
BDS: A Centralized Near-Optimal Overlay Network
for Inter-Datacenter Data Replication

Yuchao Zhang
HKUST

Junchen Jiang
The University of Chicago

Ke Xu
Tsinghua University

Xiaohui Nie
Tsinghua University

Martin J. Reed
University of Essex

Haiyang Wang
University of Minnesota at Duluth

Guang Yao
Baidu

Miao Zhang
Baidu

Kai Chen
HKUST

ABSTRACT

Many important cloud services require replicating massive

data from one datacenter (DC) to multiple DCs. While the

performance of pair-wise inter-DC data transfers has been

much improved, prior solutions are insufficient to optimize

bulk-data multicast, as they fail to explore the capability

of servers to store-and-forward data, as well as the rich

inter-DC overlay paths that exist in geo-distributed DCs.

To take advantage of these opportunities, we present BDS,

an application-level multicast overlay network for large-

scale inter-DC data replication. At the core of BDS is a

fully centralized architecture, allowing a central controller

to maintain an up-to-date global view of data delivery status

of intermediate servers, in order to fully utilize the available

overlay paths. To quickly react to network dynamics and

workload churns, BDS speeds up the control algorithm by

decoupling it into selection of overlay paths and scheduling

of data transfers, each can be optimized efficiently. This

enables BDS to update overlay routing decisions in near real-

time (e.g., every other second) at the scale of multicasting

hundreds of TB data over tens of thousands of overlay paths.

A pilot deployment in one of the largest online service

providers shows that BDS can achieve 3-5× speedup over the

provider’s existing system and several well-known overlay

routing baselines.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

EuroSys ’18, April 23–26, 2018, Porto, Portugal

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5584-1/18/04. . . $15.00

https://doi.org/10.1145/3190508.3190519

ACM Reference Format:

Yuchao Zhang, Junchen Jiang, Ke Xu, Xiaohui Nie, Martin J. Reed,

Haiyang Wang, Guang Yao, Miao Zhang, and Kai Chen. 2018. BDS:

A Centralized Near-Optimal Overlay Network for Inter-Datacenter

Data Replication. In EuroSys ’18: Thirteenth EuroSys Conference

2018, April 23–26, 2018, Porto, Portugal. ACM, New York, NY,

USA, 14 pages. https://doi.org/10.1145/3190508.3190519

1 INTRODUCTION

For large-scale online service providers, such as Google,

Facebook, and Baidu, an important data communication

pattern is inter-DC multicast of bulk data–replicating massive

amounts of data (e.g., user logs, web search indexes, photo

sharing, blog posts) from one DC to multiple DCs in geo-

distributed locations. Our study on the workload of Baidu

shows that inter-DC multicast already amounts to 91% of

inter-DC traffic (§2), which corroborates the traffic pattern

of other large-scale online service providers [27, 58]. As

more DCs are deployed globally and bulk data are exploding,

inter-DC traffic then needs to be replicated in a frequent and

efficient manner.

!"#! !"#"

!"##

!"#"

!"##

!"#!

$%& !'()*+#(),-'*%+'./# .0)(

,%'(12'3)# '/+)(1!"#4563

$7),-'*%+'./# -)0)(%9'/9#

.0)(-%:#,%+;3

!
"

" "

!
"

$%&'()*+ ,&'%&',

Figure 1: A simple network topology illustrating how

overlay paths reduce inter-DC multicast completion time.

Assume that the WAN link between any two DCs is

1GB/s, and that A wants to send 3GB data to B and

C. Sending data from A to B and C separately takes

3 seconds (a), but using overlay paths A→B→C and

A →C→B simultaneously takes only 2 seconds (b). The

circled numbers show the order for each data piece is

sent.

EuroSys ’18, April 23–26, 2018, Porto, Portugal

Yuchao Zhang, Junchen Jiang, Ke Xu, Xiaohui Nie, Martin J. Reed, Haiyang Wang, Guang Yao, Miao Zhang, and Kai

Chen

While there have been tremendous efforts towards better

inter-DC network performance (e.g., [22, 24, 27, 44, 51, 57]),

the focus has been improving the performance of the wide

area network (WAN) path between each pair of DCs. These

WAN-centric approaches, however, are incomplete, as they

fail to leverage the rich application-level overlay paths across

geo-distributed DCs, as well as the capability of servers

to store-and-forward data. As illustrated in Figure 1, the

performance of inter-DC multicast could be substantially

improved by sending data in parallel via multiple overlay

servers acting as intermediate points to circumvent slow

WAN paths and performance bottlenecks in DC networks.

It is important to notice that these overlay paths should

be bottleneck-disjoint; that is, they do not share common

bottleneck links (e.g., A→B→C and A→C→B in Figure 1).

and that such bottleneck-disjoint overlay paths are available

in abundance in geo-distributed DCs.

This paper presents BDS, an application-level multicast

overlay network, which splits data into fine-grained units,

and sends them in parallel via bottleneck-disjoint overlay

paths. These paths are selected dynamically in response

to changes in network conditions and the data delivery

status of each server. Note that BDS selects application-level

overlay paths, and is therefore complementary to network-

layer optimization of WAN performance. While application-

level multicast overlays have been applied in other contexts

(e.g., [9, 29, 34, 48]), building one for inter-DC multicast

traffic poses two challenges. First, as each DC has tens of

thousands of servers, the resulting large number of possible

overlay paths makes it unwieldy to update overlay routing

decisions at scale in real time. Prior work either relies on

local reactive decisions by individual servers [23, 26, 41],

which leads to suboptimal decisions for lack of global

information, or restricts itself to strictly structured (e.g.,

layered) topologies [37], which fails to leverage all possible

overlay paths. Second, even a small increase in the delay

of latency-sensitive traffic can cause significant revenue

loss [56], so the bandwidth usage of inter-DC bulk-data

multicasts must be tightly controlled to avoid negative impact

on other latency-sensitive traffic.

To address these challenges, BDS fully centralizes the

scheduling and routing of inter-DC multicast. Contrary to

the intuition that servers must retain certain local decision-

making to achieve desirable scalability and responsiveness

to network dynamics, BDS’s centralized design is built

on two empirical observations (§3): (1) While it is hard

to make centralized decisions in real time, most multicast

data transfers last for at least tens of seconds, and thus

can tolerate slightly delayed decisions in exchange for near-

optimal routing and scheduling based on a global view. (2)

Centrally coordinated sending rate allocation is amenable

to minimizing the interference between inter-DC multicast

traffic and latency-sensitive traffic.

The key to making BDS practical is how to update the

overlay network in near real-time (within a few seconds)

in response to performance churns and dynamic arrivals of

requests. BDS achieves this by decoupling its centralized

control into two optimization problems, scheduling of data

transfers, and overlay routing of individual data transfers.

Such decoupling attains provable optimality, and at the same

time, allows BDS to update overlay network routing and

scheduling in a fraction of second; this is four orders of

magnitude faster than solving routing and scheduling jointly

when considering the workload of a large online service

provider (e.g., sending 105 data blocks simultaneously along

104 disjoint overlay paths).

We have implemented a prototype of BDS and integrated

it in Baidu. We deployed BDS in 10 DCs and ran a

pilot study on 500 TB of data transfer for 7 days (about

71 TB per day). Our real-world experiments show that BDS

achieves 3-5× speedup over Baidu’s existing solution named

Gingko, and it can eliminate the incidents of excessive

bandwidth consumption by bulk-data transfers. Using trace-

driven simulation and micro-benchmarking, we also show

that: BDS outperforms techniques widely used in CDNs, that

BDS can handle the workload of Baidu’s inter-DC multicast

traffic with one general-purpose server, and that BDS can

handle various failure scenarios.

Our contributions are summarized as followed:

• Characterizing Baidu’s workload of inter-DC bulk-data

multicast to motivate the need of application-level multi-

cast overlay networks (§2).

• Presenting BDS, an application-level multicast overlay

network that achieves near-optimal flow completion time

by a centralized control architecture (§3,4,5).

• Demonstrating the practical benefits of BDS by a real-

world pilot deployment in Baidu (§6).

2 A CASE FOR APPLICATION-LEVEL

INTER-DC MULTICAST OVERLAYS

We start by providing a case for an application-level multicast

overlay network. We first characterize the inter-DC multicast

workload in Baidu, a global-scale online service provider

(§2.1). We then show the opportunities of improving multicast

performance by leveraging disjoint application-level overlay

paths available in geo-distributed DCs (§2.2). Finally, we

examine Baidu’s current solution of inter-DC multicast

(Gingko), and draw lessons from real-world incidents to

inform the design of BDS (§2.3). The findings are based

on a dataset of Baidu’s inter-DC traffic collected in a duration

of seven days. The dataset comprises of about 1265 multicast

transfers among 30+ geo-distributed DCs.

BDS: A Centralized Near-Optimal Overlay Network for

Inter-Datacenter Data Replication EuroSys ’18, April 23–26, 2018, Porto, Portugal

Type of application % of multicast traffic

All applications 91.13% 1

Blog articles 91.0%

Search indexing 89.2%

Offline file sharing 98.18%

Forum posts 98.08%

Other DB sync-ups 99.1%

Table 1: Inter-DC multicast (replicating data from one

DC to many DCs) dominantes Baidu’s inter-DC traffic.

(a) Proportion of multicast

transfers destined to percent

of DCs.

(b) Proportion of multicast

transfers larger than certain

threshold.

Figure 2: Inter-DC multicasts (a) are destined to a

significant fraction of DCs, and (b) have large data sizes.

2.1 Baidu’s inter-DC multicast workload

Share of inter-DC multicast traffic: Table 1 shows inter-

DC multicast (replicating data from one DC to multiple DCs)

as a fraction of all inter-DC traffic. We see that inter-DC

multicast dominates Baidu’s overall inter-DC traffic (91.13%),

as well as the traffic of individual application types (89.2 to

99.1%). The fact that inter-DC multicast traffic amounts to a

dominating share of inter-DC traffic highlights the importance

of optimizing the performance of inter-DC multicast.

Where are inter-DC multicasts destined? Next, we want

to know if these transfers are destined to a large fraction (or

just a handful) of DCs, and whether they share common

destinations. Figure 2a sketches the distribution of the

percentage of Baidu’s DCs to which multicast transfers are

destined. We see that 90% of multicast transfers are destined

to at least 60% of the DCs, and 70% are destined to over

80% of the DCs. Moreover, we found a great diversity in

the source DCs and the sets of destination DCs (not shown

here). These observations suggest that it is untenable to pre-

configure all possible multicast requests; instead, we need a

system to automatically route and schedule any given inter-

DC multicast transfers.

1The overall multicast traffic share is estimated using the traffic that goes

through one randomly sampled DC, because we do not have access to

information of all inter-DC traffic, but this number is consistent with what

we observe from other DCs.

!"#! !"#"

!"##

!"#! !"#"

!"##

!"#$%&'()*$'(+,&)-*&./0$12$3()
$%#$%&$&'()*'()*+,#&'()*-()*+..

!"#/ !"#) !"#"

4

!)#$56-&/$'(+,&)-*&./0$17$3()
$%'()*'()*+0'()*&()*+0'()*&()*+0

'()*&()*+0'()*&()*+0'()*&()*+0'()*&()*+.
!8#$9/*(,,&:(/* .;(',-<0$=$3()$

$%#&+0'+.

1+2 +2345#7$3()

%#$%&$16()*'()*+,#'()*-()*+.

-78 +2345#>$3()$

%#$%&$16()*'()*+,#16()*&()*+,#1-()*-()*+.

/#+378+)#9#"#: &'();<=>3 ?@=A@

AB7+=+2+ B< +=C#';()#D>BAE+#$' ! .

!"#! !"#"

1+2 +2345#

-78 +2345

&F8 +2345

G2@ +2345

4

H3FI3F#'

!"##

>()*+ 7()*+

?()*+

!-#$@(*$A+$-/8$*.+.,.:<

Figure 3: An illustrative example comparing the perfor-

mance of an intelligent application-level overlay (d) with

that of baselines: naive application-level overlay (c) and

no overlay (b).

Sizes of inter-DC multicast transfers: Finally, Figure 2b

outlines the distribution of data size of inter-DC multicast.

We see that for over 60% multicast transfers, the file sizes are

over 1TB (and 90% are over 50GB). Given that the total WAN

bandwidth assigned to each multicast is on the order of several

Gb/s, these transfers are not transient but persistent, typically

lasting for at least tens of seconds. Therefore, any scheme

that optimizes multicast traffic must dynamically adapt to any

performance variation during a data transfer. On the flip side,

such temporal persistence also implies that multicast traffic

can tolerate a small amount of delay caused by a centralized

control mechanism, such as BDS (§3).

These observations together motivate the need for a system-

atic approach to optimizing inter-DC multicast performance.

2.2 Potentials of inter-DC application-level

overlay

It is known that, generally, multicast can be delivered using

application-level overlays [13]. Here, we show that inter-DC

multicast completion time (defined by the time until each

destination DC has a full copy of the data) can be greatly

reduced by an application-level overlay network. Note that

an application-level overlay does not require any network-

level support, so it is complementary to prior work on WAN

optimization.

The basic idea of an application-level overlay network is to

distribute traffic along bottleneck-disjoint overlay paths [15],

i.e., the two paths do not share a common bottleneck link

or intermediate server. In the context of inter-DC transfers,

two overlay paths either traverse different sequences of DCs

EuroSys ’18, April 23–26, 2018, Porto, Portugal

Yuchao Zhang, Junchen Jiang, Ke Xu, Xiaohui Nie, Martin J. Reed, Haiyang Wang, Guang Yao, Miao Zhang, and Kai

Chen

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Ratio

C
D

F

Figure 4: There is a significant performance variance

among the inter-DC overlay paths in our network,

indicating that most pairs of overlay paths are bottleneck

disjoint.

(Type I), or traverse different sequences of servers of the same

sequence of DCs (Type II), or some combination of the two.

Next, we use examples to show bottleneck-disjoint overlay

paths can arise in both types of overlay paths and how they

improve inter-DC multicast performance.

Examples of bottleneck-disjoint overlay paths: In Fig-

ure 1, we have already seen how two Type I overlay paths

(A→B→C and A→C→B) are bottleneck-disjoint, and how it

improves the performance of inter-DC multicast. Figure 3

shows an example of Type II bottleneck-disjoint overlay

paths (traversing the same sequence of DCs but different

sequence of servers). Suppose we need to replicate 36GB

data from DC A to B and C via two bottleneck-disjoint paths:

(1) A→C: from A through B to C using IP-layer WAN routing

with 2GB/s capacity, or (2) A→b→C: from A to a server b

in B with 6GB/s capacity and b to C with 3GB/s capacity.

The data is split into six 6GB-blocks. We consider three

strategies. (1) Direct replication: if A sends data directly

to B and C via WAN paths (Figure 3(b)), the completion

time is 18 seconds. (2) Simple chain replication: a naive use

of application-level overlay paths is to send blocks through

server b acting as a store-and-relay point (Figure 3(c)), and

the completion time is 13 seconds (27% less than without

overlay). (3) Intelligent multicast overlay: Figure 3(d) further

improves the performance by selectively sending blocks along

the two paths simultaneously, which completes in 9 seconds

(30% less than chain replication, and 50% less than direct

replication).

Bottleneck-disjoint overlay paths in the wild: It is hard to

identify all bottleneck-disjoint overlay paths in our network

performance dataset, since it does not have per-hop bandwidth

information of each multicast transfer. Instead, we observe

that if two overlay paths have different end-to-end throughput

at the same time, they should be bottleneck-disjoint. We

show one example of bottleneck-disjoint overlay paths in

the wild, which consists of two overlay paths A→b→C and

A→C, where the WAN routing from DC A to DC C goes

through DC B, and b is a server in B (these two paths are

topologically identical to Figure 3). If BWA→C
BWA→b→C

6= 1, they

are bottleneck-disjoint (BWp denotes the throughput of path

p). Figure 4 shows the distribution of BWA→C
BWA→b→C

among all

possible values of A, b, and C in the dataset. We can see that

more than 95% pairs of A→b→C and A→C have different

end-to-end throughput, i.e., they are bottleneck disjoint.

2.3 Limitations of existing solutions

Realizing and demonstrating the potential improvement of

an application-level overlay network has some complications.

As a first order approximation, we can simply borrow existing

techniques from multicast overlay networks in other contexts.

But the operational experience of Baidu shows two limitations

of this approach that will be described below.

Existing solutions of Baidu: To meet the need of rapid

growth of inter-DC data replication, Baidu has deployed

Gingko, an application-level overlay network a few years

ago. Despite years of refinement, Gingko is based on a

receiver-driven decentralized overlay multicast protocol,

which resembles what was used in other overlay networks

(such as CDNs and overlay-based live video streaming [9, 47,

55]). The basic idea is that when multiple DCs request a data

file from a source DC, the requested data would flow back

through multiple stages of intermediate servers, where the

selection of senders in each stage is driven by the receivers of

the next stage in a decentralized fashion.

Limitation 1: Inefficient local adaptation. The existing

decentralized protocol lacks the global view and thus suffers

from suboptimal scheduling and routing decisions. To show

this, we sent a 30GB file from one DC to two destination

DCs in Baidu’s network. Each DC had 640 servers, each

with 20Mbps upload and download bandwidth (in the same

magnitude of bandwidth assigned to each bulk-data transfer

in production traffic). This 30GB file was evenly stored

across all these 640 servers. Ideally, if the servers select

the best source for all blocks, the completion time will be
30×1024

640×20Mbps×60s/min
= 41 minutes. But as shown in Figure 5,

servers in the destination DCs on average took 195 minutes

(4.75× the optimal completion time) to receive data, and

5% of servers even waited for over 250 minutes. The key

reason for this problem is that individual servers only see

a subset of available data sources (i.e., servers who have

already downloaded part of a file), and thus cannot leverage

all available overlay paths to maximize the throughput. Such

suboptimal performance could occur even if the overlay

network is only partially decentralized (e.g., [23]), where

even if each server does have a global view, local adaptations

by individual servers would still create potential hotspots and

congestion on overlay paths.

Limitation 2: Interaction with latency-sensitive traffic.

The existing multicast overlay network shares the same

inter-DC WAN with latency-sensitive traffic. Despite using

standard QoS techniques, and giving the lowest priority to

BDS: A Centralized Near-Optimal Overlay Network for

Inter-Datacenter Data Replication EuroSys ’18, April 23–26, 2018, Porto, Portugal

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

Completion Time (m)

C
D

F

Current Solution

Ideal solution

Figure 5: The CDF of the actual flow completion time at

different servers in the destination DCs, compared with

that of the ideal solution.

100%

80%

60%

40%

20%

Day1 12:00 Day1 24:00 Day2 12:00 Day2 24:00

Outgoing (outbound)

link

Incoming (inbound)

link

Safety

threshold

Latency-sensitive traffic experienced 30× longer delay

Figure 6: The utilization of the inter-DC link in two days.

Inter-DC bulk data transfer on the 2nd day caused severe

interference on latency-sensitive traffic.

bulk data transfers, we still see negative impacts on latency-

sensitive traffic by bursty arrivals of bulk-data multicast

requests. Figure 6 shows the bandwidth utilization of an inter-

DC link in two days during which a 6-hour long bulk data

transfer started at 11:00pm on the second day. The blue line

denotes the outgoing bandwidth, and the green line denotes

the incoming bandwidth. We can see that the bulk data transfer

caused excessive link utilization (i.e., exceeding the safety

threshold of 80%), and as a result, the latency-sensitive online

traffic experienced over 30× delay inflation.

2.4 Key observations

The key observations from this section are following:

• Inter-DC multicasts amount to a substantial fraction

of inter-DC traffic, have a great variability in source-

destination, and typically last for at least tens of seconds.

• Bottleneck-disjoint overlay paths are widely available

between geo-distributed DCs.

• Existing solutions that rely on local adaptation can have

suboptimal performance and negative impact on online

traffic.

3 OVERVIEW OF BDS

To optimize inter-DC multicasts, while minimizing interfer-

ence with latency-sensitive traffic, we present BDS, a fully

centralized near-optimal application-level overlay network

for inter-DC multicast. Before presenting BDS in detail, we

!"#$%&'()&**+)

!"#$"#

%&

, -

%'(')(#'*+,-++-.*

, /'(0"#)1'(')1"2-$"#3)+('(4+)(.)(0")5.*(#.22"#

- 64+0).$"#2'3)#.4(-*7)1"5-+-.*+)(.)+"#$"#+

Figure 7: The centralized design of BDS.

first highlight the intuitions behind its design choices, and the

challenges to make it practical.

Centralized control: Conventional wisdom on wide-area

overlay networks has relied, to some extent, on local adap-

tation of individual nodes (or relay servers) to achieve

desirable scalability and responsiveness to network dynamics

(e.g., [9, 23, 35, 41]), despite the resulting suboptimal

performance due to lack of global view or orchestration. In

contrast, BDS takes an explicit stance that it is practical to

fully centralize the control of wide-area overlay networks

and still achieve near-optimal performance in the setting

of inter-DC multicasts. The design of BDS coincides other

recents works of centralizing management of large-scale

distributed systems, e.g., [20] At a high level, BDS uses a

centralized controller that periodically pulls information (e.g.,

data delivery status) from all servers, updates the decisions

regarding overlay routing, and pushes them to agents running

locally on servers (Figure 7). Note that when the controller

fails or is unreachable, BDS will fall back to a decentralized

control scheme to ensure graceful performance degradation

to local adaptation (§5.3).

BDS’s centralized design is driven by several empirical

observations:

1. Large decision space: The sheer number of inter-DC

overlay paths (which grow exponentially with more

servers acting as overlay nodes) makes it difficult for

individual servers to explore all available overlay paths

based only on local measurements. In contrast, we could

significantly improve overlay multicast performance by

maintaining a global view of data delivery status of all

servers, and dynamically balancing the availability of

various data blocks, which turns out to be critical to

achieving near-optimal performance (§4.3).

2. Large data size: Unlike latency-sensitive traffic which

lasts on timescales of several to 10s of milliseconds, inter-

DC multicasts last on much coarser timescales. Therefore,

BDS can tolerate a short delay (of a few seconds) in

order to get better routing decisions from a centralized

EuroSys ’18, April 23–26, 2018, Porto, Portugal

Yuchao Zhang, Junchen Jiang, Ke Xu, Xiaohui Nie, Martin J. Reed, Haiyang Wang, Guang Yao, Miao Zhang, and Kai

Chen

controller which maintains a global view of data delivery

and is capable of orchestrating all overlay servers.

3. Strict traffic isolation: As observed in §2.3, it is vital

that inter-DC multicasts avoid hotspots and excessive

bandwidth usage that negatively impact the latency of

delay-sensitive traffic, but it is difficult to prevent such

situations without any coordination across overlay servers.

In contrast, it is simpler to allocate bandwidth of each

data transfer by controlling the sending rate at all servers

in a centralized fashion (§5).

4. Lower engineering complexity: Conceptually, the cen-

tralized architecture moves the control complexity to the

centralized controller, making BDS amenable to a simpler

implementation, in which the control logic running

locally in each server can be stateless and triggered only

on arrivals of new data units or control messages.

The key to realizing centralized control: In essence, the

design of BDS performs a trade-off between incurring a

small update delay in return for the near-optimal decisions

brought by a centralized system. Thus, the key to striking

such a favorable balance is a near-optimal yet efficient

overlay routing algorithm that can update decisions in near

realtime. At a first glance, this is indeed intractable. For the

workload at a scale of Baidu, the centralized overlay routing

algorithm must pick the next hops for 105 of data blocks

from 104 servers. This operates at a scale that could grow

exponentially when we consider the growth in the number of

possible overlay paths that go through these servers and with

finer grained block partitioning. With the standard routing

formulation and linear programming solvers, it could be

completely unrealistic to make near-optimal solutions by

exploring such a large decision space (§6.3.4). The next

section will present how BDS addresses this challenge.

4 NEAR-OPTIMAL AND EFFICIENT

DECISION-MAKING LOGIC

The core of BDS is a centralized decision-making algorithm

that periodically updates overlay routing decisions at scale

in near real-time. BDS strikes a favorable tradeoff between

solution optimality and near real-time updates by decoupling

the control logic into two steps (§4.2): overlay scheduling, i.e.,

which data blocks to be sent (§4.3), and routing, i.e., which

paths to use to send each data block (§4.4), each of which can

be solved efficiently and near-optimally.

4.1 Basic formulation

We begin by formulating the problem of overlay traffic

engineering. Table 2 summarizes the key notations.

The overlay traffic engineering in BDS operates at a fine

granularity, both spatially and temporally. To exploit the many

overlay paths between the source and destination DCs, BDS

Variables Meaning

B Set of blocks of all tasks

b A block

ρ(b) The size of block b

Ps,s′ Set of paths between a source and destination pair

p A particular path

l A link on a path

c(l) Capacity of link l

∆T A scheduling cycle

Tk The k-th update cycle

w
(Tk)
b,s Binary: if s is chosen as destination server for b at Tk

Rup(s) Upload capacity of server s

Rdown(s) Download capacity of server s

f
(Tk)
b,p Bandwidth allocated to send b on path p at Tk

Table 2: Notations used in BDS’s decision-making logic.

split each data file into multiple data blocks (e.g., 2MB).

To cope with changes of network conditions and arrivals

of requests, BDS updates the decisions of overlay traffic

engineering every ∆T (by default, 3 seconds2.).

Now, the problem of multicast overlay routing can be

formulated as following:

Input: BDS takes as input the following parameters: the set

of all data blocks B, each block b with size ρ(b), the set of

paths from server s′ to s, Ps′,s, the update cycle interval ∆T ,

and for each server s the upload (resp. download) capacity

Rup(s) (resp. Rdown(s)). Note that each path p consists of

several links l, each defined by a pair of servers or routers.

We use c(l) to denote the capacity of a link l.

Output: For each cycle Tk, block b, server s, and path

p ∈ Ps′,s destined to s, BDS returns as output a 2-tuple

〈w
(Tk)
b,s , f

(Tk)
b,p 〉, in which w

(Tk)
b,s denotes whether server s is

selected as the destination server of block b in Tk, f
(Tk)
b,p

denotes how much bandwidth is allocated to send block b on

path p in Tk, and f
(Tk)
b,p = 0 denotes path p is not selected to

send block b in Tk.

Constraints:

• The allocated bandwidth on path p must not exceed the

capacity of any link l in p, as well as the upload capacity

of the source server Rup(s), and the download capacity

of the destination server Rdown(s
′).

f
(Tk)
b,p ≤ min

(

minl∈pc(l),q
(Tk)
b,s′ ·Rup(s

′),w
(Tk)
b,s ·Rdown(s)

)

for ∀b, p ∈ Ps′,s

(1)

where q
(Tk)
b,s = 1−∏i<k(1−w

(Ti)
b,s) denotes whether server

s has ever been selected to be the destination of block b

before cycle Tk.

2We use a fixed interval of 3 seconds, because it is long enough for BDS to

update decisions at a scale of Baidu’s workload, and short enough to adapt

to typical performance churns without noticeable impact on the completion

time of bulk data transfers. More details in §6

BDS: A Centralized Near-Optimal Overlay Network for

Inter-Datacenter Data Replication EuroSys ’18, April 23–26, 2018, Porto, Portugal

• For all the paths, the summed allocated bandwidth of a

link should be no more than its capacity c(l).

c(l)≥ ∑
b∈B

f
(Tk)
b,p , for ∀l ∈ p (2)

• All blocks selected to be sent in each cycle must complete

their transfers within ∆T , that is,

∑
b∈B

w
(Tk)
b,s ·ρ(b)≤ ∑

p∈P
∑
b∈B

f
(Tk)
b,p ·∆T, for ∀Tk (3)

• Finally, all the blocks must be transmitted at the end of

all cycles.

∑
b∈B

ρ(b)≤
N

∑
k=1

∑
p∈P

∑
b∈B

f
(Tk)
b,p (4)

Objective: We want to minimize the number of cycles needed

to transfer all data blocks. That is, we return as output the

minimum integer N for which the above constraints have a

feasible solution.

Unfortunately, this formulation is intractable in practice

for two reasons. First, it is super-linear and mixed-integer, so

the computational overhead grows exponentially with more

potential source servers, and data blocks. Second, to find the

minimum integer N, we need to check the feasibility of the

problem for different values of N.

4.2 Decoupling scheduling and routing

At a high level, the key insight behind BDS is to decouple the

aforementioned formulation into two steps: a scheduling step

which selects the subset of blocks to be transferred each cycle

(i.e., w
(Tk)
b,s), followed by a subsequent routing step which

picks the path and allocates bandwidth to transfer the selected

blocks (i.e., f
(Tk)
b,p).

Such decoupling significantly reduces the computational

overhead of the centralized controller. As the scheduling step

selects a subset of blocks, and only these selected blocks are

considered in the subsequent routing step, the searching space

is thus significantly reduced. Mathematically, by separating

the scheduling step from the problem formulation, the routing

step is reduced to a mixed-integer LP problem, which though

is not immediately tractable, can be solved with standard

techniques. Next, we present each step in more details.

4.3 Scheduling

The scheduling step selects the subset of blocks to be

transferred in each cycle, i.e., w
(Tk)
b,s .

The key to do the scheduling (pick the subset of blocks)

is to make sure that the subsequent data transmission can

be done in the most efficient manner. Inspired by the

“rarest-first” strategy in BitTorrent [14] that tries to balance

block availability, BDS adopts a simple-yet-efficient way of

selecting the data blocks: for each cycle, BDS simply picks

the subset of blocks with the least amount of duplicates. In

other words, BDS generalizes the rarest-first approach by

selecting a set of blocks in each cycle, instead of a copy of a

single block.

4.4 Routing

After the scheduling step selects the block set to transfer in

each time slot (w
(Tk)
b,s), the routing step decides the paths and

allocates bandwidth to transfer the selected blocks (i.e., f
(Tk)
b,p).

To minimize the transfer completion time, BDS maximizes

the throughput (total data volume transferred) in each cycle

Tk.

max ∑
p∈P

∑
b∈B

f
(Tk)
b,p (5)

This is of course an approximation, since greedily maxim-

ixing the throughput in one cycle may lead to suboptimal data

availability and lower the maximum achivable throughput in

the next cycle. But in practice, we find that this approximation

can lead to significant performance improvement over base-

lines, partly because the scheduling step, described in the last

section, automatically balances the availability of blocks, so

suboptimal data availability (e.g., starvation of blocks) caused

by greedy routing decisions in past cycles happens rarely.

This formulation, together with the constraints from

§4.1 is essentially an integer multi-commodity flow (MCF)

algorithm, which is known to be NP-complete [19]. To make

this problem tractable in practice, the standard approximation

assumes each data file can be infinitesimally split and

transferred simultaneously on a set of possible paths between

the source and the destination. BDS’s actual routing step

closely resembles this approximation as BDS also splits data

into tens of thousands of fine-grained data blocks (though not

infinitesimally), and it can be solved efficiently by standard

linear programming (LP) relaxation commonly used in the

MCF problem [18, 39].

However, when splitting tasks infinitesimally, the number

of blocks will grow considerably large, and the computing

time will be intolerable. BDS adopts two coping strategies:

(1) it groups the blocks with the same source and destination

pair to reduce the problem size (detailed in §5.1); and (2)

it uses the improved fully polynomial-time approximation

schemes (FPTAS) [17] to optimize the dual problem of the

original problem and works out an ε-optimal solution. These

two strategies further reduces the running time of centralized

algorithm.

5 SYSTEM DESIGN

This section presents the system design and implemetation of

BDS.

EuroSys ’18, April 23–26, 2018, Porto, Portugal

Yuchao Zhang, Junchen Jiang, Ke Xu, Xiaohui Nie, Martin J. Reed, Haiyang Wang, Guang Yao, Miao Zhang, and Kai

Chen

!"#$%"&&'%

()'#$*+"#,$"%

!"#

-.*+"#,$"%*/#0" 1.*234'56&'**7*8'3,9,"#9

()'#$ ()'#$ ()'#$! !

:. ;<9=*<##"6#3'>'#$

7*%'?"%$*9$<$69
@.*!"#$%"&*>'99<)'

A'$B"%=*+"#,$"%

2$"%<)'*?&<$0"%>

C. A'$B"%=D&'E'&*

2$<$,9$,39

2F9$'>*9#<?94"$

+<9$'%*7*9&<E'9*,#0"

G6&=*8<$<

Figure 8: Interfaces of BDS’s centralized control.

5.1 Centralized control of BDS

BDS periodically (by default, every three seconds) updates

the routing and scheduling decisions in a centralized fashion.

Figure 8 outlines the workflow in each three-second cycle.

(1) It starts with the Agent, running local on each server,

checking the local states, including data block delivery

status (which blocks have arrived, and which blocks are

outstanding), server availability, and disk failures, etc.

(2) These statistics are then wrapped in a control message,

and sent to the centralized BDS Controller via an

efficient messaging layer called Agent Monitor.

(3) The BDS Controller also receives network-level statis-

tics (the bandwidth consumption by latency-sensitive

traffic and the utilization on each inter-DC link) from a

Network Monitor.

(4) On receiving the updates from all Agents and the

Network Monitor, the BDS Controller runs the central-

ized decision-making algorithm (§4) to work out the

new scheduling and routing decisions, and sends the

difference between the new decision and the previous

one to the per-server local Agent via the Agent Monitor

messaging layer.

(5) Finally, the Agent allocates bandwidth for each data

transfer, and carries out the actual data transfers

according the Controller’s routing and scheduling

decisions.

BDS uses two additional optimizations to make the

workflow more efficient.

• Blocks merging. To reduce the computational scale

and achieve more efficient transmissions, BDS merges

the blocks with the same source and destination

into one subtask. Its benefits are two-fold: (1) it

significantly reduces the number of pending blocks in

each scheduling cycle, thus reducing the computational

cost of the centralized decision-making logic; and (2)

it reduces the number of parallel TCP connections

between servers, which could otherwise reduce link

utilization and degraded performance.

• Non-blocking update. To avoid being blocked by the

controller’s decision-making logic, each local Agent

keeps the ongoing data transmissions alive while the

Controller runs the centralized decision-making logic.

Similarly, the Controller takes this into account by

speculating the changes in data delivery status while

the decisions are being re-calculated, and using these

speculated data delievery status as the input of the

centralized logic.

5.2 Dynamic bandwidth separation

To guarantee clean separation of bandwidth between inter-

DC bulk-data multicasts and delay-sensitive traffic, BDS

Network Monitor monitors the aggregated bandwidth usage

of all latency-sensitive flows on each inter-/intra-DC link,

and dynamically allocates the bandwidth of each inter-DC

multicast transfer. To protect delay-sensitive flows from being

negatively affected by bursty bulk-data transfers, BDS uses

80% link utilization as a “safety threshold”, i.e., the total

bandwidth consumption of bulk-data transfers cannot exceed

80% of the link capacity on any link, and dynamically decides

the sending rate of each data transfer.

The key advantage of BDS’s dynamic bandwidth separation

is that it efficiently allocates bandwidth in a centralized

manner, similar [27] in the transport layer. The traditional

techniques (e.g., [27]) that gives higher priority to online

latency-sensitive traffic can still have bandwidth wastage or

performance interference in the presence of dynamic network

environments [49]. BDS, in contrast, dynamically monitors

the aggregated bandwidth of delay-sensitive applications, and

calculates the residual bandwidth to be used by inter-DC

multicast while meeting the safety link utilization threshold.

Finally, note that BDS optimizes the application-level overlay,

and is thus complementary to network-layer techniques that

improve the WAN performance and fairness [10, 25, 32, 40].

5.3 Fault tolerance

Next we describe how BDS handles the following failures.

1. Controller failure: The BDS controller is replicated [28]:

if the master controller fails, another replica will be

elected as the new controller. If all controller replicas

are not available (e.g., a network partition between DCs

and the controllers), the agents running in servers will

fallback to the current decentralized overlay protocol as

default to ensure graceful performance degradation.

2. Server failure: If the agent on server is still able to work, it

will report the failure state (e.g., server crash, disk failure,

etc.) to the agent monitor in the next cycle. Otherwise,

the servers that selected this server as data source would

report the unavailability to the agent monitor. In either

BDS: A Centralized Near-Optimal Overlay Network for

Inter-Datacenter Data Replication EuroSys ’18, April 23–26, 2018, Porto, Portugal

case, the controller will remove that server from the

potential data sources in the next cycle.

3. Network partition between DCs: If network partition

happens between DCs, the DCs located in the same

partition with the controller will work the same as before,

while the separated DCs will fallback to the decentralized

overlay network.

5.4 Implementation and deployment

We have implemented BDS, and deployed on 67 servers in 10

of Baidu’s geo-distributed DCs. Evaluation in the next section

is based on this deployment. BDS is implemented with 3621

lines of golang code [1].

The duplications of the controller are implemented on three

different geo-located zookeeper servers. The Agent Monitor

uses HTTP POST to send controll messages between the

controller and servers. BDS uses wget to make each

data transfer, and enforce bandwidth allocation by setting

--limit-rate field in each data transfer. The agent

running in each server uses Linux Traffic Control (tc) to

enforce the limit on the total bandwidth usage of inter-DC

multicast traffic.

BDS can be seamlessly integrated with any inter-DC

communication patterns. All the applications need to do is to

call the BDS APIs that consist of three steps: (1) provide BDS

with the source DC, destination DCs, intermediate servers,

and the pointer to the bulk data; (2) install agents on all

intermediate servers; (3) and finally, set the start time of the

data transfers. Then BDS will start the data distribution at the

specified time. We speculate that our implementation should

be applicable to other companies’ DCs too.

BDS has several parameters that are set either by ad-

minitrators of Baidu, or empirically by evaluation results.

These parameters include: the bandwidth reserved for latency-

sensitive traffic (20%), the data block size (2MB), and update

cycle length (3 seconds).

6 EVALUATION

Using a combination of pilot deployment in Baidu’s DCs,

trace-driven simulation, and microbenchmarking, we show

that:

1. BDS completes inter-DC multicast 3-5× faster than

Baidu’s existing solutions, as well as other baselines used

in industry (§6.1).

2. BDS significantly reduces the incidents of interferences

between bulk-data multicast traffic and latency-sensitive

traffic (§6.2).

3. BDS can scale to the traffic demand of a large online

service provider, tolerate various failure scenarios, and

achieves close to optimal flow completion time (§6.3).

6.1 Performance improvement over existing

solutions

6.1.1 Methodology. Baselines: We compare BDS with

three existing solutions: Gingko (Baidu’s existing decentral-

ized inter-DC multi-cast strategy), Bullet [26], and Akamai’s

overlay network [9] (a centralized strategy for multicasting

live videos).

Pilot deployment: We choose several services with different

data sizes, and run A/B testing in which we run BDS instead

of Baidu’s default solution Gingko for the same hours in

several randomly chosen days.

Trace-driven simulation: Complementary to the pilot de-

ployment on real traffic, we also use trace-driven simulation

to evaluate BDS on a larger scale. We simulate the other two

overlay multicast techniques using the same topology, number

of servers, and link capacities as BDS, and replay inter-DC

multicast data requests in the same chronological order as in

the pilot deployment.

6.1.2 BDS vs. Gingko. We begin by evaluating BDS

and Gingko on one service that needs to distribute 70 TB data

from one source DC to ten destination DCs. Figure 9a shows

the cumulative distribution function (CDF) of the completion

time on each destination server. We can see that the median

completion time of BDS is 35 minutes, 5× faster than Gingko,

where most DCs takes 190 minutes to get the data.

To generalize the finding, we pick three applications

whose data volumes are large, medium and small, and

compare BDS’s and Gingko’s mean (and standard deviation)

of completion time for each application in Figure 9b. We

see that BDS consistently outperforms Gingko, and has less

performance variance. We also see that BDS has greater

improvement in applications with larger data sizes. Finally,

Figure 9c shows the timeseries of the mean completion time

of BDS and Gingko in one randomly chosen application, and

we see that BDS consistently outperforms Gingko by 4×.

6.1.3 BDS vs. other overlay multicast techniques.

Table 3 compares BDS with two other baselines, Bullet and

Akamai’s overlay network, using trace-driven simulation. We

show the results in three setups. In the baseline evaluations,

we send 10TB data from one DC to 11 DCs, each has 100

servers, and the upload and download link capacities are

set to be 20MBs. In the large-scale evaluations, we send

100TB data between the same DCs, each with 1000 servers.

In the rate-limited evaluations, the setup is the same as that

in the baseline experiments except the server upload and

download rate limit set to be 5MBs. We see that BDS achieves

3× shorter completion time than Bullet and Akamai in the

baseline setup, and over 4× shorter completion time in the

large-scale and small bandwidth setups, which corroborates

EuroSys ’18, April 23–26, 2018, Porto, Portugal

Yuchao Zhang, Junchen Jiang, Ke Xu, Xiaohui Nie, Martin J. Reed, Haiyang Wang, Guang Yao, Miao Zhang, and Kai

Chen

0 50 100 150 200 250 300
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Completion Time (m)

C
D

F Gingko

BDS

(a) Distribution of completion time.

Large Medium Small
0

50

100

150

200

250

Application Types

C
o

m
p

le
ti
o

n
 T

im
e

 (
m

)

Gingko

BDS

(b) Comparison by application types.

0 1 2 3 4 5 6
0

50

100

150

200

250

300

350

Days

C
o

m
p

le
ti
o

n
 T

im
e

 (
m

)

Gingko

BDS

(c) Comparison by completion time.

Figure 9: [BDS vs. Gingko (Baidu’s existing solution)] Results from pilot deployments.

Solution Baseline Large Scale Rate Limit

Bullet 28m 82m 171m

Akamai 25m 87m 138m

BDS 9.41m 20.33m 38.25m

Table 3: [BDS vs. Bullet [26], Akamai [9]] Completion

time of the three solutions in trace-driven simulation.

0 5 10 15 20 25 30
0
1
2
3
4
5
6
7
8
9

10
11
12

Time (m)

B
a
n

d
w

id
th

 (
G

B
)

Upper Limit for BDS

BDS Real Usage

Figure 10: The effectiveness of bandwidth separation.

the findings in §6.1.2 that BDS has greater improvement when

data sizes are large.

6.2 Benefits of coordinated bandwidth

allocation

To reduce the incidences of negative interference between

bulk-data multicast traffic and latency-sensitive traffic, Baidu

sets a bandwidth limit of bulk data transfers on each link by

the difference between the link capacity and the historical

peak bandwidth of latency-sensitive traffic. Naturally, we

can minimize the conflicts, if BDS can keep the bulk-data

multicast traffic within the bandwidth limit. To test BDS’s

effectiveness at maintaining differentiation between bulk-data

multicast traffic and latency-sensitive traffic, we set an 10GB/s

bandwidth limit to bulk data transfers. Figure 10 shows the

actual bandwidth usage of BDS on one inter-DC link. We can

see that in BDS the actual bandwidth used by bulk data is

always below 10 GB/s.

6.3 Micro-benchmarks

Next, we use micro-benchmarking to evaluate BDS along

three metrics: (1) scalability of the centralized control; (2)

fault tolerance; and (3) optimality of BDS parameters.

6.3.1 Scalability. Controller running time: As the

controller needs to decide the scheduling and routing of each

data block, the running time of the control logic naturally

scales with the number of blocks. Figure 11a shows the

running time as a function of the total number of blocks.

We can see that the centralized BDS controller can update

the scheduling and routing decision within 800ms with 106

blocks. To put this number into perspective, in Baidu’s

DCs, the maximum number of simultaneous outstanding data

blocks is around 3×105, for which BDS can finish updating

the decisions within 300ms.

Network delay: BDS works in inter-DC networks, so the

network delay among DCs is a key factor in the algorithm

updating process. We recorded the network delay of 5000

requests and present the CDF in Figure 11b. We can see that

90% of the network delays are below 50ms and the average

value is about 25ms, which is less than 1% of the decision

updating cycle (3 seconds).

Feedback loop delay: For centralized algorithms, a small

feedback loop delay is essential for algorithmic scalability.

In BDS, this feedback loop consists of several procedures:

status updating from agents to the controller, running of

the centralized algorithm, and decision updating from the

controller back to agents. We measure the delay of the whole

process, as shown in the CDF of Figure 11c, and find that in

most cases (over 80%), the feedback loop delay is lower than

200ms. So we claim that BDS demonstrates a short enough

latency and is able to scale to even larger systems.

6.3.2 Fault tolerance. Here we examine the impact of

the following failure scenario on the number of downloaded

blocks per cycle. During cycles 0 to 9, BDS works as usual,

and one agent fails in the 10th cycle. The controller fails

in the 20th cycle and recovers in the 30th cycle. Figure

12a shows the average number of downloaded blocks per

cycle. We find that the slight impact of agent failure only

lasts for one cycle, and the system recovers in the 11th

cycle. When the controller is unavailable, BDS falls back to a

default decentralized overlay protocol, resulting in graceful

performance degradation. With the recovery of the controller,

the performance recovers in the 30th cycle.

BDS: A Centralized Near-Optimal Overlay Network for

Inter-Datacenter Data Replication EuroSys ’18, April 23–26, 2018, Porto, Portugal

0.5 1 1.5 2 2.5 3 6 12
0

100

200

300

400

500

600

700

800

900

1000

R
u
n
n
in

g
 T

im
e
 (

m
s
)

of Blocks x 10
5

(a) The controller running time.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Network Delay (ms)

C
D

F

(b) The inter-DC network delay.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feedback Loop Delay (ms)

C
D

F

(c) Feedback loop delay.

Figure 11: [System scalability] Measurements on (a) controller running time, (b) network delay, (c) Feedback loop delay.

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

Cycle

#
 o

f
b
lo

c
k
s

(a) Average number of downloaded

blocks per cycle under failures.

1 2 3 4 5 6 7 8 9 10
0

10
20
30
40
50
60
70
80
90

100

DCs

C
o
m

p
le

ti
o
n
 T

im
e
 (

m
)

2M/blk

64M/blk

(b) Completion time under different

block sizes.

0 10 20 30 40 50 60 70 80 90 100
40

60

80

100

120

140

160

180

200

Cycle Length (s)

C
o
m

p
le

ti
o
n
 T

im
e
 (

m
)

(c) Completion time under different

cycle lengths.

Figure 12: BDS’s (a) fault tolerance, (b) sensitivity to different block sizes, and (c) different cycle lengths.

0 800 1600 2400 3200 4000
10

0

10
1

10
2

10
3

10
4

10
5

of Blocks

R
u
n
n
in

g
 T

im
e
 (

m
s
)

BDS

Standard LP

(a) The reduction on algorithm running

time of BDS over standard LP.

0 800 1600 2400 3200 4000
0

3

6

9

12

15

of Blocks

C
o
m

p
le

ti
o
n
 T

im
e
 (

m
)

BDS

Standard LP

(b) The near-optimality of BDS to

standard LP in small scale.

0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proportion of servers

C
D

F

(c) The proportion of blocks download-

ed from the original source.

Figure 13: [In-depth analysis] on (a) reduction on algorithm running time, (b) near-optimality, and (c) effects of overlay

transmission.

6.3.3 Choosing the values of key parameters. Block

size: In BDS, the bulk data file is split into blocks and

can be transferred on bottleneck-disjoint paths. But this

introduces a tradeoff between scheduling efficiency and

calculation overhead. We therefore conduct two series of

experiments using different block sizes (2MB and 64MB).

Figure 12b shows that the completion time in the 2MB/block

scenario is 1.5 to 2 times shorter than that in the 64MB/block

scenario. However, this optimization introduces a longer

controller running time, as shown in Figure 11a. We pick

block size by balancing two considerations: (1) constraints

on the completion time, and (2) the controller’s operational

overhead.

Update cycle lengths: Since any change in network envi-

ronment may potentially alter the optimal overlay routing

decisions, BDS reacts to the changing network conditions

by adjusting the routing scheme periodically. To test the

adjustment frequency, we set different cycle lengths from

0.5s to 95s for the same bulk data transfer, and Figure 12c

shows the completion time. Smaller cycle lengths result in

shorter completion time, but the benefit diminishes when

the cycle length is less than 3s. This is because updating too

frequently introduces greater overhead on: (1) the information

collection from agents to the controller, (2) the execution of

the centralized algorithm, and (3) the re-establishment of new

TCP connections. Thus, considering adjustment granularity

and the corresponding overhead, we finally choose 3s as the

default cycle length.
6.3.4 In-depth analysis. Optimization over algorith-

m running time: BDS decouples scheduling and routing,

which can significantly reduce the computational complexity.

To clearly show the optimization, we measure the algorithm

running time under BDS and the standard LP solution. For

the standard LP experiments, we use the linprog library on

MATLAB [5], set the upper bound of the iteration number

EuroSys ’18, April 23–26, 2018, Porto, Portugal

Yuchao Zhang, Junchen Jiang, Ke Xu, Xiaohui Nie, Martin J. Reed, Haiyang Wang, Guang Yao, Miao Zhang, and Kai

Chen

(106) if the algorithm does not converge, and record the CPU

time as a function of the block number. Figure 13a shows

that the running time of BDS keeps below 25ms while that of

standard LP grows quickly to 4s with only 4000 blocks. BDS

is much faster than an off-the-shelf LP solver.

Near-optimality of BDS: To measure the near-optimality,

we evaluate the data transfer completion time under the

standard LP and BDS: 2 DCs, 4 servers, 20MBs for server

upload/download rate. We vary the number of blocks from 1

to 4000, over which the LP solver cannot finish in a reasonable

time. Figure 13b shows the near-optimality of BDS.

Benefit of disjoint overlay paths: §2.2 reveals the benefits

of disjoint paths on application-level overlay networks. To

explore the potential benefit, we record the ratio of the number

of blocks downloaded from the original source to the total

number of blocks, and the CDF is shown in Figure 13c. For

about 90% of servers, the proportion is less than 20%, which

means that more than 80% blocks are downloaded from other

DCs on the disjoint paths, demonstrating the great potential

of a multicast overlay network.

In summary, both the prototype pilot deployment and the

trace-driven simulations of BDS show 3-5× speedup over

existing solutions, with good scalability and reliability, and

near-optimal scheduling results.

7 RELATED WORK

Here we discuss some representative work that is related to

BDS in three categories.

Overlay Network Control. Overlay networks release

great potential to various applications, especially for data

transfer applications. The representative networks include

Peer-to-Peer (P2P) networks and Content Delivery Networks

(CDNs). The P2P architecture has already been verified by

many applications, such as live streaming systems (Cool-

Streaming [55], Joost [2], PPStream [4], UUSee [6]), video-

on-demand (VoD) applications (OceanStore [3]), distributed

hash tables [42] and more recently Bitcoin [16]. But, self-

organizing systems based on P2P principles suffer from long

convergence times. CDN distributes services spatially relative

to end-users to provide high availability and performance

(e.g., to reduce page load time), serving many applications

such as multimedia [59] and live streaming [47].

We briefly introduce the two baselines in the evaluation

section: (1) Bullet [26], which enables geo-distributed nodes

to self-organize into an overlay mesh. Specifically, each node

uses RanSub [43] to distribute summary ticket information

to other nodes and receive disjoint data from its sending

peers. The main difference between BDS and Bullet lies in

the control scheme, i.e., BDS is a centralized method that

has a global view of data delivery states, while Bullet is

a decentralized scheme and each node makes its decision

locally. (2) Akamai designs a 3-layer overlay network for

delivering live streams [9], where a source forwards its

streams to reflectors, and reflectors send outgoing streams to

stage sinks. There are two main differences between Akamai

and BDS. First, Akamai adopts a 3-layer topology where

edge servers receive data from their parent reflectors, while

BDS successfully explores a larger search space through a

finer grained allocation without the limitation of three coarse

grained layers. Second, the receiving sequence of data must

be sequential in Akamai because it is designed for a live

streaming application. But there is no such requirements in

BDS, and the side effect is that BDS has to decide the optimal

transmission order as additional work.

Data Transfer and Rate Control. Rate control of trans-

port protocols at the DC-level plays an important role in

data transmission. DCTCP [8], PDQ [21], CONGA [7],

DCQCN [60] and TIMELY [33] are all classical protocols

showing clear improvements in transmission efficiency. Some

congestion control protocols like the credit-based ExpressPass

[11] and load balancing protocols like Hermes [53] could

further reduce flow completion time by improving rate control.

On this basis, the recent proposed Numfabric [36] and

Domino [46] further explore the potential of centralized TCP

on speeding up data transfer and improving DC throughput.

To some extend, co-flow scheduling [12, 52] has some

similarities to the multicast overlay scheduling, in terms

of data parallelism. But that work focuses on flow-level

problems while BDS is designed at the application-level.

Centralized Traffic Engineering. Traffic engineering

(TE) has long been a hot research topic, and many existing

studies [10, 25, 32, 40, 45, 50, 54] have illustrated the chal-

lenges of scalability, heterogeneity etc., especially on inter-

DC level. The representative TE systems include Google’s B4

[24] and Microsoft’s SWAN [22]. B4 adopts SDN [30] and

OpenFlow [31, 38] to manage individual switches and deploy

customized strategies on the paths. SWAN is another online

traffic engineering platform, which achieves high network

utilization with its software-driven WAN.

Overall, an application-level multicast overlay network is

essential for data transfer in inter-DC WANs. Applications

like user logs, search engine indexes and databases would

greatly benefit from bulk-data multicast. Furthermore, such

benefits are orthogonal to prior WAN optimizations, further

improving inter-DC application performance.

8 CONCLUSION

Inter-DC multicast is critical to the performance of global-

scale online service providers, but prior efforts that focus on

optimizing WAN performance are insufficient. This paper

presents BDS, an application-level multicast overlay network

BDS: A Centralized Near-Optimal Overlay Network for

Inter-Datacenter Data Replication EuroSys ’18, April 23–26, 2018, Porto, Portugal

that substantially improves the performance of inter-DC bulk-

data multicast. BDS demonstrates the feasibility and practical

benefits of a fully centralized multicast overlay network that

selects overlay paths and schedules data transfers in a near-

optimal, yet efficient manner. The key insight underlying

BDS’s centralized design is that there are significant benefits

achieved by making slightly delayed decisions based on a

global view and that this outweighs the cost of centralization.

We believe that the insight of decoupling scheduling and rout-

ing, to speed up the execution of a centralized algorithm can

be generalized to inspire other centralized control platforms

where centralized decision-making strikes a favorable balance

between costs and benefits.

ACKNOWLEDGMENTS

This work is supported in part by the HK RGC ECS-

26200014, CRF-C703615G, HKUST PDF fund, the China

973 Program (2014CB340300), the National Natural Founda-

tion of China (61472212), EU Marie Curie Actions CROWN

(FP7-PEOPLE-2013-IRSES-610524). We would like to thank

our shepherd, Paolo Romano, and the anonymous EuroSys

reviewers for their valuable feedback.

REFERENCES
[1] The go programming language. https://golang.org.

[2] Joost. http://www.joost.com/.

[3] Oceanstore. http://oceanstore.cs.berkeley.edu/.

[4] Ppstream. http://www.ppstream.com/.

[5] Solve linear programming problems - matlab linprog. https://cn.

mathworks.com/help/optim/ug/linprog.html?s tid=srchtitle.

[6] Uusee. http://www.uusee.com/.

[7] ALIZADEH, M., EDSALL, T., DHARMAPURIKAR, S.,

VAIDYANATHAN, R., CHU, K., FINGERHUT, A., LAM, V. T.,

MATUS, F., PAN, R., AND YADAV, N. CONGA: distributed

congestion-aware load balancing for datacenters. In ACM SIGCOMM

(2014), pp. 503–514.

[8] ALIZADEH, M., GREENBERG, A., MALTZ, D. A., PADHYE, J.,

PATEL, P., PRABHAKAR, B., SENGUPTA, S., AND SRIDHARAN, M.

Data Center TCP (DCTCP). In ACM SIGCOMM (2010), pp. 63–74.

[9] ANDREEV, K., MAGGS, B. M., MEYERSON, A., AND SITARAMAN,

R. K. Designing Overlay Multicast Networks For Streaming. SPAA

(2013), 149–158.

[10] CHEN, Y., ALSPAUGH, S., AND KATZ, R. H. Design insights

for MapReduce from diverse production workloads. Tech. rep.,

CALIFORNIA UNIV BERKELEY DEPT OF ELECTRICAL

ENGINEERING AND COMPUTER SCIENCE, 2012.

[11] CHO, I., JANG, K. H., AND HAN, D. Credit-Scheduled Delay-

Bounded Congestion Control for Datacenters. In ACM SIGCOMM

(2017), pp. 239–252.

[12] CHOWDHURY, MOSHARAFSTOICA, AND EECS, I. Coflow: An

Application Layer Abstraction for Cluster Networking. Hotnets (2012).

[13] CHU, Y.-H., RAO, S. G., AND ZHANG, H. A case for end system

multicast. In ACM SIGMETRICS (2000), vol. 28, ACM, pp. 1–12.

[14] COHEN, B. Incentives build robustness in bittorrent. Proc P Economics

Workshop (2003), 1–1.

[15] DATTA, A. K., AND SEN, R. K. 1-approximation algorithm for

bottleneck disjoint path matching. Information processing letters 55, 1

(1995), 41–44.

[16] EYAL, I., GENCER, A. E., SIRER, E. G., AND VAN RENESSE, R.

Bitcoin-NG: A scalable blockchain protocol. In NSDI (2016).

[17] FLEISCHER, L. K. Approximating fractional multicommodity flow

independent of the number of commodities. SIDMA (2000), 505–520.

[18] GARG, N., AND KOENEMANN, J. Faster and simpler algorithms for

multicommodity flow and other fractional packing problems. SIAM

Journal on Computing 37, 2 (2007), 630–652.

[19] GARG, N., VAZIRANI, V. V., AND YANNAKAKIS, M. Primal-

dual approximation algorithms for integral flow and multicut in trees.

Algorithmica 18, 1 (1997), 3–20.

[20] GOG, I., SCHWARZKOPF, M., GLEAVE, A., WATSON, R. N. M., AND

HAND, S. Firmament: Fast, Centralized Cluster Scheduling at Scale.

In OSDI (Savannah, GA, 2016), USENIX Association, pp. 99–115.

[21] HONG, C. Y., CAESAR, M., AND GODFREY, P. B. Finishing flows

quickly with preemptive scheduling. pp. 127–138.

[22] HONG, C.-Y., KANDULA, S., MAHAJAN, R., ZHANG, M., GILL, V.,

NANDURI, M., AND WATTENHOFER, R. Achieving high utilization

with software-driven WAN. In ACM SIGCOMM (2013), pp. 15–26.

[23] HUANG, T. Y., JOHARI, R., MCKEOWN, N., TRUNNELL, M., AND

WATSON, M. A buffer-based approach to rate adaptation: evidence

from a large video streaming service. SIGCOMM (2014), 187–198.

[24] JAIN, S., KUMAR, A., MANDAL, S., ONG, J., POUTIEVSKI, L.,

SINGH, A., VENKATA, S., WANDERER, J., ZHOU, J., ZHU, M.,

ET AL. B4: Experience with a globally-deployed software defined

WAN. In ACM SIGCOMM (2013), vol. 43, pp. 3–14.

[25] KAVULYA, S., TAN, J., GANDHI, R., AND NARASIMHAN, P. An

analysis of traces from a production mapreduce cluster. In CCGrid

(2010), IEEE, pp. 94–103.

[26] KOSTIĆ, D., RODRIGUEZ, A., ALBRECHT, J., AND VAHDAT, A.

Bullet: High bandwidth data dissemination using an overlay mesh. In

ACM SOSP (2003), vol. 37, ACM, pp. 282–297.

[27] KUMAR, A., JAIN, S., NAIK, U., RAGHURAMAN, A., KASINADHUNI,

N., ZERMENO, E. C., GUNN, C. S., AI, J., CARLIN, B.,

AMARANDEI-STAVILA, M., ET AL. BwE: Flexible, hierarchical

bandwidth allocation for WAN distributed computing. In ACM

SIGCOMM (2015), pp. 1–14.

[28] LAMPORT, L. The part-time parliament. ACM TOCS 16, 2 (1998),

133–169.

[29] LIEBEHERR, J., NAHAS, M., AND SI, W. Application-layer

multicasting with Delaunay triangulation overlays. IEEE JSAC 200, 8

(2002), 1472–1488.

[30] MCKEOWN, N. Software-defined networking. INFOCOM keynote talk

17, 2 (2009), 30–32.

[31] MCKEOWN, N., ANDERSON, T., BALAKRISHNAN, H., PARULKAR,

G., PETERSON, L., REXFORD, J., SHENKER, S., AND TURNER, J.

Openflow: enabling innovation in campus networks. ACM SIGCOMM

38, 2 (2008), 69–74.

[32] MISHRA, A. K., HELLERSTEIN, J. L., CIRNE, W., AND DAS, C. R.

Towards characterizing cloud backend workloads: insights from google

compute clusters. ACM SIGMETRICS PER 37, 4 (2010), 34–41.

[33] MITTAL, R., LAM, V. T., DUKKIPATI, N., BLEM, E., WASSEL, H.,

GHOBADI, M., VAHDAT, A., WANG, Y., WETHERALL, D., AND

ZATS, D. TIMELY: RTT-based Congestion Control for the Datacenter.

In ACM SIGCOMM (2015), pp. 537–550.

[34] MOKHTARIAN, K., AND JACOBSEN, H. A. Minimum-delay multicast

algorithms for mesh overlays. IEEE/ACM TON 23, 3 (2015), 973–986.

[35] MUKERJEE, M. K., HONG, J., JIANG, J., NAYLOR, D., HAN, D.,

SESHAN, S., AND ZHANG, H. Enabling near real-time central control

for live video delivery in cdns. In ACM SIGCOMM (2014), vol. 44,

ACM, pp. 343–344.

EuroSys ’18, April 23–26, 2018, Porto, Portugal

Yuchao Zhang, Junchen Jiang, Ke Xu, Xiaohui Nie, Martin J. Reed, Haiyang Wang, Guang Yao, Miao Zhang, and Kai

Chen

[36] NAGARAJ, K., BHARADIA, D., MAO, H., CHINCHALI, S.,

ALIZADEH, M., AND KATTI, S. Numfabric: Fast and flexible

bandwidth allocation in datacenters. In ACM SIGCOMM (2016),

pp. 188–201.

[37] NYGREN, E., SITARAMAN, R. K., AND SUN, J. The Akamai network:

a platform for high-performance internet applications. ACM, 2010.

[38] OPENFLOW. Openflow specification. http://archive.openflow.org/wp/

documents.

[39] REED, M. J. Traffic engineering for information-centric networks. In

IEEE ICC (2012), pp. 2660–2665.

[40] REISS, C., TUMANOV, A., GANGER, G. R., KATZ, R. H., AND

KOZUCH, M. A. Heterogeneity and dynamicity of clouds at scale:

Google trace analysis. In SoCC (2012), ACM, p. 7.

[41] REPANTIS, T., SMITH, S., SMITH, S., AND WEIN, J. Scaling

a monitoring infrastructure for the akamai network. Acm Sigops

Operating Systems Review 44, 3 (2010), 20–26.

[42] RHEA, S., GODFREY, B., KARP, B., KUBIATOWICZ, J., RATNASAMY,

S., SHENKER, S., STOICA, I., AND YU, H. Opendht: a public dht

service and its uses. In ACM SIGCOMM (2005), vol. 35, pp. 73–84.

[43] RODRIGUEZ, A., ALBRECHT, J., BHIRUD, A., AND VAHDAT, A.

Using random subsets to build scalable network services. In USITS

(2003), pp. 19–19.

[44] SAVAGE, S., COLLINS, A., HOFFMAN, E., SNELL, J., AND

ANDERSON, T. The end-to-end effects of Internet path selection. In

ACM SIGCOMM (1999), vol. 29, pp. 289–299.

[45] SHARMA, B., CHUDNOVSKY, V., HELLERSTEIN, J. L., RIFAAT, R.,

AND DAS, C. R. Modeling and synthesizing task placement constraints

in google compute clusters. In SoCC (2011), ACM, p. 3.

[46] SIVARAMAN, A., CHEUNG, A., BUDIU, M., KIM, C., ALIZADEH,

M., BALAKRISHNAN, H., VARGHESE, G., MCKEOWN, N., AND

LICKING, S. Packet transactions: High-level programming for line-rate

switches. In ACM SIGCOMM (2016), pp. 15–28.

[47] SRIPANIDKULCHAI, K., MAGGS, B., AND ZHANG, H. An analysis

of live streaming workloads on the internet. In IMC (2004), ACM,

pp. 41–54.

[48] WANG, F., XIONG, Y., AND LIU, J. mTreebone: A Hybrid Tree/Mesh

Overlay for Application-Layer Live Video Multicast. In ICDCS (2007),

p. 49.

[49] WANG, H., LI, T., SHEA, R., MA, X., WANG, F., LIU, J., AND XU, K.

Toward cloud-based distributed interactive applications: Measurement,

modeling, and analysis. IEEE/ACM ToN (2017).

[50] WILKES, J. More google cluster data. http://googleresearch.blogspot.

com/2011/11/, 2011.

[51] ZHANG, H., CHEN, K., BAI, W., HAN, D., TIAN, C., WANG,

H., GUAN, H., AND ZHANG, M. Guaranteeing deadlines for inter-

datacenter transfers. In EuroSys (2015), ACM, p. 20.

[52] ZHANG, H., CHEN, L., YI, B., CHEN, K., GENG, Y., AND GENG, Y.

CODA: Toward Automatically Identifying and Scheduling Coflows in

the Dark. In ACM SIGCOMM (2016), pp. 160–173.

[53] ZHANG, H., ZHANG, J., BAI, W., CHEN, K., AND CHOWDHURY, M.

Resilient Datacenter Load Balancing in the Wild. In ACM SIGCOMM

(2017), pp. 253–266.

[54] ZHANG, Q., HELLERSTEIN, J. L., AND BOUTABA, R. Characterizing

task usage shapes in google’s compute clusters. In LADIS (2011).

[55] ZHANG, X., LIU, J., LI, B., AND YUM, Y.-S. CoolStreaming/DONet:

a data-driven overlay network for peer-to-peer live media streaming. In

INFOCOM (2005), vol. 3, IEEE, pp. 2102–2111.

[56] ZHANG, Y., LI, Y., XU, K., WANG, D., LI, M., CAO, X., AND

LIANG, Q. A communication-aware container re-distribution approach

for high performance vnfs. In IEEE ICDCS 2017 (2017), IEEE,

pp. 1555–1564.

[57] ZHANG, Y., XU, K., WANG, H., LI, Q., LI, T., AND CAO, X. Going

fast and fair: Latency optimization for cloud-based service chains. IEEE

Network (2017).

[58] ZHANG, Y., XU, K., YAO, G., ZHANG, M., AND NIE, X. Piebridge:

A cross-dr scale large data transmission scheduling system. In ACM

SIGCOMM (2016), ACM, pp. 553–554.

[59] ZHU, W., LUO, C., WANG, J., AND LI, S. Multimedia cloud

computing. IEEE Signal Processing Magazine 28, 3 (2011), 59–69.

[60] ZHU, Y., ERAN, H., FIRESTONE, D., GUO, C., LIPSHTEYN, M.,

LIRON, Y., PADHYE, J., RAINDEL, S., YAHIA, M. H., AND ZHANG,

M. Congestion Control for Large-Scale RDMA Deployments. ACM

SIGCOMM 45, 5 (2015), 523–536.

9 APPENDIX

Suppose we want to send N data blocks to m destination DCs.

Without loss of generality, we consider two cases:

• A (Balanced): Each of the N blocks has k duplicas;

• B (Imbalanced): Half blocks have k1 duplicas each, and

the other half have k2 duplicas each, and k1 < k2,(k1 +
k2)/2 = k.

Note that m > k, since otherwise, the multicast is already

complete. Next, we prove that in a simplified setting, BDS’s

completion time in A is strictly less than B.

To simplify the calculation of BDS’s completion time,

we now make a few assumptions (which are not critical to

our conclusion): (1) all servers have the same upload (resp.

download) bandwidth Rup (resp. Rdown), (2) no two duplicas

share the same source (resp. destination) server, so the upload

(resp. download) bandwidth of each block is Rup (resp. Rdown).

Now we can write the completion time in the two cases as

following:

tA =
V

min{c(l),
kRup

m−k
, kRdown

m−k
}

tB =
V

min{c(l),
k1Rup

m−k1
,

k2Rup

m−k2
, k1Rdown

m−k1
, k2Rdown

m−k2
}

(6)

where V denotes the total size of the untransmitted blocks,

V =N(m−k)ρ(b)= N
2 (m−k1)ρ(b)+

N
2 (m−k2)ρ(b). In the

production system of Baidu, the inter-DC link capacity c(l)
is several orders of magnitudes higher than upload/download

capacity of a single server, so we can safely exclude c(l)
from the denominator in the equations. Finally, if we denote

min{Rup,Rdown}= R, then tA = (m−k)V
kR

and tB = (m−k1)V
k1R

.

We can show that
(m−k)V

kR
is a monotonically decreasing

function of k:

d

dk

(m− k)V

kR
=

d

dk

(m− k)2Nρ(b)

kR
=

Nρ(b)

R
(1−

m2

k2
)< 0

(7)

Now, since k > k1, we have tA < tB.

