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SUMMARY Set Partitioning in Hierarchical Trees (SPIHT) is a highly
efficient technique for compressing Discrete Wavelet Transform (DWT) de-
composed images. Though its compression efficiency is a little less fa-
mous than Embedded Block Coding with Optimized Truncation (EBCOT)
adopted by JPEG2000, SPIHT has a straight forward coding procedure and
requires no tables. These make SPIHT a more appropriate algorithm for
lower cost hardware implementation. In this paper, a modified SPIHT al-
gorithm is presented. The modifications include a simplification of coef-
ficient scanning process, a 1-D addressing method instead of the original
2-D arrangement of wavelet coefficients, and a fixed memory allocation for
the data lists instead of a dynamic allocation approach required in the orig-
inal SPIHT. Although the distortion is slightly increased, it facilitates an
extremely fast throughput and easier hardware implementation. The VLSI
implementation demonstrates that the proposed design can encode a CIF
(352 × 288) 4:2:0 image sequence with at least 30 frames per second at
100-MHz working frequency.
key words: discrete wavelet transform (DWT), set partitioning in hierar-
chical trees (SPIHT), image coding

1. Introduction

Discrete Wavelet Transform (DWT) has been widely used
for digital image compression [1], [2]. Bi-orthogonal (5,3)
and (9,7) filters were chosen to be the standard filters used
in the JPEG 2000 codec standard [3], [4]. Since DWT was
introduced, several codec algorithms were proposed to com-
press the transform coefficients as much as possible. Among
them, Embedded Zerotree Wavelet (EZW), Set Partitioning
In Hierarchical Trees (SPIHT) and Embedded Block Coding
with Optimized Truncation (EBCOT) are the most famous
ones [5], [6]. In [6], if no entropy coding or arithmetic cod-
ing methods are incorporated, coding tables are not required
with slight loss in compression ratio. Moreover, SPIHT can
be easily used for either fixed bit rate or variable bit rate ap-
plications, and it is also very suitable for progressive trans-
mission [5]. Furthermore, SPIHT has about 0.6 dB peak-
signal-to-noise-ratio (PSNR) gain over EZW [7] and is very
close to EBCOT in many circumstances [6].

While EBCOT has the best compression rate of all,
it requires complex multi-layer coding procedures, multi-
ple coding tables and arithmetic coding techniques. So its
hardware implementation would be more difficult and ex-
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pensive. [10] On the contrary, SPIHT applies a much sim-
pler coding procedure and needs no coding table. The im-
plementation of SPIHT would be much cheaper to be suit-
able for still image compression appliances. Moreover, the
SPIHT based encoding algorithm is also applied to the SOT
based audio compression [15]–[17]. There are still some in-
terested issues on SPIHT based algorithms and applications.
For example, rate-distortion is always an important issue in
data compression. Lots of considerations were focused on
maximizing compression rate as well as minimizing distor-
tion under a limited data rate. To achieve a progressive bit-
stream with a smooth rate-distortion curve was discussed
more in the past decade for various multimedia applications
over Internet. Scalability is easily achieved by SPIHT-based
methods, such as image, video, or audio coders [23]–[25].

However, its implementation on a silicon chip still
encounters some difficulties. First of all, the addressing
scheme of the wavelet coefficients is in a 2-D manner, and
the searching for the descendants of a given coefficient has
to be performed very frequently. Next, frequent transac-
tions among the three lists, List of Insignificant Set (LIS),
List of Insignificant Pixel (LIP) and List of Significant Pixel
(LSP), which store the coefficient coordinates, are all nec-
essary. Third, linked lists are suitable for the implementa-
tion of the three lists, and insertion or deletion operations
are necessary to update those lists. Yet linked lists require
more memory space [14] and are more time-consuming in
search, insertion and deletion operation. Nevertheless, for
VLSI realization, it is necessary to develop fast hardwired
circuit solutions to speed up the time-consuming computa-
tions mentioned above.

Based on the above observations, a modified SPIHT
suitable for hardware implementation is proposed. In spite
of special arrangement, the coefficients can be stored in a 1-
D memory array. The searching for the descendants of each
coefficient becomes very simple. Besides, instead of using
dynamic linked lists, fixed size tables are used to execute
the operations for the three lists. Transactions of the lists
require no storage of the coordinates, and only the special-
purposed flags stored in the tables are updated. Inspection
of the content of the three lists becomes very convenient. In
summary, by the modified SPIHT, the overall coding proce-
dure is simplified and efficient. The only disadvantage is that
the average PSNR is decreased by about 0.2 dB occasion-
ally. The VLSI implementation of the modified SPIHT can
encode a CIF (352×288) 4:2:0 image sequence with at least
30 frames per second at 100-MHz working frequency. The
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overall gate count is merely 2950 and the internal memory
is 4 kb for storing the three lists and wavelet coefficients us-
ing TSMC 0.35-µm technology. Since SPIHT can not only
be applied to image compression but also audio and video
compression [23]–[25], it is possible to handle both video
and audio bit-streams in one single hardware module with
the proposed architecture in this paper.

This paper is organized as follows. The modified
SPIHT is presented in Sect. 2. VLSI implementation of the
modified SPIHT is discussed in Sect. 3. Finally, the conclu-
sion is shown in Sect. 4.

2. Modified SPIHT

2.1 Motivation

The original SPIHT is presented in [5] by A. Said and W.A.
Pearlman. Searching for descendants of a specific coeffi-
cient takes lots of operations. For a dedicated hardware, it is
necessary to store 2-D data in a 1-D array. Without loss of
generality, a 4 resolution level 16-by-16 DWT decomposed
image is used as an example. There are 256 coefficients to
be encoded. Figure 1 illustrates a typical addressing method.

For example, direct off-springs of a coefficient at the
position-002 are at position-004, position-005, position-
020, and position-021 while other descendants are at
position-008 to position-011, position-024 to position-027,
position-040 to position-043 and position-056 to position-
059. The rule is as follows.

Address of direct off-spring No.0

= (Address of the parent node × 2) (1)

Address of direct off-spring No.1

= (Address of the parent node × 2) + 1 (2)

Address of direct off-spring No.2

= (Address of the parent node × 2) + 16 (3)

Address of direct off-spring No.3

= (Address of the parent node × 2) + 17 (4)

The above operations are not complicated at all. How-
ever, it is not efficient to implement the dedicated SPIHT
hardware by using the rule. One can simplify the design by

Fig. 1 16-by-16 DWT coefficients with normal address method.

altering the addressing method. In 16-by-16 cases, 256 ad-
dresses are needed. One can use 8-bit symbols to represent
2-D addresses. In Fig. 2 (left), the upper nibble is for y-axis
(height) and the lower nibble is for x-axis (width).

A new addressing is used as shown in Fig. 2 (right).
For instance, the coefficient stored in position-071 (b’0100
0111) is stored in position-053 (b’00110101). This nota-
tion yields the physical address in Fig. 3. Because search-
ing for the descendants of a given coefficient has to be per-
formed very frequently, it is necessary to design a dedicate
circuit to compute the addresses. This also consumes more
clock cycles. In Fig. 3, the numbers in brackets represent
the original addresses of the wavelet coefficients, which are
also shown in Fig. 1. Moreover, the numbers not in brack-
ets indicate the new storage addresses of the wavelet coef-
ficients. The thick lines are used to divide the sub-bands
like the thick lines in Fig. 1. For example, the new posi-
tion of the coefficient at position-002 in Fig. 1 is at position-
004 in Fig. 3, and its direct off-springs are at position-016,
position-017, position-018, and position-019 while other de-
scendants are at position-064 to position-067, position-068
to position-071, position-072 to position-075 and position-
076 to position-079.

Therefore, with the proposed addressing method,
searching for the descendants of a specific coefficient be-
comes easier. The rule in Eqs. (1)–(4) is modified as fol-
lows.

New Address of direct off-spring No.0

Fig. 2 Original addressing method (left) and modified addressing
method (right).

Fig. 3 16-by-16 DWT coefficients with new addressing method.
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= (New Address of the parent node × 4) (5)

New Address of direct off-spring No.1

= (New Address of the parent node × 4) + 1 (6)

New Address of direct off-spring No.2

= (New Address of the parent node × 4) + 2 (7)

New Address of direct off-spring No.3

= (New Address of the parent node × 4) + 3 (8)

Thus, the direct off-springs of a specific coefficient are
stored in consecutive addresses. This makes the memory-
read operation more efficient and could reduce the switching
frequency of the address bus as well. The address genera-
tion circuit is reduced to a 2-bit shifter and an increment-by-
one operation. Hence, a new coding algorithm, which can
simplify the hardware design without losing much coding
efficiency, is derived and explained in next section. Most
image compression standards, e.g., JPEG2000, suggest that
images should be divided into code blocks, and the size of
code blocks is limited to powers of two with the minimum
size being 22 and the maximum being 210 [22]. Besides the
width and height of code block are usually the same for de-
signing a dedicated and efficient hardware. Under the con-
ditions the rule in Eqs. (5)–(8) is always held, and this is
proved in the Appendix A.

2.2 Modified SPIHT Algorithm

Most definitions of the lists and symbols are identical to the
original SPIHT except that 1-D addresses are used instead
of 2-D addresses and three definitions, that is, MaxLIP,
MaxLIS and MaxLS P, are increased. They are as follows:

• O(i): Set of coordinates of all offspring of node i.
• D(i): Set of coordinates of all descendants of node i.
• H: Set of coordinates of all spatial orientation tree

roots.
• L(i):D(i) − O(i).
• ci: The magnitude of the coefficient of node i.
• MaxLIP: The maximal address of all nodes in the LIP

list.
• MaxLIS : The maximal address of all nodes in the LIS

list.
• MaxLS P: The maximal address of all nodes in the LSP

list.
• T : All nodes in the image.
• N: The address of the last node in the image.
• A set L(i) or D(i) is said to be significant if any coeffi-

cient in the set has a magnitude greater than the thresh-
old, such as

S n(G) =
{

1, max{| ci |},∀(i) ∈ G
0, otherwise.

(9)

where G, G ⊆ T , is a set of nodes.

Similar to the SPIHT algorithm, four encoding steps,
initialization, sorting pass, refinement pass and quantization
pass, are performed and three linked lists, LIS, LSP and

LIP, are used in the proposed SPIHT. Its pseudo-code is de-
scribed as follows.

1. Initialization step:
• Output n = �log2(max{| ci |})�, 0 ≤ i ≤ N;
• Set LS P(i) = 0, 0 ≤ i ≤ N;
• Set LIP(i) = 1,∀i ∈ H, otherwise set to 0;
• Set LIS (i) = A,∀i ∈ H with descendants,

otherwise set to 0;
• Set MaxLIP = max(H),MaxLIS = max(H),

MaxLS P = 0;
2. Refinement pass:
• For 0 ≤ i ≤ MaxLS P

- If LS P(i) = 1 then
Output the nth most significant bit of | ci |;

- Else if LS P(i) = 2 then
Set LS P(i) = 1;

3. Sorting pass:
• For 0 ≤ i ≤ MaxLIP

- If LIP(i) = 1 then
* Output S n((i)),
* If S n((i)) = 1, then

� Output sign of ci

� Set LS P(i) = 2,
MaxLS P = max(i,MaxLS P)

� Set LIP(i) = 0
• For 0 ≤ i ≤ MaxLIS

- If LIS (i) = A then
* Output S n(D(i))
* If S n(D(i)) = 1 then

� For (i × 4)≤ j ≤(i × 4 + 3)
� Output S n(( j))
� If S n(( j)) = 1 then

Set LS P( j) = 2,
MaxLS P = max(i,MaxLS P)
Output the sign of c j

� Else
Set LIP( j) = 1,
MaxLIP = max(i,MaxLIP)

� If (i × 16)< N then
Set LIS (i) = B,
MaxLIS = max(i,MaxLIS )

� Else
Set LIS (i) = 0

- If LIS (i) = B then
* Output S n(L(i))
* If S n(L(i)) = 1, then

� For (i × 4)≤ j ≤(i × 4 + 3)
Set LIS ( j) = A

� Set LIS (i) = 0
4. Quantization-step update pass:
• Decrement n by one and go to Step 2.

In both SPIHT algorithms, there are three lists, LIS,
LIP, and LSP to be constructed. When an element in LIS
changes its type, transactions among the lists are necessary.
Insertion and deletion operations of the lists are required,
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too. Dynamic linked lists have to be employed to construct
the three lists for the SPIHT algorithm. It is easy to con-
struct dynamic linked lists with high level programming lan-
guages because memory management mechanism is avail-
able in computer operating systems. However, design of
such a dedicated low cost circuit is not so straightforward.
These operations reduce the throughput at the same time.
With the proposed approach, no dynamic linked list is nec-
essary. If N is the total number of coefficients, based on the
proposed addressing method, addresses of the coefficients
which have descendants are from 0 to (N/4)−1. Tables with
N/4 entries are used for the lists. They are LIS (i), LIP(i),
and LIS (i), for i = 0, . . . , (N/4) − 1. LIS (i) is set to be
zero when node-i has no descendant, or it has not joined the
encoding process yet. Otherwise, it denotes a coefficient at
position-i as either type A or type B. Similar definitions are
used for LIP(i) and can be found in the algorithm. LS P(i)
is set to be zero when node-i is insignificant pixel. LS P(i)
is set to be 2 when node-i becomes significant pixel for the
first time, then it is set to be 1 after the node-i passes the
refinement pass. By scanning the tables subsequently, one
encoding pass is finished. Simple counters and finite state
machines (FSM) are enough for its implementation. The test
images are 8 bpp grey scale images. Bi-orthogonal (9,7) fil-
ter and 5-level DWT are used [2]. The other pre-processing
follows the suggestions in JPEG2000 [4]. The distortion
measure is calculated by Eq. (10).

PS NR = 10 log10

(
2552

MS E

)
(10)

where MS E denotes the mean-square-error between the
original image and the decoded image. No entropy coding
is employed.

Figure 4 presents the rate-distortion comparison among
the three algorithms, the original SPIHT [5], the modified
SPIHT [11] and the proposed SPIHT. The solid blue lines
exhibit rate vs. distortion performance for SPIHT without
arithmetic coding. The solid red lines show the perfor-
mance of the proposed SPIHT without arithmetic coding.
The dash-dot blue lines demonstrate the performance of the
modified SPIHT, which is an old version of the proposed
SPIHT.

All decoded images were recovered from a single fi-
delity embedded encoded file, truncated at the desired rate.
Obviously, the PSNR performance of the proposed SPIHT
is much higher than the modified SPIHT at all of the rate
conditions. Notice that the performances of the original
SPIHT and the proposed SPIHT. At rates below 1.0 bpp,
the difference falls within 0.2 dB, and it becomes negligi-
ble at lower rates. The difference increases and falls within
0.3 dB between the rate 1.0 bpp and 1.8 bpp. Since most
applications demand higher compression ratios (more than
16:1), the proposed algorithm should be acceptable. Be-
cause linked lists are used in the original SPIHT, the nodes
that turn significant earlier will be placed near the heads of
the lists. These nodes are more important than the nodes
that turn significant later. Therefore, the bits for the ear-

Fig. 4 Coding performances for original SPIHT [5] (line), the proposed
modified SPIHT (line with dots) and the modified SPIHT [11] (dotted line)
on LENA and GOLDHILL images.

Table 1 CPU times in ms of these SPIHT algorithms.

Rate Original Modified Proposed
SPIHT [5] SPIHT [11] SPIHT

0.2 bpp 647 98 100
0.4 bpp 673 105 107
0.6 bpp 699 107 111
0.8 bpp 724 115 118
1.0 bpp 731 118 121

lier nodes will also be output first. The new algorithm
has no such scheme. That is, the original SPIHT tends to
have better PSNR performance than the proposed algorithm.
Fortunately, PSNR performance of the new algorithm does
not decrease much. No arithmetic coding was used on the
significant test for these results. Back-end arithmetic cod-
ing using contexts and joint encoding generally improves
SPIHT by about 0.5 dB [14]. We may expect that improve-
ment for the proposed SPIHT as well.

Though the target of the proposed algorithm is de-
signed for low cost ASIC implementation, the improvement
in speed on a general purpose computer can be expected.
Excluding the time spent for I/O and 8-level DWT, the corre-
sponding CPU times of two algorithms for encoding LENA
at different rates are shown in Table 1. The result is ob-
tained by taking the average after executing the programs
1000 times. The programs run on a Pentium IV-2G with
512 MB memory. The new method is over 6 times faster
than SPIHT.

3. The Proposed Architecture

In this paper, 16 × 16 image blocks are used as a design ex-
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Fig. 5 The proposed SPIHT architecture.

Table 2 Address space used in encode hardware.

Address Usage
x000–x0ff The Wavelet Coefficient
x100–x1ff The Output Bit-Stream

x200 Bit-Stream Length
x201 Encode Stop Level and Encode Point

ample. Implementations for different sizes can be extended
easily. The architecture of the encoding engine, includes a
core module, a system controller, two bus selectors, two ad-
dress translators and two internal memory buffers. This is
shown in Fig. 5.

3.1 The Proposed Encoding Engine

The proposed encoding engine is treated as the peripheral of
a certain CPU. The memory-mapping I/O is adopted in this
architecture for handling I/O. The engine and the memory
share the memory map displayed in Table 2.

The first 256 address spaces are for the wavelet coef-
ficients. The output bit-stream is stored in the second local
memory with the next 256 address spaces. The information
of bitstream length, Stop Level and Stop Point is recorded.
The Stop Level is in the bit plane where the encoding pro-
cess stops. Similarly, the Stop Point is the coordinate at
which the encoding process stops.

After performing Bi-Orthogonal (9, 7) or (5, 3) DWT
decomposition, the coefficients are carried into the local
memory of the encoding engine. What is more, the coeffi-
cient of each node should be stored using the format shown
in Fig. 6. The first four bits are used to record the transac-
tions of the lists that happened in the coding passes. The
remaining bits indicate the results after each coding pass.
Based on the proposed algorithm, the coefficients should be
stored as in Fig. 3. The address is translated using the trans-

Fig. 6 Data format of the content of each node.

Fig. 7 Address translator.

lator shown in Fig. 7.
The function of the Encode Controller module in-

cludes handling of the message from the CPU. Two states
are performed in Encode Controller module: The first state
is to wait for the completion of transfer of wavelet coeffi-
cients or bit-streamand the second state indicates that the
engine is in the encoding process.

The source of the data for the first local memory is se-
lected using the circuit in Fig. 8. Likewise, there are three
sources for data output bus and the selection is done by us-



3618
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.12 DECEMBER 2006

Fig. 8 Data selector 1.

Fig. 9 Data selector 2.

Fig. 10 State diagram of the Encode CORE module.

ing the circuit in Fig. 9.
The Encode CORE module consisted of a finial state

machine is the major processing unit in Fig. 5. It is then
used to control the dataflow of the modified SPIHT algo-
rithm and generate the final bit-stream. Therefore, the fi-
nal state machine of the Encode CORE module implements
the algorithm in Sect. 2.2 and its state diagram is shown
in Fig. 10. The operation of each state is explained in the
Appendix B. It outputs the bit-stream bit by bit to the En-
code Controller module. The bit-stream is carried into the

Fig. 11 The process of the wavelet-based compression system.

Table 3 Number of clock cycles used for 16 × 16 block.

Stop Level Average Clock Cycles
0 5530
1 4735
2 3962
3 3255
4 2573

Table 4 Average PSNR performance of test images.

Stop Level PSNR
0 49.69 dB
1 48.15 dB
2 43.05 dB
3 37.84 dB
4 33.18 dB

Table 5 PSNR performance of ‘Lena’ images.

Stop Level PSNR
0 49.695 dB
1 47.673 dB
2 42.946 dB
3 38.591 dB
4 34.290 dB

second local memory by the Encode Controller module. Af-
ter each state of the Encode CORE, wavelet coefficients are
modified and restored into the first local memory. The final
bit-stream will be stored in the second local memory.

3.2 Performance of the Modified SPIHT Encoder

Ten test images, downloaded from [13], are all 256 × 256
and divided into 256 16 × 16 blocks. Bi-orthogonal (9,7)
3-level DWT are utilized. The process of the wavelet-based
compression system is shown in Fig. 11.

The average required clock cycles of all 16× 16 blocks
are shown in Table 3, and the average PSNR for each
Stop Level is also shown in Table 4. For example, when
the StopLevel is 0, the required clock cycle is 5530 for a
16 × 16 block, and the average PSNR is 49.69 dB. If the re-
quired quality is lower, the encoding speed would be much
higher.

The PSNR performance of the ‘Lena’ image is shown
in Table 5, and it is identical to the results derived from our
previous software implementation. A rate control is em-
ployed to select the appropriate data rate for each coding
block to obtain better rate-distortion performance [9]. To
improve rate distortion performance, the block size can be
increased and the implementation can be extended from the
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Table 6 Chip specification of coding engine.

Process Technology TSMC 0.35-µm CMOS 2P4M
Chip Size 1.2 × 1.2 mm2

Total Gate Count 2,950 gates
Clock Frequency 100 MHz
Supply Voltage 3.3 V

Power Consumption 7.5136 mW

Table 7 Synthesis result of coding engine.

Module Gate Count
Encode CORE module 2173.9 gates

Encode Controller module with others 776.1 gates

Table 8 List of memories used in the prototype chip.

Usage Memory Size (bits)
The Wavelet Coefficients 4K

The Output Bit-Stream buffer 4K

Fig. 12 Layout view of the proposed modified SPIHT engine.

current design in a very straightforward way. The design
passes both pre-simulation and post-simulation tests.

Our system was desinged by using Verilog-HDL and
simulated for debugging purposes with Verilog-XL. Design
Analyzer from Synopsys was used to compile the Verilog-
HDL code and generate a net list. The Apollo tool was used
to both place and route the design. The specification of the
coding engine is shown in Table 6. This design includes 6
modules, an Encode CORE module, an Encode Controller
module, two selectors, and two address translators. In ad-
dition, two static RAMs are used in this implementation.
The synthesis result of coding engine is shown in Table 7,
where the address translators and selectors are synthesized
with Encode Controller. The functions of the two RAMs are
presented in Table 8. The photograph is exhibited in Fig. 12.
Moreover, only the address translators and RAMs need to be
changed when treating different block size.

The proposed design has to be combined with DWT to
become a complete image code. Bi-Orthogonal (9,7) DWT
decomposition with lifting is used [4]. A reference design
can be found in [11]. The design also has been completely
verified on an Altera APEX PCI development kit. This
board consists of an Altera APEX EP20K1000E FPGA. The
Altera APEX 20K FPGA allows for 1.7 million gate designs
[20]. Only 2% logic elements and 4% ram bits are required
for our modified SPIHT design. It can process over 4.6 mil-
lion image pixels within 1 second depending on the required

image quality.
Two hardware implementations of SPIHT based algo-

rithm are presented in [18], [19]. The SPIHT coding in [18]
is performed using content addressable memories to keep
track of the order in which information about the wavelet is
sent for each image. No optimizations or modifications were
made to the algorithm to take into account of the design that
would compute on a hardware platform as opposed to a soft-
ware platform. The design was simulated over an 8×8 sized
image for functional verification. Since the design was only
simulated, no performance numbers were given. The SPIHT
coding in [19] is implemented to parallelize the computa-
tion and based upon fixed-order SPIHT, which is developed
specifically for the use within adaptive hardware. For an
N×N image fixed-order SPIHT, it may be calculated in N2/4
cycles. However, their SPIHT design required 98% FPGA
area to be implemented in Xilinx Virtex 2000E FPGA. The
Xilinx Virtex 2000E FPGA allows for two million gate de-
signs [21]. It is apparent that our system requires less FPGA
area and may be a good option for low cost applications.

4. Conclusion

An efficient VLSI implementation of the modified SPIHT
encoder is presented. New coefficient addressing method,
the fixed-size list tables and straightforward coding proce-
dure are employed. Low-cost and simple hardware imple-
mentation is achieved. Though the distortion is slightly in-
creased, it is hard to perceive the difference between images
coded by the two algorithms, especially at lower rates. The
design is implemented with TSMC 0.35-µm 2P4M technol-
ogy. The area is 1.2 × 1.2 mm2, and the simulated clock
frequency is 100 MHz. It can process over 4.6 million im-
age pixels within 1 second depending on the required image
quality. We have combined it with a DWT module and an
8-bit microprocessor, and the design has been fully verified
over an Altera APEX 20K FPGA board. In addition, rate
control is easy with SPIHT based methods and no look-up
table is essential. Summing up, the design we proposed is
certainly attractive for embedded appliances.
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Appendix A: The Proof of the Rules

Assume that 2N is the number of width and height of code
block. Thus one can use 2N-bit symbols to represent 2-
D addresses in Fig. A· 1. The upper N nibble is for y-axis

Fig. A· 1 2N-bit symbols of an address.

Fig. A· 2 Altering the addressing method.

(height) and the lower N nibble is for x-axis (width). The
general form of physical address in a 1-D array is

Addr (yN−1, yN−2, . . . , y0, xN−1, xN−2, . . . , x0)

= 2N × (yN−1 × 2N−1 + yN−2 × 2N−2 + · · · + y0 × 20)

+ (xN−1 × 2N−1 + xN−2 × 2N−2 + · · · + x0 × 20) (A· 1)

Therefore, the general form of searching for descen-
dants of the node by using original address description is
shown as follows.

Address of direct off-spring No.0 (A· 2)

= 2N × (yN−1 × 2N−1 + · · · + y0 × 20) × 2

+(xN−1 × 2N−1 + · · · + x0 × 20) × 2

= Addr(yN−2, . . . , y0, 0, xN−2, . . . , x0, 0)

Address of direct off-spring No.1 (A· 3)

= 2N × (yN−1 × 2N−1 + · · · + y0 × 20) × 2

+(xN−1 × 2N−1 + · · · + x0 × 20) × 2 + 1

= Addr(yN−2, . . . , y0, 0, xN−2, . . . , x0, 1)

Address of direct off-spring No.2 (A· 4)

= 2N × [(yN−1 × 2N−1 + · · · + y0 × 20) × 2 + 1]

+(xN−1 × 2N−1 + · · · + x0 × 20) × 2

= Addr(yN−2, . . . , y0, 1, xN−2, . . . , x0, 0)

Address of direct off-spring No.3 (A· 5)

= 2N × [(yN−1 × 2N−1 + · · · + y0 × 20) × 2 + 1]

+(xN−1 × 2N−1 + · · · + x0 × 20) × 2 + 1

= Addr(yN−2, . . . , y0, 1, xN−2, . . . , x0, 1)

A new address of the node (yN−1, yN−2, . . . , y0, xN−1,
xN−2, . . . , x0) is modified by altering the addressing method
in Fig. A· 2, and is shown as

New Addr(yN−1, yN−2, . . . , y0, xN−1, xN−2, . . . , x0) (A· 6)

= Addr(yN−1, xN−1, . . . , yN/2, xN/2, yN/2−1, xN/2−1 . . . ,

y0, x0) = 2N × (yN−1 × 2N−1 + xN−1 × 2N−2 + · · ·
+ yN/2 × 21 + xN/2 × 20) + (yN/2−1 × 2N−1

+xN/2−1 × 2N−2 + · · · + y0 × 21 + x0 × 20)

Therefore, the addressing rule of the direct off-springs
of a coefficient is modified as follows.

New Address of direct off-spring No.0 (A· 7)

= NewAddr(yN−2, . . . , y0, 0, xN−2, . . . , x0, 0)
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= 2N × (yN−2 × 2N−1 + xN−2 × 2N−2 + · · · + xN/2−1 × 20)

+(yN/2−2 × 2N−1 + xN/2−2 × 2N−2 + · · ·
+y0 × 23 + x0 × 22)

= NewAddr(yN−1, . . . , y0, xN−1, . . . , x0) × 22

= New address of parent node × 22

New Address of direct off-spring No.1 (A· 8)

= NewAddr(yN−2, . . . , y0, 0, xN−2, . . . , x0, 1)

= NewAddr(yN−1, . . . , y0, xN−1, . . . , x0) × 22 + 1

= New address of parent node × 22 + 1

New Address of direct off-spring No.2 (A· 9)

= NewAddr(yN−2, . . . , y0, 1, xN−2, . . . , x0, 0)

= NewAddr(yN−1, . . . , y0, xN−1, . . . , x0) × 22 + 2

= New address of parent node × 22 + 2

New Address of direct off-spring No.3 (A· 10)

= NewAddr(yN−2, . . . , y0, 1, xN−2, . . . , x0, 1)

= NewAddr(yN−1, . . . , y0, xN−1, . . . , x0) × 22 + 3

= New address of parent node × 22 + 3

Because the rule in Eqs. (A· 2)–(A· 6) is always true ex-
cept at the highest and lowest pyramid levels [5]. The rule
in Eqs. (A· 7)–(A· 10) also does not change by the new ad-
dressing method for the square 2N processed block.

Appendix B: The Descirption of the FSM

Referring to Fig. 10, the meaning of each state is represented
as follows:

1. Idle state: Encode CORE do nothing and wait for the
start signal from the Encode Controller module.

2. The SearchMax state: Set the initial value of LIP, LIS
and LSP flag and find out the maximal coefficient in
this code block.

3. The CaculateN0 state: Prevent the maximal coefficient
from being zero.

4. The CaculateN1 state: Find out n = �log2(max{| ci |})�,
0 ≤ i ≤ N.

5. The OutputN state: Output the value n into the local
memory and set the threshold.

6. The RefinementPass state: Check if the current node
has been significant and update the threshold. Set the
LSP flag of current node being 1 when the LSP flag of
current node is 2.

7. The SortingPass0 state: If the current node is insignifi-
cant, output the S n(i). If the coefficient of the insignif-
icant node is greater than threshold, the LSP flag and
LIP flag of the current node is reset and set MaxLSP
being the address of the current node.

8. The SortingPass1 state: Output the sign of the current
node.

9. The SortingPass2 state: Find out the first and the last
address of the offspring of the current node.

10. The CheckD state: Output the result when the current

node is greater than threshold or the search for all de-
scendants is finished. Set the LIS flag being type B
when address of the current node is smaller than the
last node, otherwise set the LIS flag being 0.

11. The SortingPass3 state: Output the compared result be-
tween the current node and threshold. Besides set the
LSP flag being 2 and MaxLSP being the address of the
current node when the coefficient is greater than thresh-
old, otherwise set the LSP flag being 1 and MaxLIP
being the address of the current node.

12. The SortingPass4 state: Output the sign of the current
node.

13. The SortingPass5 state: Find out the first and the last
address of the offspring of the current node.

14. The CheckL state: Output the result when the current
node is greater than threshold or the search for all de-
scendants is finished. Set the LIS flag being 0 when
address of the current node is greater than the last node.

15. The SortingPass6 state: Set the LIS flag being type A
and MaxLIS being the maximal address of these de-
scendants of the current node.

16. The SortingPass7 state: Update the address of the next
searching for the insignificant nodes.
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