete group underlying the circle group

π0Smooth∞Grpd(BG,BnU(1)) ' Hn
Grp(G,U(1)) .

Proof. By the (Disc a Γ)-adjunction we have

Smooth∞Grpd(BG,BnU(1)) ' ∞Grpd(BG,K(U(1), n)) .

�

Proposition 7.2.30. For G discrete

• the intrinsic de Rham cohomology of BG is trivial

Smooth∞Grpd(BG, [dRBnU((1)) ' ∗;

• all G-principal bundles have a unique flat connection

Smooth∞Grpd(X,BG) ' Smooth∞Grpd(Π(X),BG) .

Proof. By the (Disc a Γ)-adjunction and using that Γ ◦ [dRK ' ∗ for all K. �
It follows that for G discrete

• any characteristic class c : BG→ BnU(1) is a group cocycle;

• the ∞-Chern-Weil homomorphism coincides with postcomposition with this class

H(Σ,BG)→ H(Σ,BnU(1)) .

Proposition 7.2.31. For G discrete and c : BG → B3U(1) any group 3-cocycle, the ∞-Chern-Simons
theory action functional on a 3-dimensional manifold Σ

Smooth∞Grpd(Σ,BG)→ U(1)

is the action functional of Dijkgraaf-Witten theory.

Proof. By proposition 6.4.162 the morphism is given by evaluation of the pullback of the cocycle α : BG→
B3U(1) along a given ∇ : Π(Σ) → BG, on the fundamental homology class of Σ. This is the definition of
the Dijkgraaf-Witten action (for instance equation (1.2) in [FrQu93]).

�

7.2.6 4d Chern-Simons functionals

We discuss some 4-dimensional Chern-Simons functionals

• 7.2.6.1 – 4d BF theory and topological Yang-Mills;

• 7.2.6.2 – 4d Yetter model.
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7.2.6.1 BF theory and topological Yang-Mills theory We discuss how the action functional of
nonabelian BF-theory [Hor89] in 4-dimensions with a “cosmological constant” and coupled to topological
Yang-Mills theory is a higher Chern-Simons theory.

Let g = (g2
∂→ g1) be a strict Lie 2-algebra, coming from a differential crossed module, def. 1.2.82, as

indicated. Let exp(g) be the universal Lie integration, according to def. 6.4.79. Field configurations with
values in exp(g) are locally Lie 2-algebra valued forms (A ∈ Ω1(Σ, g0)) and B ∈ Ω2(Σ, g1) as in prop. 1.2.122.

The following observation is due to [SSS09a].

Proposition 7.2.32. We have

1. every invariant polynomial 〈−〉g1
∈ inv(g1) on g1 gives rise, under the canonical inclusion inv(g1) ↪→

W(g), not to an invariant polynomial, but to a Chern-Simons element on g, exhibiting the transgression
to a trivial L∞-algebra cocycle;

2. for g1 a semisimple Lie algebra and 〈−〉g1
the Killing form, Σ a 4-dimensional compact manifold, the

corresponding Chern-Simons action functional

exp(iS〈−〉g1
) : [Σ, exp(g)conn]→ B4Rconn

on Lie 2-algebra valued forms is

Ω•(X) oo
(A,B)

W(g2 → g1) oo
(〈−〉g1 ,dW 〈−〉g1 )

W(bn−1R)

the sum of the action functionals of topological Yang-Mills theory with BF-theory with cosmological
constant:

cs〈−〉g1
(A,B) = 〈FA ∧ FA〉g1

− 2〈FA ∧ ∂B〉g1
+ 2〈∂B ∧ ∂B〉g1

,

where FA is the ordinary curvature 2-form of A.

Proof. For {ta} a basis of g1 and {bi} a basis of g2 we have

dW(g) : dta 7→ dW(g1) + ∂aidb
i .

Therefore with 〈−〉g1
= Pa1···andra1 ∧ · · ·dtan we have

dW(g)〈−〉g1
= nPa1···an∂

a1
idb

i ∧ · · ·dtan .
The right hand is a polynomial in the shifted generators of W(g), and hence an invariant polynomial on g.
Therefore 〈−〉g1

is a Chern-Simons element for it.
Now for (A,B) ∈ Ω1(U ×∆k, g) an L∞-algebra-valued form, we have that the 2-form curvature is

F 1
(A,B) = FA − ∂B .

Therefore
cs〈−〉g1

(A,B) = 〈F 1
(A,B) ∧ F

1
(A,B)〉g1

= 〈FA ∧ FA〉g1 − 2〈FA ∧ ∂B〉g1 + 2〈∂B ∧ ∂B〉g1

.

�

7.2.6.2 4d Yetter model The discussion of 3-dimensional Dijkgraaf-Witten theory as in 7.2.5.3 goes
through verbatim for discrete groups generalized to discrete ∞-groups G, 6.2.3, and cocycles α : BG →
BnU(1) of any degree n. A field configurations over an n-dimensional manifold Σ is a G-principal∞-bundle,
6.2.5, necessarily flat, and the induced action functional

exp(iSα) : H(Σ,BG)→ U(1)

sends a G-principal ∞-bundle classified by a cocycle g : Σ → BG to the canonical pairing of the singular
cocycle corresponging to α(g) : Σ→ BG

α→ BnU(1) with the fundamental class of Σ.
For n = 4 such action functionals sometimes go by the name “Yetter model” [Mac00][MaPo07], in honor

of [Yet93], which however did non consider a nontrivial 4-cocycle.
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7.2.7 Abelian gauge coupling of branes

The gauge coupling term in the action of an (n−1)-brane charged under an abelian n-form background gauge
field (electromagnetism, B-field, C-field, etc.) is an example of an∞-Chern-Simons functional. We spell this
out in a moment. Here one typically considers the target space of the (n−1)-brane to be a smooth manifold
or at most an orbifold. The formal structure, however, allows to consider target spaces that are arbitrary
smooth ∞-groupoids / smooth ∞-stacks. When generalized to this class of target spaces, the class of brane
gauge coupling functionals in fact coincides with that of all ∞-Chern-Simons functionals. Conversely, every
∞-Chern-Simons theory in dimension n may be regarded as the field theory of a “topological (n− 1)-brane”
whose target space is the higher moduli stack of field configurations of the given ∞-Chern-Simons theory.

For X a smooth manifold, let c ∈ Hn+1(X,Z) be a class in integral cohomology, to be called the higher
background magnetic charge. A smooth refinement of this class to a morphism

c : X → BnU(1)

is a circle n-bundle on X, whose topological class is c

ĉ : X → BnU(1)conn

A differential refinement of this is a choice of refinement to a circle n-bundle with connection ∇.
Now let Σ the compact n-dimensional worldvolume of an (n− 1)-brane. Then [Σ, X] is the diffeological

space (def. 6.4.14) of smooth maps φ : Σ→ X. The induced ∞-Chern-Simons functional

exp(iSĉ) : [Σ, X]
[ĉ,Σ] // [Σ,BnU(1)conn]

∫
Σ // U(1)

is the ordinary n-volume holonomy of ∇ over trajectories φ : Σ→ X.

7.2.8 Higher abelian Chern-Simons functionals

We discuss higher Chern-Simons functionals on higher abelian gauge fields, notably on circle n-bundles with
connection.

• 7.2.8.1 – (4k + 3)d U(1)-Chern-Simons functionals;

• 7.2.8.2 – Higher electric coupling and higher gauge anomalies.

7.2.8.1 (4k + 3)d U(1)-Chern-Simons functionals We discuss higher dimensional abelian Chern-
Simons theories in dimension 4k + 3.

The case in dimension 3 (k = 0) is discussed for instance in [GuTh08]. The case in dimension 7 (k = 1)
is the higher Chern-Simons theory whose holographic boundary theory encodes the self-dual 2-form gauge
theory on the single 5-brane [Wi96]. Generally, for every k the (4k + 3)-dimensional abelian Chern-Simons
theory induces a self-dual higher gauge theory holographically on its boundary, see [BeMo06].

Definition 7.2.33. Let Σ be a compact manifold of dimension 4k+ 3 for k ∈ N. Consider the moduli stack
[Σ,BkU(1)conn] of circle (2k + 1)-bundles with connection on Σ.

On this space, the action functional of higher abelian Chern-Simons theory is defined to be the composite

exp(iS(−)) : [Σ,B2k+1U(1)conn]
(−)∪̂(−) // [Σ,B4k+3U(1)conn]

∫
Σ // U(1) .

Observation 7.2.34. When restricted to differential (2k+1)-forms, regarded as connections on trivial circle
(2k + 1)-bundles

Ω2k+1(Σ) ↪→ [Σ,B2k+1U(1)conn]
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this action functional sends a (2k + 1)-form C to

exp(iS(C)) = exp(i

∫
Σ

C ∧ ddRC) .

From this expression one sees directly why the corresponding functional is not interesting in the remaining
dimensions, because for even degree forms we have C ∧ dC = 1

2d(C ∧ C) and hence for these the above
functional would be constant.

7.2.8.2 Higher electric coupling and higher gauge anomalies The action functional of ordinary
Maxwell electromagnetism in the presence of an electric background current involves a differential cup-
product term similar to that in def. 7.2.33. This has a direct generalization to higher electromagnetic fields
and the corresponding higher electric currents. If, moreover, a background magnetic current is present,
then this action functional is, in general, anomalous. The “higher gauge anomalies” in higher dimensional
supergravity theories arise this way. This is discussed in [Fr00].

Here we refine this discussion from differential cohomology classes to higher moduli stacks of differential
cocycles.

Definition 7.2.35. Let Σ be a compact smooth manifold of dimension d.
By prop. 6.4.124 the universal cup product class

(−) ∪ (−) : BnU(1)×Bd−n−1U(1)→ BdU(1)

for any 0 ≤ n ≤ d has a smooth and differential refinement ∪̂. We write

exp(iS∪) : [Σ,BnU(1)conn ×Bd−n−1U(1)conn]
(−)∪̂(−) // [Σ,BdU(1)conn]

∫
Σ // U(1)

for the corresponding higher Chern-Simons action functional on the higher moduli stack of pairs consisting
of an n-connection and an (d− n− 1)-connection on Σ.

Remark 7.2.36. When restricted to pairs of differential forms

(B1, B2) ∈ Ωn(Σ)× Ωd−n−1(Σ) ↪→ [Σ,BnU(1)conn ×Bd−n−1U(1)conn]

this functional sends

(B1, B2) 7→ exp(i

∫
Σ

B1 ∧ dB2) .

The higher Chern-Simons functional of def. 7.2.8.1 is the diagonal of this functional, where B1 = B2.
We now consider another variant, where only B1 is taken to vary, but B2 is regarded as fixed.

Let X be an d-dimensional manifold. The configuration space of higher electromagnetic fields of degree
n on X is the moduli stack of circle n-bundles with connection [X,BnU(1)conn] on X.

Definition 7.2.37. An electric background current on X for degree p electromagnetism is a circle (d−n−1)-
bundle with connection ĵel : X → Bd−n−1U(1)conn.

The electric coupling action functional of the higher electromagnetic field in the presence of the back-
ground electric current is

exp(iSel) : [X,BnU(1)conn]
(−)∪̂ĵel // [X,BdU(1)conn]

∫
X // U(1) ,

where the first morphism is the differentially refined cup product from prop. 6.4.124.
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Remark 7.2.38. For the case of ordinary Maxwell theory, with n = 1 and d = 4, the electric current
is a circle 2-bundle with connection. Its curvature 3-form is traditionally denoted jel. If X is equipped
with Lorentzian structure, then its integral over a (compact) spatial slice is the background electric charge.
Integrality of this value, following from the nature of differential cohomology, is the Dirac charge quantization
that makes electric charge appear in integral multiples of a fixed unit charge.

For A ∈ Ω1(X) → [X,BU(1)conn] a globally defined connection 1-form, the above action functional is
given by

A 7→ exp(i

∫
X

A ∧ jel) .

In the limiting case that the background electric charge is that carried by a charged point particle, jel is the
current which is Poincaré-dual to the trajectory γ : S1 → X of the particle. In this case the above goes to

· · · → exp(i

∫
Σ

A) ,

hence the line holonomy of A along the trajectory of the background charge.

(...)

7.2.9 7d Chern-Simons functionals

We discuss some higher Chern-Simons functionals over 7-dimensional parameter spaces.

• 7.2.9.1 – The cup product of a 3d CS theory with itself;

• 7.2.9.2 – 7d CS theory on string 2-connection fields;

• 7.2.9.3 – 7d CS theory in 11d supergravity on AdS7.

This section draws from [FSS12b].

7.2.9.1 The cup product of a 3d CS theory with itself Let G be a compact and simply connected
simple Lie group and consider from 7.2.5.1 the canonical differential characteristic map for the induced 3d
Chern-Simons theory

ĉ : BGconn → B3U(1)conn .

We consider the differentially refined cup product, prop. 6.4.124, of this differential characteristic map with
itself.

Observation 7.2.39. The topological degree-8 class

c ∪ c : BG
(c,c) // K(Z, 4)×K(Z, 4)

∪ // K(Z, 8)

has a smooth and differential refinement of the form

ĉ∪̂ĉ : BGconn
ĉ // B3U(1)conn ×B3U(1)conn

∪̂ // B7U(1)conn .

Proof. By the discussion in 7.2.8.1. �

Definition 7.2.40. Let Σ be a compact smooth manifold of dimension 7. The higher Chern-Simons func-
tional

exp(iSCS(−)) : [Σ,BGconn]
ĉ∪̂ĉ // [Σ,B7U(1)conn]

∫
Σ // U(1)

defines the cup product Chern-Simons theory induced by c.
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Remark 7.2.41. For ordinary Chern-Simons theory, 7.2.5.1, the assumption that G is simply connected
implies that BG is 3-connected, hence that every G-principal bundle on a 3-dimensional Σ is trivializable, so
that G-principal connections on Σ can be identified with g-valued differential forms on Σ. This is no longer
in general the case over a 7-dimensional Σ.

Proposition 7.2.42. If a field configuration A ∈ [Σ,BGconn] happens to have trivial underlying bundle,
then the value of the cup product CS theory action functional is given by

exp(iSCS(A)) =

∫
Σ

CS(A) ∧ 〈FA ∧ FA〉 ,

where CS(−) is the Lagrangian of ordinary Chern-Simons theory, 7.2.5.1.

7.2.9.2 7d CS theory on string 2-connection fields By theorem 7.1.32 we have a canonical differ-
ential characteristic map

1
6 p̂2 : BStringconn → B7U(1)conn

from the smooth moduli 2-stack of String-2-connections, 1.2.9.7.2, with values in the smooth moduli 7-stack
of circle 7-bundles (bundle 6-gerbes) with connection. This induces a 7-dimensional Chern-Simons theory.

Definition 7.2.43. For Σ a compact 7-dimensional smooth manifold, define exp(iS 1
6p2

(−)) to be the Chern-

Simons action functional induced by the universal differential second fractional Pontryagin class, theorem
7.1.32,

exp(iS 1
6p2

(−)) : [Σ,BStringconn]

1
6 p̂2
// [Σ,B7U(1)conn]

∫
Σ // U(1) .

Recall from 1.2.9.7.2 the different incarnations of the local differential form data for string 2-connections.

Proposition 7.2.44. Over a 7-dimensional Σ every field configuration (A,B) ∈ [Σ,BStringconn] is a string
2-connection whose underlying String-principal 2-bundle is trivial.

• In terms of the strict string Lie 2-algebra from def. 1.2.189 this is presented by a pair of nonabelian
differential forms A ∈ Ω1(Σ, P∗so), B ∈ Ω2(Σ, Ω̂∗so). The above action functional takes this to

exp(iS 1
6p2

(A,B)) =

∫
Σ

CS7(A(1))

=

∫
Σ

(〈Ae ∧ dAe ∧ dAe ∧ dAe〉+ k1〈Ae ∧ [Ae ∧Ae] ∧ dAe ∧ dAe〉

+ k2〈Ae ∧ [Ae ∧Ae] ∧ [Ae ∧Ae] ∧ dAe〉+ k3〈Ae ∧ [Ae ∧Ae] ∧ [Ae ∧Ae] ∧ [Ae ∧Ae]〉)

,

where Ae ∈ Ω1(Σ, so) is the 1-form of endpoint values of A in the path Lie algebra, and where the
integrand is the degree-7 Chern-Simons element of the quaternary invariant polynomial on so.

• In terms of the skeletal string Lie 2-algebra from def. 1.2.188 this is presented by a pair of differential
forms A ∈ Ω1(Σ, so), B ∈ Ω2(Σ,R). The above action functional takes this to

exp(iS 1
6p2

(A,B)) =

∫
Σ

CS7(A) .

7.2.9.3 7d CS theory in 11d supergravity on AdS7 The two 7-dimensional Chern-Simons theories
from 7.2.9.1 and 7.2.9 can be merged to a 7d theory defined on field configurations that are 2-connections
with values in the String-2-group from def. 7.1.43. We define and dicuss this higher Chern-Simons theory
below in 7.2.9.3.2. In 7.2.9.3.1 we argue that this 7d Chern-Simons theory plays a role in AdS7/CFT6-duality
[AGMOO].
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7.2.9.3.1 Motivation from AdS7/CFT6-holography We give here an argument that the 7-dimensional
nonabelian gauge theory discussed in section 7.2.9.3.2 is the Chern-Simons part of 11-dimensional supergrav-
ity on AdS7×S4 with 4-form flux on the S4-factor and with quantum anomaly cancellation conditions taken
into account. We moreover argue that this implies that the states of this 7-dimensional CS theory over a
7-dimensional manifold encode the conformal blocks of the 6-dimensional worldvolume theory of coincident
M5-branes. The argument is based on the available but incomplete knowledge about AdS/CFT-duality, such
as reviewed in [AGMOO], and cohomological effects in M-theory as reviewed and discussed in [Sa10a].

There are two, seemingly different, realizations of the holographic principle in quantum field theory. On
the one hand, Chern-Simons theories in dimension 4k + 3 have spaces of states that can be identified with
spaces of correlators of (4k+ 2)-dimensional conformal field theories (spaces of “conformal blocks”) on their
boundary. For the case k = 0 this was discussed in [Wi89], for the case k = 1 in [Wi96]. On the other hand,
AdS/CFT duality (see [AGMOO] for a review) identifies correlators of d-dimensional CFTs with states of
compatifications of string theory, or M-theory, on asymptotically anti-de Sitter spacetimes of dimension d+1
(see [Wi98a]).

In [Wi98c] it was pointed out that these two mechanisms are in fact closely related. A detailed analysis
of the AdS5/SYM4-duality shows that the spaces of correlators of the 4-dimensional theory can be identified
with the spaces of states obtained by geometric quantization just of the Chern-Simons term in the effective
action of type II string theory on AdS5, which locally reads

(BNS, BRR) 7→ N

∫
AdS5

BNS ∧ dBRR ,

where BNS is the local Neveu-Schwarz 2-form field, BRR is the local RR 2-form field, and where N is the
RR 5-form flux picked up from integration over the S5 factor.

As briefly indicated there, the similar form of the Chern-Simons term of 11-dimensional supergravity (M-
theory) on AdS7 suggests that an analogous argument shows that under AdS7/CFT6-duality the conformal
blocks of the (2, 0)-superconformal theory are identified with the geometric quantization of a 7-dimensional
Chern-Simons theory. In [Wi98c] that Chern-Simons action is taken, locally on AdS7, to be

C3 7→
∫

AdS7×S4

C3 ∧G4 ∧G4 = N

∫
AdS7

C3 ∧ dC3 ,

where now C3 is the local incarnation of the supergravity C-field, 7.1.7.4.2, where G4 is its curvature 4-form
locally equal to dC3, and where

N :=

∫
S4

G4

is the C-field flux on the 4-spehere factor.
This is the (4 · 1 + 3 = 7)-dimensional abelian Chern-Simons theory, 7.2.11.7, shown in [Wi96] to induce

on its 6-dimensional boundary the self-dual 2-form – in the abelian case.
In order to generalize this to the nonabelian case of interest, we notice that there is a term missing in

the above Lagrangian. The quantum anomaly cancellation in 11-dimensional supergravity is known from
[DLM95](3.14) to require a corrected Lagrangian whose Chern-Simons term locally reads

(ω,C3) 7→
∫

AdS7×S4

C3 ∧
(
G4 ∧G4 − IdR

8 (ω)
)
,

where ω is the spin connection form, locally, and where 8IdR
8 (ω) is a de Rham representative of the integral

cohomology class

8I8 = 1
6p2 − 8(

1

2
p1) ∪ (

1

2
p1) , (7.25)

with 1
2p1 and 1

6p2 the first and second fractional Pontrjagin classes, prop. 7.1.5, prop. 7.1.30, respectively,
of the given Spin bundle over 11-dimensional spacetime X.
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This means that after passing to the effective theory on AdS7, this corrected Lagrangian picks up another
7-dimensional Chern-Simons term, now one depending on nonablian fields (with values in Spin and E8).
Locally this reads

S7dCS : (ω,C3) 7→ N

∫
AdS7

C3 ∧ dC3 −
N

8

∫
Ads7

CS8I8(ω) . (7.26)

where CS8I8(ω) is a Chern-Simons form for 8IdR
8 (ω), defined locally by

dCS8I8(ω) = 8IdR
8 (ω) .

But this action functional, which is locally a functional of a 3-form and a Spin-connection, cannot globally
be of this form, already because the field that looks locally like a Spin connection cannot globally be a Spin
connection. To see this, notice from the discussion of the C-field in 7.1.8, that there is a quantization
condition on the supergravity fields on the 11-dimensional X [Wi97a], which in cohomology requires the
identity

2[G4] =
1

2
p1 + 2a ∈ H4(X,Z) ,

where on the right we have the canonical characteristic 4-class a, prop. 7.1.41, of an ‘auxiliary’ E8 bundle
on 11-dimensional spacetime. Moreover, we expect that when restricted to the vicinity of the asymptotic
boundary of AdS7,

• the class of G4 vanishes;

• the E8-bundle becomes equipped with a connection, too (the E8-field “becomes dynamical”);

in analogy to what happens at the boundary for the Hořava-Witten compactification of the 11-dimensional
theory [HoWi95, HoWi96], as discussed in 7.1.8.6. Since, moreover, the states of the topological TFT that
we are after are obtained already from geometric quantization, 5.2.17, of the theory in the vicinity Σ× I of
a boundary Σ, we find the field configurations of the 7-dimensional theory are to satisfy the constraint in
cohomology

1

2
p1 + 2a = 0 . (7.27)

Imposing this condition has two effects.

1. The first is that, according to 5.2.14, what locally looks like a spin-connection is globally instead a
twisted differential String structure, 7.1.6.3, or equivalently a 2-connection on a twisted String-principal
2-bundle, where the twist is given by the class 2a. By 1.2.6.3 the total space of such a principal 2-
bundle may be identified with a (twisted) nonabelian bundle gerbe. Therefore the configuration space
of fields of the effective 7-dimensional nonabelian Chern-Simons action above should not involve just
Spin connection forms, but String-2-connection form data. By 1.2.9.7.2 there is a gauge in which this
is locally given by nonabelian 2-form field data with values in the loop group of Spin.

2. The second effect is that on the space of twisted String-2-connections, the differential 4-form tr(Fω ∧
Fω), that under the Chern-Weil homomorphism represents the image of 1

2p1 in de Rham cohomology,
according to 7.1.6.3.1, locally satisfies

dH3 = 〈Fω ∧ Fω〉 − 2〈FA ∧ FA〉 ,

where H3 is the 3-form curvature component of the String-2-connection, and where FA is the curva-
ture of a connection on the E8 bundle, locally given by an e8-valued 1-form A. Therefore with the
quantization condition of the C-field taken into account, the 7-dimensional Chern-Simons action (7.26)
becomes

S7dCS = N

∫
AdS7

(
C3 ∧ dC3 −

1

8
H3 ∧ dH3 −

1

4
(H3 + 2CSa(A) ∧ tr(Fω ∧ Fω) +

1

8
CS 1

6 p̂2
(ω)

)
. (7.28)
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Here the first two terms are 7-dimensional abelian Chern-Simons actions as before, for fields that
are both locally abelian three forms (but have very different global nature). The second two terms,
however, are action functionals for nonabelian Chern-Simons theories. The third term involves the
familiar Chern-Simons 3-form of the E8-connection familiar from 3-dimensional Chern-Simons theory

CSa(A) = tr(A ∧ dA) +
2

3
tr(A ∧A ∧A) .

Finally the fourth term is the Chern-Simons 7-form that is locally induced, under the Chern-Weil ho-
momorphism, from the quartic invariant polynomial 〈−,−,−,−〉 : so⊗4 → R on the special orthogonal
Lie algebra so, in direct analogy to how standard 3-dimensional Chern-Simons theory is induced under
Chern-Weil theory from the quadratic invariant polynomial (the Killing form) 〈−,−〉 : so⊗ so→ R:

CS7(ω) =〈ω ∧ dω ∧ dω ∧ dω〉+ k1〈ω ∧ [ω ∧ ω] ∧ dω ∧ dω〉
+ k2〈ω ∧ [ω ∧ ω] ∧ [ω ∧ ω] ∧ dω〉+ k3〈ω ∧ [ω ∧ ω] ∧ [ω ∧ ω] ∧ [ω ∧ ω]〉

.

This line of arguments suggests that the Chern-Simons term that governs 11-dimensional supergravity
on AdS7 × S4 is an action functional on fields that are twisted String-2-connections such that the action
functional is locally given by (7.28). In 7.2.9.3.2 we show that a Chern-Simons theory satisfying these
properties naturally arises from the differential characteristic maps discussed above in 7.2.9.1 and 7.2.9.

7.2.9.3.2 Definition and properties We discuss now a twisted combination of the two 7-dimensional
Chern-Simons action functionals from 7.2.9.1 and 7.2.9 which naturally lives on the moduli 2-stack CField(−)bdr

of boundary C-field configurations from 7.1.156. We show that on ∞-connection field configurations whose
underlying ∞-bundles are trivial, this functional reduces to that given in equation (7.28).

It is instructive to first consider the simple special case where the E8 is trivial. In this case the boundary

moduli stack CFieldbdr′ from observation 7.1.157 restricts to just that of string 2-connections, BStringconn.

Definition 7.2.45. Write 8Î8 for the smooth universal differential characteristic cocycle

8Î8 : BStringconn

(
1
6 p̂2)−8( 1

2 p̂1∪̂ 1
2 p̂1)

// B7U(1)conn ,

where 1
6 p̂2 is the differential second fractional Pontryagin class from theorem 7.1.32 and where 1

2 p̂1∪̂ 1
2 p̂1 is

the differential cup product class from observation 7.2.39.

Definition 7.2.46. For Σ a compact smooth manifold of dimension 7, the canonically induced action
functional exp(iS8I8(−)) from def. 5.2.116, on the moduli 2-stack of String-2-connections is the composite

exp(iS8I8(−)) : [Σ,BStringconn]
8Î8 // [Σ,B7U(1)conn]

∫
Σ // U(1) .

We give now an explicit description of the field configurations in [Σ,BStringconn] and of the value of
exp(iS8I8(−)) on these in terms of differential form data.

Proposition 7.2.47. A field configuration in [Σ,BStringconn] ∈ Smooth∞Grpd is presented in the model
category [CartSpop, sSet]proj,loc, 6.4, by a correspondence of simplicial presheaves

C({Ui})
φ //

'
��

cosk3 exp(bR→ soµ) ˜conn

Σ

,
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where soµ is the skeletal String Lie 2-algebra, def. 1.2.188, and where on the right we have the adapted
differential coefficient object from prop. 7.1.120; such that the projection

C({Ui})
φ // cosk3 exp(bR→ soµ) ˜conn

// B3U(1)conn

has a class.
The underlying nonabelian cohomology class of such a cocycle is that of a String-principal 2-bundle.
The local connection and curvature differential form data over a patch Ui is

Fω = dω + 1
2 [ω ∧ ω]

H3 = ∇B := dB + CS(ω)
dFω = −[ω ∧ Fω]
dH3 = 〈Fω ∧ Fω〉

Proof. Without the constraint on the C-field this is the description of twisted String-2-connections of
observation 7.1.122 where the twist is the C-field. The condition above picks out the untwisted case, where
the C-field is trivialized. What remains is an untwisted String-principal 2-bundle.

The local differential form data is found from the modified Weil algebra of (bR → (so)µso
) indicated on

the right of the following diagram


Fω = dω + 1

2 [ω ∧ ω]
H3 = ∇B := dB + CS(ω)− C3

G4 = dC3

dFω = −[ω ∧ Fω]
dH3 = 〈Fω ∧ Fω〉 − G4

dG4 = 0


i

taso 7→ ωa

raso 7→ Fω
b 7→ B
c 7→ C3

h 7→ H3

g 7→ G4oo �


raso = dtaso + 1

2C
a
sobct

b
so ∧ tcso

h = db+ csso − c
g = dc
draso = −Cabctbso ∧ raso
dh = 〈−,−〉 − g
dg = 0

 .

�

Remark 7.2.48. While the 2-form B in the presentation used in the above proof is abelian, the total
collection of forms is still connection data with coefficients in the nonabelian Lie 2-algebra string. We
explained in remark 1.2.192, that there is a choice of local gauge in which the nonabelianness of the 2-form
becomes manifest. For the discussion of the above proposition, however, this gauge is not the most convenient
one, and it is more convenient to exhibit the local cocycle data in the above form, which corresponds to the
second gauge of remark 1.2.192.

This is an example of a general principle in higher nonabelian gauge theory (“higher gerbe theory”).
Due to the higher gauge invariances, the local component presentation of a given structure does not usually
manifestly exhibit the gauge-invariant information in an obvious way.

Proposition 7.2.49. Let φ ∈ [Σ,BStringconn] be a field configuration which, in the presentation of prop.
7.2.47, is defined over a single patch U = Σ.

Then the action functional of def. 7.2.46 sends this to

exp(iS8I8(ω,H3)) = exp

(
i

∫
Σ

(
−8H3 ∧ dH3 + CS 1

6 p̂2
(ω)

))
.

Proof. The first term is that of the cup product theory, 7.2.9.1, after using the identity tr(Fω∧Fω) = dH3

which holds on the configuration space of String-2-connections by prop. 7.2.47. The second term is that of
the 1

6p2-Chern-Simons theory from 7.2.9. �
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Remark 7.2.50. Therefore comparison with equation (7.28) shows that the action functional S8I8 has
all the properties that in 7.2.9.3.1 we argued that the effective 7-dimensional Chern-Simons theory inside
11-dimensional supergravity compactified on S4 should have, in the following special case:

• the C-field flux on S4 is N = 8;

and

• the E8-field is trivial;

• the C-field on Σ is trivial.

By choosing any multiple of 8Î8 one can obtain C-field flux of arbitrary multiples of 8. In order to obtain
C-field flux that is not a multiple of 8 one needs to discuss further divisibility of 8Î8.

We discuss now a refinements of S8I8 that generalize away from the last two of these special conditions
to obtain the full form of (7.28).

Recall from def. 7.1.156 the higher moduli stack CFieldbdr of supergravity C-field configurations, which
by remark. 7.1.157 is the moduli 3-stack of twisted String2a-connections. We consider now an action
functional on this configuration stack.

Following remark 7.1.47 we write a corresponding field configuration, φ ∈ CFieldbdr(Σ), whose underlying
topological class is trivial as a tuple of forms

(ω,A,B2, C3) ∈ Ω1(Σ, so)× Ω1(Σ, e8)× Ω2(Σ)× Ω3(Σ)

and set
H3 := dB2 + cs(ω)− cs(A) .

Recall that by prop. 7.1.46 this object has a presentation by Lie integration as 7.1.6.3.1 as a sub-simplicial
set

cosk3 exp((R→ so⊕ e8)µso
3 −2µ

e8
3

)conn .

In terms of this presentation we have an evident differential characteristic class given by the Lie integration
of the Chern-Simons element cs 1

6p2
− 8cs 1

2 o1∪ 1
2p1

.

Definition 7.2.51. Write Î8 for the smooth universal characteristic map given by the composite

BString2a

exp(cs 1
6 p2

−8cs 1
2
p1∪

1
2
p1

)

// [Σ,B7(R/K)conn] ,

where the second morphism is the ∞-Chern-Weil homomorphism of I8, according to 6.4.17, with K ⊂ R the
given sublattice of periods.

Write

exp(iSI8(−)) : BString2a
conn

Î8 // [Σ,B7(R/K)conn]

∫
Σ // R/K

for the corresponding action functional.

Finally we obtain the refinement of the 7-dimensional Chern-Simons action (7.28) to the full higher
moduli stack of boundary C-field configurations.

Proposition 7.2.52. Let φ ∈ CFieldbdr(Σ)) be a boundary C-field configuration according to remark.
7.1.157, whose underlying String2a-principal 2-bundle is trivial, which is hence a quadruple of forms

φ = (ω,A,B2, C3) ∈ Ω1(Σ, so)× Ω1(Σ, e8)× Ω2(Σ)× Ω3(Σ) .

The combination of the action functional of def. 7.2.33 and the action functional of def. 7.2.51 sends this to

exp(iS(C3)) exp(iS8I8(ω,A,B2)) =

∫
Σ

C3∧dC3+8

(
H3 ∧ dH3 + (H3 + cs(A)) ∧ 〈Fω ∧ Fω〉+

1

8
cs 1

6p2
(ω)

)
modK ,

where H3 = dB + cs(ω)− 2cs(A).
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Proof. By the nature of the exp(−)-construction we have

exp(iS8I8(ω,A,B)) =

∫
Σ

(
8cs(ω) ∧ dcs(ω) + cs 1

6p2
(ω)

)
.

Inserting here the equation for H3 satisfied by the String2a-connections yields

· · · =
∫

Σ

(
8(H3 + 2cs(A)− dB) ∧ d(H3 + 2cs(A)− dB) + cs 1

6p2
(ω)

)
=

∫
Σ

(
8(H3 + 2cs(A)) ∧ d(H3 + 2cs(A)) + cs 1

6p2
(ω)

)
=

∫
Σ

8

(
H3 ∧ dH3 + (H3 + 2cs(A)) ∧ 〈Fω ∧ Fω〉+

1

8
cs 1

6p2
(ω)

) .

�

7.2.10 Action of closed string field theory type

We discuss the form of ∞-Chern-Simons Lagrangians, 7.2.1, on general L∞-algebras equipped with a
quadratic invariant polynomial. The resulting action functionals have the form of that of closed string
field theory [Zw93].

Proposition 7.2.53. Let g be any L∞-algebra equipped with a quadratic invariant polynomial 〈−,−〉.
The ∞-Chern-Simons functional associated with this data is

S : A 7→
∫

Σ

(
〈A ∧ ddRA〉+

∞∑
k=1

2

(k + 1)!
〈A ∧ [A ∧ · · ·A]k〉

)
,

where
[−, · · · ,−] : g⊗k → g

is the k-ary bracket of g (prop. 1.2.152).

Proof. There is a canonical contracting homotopy operator

τ : W(g)→W(g)

such that [dW, τ ] = IdW(g). Accordingly a Chern-Simons element, def. 6.4.147, for 〈−,−〉 is given by

cs := τ〈−,−〉 .

We claim that this is indeed the Lagrangian for the above action functional.
To see this, first choose a basis {ta} and write

Pab := 〈ta, tb〉

for the components of the invariant polynomial in that basis and

Caa1,··· ,ak := [ta1 , · · · , tak ]ak

as well as
Ca0,a1,··· ,ak := Pa0aC

a
a1,··· ,ak

for the structure constant of the k-ary brackets.
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In terms of this we need to show that

cs = Pabt
a ∧ dWt

b +

∞∑
k=1

2

(k + 1)!
Ca0,··· ,akt

a0 ∧ · · · ∧ tak .

The computation is best understood via the free dg-algebra F (g) on the graded vector space g∗, which
in the above basis we may take to be generated by elements {ta,dta}. There is a dg-algebra isomorphism

F (g)
'→W(g)

given by sending ta 7→ ta and dta 7→ dCE(g) + ra.

On F (g) the contracting homotopy is evidently given by the map 1
Lh, where L is the word length operator

in the above basis and h the graded derivation which sends ta 7→ 0 and dta 7→ ta. Therefore τ is given by

W(g)

'
��

τ //W(g)

F (g)
1
Lh // F (g)

'

OO
.

With this we obtain

cs := τ〈−,−〉

= τPab

(
dWt

a +

∞∑
k=1

Caa1,··· ,akt
a1 ∧ · · · ∧ tak

)
∧

(
dWt

b +

∞∑
k=1

Cbb1,··· ,bkt
b1 ∧ · · · ∧ tbk

)

= Pabt
a ∧ dWt

b +

∞∑
k=1

2

k!(k + 1)
PabC

b
b1,··· ,bkt

a ∧ tb1 ∧ · · · ∧ tbk

.

�

Remark 7.2.54. If here Σ is a completely odd-graded dg-manifold, such as Σ = R0|3, then this is the kind
of action functional that appears in closed string field theory [Zw93][KaSt08]. In this case the underlying
space of the (super-)L∞-algebra g is the BRST complex of the closed (super-)string and [−, · · · ,−]k is the
string’s tree-level (k + 1)-point function.

7.2.11 Non-perturbative AKSZ theory

We now consider symplectic Lie n-algebroids P. These carry canonical invariant polynomials ω. We show
that the ∞-Chern-Simons action functional associated to such ω is the locally the action functional of the
AKSZ σ-model quantum field theory with target space P (due to [AKSZ97], usefully reviewed in [Roy06]).
Globally it is a non-perturbative refinement of the AKSZ σ-model with possibly non-trivial instanton sectors
of fields.

This section is based on [FRS11].

• 7.2.11.1 – Symplectic L∞-Algebroids and Symplectic ∞-Groupoids;

• 7.2.11.2 – AKSZ σ-models;

• 7.2.11.3 – The AKSZ action as a Chern-Simons functional ;

• 7.2.11.4 – Ordinary Chern-Simons theory;

• 7.2.11.5 – Poisson σ-model;

• 7.2.11.6 – Courant σ-model;

• 7.2.11.7 – Higher abelian Chern-Simons theory.
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7.2.11.1 Symplectic L∞-Algebroids and Symplectic∞-Groupoids The notion of symplectic man-
ifold formalizes in physics the concept of a classical mechanical system. The notion of geometric quantization,
5.2.17, of a symplectic manifold is one formalization of the general concept in physics of quantization of such
a system to a quantum mechanical system.

Or rather, the notion of symplectic manifold does not quite capture the most general systems of classical
mechanics. One generalization requires passage to Poisson manifolds. The original methods of geometric
quantization become meaningless on a Poisson manifold that is not symplectic. However, a Poisson structure
on a manifold X is equivalent to the structure of a Poisson Lie algebroid P over X. This is noteworthy,
because the latter is again symplectic, as a Lie algebroid, even if the underlying Poisson manifold is not
symplectic: it is a symplectic Lie 1-algebroid, prop. 7.2.70.

Based on related observations it was suggested, [Wei89] that a notion of symplectic groupoid should
naturally replace that of symplectic manifold for the purposes of geometric quantization to yield a notion of
geometric quantization of symplectic groupoids. Since a symplectic manifold can be regarded as a symplectic
Lie 0-algebroid, prop. 7.2.70, and also as a symplectic smooth 0-groupoid this step amounts to a kind of
categorification of symplectic geometry.

More or less implicitly, there has been evidence that this shift in perspective is substantial: the deforma-
tion quantization of a Poisson manifold famously turns out [Kon03] to be constructible in terms of correlators
of the 2-dimensional TQFT called the Poisson σ-model, 7.2.11.5, associated with the corresponding Poisson
Lie algebroid. The fact that this is 2-dimensional and not 1-dimensional, as the quantum mechanical system
that it thus encodes, is a direct reflection of this categorification shift of degree.

On general abstract grounds this already suggests that it makes sense to pass via higher categorification
further to symplectic Lie n-algebroids, def. 7.2.68, as well as to symplectic 2-groupoids, symplectic 3-
groupoids, etc. up to symplectic ∞-groupoids, def. 7.2.75.

Formal hints for such a generalization had been noted in [Sev01] (in particular in its concluding table).
More indirect – but all the more noteworthy – hints came from quantum field theory, where it was observed
that a generalization of symplectic geometry to multisymplectic geometry [Hél11] of degree n more naturally
captures the description of n-dimensional QFT (notice that quantum mechanics may be understood as
(0 + 1)-dimensional QFT). For, observe that the symplectic form on a symplectic Lie n-algebroid is, while
always “binary”, nevertheless a representative of de Rham cohomology in degree n+ 2.

There is a natural formalization of these higher symplectic structures in the context of any cohesive
∞-topos. Moreover, by 7.2.11.1.2 symplectic forms on L∞-algebroids have a natural interpretation in∞-Lie
theory: they are L∞-invariant polynomials. This means that the ∞-Chern-Weil homomorphism applies to
them.

Observation 7.2.55. From the perspective of ∞-Lie theory, a smooth manifold Σ equipped with a sym-
plectic form ω is equivalently a Lie 0-algebroid equipped with a quadratic and non-degenerate L∞-invariant
polynomial (def. 6.4.143).

This observation implies

1. a direct ∞-Lie theoretic analog of symplectic manifolds: symplectic Lie n-algebroids and their Lie
integration to symplectic smooth ∞-groupoids

2. the existence of a canonical ∞-Chern-Weil homomorphism for every symplectic Lie n-algebroid.

This is spelled out below in 7.2.11.1.1, 7.2.11.1.2, 7.2.11.1.3. The ∞-group extensions, def. 5.1.302, that
are induced by the unrefined ∞-Chern-Weil homomorphism, 5.2.14, on a symplectic ∞-groupoid are their
prequantum circle (n + 1)-bundles, the higher analogs of prequantum line bundles in the geometric quanti-
zation of symplectic manifolds. This we discuss in 6.4.21. Further below in 7.2.11 we show that the refined
∞-Chern-Weil homomorphism, 5.2.14, on a symplectic ∞-groupoid constitutes the action functional of the
corresponding AKSZ σ-model (discussed below in 7.2.11).

• 7.2.11.1.1 – Symplectic dg-geometry;

885



• 7.2.11.1.2– Symplectic L∞-algebroids;

• 7.2.11.1.3 – Symplectic smooth ∞-groupoids;

The parts 7.2.11.1.1 and 7.2.11.1.2 are taken from [FRS11].

7.2.11.1.1 Symplectic dg-geometry In 6.5 we considered a general abstract notion of infinitesimal
thickenings in higher differential geometry and showed how from the point of view of∞-Lie theory this leads
to the notion of L∞-algebroids, def. 6.5.17. As is evident from that definition, these can also be regarded as
objects in dg-geometry [ToVe05]. We make explicit now some basic aspects of this identification.

The following definitions formulate a simple notion of affine smooth graded manifolds and affine smooth
dg-manifolds. Despite their simplicity these definitions capture in a precise sense all the relevant structure:
namely the local smooth structure. Globalizations of these definitions can be obtained, if desired, by general
abstract constructions.

Definition 7.2.56. The category of affine smooth N-graded manifolds – here called smooth graded manifolds
for short – is the full subcategory

SmoothGrMfd ⊂ GrAlgop
R

of the opposite category of N-graded-commutative R-algebras on those isomorphic to Grassmann algebras
of the form

∧•C∞(X0)Γ(V ∗) ,

where X0 is an ordinary smooth manifold, V → X0 is an N-graded smooth vector bundle over X0 degreewise
of finite rank, and Γ(V ∗) is the graded C∞(X)-module of smooth sections of the dual bundle.

For a smooth graded manifold X ∈ SmoothGrMfd, we write C∞(X) ∈ cdgAlgR for its corresponding
dg-algebra of functions.

Remarks.

• The full subcategory of these objects is equivalent to that of all objects isomorphic to one of this form.
We may therefore use both points of view interchangeably.

• Much of the theory works just as well when V is allowed to be Z-graded. This is the case that genuinely
corresponds to derived (instead of just higher) differential geometry. An important class of examples
for this case are BV-BRST complexes which motivate much of the literature. For the purpose of this
short note, we shall be content with the N-graded case.

• For an N-graded C∞(X0)-module Γ(V ∗) we have

∧•C∞Γ(V ∗) = C∞(X0)⊕ Γ(V ∗0 )⊕
(
Γ(V ∗0 ) ∧C∞(X0) Γ(V ∗0 )⊕ Γ(V ∗1 )

)
⊕ · · · ,

with the leftmost summand in degree 0, the next one in degree 1, and so on.

• There is a canonical functor
SmoothMfd ↪→ SmthGrMfd

which identifies an ordinary smooth manifold X with the smooth graded manifold whose function
algebra is the ordinary algebra of smooth functions C∞(X0) := C∞(X) regarded as a graded algebra
concentrated in degree 0. This functor is full and faithful and hence exhibits a full subcategory.

All the standard notions of differental geometry apply to differential graded geometry. For instance for
X ∈ SmoothGrMfd, there is the graded vector space Γ(TX) of vector fields on X, where a vector field is
identified with a graded derivation v : C∞(X) → C∞(X). This is naturally a graded (super) Lie algebra
with super Lie bracket the graded commutator of derivations. Notice that for v ∈ Γ(TX) of odd degree we
have [v, v] = v ◦ v + v ◦ v = 2v2 : C∞(X)→ C∞(X).
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Definition 7.2.57. The category of (affine, N-graded) smooth differential-graded manifolds is the full sub-
category

SmoothDgMfd ⊂ cdgAlgop
R

of the opposite of differential graded-commutative R-algebras on those objects whose underlying graded
algebra comes from SmoothGrMfd.

This is equivalently the category whose objects are pairs (X, v) consisting of a smooth graded manifold
X ∈ SmoothGrMfd and a grade 1 vector field v ∈ Γ(TX), such that [v, v] = 0, and whose morphisms
(X1, v1)→ (X2, v2) are morphisms f : X1 → X2 such that v1 ◦ f∗ = f∗ ◦ v2.

Remark 7.2.58. The dg-algebras appearing here are special in that their degree-0 algebra is naturally not
just an R-algebra, but a smooth algebra (a “C∞-ring”, see [Stel10] for review and discussion).

Definition 7.2.59. The de Rham complex functor

Ω•(−) : SmoothGrMfd→ cdgAlgop
R

sends a dg-manifold X with C∞(X) ' ∧•C∞(X0)Γ(V ∗) to the Grassmann algebra over C∞(X0) on the graded

C∞(X0)-module
Γ(T ∗X)⊕ Γ(V ∗)⊕ Γ(V ∗[−1]) ,

where Γ(T ∗X) denotes the ordinary smooth 1-form fields on X0 and where V ∗[−1] is V ∗ with the grades
increased by one. This is equipped with the differential d defined on generators as follows:

• d|C∞(X0) = ddR is the ordinary de Rham differential with values in Γ(T ∗X);

• d|Γ(V ∗) → Γ(V ∗[−1]) is the degree-shift isomorphism

• and d vanishes on all remaining generators.

Definition 7.2.60. Observe that Ω•(−) evidently factors through the defining inclusion SmoothDgMfd ↪→
cdgAlgR. Write

T(−) : SmoothGrMfd→ SmoothDgMfd

for this factorization.

The dg-space TX is often called the shifted tangent bundle of X and denoted T [1]X.

Observation 7.2.61. For Σ an ordinary smooth manifold and for X a graded manifold corresponding to a
vector bundle V → X0, there is a natural bijection

SmoothGrMfd(TΣ, X) ' Ω•(Σ, V )

where on the right we have the set of V -valued smooth differential forms on Σ: tuples consisting of a smooth
function φ0 : Σ → X0, and for each n > 1 an ordinary differential n-form φn ∈ Ωn(Σ, φ∗0Vn−1) with values
in the pullback bundle of Vn−1 along φ0.

The standard Cartan calculus of differential geometry generalizes directly to graded smooth manifolds.
For instance, given a vector field v ∈ Γ(TX) on X ∈ SmoothGrMfd, there is the contraction derivation

ιv : Ω•(X)→ Ω•(X)

on the de Rham complex of X, and hence the Lie derivative

Lv := [ιv,d] : Ω•(X)→ Ω•(X) .
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Definition 7.2.62. For X ∈ SmoothGrMfd the Euler vector field ε ∈ Γ(TX) is defined over any coordinate
patch U → X to be given by the formula

ε|U :=
∑
a

deg(xa)xa
∂

∂xa
,

where {xa} is a basis of generators and deg(xa) the degree of a generator. The grade of a homogeneous
element α in Ω•(X) is the unique natural number n ∈ N with

Lεα = nα .

Remarks.

• This implies that for xi an element of grade n on U , the 1-form dxi is also of grade n. This is why we
speak of grade (as in “graded manifold”) instead of degree here.

• Since coordinate transformations on a graded manifold are grading-preserving, the Euler vector field
is indeed well-defined. Note that the degree-0 coordinates do not appear in the Euler vector field.

The existence of ε implies the following useful statement (amplified in [Roy02]), which is a trivial variant of
what in grade 0 would be the standard Poincaré lemma.

Observation 7.2.63. On a graded manifold, every closed differential form ω of positive grade n is exact:
the form

λ :=
1

n
ιεω

satisfies
dλ = ω .

Definition 7.2.64. A symplectic dg-manifold of grade n ∈ N is a dg-manifold (X, v) equipped with 2-form
ω ∈ Ω2(X) which is

• non-degenerate;

• closed;

as usual for symplectic forms, and in addition

• of grade n;

• v-invariant: Lvω = 0.

In a local chart U with coordinates {xa} we may find functions {ωab ∈ C∞(U)} such that

ω|U =
1

2
dxa ωab ∧ dxb ,

where summation of repeated indices is implied. We say that U is a Darboux chart for (X,ω) if the ωab are
constant.

Observation 7.2.65. The function algebra of a symplectic dg-manifold (X,ω) of grade n is naturally
equipped with a Poisson bracket

{−,−} : C∞(X)⊗ C∞(X)→ C∞(X)

which decreases grade by n. On a local coordinate patch {xa} this is given by

{f, g} =
f ∂

xa ∂
ωab

∂g

∂xb
,

where {ωab} is the inverse matrix to {ωab}, and where the graded differentiation in the left factor is to be
taken from the right, as indicated.
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Definition 7.2.66. For π ∈ C∞(X) and v ∈ Γ(TX), we say that π is a Hamiltonian for v, or equivalently,
that v is the Hamiltonian vector field of π if

dπ = ιvω .

Note that the convention (−1)n+1dπ = ιvω is also frequently used for defining Hamiltonians in the
context of graded geometry.

Remark 7.2.67. In a local coordinate chart {xa} the defining equation dπ = ιvω becomes

dxa
∂π

∂xa
= ωabv

a ∧ dxb = ωabdx
a ∧ vb ,

implying that

ωabv
b =

∂π

∂xa
.

7.2.11.1.2 Symplectic L∞-algebroids Here we discuss L∞-algebroids, def. 6.5.17, equipped with
symplectic structure, which we conceive of as: equipped with de Rham cocycles that are invariant polynomials,
def. 6.4.143.

Definition 7.2.68. A symplectic Lie n-algebroid (P, ω) is a Lie n-algebroid P equipped with a quadratic
non-degenerate invariant polynomial ω ∈W (P) of degree n+ 2.

This means that

• on each chart U → X of the base manifold X of P, there is a basis {xa} for CE(a|U ) such that

ω =
1

2
dxa ωab ∧ dxb

with {ωab ∈ R ↪→ C∞(X)} and deg(xa) + deg(xb) = n;

• the coefficient matrix {ωab} has an inverse;

• we have
dW(P)ω = dCE(P)ω + dω = 0 .

The following observation essentially goes back to [Sev01] and [Roy02].

Proposition 7.2.69. There is a full and faithful embedding of symplectic dg-manifolds of grade n into
symplectic Lie n-algebroids.

Proof. The dg-manifold itself is identified with an L∞-algebroid by def. 6.5.17. Write v for the vector
field on the graded manifold which corresponds to the differential. For ω ∈ Ω2(X) a symplectic form, the
conditions dω = 0 and Lvω = 0 imply (d+Lv)ω = 0 and hence that under the identification Ω•(X) 'W(a)
this is an invariant polynomial on a.

It remains to observe that the L∞-algebroid a is in fact a Lie n-algebroid. This is implied by the fact
that ω is of grade n and non-degenerate: the former condition implies that it has no components in elements
of grade > n and the latter then implies that all such elements vanish. �
The following characterization may be taken as a definition of Poisson Lie algebroids and Courant Lie

2-algebroids.

Proposition 7.2.70. Symplectic Lie n-algebroids are equivalently:

• for n = 0: ordinary symplectic manifolds;

• for n = 1: Poisson Lie algebroids;
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• for n = 2: Courant Lie 2-algebroids.

See [Roy02, Sev01] for more discussion.

Proposition 7.2.71. Let (P, ω) be a symplectic Lie n-algebroid for positive n in the image of the embedding
of proposition 7.2.69. Then it carries the canonical L∞-algebroid cocycle

π :=
1

n+ 1
ιειvω ∈ CE(P)

which moreover is the Hamiltonian, according to definition 7.2.66, of dCE(P).

Proof. Since dω = Lvω = 0, we have

dιειvω = dιvιεω

= (ιvd− Lv)ιεω
= ιvLεω − [Lv, ιε]ω
= nιvω − ι[v,ε]ω
= (n+ 1)ιvω,

where Cartan’s formula [Lv, ιε] = ι[v,ε] and the identity [v, ε] = −[ε, v] = −v have been used. Therefore

π := 1
n+1 ιειvω satisfies the defining equation dπ = ιvω from definition 7.2.66. �

Remark 7.2.72. On a local chart with coordinates {xa} we have

π
∣∣
U

=
1

n+ 1
ωab deg(xa)xa ∧ vb .

Our central observation now is the following.

Proposition 7.2.73. The cocycle 1
nπ from prop. 7.2.71 is in transgression with the invariant polynomial

ω. A Chern-Simons element witnessing the transgression according to def. 6.4.147 is

cs =
1

n
(ιεω + π) .

Proof. It is clear that i∗cs = 1
nπ. So it remains to check that dW(P)cs = ω. As in the proof of proposition

7.2.71, we use dω = Lvω = 0 and Cartan’s identity [Lv, ιε] = ι[v,ε] = −ιv. By these, the first summand in
dW(P)(ιεω + π) is

dW(P)ιεω = (d + Lv)ιεω
= [d + Lv, ιε]ω
= nω − ιvω
= nω − dπ

.

The second summand is simply
dW(P)π = dπ

since π is a cocycle. �

Remark 7.2.74. In a coordinate patch {xa} the Chern-Simons element is

cs
∣∣
U

=
1

n

(
ωab deg(xa)xa ∧ dxb + π

)
.
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In this formula one can substitute d = dW − dCE, and this kind of substitution will be crucial for the proof
our main statement in proposition 7.2.83 below. Since dCEx

i = vi and using remark 7.2.72 we find∑
a

ωabdeg(xa)xa ∧ dCEx
b = (n+ 1)π ,

and hence

cs
∣∣
U

=
1

n

(
deg(xa)ωabx

a ∧ dW(P)x
b − nπ

)
.

In the section 7.2.11 we show that this transgression element cs is the AKSZ-Lagrangian.

7.2.11.1.3 Symplectic smooth ∞-groupoids We define symplectic smooth ∞-groupoids in terms
of their underlying symplectic L∞-algebroids.

Recall that for any n ∈ N, a symplectic Lie n-algebroid (P, ω) is (def. 7.2.68) an L∞-algebroid P that is
equipped with a quadratic and non-degenerate L∞-invariant polynomial. Under Lie integration, def. 6.4.79,
P integrates to a smooth n-groupoid τn exp(P) ∈ Smooth∞Grpd. Under the∞-Chern-Weil homomorphism,
6.4.17, the invariant polynomial induces a differential form on the smooth ∞-groupoid, 5.2.10:

ω : τn exp(P)→ [dRBn+2R

representing a class [ω] ∈ Hn+2
dR (τn exp(P)).

Definition 7.2.75. Write

SymplSmooth∞Grpd ↪→ Smooth∞Grpd/(
∐
n

[dRBn+2R)

for the full sub-∞-category of the over-∞-topos of Smooth∞Grpd over the de Rham coefficient objects on
those objects in the image of this construction.

We say an object on SymplSmooth∞Grpd is a symplectic smooth ∞-groupoid.

Remark 7.2.76. There are evident variations of this for the ambient Smooth∞Grpd replaced by some
variant, such as FormalSmooth∞Grpd, or SmoothSuper∞Grpd, 6.6).

We now spell this out for n = 1. The following notion was introduced in [Wei89] in the study of geometric
quantization.

Definition 7.2.77. A symplectic groupoid is a Lie groupoid G equipped with a differential 2-form ω1 ∈
Ω2(G1) which is

1. a symplectic 2-form on G1;

2. closed as a simplicial form:
δω1 = ∂∗0ω1 − ∂∗1ω1 + ∂∗2ω1 = 0 ,

where ∂i : G2 → G1 are the face maps in the nerve of G.

Example 7.2.78. Let (X,ω) be an ordinary symplectic manifold. Then its fundamental groupoid Π1(X)
canonically is a symplectic groupoid with ω1 := ∂∗1ω − ∂∗0ω.

Proposition 7.2.79. Let P be the symplectic Lie 1-algebroid (Poisson Lie algebroid), def. 7.2.68, induced
by the Poisson manifold structure corresponding to (X,ω). Write

ω : TP→ Tb3R

for the canonical invariant polynomial.
Then the corresponding ∞-Chern-Weil homomorphism according to 6.4.17

exp(ω) : exp(P)diff → B3
dRR

exhibits the symplectic groupoid from example 7.2.78.

891



Proof. We start with the simple situation where (X,ω) has a global Darboux coordinate chart {xi}.
Write {ωij} for the components of the symplectic form in these coordinates, and {ωij} for the components
of the inverse.

Then the Chevalley-Eilenberg algebra CE(P) is generated from {xi} in degree 0 and {∂i} in degree 1,
with differential given by

dCEx
i = −ωij∂j

dCE∂i =
∂πjk

∂xi
∂j ∧ ∂k = 0 .

The differential in the corresponding Weil algebra is hence

dWx
i = −ωij∂j + dxi

dW∂i = d∂i .

By prop. 7.2.70, the symplectic invariant polynomial is

ω = dxi ∧ d∂i ∈W (P) .

Clearly it is useful to introduce a new basis of generators with

∂i := −ωij∂j .

In this new basis we have a manifest isomorphism

CE(P) = CE(TX)

with the Chevalley-Eilenberg algebra of the tangent Lie algebroid of X.
Therefore the Lie integration of P is the fundamental groupoid of X, which, since we have assumed

global Darboux oordinates and hence contractible X, is just the pair groupoid:

τ1 exp(P) = Π1(X) = ( X ×X //
// X ) .

It remains to show that the symplectic form on P makes this a symplectic groupoid.
Notice that in the new basis the invariant polynomial reads

ω = −ωijdxi ∧ d∂j

= d(ωij∂
i ∧ dxj)

.

The corresponding ∞-Chern-Weil homomorphism, 6.4.17, that we need to compute is given by the ∞-
anafunctor

exp(P)diff
exp(ω)//

'
��

exp(b3R)dR

∫
∆• // [dRB3R

exp(P)

.

Over a test space U ∈ CartSp and in degree 1 an element in exp(P)diff is a pair (Xi, ηi)

Xi ∈ C∞(U ×∆1)

ηi ∈ Ω1
vert(U ×∆1)

subject to the constraint that along ∆1 we have

d∆1Xi + ηi∆1 = 0 .
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The vertical morphism exp(P)diff → exp(P) has in fact a section whose image is given by those pairs for
which ηi has no leg along U . We therefore find the desired form on exp(P) by evaluating the top morphism
on pairs of this form.

Such a pair is taken by the top morphism to

(Xi, ηj) 7→
∫

∆1

ωijFXi ∧ F∂j

=

∫
∆1

ωij(ddRX
i + ηi) ∧ ddRη

j ∈ Ω3(U)

.

Using the above constraint and the condition that ηi has no leg along U , this becomes

· · · =
∫

∆1

ωijdUX
i ∧ dUd∆1Xj .

By the Stokes theorem the integration over ∆1 yields

· · · = ωijddRX
i ∧ ddRX

j |0 − ωijddRX
i ∧ ddRX

j |1
= ∂∗1ω − ∂∗0ω

.

�

7.2.11.2 AKSZ σ-Models The class of topological field theories known as AKSZ σ-models[AKSZ97]
contains in dimension 3 ordinary Chern-Simons theory (see [Fr95] for a comprehensive review) as well as
its Lie algebroid generalization (the Courant σ-model [Ike03]), and in dimension 2 the Poisson σ-model
(see [CaFe00] for a review). It is therefore clear that the AKSZ construction is some sort of generalized
Chern-Simons theory. Here we demonstrate that this statement is true also in a useful precise sense.

Our discussion proceeds from the observation that the standard Chern-Simons action functional has a
systematic origin in Chern-Weil theory (see for instance [GHV73] for a classical textbook treatment and
[HoSi05] for the refinement to differential cohomology that we need here):

The refined Chern-Weil homomorphism assigns to any invariant polynomial 〈−〉 : g⊗n → R on a Lie
algebra g of compact type a map that sends g-connections ∇ on a smooth manifold X to cocycles [p̂〈−〉(∇)] ∈
Hn+1

diff (X) in ordinary differential cohomology. These differential cocycles refine the curvature characteristic
class [〈F∇〉] ∈ Hn+1

dR (X) in de Rham cohomology to a fully fledged line n-bundle with connection, also
known as a bundle (n − 1)-gerbe with connection. And just as an ordinary line bundle (a “line 1-bundle”)
with connection assigns holonomy to curves, so a line n-bundle with connection assigns holonomy holp̂(Σ)
to n-dimensional trajectories Σ → X. For the special case where 〈−〉 is the Killing form polynomial and
X = Σ with dim Σ = 3 one finds that this volume holonomy map ∇ 7→ holp̂〈−〉(∇)(Σ) is precisely the
standard Chern-Simons action functional. Similarly, for 〈−〉 any higher invariant polynomial this holonomy
action functional has as Lagrangian the corresponding higher Chern-Simons form. In summary, this means
that Chern-Simons-type action functionals on Lie algebra-valued connections are the images of the refined
Chern-Weil homomorphism.

In 5.2.14 a generalization of the Chern-Weil homomorphism to higher (“derived”) differential geometry
has been established. In this context smooth manifolds are generalized first to orbifolds, then to general Lie
groupoids, to Lie 2-groupoids and finally to smooth ∞-groupoids (smooth ∞-stacks), while Lie algebras are
generalized to Lie 2-algebras etc., up to L∞-algebras and more generally to Lie n-algebroids and finally to
L∞-algebroids.

In this context one has for a any L∞-algebroid a natural notion of a-valued ∞-connections on exp(a)-
principal smooth∞-bundles (where exp(a) is a smooth∞-groupoid obtained by Lie integration from a). By
analyzing the abstractly defined higher Chern-Weil homomorphism in this context one finds a direct higher
analog of the above situation: there is a notion of invariant polynomials 〈−〉 on an L∞-algebroid a and these
induce maps from a-valued ∞-connections to line n-bundles with connections as before .
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This construction drastically simplifies when one restricts attention to trivial ∞-bundles with (nontrivial)
a-connections. Over a smooth manifold Σ these are simply given by dg-algebra homomorphisms

A : W(a)→ Ω•(Σ) ,

where W(a) is the Weil algebra of the L∞-algebroid a [SSS09a], and Ω•(Σ) is the de Rham algebra of Σ
(which is indeed the Weil algebra of Σ thought of as an L∞-algebroid concentrated in degree 0). Then for
〈−〉 ∈ W(a) an invariant polynomial, the corresponding ∞-Chern-Weil homomorphism is presented by a
choice of “Chern-Simons element” cs ∈W(a), which exhibits the transgression of 〈−〉 to an L∞-cocycle (the
higher analog of a cocycle in Lie algebra cohomology): the dg-morphism A naturally maps the Chern-Simons
element cs of A to a differential form cs(A) ∈ Ω•(Σ) and its integral is the corresponding ∞-Chern-Simons
action functional S〈−〉

S〈−〉 : A 7→ hol ˆp〈−〉(Σ) =

∫
Σ

cs〈−〉(A) .

Even though trivial∞-bundles with a-connections are a very particular subcase of the general∞-Chern-
Weil theory, they are rich enough to contain AKSZ theory. Namely, here we show that a symplectic dg-
manifold of grade n – which is the geometrical datum of the target space defining an AKSZ σ-model – is
naturally equivalently an L∞-algebroid P endowed with a quadratic and non-degenerate invariant polynomial
ω of grade n. Moreover, under this identification the canonical Hamiltonian π on the symplectic target dg-
manifold is identified as an L∞-cocycle on P. Finally, the invariant polynomial ω is naturally in transgression
with the cocycle π via a Chern-Simons element csω that turns out to be the Lagrangian of the AKSZ σ-model:∫

Σ

LAKSZ(−) =

∫
Σ

csω(−) .

(An explicit description of LAKSZ is given below in def. 7.2.81)
In summary this means that we find the following dictionary of concepts:

Chern-Weil theory AKSZ theory

cocycle π Hamiltonian

transgression element cs Lagrangian

invariant polynomial ω symplectic structure

More precisely, we (explain and then) prove here the following theorem:

Theorem 7.2.80. For (P, ω) an L∞-algebroid with a quadratic non-degenerate invariant polynomial, the
corresponding ∞-Chern-Weil homomorphism

∇ 7→ holp̂ω (Σ)

sends P-valued ∞-connections ∇ to their corresponding exponentiated AKSZ action

· · · = exp(i

∫
Σ

LAKSZ(∇)) .

.

The local differential form data involved in this statement is at the focus of attention in this section here
and contained in prop. 7.2.83 below.

We consider, in definition 7.2.81 below, for any symplectic dg-manifold (X,ω) a functional SAKSZ on
spaces of maps TΣ→ X of smooth graded manifolds. While only this precise definition is referred to in the
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remainder of the section, we begin by indicating informally the original motivation of SAKSZ. The reader
uncomfortable with these somewhat vague considerations can take note of def. 7.2.81 and then skip to the
next section.

Generally, a σ-model field theory is, roughly, one

1. whose fields over a space Σ are maps φ : Σ→ X to some space X;

2. whose action functional is, apart from a kinetic term, the transgression of some kind of cocycle on X
to the mapping space Map(Σ, X).

Here the terms “space”, “maps” and “cocycles” are to be made precise in a suitable context. One says that
Σ is the worldvolume, X is the target space and the cocycle is the background gauge field.

For instance, an ordinary charged particle (such as an electron) is described by a σ-model where Σ =
(0, t) ⊂ R is the abstract worldline, where X is a (pseudo-)Riemannian smooth manifold (for instance our
spacetime), and where the background cocycle is a line bundle with connection on X (a degree-2 cocycle
in ordinary differential cohomology of X, representing a background electromagnetic field). Up to a kinetic
term, the action functional is the holonomy of the connection over a given curve φ : Σ → X. A textbook
discussion of these standard kinds of σ-models is, for instance, in [DeMo99].

The σ-models which we consider here are higher generalizations of this example, where the background
gauge field is a cocycle of higher degree (a higher bundle with connection) and where the worldvolume is
accordingly higher dimensional. In addition, X is allowed to be not just a manifold, but an approximation
to a higher orbifold (a smooth ∞-groupoid).

More precisely, here we take the category of spaces to be SmoothDgMfd from def. 7.2.57. We take target
space to be a symplectic dg-manifold (X,ω) and the worldvolume to be the shifted tangent bundle TΣ of a
compact smooth manifold Σ. Following [AKSZ97], one may imagine that we can form a smooth Z-graded
mapping space Maps(TΣ, X) of smooth graded manifolds. On this space the canonical vector fields vΣ and
vX naturally have commuting actions from the left and from the right, respectively, so that their sum vΣ +vX
equips Maps(TΣ, X) itself with the structure of a differential graded smooth manifold.

Next we take the “cocycle” on X (to be made precise in the next section) to be the Hamiltonian π (def.
7.2.66) of vX with respect to the symplectic structure ω, according to def. 7.2.64. One wants to assume that
there is a kind of Riemannian structure on TΣ that allows us to form the transgression∫

TΣ

ev∗ω := p!ev∗ω

by pull-push through the canonical correspondence

Maps(TΣ, X) oo
p

Maps(TΣ, X)× TΣ
ev // X .

When one succeeds in making this precise, one expects to find that
∫
TΣ

ev∗ω is in turn a symplectic structure
on the mapping space.

This implies that the vector field vΣ + vX on mapping space has a Hamiltonian

S ∈ C∞(Maps(TΣ, X)) , s.t. dS = ιvΣ+vx

∫
TΣ

ev∗ω .

The grade-0 component
SAKSZ := S|Maps(TΣ,X)0

constitutes a functional on the space of morphisms of graded manifolds φ : TΣ → X. This is the AKSZ
action functional defining the AKSZ σ-model with target space X and background field/cocycle ω.

In [AKSZ97], this procedure is indicated only somewhat vaguely. The focus of attention there is on a
discussion, from this perspective, of the action functionals of the 2-dimensional σ-models called the A-model
and the B-model. In [Roy06] a more detailed discussion of the general construction is given, including an
explicit formula for S, and hence for SAKSZ. That formula is the following:
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Definition 7.2.81. For (X,ω) a symplectic dg-manifold of grade n with global Darboux coordinates {xa},
Σ a smooth compact manifold of dimension (n+ 1) and k ∈ R, the AKSZ action functional

SAKSZ : SmoothGrMfd(TΣ, X)→ R

is

SAKSZ : φ 7→
∫

Σ

(
1

2
ωabφ

a ∧ ddRφ
b − φ∗π

)
,

where π is the Hamiltonian for vX with respect to ω and where on the right we are interpreting fields as
forms on Σ according to prop. 7.2.61.

This formula hence defines an infinite class of σ-models depending on the target space structure (X,ω).
(One can also consider arbitrary relative factors between the first and the second term, but below we shall
find that the above choice is singled out). In [AKSZ97], it was already noticed that ordinary Chern-Simons
theory is a special case of this for ω of grade 2, as is the Poisson σ-model for ω of grade 1 (and hence, as
shown there, also the A-model and the B-model). The main example in [Roy06] spells out the general case
for ω of grade 2, which is called the Courant σ-model there. (We review and re-derive all these examples in
detail below.)

One nice aspect of this construction is that it follows immediately that the full Hamiltonian S on the
mapping space satisfies {S,S} = 0. Moreover, using the standard formula for the internal hom of chain
complexes, one finds that the cohomology of (Maps(TΣ, X), vΣ +vX) in degree 0 is the space of functions on
those fields that satisfy the Euler-Lagrange equations of SAKSZ. Taken together, these facts imply that S is
a solution of the “master equation” of a BV-BRST complex for the quantum field theory defined by SAKSZ.
This is a crucial ingredient for the quantization of the model, and this is what the AKSZ construction is
mostly used for in the literature (for instance [CaFe00]).

Here we want to focus on another nice aspect of the AKSZ-construction: it hints at a deeper reason for
why the σ-models of this type are special. It is indeed one of the very few proposals for what a general
abstract mechanism might be that picks out among the vast space of all possible local action functionals
those that seem to be of relevance “in nature”.

We now proceed to show that the class of action functionals SAKSZ are precisely those that higher
Chern-Weil theory canonically associates to target data (X,ω). Since higher Chern-Weil theory in turn is
canonically given on very general abstract grounds, this in a sense amounts to a derivation of SAKSZ from
“first principles”, and it shows that a wealth of very general theory applies to these systems.

7.2.11.3 The AKSZ action as an ∞-Chern-Simons functional We now show how an L∞-algebroid
a endowed with a triple (π, cs, ω) consisting of a Chern-Simons element transgressing an invariant polynomial
ω to a cocycle π defines an AKSZ-type σ-model action. The starting point is to take as target space the
tangent Lie∞-algebroid Ta, i.e., to consider as space of fields of the theory the space of maps Maps(TΣ,Ta)
from the worldsheet Σ to Ta. Dually, this is the space of morphisms of dgcas from W(a) to Ω•(Σ), i.e., the
space of degree 1 a-valued differential forms on Σ from definition 1.2.176.

Remark 7.2.82. As we noticed in the introduction, in the context of the AKSZ σ-model a degree 1 a-valued
differential form on Σ should be thought of as the datum of a (notrivial) a-valued connection on a trivial
principal ∞-bundle on Σ.

Now that we have defined the space of fields, we have to define the action. We have seen in definition
1.2.178 that a degree 1 a-valued differential form A on Σ maps the Chern-Simons element cs ∈ W(a) to a
differential form cs(A) on Σ. Integrating this differential form on Σ will therefore give an AKSZ-type action
which is naturally interpreted as an higher Chern-Simons action functional:

Maps(TΣ,Ta)→ R

A 7→
∫

Σ

cs(A).
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Theorem 7.2.80 then reduces to showing that, when {a, (π, cs, ω)} is the set of L∞-algebroid data arising
from a symplectic Lie n-algebroid (P, ω), the AKSZ-type action dscribed above is precisely the AKSZ action
for (P, ω). More precisely, this is stated as follows.

Proposition 7.2.83. For (P, ω) a symplectic Lie n-algebroid coming by proposition 7.2.69 from a symplectic
dg-manifold of positive grade n with global Darboux chart, the action functional induced by the canonical
Chern-Simons element

cs ∈W(P)

from proposition 7.2.73 is the AKSZ action from definition 7.2.81:∫
Σ

cs =

∫
Σ

LAKSZ .

In fact the two Lagrangians differ at most by an exact term

cs ∼ LAKSZ .

Proof. We have seen in remark 7.2.74 that in Darboux coordinates {xa} where

ω =
1

2
ωabdx

a ∧ dxb

the Chern-Simons element from proposition 7.2.73 is given by

cs =
1

n

(
deg(xa)ωabx

a ∧ dW(P)x
b − nπ

)
.

This means that for Σ an (n+ 1)-dimensional manifold and

Ω•(Σ)←W(P) : φ

a (degree 1) P-valued differential form on Σ we have

∫
Σ

cs(φ) =
1

n

∫
Σ

∑
a,b

deg(xa)ωabφ
a ∧ ddRφ

b − nπ(φ)

 ,

where we used φ(dW(P)x
b) = ddRφ

b, as in remark 1.2.177. Here the asymmetry in the coefficients of the first
term is only apparent. Using integration by parts on a closed Σ we have∫

Σ

∑
a,b

deg(xa)ωabφ
a ∧ ddRφ

b =

∫
Σ

∑
a,b

(−1)1+deg(xa)deg(xa)ωab(ddRφ
a) ∧ φb

=

∫
Σ

∑
a,b

(−1)(1+deg(xa))(1+deg(xb))deg(xa)ωabφ
b ∧ (ddRφ

a)

=

∫
Σ

∑
a,b

deg(xb)ωabφ
a ∧ (ddRφ

b)

,

where in the last step we switched the indices on ω and used that ωab = (−1)(1+deg(xa))(1+deg(xb))ωba.
Therefore∫

Σ

∑
a,b

deg(xa)ωabφ
a ∧ ddRφ

b =
1

2

∫
Σ

∑
a,b

deg(xa)ωabφ
a ∧ ddRφ

b +
1

2

∫
Σ

∑
a,b

deg(xb)ωabφ
a ∧ ddRφ

b

=
n

2

∫
Σ

ωabφ
a ∧ ddRφ

b .

.
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Using this in the above expression for the action yields∫
Σ

cs(φ) =

∫
Σ

(
1

2
ωabφ

a ∧ ddRφ
b − π(φ)

)
,

which is the formula for the action functional from definition 7.2.81. �

We now unwind the general statement of proposition 7.2.83 and its ingredients in the central examples
of interest, from proposition 7.2.70: the ordinary Chern-Simons action functional, the Poisson σ-model
Lagrangian, and the Courant σ-model Lagrangian. (The ordinary Chern-Simons model is the special case
of the Courant σ-model for P having as base manifold the point. But since it is the archetype of all models
considered here, it deserves its own discussion.)

By the very content of proposition 7.2.83 there are no surprises here and the following essentially amounts
to a review of the standard formulas for these examples. But it may be helpful to see our general ∞-Lie
theoretic derivation of these formulas spelled out in concrete cases, if only to carefully track the various signs
and prefactors.

7.2.11.4 Ordinary Chern-Simons theory Let P = bg be a semisimple Lie algebra regarded as an L∞-
algebroid with base space the point and let ω := 〈−,−〉 ∈ W(bg) be its Killing form invariant polynomial.
Then (bg, 〈−,−〉) is a symplectic Lie 2-algebroid.

For {ta} a dual basis for g, being generators of grade 1 in W(g) we have

dWt
a = −1

2
Cabct

a ∧ tb + dta

where Cabc := ta([tb, tc]) and

ω =
1

2
Pabdt

a ∧ dtb ,

where Pab := 〈ta, tb〉. The Hamiltonian cocycle π from prop. 7.2.71 is

π =
1

2 + 1
ιvιεω

=
1

3
ιvPabt

a ∧ dtb

= − 1
6PabC

b
cdt

a ∧ tc ∧ td

=: − 1
6Cabct

a ∧ tb ∧ tc.

Therefore the Chern-Simons element from prop. 7.2.73 is found to be

cs =
1

2

(
Pabt

a ∧ dtb − 1
6Cabct

a ∧ tb ∧ tc
)

=
1

2

(
Pabt

a ∧ dWt
b +

1

3
Cabct

a ∧ tb ∧ tc
)
.

This is indeed, up to an overall factor 1/2, the familiar standard choice of Chern-Simons element on a Lie
algebra. To see this more explicitly, notice that evaluated on a g-valued connection form

Ω•(Σ)←W(bg) : A

this is

2cs(A) = 〈A ∧ FA〉 − 1
6 〈A ∧ [A,A]〉 = 〈A ∧ ddRA〉+

1

3
〈A ∧ [A,A]〉 .
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If g is a matrix Lie algebra then the Killing form is proportional to the trace of the matrix product: 〈ta, tb〉 =
tr(tatb). In this case we have

〈A ∧ [A,A]〉 = Aa ∧Ab ∧Ac tr(ta(tbtc − tctb))
= 2Aa ∧Ab ∧Ac tr(tatbtc)

= 2 tr(A ∧A ∧A)

and hence

2cs(A) = tr

(
A ∧ FA −

1

3
A ∧A ∧A

)
= tr

(
A ∧ ddRA+

2

3
A ∧A ∧A

)
.

7.2.11.5 Poisson σ-model Let (M, {−,−}) be a Poisson manifold and let P be the corresponding
Poisson Lie algebroid. This is a symplectic Lie 1-algebroid. Over a chart for the shifted cotangent bundle
T ∗[−1]X with coordinates {xi} of degree 0 and {∂i} of degree 1, respectively, we have

dWx
i = −πij∂j + dxi;

where πij := {xi, xj} and
ω = dxi ∧ d∂i .

The Hamiltonian cocycle from prop. 7.2.71 is

π =
1

2
ιvιεω = −1

2
πij∂i ∧ ∂j

and the Chern-Simons element from prop. 7.2.73 is

cs = ιεω + π

= ∂i ∧ dxi − 1

2
πij∂i ∧ ∂j

.

In terms of dW instead of d this is
cs = ∂i ∧ dWx

i − π

= ∂i ∧ dWx
i +

1

2
πij∂i∂j .

So for Σ a 2-manifold and
Ω•(Σ)←W(P) : (X, η)

a Poisson-Lie algebroid valued differential form on Σ – which in components is a function X : Σ → M and
a 1-form η ∈ Ω1(Σ, X∗T ∗M) – the corresponding AKSZ action is∫

Σ

cs(X, η) =

∫
Σ

η ∧ ddRX +
1

2
πij(X)ηi ∧ ηj .

This is the Lagrangian of the Poisson σ-model [CaFe00].

7.2.11.6 Courant σ-model A Courant algebroid is a symplectic Lie 2-algebroid. By the previous
example this is a higher analog of a Poisson manifold. Expressed in components in the language of ordinary
differential geometry, a Courant algebroid is a vector bundle E over a manifold M0, equipped with: a
non-degenerate bilinear form 〈·, ·〉 on the fibers, a bilinear bracket [·, ·] on sections Γ(E), and a bundle
map (called the anchor) ρ : E → TM , satisfying several compatibility conditions. The bracket [·, ·] may be
required to be skew-symmetric (Def. 2.3.2 in [Roy02]), in which case it gives rise to a Lie 2-algebra structure,
or, alternatively, it may be required to satisfy a Jacobi-like identity (Def. 2.6.1 in [Roy02]), in which case it
gives a Leibniz algebra structure.
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It was shown in [Roy02] that Courant algebroids E → M0 in this component form are in 1-1 corre-
spondance with (non-negatively graded) grade 2 symplectic dg-manifolds (M, v). Via this correspondance,
M is obtained as a particular symplectic submanifold of T ∗[2]E[1] equipped with its canonical symplectic
structure.

Let (M,v) be a Courant algebroid as above. In Darboux coordinates, the symplectic structure is

ω = dpi ∧ dqi +
1

2
gabdξ

a ∧ dξb,

with
deg qi = 0, deg ξa = 1, deg pi = 2,

and gab are constants. The Chevalley-Eilenberg differential corresponds to the vector field:

v = P iaξ
a ∂

∂qi
+ gab

(
P ibpi −

1

2
Tbcdξ

cξd
) ∂

∂ξa
+

(
−∂P

j
a

∂qi
ξapj + 1

6

∂Tabc
∂qi

ξaξbξc
)

∂

∂pi
.

Here P ia = P ia(q) and Tabc = Tabc(q) are particular degree zero functions encoding the Courant algebroid
structure. Hence, the differential on the Weil algebra is:

dW q
i = P iaξ

a + dqi

dW ξ
a = gab

(
P ibpi −

1

2
Tbcdξ

cξd
)

+ dξa

dW pi = −∂P
j
a

∂qi
ξapj + 1

6

∂Tabc
∂qi

ξaξbξc + dpi.

Following remark. 7.2.72, we construct the corresponding Hamiltonian cocycle from prop. 7.2.71:

π =
1

n+ 1
ωab deg(xa)xa ∧ vb

=
1

3

(
2pi ∧ v(qi) + gabξ

a ∧ v(ξb)
)

=
1

3

(
2piP

i
aξ
a + ξaP iapi −

1

2
Tabcξ

aξbξc
)

= P iaξ
api − 1

6Tabcξ
aξbξc.

The Chern-Simons element from prop. 7.2.73 is:

cs =
1

2

(∑
ab

deg(xa)ωabx
a ∧ dWxb − 2π

)

= pidW q
i +

1

2
gabξ

adW ξ
b − π

= pidW q
i +

1

2
gabξ

adW ξ
b − P iaξapi + 1

6Tabcξ
aξbξc.

So for a map
Ω•(Σ)←W(P) : (X,A,F )

where Σ is a closed 3-manifold, we have∫
Σ

cs(X,A,F ) =

∫
Σ

Fi ∧ ddRX
i +

1

2
gabA

a ∧ ddRA
b − P iaAa ∧ Fi + 1

6TabcA
a ∧Ab ∧Ac.

This is the AKSZ action for the Courant algebroid σ-model from [Ike03] [Roy02][Roy06].
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7.2.11.7 Higher abelian Chern-Simons theory in d = 4k + 3 We discuss higher abelian Chern-
Simons theory, 7.2.8.1, from the point of view of AKSZ theory.

For k ∈ N, let a be the delooping of the line Lie 2k-algebra, def. 6.4.84: a = b2k+1R. By observation
6.4.145 there is, up to scale, a unique binary invariant polynomial on b2k+1R, and this is the wedge product
of the unique generating unary invariant polynomial γ in degree 2k + 2 with itself:

ω := γ ∧ γ ∈W(b4k+4R) .

This invariant polynomial is clearly non-degenerate: for c the canonical generator of CE(b2k+1R) we have

ω = dc ∧ dc .

Therefore (b2k+1R, ω) induces an∞-Chern-Simons theory of AKSZ σ-model type in dimension n+1 = 4k+3.
(On the other hand, on b2kR there is only the 0 binary invariant polynomial, so that no AKSZ-σ-models are
induced from b2kR.)

The Hamiltonian cocycle from prop. 7.2.71 vanishes

π = 0

because the differential dCE(b2k+1R) is trivial. The Chern-Simons element from prop. 7.2.73 is

cs = c ∧ dc .

A field configuration, def. 1.2.176, of this σ-model over a (2k + 3)-dimensional manifold

Ω•(Σ)←W(b2k+1) : C

is simply a (2k + 1)-form. The AKSZ action functional in this case is

SAKSZ : C 7→
∫

Σ

C ∧ ddRC .

The simplicity of this discussion is deceptive. It results from the fact that here we are looking at ∞-Chern-
Simons theory for universal Lie integrations and for topologically trivial ∞-bundles. More generally the
∞-Chern-Simons theory for a = b2k+1R is nontrivial and rich, as discussed in 7.2.8.1. Its configuration space
is that of circle (2k+1)-bundles with connection (6.4.16) on Σ, classified by ordinary differential cohomology
in degree 2k + 2, and the action functional is given by the fiber integration in differential cohomology to
the point over the Beilinson-Deligne cup product, which is locally given by the above formula, but contains
global twists.
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7.3 Prequantum Wess-Zumino-Witten field theory

We discuss examples of higher WZW functionals, def. 5.2.15.
This section draws from [FSS13b].

• 7.3.1 – Introduction: Traditional WZW and the need for higher WZW

• 7.3.2 – Lie n-algebraic formulation

• 7.3.3 – Metaplectic pre-quantization

• 7.3.4 – The Green-Schwarz anomaly in heterotic supergravity

• 7.3.5 – Boundary conditions and branes

7.3.1 Introduction: Traditional WZW and the need for higher WZW

For G be a simple Lie group, write g for its semisimple Lie algebra. The Killing form invariant polynomial
〈−,−〉 : Sym2g→ R induces the canonical Lie algebra 3-cocycle

µ := 〈−, [−,−]〉 : Alt3(g)→ R

which by left-translation along the group defines the canonical closed and left-invariant 3-form

〈θ ∧ [θ ∧ θ]〉 ∈ Ω3
cl,L(G) ,

where θ ∈ Ω1
flat(G, g) is the canonical Maurer-Cartan form on G. What is called the Wess-Zumino-Witten

sigma-model induced by this data (see for instance [Ga00] for a decent review) is the prequantum field theory
given by an action functional, which to a smooth map Σ2 → G out of a closed oriented smooth 2-manifold
assigns the product of the standard exponentiated kinetic action with an exponentiated “surface holonomy”
of a 2-form connection whose curvature 3-form is 〈θ ∧ [θ ∧ θ]〉.

In the special case that φ : Σ2 → G happens to factor through a contractible open subset U of G –
notably in the perturbative expansion about maps constant on a point – the Poincaré lemma implies that
one can find a potential 2-form B ∈ Ω2(U) with dB = 〈θ ∧ [θ ∧ θ]〉|U and with this perturbative perspective
understood one may take the action functional to be simply of the naive form that is often considered in the
literature:

exp(iSWZW) := exp

(
i

∫
Σ2

LWZW

)
: φ 7→ exp

(
2πi

∫
Σ2

φ∗B

)
.

There are plenty of hints and some known examples which point to the fact that this construction of
the standard WZW model is just one in a large class of examples of higher dimensional boundary local
(pre-)quantum field theories, 5.2.18, which generalize traditional WZW theory in two ways:

1. the cocycle µ is allowed to be of arbitrary degree;

2. the Lie algebra g is allowed to be a (super-)Lie n-algebra for n ≥ 1 (L∞-algebra).

One famous class of examples of the first point are the Green-Schwarz type action functionals for the super
p-branes of string/M-theory [AETW87]. These are the higher dimensional analog of the action functional
for the superstring that was first given in [GrSch84] and then recognized as a super WZW-model in [?],
induced from an exceptional 3-cocycle on super-Minkowski spacetime of bosonic dimension 10, regarded
a super-translation Lie algebra. Thess higher dimensional Green-Schwarz type σ-model action functionals
are accordingly induced by higher exceptional super-Lie algebra cocycles on super-Minkowski spacetime,
regarded as a super-translation Lie algebra. Remarkably, while ordinary Minkowski spacetime is cohomolog-
ically fairly uninteresting, super-Minkowski spacetime has a finite number of exceptional super-cohomology
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classes. The higher dimensional WZW models induced by the corresponding higher exceptional cocycles
account precisely for the σ-models of those super-p-branes in string/M-theory which are pure σ-models, in
that they do not carry (higher) gauge fields (“tensor multiplets”) on their worldvolume, a fact known as
“the old brane scan” [AETW87]. This includes, for instance, the heterotic superstring and the M2-brane,
but excludes the D-branes and the M5-brane.

However, as we discuss below in section 8.1.2, this restriction to pure σ-model branes without “tensor
multiplet” fields on their worldvolume is due to the restriction to ordinary super Lie algebras, hence to super
Lie n-algebras for just n = 1. If one allows genuinely higher WZW models which are given by higher cocycles
on Lie n-algebras for higher n, then all the fbranes of string/M-theory are described by higher WZW σ-
models. This is an incarnation of the general fact that in higher differential geometry, the distinction between
σ-models and (higher) gauge theory disappears, as (higher) gauge theories are equivalently σ-models whose
target space is a smooth higher moduli stack, infinitesimally approximated by a Lie n-algebra for higher n.

This general phenomenon is particularly interesting for the M5-brane (see for instance the Introduction
of [FSS12b] for plenty of pointers to the literature on this). According to the higher Chern-Simons-theoretic
formulation of AdS7/CFT6 in [Wi96], the 6-dimensional (2, 0)-superconformal worldvolume theory of the M5-
brane is related to the 7-dimensional Chern-Simons term in 11-dimensional supergravity compactified on a
4-sphere in direct analogy to the famous relation of 2d WZW theory to the 3d-Chern-Simons theory controled
by the cocycle µ (see [Ga00] for a review). In 7.2.9 and 7.1.8 we have discussed the bosonic nonabelian
(quantum corrected) component of this 7d Chern-Simons theory as a higher gauge local prequantum field
theory; the discussion here provides the fermionic terms and the formalization of the 6d WZW-type theory
induced from a (flat) 7-dimensional Chern-Simons theory.

Up to the last section in this paper we discuss general aspects and examples of higher WZW-type sigma-
models in the rational/perturbative approximation, where only the curvature n-form matters while its lift to
a genuine cocycle in differential cohomology is ignored. However, in order to define already the traditional
WZW action functional in a sensible way on all maps to G, one needs a more global description of the WZW
term LWZW. Since [Ga88, FrWi99], this is understood to be a circle 2-connection/bundle gerbe/Deligne
3-cocycle whose curvature 3-form is 〈θ ∧ [θ ∧ θ]〉, hence a higher prequantization [FRS13a] of the curvature
3-form, which we write as a lift of maps of smooth higher stacks

B2U(1)conn

H(−)

��
G

LWZW

66

〈θ∧[θ∧θ]〉
// Ω3

cl ,

where B2U(1)conn denotes the smooth 2-stack of smooth circle 2-connections. Then for φ : Σ2 → G a
smooth map from a closed oriented 2-manifold to G, the globally defined value of the action functional is
the corresponding surface holonomy expressed as the composite

exp(iSWZW) := exp

(
2πi

∫
Σ2

[(−),LWZW]

)
: [Σ, G]

[Σ,LWZW] // [Σ,B2U(1)conn]
exp(2πi

∫
Σ2

)(−)
// U(1) ,

of the functorial mapping stack construction followed by a stacky refinement of fiber integration in differential
cohomology, 6.4.18.

Recall that by the discussion in 5.2.15 we have a general universal construction of such non-perturbative
refinements of all the local higher WZW terms considered here, and that these are in precise sense boundary
local prequantum field theories, 5.2.18.6, for flat higher Chern-Simons type local prequantum field theories
(which is in line with the Chern-Simons theoretic holography in [Wi96]). Therefore we know in principle
how to quantize them non-perturbatively in generalized cohomology, discussed below in 7.6.

903



7.3.2 Lie n-algebraic formulation of perturbative higher WZW

We start with the traditional WZW model and show how in this example we may usefully reformulate its
rationalized/perturbative aspects in terms of Lie n-algebraic structures. Then we naturally and seamlessly
generalize to a definition of higher WZW-type σ-models.

We briefly recall the notion of L∞-algebra valued differential forms/connections from to establish notation
in the present context. All the actual L∞-homotopy theory that we need can be found discussed or referenced
in [FRS13b]. Just for simplicity of exposition and since it is sufficient for the present discussion, here we take
all L∞-algebras to be of finite type, hence degreewise finite dimensional; see [Pr10] for the general discussion
in terms of pro-objects.

A (super-)Lie n-algebra, def. 6.6.19, is a (super-)L∞-algebra concentrated in the lowest n degrees. Given
a (super-)L∞-algebra g, we write CE(g) for its Chevalley-Eilenberg algebra; which is a (Z × Z2)-graded
commutative dg-algebra with the property that the underlying graded super-algebra is the free graded
commutative super-algebra on the dual graded super vector space g[1]∗. These are the dg-algebras which in
parts of the supergravity literature are referred to as “FDA”s, a term introduced in [Ni83] and then picked up
in [dAFR80, dAFr82, CaDAFr91] and followups. Precisely all the (super-)dg-algebras of this semi-free form
arise as Chevalley-Eilenberg algebras of (super-)L∞-algebras this way, and a homomorphism of L∞-algebras
f : g→ h is equivalently a homomorphism of dg-algebras of the form f∗ : CE(h)→ CE(g). See [FRS13b] for
a review in the context of the higher prequantum geometry of relevance here and for further pointers to the
literature on L∞-algebras and their homotopy theory.

Definition 7.3.1. For g a Lie n-algebra, and X a smooth manifold, a flat g-valued differential form on X
(of total degree 1, with g regarded as cohomologically graded) is equivalently a morphism of dg-algebras
A∗ : CE(g) → Ω•dR(X) to the de Rham complex. Dually we write this as35 A : X → g. These differential
forms naturally pull back along maps of smooth manifolds, and we write Ω1

flat(−, g) for the sheaf, on smooth
manifolds, of flat g-valued differential forms of total degree 1.

Notice that, in general, these forms of total degree 1 involve differential forms of higher degree with
coefficients in higher degree elements of the L∞-algebra:

Example 7.3.2. For n ∈ N write R[n] for the abelian Lie n-algebra concentrated on R in degree −n. Its
Chevalley Eilenberg algebra is the dg-algebra which is genuinely free on a single generator in degree n + 1.
A flat R[n]-valued differential form is equivalently just an ordinary closed differential (n+ 1)-form

Ω1
flat(−,R[n]) ' Ωn+1

cl .

Definition 7.3.3. A (p+2)-cocycle µ on a Lie n-algebra g is a degree p+2 closed element in the corresponding
Chevalley-Eilenberg algebra µ ∈ CE(g).

Remark 7.3.4. A (p + 2)-cocycle on g is equivalently a map of dg-algebras CE(R[p + 1]) → CE(g) and
hence, equivalently, a map of L∞-algebras of the form µ : g→ R[p+ 1]. So, if {ta} is a basis for the graded
vector space underlying g, then the differential dCE is given in components by

dCE t
a =

∑
i∈N

Caa1···ait
a1 ∧ · · · tai ,

where {Caa1···ai} are the structure constants of the i-ary bracket of g. Consequently, a degree p+ 2 cocycle
is a degree (p+ 2)-element

µ =
∑
i

µa1...ait
a1 ∧ · · · tai

such that dCE µ = 0.

35The reader familiar with L∞-algebroids should take this as shorthand for the L∞-algebroid homomorphism from the
tangent Lie algebroid of X to the delooping of the L∞-algebra g.
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Example 7.3.5. For {ta} a basis as above and ω ∈ Ω1
flat(X, g) a g-valued 1-form on X, the pullback of the

cocycle is the closed differential (p+ 2)-form which in components reads

µ(ω) =
∑
i

µa1···aiω
a1 ∧ · · · ∧ ωai ,

where ωa = ω(ta).

Remark 7.3.6. Composition ω 7→ ( X
ω // g

µ // R[p+ 1] ) of g-valued differential forms ω with an

L∞-cocycle µ yields a homomorphism of sheaves

Ω1
flat(−, µ) : Ωflat(−, g) // Ωp+2

cl .

This is the sheaf incarnation of µ regarded as a universal differential form on the space of all flat g-valued
differential forms.

Example 7.3.7. By the Yoneda lemma, for X a smooth manifold, morphisms36 X → Ω1
flat(−, g) are

equivalently just flat g-valued differential forms on X. Specifically, for G an ordinary Lie group, its Maurer-
Cartan form is equivalently a map

θ : G // Ω1
flat(−, g) .

Therefore, given a field configuration φ : Σ2 → G of the traditional WZW model, postcomposition with θ
turns this into

φ∗θ : Σ
φ // G

θ // Ω1
flat(−, g) .

Here if g is represented as a matrix Lie algebra then this is the popular expression φ∗θ = φ−1dφ

Definition 7.3.8. Given an L∞-algebra g equipped with a cocycle µ : g → R[p + 1] of degree p + 2, a
perturbative σ-model datum for (g, µ) is a triple consisting of

• a space X;

• equipped with a flat g-valued differential form θglobal : X → Ω1
flat(−, g) (a “global Maurer-Cartan

form”);

• and equipped with a factorization LWZW through ddR of µ(θglobal), as expressed in the following
diagram

X
θglobal //

LWZW $$

Ωflat(−, g)
µ // Ωp+2

cl .

Ωp+1

ddR

66

The action functional associated with this data is the functional

SWZW : [Σ, X] // R

given by

φ 7→
∫

Σ

LWZW(φ) ,

where the integrand is the differential form

LWZW(φ) : Σ
φ // X

LWZW // Ωp+1
cl .

36of sheaves, by thinking of X as the sheaf C∞(−, X).
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Remark 7.3.9. Here X actually need not be a (super-)manifold but may be a smooth higher (super-) stack,
6.6.

Remark 7.3.10. The notation θglobal serves to stress the fact that we are considering globally defined one-
forms on X as opposed to cocycles in hypercohomology, which is where the higher Maurer-Cartan forms
on higher (super-)Lie groups take values, due to presence of nontrivial higher gauge transformations. See
5.2.15.

Remark 7.3.11. The diagram in Def. 7.3.8 manifestly captures a local description, when X is a contractible
manifold. An immediate global version is captured by the following diagram

Σ
η // X

θglobal //

LWZW %%

Ωflat(−, g)
µ // Ωp+2

cl ,

Bp+1U(1)conn

F(−)

55

where Bp+1U(1)conn is the stack of U(1)-(p + 1)-bundles with connections, and F(−) is the curvature mor-
phism; see, for instance, [FSS10]. This globalization is what one sees, for example, in the ordinary WZW
model.

Finally, we notice for discussion in the examples one aspect of the higher symmetries of such perturbative
higher WZW models:

Definition 7.3.12. Given a (super-) L∞-algebra g, its graded Lie algebra of infinitesimal automorphisms is
the Lie algebra whose elements are graded derivations v ∈ Der(Sym•g[1]∗) on the graded algebra underlying
its Chevalley-Eilenberg algebra CE(g), acting as the corresponding Lie derivatives.

7.3.3 Metaplectic pre-quantization

Definition 7.3.13. Let (V = R2n, ω = dqi ∧ dpi) be the standard symplectic vector space and consider
the canonical prequantum bundle over it, i.e. the trivial line bundle equipped with the globally defined
connection form A = −pidqi . Write

∇0 : R2n −→ BU(1)conn

for the morphism that modulates this bundle.

We may regard ∇0 as a degree-1 WZW term. (Conversely, all WZW terms may be thought of as higher
analogs of prequantum bundles.) We discuss now how an infinitesimally integrable definite globalization,
def. 5.3.123, of ∇0 over a smooth manifold X is equivalently a symplectic structure on X equipped with a
metaplectic prequantization in the sense of [RoRw89].

Definition 7.3.14. Let (V, ω) be a symplectic vector space. Write ASp(V, ω) ↪→ HamSympl(V, ω) for those
affine transformations on V which are symplectomorphisms of (V, ω) regarded as a symplectic manifold. The
restriction of the full quantomorphism group of the symplectic manifold (V, ω) to ASp(V, ω) is known as the
extended affine symplectic group of the extended inhomogeneous symplectic group ESp(V, ω).

Heis(V, ω)
� � //

��

ESp(V, ω)
� � //

��

QuantMorph(V, ω)

��
V �
� // ASp(V, ω) �

� // HamSympl(V,Ω)

Proposition 7.3.15. The pullback ESp(V, ω) in def. 7.3.14 is the subgroup generated by Hamiltonians which
are degree-2 polynomials in the (qi, p

i). The subgroup generated
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• by the homogeneous degree-1 polynomials is V ;

• by the possibly inhomogenous degree-1 polynomials is the Heisenberg group HeisV (V, ω);

• by the homogeneous quadratic Hamiltonians is the metaplectic group Mp(V, ω);

• by the polynomials concentrated in degree 2 and 0 is the group Mpc(V, ω).

Hence ESp(V, ω) is the semidirect product

ESp(V, ω) ' Heis(V, ω) o Mp(V, ω) .

The further restriction to linear symplectomorphisms is Mpc := Mp(V, ω) ×
Z/2Z

U(1) (see [FoHe79]).

Heis(V, ω) �
� //

��

Heis(V, ω) o Mp(V, ω)

��

� � // QuantMorph(V, ω)

��
Mpc(V, ω)

��

& �
33

V �
� // ASp(V, ω) �

� // HamSympl(V,Ω)

Sp(V, ω)
& �

33

This is essentially [RoSa96, prop. 10.1] in view of [RoSa96, theorem 8.5].
Let DV(2) ↪→ V be the second-order infinitesimal disk, def. 5.3.50, in V and write

Linf
WZW : DV(2) → V

∇0−→ BU(1)conn

for the restriction of the standard prequantum line bundle, def. 7.3.13 to this infinitesimal disk.

Proposition 7.3.16. The quantomorphism group of Linf
WZW, def. 5.2.138, is

QuantMorph(Linf
WZW) ' Mpc .

Proof. By prop. 6.4.191 the general abstract definition 5.2.138 here indeed comes out as the restriction
of the traditional quantomorphism group to the degree-2 infinitesimal disk. This being degree-2 infinitesimal
means precisely that the Hamiltonians corresponding to the quantomorphisms are degree-2 polynomials in
the canonical coordinates and momenta. Hence the claim follows by prop. 7.3.15. �

Corollary 7.3.17. Obstruction to a degree-2 infinitesimally integrable definite globalization, def. 5.3.120,
of the standard prequantum bundle ∇0, def. 7.3.13, is an Mpc-structure. .

In traditional metaplectic quantization one furthermore equips the line bundle given by an Mpc-structure
with a connection whose curvature is the given symplectic form. From the point of view of cor. 7.3.17 this
choice is canonical: under the equivalence of prop. 7.3.16 and in view of prop. 5.2.140, Mpc is the stabilizer
group of the infinitesimal local model for the fixed connection ∇0, def. 7.3.13. Hence given an integrable
Mpc-structure on X, the underlying symplectic manifold structure provides an atlas by Darboux charts
Ui = R2n and the choice of ∇0 is a choice of connection 1-form on each such chart. The Mpc-structure in
turn provides precisely the transition functions to glue these 1-forms to a global connection, which is the
definite globalization of ∇0 to ∇ : X → BU(1)conn.
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7.3.4 The Green-Schwarz anomaly in heterotic supergravity

Let G be a compact simple and simply connected Lie group such as Spin or E8, and let LSpin
WZW be the

canonical WZW term, the “WZW gerbe”.
By the discussion in 7.5.1:

Proposition 7.3.18. The Heisenberg 2-group of LSpin
WZW is the smooth String 2-group, def. 7.1.10

Heis(LSpin
WZW) ' String .

Corollary 7.3.19. The obstruction to a parameterized extension of LSpin
WZW over a Spin-principal bundle is

a String-structure.

Proof. Use prop. 7.3.18 in theorem 5.3.118. �

Remark 7.3.20. We may choose G to be the product Spin × E8 of semisimple compact Lie groups, with
the WZW term being the difference of their canonical WZW gerbes. Then the obstruction in prop. 7.3.19
is precisely 1

2p1 − c2, hence is the Green-Schwarz anomaly of the heterotic string.

This had previously been argued in [DiSh07] and has been amplified in [And07].

7.3.5 Boundary conditions and brane intersection laws

In the context of fully extended (i.e. local) topological prequantum field theories, 5.2.18 one has the following
general notion of boundary condition, see 5.2.18.6.

Definition 7.3.21. A prequantum boundary condition for an open brane (hence a “background brane” on
which the given brane may end) is given by boundary gauge trivializations φbdr of the Lagrangian restricted
to the boundary fields, hence by diagrams of the form

Boundary Field

xx ((
∗

0 &&

Bulk Fields

Lagrangianvv
Phases ,

φbdr

'

rz

where “Phases” denotes generally the space where the Lagrangian takes values.

Specializing this general principle to our current situation, we have the following

Definition 7.3.22. A boundary condition for a rational σ-model datum, (X, g, µ) of Def. 7.3.8, is

1. an L∞-algebra Q and a homomorphism Q −→ g,

2. equipped with a homotopy φbrd of L∞-algebras morphisms

Q

{{ $$
∗

0 ##

g .

µ{{
R[p+ 1]

φbdrw�
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Remark 7.3.23 (Background branes). Since g is to be thought of as the spacetime target for a σ-model, we
are to think of Q→ g in Def. 7.3.22 as a background brane “inside” spacetime. For instance, as demonstrated
below in Section 8.1.2, it may be a D-brane in 10-dimensional super-Minkowski space on which the open
superstring ends, or it may be the M5-brane in 11-dimensional super-Minowski spacetime on which the
open M2-brane ends. To say then that the p-brane described by the σ-model may end on this background
brane Q means to consider worldvolume manifolds Σn with boundaries ∂Σp+1 ↪→ Σp+1 and boundary field
configurations (φ, φ|∂) making the left square in the following diagram commute:

∂Σp+1

φ|∂Σ //

��

Q //

��

∗

��
Σp+1

φ // g
µ

// R[p+ 1] .

φbdr
qy

The commutativity of the diagram on the left encodes precisely that the boundary of the p-brane is to sit
inside the background brane Q. But now – by the defining universal property of the homotopy pullback of
super L∞-algebras – this means, equivalently, that the background brane embedding map Q → g factors
through the homotopy fiber of the cocycle µ. If we denote this homotopy fiber by ĝ, then we have an
essentially unique factorization as follows

∂Σp+1

φ|∂Σ //

��

Q

��

// ĝ //

��

∗

��
Σp+1

φ // g g
µ

// R[p+ 1] ,

φuniv.
bdr

s{

where now ĝ→ g is the homotopy fiber ĝ of the cocycle µ. Notice that here in homotopy theory all diagrams
appearing are understood to be filled by homotopies/gauge transformations, but only if we want to label
them explicitly do we display them.

The crucial implication to emphasize is that what used to be regarded as a background brane Q on which
the σ-model brane Σn may end is itself characterized by a σ-model map Q → ĝ, not to the original target
space g, but to the extended target space ĝ. In the class of examples discussed below in Section 8.1.2, this
extended target space is precisely the extended superspace in the sense of [CdAIP99].

Remark 7.3.24. The L∞-algebra ĝ→ g is the extension of g classified by the cocycle µ, in generalization
to the traditional extension of Lie algebras classified by 2-cocycles. If µ is an (n2 + 1)-cocycle on an n1-Lie
algebra g for n1 ≤ n2, then the extended L∞-algebra ĝ is an Lie n2-algebra. See [FRS13b] for more details
on this.

Proposition 7.3.25. The Chevalley-Eilenberg algebra CE(ĝ) of the extension ĝ of g by a cocycle µ admits,
up to equivalence, a very simple description; namely, it is the differential graded algebra obtained from CE(g)
by adding a single generator cn in degree n subject to the relation

dCE(ĝ) cn = µ .

Here we are viewing µ as a degree n+ 1 element in CE(g), and hence also in CE(ĝ).

Proof. First observe that we have a commuting diagram of (super-)dg-algebras of the form

CE (ĝ) CE
((

R id→ R
)

[n− 1]
)

oo

CE (g)

OO

CE (R[n])

OO

oo

.
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Here the top left dg-algebra is the dg-algebra of the above statement, the top morphism is the one that sends
the unique degree-(n + 1)-generator to µ and the unique degree-n generator to cn, the vertical morphisms
are the evident inclusions, and the bottom morphism is the given cocycle. Consider the dual diagram of
L∞-algebras

ĝ //

��

(R id→ R)[n− 1]

��
g

µ // R[n] .

Then observe that the underlying graded vector spaces here form a pullback diagram of linear maps (the
linear components of the L∞-morphisms). From this the statement follows directly with the recognition
theorem for L∞-homotopy fibers, theorem 3.1.13 in [FRS13b]. �

Remark 7.3.26. The construction appearing in Prop. 7.3.25 is of course well familiar in the “FDA”-
technique in the supergravity literature [CaDAFr91], and we recall famous examples below in Section 8.1.2.
The point to highlight here is that this construction has a universal L∞-homotopy-theoretic meaning, in the
way described above.

The crucial consequence of this discussion is the following:

Remark 7.3.27. If the extension ĝ itself carries a cocycle µQ : ĝ → R[n] and we are able to find a local
potential/Lagrangian LWZW for the closed (n + 1)-form µQ (which by 5.2.15 is always the case), then this
exhibits the background brane Q itself as a rational WZW σ-model, now propagating not on the original
“target spacetime” g but on the “extended spacetime” ĝ.

Remark 7.3.28. Iterating this process gives rise to a tower of extensions and cocycles

̂̂g
��

µ3 // R[n3]

ĝ

��

µ2 // R[n2]

g
µ1 // R[n1] ,

which is like a Whitehead tower in rational homotopy theory, only that the cocycles in each degree here
are not required to be the lowest-degree nontrivial ones. In fact, the actual rational Whitehead tower is an
example of this. In the language of Sullivan’s formulation of rational homotopy theory this says that gn is
exhibited by a sequence of cell attachments as a relative Sullivan algebra relative to g.

Since this is an important concept for the present purpose, we give it a name:

Definition 7.3.29. Given an L∞-algebra g, the brane bouquet of g is the rooted tree consisting of, iteratively,
all possible equivalence classes of nontrivial R[•] extensions (corresponding to equivalence classes of nontrivial
R[•]-cocycles) starting with g as the root.
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g2,1

""

· · · g2,k

||

g3,1

||
g1,1

""

g1,2

||

g3,2
oo

g g3,3

bb

g3

OO

This brane bouquet construction in L∞-homotopy theory that we introduced serves to organize and formalize
the following two physical heuristics.

Remark 7.3.30 (Brane intersection laws). By the discussion above in Remark 7.3.23, each piece of a brane
bouquet of the form

g2

��

µ2 // R[n2]

g1
µ1 // R[n1]

may be thought of as encoding a brane intersection law, meaning that the WZW σ-model brane corresponding
to (g1, µ1) can end on the WZW σ-model brane corresponding to (g2, µ2). Therefore, the brane bouquet
of some L∞-algebra g lists all the possible σ-model branes and all their intersection laws in the “target
spacetime” g.

Remark 7.3.31 (Brane condensates). To see how to think of the extensions ĝ as “extended spacetimes”,
observe that by Prop. 7.3.25 and Def. 7.3.1 a σ-model on the extension ĝ of g which is classified by a (p+2)-
cocycle µ is equivalently a σ-model on g together with an p-form higher gauge field on its worldvolume, one
whose curvature (p + 1)-form satisfies a twisted Bianchi identity controled by µ. The examples discussed
below in Section 8.1.2 show that this p-form field (“tensor field” in the brane literature) is that which is
“sourced” by the charged boundaries of the original σ-model branes on g. For instance for superstrings
ending on D-branes it is the Chan-Paton gauge field sourced by the endpoints of the open string, and for
M2-branes ending on M5-branes it is the latter’s B-field which is sourced by the self-dual strings at the
boundary of the M2-brane. In conclusion, this means that we may think of the extension ĝ as being the
original spacetime g but filled with a condensate of branes whose σ-model is induced by µ.

7.4 Prequantum boundary and defect field theory

We now discuss examples and applications of the general mechanism of higher local prequantum boundary
and defect field theory, 5.2.18. Our main interest here is the hierarchy of boundary and defect structures
relating higher Chern-Simons-type field theories to higher Wess-Zumino-Witten type field theories.

We start in section

• 7.4.1 – Vacuum defects from spontaneous symmetry breaking

with discussion of how the general abstract theory in Section 5.2.18 of correspondence spaces in higher
homotopy-types nicely captures the traditional notions in physics phenomenology of spontaneous symmetry
breaking vacuum defects called cosmic monopoles, cosmic strings and cosmic domain walls, including the
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traditional rules by which these may end on each other. This discussion uses a minimum of mathematical
sophistication (just some homotopy pullbacks) but may serve to nicely illustrate the interpretation of the
abstract formalism in actual realistic physics. Readers not interested in this interpretation may want to skip
this section.

Our main example here is then

• 7.4.2 – Higher Chern-Simons local prequantum field theory

where we observe that in the∞-topos H of smooth stacks there is a canonical tower of topological higher local
prequantum field theories whose cascade of higher codimension defects naturally induce higher Chern-Simons
type prequantum field theories and their associated theories.

7.4.1 Vacuum defects from spontaneous symmetry breaking

In particle physics phenomenology and cosmology, there is a traditional notion of defects in the vacuum struc-
ture of gauge field theories which exhibit spontaneous symmetry breaking, such as in the Higgs mechanism.
A review of these ideas is in [ViSh94]. A discussion of how such vacuum defects due to symmetry breaking
may end on each other, and hence form a network of defects of varying codimension, is in [PrVi92]. Here we
briefly review the mechanism indicated in the latter article and then show how it is neatly formalized within
the general notion of defect field theories as in Section 5.2.18.8. This is intended to serve as an illustration
of the physical interpretation of the abstract notion of defects in field theories and of their formalization
by correspondences, particularly. Readers not interested in physics phenomenology may want to skip this
section.

Consider an inclusion of topological groups H ↪→ G. Here we are to think of G as the gauge group (more
mathematically precise: structure group) of a gauge theory and of H ↪→ G as the subgroup that is preserved
by any one of its degenerate vacua (for instance in a Higgs mechanism), hence the gauge group that remains
after spontaneous symmetry breaking. In this case the quotient space (coset space) G/H is the moduli space
of vacuum configurations, so that a vacuum configuration up to continuous deformations on a spacetime Σ
is given by the homotopy class of a map from Σ to G/H.

Traditionally a codimension-k defect in the vacuum structure of a theory with such spontaneous symmetry
breaking is a spacetime locally of the form Rn − (Dk × Rn−k) with a vacuum classified locally by a the
homotopy class of a map

Sk−1 ' Rn − (Dk × Rn−k)→ G/H ,

hence by an element of the (k − 1)-st homotopy group of G/H. If this element is non-trivial, one says that
the vacuum has a codimension-k defect. Specifically in an (n = 4)-dimensional spacetime Σ

• for k = 1 this is called a domain wall ;

• for k = 2 this is called a cosmic string ;

• for k = 3 this is called a monopole.

Next consider a sequence of inclusions of topological groups

H2 ↪→ H1 ↪→ H0 = G .

Along the above lines this is now to be thought of as describing the breaking of a symmetry group G = H0

first to H1 at some energy scale E1, and then a further breaking down to H2 at some lower energy scale E2.
So at the high energy scale the moduli space of vacuum structures is G/H1 = H0/H1 as before. But at the
low energy scale the moduli space of vacuum structures is now H1/H2. If there is a vacuum defect at low
energy, classified by a map Sk−1 → H1/H2, then if it is “heated up” or rather if it “tunnels” by a quantum
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fluctuation through the energy barrier, it becomes instead a defect classified by a map to H0/H2, namely by
the composite

Sk−1 → H1/H2 → H0/H2 .

Here the map on the right is the fiber inclusion of the H1-associated H1/H2-fiber bundle

H1/H2 → H0/H2 → H0/H1

naturally induced by the sequence of broken symmetry groups. The heated defect may be unstable, hence
given by a trivial element in the (k − 1)-st homotopy group of H0/H2, even if the former is not, in which
case one says that the original defect is metastable. In terms of diagrams, metastability of the low energy
defect means precisely that its classifying map Sk−1 → H1/H2 extends to a homotopy commutative diagram
of the form

Sk−1 //

��

H1/H2

��
Dk // H0/H2 ,

where the left vertical arrow is the boundary inclusion Sk−1 ↪→ Dk. Now according to [PrVi92], the decay
of a metastable low-energy vacuum defect of codimension-k leads to the formation of a stable high-energy
defect of codimension-(k + 1) at its decaying boundary. For instance a metastable cosmic string defect in
the low energy vacuum structure is supposed to be able to end (decay) on a cosmic monopole defect in the
high energy vacuum structure.

We now turn to a formalization of this story. By Def. 5.2.221, the discussion in [PrVi92] shows that the
transition from metastable codimension-k defects in the low energy vacuum structure to stable high-energy
(k + 1)-defects should be represented by a correspondence of the form

[Π(Sk−1),
∫

(H1/H2)] [Π(Sk),
∫

(H0/H1)]oo // ∗ ,

exhibiting the high energy defects as boundary data for the low energy defects.

To see how to obtain this in line with the phenomenological story, observe that the heating/tunneling
process as well as the decay process of the heated defects are naturally represented by the maps on the left
and the right of the following diagram, respectively:

∗

Dk→H0/H2ww
[Π(Sk−1),

∫
(H1/H2)]

H1/H2→H0/H2 **

[Π((Dk),
∫

(H0/H2)]

Sk−1↪→Dkuu
[Π(Sk−1),

∫
(H0/H2)]

.

The left map sends a low energy defect to its high energy version, the right map sends a high energy
decay process to the field configuration which is decaying. For a specific spatially localized defect process
Dk → H0/H2 we are to pick one point in the space of defect processes, which is what the top right map
reflects. Therefore, the moduli space of decay processes of metastable low energy defects is precisely the
homotopy fiber product of these two maps, namely the space of pairs consisting of a low energy defect and
a localized decay process of its heated version (up to a pertinent gauge transformation that identifies the
heated defect with the field configuration which decays). By the above fiber sequence of quotient spaces
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one finds that this homotopy pullback is [Π(Sk−1,ΩΠ(H0/H1))]. Hence, in conclusion, we find the desired
correspondence as the top part of the following homotopy pullback diagram

[Π(Sk),Π(H0/H1)]

��
[Π(Sk−1),ΩΠ(H0/H1)]

tt $$
[Sk−1 → Π(H1/H2), Dk → Π(H0/H2)]

tt **

(pb) ∗

zz
[Π(Sk−1),Π(H1/H2)]

[Π(Sk−1),Π(H1/H2)→Π(H0/H2)] **

(pb) [Π(Dk),Π(H0/H2)]

[Π(Sk−1↪→Π(Dk)),Π(H0/H2)]tt
[Π(Sk−1),Π(H0/H2)]

.

In summary, this diagram encodes the phenomenological story of the decay of metastable defects as follows:

codimension-(k + 1) defect
at high energy

induces

vv
induces

''

codim-(k + 1) defect
bounding

a codim-k defect

��

pairs of
codimension-k defects

and their decay processes

vv ((

fixed localized
decay process

ww
codimension-k defects

at low energy

tunneling ((

decay processes

apply to
uu

codimension-k defects
raised to high energy

7.4.2 Higher Chern-Simons local prequantum boundary field theory

We now turn to the class of those local prequantum field theories which deserve to be termed of Chern-
Simons type. We show that these arise rather canonically as the boundary data for the canonical differential
cohomological structure of Prop. 7.4.1 which is exhibited by every cohesive ∞-topos H.

7.4.2.1 Survey: towers of boundaries, corners, ... and of circle reductions We discuss in the
following towers/hierarchies of iterated defects of increasing codimension of a universal topological Yang-
Mills theory. Most of these defects, however, are best recognized after “gluing their endpoints” after which
they equivalently become circle-reductions/transgression to loop space of the original theory. Restricted
to the archetypical case of 3d Chern-Simons theory, the following discussion essentially goes through the
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following diagram:

3d CS
� � //

S1

��

4d tYM

S1

��
2d WZW

� � //

S1

��

3d tYM

S1

��
1d Wilson line

� � //

S1

��

2d tYM

S1

��
3dCS action

� � // 1d tYM

.

This is a pattern of iterated higher codimension corners and iterated circle reductions which had long been
emphasized by Hisham Sati to govern the grand structure of hierarchies of theories inside string/M-theory
[Sa10, Sa11a, Sa12]. For instance there should be a tower of this kind which instead of 3d Chern-Simons
theory has 11-dimensional supergravity, or “M-theory” as follows:

Z12

S1

""
Y 11

S1

""

- 


∂

<<

Y 11′

X10
- 
 ∂

<<

12d Bounding theory

S1

**
M-theory

S1

((

) 	

∂

66

Bounding theory for IIA

Type IIA

' �
∂

44

From this descent further such towers in string/M-theory, and for each one can have various extensions
deeper in dimensions, via both dimensional reductions and boundaries. For instance, Edward Witten has
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been exploring a system of reductions [Wi11] which in (small) parts involves a system roughly as follows

M-theory

S4

��
7d CS = KKS4 of 11d CS

∂

��

(2,0) 6d QFT on M5

S1

��
5d sYM

S1

��
4d sYM

T 2

��
Langlands duality for G-bundles on curves.

The second entry from the top indicates the 7-dimensional Chern-Simons theory/term arising from the
Kaluza-Klein reduction on the 4-sphere of the corresponding term in eleven dimensions [FSS12b], this we
discuss below in 7.2.9.3. The next is the 6-dimensional boundary field theory of this, whose Green-Schwarz
contribution we discuss in 8.1.2.

7.4.2.2 d = n + 1: Universal topological Yang-Mills theory We consider a simple theory where
fields are closed differential forms and the Lagrangian being the integral of that form. We start with the
abelian but higher case and later we get nonabelian theories by introducing boundaries.

First recall from the following system of higher differential moduli stacks.

Proposition 7.4.1. For n ∈ N we have a pasting diagram of homotopy pullback squares in H = Smooth∞Grpd
of the form

BnU(1)conn
forget (non−flat)

connection
//

curv

��

BnU(1) //

��

∗

��
Ωn+1

cl
inclusion // [dRBn+1U(1)

FA //

��

[Bn+1U(1)

forget flat connection

��
∗ // Bn+1U(1) ,

where FA is the map that takes a flat curvature form and interprets it as a connection on the trivial bundle
of one higher degree.

As a special case of Prop. 5.2.198 we have:

Proposition 7.4.2. For n ∈ N, the morphism

exp(iStYM) : Ωn+1
cl −→ [Bn+1U(1)
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in prop. 7.4.1, regarded as an object
Ωn+1

cl

exp
(
i
~StYM

)
��

[Bn+1U(1)

 ∈ Corrn(H/[BnU(1))
⊗ ,

is fully dualizable, with dual exp
(
− i

~StYM

)
.

Definition 7.4.3. For n ∈ N, we call the local prequantum field theory defined by the fully dualizable object
StYM of Prop. 7.4.2 the universal topological Yang-Mills local prequantum field theory

exp
(
i
~StYM

)
: Bord⊗n+1 → Corrn+1(H/[Bn+1U(1))

⊗ .

This terminology is justified below in Remark 7.4.7. We will encounter this theory again in later sections.

7.4.2.3 d = n+ 0: Higher Chern-Simons field theories We discuss now the boundary conditions of
the universal topological Yang-Mills local prequanutm field theory

Remark 7.4.4. The universal boundary condition for StYM according to Def. 5.2.216 is given by the top
rectangle in Prop. 7.4.1, naturally regarded as a correspondence in the slice:

BnU(1)conn

||

F(−)

$$
∗

""

Ωn+1
cl

exp
(
i
~StYM

)
zz

[Bn+1U(1)

.

So by Prop. 5.2.217 there is a natural equivalence of ∞-categories

Bdr
(
exp

(
i
~StYM

))
' H/BnU(1)conn

between the∞-category of boundary conditions for the universal topological Yang-Mills theory in dimension
(n+ 1) and the slice ∞-topos of H over the moduli stack of U(1)-n-connections.

Corollary 7.4.5. The (∞, 1)-category of boundary conditions for the universal topological Yang-Mills local
prequantum field theory StYM are equivalently ∞-Chern-Simons local prequantum field theories [FSS13a]:
moduli stacks Fields∂ ∈ H equipped with a prequantum n-bundle [FRS13a]

∇CS : Fields∂ → BnU(1)conn .

The automorphism ∞-group of a given boundary condition for StYM is hence equivalently the quantomor-
phism ∞-group of the corresponding Chern-Simons theory [FRS13a].

Proof. This is just a special case of Prop. 5.2.217. Explicitly, by the universal property of the homotopy
pullback in H, given any boundary condition for StYM, hence by Remark 5.2.214 a diagram in H of the form

Fields∂

zz

〈F(−)∧···∧F(−)〉

&&
∗

0
##

Ωn+1
cl ,

exp
(
i
~StYM

)
yy

[Bn+1U(1)

∇
u}
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this is equivalent to the dashed morphism in the diagram

Fields∂





〈F(−)∧···∧F(−)〉

��

∇
��

BnU(1)conn

zz

F(−)

&&
∗

0
$$

Ωn+1
cl .

exp
(
i
~StYM

)
xx

[Bn+1U(1)

�

Remark 7.4.6. Observe that while the space of phases of the bulk field theory is [Bn+1U(1), we may now
regard BnU(1)conn as the space of spaces of the boundary field theory.

In order to interpret this, notice the following.

Remark 7.4.7. For the special case that Fields∂ is a moduli stack BGconn of G-principal ∞-connections
for some ∞-group G, we may think of the morphism

〈F(−) ∧ · · ·F(−)〉 : BGconn → Ωn+1
cl

as encoding an invariant polynomial 〈−, · · · ,−〉 on (the∞-Lie algebra of) G [FSS10]. By extrapolation from
this case we may also speak of invariant polynomials if Fields|∂Σ is of more general form, in which case we
have invariant polynomials on smooth ∞-groupoids. Restricting to the group-al case just for definiteness,
notice that a boundary field configuration, which by Prop. 5.2.211 is given by

∂Σ× U ∇ //

��

BGconn

��
Σ× U ω // Ωn+1

cl
,

forces the closed (n + 1)-form ω of the bulk theory to become the ∞-Chern-Weil form of a G-principal
∞-connection with respect to the invariant polynomial 〈−, · · · ,−〉 at the boundary:

ω|∂Σ = 〈F∇ ∧ · · · ∧ F∇〉 .

For G an ordinary Lie group, this is known as the Lagrangian for topological G-Yang-Mills theory. More
generally, for G any smooth ∞-group, we may hence think of this as the Lagrangian of a topological ∞-
Yang-Mills theory.

Specifically for the universal boundary condition Fields∂ = BnU(1)conn of Remark 7.4.4 we find a field
theory which assigns U(1)-n-connections ∇ to n-dimensional manifolds Σn and closed (n + 1)-forms ω on
(n + 1)-dimensional manifolds Σn+1, such that whenever the latter bounds the former, the exponentiated
integral of ω equals the n-volume holonomy of ∇. This is just the relation between circle n-connections
and their curvatures which is captured by the axioms of Cheeger-Simons differential characters. Hence it
makes sense to call the higher topological Yang-Mills theory which is induced from the universal boundary
condition the Cheeger-Simons theory in the given dimension.
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However, Corollary 7.4.5 says more: the universality of the Cheeger-Simons theory as a boundary con-
dition for topological Yang-Mills theory means that a consistent such boundary condition is necessarily not
just an invariant polynomial, but is a lift of that from de Rham cocycles to differential cohomology. This
means that it is a refined ∞-Chern-Weil homomorphism in the sense of [FSS10] of the invariant polynomial
in the sense of [FRS13a]. Equivalently it is a higher prequantum field theory. In either case a lift ∇ in the
diagram

BnU(1)conn

��
BGconn

∇
55

〈F(−)∧···∧F(−)〉
// Ωn+1

cl .

Example 7.4.8. For the canonical binary invariant polynomial 〈−,−〉 on a simply connected semisimple
Lie group G such as Spin or SU (the Killing form) a consistent boundary condition, as in Remark 7.4.7, is
provided by the differential refinement of the first fractional Pontrjagin class 1

2p1 and of the second Chern
class c2, respectively, that have been constructed in [FSS10]:

B3U(1)conn

��
BSpinconn 〈F(−)∧F(−)〉

//

1
2 p̂1

55

Ω4
cl ,

B3U(1)conn

��
BSUconn 〈F(−)∧F(−)〉

//

ĉ2

55

Ω4
cl .

Furthermore, for the canonical quaternary invariant polynomial on the smooth String-2-group (see appendix
of [FSS12b] for a review) a consistent boundary condition as in Remark 7.4.7 is provided by the differential
refinement of the second fractional Pontrjagin class 1

6p2 that has also been constructed in[FSS10]:

B7U(1)conn

��
BStringconn 〈F(−)∧F(−)∧F(−)∧F(−)〉

//

1
6 p̂2

44

Ω8
cl .

This describes a 7-dimensional Chern-Simons theory of nonabelian 2-form connections [FSS12b].

7.4.2.4 d = n− 1: Topological Chern-Simons boundaries We now consider codimension-2 corners
of the universal topological Yang-Mills theory, hence codimension-1 boundaries of higher Chern-Simons
theories. These turn out to be related to Wess-Zumino-Witten like theories. Further below in Section 7.3
we discuss that a natural differential variant of this type of theories also arises as ∞-Chern-Simons theories
themselves.

For characterizing the data assigned by a field theory to such corners, we will need to consider the
generalization of the following traditional situation.

Example 7.4.9. For (X,ω) a symplectic manifold, ω ∈ Ω2
cl(X), a submanifold Y → X is isotropic if

ω|Y = 0, and Lagrangian if in addition dim(X) = 2dim(Y ). If (X,ω) is equipped with a prequantum bundle,
namely a lift ∇ in

BU(1)conn

F(−)

��
X

∇
::

ω
// Ω2

cl ,
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then we may ask not only for a trivialization of the symplectic form ω but even of the connection ∇ on Y :
∇|Y ' 0. If this exists, then traditionally Y is called a Bohr-Sommerfeld leaf of (X,∇), at least when Y is
one leaf of a foliation of X by Lagrangian submanifolds.

Hence we set generally:

Definition 7.4.10. Given a space X ∈ H and a connection ∇ : X → BnU(1)conn, a Bohr-Sommerfeld
isotropic space of (X,∇) is a diagram of the form

Y //

��

0

��
X

∇
// BnU(1)conn

v~

in H.

Remark 7.4.11. The universal Bohr-Sommerfeld isotropic space over (X,∇) is the homotopy fiber fib(∇)→
X of ∇. In a sense this is the “maximal” Bohr-Sommerfeld isotropic space over (X,∇), as every other one
factors through this, essentially uniquely. Below we see that these are equivalently the universal codimension-
2 corners of higher Chern-Simons theory. While the property of being “isotropic and maximally so” is
reminiscent of Lagrangian submanifolds, it seems unclear what the notion of Lagrangian submanifold should
refine to generally in higher prequantum geometry, if anything.

Proposition 7.4.12. A corner, Def. 5.2.218, for the universal topological Yang-Mills theory, Def. 7.4.3,
from a non-trivial to a trivial boundary condition, hence a boundary condition for an ∞-Chern-Simons
theory, Corollary 5.2.185, ∇ : Fields∂ → BnU(1)conn, is equivalently a Bohr-Sommerfeld isotropic space of
boundary fields, Def. 7.4.10, namely a map

Fields∂∂ → Fields∂

such that F∇|∂2
= 0 and equipped with a homotopy ∇|Fields∂∂ ' 0.

Proof. The boundary condition for ∇ is a correspondence-of-correspondences from

Fields∂

zz %%
∗

0 ##

Ωn+1
cl

exp
(
i
~StYM

)
yy

[Bn+1U(1)

∇
u}

to
∗

zz &&
∗

0 ##

Ωn+1
cl

exp
(
i
~StYM

)
yy

[Bn+1U(1)

0
u}

.

The tip of this correspondence-of-correspondences is a correspondence of the form

Fields∂∂

{{ &&
∗ Fields∂ ,
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hence is just a map as on the right. The correspondence-of-correspondences is then filled with a second order
homotopy between ∇, regarded as a homotopy, and the 0-homotopy. Unwinding what this means in view of
def. 6.4.111, one sees that this homotopy is given by a Čech-Deligne cochain (· · · , A∇bdr , 0, 0) such that

D(· · · , A∇bdr , 0, 0) = (· · · , A∇, 0)|∂∂ ,

where
D(· · · , A∇, 0) = (0, 0, · · · , 0, ω)|∂ .

�

Example 7.4.13 (Topological boundary for 3d Chern-Simons theory). This is in accord with what is
proposed as the data on codimension-1 defects for ordinary Chern-Simons theory on p. 11 of [KaSa10a].
They propose (somewhat implicitly in their text) that the boundary connection should be such that U -
component of 〈F∇ ∧ F∇〉 vanishes at each point of Σ. But for us the fields are A : Π(Σ) × U → BGconn,
hence are flat along Σ, hence that component vanishes anyway. As a result, the proposal in [KaSa10a]
essentially comes down to asking that boundary fields ∇ are the maximal solution to trivializing 〈F∇ ∧F∇〉.
If we refine this statement from de Rham cocycles to differential cohomology, we arrive at the above picture.

Remark 7.4.14. Chern-Simons theory is famously related to Wess-Zumino-Witten theory in codimension-1.
However, WZW theory is not directly a “topological boundary” of Chern-Simons theory. Below in Section
7.4.2.6 we show that (the topological sector of) pre-quantum WZW theory is a codimension-1 defect from
exp(iSCS) to itself, via exp(iStYM).

Remark 7.4.15. So the universal boundary condition for ∞-Chern-Simons local prequantum field theory
∇ : Fields→ BnU(1)conn (regarded itself as a boundary condition for its topological Yang-Mills theory) is
the homotopy fiber of ∇.

Example 7.4.16. Let P be Poisson Lie algebroid and ∇ : τ1 exp(P) → B2(R/Γ)conn the prequantum
2-bundle of the corresponding 2d Poisson-Chern-Simons prequantum field theory. A maximally isotropic
sub-Lie algebroid C ↪→ P is identified in [CaFe03] with a D-brane for the theory. See [FRS13a] (...)

Further developing Example 7.4.8, we have by [FSS10] the following.

Example 7.4.17. The universal boundary condition for ordinary Spin Chern-Simons theory regarded as a
local prequantum field theory 1

2 p̂1 : BSpinconn → B3U(1)conn is the moduli stack of String-2-connections

BStringconn
// BSpinconn

1
2 p̂1
// B3U(1)conn .

The universal boundary condition for 7-dimensional String-Chern-Simons local prequantum field theory
[FSS12b] 1

6 p̂2 : BStringconn → B7U(1)conn is the moduli stack of Fivebrane-6-connections

BFivebraneconn
// BStringconn

1
6 p̂2
// B7U(1)conn .

Examples 7.4.18. A rich variant of this class of examples of topological prequantum boundary conditions
turns out to be the intersection laws of Green-Schwarz type super p-branes. We discuss this in details in
Section 8.1.2 below.

7.4.2.5 d = n − k: Holonomy defects The higher parallel transport of an n-connection over a k-
dimensional manifold with boundary takes values in sections of the transgression of the n-bundle to an
(n − k + 1)-bundle over the boundary. Here we discuss this construction at the level of moduli stacks and
then observe that it is naturally interpreted in terms of defects for higher topological Yang-Mills/higher
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Chern-Simons theory. The Wess-Zumino-Witten defects and the Wilson line/surface defects in the following
sections 7.4.2.6 and 7.4.2.7 build on this class of examples.

First observe that a particularly simple boundary condition for topological Yang-Mills theory is to take
the connection to be trivial on the boundary via the following

Ωn

d

%%zz∗

0
##

Ωn+1
cl

exp
(
i
~S

n+1
tYM

)
yy

[Bn+1U(1)

u}

'

Ωn

d

����

��
BnU(1)conn

zz

F(−)

&&
∗

0
$$

Ωn+1
cl ,

exp
(
i
~S

n+1
tYM

)
xx

[Bn+1U(1)

which corresponds to the inclusion
Ωn ↪→ Bn(1)conn

of globally defined differential n-forms regarded as connections on trivial n-bundles.

7.4.2.6 d = n − 1: Wess-Zumino-Witten field theories We now consider codimension-1 defects for
higher Chern-Simons theories, hence codimension-2 corners for topological Yang-Mills theory.

Remark 7.4.19. In [FuRuSc] 2-dimensional (rational) conformal field theories (CFTs) of WZW type have
been constructed and classified by assigning to a punctured marked surface Σ a CFT n-point function which is
induced by applying the Reshetikhin-Turaev 3d TQFT functor (hence local quantum Chern-Simons theory)
to a 3-d cobordism cobounding the “double” of the marked surface. In the case that Σ is orientable and
without boundary, this is the 3d cylinder Σ× [−1, 1] over Σ. In the language of extended QFTs with defects
this construction of a 2d theory from a 3d theory may be formulated as a realization of 2d WZW theory as
a codimension-1 defect in 3d Chern-Simons theory. The two chiral halves of the WZW theory correspond
to the two “phases” of the 3d theory which are separated by the defect Σ. This perspective of [FuRuSc] has
later been amplified in [KaSa10b].

Now let
exp(iSCS) = c : BGconn → B3U(1)conn

be a Chern-Simons prequantum field theory. We have a G-principal bundle with connection (P,∇) over
the 1-disk D1, i.e the interval, whose boundary is the 0-sphere, i.e. composed of two points, schematically
indicated in the following diagram

(P |∂ ,∇|∂)

��

// (P,∇)

��
∗
∐
∗ �
� ∂ // D1 ∇ // BGconn

c // B3U(1)conn .

Definition 7.4.20. The Wess-Zumino-Witten defect is the morphism

exp
(
i
~SCS ◦ p1 − iSCS ◦ p2

)
// exp

(
i
~StYM

)
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in Corr(H/B3U(1)conn
) given in H by the the transgression, Def. 6.4.160, of the Chern-Simons connection

over the 1-disk

[D1,BGconn]

%%

(−)|∂D1

vv
[S0,BGconn] ' BGconn ×BGconn

c◦p1−c◦p2 ((

Ω3
cl

yy
B3U(1)conn

exp
(
i
~
∫
D1 [D1,c]

)
rz

.

Remark 7.4.21. This is a codimension-1 defect of S3
tYM according to Def. 5.2.221. It may be visualized as

a 1-dimensional “cap”

∗

∗

ss

insertion, vertex operator, defect, · · ·

∗

for a single copy of the CS-theory, whose 0-dimensional tip carries a tYM-theory. Here a closed 3-form is
what is responsible for the defect, hence the name “defect field”. By duality we may straighten this structure
and visualize it schematically as

WZW =



CSl

∗ tYM

CSr .

This defect becomes a plain boundary for the tYM-theory when the left end is attached to a boundary
that couples the left with the right part of the CS-theory:

Definition 7.4.22. The Wess-Zumino-Witten codimension-2 corner in 4d topological Yang-Mills theory is
the boundary

I //

��

I

��
I

S3
tYM

// S4
tYM
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of the boundary 3d tYM theory given as a diagram in H by the composite

G

����

exp(iSWZW)

��
B2U(1)conn

zz

F(−)

$$
∗

0
$$

Ω3
cl

exp
(
i
~S

3
tYM

)
zz

B3U(1)conn

∇ChS
u}

:=

G

yy ((
∗

�� $$

[D1,BGconn]

(−)|∂D1

ww %%
∗

0
((

[S0,BGconn]

c◦p1−c◦p2

��

Ω3
cl .

exp
(
i
~S

3
tYM

)
ss

B3U(1)conn

exp
(
i
~
∫
D1 (−)

)
px

Here the bottom right square is that of Def. 7.4.20, the bottom left square is filled with the evident
equivalence, and the map G → [S1,BGconn] in the top square is given by resolving the simply connected
Lie group G by its based path space P∗G, regarded as a diffeological space. Then each path uniquely arises
as the parallel transport of a G-principal connection on the interval and two paths with the same endpoint
have a unique gauge transformation relating them.

Remark 7.4.23. It is important to highlight that G here is the differential concretification of the pullback
in the middle, as discussed in [FRS13a].

Proposition 7.4.24. The morphism

exp
(
i
~SWZW

)
: G→ B2U(1)conn

from Def. 7.4.22 is the WZW-2-connection (the “WZW gerbe”/“WZW B-field”).

Proof. This follows along the lines of the discussion in [FSS13a], where it was found that the composite

G // [S1,BGconn]
[S1,c] // [S1,B3U(1)conn]

exp
(
i
~
∫
S1 (−)

)
// B2U(1)conn

is the (topological part of) the localized WZW action. �

7.4.2.7 d = n − 2: Wilson loop/Wilson surface field theories In 1.4.1.5 ([FSS13a]) a description
of how Wilson loop line defects in 3d Chern-Simons theory is given by the following data. Let λ ∈ g be a
regular weight, corresponding via Borel-Weil-Bott to the irreducible representation which labels the Wilson
loop. Then the stabilizer subgroup Gλ ↪→ G of λ under the adjoint action is a maximal torus Gλ ' T ↪→ G
and G/Gλ ' Oλ is the coadjoint orbit. Integrality of λ means that pairing with λ constitutes a morphism
of moduli stacks of the form

SW : Ω1(−, g)//T
〈λ,−〉 // BU(1)conn .

This is the local Lagrangian/the prequantum bundle of the Wilson loop theory in that there is a diagram

Oλ
fib(J) //

��

Ω1(−, g)//T
〈λ,−〉 //

J

��

BU(1)conn

∗ // BGconn
c // B3U(1)conn ,
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whose top composite is the Kirillov prequantum bundle on the coadjoint orbit and which is such that a
Chern-Simons + Wilson loop field configuration (A, g) is a diagram

S1
A|g
S1 //� _

��

Ω1(−, g)//T

J

��
Σ3

A
// BGconn

g
u}

and the corresponding action functional is the product of 〈λ,−〉 transgressed over S1 and c transgressed
over Σ3.

We now interpret this formally as a codimension-2 defect of Chern-Simons theory analogous to the WZW
defect, hence as a codimension-3 structure in the ambient tYM theory.

Definition 7.4.25. Let φ : D2 → S2 be a smooth function which on the interior of S2 is a diffeomorphism
on S2 − {∗}. The universal Wilson line/Wilson surface defect is, as a diagram in H, the transgression
diagram, Def. 6.4.160

[S2,BGconn]

vv

[φ,BGconn]

''
[φ|S1 ,BGconn]

��

[Π(S1),BGconn]

((

[D2,BGconn]

(−)|∂D2

ww %%
[S1,BGconn]

exp
(
i
~
∫
S1 [S1,c]

)
''

Ω2
cl .

yy
B2U(1)conn

exp
(
i
~
∫
D2 [D2,c]

)
)

s{

Remark 7.4.26. This is a codimension-2 defect according to Def. 5.2.221. It may be visualized as a
2-dimensional CS theory cap

∗

∗

rr∗
with a tYM-theory sitting at the very tip. By duality there is the corresponding straightened picture

∗

∗
∗

∗

∗

CS

CS

tYM

CS

CS
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We now define a defect that factors through the universal Wilson defect of Def. 7.4.25 and reproduces the
traditional Wilson line action functional. To that end, let ∇S2 : S2 → BTconn be a T -principal connection
on the 2-sphere, where T is the maximal torus of G. We may identify the integral of its curvature 2-form
over the sphere with the weight λ,

λ =

∫
S2

F∇S2 .

Then consider the morphism

p∗1∇S1 + p∗2(−) : Ω1(−, g)//T // [S2,BGconn]

in H which over a test manifold U ∈ CartSp sends a connection 1-form A ∈ Ω1(U, g) to

p∗1∇S2 + p∗2A ∈ H(S2 × U,BGconn) .

This is indeed a homomorphism since T is abelian.

Proposition 7.4.27. We have the following

Ω1(−, g)//T

����

〈λ,−〉
��

BU(1)conn

F(−)

%%zz∗

0 $$

Ω2
cl

exp
(
i
~S

2
tYM

)
yy

B2U(1)conn

∇CS
u}

'

Ω1(−, g)//T

p∗1∇S2+p∗2(−)

''zz∗

$$

[S2,BGconn]

(−)|∂S2

ww %%
[∅,BGconn]

exp
(
i
~
∫
∅[∅,c]

)
''

Ω2
cl .

yy
B2U(1)conn

exp
(
i
~
∫
S2 [S2,−]

)
s{

Proof. By construction and since T is abelian, the component of the Chern-Simons form of p∗1∇S2 +p∗2A
with two legs along S2 is proportional to 〈F∇S2 ∧A〉. Hence its fiber integral over S2 × U → U is∫

S2

〈F∇S2 ∧A〉 = 〈λ,A〉 .

�
Therefore in conclusion we find that we can axiomatize Wilson loops in 3d Chern-Simons theory be the

following defect structure.

Definition 7.4.28. The Wilson line defect is

Ω1(−, g)//T

p∗1∇S2+p∗2(−)

��
[S2,BGconn]

vv

[φ,BGconn]

''
[Π(S1),BGconn]

((

[D2,BGconn]

(−)|∂D2

ww %%
[S1,BGconn]

exp
(
i
~
∫
S1 [S1,c]

)
''

Ω2
cl .

yy
B2U(1)conn

exp
(
i
~
∫
D2 [D2,c]

)
s{
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7.5 Prequantum geometry

We discuss here the application of cohesive higher prequantum geometry, 5.2.17, to the natural action
functionals that we consider in 7.2 and 7.3.

This section draws from [FRS13a].
Since in higher prequantum theory local Lagrangians are “fully de-transgressed” to higher prequantum

bundles, conversely every example induces its corresponding transgressions. In the following we always
start with a higher extended Chern-Simons-type theory and consider then its first transgression. As in the
discussion in [FSS13a] this first transgression is the higher prequantum bundle of the topological sector of
a higher extended Wess-Zumino-Witten type theory. In this way our examples appear at least in pairs as
shown in the following table:

Higher CS-type theory higher WZW-type theory

7.5.1 3d G-Chern-Simons theory 2d WZW-model on G
7.5.2 ∞-CS theory from L∞-integration
7.5.3 2d Poisson Chern-Simons theory 1d quantum mechanics
7.5.4 7d String-Chern-Simons theory 6d theory related to M5-brane

7.5.1 Higher prequantum 2d WZW model and the smooth string 2-group

In 5.2.17 we remarked that an old motivation for what we call higher prequantum geometry here is the
desire to “de-transgress” the traditional construction of positive energy loop group representations of simply
connected compact Lie groups G by, in our terminology, regarding the canonical BU(1)-2-bundle on G (the
“WZW gerbe”) as a prequantum 2-bundle. Here we discuss how prequantum 2-states for the WZW sigma-
model provide at least a partial answer to this question. Then we analyze the quantomorphism 2-group of
this model.

For G a connected and simply connected compact Lie group such as G = Spin(n) for n ≥ 3 or G = SU(n),
the first nontrivial cohomology class of the classifying space BG is in degree 4: H4(BG,Z) ' Z. For Spin(n)
the generator here is known as the first fractional Pontryagin class 1

2p1, while for SU(n) it is the second
Chern class c2. In [FSS10] was constructed a smooth and differential lift of this class to the ∞-topos
Smooth∞Grpd, namely a diagram of smooth higher moduli stacks of the form

BSpinconn

1
2 p̂1

//

uBSpin

��

B3U(1)conn

uB2U(1)

��
BSpin

1
2p1

//

∫
��

B3U(1)

∫
��

BSpin

1
2p1

// K(Z, 4)

∇CS

∇0
CS

∫
∇0

CS

BSUconn
ĉ2 //

uBSU

��

B3U(1)conn

uB2U(1)

��
BSU

c2 //

∫
��

B3U(1)

∫
��

BSU
c2 // K(Z, 4)

Here
∫

is the geometric realization map, and u(−) is the forgetful map from the higher moduli stacks of
higher principal connections to that of higher principal bundles of def. 6.4.108.

In 7.2.5 we discuss that this 3-connection on the smooth moduli stack of G-principal connections –
which for unspecified G we now denote by ∇ – is the full de-transgression of the (off-shell) prequantum 1-
bundle of G-Chern-Simons theory, hence is the localized incarnation of 3d G-Chern-Simons theory in higher
prequantum theory. In particular it is a B2U(1)-prequantization, according to def. 6.4.108, of the Killing
form invariant polynomial 〈−,−〉 of G, which is a differential 4-form (hence a pre-3-plectic form in the sense
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of def. 1.3.139) on the moduli stack of fields:

B3U(1)conn

F(−)

��
BGconn 〈F(−),F(−)〉

//

∇CS

55

Ω4
cl

.

This 3-connection on the moduli stack of G-principal connections does not descend to the moduli stack BG
of just G-principal bundles; it does however descend [Wal08] as a “3-connection without top-degree forms”
as in def. 6.4.96:

B(B2U(1)conn)

B2F(−)

��
BG //

∇2
CS

55

B2Ω2
cl

.

Therefore over the universal moduli stack of Chern-Simons fields BGconn we canonically have a higher
quantomorphism groupoid At(∇CS)• as in 5.2.17.5, while over the univeral moduli stack of just the “instanton
sectors” of fields we have just a Courant 3-groupoid At(∇2

CS)• as in 5.2.17.6. This kind of phenomenon we
re-encounter below in 7.5.3.

By the above and following [CJMSW05], the transgression of ∇CS to maps out of the circle S1 is found
to be the “WZW gerbe”, the canonical circle 2-bundle with connection ∇WZW on the Lie group G itself.
We may obtain this either as the fiber integration of ∇CS restricted along the inclusion of G as the constant
g-connection on the circle

∇WZW : G // [S1,BGconn]
[S1,∇CS] // [S1,B3U(1)conn]

exp(2πi
∫
S1 (−))

// B2U(1)conn

or equivalently we obtain it as the looping of ∇2
CS:

∇WZW : G ' ΩBG
Ω∇2

CS // ΩB(B2U(1)conn) ' B2U(1)conn .

This ∇WZW is the background gauge field of the 2d Wess-Zumino-Witten sigma-model, the “Kalb-Ramon B-
field” under which the string propagating on G is charged. We now regard this as the BU(1)-prequantization
(def. 6.4.108) of the canonical 3-form 〈−, [−,−]〉 on G (a 2-plectic form):

B2U(1)conn

F(−)

��
G

∇WZW

66

〈−,[−,−]〉
// Ω3

cl

.

By example 1.2.95 the prequantum 2-states of the prequantum 2-bundle ∇WZW are twisted unitary bundles
with connection (twisted K-cocycles, after stabilization): the Chan-Paton gauge fields. More explicitly, with
the notation as introduced there, a prequantum 2-state Ψ of the WZW model supported over a D-brane
submanifold Q ↪→ G is a map Ψ : ∇WZW|Q → ddconn in the slice over B2U(1)conn, hence a diagram of the
form

Q� _

��

Ψ // ∐
n(BU(n)//BU(1))conn

��
G

∇WZW

,,
//

��

[S1,BGconn]
exp(

∫
S1 [S1,∇])

//

conc.

��

B2U(1)conn

G//adG
' // GConn(S)1

.
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Here we have added at the bottom the map to the differential concretification of the transgressed moduli
stack of fields, according to example 6.4.16.3.1. As indicated, this exhibits G as fibered over its homotopy
quotient by its adjoint action. The D-brane inclusion Q → G in the diagram is the homotopy fiber over a
full point of G//adG precisely if it is a conjugacy class of G, hence a “symmetric D-brane” for the WZW
model. In summary this means that this single diagram exhibiting WZW prequantum-2-states as slice maps
encodes all the WZW D-brane data as discussed in the literature [AlSc04]. In particular, in [FSS13a] we
showed that the transgression of these prequantum 2-states Ψ to prequantum 1-states over the loop group
LG naturally encodes the anomaly cancellation of the open bosonic string in the presence of D-branes (the
Kapustin-part of the Freed-Witten-Kapustin quantum anomaly cancellation).

We may now study the quantomorphism 2-group of ∇WZW, def. 5.2.138, on these 2-states, hence, in the
language of twisted cohomology, the 2-group of twist automorphisms. First, one sees that by inspection that
this is the action that integrates and globalizes the D-brane gauge transformations which are familiar from
the string theory literature, where the local connection 1-form A on the twisted bundle is shifted and the
local connection 2-form on the prequantum bundle transforms as

A 7→ A+ λ , B 7→ B + dλ .

In order to analyze the quantomorphism 2-group here in more detail, notice that since the 2-plectic form
〈−, [−,−]〉 ∈ Ω3

cl(G) is a left invariant form (by definition), the left action of G on itself is Hamiltonian,
in the sense of def. 5.2.141, and so we have the corresponding Heisenberg 2-group Heis(G,∇WZW) of def.
5.2.141 inside the quantomorphism 2-group. By theorem 5.2.143 this is a 2-group extension of G of the form

U(1)FlatConn(G) // Heis(∇WZW) // G .

Since G is connected and simply connected, there is by prop. 6.4.200 an equivalence of smooth 2-groups
U(1)FlatConn(G) ' BU(1) and so the WZW Heisenberg 2-group is in fact a smooth circle 2-group extension

BU(1) // Heis(∇WZW) // G

classified by a cocycle B(∇WZW ◦ (−)) : BG → B3U(1). If G is compact and simply connected, then,
by the discussion in 6.4.6.2, π0H(BG,B3U(1)) ' H4(BG,Z) ' Z. This integer is the level, the cocycle
corresponding to the generator ±1 is 1

2p1 for G = Spin and c2 for G = SU . The corresponding extension is
the String 2-group extension, def. 7.1.10

BU(1) // StringG // G .

Accordingly, under Lie differentiation, one finds, that the Heisenberg Lie 2-algebra extension of theorem
5.2.17.5 combined with def. 5.2.17.5 is the string Lie 2-algebra extension

BR // Heis〈−,[−,−]〉(g) //
'

g

stringg

.

More in detail, using the results of 6.4.21.5:

Example 7.5.1. Let G be a (connected) compact simple Lie group, regarded as a 2-plectic manifold with
its canonical 3-form ω := 〈−, [−,−]〉 as in example 6.4.172. The infinitesimal generators of the action
of G on itself by right translation are the left invariant vector fields g, which are Hamiltonian. We have
H1

dR(G) ∼= H1
CE(g,R) = 0, and therefore a weak equivalence:

BH(G, [BR)
' // R[2]
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given by the evaluation at the identity element of G. The resulting composite cocycle

〈−, [−,−]〉 : g
ρ // XHam(X)

ω[•] // R[2]

is exactly the 3-cocycle which classifies the String Lie-2-algebra, namely just 〈−, [−,−]〉 regarded as a Lie
algebra 3-cocycle. The String Lie 2-algebra, def. 7.1.15, is the homotopy fiber of this cocycle, in that we
have a homotopy pullback square of L∞-algebras

stringg //

��

0

��
g
〈−,[−,−]〉 // R[2]

.

Hence the String Lie 2-algebra is the Heisenberg Lie 2-algebra of the 2-plectic manifold (G, 〈−, [−,−]〉) with
its canonical g-action ρ:

heisρ(g) ' stringg .

The relationship between stringg and L∞(G,ω) was first explored in [BaRo09].

Remark 7.5.2. By the obstruction theorem 5.1.321 this means that given a G-principal bundle

G // P

��
X

g // BG

,

then a lift of the modulating map g through the String 2-group extension is precisely the structure needed
to construct a circle 2-connection ∇glob on the total space P such that it restricts on each fiber to the
WZW-2-connection

G //

∇WZW

,,
P

��

∇glob // B2U(1)conn

X //

g

**
BStringG // BG

.

At the level of the induced action functionals, essentially this was observed [DiSh07]. If G = Spin×(E8×E8)
or similar, and if g is modulates the tangent bundle of X and a gauge bundle, then the obstruction to such
a lift is, by 7.1.2, the combination of 1

2p1 and c2, by the discussion in 7.1.2. One may interpret the bundle
of WZW models on P as the internal degrees of freedom of a heteric string on spacetime X and recovers a
(another) geometric interpretation of the Green-Schwarz anomaly, 7.1.2.

7.5.2 Higher prequantum nd Chern-Simons-type theories and L∞-algebra cohomology

The construction of the higher prequantum bundle ∇CS for Chern-Simons field theory in 7.5.1 above follows a
general procedure – which might be called differential Lie integration of L∞-cocycles - that produces a whole
class of examples of natural higher prequantum geometries: namely those extended higher Chern-Simons-type
field theories which are encoded by an L∞-invariant polynomial on an L∞-algebra, in generalization of how
ordinary G-Chern-Simons theory for a simply connected simple Lie group G is all encoded by the Killing
form invariant polynomial (and as opposed to for instance to the cup product higher U(1)-Chern-Simons
theories. Since also the following two examples in 7.5.3 and 7.5.4 are naturally obtained this way, we here
briefly recall this construction, due to [FSS10], with an eye towards its interpretation in higher prequantum
geometry.
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Given an L∞-algebra g ∈ L∞, there is a natural notion of sheaves of (flat) g-valued smooth differential
forms

Ωflat(−, g) ↪→ Ω(−, g) ∈ Sh(SmoothMfd) ,

and this is functorial in g (for the correct (“weak”) homomorphisms of L∞-algebras). Therefore there is
a functor – denoted exp(−) in [FSS10] – which assigns to an L∞-algebra g the presheaf of Kan complexes
that over a test manifold U has as set of k-cells the set of those smoothly U -parameterized collections of flat
g-valued differential forms on the k-simplex ∆k which are sufficiently well behaved towards the boundary
of the simplex (have “sitting instants”). Under the presentation Llhe[SmoothMfdop] ' Smooth∞Grpd of
the ∞-topos of smooth ∞-groupoids this yields a Lie integration construction from L∞-algebras to smooth
∞-groupoids. (So far this is the fairly immediate stacky and smooth refinement of a standard construction
in rational homotopy theory and deformation theory, see the references in [FSS10] for a list of predecessors
of this construction.)

In higher analogy to ordinary Lie integration, one finds that exp(g) is the “geometrically∞-connected” Lie
integration of g: the geometric realization

∫
exp(g), of exp(g) ∈ Llhe[SmoothMfdop,KanCplx] ' Smooth∞Grpd

is always contractible. For instance for g = R[−n+ 1] = Bn−1R the abelian L∞-algebra concentrated on R
in the nth degree, we have

exp(R[−n+ 1]) ' BnR ∈ Smooth∞Grpd

and it follows that
∫

BnR ' BnR ' ∗. Geometrically non-∞-connected Lie integrations of g arise notably as
truncations of the ∞-stack exp(g), 5.1.3. For instance for g1 an ordinary Lie algebra, then the 1-truncation
of the∞-stack exp(g1) to a stack of 1-groupoids reproduces (the internal delooping of) the simply connected
Lie group G corresponding to g by ordinary Lie theory:

τ1 exp(g1) ' BG ∈ Smooth∞Grpd .

Similarly for string ∈ L∞Alg the string Lie 2-algebra, def. 1.2.188, the 2-truncation of its universal Lie
integration to a stack of 2-groupoids reproduces the moduli stack of String-principal 2-bundles:

τ2 exp(string) ' BString ∈ Smooth∞Grpd .

Now the simple observation that yields the analgous Lie integration of L∞-cocycles is that a degree-n L∞-
cocycle µ on an L∞-algebra g is equivalently a map of L∞-algebras of the form

µ : Bg→ BnR ;

and since exp(−) is a functor, every such cocycle immediately integrates to a morphism

exp(µ) : exp(g)→ BnR

in Smooth∞Grpd, hence to a universal cocycle on the smooth moduli∞-stack exp(g). Moreover, this cocycle
descends to the n-truncation of its domain as a R/Γ cocycle on the resulting moduli n-stack

exp(µ) : τn exp(g)→ Bn(R/Γ) ,

where Γ ↪→ R is the period lattice of the cocycle µ.
For instance for

〈−, [−,−]〉 : Bg1 → B3R

the canonical 3-cocycle on a semisimple Lie algebra (where 〈−,−〉 is the Killing form invariant polynomial
as before), its period group is π3(G) ' Z of the simply connected Lie group G integrating g1, and hence the
Lie integration of the 3-cocycle yields a map of smooth ∞-stacks of the form

exp(〈−, [−,−]〉) : BG
' // τ3 exp(g1) B3(R/Z) = B3U(1) ,
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where we use that for the connected and simply connected Lie group G not only the 1-truncation but also
still the 3-truncation of exp(g1) gives the delooping stack: τ3 exp(g1) ' τ2 exp(g1) ' τ1 exp(g1) ' BG.

Indeed, this is what yields the refinement of the generator c : BG → K(Z, 4) to smooth cohomology,
which we used above in 7.5.1, for instance for g1 = so the Lie algebra of the Spin group, the Lie integration
of its canonical Lie 3-cocycle

exp(〈−, [−,−]〉so) ' 1
2p1

yields the smooth refinement of the first fractional universal Pontryagin class.
This is shown in [FSS10] by further refining the exp(−)-construction to one that yields not just moduli∞-

stacks of G-principal∞-bundles, but yields their differential refinements. The key to this construction is the
observation that an invariant polynomial 〈−, · · · ,−〉 on a Lie algebra and more generally on an L∞-algebra
g yields a globally defined (hence invariant) differential form on the moduli ∞-stack BGconn:

〈F(−), · · · , F(−)〉 : BGconn → Ωn+1
cl .

In components this is simply given, as the notation is supposed to indicate, by sending a G-principal con-
nection ∇ first to its g-valued curvature form F∇ and then evaluating that in the invariant polynomial. In
fact this property is part of the definition of BGconn for the non-braided ∞-groups G. This we think of
as a higher analog of Chern-Weil theory in higher differential geometry. We may also usefully think of the
invariant polynomial 〈F(−), · · · , F(−)〉 as being a pre n-plectic form on the moduli stack BGconn, in evident
generalization of the terminiology for smooth manifolds in def. 1.3.139.

Using this, there is a differential refinement exp(−)conn of the exp(−)-construction, which lifts this pre-
n-plectic form to differential cohomology and hence provides its pre-quantization, according to def. 6.4.108:

Bn(R/Γ)conn

F(−)

��
τn exp(g)conn

〈F(−)∧···F(−)〉 //

exp(µ)conn

55

Ωn+1
cl

.

Here the higher stack exp(−)conn assigns to a test manifold U smoothly U -parameterized collections of
simplicial L∞-Ehresmann connections: the k-cells of exp(g)conn are g-valued differential forms A on U ×
∆k (now not necessarily flat) satisfying an L∞-analog of the two conditions on a traditional Ehresmann
connection 1-form: restricted to the fiber (hence the simplex) the L∞-form datum becomes flat, and moreover
the curvature invariants 〈FA ∧ · · · ∧FA〉 obtained by evaluating the L∞-curvature forms in all L∞-invariant
polynomials descends down the simplex bundle U ×∆k → U .

For example the differential refinement of the prequantum 3-bundle of 3d G-Chern-Simons theory 1
2p1 '

τ3 exp(〈−, [−,−]〉) obtained this way is the universal Chern-Simons 3-connection

exp(〈−, [−,−]〉so)conn ' 1
2 p̂1 : BSpinconn → B3U(1)conn

whose transgression to codimension 0 is the standard Chern-Simons action functional, as discussed above
in 7.5.1. Analgously, the differential Lie integration of the next cocycle, the canonical 7-cocycle, but now
regarded as a cocycle on string, yields a prequantum 7-bundle on the moduli stack of String-principal 2-
connections:

exp(〈−, [−,−], [−,−], [−,−]〉so)conn ' 1
6 p̂2 : BStringconn → B7U(1)conn .

This defines a 7-dimensional nonabelian Chern-Simons theory, which we come to below in 7.5.4.
In conclusion this means that L∞-algebra cohomology is a direct source of higher smooth (Bn−1(R/Γ))-

prequantum geometries on higher differential moduli stacks. For µ any degree-n L∞-cocycle on an L∞-
algebra g, differential Lie integration yields the higher prequantum bundle

exp(µ)conn : τn exp(g)conn → Bn(R/Γ) .
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Moreover, these are by construction higher prequantum bundles for higher Chern-Simons-type higher gauge
theories in that their transgression to codimension 0

exp

(∫
Σn

[Σn, exp(µ)conn]

)
: [Σn, τn exp(g)conn] // R/Γ

is an action functional on the stack of g-gauge fields A on a given closed oriented manifold Σn which is
locally given by the integral of a Chern-Simons (n − 1)-form CSµ(A) (with respect to the corresponding
L∞-invariant polynomial) and globally given by a higher-gauge consistent globalization of such integrals.

All of this discussion generalizes verbatim from L∞-algebras to L∞-algebroids, too. In [FRS11] it was
observed that therefore all the perturbative field theories known as AKSZ sigma-models have a Lie integration
to what here we call higher prequantum bundles for higher Chern-Simons type field theories: these are
precisely the cases as above where µ transgresses to a binary invariant polynomial 〈−,−〉 on the L∞-
algebroid which non-degenerate. In the next section 7.5.3 we consider one low-dimensional example in this
family and observe that its higher geometric prequantum and quantum theory has secretly been studied in
some detail already – but in 1-geometric disguise.

For higher Chern-Simons action functionals exp(µ)conn as above, one finds that their variational differ-
ential at a field configuration A given by globally defined differential form data is proportional to

δ exp

(∫
Σn−1

[Σn, exp(µ)conn]

)
∝
∫

Σ

〈FA ∧ . . . FA ∧ δA〉 .

Therefore the Euler-Lagrange equations of motion of the corresponding n-dimensional Chern-Simons theory
assert that

〈FA ∧ · · ·FA,−〉 = 0 .

(Notice that in general FA is an inhomogenous differential form, so that this equation in general consists
of several independent components.) In particular, if the invariant polynomial is binary, hence of the form
〈−,−〉, and furthermore non-degenerate (this is precisely the case in which the general ∞-Chern-Simons
theory reproduces the AKSZ σ-models), then the above equations of motion reduce to

FA = 0

and hence assert that the critical/on-shell field configurations are precisely those L∞-algbroid valued con-
nections which are flat.

In this case the higher moduli stack τn exp(g), which in general is the moduli stack of instanton/charge-
sectors underlying the topologically nontrivial g-connections, acquires also a different interpretation. By the
above discussion, its (n−1)-cells are equivalently flat g-valued connections on the (n−1)-disks and its n-cells
implement gauge equivalences between such data. But since the equations of motion FA = 0 are first order
differential equations, flat connections on Dn−1 bijectively correspond to critical field configuration on the
cylinder Dn−1×[−T, T ]. Therefore the collection of (n−1)-cells of τn exp(g) is the higher/extended covariant
phase space for “open genus-0 (n−1)-branes” in the model. Moreover, the n-cells between these (n−1)-cells
implement the gauge transformations on such initial value data and hence τn exp(g) is, in codimension 1,
the higher/extended reduced phase space of the model in codimension 1. For n = 2 this perspective was
amplified in [CaFe00], we turn to this special case below in 7.5.3).

As an example, from this perspective the construction of the WZW-gerbe by looping as discussed above
in 7.5.2 is equivalently the construction of the on-shell prequantum 2-bundle in codimension 2 for “Dirichlet
boundary conditions” for the open Chern-Simons membrane. Namely BG is now the extended reduced phase
space, and so the extended phase space of membranes stretching between the unique point is the homotopy
fiber product of the two point inclusions Q0

// BG oo Q1 , with Q0, Q1 = ∗, hence is ΩBG ' G.
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Since the on-shell prequantum 2-bundle ∇1
CS trivializes over these inclusions, as exhibited by diagrams

Qi //

��

∗

��
BG

∇CS2 // B3U(1)conn2

,

the on-shell prequantum 3-bundle ∇2
CS extends to a diagram of relative cocylces of the form

Q0
//

��

∗

��
BG

∇2
CS // B(B3U(1)conn)

Q1
//

OO

∗

OO

,

hence, under forming homotopy fiber products, to the WZW-2-connection Ω∇2
CS : G → B2U(1) on the

extended phase space G.
In the next section we see another example of this phenomenon.

7.5.3 Higher prequantum 2d Poisson-Chern-Simons theory and quantum mechanics

We consider here the boundary prequantum theory of the non-perturbative 2d Poisson-Chern-Simons theory
and indicate how its quantization yields the quantization of the corresponding Poisson manifold, regarded
as a boundary condition. More on this quantization is below in 7.6.2.1.

A non-degenerate and binary invariant polynomial which induces a pre-2-plectic structure on the moduli
stack of a higher Chern-Simons type theory

ω := 〈F(−)F(−)〉 : τ2 exp(P)conn → Ω3
cl

exists precisely on Poisson Lie algebroids P, induced from Poisson manifolds (X,π). The differential Lie
integration method described above yields a (B(R/Γ))-prequantization

B2(R/Γ)conn

F(−)

��
τ1 exp(P)conn

∇P
66

ω
// Ω3

cl

.

The action functional of this higher prequantum field theory over a closed oriented 2-dimensional smooth
manifold Σ2 is, again by [FSS12c, FRS11], the transgression of the higher prequantum bundle to codimension
0

exp

(∫
Σ2

[Σ2,∇P ]

)
: [Σ2, τ1 exp(P)conn] // R/Γ .

We observe now that two complementary sectors of this higher prequantum 2d Poisson Chern-Simons field
theory ∇P lead a separate life of their own in the literature: on the one hand the sector where the bundle
structures and hence the nontrivial “instanton sectors” of the field configurations are ignored and only the
globally defined connection differential form data is retained; and on the other hand the complementary
sector where only these bundle structures/ instanton sectors are considered and the connection data is
ignored:
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1. The restriction of the action functional exp(
∫

Σ2
[Σ2,∇P ]) to the linearized theory – hence along the

canonical inclusion Ω(Σ,P) ↪→ [Σ2, exp(P)conn] of globally defined P-valued forms into all exp(P)-
principal connections – is the action functional of the Poisson sigma-model.

2. The restriction of the moduli stack of fields τ1 exp(P)conn to just τ1 exp(P) obtained by forgetting the
differential refinement (the connection data) und just remembering the underlying exp(P)-principal
bundles, yields what is known as the symplectic groupoid of P.

Precisely: while the prequantum 2-bundle∇P does not descend along the forgetful map τ1 exp(P)conN →
τ1 exp(P) from moduli of τ1 exp(P)-principal connections to their underlying τ1(exp(P))-principal bun-
dles, its version ∇1

P “without curving”, given by def. 6.4.96, does descend (this is as for 3d Chern-
Simons theory discussed above in 7.5.1) and so does hence its curvature ω1, which has coefficients in
BΩ2

cl instead of Ω3
cl:

B (B(R/Γ)conn)

BF(−)

��
τ1 exp(P)

∇1
P

77

ω1
// BΩ2

cl

.

If here the smooth groupoid τ1 exp(P) ∈ Smooth∞Grpd happens to have a presentation by a Lie
groupoid under the canonical inclusion of Lie groupoids into smooth ∞-groupoids (this is an integra-
bility condition on P) then equipped with the de Rham hypercohomology 3-cocycle ω1 it is called
in the literature a pre-quasi-symplectic groupoid [LX03]. If moreover the de Rham hypercohomology
3-cocycle ω1 – which in general is given by 3-form data and 2-form data on a Čech simplicial presheaf
that resolves τ1 exp(P) – happens to be represented by just a globally defined 2-form on the manifold
of morphisms of the Lie groupoid (which is then necessarily closed and “multiplicative”), then this
local data is called a (pre-)symplectic groupoid, see [Ha06] for a review and further pointers to the
literature.

So in the case that the descended (pre-)2-plectic form ω1 : τ1 exp(P)→ BΩ2
cl of the higher prequantum

2d Poisson Chern-Simons theory is represented by a multiplicative symplectic 2-form on the manifold of
morphisms of the Lie groupoid τ1 exp(P), then one is faced with a situation that looks like ordinary symplectic
geometry subject to a kind of equivariance condition. This is the perspective from which symplectic groupoids
were originally introduced and from which they are mostly studied in the literature (with the exception at
least of [LX03], where the higher geometric nature of the setup is made explict): as a means to re-code Poisson
geometry in terms of ordinary symplectic geometry. The goal of finding a sensible geometric quantization
of symplectic groupoids (and hence in some sense of Poisson manifolds, this we come back to below) was
finally achieved in [Ha06].

In order to further understand the conceptual role of the prequantum 2-bundle ∇1
P, notice that by the

discussion in 7.5.2, following [CaFe00], we may think of the symplectic groupoid τ1 exp(P) as the extended
reduced phase space of the open string Poisson-Chern-Simons theory. More precisely, if C1,C1 ↪→ P are two
sub-Lie algebroids, then the homotopy fiber product PhaseC0,C1

in

PhaseC0,C1

{{ ##
τ1 exp(C0)

##

τ1 exp(C1)

{{
τ1 exp(P)

should be the ordinary reduced phase space of open strings that stretch between C0 and C1, regarded as
D-branes. Unwinding the definitions shows that this is precisely what is shown in [CaFe03]: for C0,C1 ↪→ P
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two Lagrangian sub-Lie algebroids (hence over coisotropic submanifolds of X) the homotopy fiber product
stack PhaseC0,C1 is the symplectic reduction of the open C0-C1-string phase space.

Notice that the condition that Ci ↪→ P be Lagrangian sub-Lie algebroids means that restricted to them
the prequantum 2-bundle becomes flat, hence that we have commuting squares

τ1 exp(Ci) //

��

[B2(R/Γ)

��
τ1 exp(P)

∇1
P // B(B(R/Γ)conn)

.

If the inclusions are even such ∇1
P entirely trivializes over them, hence that we have diagrams

τ1 exp(Ci)
∇Ci //

��

∗

��
τ1 exp(P)

∇1
P // B(B(R/Γ)conn)

,

then under forming homotopy fiber products the prequantum 2-bundle ∇1
P induces a prequantum 1-bundle

on the open string phase space by the D-brane-relative looping of the on-shell prequantum 2-bundle:

∇C0
×
∇1
P

∇C1
: PhaseC0,C1)

// B(R/Γ)conn .

We now review the steps in the geometric quantization of the symplectic groupoid due to [Ha06] – hence
the full geometric quantization of the prequantization ∇1

P – while discussing along the way the natural re-
interpretation of the steps involved from the point of view of the higher geometric prequantum theory of 2d
Poisson Chern-Simons theory.

Consider therefore ∇1
P , as above, as the (BU(1))-prequantum 2-bundle of 2d Poisson Chern-Simons

theory according to def. 6.4.108. If we have a genuine symplectic groupoid instead of a pre-quasi-symplectic
groupoid then it makes sense ask for this prequantization to be presented by a Čech-Deligne 3-cocycle on
τ1 exp(P) which is given just by a multiplicative circle-bundle with connection on the space of morphisms of
the symplectic groupoid, and otherwise trivial local data on the space of objects. While this is unlikely to
be the most general higher prequantization of the 2d Poisson Chern-Simons theory, this is the choice that
admits to think of the situation as if it were a setup in traditional symplectic geometry equipped with an
equivariance- or “multiplicativity”-constraint, as opposed to a setup in higher 2-plectic geometry. (Such a
“multiplicative circle bundle” on the space of morphisms of a Lie groupoid is just like the transition bundle
that appears in the definition of a bundle gerbe, only that here the underlying groupoid is not a Čech
groupoid resolving a plain manifold, but is, in general, a genuine non-trivial Lie groupoid.)

Such a multiplicative prequantum bundle is the traditional notion of prequantization of a symplectic
groupoid and is also considered in [Ha06]. The central construction there is that of the convolution C∗-
algebra A(∇1)pq of sections of the multiplicative prequantum bundle on the space of morphisms of the
symplectic groupoid, and its subalgebra

A(∇1
P )q ↪→ A(∇1

P )pq

of polarized sections, once a suitable kind of polarization has been chosen. Observe then that convolution
algebras of sections of transition bundles of bundle gerbes have a natural interpretation in the higher geometry
of the corresponding higher prequantum bundle ∇1: by [TXL04] and section 5 of [CJM02] these are the
algebras whose modules are the unitary bundles which are twisted by ∇1: the “bundle gerbe modules”.

By 5.1.13 and by the discussion above in 7.5.1, ∇1
P -twisted unitary bundles are equivalently the (pre-

)quantum 2-states of ∇1
P regarded as a prequantum 2-bundle. These hence form a category A(∇1

P )qMod
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of modules, and such categories of modules are naturally interpreted, by the discussion in the appendix of
[Sc08a] as 2-modules with 2-basis the linear category BA(∇1

P )q:{
quantum 2-states of

higher prequantum 2d Poisson Chern-Simons theory

}
' A(∇1

P )qMod ∈ 2Mod .

This resolves what might be a conceptual puzzlement concerning the construction in [Ha06] in view of
the usual story of geometric quantization: ordinarily geometric quantization directly produces the space of
states of a theory, while it requires more work to obtain the algebra of quantum observables acting on that.
In [Ha06] it superficially seems to be the other way around, an algebra drops out as a direct result of the
quantization procedure. However, from the point of view of higher prequantum geometry this algebra is (a
2-basis for) the 2-space of 2-states; and indeed obtaining the 2-algebra or higher quantum operators which
would act on these 2-states does require more work (and has not been discussed yet).

Of course [Ha06] amplifies a different perspective on the central result obtained there: that A(∇1
P )q is also

a strict C∗-deformation quantization of the Poisson manifold that corresponds to the Poisson Lie algebroid
P! From the point of view of higher prequantum theory this says that the higher-geometric quantized 2d
Poisson Chern-Simons theory has a 2-space of quantum 2-states in codimension 2 that encodes the correlators
(commutators) of a 1-dimensional quantum mechanical system. In other words, we see that the construction
in [Ha06] is implicitly a “holographic” (strict deformation-)quantization of a Poisson manifold by directly
higher-geometric quantizing instead a 2-dimensional QFT.

Notice that this statement is an analogue in C∗-deformation quantization to the seminal result on formal
deformation quantization of Poisson manifolds: The general formula that Kontsevich had given for the
formal deformation quantization of a Poisson manifold was found by Cattaneo-Felder to be the point-particle
limit of the 3-point function of the corresponding 2d Poisson sigma-model [CaFe00]. A similar result is
discussed in [GK08]. There the 2d A-model (which is a special case of the Poisson sigma-model) is shown to
holographically encode the quantization of its target space symplectic manifold regarded as a 1d quantum
field theory.

In summary, the following table indicates how the “holographic” formal deformation quantization of
Poisson manifolds by Kontsevich-Cattaneo-Felder is analogous to the “holographic” strict deformation quan-
tization of Poisson manifolds by [Ha06], when reinterpreted in higher prequantum theory as discussed above.

perturbative formal algebraic
quantization

non-perturbative geometric
quantization

quantization of
Poisson manifold

formal deformation quantization strict C∗-deformation quantization

“holographically” related
2d field theory

Poisson sigma-model 2d Poisson Chern-Simons theory

moduli stack of fields
of the 2d field theory

Poisson Lie algebroid symplectic groupoid

quantization of
holographically related
2d field theory

perturbative quantization of
Poisson sigma-model

higher geometric quantization
of 2d Poisson Chern-Simons theory

1d observable algebra
is holographically
identified with...

point-particle limit
of 3-point function

basis for 2-space
of quantum 2-states

More details on this higher geometric interpretation of traditional symplectic groupoid quantization are
discussed below in 7.6.

7.5.4 Higher prequantum 6d WZW-type models and the smooth fivebrane-6-group

We close the overview of examples by providing a brief outlook on higher dimensional examples in general,
and on certain higher prequantum field theories in dimensions seven and six in particular.
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To appreciate the following pattern, recall that in 7.5.1 above we discussed how the universal G-Chern-
Simons (B2U(1))-principal connection ∇CS over BGconn transgresses to the Wess-Zumino-Witten BU(1)-
principal connection ∇WZW on G itself. At the level of the underlying principal ∞-bundles ∇0

CS and ∇0
WZW

this relation holds very generally:
for G ∈ Grp(H) any ∞-group, and A ∈ Grpn+1(H) any sufficiently highly deloopable ∞-group (def.

5.1.156) in any ∞-topos H, consider a class in smooth ∞-group cohomology, 5.1.14,

c ∈ Hn+1
grp (G,A) = Hn+1(BG,A) ,

hence a universal characteristic class for G-principal ∞-bundles, represented by a smooth cocycle

∇0
CS : BG // Bn+1A .

Along the above lines we may think of the corresponding BnA-principal ∞-bundle over BG as a universal
∞-Chern-Simons bundle. By example 5.1.18 this is the delooped ∞-group extension which is classified by
∇0

CS regarded as an ∞-group cocycle. The looping of this cocycle exists

∇0
WZW := Ω∇0

CS : G // BnA .

and modulates a Bn−1A-principal bundle over the ∞-group G itself: the ∞-group extension itself that is
classified by ∇0

CS according to example 5.1.18. This is the corresponding WZW ∞-bundle.
For example, for the case that G ∈ Grp(Smooth∞Grpd) is a compact Lie group and A = U(1) is the

smooth circle group, then by example 6.4.6.2 there is an essentially unique refinement of every integral
cohomology class k ∈ H4(BG,Z) to such a smooth cocycle ∇0

CS : BG → B3U(1). This k is the level of
G-Chern-Simons theory and ∇0

CS modulates the corresponding higher prequantum bundle of 3d G-Chern-
Simons theory as in 7.5.1 above. Moreover, the looping ∇0

WZW ' Ω∇0
CS modulates the “WZW gerbe”, as

discussed there.

Now restrict attention to the next higher example of such pairs of higher Chern-Simons/higher WZW
bundles, as seen by the tower of examples induced by the smooth Whitehead tower of BO, 7.1.2.1: the
universal Chern-Simons 7-bundle on the smooth String-2 group and the corresponding Wess-Zumino-Witten
6-bundle on String itself.

To motivate this as part of a theory of physics, first consider a simpler example of a 7-dimensional
Chern-Simons type theory, namely the cup-product U(1)-Chern-Simons theory in 7 dimensions, for which
the “holographic” relation to an interesting 6d theory is fairly well understood. This is the theory whose
de-transgression is given by the higher prequantum 7-bundle on the universal moduli 3-stack B3U(1)conn

of B2U(1)-principal connections that is modulated by the smooth and differential refinement of the cup
product ∪ in ordinary differential cohomology:

B3U(1)conn

(−)∪̂(−) //

uB3U(1)

��

B7U(1)conn

uB7U(1)

��
B3U(1)

(−)∪(−) //

∫
��

B7U(1)

∫
��

K(Z4)
(−)∪(−) // K(Z8)

∇7AbCS

∇0
7AbCS

∫
∇0

7AbCS

.

(Or rather, the theory to consider for the full holographic relation is a quadratic refinement of this cup
pairing. The higher geometric refinement of this we discuss in 7.1.8, but in the present discussion we will
suppress this, for simplicity).

While precise and reliable statements are getting scarce as one proceeds with the physics literature
into the study of these systems, the following four seminal physics articles seem to represent the present
understanding of the story by which this 7d theory is related to a 6d theory in higher generalization of how
3d Chern-Simons theory is related to the 2d WZW model.
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1. In [Wi96] it was argued that the space of states that the (ordinary) geometric quantization of ∇7AbCS

assigns to a closed 6d manifold Σ is naturally identified with the space of conformal blocks of a self-
dual 2-form higher gauge theory on Σ. Moreover, this 6d theory is part of the worldvolume theory
of a single M5-brane and the above 7d Chern-Simons theory is the abelian Chern-Simons sector of
the 11-dimensional supergravity Lagrangian compactified to a 7-manifold whose boundary is the 6d
M5-brane worldvolume.

2. Then in [Mald97] a more general relation between the 6d theory and 11-dimensional supergravity
compactified on a 4-sphere to an asymptotically anti-de Sitter space was argued for. This is what
is today called AdS7/CFT6-duality, a sibling of the AdS5/CFT4-duality which has received a large
amount of attention since then.

3. As a kind of synthesis of the previous two items, in [Wi98c] it is argued for both AdS5/CFT4 and
AdS7/CFT6 the conformal blocks on the CFT-side are obtained already by keeping on the supergravity
side only the Chern-Simons terms inside the full supergravity action.

4. At the same time it is known that the abelian Chern-Simons term in the 11-dimensional supergravity
action relevant for AdS7/CFT6 is not in general just the abelian Chern-Simons term ∇7AbCS considered
in the above references: more accurately it receives Green-Schwarz-type quantum corrections that make
it a nonabelian Chern-Simons term [DLM95].

In [FSS12b] we observed that these items together, taken at face value, imply that more generally it must
be the quantum-corrected nonabelian 7d Chern-Simons Lagrangian inside 11-dimensional supergravity which
is relevant for the holographic description of the 2-form sector of the 6d worldvolume theory of M5-branes.
(See [Fr12b] for comments on this 6d theory as an extended QFT related to extended 7d Chern-Simons
theory.) Moreover, in 7.1.8 we observe that the natural lift of the “flux quantization condition” [Wi96] –
which is an equation between cohomology classes of fields in 11d-supergravity – to moduli stacks of fields
(hence to higher prequantum geometry) is given by the corresponding homotopy pullback of these moduli
fields, as usual in homotopy theory. We showed that this homotopy pullback is the smooth moduli 2-stack
BString2a

conn of twisted String-principal 2-connections, unifying the Spin-connection (the field of gravity) and
the 3-form C-field into a single higher gauge field in higher prequantum geometry.

The nonabelian 7-dimensional Chern-Simons-type Lagrangian on String-2-connections obtained this way
in [FSS12b] is the sum of some cup product terms and one indecomposable term. Moreover, the refinement
specifically of the indecomposable term to higher prequantum geometry is the stacky and differential re-
finement 1

6 p̂2 of the universal fractional second Pontryagin class 1
2p2, which was constructed in [FSS10] as

reviewed in 7.5.2 above:

BStringconn

1
6 p̂2

//

uBString

��

B7U(1)conn

pB7U(1)

��
BString

1
6p2

//

∫
��

B7U(1)

∫
��

BO〈8〉
1
6p2

// K(Z, 8)

∇7CS

∇0
7CS

∫
∇0

7CS

.

Quite independently of whatever role this extended 7d Chern-Simons theory has as a sector in AdS7/CFT6

duality, this is the natural next example in higher prequantum theory after that of 3d Spin-Chern-Simons
theory.

In [FSS10] it was shown that the prequantum 7-bundle of this nonabelian 7d Chern-Simons theory over
the moduli stack of its instanton sectors, hence over BString, is the delooping of a smooth refinement of the
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Fivebrane group, 7.1.5.4, to the smooth Fivebrane 6-group, 7.1.2.5:

BFivebrane

��
BString

∇0
7CS // B7U(1) .

Moreover, by the above general discussion this induces a WZW-type 6-bundle over the smooth String 2-group
itself, whose total space is the Fivebrane group itself

Fivebrane

��
String

∇0
6WZW // B6U(1)

.

Therefore, in view of the discussion in 7.5.1, it is natural to expect a 6-dimensional higher analog of traditional
2d WZW theory whose underlying higher prequantum 6-bundle is∇6WZW. However, the lift of this discussion
from just instanton sectors to the full moduli stack of fields is more subtle than in the 3d/2d case and deserves
a separate discussion elsewhere. (This is ongoing joint work with Hisham Sati.)
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7.6 Quantization

Above in 5.2.18 we discussed how local Lagrangian topological prequantum field theory with boundaries and
defects is axiomatized in terms of local action functionals/higher prequantum bundles exp

(
i
~S
)

on moduli
stacks Fields corresponding to diagrams of symmetric monoidal (∞, n)-categories of the form

Bordsing
n

⊗ exp
(
i
~S
)
//

Fields ))

Corrn(H/Phases)
⊗

��
Corrn(H)⊗

,

where H is the ambient cohesive ∞-topos.
By folk lore, a prequantum field theory with action functional exp

(
i
~S
)

on Fields is supposed to induce
a genuine quantum field theory given by a monoidal functor to some E-linear (∞, n)-category EModn
(for some ground ring E) by a process that integrates the contributions of exp

(
i
S (φ)

)
∈ Phases over all

φ ∈ Fields as E-modules, after a specified embedding Phases ↪→ EMod. This path integral [FeHi65, Zi04]
is traditionally denoted by the symbols on the left of∫

φ∈Fields

exp
(
i
~S(φ)

)
Dφ : Bordsing

n

⊗ −→ EMod⊗n ,

where Dφ is meant to suggest an integration measure on Fields.
We now indicate how the discussion in 5.5 serves to naturally and usefully make formal sense of this

inside the tangent cohesive ∞-topos TH, 6.1 by fiber integration in twisted stable cohomology, 6.1.3.1.
Then we indicate how in examples this general process reproduces traditional geometric quantization, ??,
as the boundary quantum field theory of the non-perturbative local prequantum 2d Poisson-Chern-Simons
theory of 7.5.3. We also indicate how higher analogs of this serve to quantize higher WZW-type p-brane
σ-models as in 7.3 as boundary theories of the higher prequantum Chern-Simons theories in 7.2.

The material outlined here is due to [Nui13, Sc14a, Sc13c].

• 7.6.1 – Cohomological quantization of correspondences in a cohesive slice

• 7.6.2 – The quantum particle at the boundary of the string

• 7.6.3 – The quantum string at the boundary of the membrane

7.6.1 Cohomological quantization of correspondences in a cohesive slice

To begin the discussion at the absolute fundamentals, notice that the two hallmarks of quantum theory are
(e.g. [Di87])

1. the superposition principle

2. quantum interference .

These say that 1. quantum phases may be additively combined such that 2. there are relations that make
combinations sum to zero. This informal statement is formally captured by the passage from the circle group
U(1) of phases in which action functionals exp

(
i
~S
)

traditionally take values, as discussed in 5.2.18.1.1, first
to the group ring Z[U(1)], which is the universal context for adding phases, and then second to the quotient
ring defined by the relations that regard addition of phases inside the complex numbers:

U(1)
� � superposition // Z[U(1)]

interference // // C .
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What is supposed to be integrated by the path integral is the thus linearized action functional ρ exp
(
i
~S
)
.

Observe now that the free group ring construction Z[−] is the left adjoint in an adjunction

CRing
oo Z[−]

GL1

// AbGrp

between commutative rings and abelian groups, whose right adjoint is the functor that sends a ring to
its group of units. The corresponding adjunct of the map interference ◦ superposition above is the group
homomorphims

ρ : U(1) −→ GL1(C) ,

which canonically embeds U(1) into the group of units of the complex numbers. Being a Lie group homo-
morphism, this deloops to a morphism of moduli stacks

Bρ : BU(1) // BGL1(C)
' // CLine

� � / CMod ,

where on the right we observe that BGL1(C) is equivalently the moduli stack of smooth complex line bundles
which sits inside the moduli stack of smooth complex vector bundles.

Using this, we can canonically turn a action functional as in 5.2.18.1.1 into the corresponding integral
kernel,

Fieldstraj

xx ''
Fieldsin

Lin

&&

χin

!!

Fieldsout

Lout

xx

χout

}}

BU(1)conn

Bρ

��
BGL1(C)� _

��
CMod

exp
(
i
~Straj

)
s{

regarded as a gauge transformation between an incoming prequantum bundle χin and an outgoing pre-
quantum bundle χout. Write then Cχin(Fieldsin) and Cχout(Fieldsout) for the space of sections of these
prequantum line bundles, then the path integral over exp

(
i
~Straj

)
is supposed to produce a linear map

Cχin(Fieldsin) −→ Cχout(Fieldsout) ,

which would be the quantum propagator that takes incoming quantum states/wave functions to outgoing
quantum states.

This storty is quantum mechanics, hence 1-dimensional quantum field theory. By the discussion of higher
dimensional local prequantum field theory in 5.2.18, for an n-dimensional local prequantum field theory the
local action functional in full codimension is given by a Lagrangian L which is a map of the form

L : Fields −→ BnU(1)conn .

By direct analogy with the above discussion, we are therefore led to consider the following linearization of
such local Lagrangians.

First observe, based on [ABG10a], that the above adjunction (Z[−] a GL1) generalizes to an∞-adjunction
between E∞-rings in the ∞-topos H (see [L-Alg]) and abelian ∞-group objects in H, def. 5.1.157:

CRing(H)
oo S[−]

GL1

// AbGrp(H) .
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Therefore for an n-dimensional field theory we are to look for a quotient E∞-ring E of the∞-group E∞-ring
S[Bn−1U(1)] on the circle n-group (def. 6.4.21)

Bn−1U(1) �
� superposition // S[BU(1)]

interference // // E .

For instance for n = 2 there is a natural choice of quotient: by a smooth refinement of Snaith’s theorem
[Sn79] we can take37

KU := S[BU(1)][β−1]

to be the localization of the smooth group ∞-ring of the circle 2-group at the smooth Hopf bundle Bott
element. Since these are ∞-colimit constructions, they are preserved by geometric realization, 6.4.5 and
Snaith’s theorem then says that this is the traditional complex K-theory spectrum

Π(KU) ' S[K(Z, 2)][β−1] ' KU .

We learn from this that 2-dimensional local pre-quantum field theory should have a natural quantization in
K-theory, and indeed it does, as we describe in 7.6.2 below.

In this fashion, for suitable choices of higher superposition principles

ρ : Bn−1U(1) −→ GL1(E)

we may E-linearize local action functionals to higher integral kernels given by pasting composites of the form

Fieldstraj

iin

ww

iout

''
Fieldsin

Lin

''

χin

!!

Fieldsout

Lout

ww

χout

}}

BnU(1)conn

Bρ

��
BGL1(E)� _

��
EMod

exp
(
i
~Straj

)
s{

.

Notice that such a diagram is a correspondence in H whose correspondence space Fieldstraj is equipped with
a cocycle in (χin, χout)-twisted bivariant E-cohomology theory. This is the broad structure of representatives
of pure motives (see e.g. [Su08]), here generalized to cohesive higher moduli stacks and twisted bivariant
generalized cohomology.

Forming the E-modules of sections of these higher prequantum E-line bundles precisely means forming
χ-twisted E-cohomology spectra as in 6.1.3.1. Then a correspondence as above yields a co-correspondence
of E-module spectra of the form

Eχin(Fieldsin)
i∗in−→ Ei

∗
inχin(Fieldstraj) ' Ei

∗
outχout(Fieldstraj)

i∗out←− (Fieldsout)E
χout(Fieldsout) .

Now integration in this context means to dualize the morphism on the right (with respect to the tensor
monoidal structure on EMod) and to choose an equivalence of the E-modules with their (fiberwise) duals,
this is the choice of orientation in twisted E-cohomology. The obstructions for such an orienation to exist
by itself and moreover to exist in a consistent way that is compatible composition of correspondence (as

37I am grateful to Thomas Nikolaus for discussion of this point.
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indicated in [FHT07]) are the quantum anomalies. If the orientation exists and has been consistently chosen,
then we can form the twisted Umkehr map [ABG10b] (iout)!, see [Nui13] for a review. This finally turns the
above integral kernel into the higher quantum propagator

Eχin(Fieldsin)
(iout)!◦i∗in // Eχout(Fieldsout) .

In our first example in 7.6.2 below, in the case of n = 2 with E = KU as above, this cohomological
quantization is presented over moduli stacks which are Lie groupoids by the KK-theoretic constructions in
[BMRS07], via [TXL04]. In [Mah13] it is shown that this indeed canonically maps into noncommutative
motives (see e.g [BGT10]).

In summary, the quantization of pre-quantum correspondences in the slice of a cohesive ∞-topos via
fiber integration in twisted stable cohomology corresponds to lifts of the original pre-quantum field theory
as shown in the following diagram:

Corror
n (H/BGL1(E))

⊗

��

∫
(−)

(−) // EModn

Bordsing
n

⊗
exp
(
i
~S
)
//

Fields ))

exp
(
i
~S
)
D(−)

22

∫
φ∈Fields

exp
(
i
~S(φ)

)
Dφ

++

Corrn(H/Phases)
⊗

��

ρ // Corrn(H/BGL1(E))
⊗

Corrn(H)⊗

,

Here

• Fields is the higher moduli stack of pre-quantum fields;

• exp
(
i
~S
)

is the specified local action functional on Fields, defining the given pre-quantum field theory;

• ρ is the chosen higher superposition principle, linearizing in E-cohomology;

• exp
(
i
~S
)
D(−) is a lift of the local action functional to consistently twisted E-oriented correspondences,

hence is a choice of cohomological path integral measure on Fields;

•
∫

φ∈Fields

exp
(
i
~S(φ)

)
D(φ) is the composition of the latter the previous item with the pull-push opera-

tion, this is the cohomological realization of the path integral.

This quantization process is particularly interesting for the boundary prequantum field theories discussed
in 5.2.18.6, where it yields quantization of geometric (non-topological) field theories as the “holographic”
boundaries of topological field theories in one dimension higher.
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linear homotopy-type theory twisted generalized cohomology quantum theory

linear homotopy-type (module-)spectrum state space
multiplicative conjunction smash product of spectra composite system

dependent linear type module spectrum bundle

Frobenius reciprocity
six operation yoga
in Wirthmüller context

linearity of integrals

dual type (linear negation) Spanier-Whitehead duality dual state space

invertible type twist
prequantum line bundle,

quantum anomaly

dependent sum generalized homology spectrum
space of compactly supported

quantum states
“bra”

dual of dependent sum generalized cohomology spectrum
space of quantum states

“ket”
linear implication bivariant cohomology quantum operators

exponential modality Goodwillie exponential Fock space
dependent sum
over finite homotopy type

Thom spectrum

dualizable dependent sum
over finite homotopy type

Atiyah duality between
Thom spectrum and
suspension spectrum

(twisted) self-dual type Poincaré duality inner product (Hilbert) space

dependent sum coinciding
with dependent product

ambidexterity, semiadditivity
system of
inner product state spaces

dependent sum coinciding
with dependent product
up to invertible type

Wirthmüller isomorphism
(twisted ambidexterity)

anomalous system
of inner product state spaces

(
∑
f a f∗)-counit

pushforward
in generalized homology

(twisted-)self-duality-induced
dagger of this counit

(twisted-)Umkehr map,
fiber integration

quantum superposition
and interference

linear polynomial functor primary integral transform
propagator in cobounding
TQFTd+1

correspondence
with linear implication

motive
prequantized Lagrangian correspondence,

action functional
composite of this linear implication
with unit and daggered counit

secondary integral transform
cohomological path integral,

motivic transfer
trace Euler characteristic partition function

945



special case linear homotopy-type theory
higher linear algebra
viz.
generalized cohomology theory

E ∈ CRing∞ ground ring
X ∈ ∞Grpd base homotopy type (base space)

τ : X −→ Pic(E) twist

τ̂ := τ∗P̂ic(E) ∈ Mod(X) E-line bundle

canonical twist on moduli
for stable vector bundles

JE : Z×BO J // Pic(S)
Pic(S→E)// Pic(E) J-homomorphism∑

X

τ̂ ' E•+τ (X)
spectrum of
τ -twisted E-homology cycles

trivial twist
∑
X

1X ' E•(X) = E ∧ Σ∞+ X suspension spectrum

X
ξ−→ Z×BO modulating

stable vector bundle

∑
X

ĴE ◦ ξ = E ∧Xξ Thom spectrum

canonical twist on X := BO〈n〉
JEBO〈n〉 : BO〈n〉 → BO

JE−→ Pic(E)

∑
BO〈n〉

ĴEBO〈n〉 'MO〈n〉 universal
Thom spectrum

low n

n = 0: MO
n = 1: MSO
n = 2: MSpin
n = 4: MString

Riemannian-
oriented-
spin-
string-

 cobordism spectrum

D Spanier-Whitehead duality

D
∑
X

τ̂ = E•+τ (X)
spectrum of
τ -twisted E-cohomology cocycles

X compact smooth manifold
with tangent bundle TX
and stable normal bundle NX = −TX

D(E ∧ Σ∞+ X) ' E•+NX(X) Atiyah-Whitehead duality

Z

τZ ""

f // X

τX{{
Pic(E)

ou} fiberwise E-orientation
of τZ relative to τX

to the point

Z

τZ ""

// ∗

0||
Pic(E)

ov~ τZ-twisted E-orientation of Z

vanishing twist on domain

Z

0 ""

f // X

τX{{
Pic(E)

ou} E-orientation of f

fiberwise fundamental class with twist τ f!f
∗τ̂X ' Df!f

∗D(τ̂X ⊗ τ̂) fiberwise twisted Poincaré duality
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7.6.2 The quantum particle at the boundary of the string

We indicate how traditional geometric quantization of symplectic manifolds (e.g. [Br93]) arises as the
motivic quantization of the canonical boundary field theory to the non-perturbative 2d Poisson-Chern-Simons
field theory of 7.5.3. Then we observe that the same process more generally yields a notion of geometric
quantization of Poisson manifolds. Given a compact Lie group G we find a pre-quantum defect between
two Poisson-Chern-Simons boundary field theories whose cohomological quantization yields Kirillov’s orbit
method in the K-theoretic incarnation given by Freed-Hopkins-Teleman.

7.6.2.1 Holographic geometric quantization of Poisson manifolds Given a Poisson manifold
(X,π), by the general construction of 7.2.11, as described in 7.5.3, there is a 2d Chern-Simons field theory
induced by it, whose moduli stack of instanton sector of fields is the symplectic groupoid SymplGrpd(X,π),
on which the local action functional induces a BU(1)-principal 2-bundle

χ : SymplGrpd(X,π) −→ B2U(1) .

Now one observes that this is such that it trivializes when restricted along the canonical inclusion X −→
SymplGrpd(X,π) (which is the canonical atlas, def. 5.1.66). By the discussion in 5.2.18.6 this induces a
boundary field theory for the 2d Poisson-Chern-Simons theory, exhibited by the correspondence

X

i

((||∗

""

SymplGrpd(X,π)

χ
ww

B2U(1)

ξ
t|

.

Here the trivialization ξ is a prequantum bundle on the Poisson manifold X.
Now since this is a correspondence with higher phases in B2U(1), by the above discussion this situation

is naturally quantized in twisted complex K-theory

X

i

((zz∗

$$

SymplGrpd(X,π)

χ
vv

B2U(1)

ρ

��
BGL1(KU)

ξ
s{

.

If the morphism i : X −→ SymplGrpd(X,π) can be and is equipped with an orientation in χ-twisted K-
theory (which usually involves in particular that we assume that X is compact), then pull-push yields a map
of KU-module spectra of the form

i!ξ : KU −→ KUχ(SymplGrpd(X, π)) .

This is equivalently an element in the twisted K-cohomology of the symplectic groupoid

i!ξ ∈ KUχ(SymplGrpd(X, π))
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and this is to be regarded as the quantization of the Poisson manifold (X,π).
Notice that the symplectic groupoid SymplGrpd(X,π) is a resolution of the space of symplectic leaves of

(X,π). Therefore a class in KUχ(SymplGrpd(X, π)) may be thought of as providing one (virtual) vector space
for each symplectic leaf, to be thought of as the space of quantum states. Specifically, when (X,π) = (X,ω−1)
happens to be a symplectic manifold, then SymplGrpd(X,π) ' ∗ (as smooth stacks) and so the above yields
an element of the K-theory of the point. One checks that this coincides with the K-theoretic description of
traditional geometric quantization.

If there is a compact group G of Hamiltonians acting on (X,ω−1) by Hamiltonian actions, then by the dis-
cussion in 1.3.2.11, 5.2.17.5 we obtain a G-equivariant version of this situation exhibited by a correspondence
of quotient stacks

X//G

%%yy
∗//G

%%

∗//G

yy
B2U(1)

ρ

��
BGL1(KU)

ξ
t|

.

This now has a cohomological quantization if the G-action preserves the choice of K-orientation. If that comes
from a Kähler polarization then this is the familiar condition on quantizability of prequantum operators.
Now the pull-push quantization acts as

i! : K(X//G) ' KG(X) −→ KG(∗) ' K(∗//G) ' Rep(G)

and refines i!χ to a cocycle in G-equivariant K-theory. This is represented by the Hilbert space of quantum
states equipped with its G-action by quantum observables. See section 5.2.1 in [Nui13].

Notice that this cohomological/geometric quantization of Poisson manifolds as the 1d boundary field
theory of the non-perturbative 2d Poisson-Chern-Simons theory is conceptually analogous to the perturbative
formal deformation quantization of Poisson manifolds given in [Kon03], which in [CaFe99] was found to be
induced by the perturbative Poisson sigma-model. Another similar holographic quantization of 1d mechanics
by a 2d string sigma-model was given in [GK08].

More generally, regard the dual vector space g∗ of the Lie algebra of G as a Poisson manifold with its
Lie-Poisson structure. The corresponding symplectic groupoid is the adjoint action groupoid

SymplGrpd(g∗, [−,−]) ' g∗//G .

Then for Oλ any regular coadjoint orbit, we get the following correspondence of correspondences in H:

∗ ∗oo // ∗ trivial theory

Oλ//G

OO

��

Oλoo � � //

OO

��

g∗

OO

��

boundary

∗//G Oλ//Goo // g∗//G 2dCS

2dCS defect 2dCS

.
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Here on the left we have the symplectic manifold Oλ regarded as a G-equivariant boundary field theory
of its 2d Poisson-Chern-Simons theory as just discussed. On the right we have the Poisson manifold g∗

regarded as the boundary of its 2d Poisson-Chern-Simons theory as above. The whole diagram is equipped
with maps down to B2U(1) as in prop. 5.2.219, which we will not display here. As such the diagram exhibits
a defect at which these two boundary conditions meet. The quantization of the left boundary theory yields
a space of states realized as an element in the representation ring of G, which is the K-theoretic formulation
of Kirillov’s orbit method. The quantization of the defect yields a quantum operator which produces such
representations from prequantum bundles over g∗. Analysis of the details shows that this defect operator is
effectively the “inverse universal orbit method” of theorem 1.28 in [FHT05]. See 1.4.1.5 above for discussion
of the orbit method and its physical interpretation. See section 5.2.2 of [Nui13] for more details on this
defect quantization.

7.6.2.2 D-brane charge While by the above the endpoints of the Poisson-Chern-Simons string serve
to exhibit every possible mechanical system, we can also consider endpoints of the (topological sector) of
the type II superstring. This is the σ-model on a target manifold X equipped with a background B-field
whose instanton sector we denote by χB : X −→ B2U(1). A boundary condition for this which is given by
a submanifold Q ↪→ X is precisely a choice of trivialization ξ of χB on that submanifold

Q

i

##{{∗

""

X

χB{{
B2U(1)

ξw�

.

This ξ now plays the role of the Chan-Paton gauge field on the D-brane Q. The cohomological quantization
of this correspondence in K-theory as above exists if Q ↪→ X is χ-twisted K-orientable, which is precisely
the Freed-Witten anomaly cancellation condition, see 1.4.3. In this case the quantization yields the class

i!ξ ∈ KχB (X)

in the B-field twisted K-theory of spacetime. This is what is known as the D-brane charge of (Q, ξ) [BMRS07].
See section 5.2.4 of [Nui13] for more details.

7.6.3 The quantum string at the boundary of the membrane

We consider the above holographic quantization of the particle at the boundary of the string in one dimension
higher, and indicate the cohomological quantization of the string at the boundary of the membrane.

To that end, let χC : Y//Z2 −→ B3U(1) be (the 3-bundle underlying) the supergravity C-field on an
11-dimensional Hořava-Witten spacetime, as discussed above in 7.1.8. By the discussion there, this class is of
the form 1

2p1 + 2a and on the higher orientifold plane 10-dimensional boundary X ↪→ Y this class trivializes.
By the discussion in 7.1.6.3 the choice of trivialization χB is the twisted B-field of the heterotic string theory
on X, representing a 2a-twisted string structure.

X

i

%%||∗

""

Y//Z2

χCzz
B3U(1)

χB
v~

.
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Now since χC is the background field for the topological sector of the M2-brane, 1.4.4.2, by the general
discussion of 5.2.18.6 we see that this diagram exhibits a boundary condition for the M2-brane ending on
the O9-plane X. This boundary string of the M2 on the O9 is the heterotic string. By comparison with
7.6.2 we see that therefore the cohomological quantization of this correspondence should yield the partition
function of the string.

To see this, notice that by the general discussion in 7.6.1 we are to choose a higher superposition principle
by finding an E∞-ring E such that there is a natural higher group homomorphism

B2U(1) −→
∫

B2U(1) ' K(Z, 3) −→ GL1(E) .

There is one famous such choice [ABG10a], namely E = tmf, the “universal elliptic cohomology theory”.

X
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&&zz∗

$$

Y//Z2

χCxx
B3U(1)

ρ

��
BGL1(tmf)
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t|

.

A cohomological quantization of this exists now if we have an orientation in twisted tmf, hence by twisted
string structures.38 If it exists, push-forward in tmf yields [AHR10] the (twisted [CHZ10]) Witten genus.
By the seminal result of [Wi87] this is the partition function of the heterotic string.

By analogy with 7.6.2.2 we may also regard this push-forward in tmf as the “O9-plane charge”. An
analogous story should apply to the cohomological quantization of the M2-brane ending not on the O9-
plane, but on the M5-brane, by 8.1.2.2. In this case the result of the quantization would be an M5-brane
charge in tmf, induced not by the heterotic, but by the self-dual string on the M5. That this is the case is
the statement of [Sa10a, proposal 6.13].

38 This point in [ABG10a] was originally amplified by Hisham Sati in work that led to the discussion in 7.1.5.2 above.
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8 Nature

With a general theory of local prequantum field theory 5.2.18 and its realization in suitable models in 6 in
hand, we here discuss exceptional realizations that are induced from the presence of special objects singled
out by the theory. We end up finding, from these first principles, 11-dimensional supergravity with M-theory
corrections included.

The fact that the term M-theory eventually became attached to a grandiose conjecture [Wi98c] tends
to overshadow that it was originally coined as “non-committed” shorthand [?, p. 2] for membrane theory
[Duff99], directly modeled [Duff95] on the well established term “string theory”: “M stands for magic,
mystery, or membrane, according to taste” [Wi95].

Here membrane theory refers to the concrete study of super-membrane sigma-models on 11-dimensional
supergravity spacetimes [BeSeTo87]. It is noteworthy that the latter is a rich topic in itself about which a lot
is understood in precise mathematical detail. Seminal mathematical results here include [AtWi01, HoSi05].
Hence close mathematical analysis of M-theory-the-concrete is fruitful in itself, and is plausibly a way to
make progress on M-theory-the-grandiose.

Traditional wisdom has it that the technical problem with membrane theory – and that is the reason for
the choice of less committed terminology – is that membrane sigma-models are understood only classically,
not in the quantum version that is expected to be relevant for the M-theory-in-the-grandiose-sense.

But actually a little more is true: membrane sigma models – and also the 5-brane sigma models induced
by them – are understood in pre-quantum theory, in the precise sense in which this term is used in the
Kostant-Souriau formalization of quantization via geometric quantization 5.2.17, . This is a substantial
distinction: we show in 8.1.2, based on the general construction of higher WZW terms in 6.4.20, how to
refine the brane sigma-models further to higher/local pre-quantum theory in the sense of 5.2.18, 7.3. In this
refined formulation membrane theory already sees a wealth of subtle effects, such as notably the properly
globalized BPS groups of brane charges, 8.2.3, in generalized twisted differential cohomology [?]. This goes
considerably beyond what classical membrane theory sees.

• 8.1 – Spacetime

• 8.2 – Gravity

8.1 Spacetime

By prop. 6.3.37 and prop. 6.6.17 there are two objects singled out in SuperFormalSmooth∞Grpd.

real line R = R1|0 odd line/superpoint R0|1∫
' locR1 Rh ' locR0|1

We now discuss how from universal constructions beginning with just these two objects, there arises
super-Minkowski spacetime, its extensions by super p-brane condensates, and then the equations of motion
and BPS charge algebras of supergravity.

• 8.1.1 – Minkowski spacetime and Lorentzian geometry

• 8.1.2 – Fundamental super p-branes

8.1.1 Minkowski spacetime and Lorentzian geometry

We discuss super-Minkowski spacetimes and the action on them by the Spin double cover of the Lorentz
groups arising as supergroup extensions of superpoints.

Both R and R0|1 carry canonical abelian group structure. We consider now group 2-cocycles, def. 5.1.285,
of the superpoints R0|q with coefficients in powers Rp of the real line, hence morphisms in SuperFormalSmooth∞Grpd
of the form

BR0|q −→ B2Rp|0 .
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Since the groups are geometrically contractible, we may equivalently consider the corresponding Lie algebra
cocycles (observing that in this case the stacky cohomology evidently agrees with the naive smooth group
cohomology, and then using the van Est isomorphism [vEs53, theorem 14.1]).

For q ∈ N, the Chevalley-Eilenberg algebras of these super-Lie algebra, according to prop. 1.2.152, are
the graded superalgebras

CE(R0|q) =
(
Sym•〈ψ1, · · · , ψq〉, dCE = 0

)
on q generators ψi in bidegree (1, odd) ∈ N × Z/2Z and with vanishing CE-differential. Notice that due to
this bidegree, these elements commute with each other:

ψi1 ∧ ψi2 = +ψi2 ∧ ψi1 .

Proposition 8.1.1. The super Lie algebra cohomology of R0|1 in degree 2 is

H2(CE(R0|1)) ' R

represented by the 2-cocycle
ψ ∧ ψ ∈ CE(R0|1) .

The super Lie algebra extension of R0|1 classified by the 2-coycle of prop. 8.1.1 is the N = 1 super translation
Lie algebra in one dimension R1|1, the N = 1 superline

BR1|1

��
BR0|1 ψ1∧ψ1 // B2R

Proposition 8.1.2. The super Lie algebra cohomology of R0|2 in degree 2 is

H2(CE(R0|2)) ' R3

represented by the three 2-cocycles

ψ1 ∧ ψ1, ψ1 ∧ ψ2, ψ2 ∧ ψ2 ∈ CE(R0|2) .

The super Lie algebra extension of R0|2 classified by any non-degenerate sum of these three cocycles is
isomorphic to 3-dimensional N = 1 super-Minkowski spacetime (1.4.4.1)

BR2,1|2

��
BR0|2 ψ1∧ψ1⊕ψ1∧ψ2⊕ψ2∧ψ2

// B2R3

Proof. Write e+, e−, ey ∈ CE(R3|2) for the three generators in bidegree (1, even), which by definition of
Lie algebra extension satisfy

dCE e
+ = ψ1 ∧ ψ1

dCE e
− = ψ2 ∧ ψ2

dCE e
y = 2ψ1 ∧ ψ2 .

This may be directly compared with the expressions for the spin bilinear pairing of real spinors in 2+1
dimensions as for instance highlighted in [BaH09]. �

952



Proposition 8.1.3. The super Lie algebra cohomology of R2,1|2 in degree 3 is

H3(CE(R2,1|2)) ' R

represented by
ψ1 ∧ ψ1 ∧ e− + ψ2 ∧ ψ2 ∧ e+ − ψ1 ∧ ψ2 ∧ ey ∈ CE(R2,1|2) .

Proof. Via prop. 8.1.2 this is for instance [Br10a, lemma 3.1]. �

Remark 8.1.4. In proving prop. 8.1.2 we have used only inspection of the intrinsic cohomology of BR0|2,
no a priori information about Lorentzian geometry. But now by prop. 6.4.164 the 3-cocycle of prop. 8.1.3
Lie integrates to a WZW term, and by def. 5.3.133 we are led to consider Cartan geometries locally modeled
on R2,1|N=1 whose structure group reduces to the joint stabilizer of the Lie bracket on R2,1|2 and of the
3-cocycle that it carries.

This turns out to make the Lorentz group appear by itself:39

Proposition 8.1.5. Given the N = 1 super-Minkowski spacetime in dimension d = 3,4, 6 or 10 (as in
1.4.4.1), then the joint stabilizer group of the super Lie bracket of Rd−1,1|N=1 and of its super Lie algebra
3-cocycle of the old brane scan, 1.4.4.2, is the spin double cover of the Lorentz group

StabGL(Rd−1,1|2)([−,−], µ1) ' Spin(d− 1, 1) .

Proof. It is clear that the Spin-group fixes the cocycle, and by the special nature of real spin represen-
tations it also preserves the bracket (this is part of the Jacobi identity of the super-Poincaré Lie algebra
Iso(Rd−1,1|N=1)). Therefore it remains to be seen that the Spin group already exhausts the stabilizer group
of bracket and cocycle. For that observe (as highlighted in [BaH09]) that the cocycle is expressed in terms
of the spinor bilinear pairing [−,−] and the Minkowski metric η as

µ1(ψ, φ, v) = η([ψ, φ], v)

and that the spinor bilinear pairing is surjective. This implies that if g ∈ GL(Rd−1,1|N=1) preserves both
the bracket and the cocycle for all arguments,

η([g(ψ), g(φ)], g(v)) = η(g([ψ, φ]), g(v)) = η([ψ, φ], v) ,

then, with w = [ψ, φ] and every w arising in this form, it preserves the Minkowski metric for all w, v:

η(g(w), g(v)) = η(w, v) .

This means that on the even elements the stabilizer has to act as a Lorentz transformation. From this and
by inspection of the spinor bilinear pairing as presented in [BaH09] it follows that to stabilize the spinor
pairing the action on the odd elements has to be by a Spin-representation. �
There are however two inequivalent such Spin-representations, traditionally denoted 2 and 2 and hence two

inequivalent embeddings

StabGL(Rd−1,1|N=1)([−,−], µ1) ' Spin(d− 1, 1) ↪→ GL(R2,1|2) .

39 The argument for the proof of prop. 8.1.5 was kindly provided by John Huerta.
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Consider then the fiber product

BR2,1|4

yy %%
BR2,1|2

%%

BR2,1|2

yy
B2R3

regarded as equipped with the Spin-action via 2 + 2.

Proposition 8.1.6. The Spin(2, 1)-invariant cohomology of R2,1|2+2 in degree 2 is

H2(CE(R2,1|2+2))Spin(2,1) ' R

and the extension by a representing cocycle is equivalent to 4-dimensional super-Minkowski spacetime

R3,1|4

��
R2,1|2+2 // BR

Proof. By inspection of the explicit formulas in [?, p.13]. �

8.1.2 Fundamental super p-branes

We now discuss higher rational/perturbative WZW models on super-Minkowski spacetime regarded as the
super-translation Lie algebra over itself, as well as on the extended superspaces which arise as exceptional
super Lie n-algebra extensions of the super-translation Lie algebra. This is the local description of super
p-brane σ-models propagating on a supergravity background spacetime, 7.1.7.

We show then that by the brane intersection laws of Remark 7.3.30 this reproduces precisely the super
p-brane content of string/M-theory including the p-branes with tensor multiplet fields, notably including the
D-branes and the M5-brane. The discussion is based on the work initiated in [dAFr82] and further developed
in articles including [CdAIP99]. The point here is to show that this “FDA”-technology is naturally and
usefully reformulated in terms of super-L∞-homotopy theory, and that this serves to clarify and illuminate
various points that have not been seen, and are indeed hard to see, via the “FDA”-perspective.

Next we consider refinement of the old brane scan 1.4.4.2, brough about by passing from super Lie algebras
to the homotopy theory of super L∞-algebras, the full brane bouquet def. 8.1.18. We follow notation as in
1.4.4.1.

• 8.1.2.1 – The type II superstring

• 8.1.2.2 – The M2/M5-brane

• 8.1.2.3 – The complete brane bouquet of string/M-theory

8.1.2.1 The type II superstring We discuss the cocycles that define the type II superstring as a
super-WZW model. This section draws from [FSS13b]
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8.1.2.1.1 Type IIA superstring ending on D-branes and the D0-brane condensate We
consider the branes in type IIA string theory and point out how their L∞-homotopy theoretic formulation
serves to provide a formal statement and proof of the folklore relation between type IIA string theory with
a D0-brane condensate and M-theory.

Write N = (1, 1) = 16 + 16′ for the Dirac representation of Spin(9, 1) given by two 16-dimensional real
irreducible representations of opposite chirality. We write {Γa}a=1,··· ,10 for the corresponding representation
of the Clifford algebra and Γ11 := Γ1Γ2 · · ·Γ10 for the chirality operator. Finally write R10;N=(1,1) for the
corresponding super-translation Lie algebra, the super-Minkowski spacetime of type IIA string theory.

Definition 8.1.7. The type IIA 3-cocycle is

µstringIIA
:= ψ ∧ ΓaΓ11ψ ∧ ea : R10;N=(1,1) // R[2] .

The type IIA superstring super Lie 2-algebra is the corresponding super L∞-extension

stringIIA

��
R10;N=(1,1)

µstringIIA // R[2] .

Its Chevalley-Eilenberg algebra is that of R10;N=(1,1) with one generator F in degree (2, even) adjoined and
with its differential being

dCE F = µstringIIA
= ψ ∧ ΓaΓ11ψ ∧ ea.

This dg-algebra appears as equation (6.3) in [CdAIP99]. It can also be deduced from op.cit. that the IIA
string Lie 2-algebra of Def. 8.1.7 carries exceptional cocycles of degrees p+ 2 ∈ {2, 4, 6, 8, 10} of the form

µdpbrane := C ∧ eF

:=

(p+2)/2∑
k=0

cpk (ea1 ∧ · · · ∧ eap−2k) ∧
(
ψΓa1 · · ·Γap−2kΓ11ψ

)
F ∧ · · · ∧ F︸ ︷︷ ︸
k factors

,
(8.1)

where {cpk ∈ R} are some coefficients, and where C denotes the inhomogeneous element of CE(R10;N=(1,1))
defined by the second line. For each p ∈ {0, 2, 4, 6, 8} there is, up to a global rescaling, a unique choice of
the coefficients cpk that make this a cocycle. This is shown on p. 19 of [CdAIP99].

Remark 8.1.8. Here the identification with physics terminology is as follows

• F is the field strength of the Chan-Paton gauge field on the D-brane, a “tensor field” that happens to
be a “vector field”;

• C =
∑
p k

pψ e ∧ · · · ∧ e︸ ︷︷ ︸
p factors

ψ is the RR-field.

It is interesting to notice the special nature of the cocoycle for the D0-brane:

Remark 8.1.9. According to (8.1) for p = 0, the cocycle defining the D0-brane as a higher WZW σ-model
is just

µd0brane = ψΓ11ψ .

Since this independent of the generator F , it restricts to a cocycle on just R10;N=(1,1) itself.
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Concerning this, we highlight the following fact, which is mathematically elementary but physically
noteworthy (see also Section 2.1 of [CdAIP99]), as it has conceptual consequences for arriving at M-theory
starting from type IIA string theory.

Proposition 8.1.10. The extension of 10-dimensional type IIA super-Minkowski spacetime R10;N=(1,1) by
the D0-brane cocycle as in Remark 8.1.9 is the 11-dimensional super-Minkowski spacetime of 11-dimensional
supergravity/M-theory:

R11;N=1

��
R10;N=(1,1) µd0brane // R[1] .

Proof. By Prop. 7.3.25 the Chevalley-Eilenberg algebra of the extension classified by µd0brane is that of
R10;N=(1,1) with one new generator e11 in degree (1, even) adjoined and with its differential defined to be

dCE e
11 = µd0brane = ψΓ11ψ .

An elementary basic fact of Spin representation theory says that the N = 1-representation of the Spin group
Spin(10, 1) in odd dimensions is the N = (1, 1)-representation of the even dimensional Spin group Spin(9, 1)
regarded as a representation of the Clifford algebra {Γa}10

a=1 with Γ11 adjoined as in Def. 8.1.7. Using this,
the above extended CE-algebra is exactly that of R11;N=1 . �

Remark 8.1.11. In view of Remark 7.3.31 the content of Prop. 8.1.10 translates to heuristic physics
language as: A condensate of D0-branes turns the 10-dimensional type IIA super-spacetime into the 11-
dimensional spacetime of 11d-supergravity/M-theory. Alternatively: The condensation of D0-branes makes
an 11th dimension of spacetime appear.

In this form the statement is along the lines of the standard folklore relation between type IIA string
theory and M-theory, which says that type IIA with N D0-branes in it is M-theory compactified on a circle
whose radius scales with N ; see for instance [BFSS96, Po99]. See also [Ko11] for similar remarks motivated
from phenomena in 2-dimensional boundary conformal field theory. Here in the formalization via higher
WZW σ-models a version of this statement becomes a theorem, Prop. 8.1.10.

Remark 8.1.12. The mechanism of remark 8.1.11 appears at several places in the brane bouquet. First of
all, since by Prop. 8.1 the D0-brane cocycle is a summand in each type IIA D-brane cocycle, it follows via
the above translation from L∞-homotopy theory to physics language that: Any type IIA D-brane condensate
extends 10-dimensional type IIA super-spacetime to 11-dimensional super-spacetime. If we lift attention again
from the special case of D-branes of type IIA string theory to general higher WZW-type σ-models, then this
mechanism is seen to generalize: the 10-dimensional super-Minkowski spacetime itself is an extension of the
super-point by 10-cocycles (one for each dimension):

R10;N=(1,1)

��
R0;N=(1,1)

∑10
a=1 (−)Γa(−) // R[1] .

Here the cocycle describes 10 different 0-brane σ-models, each propagating on the super-point as their target
super-spacetime. Again, by remark 7.3.31, this mathematical fact is a formalization and proof of what in
physics language is the statement that Spacetime itself emerges from the abstract dynamics of 0-branes. This
is close to another famous folklore statement about string theory. In our context it is a theorem.
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8.1.2.1.2 Type IIB superstring ending on D-branes and S-duality We consider the branes in
type IIB string theory as examples of higher WZW-type σ-model field theories and observe how their L∞-
homotopy theoretic formulation serves to provide a formal statement of the prequantum S-duality equivalence
between F-strings and D-strings and their unification as (p, q)-string bound states.

Write N = (2, 0) = 16+16 for the direct sum representation of Spin(9, 1) given by two 16-dimensional real
irreducible representations of the same chirality. We write {Γa}a=1,··· ,10 for the corresponding representation
of the Clifford algebra on one copy of 16 and Γa⊗σi for the linear maps on their direct sum representation that
act as the ith Pauli matrix on C2 with components Γa, under the canonical identification 16⊕16 ' 16⊗C2.
Finally write R10;N=(2,0) for the corresponding super-translation Lie algebra, the super-Minkowski spacetime
of type IIB string theory.

There is a cocycle µstringIIB
∈ CE(R10;N=(2,0)) given by

µstringIIB
= ψ ∧ (Γa ⊗ σ3)ψ ∧ ea .

The corresponding WZW σ-model is the Green-Schwarz formulation of the fundamental type IIB string. Of
course we could use in this formula any of the σi, but one fixed such choice we are to call the type IIB string.
That the other choices are equivalent is the statement of S-duality, to which we come in a moment. The
corresponding L∞-algebra extension, hence by Remark 7.3.31 the IIB spacetime “with string condensate” is
the homotopy fiber

stringIIB

��
R10;N=(2,0)

µstringIIB // R[2] .

As for type IIA, its Chevalley-Eilenberg algebra CE(stringIIB) is that of R10;N=(2,0) with one generator F in
degree (2, even) adjoined. The differential of that is now given by

dCE F = µstringIIB

= ψ ∧ (Γa ⊗ σ3)ψ ∧ ea .

Now this Lie 2-algebra itself carries exceptional cocycles of degree (p+ 2) for p ∈ {1, 3, 5, 7, 9} of the form

µdpbrane := C ∧ eF

:=

(p+2)/2+1∑
k=0

cpk (ea1 ∧ · · · ∧ eap−2k) ∧
(
ψ ∧ (Γa1 · · ·Γap−2k ⊗ σ1/2)ψ

)
F ∧ · · · ∧ F︸ ︷︷ ︸
k factors

,
(8.2)

where on the right the notation σ1/2 is to mean that σ1 appears in summands with an odd number of
generators “e”, and σ2 in the other summands. The corresponding WZW models are those of the type IIB
D-branes.

Remark 8.1.13. According to expression (8.2) the cocycle of the D1-brane is of the form

µd1brane = ψ ∧ (Γa ⊗ σ1) ∧ ea ,

which is the same form as that of µstringIIB
itself, only that σ3 is replaced by σ1. In fact since this is the

D-brane cocycle which is independent of the new generator F , it restricts to a cocycle on just R10;N=(2,0)

itself. So the cocycle for the “F-string” in type IIB is on the same footing as that of the “D-string”. Both
differ only by a “rotation” in an internal space.

Remark 8.1.14. There is a circle worth of L∞-automorphisms

S(α) : R10;N=(2,0) → R10;N=(2,0) ,
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hence a group homomorphism
U(1)→ Aut(R10;N=(2,0)) ,

given dually on Chevalley-Eilenberg algebras by

ea 7→ ea

ψ 7→ exp(ασ2)ψ .

This mixes the cocycles for the F-string and for the D-string in that for a quarter rotation it turns one into
the other

S(π/4)∗(µstringIIA
) = µd1brane ,

and for a rotation by a general angle it produces a corresponding superposition of both. In particular, we
can form bound states of F -strings and D1-branes by adding these cocycles

µ(p,q)string = p µstringIIB
+ q µd1brane ∈ CE(R10;N=(2,0)) .

These define the (p, q)-string bound states as WZW-type σ-models.

8.1.2.2 The M2/M5-brane cocycle We discuss here the single M5-brane as a higher WZW-type σ-
model.

This section draws from [FSS13b, FSS15].

• 8.1.2.2.1 – As a cocycle with values in the trivial module

• 8.1.2.2.2 – As a twisted cocycle

• 8.1.2.2.3 – Integration to differential cohomology and differential cohomotopy

• 8.1.2.2.4 – Extension to the frame bundle

8.1.2.2.1 As a cocycle with values in the trivial module Write N = 1 = 32 for the irreducible
real representation of Spin(10, 1). Write {Γa}11

a=1 for the corresponding representation of the Clifford algebra.
Finally write R11;N=1 for the corresponding super-translation Lie algebra. According to the old brane scan
in section 1.4.4.2, the exceptional Lorentz-invariant cocycle for the M2-brane is

µm2brane = ψ ∧ Γabψ ∧ ea ∧ eb .

The Green-Schwarz action functional for the M2-brane is the σ-model defined by this cocycle

R11;N µm2brane // R[3] .

By the L∞-theoretic brane intersection law of Remark 7.3.30, for the M2-brane to end on another kind of
brane, that other WZW model is to have the extended spacetime µm2brane (the original spacetime including
a condensate of M2s) as its target space. By Prop. 7.3.25, the Chevalley-Eilenberg algebra of the M2-
brane algebra is obtained from that of the super-Poincaré Lie algebra by adding one more generator c3 with
deg(c3) = (3, even) with differential defined by

dCE c3 := µm2brane

= ψ ∧ Γabψ ∧ ea ∧ eb
.

We can then define an extended spacetime Maurer-Cartan form θ̂ in Ω1
flat(R11;N ,m2brane), extending the

canonical Maurer-Cartan form θ in Ω1
flat(R11;N ,Rd;N ), by picking any 3-form C3 ∈ Ω3(R11;N ) such that

ddRC3 = ψΓab ∧ ψ ∧ ea ∧ eb.
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Next, for every (n+ 1) cocycle on m2brane we get an n-dimensional WZW model defined on R11;N this
way. In particular, the next one we meet is the M5-brane cocycle. Indeed, there is the degree-7 cocycle

µ7 = ψΓa1···a5ψea1 ∧ · · · ea5 + C3 ∧ ψΓabψ ∧ ea ∧ eb : m2brane // R[6]

that was first observed in [dAFr82], then rediscovered several times, for instance in [Sez96], in [BLNPST97]
and in [CdAIP99]. Here we identify it as an L∞ 7-cocycle on the m2brane super Lie 3-algebra. The L∞-
extension of m2brane associated with the 7-cocycle is a super Lie 6-algebra that we call m5brane.

It follows from this, with remark 7.3.30, that the M2-brane may end on a M5-brane whose WZW term
LWZW locally satisfies

dLWZW = µ7 = ψΓa1···a5ψea1 ∧ · · · ea5 + C3 ∧ ψΓabψ ∧ ea ∧ eb

This is precisely what in [BLNPST97] is argued to be the action functional of the M5-brane (here displayed
in the absence of the bosonic contribution of the C-field). However, in order to get the expected structure
of gauge transformations, we need to go further. Namely, while the above local expression for the action
functional appears to be correct on the nose, its gauge transformations are not as expected for the M5:
for the M5-brane worldvolume theory the 2-form with curvature C3 is supposed to be a genuine higher
2-form gauge field on the worldvolume, directly analogous to the Neveu-Schwarz B-field of 10-dimensional
supergravity spacetime; see [FSS12b]. As such, it is to have gauge transformations parameterized by 1-forms.
But in the above formulation fields are maps Σ6 → R11;N into spacetime itself, and as such have no gauge
transformations at all. We can fix this by finding a better space X̂. In fact we should take that to be m2brane
itself. As indicated above, this is an extension

R[2] // m2brane // R11;N ,

and, hence, a twisted product of spacetime with R[2], the infinitesimal version of the moduli space of 2-form
connections. This is the infinitesimal approximation to the WZW construction in 5.2.15.

Remark 8.1.15. By AdS7/CFT6 duality and by [Wi96] the M5-brane is supposed to be the 6-dimensional
WZW model which is holographically related to the 7-dimensional Chern-Simons term inside 11-dimensional
supergravity compactified on a 4-sphere in analogy to how the traditional 2d WZW model is the holographic
dual of ordinary 3d Chern-Simons theory. By our discussion here that 7d Chern-Simons theory ought to be
the one given by the 7-cocycle. Indeed, we observe that this 7-cocycle does appear in the compactification
according to D’Auria-Fre [dAFr82]. Back in that article these authors worked locally and discarded precisely
this term as a global derivative, but in fact it is a topological term as befits a Chern-Simons term and may
not be discarded globally. This connects the discussion here to the holographic AdS7/CFT6-description of
the single M5-brane. Now a coincident N -tuple of M5-branes is supposed to be determined by a semisimple
Lie algebra and nonabelian higher gauge field data. Since AdS7/CFT6 is still supposed to apply, we are to
consider the nonabelian contributions to the 7-dimensional Chern-Simons term in 11d sugra compactified
to AdS7. These follow from the 11-dimensional anomaly cancellation and charge quantization. Putting this
together as discussed in 7.2.9 yields the corresponding 7d Chern-Simons theory. Among other terms it is
controled by the canonical 7-cocycle µso

7 on the semisimple Lie algebra so. Since this extends evidently to
a cocycle also on the super Poincaré Lie algebra, we may just add it to the bispinorial cocycle that defines
the single M5, to get

R11;N=1 × so(10, 1)
ψe5ψ+〈ω∧[ω∧ω]∧[ω∧ω]∧[ω∧ω]〉 // R[6] .

By the general theory indicated here this defines a 6-dimensional WZW model. By the discussion in 7.2.9
and 7.1.8 it satisfies all the conditions imposed by holography. It is to be expected that this is part of the
description of the nonabelian M5-brane.
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Finally it is interesting to consider the symmetries of the M5-brane higher WZW model obtained this
way.

Definition 8.1.16. The polyvector extension [ACDP03] of sIso(10, 1) – called the M-theory Lie algebra
[Sez96] – is the super Lie algebra obtained by adjoining to sIso(10, 1) generators {Qα, Zab} that transform
as spinors with respect to the existing generators, and whose non-vanishing brackets among themselves are

[Qα, Qβ ] = i(CΓa)αβPa + (CΓab)Z
ab ,[

Qα, Z
ab
]

= 2i(CΓ[a)αβQ
b]β .

8.1.2.2.2 As a twisted cocycle We discuss now how the M5-brane cocycle from 8.1.2.2.1 descends
back down to super-Minkowski spacetime as a twisted cocycle in the sense of the general discussion in 5.1.13.

In view of the discussion in 6.5.2 we may think of the diagram

m2brane

��

h3∧µ4+
1
15µ7

// R[6] // 0

��
R10,1|32 µ4 // R[3] .

(8.3)

as describing at an infinitesimal level a geometric situation. The geometric picture is that of a (homotopy)
principal bundle P → B over a base B, classified by a morphism B → BG for some gauge group G, together
with a morphism ϕ : P →M defined over the total space of the bundle and with values in some G-space M .
As soon as ϕ is equivariant with respect to the (homotopy) gauge group G action over the total space P of
the bundle, the morphism ϕ induces by passing to quotients a morphism ϕ̃ : B → M/G, whose homotopy
class can be interpreted as an element in the twisted cohomology of B with coefficients in M/G. Notice how
saying that M/G is a quotient of M by a G action is equivalent to say that M/G fits into a homotopy fiber
sequence of the form M →M/G→ BG, and that the G-equivariance of ϕ is equivalent to saying that ϕ̃ is a
morphism over BG. Therefore, in the infinitesimal situation of diagram (8.3), we are faced with the problem

of deciding whether the cocycle h3 ∧ µ4 + 1
15µ7 : m2brane → R[6] is equivariant with respect to the natural

infinitesimal homotopy action of R[2] on m2brane and for a suitable infinitesimal homotopy action of R[2] on
R[6]. As we are going to show, there is indeed such a canonical action. We now identify the desired higher
algebra: the Lie 7- algebra s4 is defined by CE(s4) = R[g4, g7] with gk in degree k and with the differential
defined by

dg4 = 0 , dg7 = g4 ∧ g4 .

Indeed, this algebra satisfies the required property. Namely, the Lie 7-algebra s4 has a natural structure of
infinitesimal R[2]-quotient of R[6], i.e., there exists a natural homotopy fiber sequence of L∞-algebras

R[6] //

��

s4

p

��
0 // R[3] .

(8.4)

This can be seen by noticing that in the dual semifree differential (bi)-graded algebra picture we have the
evident pushout

R[g4, g7]

g4 7→0
g7 7→g7 // R[g7]

R[g4] //

g4 7→g4

OO

R .

OO
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That this indeed corresponds to a homotopy fiber sequence of L∞-algebras can be seen by the argument
in [FRS13b, theorem 3.1.13]. Notice how we have implicitly used the fact that R[3] is a delooping of R[2]
and hence serves as the infinitesimal classifying space for infinitesimal R[2]-bundles. With the geometric
picture described at the beginning of this section in mind, we want now to exhibit an L∞-algebra morphism
ϕ̃ : R10,1|32 → s4 over R[3], inducing the 6-cocycle ϕ = h3 ∧µ4 + 1

15µ7 by passing to the homotopy fibers. In
other words, we want to realize a homotopy commutative diagram of L∞-algebras of the form

m2brane

��

��

ϕ // R[6]

��

��
0

��

// 0

��

R10,1|32 ϕ̃ //

��

s4

��
R[3] R[3] .

Passing to the dual picture, we see that this is realized by the commutative diagram of differential (bi-)graded
semifree commutative algebras

R[g4, g7]

g4 7→0
g7 7→g7

��

g4 7→g4

g7 7→h3∧(g4+µ4)+
1
15µ7// CE(R10,1|32

res )

h3 7→0
g4 7→µ4

∼
//

h3 7→h3
g4 7→0

  

CE(R10,1|32)

R[b4]

g4 7→g4

OO

��

R[b4]

g4 7→g4

OO

  

R[b4]

g4 7→µ4

OO

R[b7]
g7 7→h3∧µ4+

1
15µ7

// CE(m2brane)

R

OO

R ,

OO

where CE(R10,1|32
res ) is the semifree algebra obtained by adding to CE(R10,1|32) two generators h3 and g4, in

degree 3 and 4 respectively, with differential

dh3 := g4 − µ4; dg4 = 0 .

This is manifestly homotopy equivalent to CE(R10,1|32): the morphism from CE(R10,1|32
res ) to CE(R10,1|32)

given on the additional generators by
h3 7→ 0 , g4 7→ µ4

is a homotopy inverse to the inclusion CE(R10,1|32) ↪→ CE(R10,1|32
res ). We can think of the L∞-algebra

R10,1|32
res as a resolution of the super-Minkowski space R10,1|32: from the point of view of homotopy theory of

L∞-algebras, R10,1|32
res and R10,1|32 are the same space. Similarly, the commutative square on the top right

of the diagram shows that from the point of view of the homotopy theory of L∞-algebras, g4 7→ µ4 and
g4 7→ g4 are the the same 3-cocycle.

The only nontrivial check in the above diagram is the compatibility of the morphism R[g4, g7] →
CE(R10,1|32

res ) with the differentials on the generator g7 of R[g4, g7]. One has

g7
d7→ g4 ∧ g4 7→ g4 ∧ g4
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and
g7 → h3 ∧ (g4 + µ4) + 1

15µ7
d7→ (g4 − µ4) ∧ (g4 + µ4) + µ4 ∧ µ4 = g4 ∧ g4.

As mentioned at the beginning of this section, the morphism g4 7→ g4; g7 7→ h3 ∧ (g4 +µ4) + 1
15µ7 defines an

element in the R[2]-twisted L∞-algebra cohomology of the super-Minkowski space R10,1|32
res , corresponding

to the 6-cocycle h3 ∧µ4 + 1
15µ7 on m2brane. Upon passing from L∞-cocycles to their WZW terms, this is to

refine into a statement about twisted differential cohomology, i.e., to a morphism of

8.1.2.2.3 Integration to differential cohomology and differential cohomotopy The main re-
sult of the previous section can be summarized as follows: the homotopy pullback diagram (8.3) translates
to a lift

R10,1|32

µ4 $$

ϕ̃ // s4

~~
R[3]

of µ4, realizing ϕ = h3 ∧ µ4 + 1
15µ7 as a twisted cocycle on R10,1|32. Reinterpreting this in terms of WZW

Lagrangians, this says that the homotopy pullback diagram (??) translates to a lift

X

LM2
WZW ��

L̃M5
WZW // S4

conn

~~
B3U(1)conn

of LM2
WZW, realizing the M5-brane WZW Lagrangian LM5

WZW as a morphism from the super-spacetime X to
a suitable stack of fields S4

conn. We now exhibit a construction of the stack S4
conn and provide a geometric

interpretation of it, which consequently leads to interpret the M5-brane WZW Lagrangian as an element in
differential cohomotopy.

More precisely, what we want to show is that the stack S4
conn may be taken to be a differential refinement

of the rational homotopy type
∫

(S4) of the 4-sphere S4 and that the morphism S4
conn → B3U(1)conn is a

differential refinement of the classifying map S4 → K(Z; 4) for the generator of the fourth cohomology group
of S4. Following [Hen08, FSS10], recall that the Sullivan construction integrates an L∞-algebra g to an
∞-groupoid (a simplicial space which satisfies Kan’s condition on horn fillers) [ exp(g) defined by

[ exp(g) : [k] 7→ Ω1
flat(∆

k, g) ,

where
Ω1

flat(X, g) := HomdgAlg(CE(g),Ω•(M))

is the set of flat g-valued differential forms on a given manifold M . Then one says that the L∞-algebra g is
a Sullivan model for the rational homotopy type of a space X if one has an equivalence of simplicial spaces∫

(X) ⊗ R ' [ exp(g). As a remarkable example, the Lie 7-algebra s4 is a Sullivan model for the rational
homotopy type of the 4-sphere S4, see [?]. Moreover, the fiber sequence of higher Lie algebras (8.4) is a
shadow of the Sullivan model for the rational homotopy type of the Hopf fibration S7 → S4 → BSU(2).

Refining the Sullivan construction, one then defines the (higher) stack [-g-conn of flat g-connection, as
the stack locally given by

[-g-conn: (U, [k]) 7→ Ω1
flat(U ×∆k; g)

on a smooth (super-)manifold U diffeomorphic to Rm|n for some m|n. The stack [-g-conn is to be thought
of as resolution of the locally constant stack [ exp(g), directly generalizing the de Rham resolution of the
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sheaf of constant real valued functions [?]. It has the advantage that the canonical inclusion of 0-simplices
exhibits then a natural morphism of stacks

Ω1
flat(−, g)→ [-g-conn .

This morphism simply says that a globally defined flat g-valued form on a smooth (super-)manifold X is in
particular a flat g-connection on X whose underlying bundle is in the trivial topological sector.

Let us work out in detail the two examples that will be relevant to the construction of S4
conn. If g = R[p+1],

then Ω1
flat(−,R[p+1]) is nothing but the sheaf Ωp+2

cl of closed (p+2)-forms, while by the Poincaré lemma flat
R[p+1]-connections are equivalently Čech (p+2)-cocycles with coefficients in the sheaf [R of locally constant
R-valued functions. In other words, we have a natural equivalence of (p+2)-stacks [-R[p+1]-conn ∼= Bp+2[R
and the morphism of stacks

Ωp+2
cl → Bp+2[R

is induced at the level of chain complexes by the commutative diagram

0 //

��

0 //

��

. . . // 0 //

��

Ωp+2
cl

��
Ω0 d // Ω1 d // · · · d // Ωp+1 d //d // Ωp+2

cl

[R //

OO

0 //

OO

. . . // 0 //

OO

0

OO

Passing to cohomology, this is nothing but the canonical morphism Ωp+2
cl (X)→ Hp+2

dR (X) ∼= Hp+2(X;R), for
any smooth manifold X. The inclusion of Z in R induces a morphism of sheaves Z→ R and so a morphism of
stacks Bp+2Z→ Bp+2[R. We may therefore pull this morphism back along the morphism Ωp+2

cl → Bp+2R.
What one gets is the stack Bp+1U(1)conn, i.e., one has a homotopy pullback diagram

Bp+1U(1)conn
//

F
��

Bp+2Z

��
Ωp+2

cl
// Bp+2[R ,

(8.5)

where the morphism F is the curvature. See [FSS10] for details on this homotopy pullback description of
Bp+1U(1)conn.

The second example relevant to our discussion is the following. The sheaf Ω1
flat(−; s4) is the sheaf whose

sections over a smooth (super-)manifold M are the pairs (ω4, ω7) where ω4 is a closed 4-form on M and ω7 is
a 7-form on M such that dω7 = ω4 ∧ω4. By naturality of the Sullivan construction, the 3-cocycle s4 → R[3]
induces a homotopy commutative diagram of stacks

Ω1
flat(−; s4) //

��

Ω1
flat(−;R[4]) Ω4

cl

��
[-s4-conn // [-R[3]-conn

∼ // B4[R

The top horizontal arrow in this diagram is simply the projection (ω4, ω7) 7→ ω4. The kernel of this map
consists of closed 7-forms. We therefore have a fiber sequence

Ω7
cl → Ω1

flat(−; s4)→ Ω4
cl
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which can be read as a differential forms version of the Hopf fibration S7 → S4 → BSU(2)
c2→ K(Z, 4). The

bottom horizontal morphism in the above diagram is the R-localization of the classifying map S4 → K(Z; 4)
for the generator of H4(S4;Z), i.e., we have a homotopy commutative diagram of smooth stacks∫

(S4) //

−⊗R
��

B4Z

−⊗R
��

[-s4-conn // B4[R .

We can now define the stack S4
conn by analogy with the homotopy pullback definition (8.5) of the stack

Bp+1U(1)conn Namely, looking at the homotopy type
∫

(S4) of S4 as a locally constant geometrically discrete
stack, the R-localization map

∫
(S4)→

∫
(S4)⊗ R is promoted to a morphism of stacks

∫
(S4)→ [-s4-conn,

which we can pull back along Ω1
flat(−; s4)→ [-s4-conn. The stack S4

conn is then defined as this pullback. By
the univeral property of the homotopy pullback we therefore get a canonical morphism S4

conn → B3U(1)conn

fitting into a homotopy commutative diagram of the form

S4
conn

��

��

//
∫

(S4)

��

��
Ω1

flat(−; s4)

��

// [-s4-conn

��

B3U(1)conn
//

��

B4Z

��
Ω4

cl
// B4[R .

Since the stack B4Z is the locally constant geometrically discrete stack defined by the homotopy type K(Z, 4),
the square

S4
conn

//

��

∫
(S4)

��
B3U(1)conn

// B4Z

in the above homotopy commutative diagram precisely exhibits S4
conn as a differential refinement of the

homotopy type of S4 in analogy to how B3U(1)conn is a differential refinement of the homotopy type K(Z; 4).

Since the theory of higher homotopy groups of a topological space X is essentially the theory of homotopy
classes of maps from spheres to X, the theory of homotopy classes of maps from X to spheres is also known
as cohomotopy. With this terminology, an element in the nonabelian cohomology of X with coefficients in
(unstabilized) spheres is called a cohomotopy class for X, while a map f : X → Sk representing it can be
thought of as a cohomotopy cocycle. This way, one thinks of the M5 WZW Lagrangian L̃M5

WZW as a cocycle
in “differential cohomotopy” for the super-spacetime X. This has been suggested before in [?, section 2.5].

To conclude this section, notice that a more “conservative” choice of integrated coefficients, i.e., of a
target stack for the M5-brane WZW Lagrangian to takes values into, is the following.40 The cup product in
integral cohomology gives rise to a morphism of stacks

∪2 : B3U(1)
diag−−−→ B3U(1)×B3U(1)

∪−→ B7U(1) ,

40Thanks to Thomas Nikolaus for discussion.
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and so we have a long fiber sequence

B6U(1)

��

// B6U(1)//B2U(1)

��

// ∗

��
∗ // B3U(1)

∪2
// B7U(1) ,

where B6U(1)//B2U(1) is by definition the homotopy fiber of ∪2 : B3U(1)→ B7U(1). This construction can
be refined by adding connections to the picture simply by replacing the cup product in integral cohomology
with the cup product in Deligne cohomology, prop. 6.4.124. This way one gets the long fiber sequence

B6U(1)conn

��

// (B6U(1)//B2U(1))conn

��

// ∗

��
∗ // B3U(1)conn

∪2
// B(B6U(1)conn) ,

where (B6U(1)/B2U(1))conn is defined by the homotopy fiber poduct on the right. On curvature forms this
homotopy fiber product imposes again the condition dG7 = G4 ∧G4, so we have found a geometric way of
imposing this constraint that does not involve the more sophisticated stack S4

conn. One could then define the
M5-brane WZW term to be a lift

X

LM2
WZW ��

L̂M5
WZW // (B6U(1)/B2U(1))conn

ww
B3U(1)conn

of LM2
WZW. These would actually be a strictly less general solution than the one provided by the stack

S4
conn. Namely, for dimensional reasons the image of the canonical map S4

conn → B2U(1)conn under ∪2 has a

trivializing homotopy, and so the universal property of the homotopy fiber induces a factorization of L̂M5
WZW

through L̃M5
WZW:

X
L̃M5

WZW //

((

L̂M5
WZW

&&
S4

conn
//

��

(B6U(1)/B2U(1))conn .

tt
B3U(1)conn

8.1.2.2.4 Extension to the frame bundle So far we considered the cocycles µp+2 and the as
cocycles on the (extended) super-Minkowski spacetime. In fact, since the cocycles µp+2 are Lorentz-invariant
they extend to cocycles on the super-Poincaré (super-)Lie algebra along the inclusion

R10,1|32 ↪→ iso(R10,1|32) .

In terms of semifree algebras, the super-Poincaré Lie algebra is obtained by adding to CE(R10,1|32) the
additional ‘rotational’ generators {ωab} corresponding to the Lorentz Lie algebra, with differentials

dψ = 1
4ωab ∧ Γabψ , dea = ωab ∧ eb + ψ ∧ Γaψ , dωab = ωac ∧ ωcb .

The inclusion R10,1|32 ↪→ iso(R10,1|32) is given, in the dual semifree algebras picture, by mapping to zero the
added generators ωab. Therefore, we see that there are possibly more general cocycles on the super-Poincaré
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Lie algebra which restrict to a given cocycle on on super-Minkowski space. In particular, we see that if
λ3(ω) and λ7(ω) are a Lorentz 3-cocycle and a Lorentz 7-cocycle (i.e., closed polynomials of degree 3 and 7
in the variables ωab , respectively), then (h3 + ω∧3)∧ (g4 + µ4) + 1

15µ7 + ω∧7 is a s4-valued 7-cocycle on the

super-Poincaré Lie algebra inducing the 7-cocycle h3 ∧ (g4 + µ4) + 1
15µ7 on R10,1|32. Up to normalization,

the only such Lorentz cocycles are the traces λ3(ω) = tr(ω∧3) and λ7(ω) = tr(ω∧7) of the third and the
seventh wedge power of the matrix-valued form ω, respectively. This way we obtain the 2-parameter family
of 7-cocycles

iso(R10,1|32)
(h3+αtr(ω∧3))∧(g4+µ4)+

1
15µ7+βtr(ω∧7)

−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s4

lifting h3 ∧ (g4 + µ4) + 1
15µ7.

Due to the isomorphism iso(R10,1|32) ' R10,1|32 n so(10, 1), a natural choice of globalization of these
cocycles is over the (Spin-)frame bundle Fr(X)→ X of super-spacetime X, where tr(ω∧3) is globalized as a
parameterized WZW term over the Spin-fibers of the frame bundle. According to [?] this is a parameterized
WZW term as considered in [DiSh07], whose existence trvializes the class 1

2p1 of the frame bundle. Once
such a trivialization is given, tr(ω∧7) globalizes to a parametrized degree-7 WZW term related to the calss
p2. This can be viewed as a Fivebrane version [?] of the String setting discussed in [DiSh07].

8.1.2.3 The complete brane bouquet of string/M-theory We have discussed various higher super
Lie n-algebras of super-spacetime. Here we now sum up, list all the relevant extensions and fit them into
the full brane bouquet. To state the brane bouquet, we first need names for all the branches that it has

Definition 8.1.17. The refined brane scan is the following collection of values of triples (d, p,N).

D
= p = 0 1 2 3 4 5 6 7 8 9

11 (1) m2brane (1) m5brane

10
(1,1)

D0brane

(1,0) stringhet

(1,1) stringIIA

(2,0) stringIIB

(2,0) D1brane

(1,1)
D2brane

(2,0)
D3brane

(1,1)
D4brane

(1,0) ns5branehet

(1,1) ns5braneIIA
(2,0) ns5braneIIB
(2,0) D5brane

(1,1)
D6brane

(2,0)
D7brane

(1,1)
D8brane

(2,0)
D9brane

9 (1)
8 (1)
7 (1)

6 (2,0) sdstring (2,0)
5 (1)
4 (1) (1)
3 (1)

The entries of this table denote super-L∞-algebras that organize themselves as nodes in the brane bouquet
according to the following proposition.

Proposition 8.1.18 (The brane bouquet). There exists a system of higher super-Lie-n-algebra extensions
of the super-translation Lie algebra Rd;N for (d = 11, N = 1), (d = 10, N = (1, 1)), for (d = 10, N = (2, 0))
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and for (d = 6, N = (2, 0)), which is jointly given by the following diagram in sLie∞Alg

ns5braneIIA

D0brane

**

D2brane

%%

D4brane

��

D6brane

yy

D8brane

tt

KK

DD

sdstring

d=6
N=(2,0)

++

stringIIA

d=10
N=(1,1)

��

stringhet

d=10
N=1

tt

littlestringhet

d=6
N=1

ss

OO

T

��

m5brane // m2brane d=11
N=1

// Rd;N

ss

ns5branehet
d=10
N=1

oo

R0|N stringIIB

d=10
N=(2,0)

99

(p, q)stringIIB

d=10
N=(2,0)

OO

Dstring

d=10
N=(2,0)

ee

(p, q)1brane

::

d3brane

OO

(p, q)5brane

dd

oo
S

//

where

• An object in this diagram is precisely a super-Lie-(p + 1)-algebra extension of the super translation
algebra Rd;N , with (d, p,N) as given by the entries of the same name in the refined brane scan, def.
8.1.17;

• every morphism is a super-Lie (p + 1)-algebra extension by an exceptional R-valued o(d)-invariant
super-L∞-cocycle of degree p+ 2 on the domain of the morphism;

• the unboxed morphisms are hence super Lie (p + 1)-algebra extensions of Rd;N by a super Lie algebra
(p+ 2)-cocycle, hence are homotopy fibers of the form

pbrane

��

c
// ∗

��
Rd;N some cocycle // R[p+ 1] ,

• and the boxed super-L∞-algebras are super Lie (p+1)-algebra extensions of genuine super-L∞-algebras
(which are not plain super Lie algebras), again by R-cocycles

p2brane

��

c
// ∗

��
p1brane

some cocycle // R[p2 + 1] .
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Proof. Using prop. 7.3.25 and the dictionary that we have established above between the language
used in the physics literature (“FDA”s) and super-L∞-algebra homotopy theory, this is a translation of the
following results that can be found scattered in the literature (some of which were discussed in the previous
sections).

• AllN = 1-extensions of Rd;N=1 are those corresponding to the “old brane scan” [AETW87]. Specifically
the cocycle which classifies the super Lie 3-algebra extension m2brane→ R11;1 had been found earlier
in the context of supergravity around equation (3.12) of [dAFr82]. These authors also explicitly write
down the “FDA” that then in [SSS09a] was recognized as the Chevalley-Eilenberg algebra of the super
Lie 3-algebra m2brane (there called the “supergravity Lie 3-algebra”). Later all these cocycles appear
in the systematic classification of super Lie algebra cohomology in [Br10a, Br10b, Br13].

• The 7-cocycle classifying the super-Lie-6-algebra extension m5brane → m2brane together with that
extension itself can be traced back, in FDA-language, to (3.26) in [dAFr82]. This is maybe still
the only previous reference that makes explicit the Lie 6-algebra extension (as an “FDA”), but the
corresponding 7-cocycle itself has later been rediscovered several times, more or less explicitly. For
instance it appears as equations (6) and (9) in [BLNPST97]. A systematic discussion is in section 8 of
[CdAIP99].

• The extension stringIIA → R10;N=(1,1) by a super Lie algebra 3-coycle and the cocycles for the further
higher extensions D(2n)brane→ stringIIA can be traced back to section 6 of [CdAIP99].

• The extension stringIIB → R10;N=(2,0) by a super Lie algebra 2-coycle and the cocycles for the further
higher extensions D(2n + 1)brane → stringIIA, as well as the extension ns5braneIIB → Dstring follow
from section 2 of [Sak99].

�

Remark 8.1.19. The look of the brane bouquet, Prop. 8.1.18, is reminiscent of the famous cartoon that
displays the conjectured coupling limits of string/M-theory, e.g. figure 4 in [?], or fig. 1 in [Po99]. Contrary
to that cartoon, the brane bouquet is a theorem. Of course that cartoon alludes to more details of the nature
of string/M-theory than we are currently discussing here, but all the more should it be worthwhile to have a
formalism that makes precise at least the basic structure, so as to be able to proceed from solid foundations.

8.2 Gravity

We discuss how 11-dimensional supergravity arises from applying the general theory of Cartan geometry
5.3.12, definite WZW terms 5.3.13, generalized geometry 5.3.14 and higher isometries 5.3.15 to the local
model geometries found in the M2/M5-brane branch 8.1.2.2 of the brane bouquet 8.1.2.3.

• 8.2.1 – 11-Dimensional supergravity

• 8.2.2 – The M2-WZW term and the exceptional tangent bundle

• 8.2.3 – M2/M5-brane BPS charges

8.2.1 11-Dimensional supergravity

We discuss how the equations of motion for bosonic solutions of 11-dimensional supergravity arise from
Cartan geometry 5.3.12 applied to the M2/M5-brane branch 8.1.2.2 of the brane bouquet 8.1.2.3.

Above in 8.1.1 we started with the superpoints R0|N given by the solidity of the general supergeometric
substance, and then by iteratively finding cocycles and the extensions they induce, we saw in 8.1.2 a bouquet
of extended super-Minkowski spacetimes emerge:
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D0brane

**

D2brane

%%

D4brane

��

D6brane

yy

D8brane

tt

KK

DD

stringIIA

��

OO

T

��

m5brane // m2brane // R10,1|1 // R9,1|(1,1)

tt

ns5braneIIAoo

R0|32 //// R0|16 R9,1|(1,0)oo stringhet
oo ns5branehetkk

R9,1|(2,0)

jj

stringIIB

99

(p, q)stringIIB

OO

Dstring

ee

(p, q)1brane

::

d3brane

OO

(p, q)5brane

dd

oo
S

//

According to prop. 6.4.164, every intermediate item in this bouquet induces a WZW term LWZW : V −→
Bp+1(R/Γ)conn, prop. 5.2.122, being part of the Lagrangian of the corresponding p-brane sigma model with
target V ; and by prop. 6.4.168 for every edge between two items the corresponding two WZW terms are

compatible, which by prop. 5.2.125 means that the second is defined on the differential refinement
˜̂
V of the

extended super-Minkowski spacetime V̂ → V induced by the first

˜̂
V

��

LWZW1 // Bp2+1(R/Γ2)conn

V
LWZW1

// Bp1+1(R/Γ1)conn

Def. 5.3.133 shows how to globalize this data from super-Minkowski spacetimes V to more general spaces
locally modeled on V , namely to V -manifolds, def. 5.3.88, equipped with first-order integrable G-structure
g, def. 5.3.104, def. 5.3.111, where, by remark 5.3.135,

G = HeisAutGrp(DV )(L
DV
WZW)

is the homotopy stabilizer group prop. 5.2.140, def. 5.2.141, of the linearized WZW term with respect to
the super Lie n-algebra automorphisms of the respective super-Minkowski spacetime.
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Theorem 8.2.1. Applied to the extremal stage

m2brane
µm5brane //

��

b5R

R10,1|1
µm2brane

// b2R

of the bouquet, such geometries (X,g,LWZW1 ,LLWZW2
), when X is constrained to have finite categorical

homotopy groups (def. 5.1.100, remark 5.1.103) are equivalently

1. 11-dimensional N = 1 super-orbifolds X equipped with graviton, gravitino and 4-form flux fields which
satisfy the equations of motion of 11-dimensional vaccuum supergravity (i.e. for vanishing gravitino
field strength);

2. and equipped with a consistent global choice of WZW term potentials for the super 4-form and the super
7-form which are implied by these equation of motion, hence with global WZW terms that make the
M2-brane sigma model as well as the M5-brane sigma model be globally well defined on X.

Moreover,the higher group of symmetries of any given such (X,g,LWZW1
,LLWZW2

) has as its lowest Post-
nikov stage a supergroup whose super-Lie algebra is an extension of the M-theory algebra of the super-
spacetime X, extending its super-isometry group by BPS brane charges.

Before proving this, consider two lemmas.

Lemma 8.2.2. The group HeisAutGrp(DV )(L
DV
WZW) is a B2(R/Γ)-extension of the spin double cover Spin(10, 1)

of the Lorentz group of linear isometries of 11-dimensional Minkowski spacetime.

Proof. By prop. 8.1.5 the 0-truncation of the group is Spin(10, 1), and by theorem 5.2.143, and using
that super-Minkowskip spacetime is geometrically contractible,

∫
R10,1|1 ' ∗, the full group is an extension

of that by
B2(R/Γ)FlatConn(R10,1|1) ' B2(R/Γ) .

�

Lemma 8.2.3. The condition on an Rd−1,1|N -manifold to have Spin(d− 1, 1)-structure which is first order
integrable in the sense of def.5.3.111 is equivalent to the super-vielbein (Ea,Ψα) which exhibits the Spin(d−
1, 1)-structure having vanishing super-torsion. This in turn is equivalent to the ordinary torsion to have
components (T a, Tα)a,α of the form

T a = i
2ψΓaΨ

Tα = 0 .

Proof. By prop. 5.3.94 the choice of framing on Rd−1,1|N (with respect to which def. 5.3.111 demands
first order integrability) is that obtained via left translation with respect to the supergroup structure of
Rd−1,1|N . This is the framing of vanishing super-torsion. �

To amplify this important point:

Example 8.2.4. With (xa, θα) the canonical coordinates on Rd−1,1|N , the canonical basis of left-invariant
1-forms is

Eα := dθα

Ea := dxa + i
2Γaαβθ

αdθβ .
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This defines the left-invariant orthogonal structure, according to example 5.3.106. Observe that, due to the
second summand in the definition of Ea, this basis has torsion

τa = dEa + ωab ∧ Eb

= dEa

= i
2ΓaαβE

α ∧ Eβ .

Hence we canonically have a nontrivial background O(Rd−1,1|N )-structure cRd−1,1|N in the sense of def.
5.3.109. This perspective has been highlighted in [Lo90].

To further amplify this, there is of course a GL(Rd|N )-valued function on Rd|N which takes the torsion-free
but non-left-invariant frame (dxa,dθα) to the torsion-full but left-invariant (Ea, Eα)(

Ea

Eα

)
=

 id ( i2Γaαβθ
α)aβ

0 id

( dxa

dθα

)

thereby exhibiting (Ea, Eα) as indeed being a frame, namely indeed defining a homotopy

(
τRd|N

cLI−→ O(Rd|N )Struc
)

=


Rd|N

τRd|N %%

// BO(Rd|N )

O(Rd|N )Strucww
BGL(Rd|N )

(Ea,Eα)qy


but it is not the one induced by the above coordinate presentation

Rd|N

τRd|N %%

// ∗ //

��

BO(Rd|N )

O(Rd|N )Strucww
BGL(Rd|N )

(dxa,dθα)nv

.

Proof. (of theorem 8.2.1) By corollary 6.5.57, the assumption that X is an R10,1|1-manifold in the sense
of def. 5.3.88 means that it is a super-étale stack modeled on R10,1|1, hence a super-orbifold if its categorical
homotopy groups are assumed to be finite. By prop. 5.4.4 this means that the underlying bosonic spacetime
is an 11-dimensional orbifold.

By the discussion in 6.4.11 and 7.1.3.1, lemma 8.2.2 implies that the given G-structure is in degree-0 a
super-vielbein field, hence a graviton field and gravitino field.

By [CaLe94, Ho97], for d = 11 and N = 1 the first equation on the supervielbein in lemma 8.2.3 is
already equivalent to the full equations of motion of supergravity if one understands that the 4-form flux is
the one given by the definite globalization of µm2brane via the given vielbein. (The second equation in lemma
8.2.3 is by definition the vanishing of the gravitino field strength, see e.g. [dAFr82, p. 131 (31/40)].)

By prop. 5.3.120 this 4-form equals the curvature 4-form of the given LWZW1 , hence this is indeed a
globalization of the M2-brane WZW term over X.

With this, the statement about the BPS algebras follows with prop. 1.4.4. �

Remark 8.2.5. It is the remarkable result of [CaLe94, Ho97] that makes this work for 11-dimensional super-
gravity. Previous to [CaLe94] it was well known [GHMNT85, ShTa87, BeSeTo87, CGNSW96], [AFFFTT99,
section 3.1] that the equations of motion of 11-dimensional supergravity imply the torsion constraint and the
definite globalization of the WZW curvature, and similar implications do hold for the lower dimensional su-
pergravity theories, but for 11-dimensional supergravity the implication also holds the other way round. This
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super-miracle together with the fact that first order integrability with respect to left-invariant G-structure
happens to have a natural synthetic formalization in cohesive homotopy theory is at the heart of theorem
8.2.1.

Regarding the evident question of whether there is also a synthetic formalization of the equations of
motion of lower dimensional supergravity theories, it may be noteworthy that the key result of [dAFr82,
CaDAFr91], phrased in homotopy-theoretic language as explained in [FSS13b], says that the equations of
motion of theories of supergravity are generally equivalent to

1. the Bianchi identities for a super-L∞-Cartan connection modeled on an extended super-Minkowski
spacetimes;

2. a kind of super-holomorphicity called rheonomy [CaDAFr91, section III.3.3.] (equivalent [AFFFTT99,
below (3.12)] to what elsewhere is called just “superspace constraints”).

Regarding the fields of supergravity as super-L∞-connections as in [FSS13b], then the Bianchi identities are
automatic and the rheonomy constraint simply says that the spinorial components of all curvature forms must
be linear combinations (for some prescribed constant coefficients determined by the flavor of supergravity) of
the curvature components without spinorial indices. This is already remarkable in its mathematical efficiency.
While one may easily say this in components, at the moment we do not know how to phrase this constraint
synthetically in cohesive homotopy theory.

Remark 8.2.6. The restriction in theorem 8.2.1 to vacuum solutions, i.e. to vanishing gravitino field
strength, is not worrisome. All M-theory model building for fundamental particle physics is based on such
vacuum solutions on suitable orbifolds [Ach99, ?], see [ElKaZh14] for the state of the art and for further
pointers to further literature.

8.2.2 The M2-WZW term and the exceptional tangent bundle

Above we found 11-dimensional supergravity together with the classical anomaly cancellation of the M2-
brane sigma model by requiring the WZW term of the M2-brane to be definite on one fixed referece WZW
term.

This is however more restrictive than necessary, and here we discuss the situation more generally. What
is strictly required to be a definite globalization of a single reference term is only the 4-curvature of the M2-
WZW term, and this condition alone, when imposed integrably to first infinitesimal order, already implies
bosonic solutions to the equations of motion of 11-dimensional supergravity. Subject to this condition, the
WZW term itself however may vary more generally.

It is a famous fact [BeSeTo87] that

• a) the equations of motion of 11-dimensional supergravity imply that the bilinear fermionic component

Gψψ4 of the super-4-form flux on 11-dimesnional spacetimeX is a definite form (in terminology borrowed
from that of G2-manifolds), which in each tangent space is Spin(10, 1)-equivalent to the left-invariant
super 4-form ψ ∧ Γa1a2 ∧ ψ ∧ ea ∧ eb on super-Minkowski spacetime R10,1|32.

• b) Gθθ4 is the curvature 4-form of the κ-symmetry WZW term for the M2-brane sigma-model with
target space the give 11d superspacetime.

What has arguably found less attention is that the definition of the M2-brane sigma model with target
space a curved superspacetime X is not complete with just this 4-form curvature: the higher WZW term
in the M2-brane action functional is locally a choice of form potential C3 for Gψψ4 , and globally it is the
3-connection of a 3-bundle (2-gerbe) whose local connection 3-forms are given by these choices of C3. (Such

a 3-bundle with 3-connection is a higher pre-quantization of Gψψ4 regarded as a pre-3-plectic form.) One
place in the physics literature where the need of this extra information is at least mentioned is [Wi86, page
17].
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A systematic study of 11d-supergravity with these pre-quantum corrections coming from the M2 and the
M5-brane sigma-models included is in [?], with lecture notes in [?]. For the moment here we will focus just
on the space of local choices, and stay within the realm of traditional differential geometry. We will see that
the space of local choices is naturally parameterized by splittings of the 11d exceptional generalized tangent
bundle, hence by exceptional generalized metrics.

It is useful to state the problem of parameterizing spaces of form potentials for left-invariant closed forms
in generality, to separate its general structure from the intricacies of its application to M2-branes WZW
terms. In generality it looks as follows.

8.2.2.1 Atiyah sequence for (p + 1)-form connections Consider a germ of a Lie group G (hence a
“local Lie group” where we consider working on arbitray small contractible neighbourhoods of the neutral
element of an actual Lie group and ignore the global topology of the group). Consider furthermore a closed
an left-invariant differential (p+ 2)-form

ω ∈ Ωp+2
cl,li (G) .

Since we are working just locally on a germ, by the Poincaré lemma ω is guaranteed to have a potential

A ∈ Ωp+1(G)

in that
dA = ω

where of course A may not be left-invariant itself, unless ω comes from a trivial Lie algebra cocycle. But we
may force that to happen after passing to an extension:

Assume that there is an extension of (germs of) Lie groups

p : Ĝ −→ G

with the property that pulled back along this extension, ω does become left-invariantly trivial, i.e. such that
there is a left invariant potential form

Â ∈ Ωp+1
li (Ĝ)

such that
dÂ = p∗ω .

If this may be found, then (at least part of) the space of potentials for ω down on G has a neat parame-
terization as follows.

Every splitting
σ : G −→ Ĝ

of the bundle underlying the extension (i.e. a section of the underlying map of (germs of) smooth manifolds,
not required to respect the group structure) gives rise to a potential for ω, namely the pullback σ∗Â of the
left-invariant “reference potential” which we assumed to exist on Ĝ:

d(σ∗Â) = σ∗(dÂ)

= σ∗(p∗ω)

= (p ◦ σ)∗ω

= id∗ω

= ω

.

Notice that by the left-invariance of Â, two sections σ that differ by an action of Ĝ on itself give rise
to the same potential form: For every element ĝ ∈ Ĝ write Lĝ : Ĝ −→ Ĝ for the action on Ĝ given by
left-multiplication. Then

(Lĝ ◦ σ)∗Â ' σ∗(L∗ĝÂ)

' σ∗Â
.
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This means that the parameterization of potential forms which we found is really the quotient space
ΓG(Ĝ)/Ĝ. But this has a nice re-interpretation: this is equivalently the space of pointed sections of p (those
that send the neutral element of G to the neutral element of Ĝ).

This is useful, because it implies that as we restrict further from germs to infinitesimal neighbourhoods,
hence to Lie algebras, then the space of sections becomes the space of linear splittings of the Lie algebra
extension ĝ −→ g:

0 // ker(p∗) // ĝ
p∗

// g //

σ∗

yy
0 .

This is a very familiar situation. An example of this at the level of Lie algebroids is the Atiyah sequence
of a principal bundle, whose fiberwise linear splittings correspond to choices of connection 1-forms. Here we
see something analogous for connection (p+ 1)-forms.

Notice that on the level of Lie algebras Â is identified with an element of the Chevalley-Eilenberg dg-
algebra CE(ĝ) such that ddCE

Â = (p∗)
∗ω.

8.2.2.2 Atiyah sequence for the M2-brane WZW term We may now specify the above general
discussion to the case of the M2-brane WZW term.

In this case we have from 8.1.2

• g := R10,1|32;

• ω := ψ ∧ Γa1a2ψ ∧ ea1
∧ ea2

and so the question is if there exists a suitable super Lie algebra extension p∗ : ĝ −→ g and an element
Â ∈ CE(ĝ) such that

dCEÂ = (p∗)
∗ψ ∧ Γa1a2ψ ∧ ea1 ∧ ea2 .

If so, then all pullbacks of Â along linear splittings of p∗ are possible WZW terms for the M2-brane.
This problem has been solved (even if not presented from the perspective used here) in [dAFr82, section

6] and more comprehensively in [?].
These authors find [dAFr82, (6.2)] [?, (11)-(13)] that there exists (at least) a 1-parameter class of solutions

to this problem given by super Lie algebras R̂10,1|32 which are generically fermionic extensions of the M-
theory super Lie algebra [To95, Hull97], and hence whose bosonic body is generically:

R̂10,1|32
bos 'lin R10,1 ⊕ ∧2(R10,1)∗ ⊕ ∧5(R10,1)∗

(except for one value of the parameter, at which the ∧5-summand disappears). Following [Hull97] we may
equivalently express this in terms of purely spatial components by applying Hodge duality to obtain

R̂10,1|32
bos 'lin R10,1 ⊕ ∧2(R10)∗︸ ︷︷ ︸

M2-brane

⊕ ∧9 R10︸ ︷︷ ︸
M9-brane

⊕ ∧5(R10)∗︸ ︷︷ ︸
M5-brane

⊕ ∧6 R10︸ ︷︷ ︸
KK-monopole

.

Notice that for the description of Kaluza-Klein compactifications of 11-dimensional supergravity down to
4 dimenions one will consider linear splittings of this extension which factor through the inclusion of the
bosonic subspace that is induced by the inclusion R7 ↪→ R3,1 ⊕ R7 ' R10,1. (Such linear splittings will
encode 3-form fields all whose form components are in the 7-dimensional fiber space, we come to this in
8.2.2.3 below.) That subspace is

R7 ⊕ ∧2(R)7 ⊕ ∧5(R7)∗ ⊕ ∧6R7 ↪→ R̂10,1|32
bos .

This is precisely what has been proposed as the typical fiber of the exceptional tangent bundle for 11-
dimensional supergravity compactified on 7-dimensional fibers [Hull07, section 4.4][?, section 2.2]
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Moreover, these authors find [dAFr82, (6.1)] [?, (28)] a Chevalley-Eilenberg 3-forms Ĉ ∈ CE(R̂10,1|32)
that trivialize the M2-brane 4-cocycle on this extension. It is given for

s ∈ R− {0}

by [dAFr82, (6.1)] [?, (28)]

Ĉ(s) := αLP(s) Ba1b1 ∧ ea1
∧ ea2︸ ︷︷ ︸

ĈLP

+αCS(s) Ba1
a2 ∧Ba2

a3 ∧Ba3
a1︸ ︷︷ ︸

ĈCS

+ · · · ,

where {Ba1a2} is a basis for the left-invariant 1-forms on the summands ∧2(R10,1|32)∗, and where we show
only the terms generated by {ea} and {Ba1a2}.

According to [?, (30)] we have

• for s = −3 then αCS(−3) = 0 and with it the second term above vanishes

• for s→ 0 then the bosonic part of sĈ(s) goes to ĈCS

We observe below in section 8.2.2.3 that ĈLP akin to a Liouville-Poincaré form on a cotangent bundle,
while ĈCS is akin to a Chern-Simons form.

It is maybe noteworthy that in the limit s→ 0 the M-theory super Lie algebra here becomes a limiting
case of osp(1|32) [FIO15].

ea := dxa + θΓadθ

ψα = dθα

8.2.2.3 The M2-Liouville-Poincaré form and 3-form shift symmetry

Proposition 8.2.7. Given a bosonic 3-form C ∈ ∧3(R10,1|32)∗ then the linear splitting

R10,1
σC∗ // R10,1 ⊕ ∧2(R10,1)∗

v � // (v, ιvC)

has the property that
(σC∗ )∗ĈLP = C .

Corollary 8.2.8. For s = −3 then
(σC∗ )∗Ĉ(−3) = C .

In particular, the map from linear splittings to bosonic 3-forms is surjective.

Remark 8.2.9. The formula for the splitting in prop.8.2.7 is coincides with the formula that the literature
on exceptional generalized geometry postulates to encode the 3-form degrees of freedom [Hull07, (4.2)] [?,
(B.23)].

8.2.2.4 Gauge fields and Chern-Simons forms On the other hand, consider which section would
parameterize C via pullback if only the second summand ĈCS were present in Ĉ, hence the case s→ 0. This
would most naturally be understood by using the Lorentz metric to make the linear identification

∧2(R10,1)∗
'−→ so(10, 1) .

Notice that this matches the role that Bab plays in the super Lie algebra ĝ, where it acts on fermions via
action with BabΓ

ab on the spin representation, i.e. via the matrix representation of so(10, 1) on the fermions.
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With such an identification, then a linear splitting is an so(10, 1)-valued linear 1-form A, and the 3-form
that it parameterizes is

(σA∗ )∗ĈCS = 〈A ∧ [A,A]〉 ,

where 〈−,−〉 is the invariant bilinear (Killing) form. This is of course the Chern-Simons form for the linear
1-form A regarded as a constant differential 1-form.

Hence we see that for generic value of the parameter s in the possible choices of Ĉ, the 3-form poten-
tials that are parameterized by linear splittings as above are naturally interpreted as having a component
proportional to the Chern-Simons form of a nonabelian gauge field.

Now I don’t see at the moment how this is more than a curiosity, but it seems suggestive of the following
expectations

• such a Chern-Simons component is what one expects to see appear in heterotic Hořava-Witten “com-
pactifications” of the setup;

• in the context of gauged supergravity it is part of the R-symmetry that is being gauged, and from
the 11-dimensional perspective that R-symmetry is an isometry of the compactification space, hence
is locally a Lorentz transformation;

• the interpretation of the splitting as a 1-form with values in bivectors is also the natural interpretation
in the context of Kaluza-Klein reduction of the on fibers with 2-cycles by which the 3-form C is fiber
integrated to a space of 1-forms Ai :=

∫
Σi
C. For this case, too, it is folklore that the {Ao}, which a

priori are abelian, become gauged under a nonabelian group.

8.2.3 M2/M5 BPS charges

These are the supersymmetry extensions induced by a single brane species, as considered originally in
[AGIT89]. But the “type II algebra” and the “M-theory algebra” [To95, Hull97] are supposed to arise
from considering not just strings and membranes, but also the branes on which these may end, namely the
D-branes and the M5-brane, respectively. Notably the M-theory supersymmetry algebra is given on the
fermionic generators in traditional local component notation as [To95, ?]

{Qα, Qβ} = (CΓM )αβPM + (CΓMN )αβZ
MN
2 + (CΓMNPQR)αβZ

MNPQR
5 , (8.6)

where C is the charge conjugation matrix and Γ are the Dirac matrices. The three terms on the right hand
side correspond to the graviton momentum 1-form charge, the membrane 2-form charge and the fivebrane
5-form charge. Notice again that this traditional expression applies only locally, on patches of spacetime
diffeomorphic to super-Minkowski spacetime.

Now the proper global analysis of [AGIT89, p.8] and of prop. 1.4.4 only ever produces extensions by
charges of a single brane species with no (higher) gauge fields on its worldvolume. But in 5.2.15, 8.1.2
we found that the WZW-type sigma models for super p2-branes with (higher) gauge fields on the their
worldvolume and on which super p1-branes may end, are globally defined not on target superspacetime X

itself, but on the total space
˜̂
X of a super p1-stack extension

˜̂
X → X of superspacetime, which itself is

a differential refinement of the p1-gerbe X̂ that underlies the WZW term of the p1-branes. Moreover, in
[FRS13a] we showed that the higher Heisenberg-Kostant-Souriau extensions of remark ?? generalizes to such
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higher stacky base spaces. Schematically this follows now the following picture, the full details are in [?, ?]:

X̂

��

L
p2
WZW

((

' // X̂

��

L
p1
WZW

vv

X
' //

L
p1
WZW

&&

X

LWZW

xx
Bp1+1U(1)conn

��
Bp2+1U(1)conn



'7→

Hp2(
˜̂
X)

��

τ0Poiss(
˜̂
X,Lp2

WZW)

��

Isom(
˜̂
X,Lp2

WZW)

.

(All 2-cells on the left are filled by homotopies of higher stacks. We suppress them just notationally just for
convenience and readability.)

Here the differential refinement
˜̂
X of X̂ is what makes a sigma-model field Σp2

−→ ˜̂
X be a pair consisting

of an ordinary map to target spacetime Σp2
−→ X together with a twisted p1-form gauge field on Σ6. This

is the global model for super p-branes with tensor multiplet higher gauge fields on their worldvolume.

While this is necessary for the full picture, the isometry group and the cohomology of
˜̂
X is hard to

compute. There is however a canonical forgetful map
˜̂
X → X̂ to the geometric realization of this differential

stack (regarded itself as a locally constant stack, see [?] for details). By combining results of [?] and [Pa], one
finds that in the case at hand X̂ is the homotopy type of the K(Z, p1 +1)-fiber bundle over spacetime X that
is classified by the integral class of the background field of the p1-brane. We now compute the cohomology of
that geometric realization. In a full discussion one will have to pull the result of the following computation

back along the above map to
˜̂
X, and kernel and cokernel of this pullback map potentially yield yet further

corrections to the brane charges.

We specialize to the case p1 = 2 and p2 = 5 corresponding to M5-branes propagating in an M2-brane
condensate [FSS13b]. First, consider the cohomology of the fiber K(Z, 3). At the integral level, this is known
but has a complicated structure. We will instead consider the corresponding rational cohomology, which is
much more accessible. Indeed, it directly follows from the Hurewicz theorem and the universal coefficient
theorem that

Hk(K(Z, 3);Q) =

{
Q for k = 0, 3 ,
0 otherwise .

Given the homotopy fiber sequence

K(Z, 3) // X̂

��
X

the cohomology Serre spectral sequence takes the form

Ep,q2 = Hp(X);Hq(K(Z, 3))⇒ Hp+q(X̂) .

From the cohomology of the fiber determined above, we see that q has to be either 0 or 3 in order to
contribute. The relevant differential dr : Ep,q2 → Ep+r,q−r+1

2 is then d4, which raises the cohomology degree
by 4.

Hence the brane charge extension of the 11-dimensional superisometries is, rationally, by H5(X̂), and by
the Serre spectral sequence this is the middle cohomology of

H1(X)
(0,d4)−→ H2(X)⊕H5(X)

(d4,0)−→ H6(X) , (8.7)
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where d4 = [G4] ∪ (−) is the cup product with the degree-4 class of the C-field. For torsion C-fields this
vanishes rationally and hence one arrives at the conclusion that the M-theory super Lie algebra extension is
by brane charges in H2(X) ⊕H5(X), agreeing with the result of the argument in [ST97]. For non-torsion
C-fields or else when considered not just rationally, then there are corrections to this statement by the kernel
and cokernel of d4. Notice that these corrections are directly analogous to the correction by kernel and
cokernel of a d3 differential in an Atiyah-Hiruebruch spectral sequence, which appear when refining D-brane
charges from ordinary cohomology to twisted K-theory [MMS01, (3.2), (3.6)]. That 5-brane charges should
be in a degree-4 twisted cohomology theory this way has been suggested earlier in [Sa10a, section 8] and has
been discussed further in 8.1.2.2.
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[CJKP97] A. Carboni, G. Janelidze, G. M. Kelly, R. Paré, On localization and stabilization for factorization
systems, Applied categorical structures 5, 1-58 (1997)

[Carc12] D. Carchedi, Étale Stacks as Prolongations, arXiv:1212.2282

[CBMMS02] A. Carey, P. Bouwknegt, V. Mathai, M. Murray, D. Stevenson, Twisted K-theory and K-theory
of bundle gerbes and , Commun Math Phys, 228 (2002) 17-49, arXiv:hep-th/0106194

[CJM02] A. Carey, S. Johnson, M. Murray, Holonomy on D-Branes, J. Geom. Phys. 52 (2004) 186-216,
arXiv:hep-th/0204199

[CJMSW05] A. Carey, S. Johnson, M. Murray, D. Stevenson, B.-L. Wang, Bundle gerbes for Chern-Simons
and Wess-Zumino-Witten theories, Commun.Math.Phys. 259 (2005) 577-613 arXiv:0410013
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Géométrie Différentielle Catégoriques, 20 no. 3 (1979), p. 231-279

[Dub00] E. Dubuc, Axiomatic étale maps and a theorem of spectrum, Journal of pure and applied Algebra
149 (2000)

[Duf87] M. Duff, Supermembranes: the first fifteen weeks CERN-TH.4797/87 (1987)
http://ccdb4fs.kek.jp/cgi-bin/img/allpdf?198708425

[Duff95] M. Duff, M-Theory (the Theory Formerly Known as Strings), Int. J. Mod. Phys. A11 (1996)
5623-5642 arXiv:hep-th/9608117

[Duff99] M. Duff, The World in Eleven Dimensions: Supergravity, Supermembranes and M-theory, IoP 1999

[Duf08] M. Duff, Near-horizon brane-scan revived, Nucl. Phys. B 810 (2009), 193–209, arXiv:0804.3675

[DLM95] M. Duff, J. Liu, R. Minasian, Eleven-dimensional origin of string-string duality: A One loop test,
Nucl. Phys. B452 (1995) 261-282, arXiv:hep-th/9506126

[Dug99] D. Dugger, Sheaves and homotopy theory (1999)
http://pages.uoregon.edu/ddugger/cech.html

[Dug01] D. Dugger, Universal homotopy theories, Adv. Math., 164(1):144–176 (2001)

[DHS04] D. Dugger, S. Hollander, D. Isaksen. Hypercovers and simplicial presheaves, Math. Proc. Cambridge
Philos. Soc., 136(1):9–51, 2004.

[Du06] R. Duncan, Types for quantum mechanics, 2006 homepages.ulb.ac.be/ rduncan/papers/rduncan-
thesis.pdf

[Dus75] J. Duskin, Simplicial methods and the interpretation of “triple” cohomology Mem. Amer. Math.
Soc., 3, number 163, Amer. Math. Soc. (1975)

[DwKa80a] W. Dwyer, D. Kan Calculating simplicial localizations, J. Pure Appl. Algebra 18 (1980)

[DwKa80b] W. Dwyer, D. Kan Function complexes in homotopical algebra, Topology vol 19 (1980)

[DwKa84a] W. Dwyer, D. Kan, A classification theorem for diagrams of simplicial sets, Topology 23 (1984),
139-155.

[DwKa84b] W. Dwyer, D. Kan. An obstruction theory for diagrams of simplicial sets, Nederl. Akad. Weten-
sch. Indag. Math., 46(2):139–146, 1984.

[DyRo80] E. Dyer, J. Roitberg, Note on sequence of Mayer-Vietoris type, Proceedings of the AMS, volume
80, number 4 (1980)
www.ams.org/journals/proc/1980-080-04/S0002-9939-1980-0587950-8/S0002-9939-1980-0587950-8.pdf

[EMRV98] A. Echeverria-Enriquez, M. Munoz-Lecanda, N. Roman-Roy, C. Victoria-Monge, Mathematical
Foundations of Geometric Quantization, Extracta Math. 13 (1998) 135-238 arXiv:math-ph/9904008

987

http://arxiv.org/abs/math/0402082
http://ccdb4fs.kek.jp/cgi-bin/img/allpdf?198708425
http://arxiv.org/abs/hep-th/9608117
http://arxiv.org/abs/0804.3675
http://arxiv.org/abs/hep-th/9506126
http://pages.uoregon.edu/ddugger/cech.html
http://homepages.ulb.ac.be/~rduncan/papers/rduncan-thesis.pdf
http://homepages.ulb.ac.be/~rduncan/papers/rduncan-thesis.pdf
http://www.ams.org/journals/proc/1980-080-04/S0002-9939-1980-0587950-8/S0002-9939-1980-0587950-8.pdf
http://arxiv.org/abs/math-ph/9904008


[EckHi64] B. Eckmann, P. Hilton, Unions and intersections in homotopy theory, Comment. Math. Helv. 3
(1964),2 93-307,

[Ehre51] C. Ehresmann. Les connexions infinitésimales dans un espace fibré différentiable, in Colloque de
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Catégor. (1980) Volume: 21, Issue: 3 http://www.numdam.org/item?id=CTGDC_1980__21_3_227_0

[Kock86] A. Kock, Convenient vector spaces embed into the Cahiers topos, Cahiers de Topologie et Géométrie
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