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Abstract. At present, a quantitative basis for delimiting realistic rockfall runout zones on the basis of trajectory simulation data

is generally missing. The objective of this study is to come up with standardized reach probability threshold values (RPTV )

to separate "realistic" from "unrealistic" simulated rockfall runouts. We therefore compared reach probability values (Preach)

simulated with Rockyfor3D for 458 mapped, fresh rockfall blocks (silent witnesses SW ) on 18 different sites with a volume

>= 0.05 m3 and estimated occurrence frequencies up to 300 years. We analysed which block, slope and forest characteristics5

influenced Preach of the SW based on a linear mixed effects model. The results indicate that the limit of a realistic runout

zone lies in the range where simulated Preach values are between >1% and approximately 3%. We conclude that RPTV

can be defined to values lying in the range from 1.2% to 2.5% depending on the defined block volume and the encountered

cumulative basal area in a forested transit zone. Where possible, the defined RPTV should be compared and validated by field

recordings of SW .10

keywords: rockfall hazard modelling; simulation, Rockyfor3D, silent witness, statistical analysis

1 Introduction

Throughout the world, at places where steep rocky slopes occur, the sudden and rapid downslope movement of single rock

fragments, blocks or fragmented rock masses threatens human life and poses problems for infrastructure and residential areas.

For example, such processes, popularly referred to as rockfall, are expected to cause an estimated yearly damage of 12 million15
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CHF to the Swiss national road network (Arnold and Dorren, 2015). Cliffs that are known to pose imminent rockfall threats

to the underlying damage potential can be monitored using extensometers and/or remote sensing such as radar interferometry,

laser scanning or photogrammetry (see Abellán et al., 2010; Derron and Jaboyedoff, 2010; Caduff et al., 2015; Farmakis et al.,

2020; Guerin et al., 2020). On locations where the threat is less imminent, risk reduction is generally achieved through spatial

planning, technical measures, such as rockfall dams (Lambert et al., 2013; Kanno et al., 2020) and flexible nets (Caviezel et al.,20

2020; Lambert et al., 2020; Tahmasbi et al., 2020), and biological measures (i.e., protection forests; Dorren et al., 2005a; Moos

et al., 2017; Lanfranconi et al., 2020; Scheidl et al., 2020).

An important basis for the implementation of above-mentioned types of measures is the rockfall hazard and risk assessment.

Although such assessments have been improved considerably over the last decades, it remains a challenge to fully grasp the un-

knowns of rockfall processes with respect to space and time (Crosta et al., 2015). These are related to a range of factors which25

include: precise release locations in a rock cliff (cf. Loye et al., 2009), the frequency and initial volume of the released rock

mass (cf. Francioni et al., 2020; Farvacque et al., 2021; Hantz et al., 2021), the fragmentation, i.e. disaggregation of the initial

volume during the failure process and breakage after the first and subsequent impacts (cf. Giacomini et al., 2009; Ruiz-Carulla

et al., 2015; Matas et al., 2020; Ruiz-Carulla and Corominas, 2020), the size and shape and change thereof of the individual

rockfall fragments that propagate down the slope (c.f., Melzner et al., 2020), the transformation and dissipation of energy dur-30

ing rebounds on the slope surface (Caviezel et al., 2021) and impacts on standing or lying tree stems (Dorren and Berger, 2006;

Dorren et al., 2006; Lundström et al., 2009; Lu et al., 2020; Noël et al., 2021; Ringenbach et al., 2021), penetration depth in

the soil and alteration of the terrain during impact (Pichler et al., 2005; Wang and Cavers, 2008; Guangcheng et al., 2015; Lu

et al., 2019). To come up with realistic predictions of the areas that are potentially endangered by rockfall processes, modelling

rockfall trajectories is one of the methods that provide an important information (Volkwein et al., 2011; Yan et al., 2020). To35

account for some of the above mentioned uncertainties and to the intrinsic variability of rockfall as function of block shape,

volume, exact initial position, etc., trajectory simulation models generally use stochastic variables in their algorithms (e.g.,

Bourrier et al., 2009). Since such probabilistic computational algorithms rely on repeated random sampling, also referred to as

a Monte Carlo method (Von Neumann and Ulam, 1951), the numerical results are presented as probability distributions (Far-

vacque et al., 2020). In case of rockfall trajectory simulations, these generally include data on runout zones, kinetic energies,40

and passing heights for all simulated individual rockfall blocks sometimes converted into individual risk estimates (Farvacque

et al., 2019a).

Although attempts have been made to automatize the delineation of hazard zones on the basis of trajectory modelling (e.g.,

Jaboyedoff et al., 2005; Abbruzzese et al., 2009; Abbruzzese and Labiouse, 2020; Farvacque et al., 2020), in the daily practice

this delineation is mostly based on human interpretation of the simulation results and subsequent definition of the realistic45

runout zone for a given simulated scenario. Thereby, extreme long, low probability trajectories are separated from all other

trajectories in the modelled rockfall runout distribution based on expert judgement, eventually supported by historical records,

mapped deposited rocks (silent witnesses SW ), and other information recorded in the field (e.g., tree impacts). Legal consid-

erations varying from one country to another also play a role, with often no clear correspondence between sound statistical and

probabilistic concepts (Eckert et al., 2018). The basis provided by rockfall trajectory models for doing so is data on the number50
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of passages per cell normalised by the total number of blocks potentially passing through a cell, which depends on the number

of simulations per source cell and the number of feeding source cells. This normalised model output data can be referred to

as reach probability data. The reach probability is a conditional probability depending on whether a block is released or not.

At present, no standardized reach probability threshold values (RPTV ) are defined for delimiting rockfall runout zones based

on trajectory simulation data. This is usually done in a very subjective manner. Therefore, expert knowledge still represents a55

great deal in rockfall hazard assessment.

A sound statistical comparison of simulation-based reach probability values with field mapped stopping locations of blocks

from recent rockfall events could improve the quantitative basis for the delimiting rockfall runout zones. Consequently, the

objective of this study is to come up with a quantitative basis for defining RPTV by comparing reach probabilities simulated

with a three-dimensional rockfall model for mapped, fresh SW of 18 sites in Austria, France, Greece, Italy and Switzerland60

for which the runout distance return period could be estimated as being maximum 300 years. In this paper we analyse which

reach probability values are typically expected in the outer range of the rockfall runout zones and quantify which block, slope

and forest characteristics influence the simulated reach probabilities of the mapped SW .

2 Materials and Methods

2.1 Study sites and mapping of SW65

For this study, we used data from 18 different rockfall sites in Europe (Fig. 1) with a total of 769 mapped SW (see table 1).

To analyse the effect of the complexity of the topography at the study site, we classified each study site in topography type 1

(simple topography: linear cliff with an underlying linear transit - mainly talus - slope), 2 (intermediate complex topography)

and 3 (complex topography: gullys and superposed cliffs, large variability in slope gradients) according to the examples in

Fig 2. The mapped SW correspond to stopping locations of blocks mapped in the field. Only fresh blocks were taken into70

account, meaning that blocks with weathered surfaces as well as those partly buried by material covering the surrounding

slope surface were not recorded (Fig. 3). Preferable, we also detected additional rockfall marks such tree wounds and rockfall

impact signs (craters) upslope from the mapped SW . The block volume (V ol) of each SW was calculated on the basis of the

measured width, depth and height, as well as an estimated rounding factor varying from 0.52 (a perfect sphere) to 1 (a perfect

rectangle). All data on the SW was gathered by the authors, except for the Gurtnellen site in Switzerland (CH), which was75

provided by (Thali, 2009). At every site, we focused at mapping SW which, based on an expert interpretation (i.e., comparison

with deposits in the direct surroundings, block volumes recorded in historical events databases of the region) corresponded to

blocks that resulted from recent rockfall events with return periods of max. 300 years in terms of runout distance. Similarly,

very frequent events were excluded from the analysis (cf., 2.3), so as to work with a sample of rockfall runout events that may

well separate safe from unsafe locations in terms of hazard mapping for buildings and infrastructure.80

Generally, we can distinguish 4 main types of mapped SW for the study sites (cf. table 1). At the Taesch (CH) study site,

all deposited blocks of the rockfall event of August 2013 were mapped. At the Claro (CH), Flaesch (CH), Orvin (CH, c.f.,

Moos et al., 2018), Schmitten (CH) and Tithorea in Greece (GR) (, c.f., Saroglou et al., 2015) study sites, we mapped all de-
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posited rockfall blocks of multiple recent rockfall events. At six other study sites, we mapped selected freshly deposited blocks

which had either a large V ol in comparison to surrounding blocks or a longer runout distance compared to the majority of the85

deposited blocks, meaning that they are deposited in the lower range of the propagation zone) of one specific recent rockfall

event (Gurtnellen (CH), event of May 2006; Varces in France (FR), event of December 2008; Veyrier (FR), event of January

2009; Tramin in Italy (IT), event of January 2014; Evolène (CH), event of October 2015; Vaujany (FR), rockfall experiments

of October 2003 (c.f., Dorren et al., 2005b). Finally, at another six sites, we mapped selected blocks present at the study site

which resulting from multiple rockfall events (e.g., Crolles in FR; cf., Farvacque et al., 2019b). We also mapped and recorded90

field data required for the modelling (terrain roughness as well as soil types), following an intensive exchange on a common

field mapping/recording method, corresponding to the Rockyfor3D manual (Dorren, 2016).

Figure 1. Upper row: maps showing the location of all study sites. Bottom row: overview maps showing the coverage of the maps above,

centered on the French Alps, Switzerland and Greece - from left to right. Background: Stamen Terrain (under CC BY 3.0).
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Figure 2. Visualisation of the three topography types used in this study. Type 1: simple topography (linear cliff with an underlying linear

transit - mainly talus - slope); type 2: intermediate complex topography; type 3: complex topography (gullys and superposed cliffs, large

variability in slope gradients)

To characterise the forests at the study sites, we used an approach combining 1) mapping of forest stands based on orthopho-

tos or, if available, high-resolution vegetation height models derived from airborne laser scanning data or drone flights and 2)95

forest inventory plots in the field. At least one representative plot of 10 by 10 m or 20 x 20 m (depending on the tree density)

was inventoried for each homogeneous forest stand type in the different study areas. From those inventory plots, we derived

the required forest data for the used rockfall trajectory simulation model (cf. section 2.2).

Figure 3. Left: the block of 6.25 m3 which fell in 2009 in Veyrier-du-lac (FR) is an example of a SW taken into account in this study (Photo:

F.Berger). Right: the ancient block of approx. 150 m3 lying upslope from the village Veyrier-du-lac, with a tree growing on top of it, has been

left out from our analysis because the event had an estimated return period tat is larger than 300 years (Photo: ONF-RTM).
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2.2 Monte-Carlo based rockfall trajectory simulation model

The Monte-Carlo based rockfall simulation model used in this study is Rockyfor3D (for details see (Dorren, 2016)), which100

is a probabilistic, process-based rockfall model simulating trajectories of individual blocks in three dimensions. Rockyfor3D

was developed on the basis of full-scale rockfall experiments in the field and uses raster maps describing topography (Dig-

ital Elevation Model - DEM), rockfall source cells, the mechanical properties of the surface material and the slope surface

roughness. To represent the forest, the model requires the number of trees, the mean and standard deviation of stem diameters

at breast height (DBH), as well as tree types (coniferous or broadleaved) per cell as input data (Dorren et al., 2004, 2006).105

For each rockfall source cell, the trajectories of a given number of rocks are simulated by considering flying and bouncing

(rebounds on the surface). The density as well as the indentation resistance (cf. (Pichler et al., 2005), which have an effect on

the penetration depth of the block during a impact before rebounding (which in turn affects the tangential energy loss of the

block ) and dampening effect (represented by the normal coefficient of restitution Rn) of the impacted material is defined by

the following eight soil types:110

– Soiltype 0 = River, or swamp, or material in which a rock could penetrate completely (Rn = 0)

– Soiltype 1 = Fine soil material (depth > 100 cm; Rn = 0.21 - 0.25)

– Soiltype 2 = Fine soil material (depth < 100 cm), or sand/gravel mix in the valley (Rn = 0.30 - 0.36)

– Soiltype 3 = Scree (material fragments Ø < 10 cm), or medium compact soil with small rock fragments, or forest road

(Rn = 0.34 - 0.42)115

– Soiltype 4 = Talus slope (material fragments Ø > 10 cm), or compact soil with large rock fragments (Rn = 0.39 - 0.47)

– Soiltype 5 = Bedrock with thin weathered material or soil cover (Rn = 0.21 - 0.25)

– Soiltype 6 = Bedrock (Rn = 0.48 - 0.58)

– Soiltype 7 = Asphalt road (Rn = 0.32 – 0.39)

Surface roughness is represented by three raster maps. These rasters represent deposited rocks and rock fragments covering120

the slope surface, which form "obstacles" for the falling block. Micro topography (e.g., steps in the terrain) should not be taken

into account here. The surface roughness was recorded in the field by identifying homogeneous zones in the study areas. These

were represented as polygons on a map (in most cases printed hillshade maps) and later digitised and rasterised. Each polygon

defines the surface roughness, expressed in the size of the material covering the slope’s surface, looking in the downward

direction of the slope. Three roughness probability classes need to be represented by a raster map and correspond to the height125

of a representative obstacle in m that a falling block encounters in resp. 70%, 20%, and 10% of the cases during a rebound in

the defined polygon. If the slope surface is smooth, a roughness value of 0 m was used. The choice of the roughness values

needs careful attention, since Rockyfor3D is sensitive to this parameter.
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During each simulated rebound on slopes with a gradient less than 30°, Rockyfor3D decreases the slope angle at the position

of the rebound at random (following a uniform distribution), similar to (Pfeiffer and Bowen, 1989), up to a maximum decrease130

of 4°. Rolling is represented by a sequence of short-distance rebounds with a distance in between that is equal to the radius

of the block and an absolute minimum distance of 0.2 m. Rockyfor3D explicitly calculates the deviation and energy loss after

impacts with trees dependent on the DBH, impact position, and the kinetic energy of the rock before the impact.

The main output of RockyFor3D used for this study consists of a raster map containing information on the reach probability

(cf. section 2.3. Additional outputs generated by Rockyfor3D are, amongst others, raster maps with information on the kinetic135

energies, the passing heights, the number of deposited rocks, the number of tree impacts per cell and the angle of the straight

line between source and stopping cell (energy line angle ELA; see Dorren, 2016).

We simulated the exact V ol mapped for each site with Rockyfor3D using a rectangular block shape and extracted the

simulated reach probabilities for the position of the deposited blocks. We simulated 100 blocks per start cell. At all sites, we

used elevation models with a resolution of 2 x 2 m, except for the Greece study site, where only a 5 x 5 m resolution DEM was140

available.

2.3 Reach probability

The reach probability (Preach) value in a given cell x indicates the probability (given in%) that cell x is reached by a block

that has detached from the cliff. It is calculated by:

Preach(x) =
NB(x) · 100%

Nsims ·Nsources(x)
(1)145

Where NB(x) is the number of blocks passed through cell x, Nsims is the number of individual blocks simulated from

each source cell and Nsources(x) is the number of source cells “feeding” cell x. In other words, the reach probability is a

measure of the number of simulated blocks passed through a given cell relative to the number of blocks potentially “feeding”

the cell. It is typically used as indicator to determine the rockfall runout zone of a given release area. However, a quantitative

basis for differentiating the realistic Preach values from the extreme ones (in terms of runout distance) which can therefore150

be neglected for hazard mapping, is missing. In this study, we extracted for each SW the simulated Preach as the mean of

the Preach values > 0 in the eight neighboring cells as well as in the center of a mapped SW . This value is hereafter referred

to as PreachSW . We excluded SW with a V ol < 0.05 m3 and a PreachSW > 5% from the originally 769 SW , since they

were regarded as irrelevant for hazard analysis or are not in the outer reach, respectively. The threshold of 5% was determined

based on a two-step outlier detection according to (Yang et al., 2019) using the median absolute deviation as score. In total,155

202 SW from 9 sites were not reached by any simulated trajectory, i.e. their deposit location could not be reproduced by the

rockfall simulation. All these SW had a significantly smaller V ol than the neighbouring SW which were perfectly reached by

the simulations (Fig. 4). We therefore assumed that these SW are most likely fragments of larger blocks that broke off while

falling down slope. On the basis of this assumption, we excluded those SW from the analysis. This resulted in 458 SW with

a V ol > 0.05 m3 and with a PreachSW > 0 and <= 5%.160
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Figure 4. Distribution of block volumes (Vol; y axis) depending on whether they were reached or not (yes / no) by a simulated rockfall

trajectory. Only the sites where not all SW were reached are presented.

2.4 Statistical analyses of the simulation results

We analysed which block, slope and forest characteristics influenced PreachSW of the SW that were reached by the simu-

lations (n=458). We first tested whether there are significant differences in PreachSW between sites as well as between V ol

classes based on a one-way Anova with a logarithmic transformation of PreachSW using the aov function of the stats package

in the statistical software R. We then fitted a linear mixed effects model (lmm) for PreachSW with the variables reported in165

table 2 as fixed effects and the site as random effect. Here, cbA is the normalised cumulative basal area along a given trajec-

tory, which is calculated by the mean basal area of forested area [m2.ha-1] x trajectory length [m] / 100 m. The lmm (fit.lmm)
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was fitted to the log-transformed PreachSW values with stepwise backward variable selection with the aim to minimize the

Akaike Information Criterion (AIC) using the step function (lmerTest package; (Kuznetsova et al., 2017)). We only included

explanatory variables that were not substantially correlated (Spearman correlation coefficient < 0.4) to avoid colinearity. We170

also tested for possible variable interactions, which did not substantially improve the model. The lmm was implemented with

the lmer function of the lme4 package in the statistical software R (Bates et al., 2015). P-values were obtained by Wald-Chisq

tests as well as likelihood ratio tests of the full model against the model without the variable in question. The model perfor-

mance was assessed based on customary residual plots (Stahel, 2017) and the marginal and conditional R2 (Nakagawa and

Schielzeth, 2013). We further fitted a random forest model (rfm) (Breiman et al., 1984) and compared predicted values of the175

lmm to the predicted values from the rfm. The latter was implemented using conditional inference trees as base learners in the

cforest function of the party package in the software R (Strobl et al., 2009; Hothorn et al., 2010). The random forest model was

fitted using three times repeated 10-fold cross-validation to reduce the risk of overfitting (Kohavi et al., 1995)).

Table 2. Explanatory variables used in the linear mixed effects model (lmm) and the random forest model (rfm) predicting the Preach of

the SW .

Variable Description Data type

Slopemean Mean slope of a block trajectory between the deposition of the block and release area (rock cliff) [°] numerical

cliffHeight Vertical difference between the top and bottom of the rock cliff (height of the release area) [m] numerical

V olClass Rock volume class [m3] (1=<0.05; 2=0.05-0.2m; 3=0.2-0.5; 4=0.5-1; 5=1-2; 6=2-5; 7=5-10; 8=10-20; 9=20-50; 10=50-100; 11=100-200; 12=≥200) categorical

SlopeType Categorization of slope type (1 = simple topography; 2 = intermediate complex topography; 3 = complex topography) categorical

Rg70maj Majority of roughness values of 70 % of the surface along trajectory [m] numerical

Soiltypemaj Majority of soiltype values along trajectory (type 1 to 5 with decreasing dampening capacity of soil) categorical

cbA Normalised cumulative basal area along trajectory [m2.ha-1] numerical

3 Results

The mean PreachSW of the considered 458 SW was 1.79% and the median PreachSW was 1.41% (Fig. 5). 75% of the 458180

SW had a PreachSW <= 2.02%. This corresponds to, on average, 1247 simulated trajectories that attained the mapped SW

(min = 36; max = 14526).
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Figure 5. Histogram of reach probabilities PreachSW of SW with Vol >= 0.05 m3 and PreachSW >0% and <=5% at all sites with the

median value of 1.41 %.

The Anova revealed a significant difference between sites, whereby the Tukey post-hoc test showed that only Claro and

Taesch significantly differ from the others (Fig. 6), meaning that only the SW of these two sites have significantly different

Preach values. Furthermore, the analyses showed that PreachSW is significantly higher for blocks with a V ol of 5-10 m3185

(Fig. 7).
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Figure 6. Box plot of simulated reach probability values [in %] at the different sites for SW with Vol >= 0.05 m3 and PreachSW >0% and

<=5%. n = number of measured SW at each site.

According to both the lmm and the rfm, PreachSW is significantly influenced by the block volume class (V olClass),

the normalized cumulative basal area (cbA), the mean slope (Slopemean) and the soil roughness (rg70maj ; cf. Table 3). The

different soil types (soiltypemaj) were not significant in the lmm, but remained in the final model. PreachSW for a given

SW increases with increasing V ol, whereas it decreases again for the largest V olClass (Figure 7), for increasing cumulative190

basal area of the forest (Figure 8), increasing slope angle, decreasing soil roughness and decreasing dampening capacity of the

soil. The lmm explains 45% of the variance (conditional R2). There is a relatively high correspondence between the predicted

values of the lmm and the rfm with slightly smaller values predicted by the lmm model (Fig. 9).
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Figure 7. Box plot of reach probability values per volume class (V olClass). The number of observations is given above the box plots.
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Figure 8. Box plot of PreachSW values as function of the normalized cumulative basal area (cbA) and the block volume (V ol), whereby

three classes of cbA (cbAlow: cbA <= 20 m2.ha-1; cbAmedium: cbA = 20-80 m2.ha-1; cbAhigh: cbA > 80 [m2.ha-1]) and three block block

volume classes (V olClass) (Vol. < 5 m3; Vol. = 5-20 m3; Vol. > 20 m3) were distinguished. The number of observations is given above the

box plots.
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Table 3. Variance and standard deviation of random effect (upper table) and estimates with standard errors, and p values of the coefficients

of the fixed effects (lower table) of the linear mixed effects model for PreachSW

Random effect Variance Std. Dev.

Site 0.02 0.15

Residual 0.12 0.34

Fixed effects Estimate Std. Error p value

Intercept 0.54 0.44 0.22

Vol. 0.2-1 m3 0.13 0.05 0.003

Vol. 1-2 m3 0.19 0.06 0.0007

Vol. 2-5 m3 0.40 0.07 1.5*10-8

Vol. 5-10 m3 0.42 0.10 5.3*10-8

Vol. 10-20 m3 0.52 0.12 3.9*10-7

Vol. > 20 m3 0.16 0.14 0.03

rg70maj (log) -0.1 0.03 0.0003

soiltypemaj 1 -0.13 0.51 0.80

soiltypemaj 3 -0.29 0.37 0.44

soiltypemaj 4 -0.22 0.38 0.55

soiltypemaj 5 0.06 0.38 0.88

cbA (log) -0.20 0.02 < 10-16

Slopemean 0.01 0.003 0.0002
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Figure 9. Reach probability values predicted by the mixed linear model (lmm; y-axis) vs. values predicted by the random forest model (rfm;

x-axis).

4 Discussion

The results of our analysis of a large number of deposited blocks from 18 sites in Europe imply that the lower limit of rockfall195

runout zones typically have Preach values, simulated with RockyFor3D, between 1 and 3%. The statistical models showed that

the Preach values, simulated with Rockyfor3D, of deposited blocks strongly depend on block, slope and forest characteristics.

Smaller Preach values are in particular achieved for blocks with a volume between 5 and 10 m3 and densely wooded forest

(cbA > 20 m3). The analysis provides important information for the interpretation of simulation results for rockfall hazard

mapping.200

This study is conceptually based on the assumptions that the SW analyzed in this study were all registered in the typical

outer range of a rockfall propagation zone, as it is typically done for hazard and risk assessment. However, we used a collection

of study sites where different field protocols, especially with regards to the used criteria for SW recording, were applied. There

are sites where only blocks with an “extreme” runout were recorded (e.g. Evolène) and others, where deposits also in the upper
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part of the slope were recorded (e.g. Orvin). There might thus be a slight bias regarding the range of Preach values used in205

this study. We attempted to offset this by excluding all SW with a Preach > 5%.As already mentioned, an important bias

is very probably the result of the recording of SW corresponding to block fragments (cf. fig. 4). Fragmentation is extremely

common during rockfall processes and leads to difficulties when deciding on representative block shape and block size in the

hazard analysis process (Jaboyedoff et al., 2005; Matas et al., 2020). In the field, it is rarely possible to differentiate which

deposited blocks resulted from fragmentation in the rock cliff, or upon first impact below the cliff, or in the lower parts of the210

transit area. This has been one of the arguments to keep all mapped SW in the original data set. It allowed us to profit from the

large data source on different sites and slope conditions. The analysis of the volume distribution of SW that were not reached

by the simulations finally clearly indicated that these SW were block fragments and, thus, we excluded them in the final data

set.

The developed statistical model shows that Preach values increase with increasing V ol, increasing slope angle,decreasing215

forest cover, and decreasing soil roughness. These factors promote an acceleration of the falling blocks leading to longer

runout distances. Thus, we can conclude that on slopes with favorable characteristics for rockfall propagation, the probability

that rocks in reality end up in the extreme range of the propagation zone increases. The fitted regression model yields an R2 of

48% and the residual analysis, too, indicating that the model fits the data relatively well. The predicted Preach values of the

regression model and the random forest model correspond well, suggesting that the two models are relatively robust.220

The results indicate that the limit of a realistic runout zone lies in the range where simulated Preach values are between >1%

and approx. 3% (= 70%-ile of all considered SW ). As a basic rule, based on the median and mean Preach values presented

here as well as on long-term practical experience, we would recommend choosing a RPTV larger than 1% and smaller than

2% in a first step. If abundant data on field mapped SW allows for a detailed comparison with the simulated data, the RPTV

can be eventually increased when supported by the field observations. Here, one must be sure, that blocks with extreme runout225

distances were not removed in the field, as is often done by farmers (in agricultural fields) or by infrastructure managers (on

road and railways). To eventually come with actual probabilities of a block having "extreme" runout, propagation probabilities

have to be combined with the release frequencies of expert defined homogeneous release areas in a rock face.

When interpreting simulated Preach values, it is important to execute a sufficiently large number of simulations per start

cell, to make sure that the Preach in the lower ranges of the runout zone converge. To do so, experience shows that at least230

100 simulations per start cell are required. An analysis in the study site St. Paul de Varces (FR) showed that there is, however,

no significant difference, even in the raster cells with low Preach values, between 100 or 1000 simulations per source cell.

For some areas, due to a topographic configuration leading to strongly diverging trajectories, it might be necessary to simulate

200 or in extreme cases 500 trajectories per start cell. Though for most model simulation based rockfall hazard analyses in the

practice, 100 simulations per start cell will be sufficient. Furthermore, Preach depends on the definition of the source area and235

can possibly be affected by the size, form and position of the source area. A known problem occurs when two or more source

areas are superposed on a slope with a transit area between them. If some blocks from the upper source area fall over the rock

face below this locally results in a higher number of sources underneath the rock face below, whereas the number of passages
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does not increase significantly. Finally this leads to lower Preach values compared to neighbouring cells which were only fed

by the lower rock face. In such a case, it might be useful to simulate each of the superposed source areas separately.240

To come up with more detailed categories of RPTV , we applied the developed lmm model to predict Preach values for

diverse V ol as well as varying slope and forest characteristics. The derived RPTV categories are presented in Fig 10. As

shown by table 3, the key data required for defining RPTV is finally the V ol and the cbA. For the latter, one can roughly

differentiate between low, medium and high cbA. Low cbA represents a basal area (G) of 20 to 30 m2/ha with a trajectory

length up to 50 m (measured along the slope). Medium cbA represents a G of 20 to 30 m2/ha with a trajectory length of 50 to245

250 m or a G of 50 m2/ha with a trajectory of 50 to 100 m. A high cbA represents a G of 20 to 30 m2/ha with trajectory lengths

> 250 m or a G of 50 m2/ha with trajectories longer than 150 m.

Finally, we do not recommend to delineate limits of rockfall hazard zones only based on rockfall simulations without the

expert interpretations and the comparison and validation with field observations. To increase the quantitative basis on simulated

Preach values, further analyses on additional data sets, based on a standardized field recording protocol, are recommended.250

Figure 10. Summary of the results of the lmm model serving as a basis for defining the RPTV to be used in the practice based on the V ol

and the cbA. The reported Preach values correspond to the median of the respective classes. The number of observations is indicated by n.

5 Conclusions

On the basis of the presented results, we conclude that simulated Preach data are a valuable basis for delimiting a rockfall

runout zone downslope from a release area. The limit of a realistic rockfall runout zone for rectangular rocks simulated with

Rockyfor3D lies in the range where Preach values are between >1% and, depending on the V ol, slope roughness and the

type and area of forest cover, smaller than 3%. As a basic rule, we therefore recommend choosing a RPTV larger than 1%255

and depending on the before mentioned variables, RPTV can be defined in detail and fixed to values lying in the range from

1.2% to 2.5%. We recommend to delimit runout zones based on rockfall simulations only in combination with expert-based
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site interpretations and, if possible, validation with historical events on the basis of increasingly available extensive inventories

(Rupp and Damm, 2020; Eckert et al., 2020). Cross-validation of the results with other modelling approaches are also strongly

advised. To improve the quantitative basis presented in this article, analyses of additional similar data are desirable.260
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