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Abstract – Robust fault estimation plays an important role in 

real-time monitoring, diagnosis and fault-tolerance control. 

Accordingly, this paper aims to develop an effective fault 

estimation technique to simultaneously estimate the system states 

and the concerned faults, while minimizing the influences from 

process/sensor disturbances. Specifically, an augmented system is 

constructed by forming an augmented state vector composed of 

the system states and the concerned faults. Next, an unknown 

input observer is designed for the augmented system by 

decoupling the partial disturbances and attenuating the 

disturbances that cannot be decoupled, leading to a simultaneous 

estimate of the system states and the concerned faults. In order to 

be close to the practical engineering situations, the process 

disturbances in this study are assumed not to be completely 

decoupled. In the first part of the paper, the existence condition 

of such an unknown input observer is proposed to facilitate the 

fault estimation for linear systems subjected to process 

disturbances. In the second part, robust fault estimation 

techniques are addressed for Lipschitz nonlinear systems 

subjected to both process and sensor disturbances. The proposed 

technique is finally illustrated by the simulation studies of a 

three-shaft gas turbine engine and a single-link flexible joint 

robot.  

Keywords: Fault diagnosis, fault estimation, unknown input 

observer, augmented system approach, linear matrix inequality. 

 

I.  INTRODUCTION 

ndustrial systems have become more expensive and more 

complex, which have a higher demand in reliability and 

safety. Unexpected deviation of characteristic properties or 

system parameters from standard condition, defined as fault, 

can possibly induce serious damages and even break down the 

system. As a result, it is paramount to detect the occurrence of  
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a fault at the early stage, determine the location of the fault, 

and identify the degree of the severity of the fault. During the 

last four decades, extensive results were reported on various 

analytical redundancy based fault diagnosis techniques [1-4] 

and their applications in aero systems, electro-mechanical 

systems, energy systems [5-8] and so forth. 

The approaches of fault diagnosis can be classified into 

various categories from different perspectives. In the three-

part review paper [9-11], fault diagnosis methods were 

classified into quantitative model based methods, qualitative 

model methods, and process history-based methods. In the 

recent two-part survey paper [12, 13], fault diagnosis 

approaches were categorized into model-based methods, 

signal-based methods, knowledge-based methods, and 

hybrid/active methods. Model-based method has been a 

popular tool for fault diagnosis, which can provide systematic 

design solutions, but the diagnosis performance highly relies 

on the disturbance/noise attenuation ability of the diagnosis 

algorithms. Observer/filter plays a key role in model-based 

fault diagnosis methods, which utilizes input and output data 

to monitor the consistency between the predicted model output 

and the output of the actual process, leading to a diagnosis 

decision. In order to attenuate the influences from the 

disturbances/uncertainties, one solution is to carry out various 

optimization calculations to make the residual sensitive to 

faults, but robust against the disturbances/uncertainties [14-

17]. The alternative is to utilize decomposition techniques to 

decouple the process disturbances so that the effects from the 

disturbances to the residual are removed. One of the known 

disturbance decomposition techniques is differential geometric 

approach [18-20], which was utilized to perfectly decouple 

process disturbances for fault detection and isolation. Another 

popular disturbance decomposition technique is unknown 

input observer (UIO), which was proposed in [21] and was 

then extended for nonlinear systems with Lipschitz constraints 

[22, 23]. The UIO methods were utilized for either robust 

state estimation [22, 23] or robust fault diagnosis [21, 24-30]. 

Specifically, an UIO based fault detection filter was proposed 

for linear time-invariant systems in [21]. Meanwhile, UIO 

techniques were developed in [24-27] for robust fault 

detection and isolation for a class of nonlinear systems. 

Moreover, UIO-based fault/disturbance estimation and 

reconstruction were addressed in [28-30]. It is noted that both 
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the differential geometric decomposition techniques in [18-20] 

and the UIO decomposition techniques in [21-30] are 

constrained by some existence conditions, which would 

become invalid in some scenarios. As a result, there is strong 

motivation to develop a technique to handle the systems when 

the disturbances cannot be completely decoupled by using the 

existing decomposition techniques [18-30]. Recently, a few 

results were reported for systems subjected to partially 

decoupled process disturbances in [31, 32] by using the UIO 

techniques, however, which were proposed for state estimates 

only. Therefore, this motives us to make more effort to 

investigate fault diagnosis issues for systems subjected to 

partially decoupled disturbances/uncertainties.   

Fault estimation is an advanced fault diagnosis method, 

which not only can tell when and where the faults occur, but 

also can provide the sizes and shapes of the faults, which are 

crucial for on-line fault tolerant control and real-time decision. 

Fault estimation can be realized by utilizing various observer 

techniques such as adaptive observers [33], sliding mode 

observers [34], and augmented system observers (including 

descriptor observers) [35-37]. It is noticed that the fault 

estimation techniques in [33-37] attenuate the disturbances by 

either using optimization methods or high-gain design 

approaches, rather than using the disturbance decomposition 

techniques. It is evident that disturbance decomposition can 

better alleviate the adverse influences from the disturbances. 

Therefore, it is desirable to decouple the disturbances as much 

as possible. For systems subjected to the disturbances which 

cannot be completely decoupled, one can decouple partial 

disturbance components while attenuating the disturbance 

components that cannot be decoupled, by using optimization 

techniques.  

In this study, an augmented system is first constructed by 

forming an augmented state vector composed of the system 

states and the concerned faults. Second, an UIO is presented 

for the augmented system to decouple partial process 

disturbances, and the existence conditions of such an observer 

are addressed as well. Linear matrix inequality (LMI) 

optimization technique is utilized to ensure the estimation 

error dynamics to be stable, and the disturbances that cannot 

be decoupled to be attenuated, leading to an effective 

simultaneous estimate of the states and the concerned faults, 

addressed in Section II. Furthermore, the UIO-based fault 

estimation methods are extended to Lipschitz nonlinear 

systems, and further extensions are then made so that the 

methods can be applied to the systems subjected to both 

process and sensor disturbances, presented in Section III. 

Finally, the effectiveness of the proposed methods is 

demonstrated by two engineering-oriented systems in Section 

IV: a three-shaft gas turbine engine and a single-link flexible 

joint robot.  
 The notations in the presented paper are quite standard.  ℛ𝑛 

and ℛ𝑛×𝑚 stand for 𝑛-dimentional Euclidean space and the set 
of 𝑛×𝑚 real matrices, respectively. 𝐼𝑛  denotes identity matrix 
with dimension of 𝑛×𝑛. 0 is a scalar zero or a zero matrix with 
appropriate zero entries. The superscript 𝑇  represents the 
transpose of matrices or vectors. The notation 𝑋 > 𝑌 indicates 

that the symmetric matrix  𝑋 − 𝑌  is positive definite. 𝑅𝑒(𝑠) 
represents the real part of the complex number 𝑠. ‖. ‖ denotes 
standard norm of vectors or matrices, while ‖𝑑‖𝑇𝑓 =

(∫ 𝑑𝑇(𝜏)
𝑇𝑓

0
𝑑(𝜏)𝑑𝜏)1 2⁄ . Moreover, [

𝑀1 𝑀2

∗ 𝑀3
] = [

𝑀1 𝑀2

𝑀2
𝑇 𝑀3

].  

II.  UIO-BASED FAULT ESTIMATION FOR LINEAR SYSTEMS 

A. System description and augmented system 

Consider a dynamic system in the form of: 

          {
�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐵𝑑𝑑(𝑡) + 𝐵𝑓𝑓(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) + 𝐷𝑓𝑓(𝑡)
           (1) 

where 𝑥(𝑡) ∈ ℛ𝑛 represents state vector with initial value of 
 𝑥(0) ∈ ℛ𝑛, 𝑢(𝑡) ∈ ℛ𝑚 and 𝑦(𝑡) ∈ ℛ𝑝 stand for control input 
vector and measurement output vector, respectively, 𝑑(𝑡) ∈
ℛ𝑙𝑑  is a bounded unknown input vector caused by either 

disturbances or modelling errors, 𝑓 ∈ ℛ𝑙𝑓  is the fault vector 
involving actuator faults and sensor faults,  𝐴, 𝐵, 𝐶, 𝐷, 𝐵𝑑 , 𝐵𝑓 

and 𝐷𝑓  are known constant coefficient matrices with 

appropriate dimensions. For the simplicity of presentation, the 
symbol 𝑡 will be omitted in the rest of the paper. 

Incipient faults and abrupt faults are the most common 
faults in industrial processes. Therefore, in this study, the 
faults concerned are assumed to be either incipient faults or 
abrupt faults. As a result, the second-order derivative of the 

fault 𝑓 should be zero piecewise. In other words, 𝑓̈ = 0, which 
makes sense from the perspective of engineering practices. On 
the other hand, one could consider a more general case, that is, 
the qth-order derivate of the fault is assumed to be zero as 
shown in [35, 36]. However, in this paper, we concentrate on 
the case 𝑞 = 2 without loss of generality, and the results of the 
paper can easily be extended to the case when 𝑞 ≥ 3.   

In addition, 𝐵𝑑 = [𝐵𝑑1  𝐵𝑑2],  𝑑 =  [𝑑1  𝑑2]
𝑇, 𝑑1 ∈ ℛ

𝑙𝑑1  and 

𝑑2 ∈ ℛ
𝑙𝑑2 , where 𝑑1  rather than 𝑑2  is assumed to be 

decoupled, and 𝐵𝑑1 is of full column rank. 

Define an augmented state vector as 

�̅� = [𝑥𝑇 𝑓̇𝑇 𝑓𝑇]𝑇 ∈ ℛ�̅�                               (2) 

where �̅� = 𝑛 + 2𝑙𝑓.  

As a result, we can construct an equivalent augmented 
system as follows: 

{
�̇̅� = �̅��̅� + �̅�𝑢 + �̅�𝑑𝑑

𝑦 = 𝐶̅�̅� + 𝐷𝑢
                            (3) 

where 

�̅� = [

𝐴 0 𝐵𝑓
0 0 0
0 𝐼𝑙𝑓 0

] ∈ ℛ�̅�×�̅��̅� = [
𝐵
0
0
] ∈ ℛ�̅�×𝑚,  

�̅�𝑑 = [
𝐵𝑑
0
0
] ∈ ℛ �̅�×𝑙𝑑 , and 𝐶̅ = [𝐶 0 𝐷𝑓] ∈ ℛ𝑝×�̅�. 

Clearly, �̅�  contains the state vector 𝑥, the concerned fault 

vector 𝑓,  and its first-order derivative 𝑓̇. As a result, the three 



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 
components can be estimated simultaneously if an observer 
exists for the augmented system (3).  

B. Novel unknown input observer (UIO)  

Consider the following unknown input observer (UIO): 

{
𝑧̅̇ = 𝑅𝑧̅ + 𝑇�̅�𝑢 + 𝐾(𝑦 − 𝐷𝑢)

�̂̅� = 𝑧̅ + 𝐻(𝑦 − 𝐷𝑢)
               (4) 

in which 𝑧̅ ∈ ℛ�̅� is the state vector of the dynamic system (4) 

and �̂̅� ∈ ℛ�̅�  represents the estimation of �̅� ∈ ℛ�̅� , while 𝑅 ∈
ℛ�̅�×�̅� , 𝐾 = 𝐾1 + 𝐾2,  𝐾1 ∈ ℛ

�̅�×𝑝,  𝐾2 ∈ ℛ
�̅�×𝑝 , 𝑇 ∈ ℛ�̅�×𝑚  and 

𝐻 ∈ ℛ �̅�×𝑝 are the gain matrices to be designed. 

Letting estimation error �̅� = �̅� − �̂̅� , and using the output 
equation in (4), one has 

�̅� = �̅� − �̂̅� 

= �̅� − 𝑧̅ − 𝐻𝐶̅�̅�      

= (𝐼�̅� −𝐻𝐶̅)�̅� − 𝑧 ̅                                    (5) 

Using (3)-(5), the derivative of �̅� can thus be calculated as 

�̇̅� = (𝐼�̅� − 𝐻𝐶̅)�̇̅� − 𝑧̅̇ 
   = (𝐼�̅� − 𝐻𝐶̅)(�̅��̅� + �̅�𝑢 + �̅�𝑑𝑑) − 𝑅𝑧̅ − 𝑇�̅�𝑢 − 𝐾1𝐶̅�̅�      

        −𝐾2(𝑦 − 𝐷𝑢)          
   = (�̅� − 𝐻𝐶̅�̅� − 𝐾1𝐶̅)�̅� + (�̅� − 𝐻𝐶̅�̅� − 𝐾1𝐶̅ − 𝑅)𝑧̅ 
       +[(�̅� − 𝐻𝐶̅�̅� − 𝐾1𝐶̅)𝐻 − 𝐾2](𝑦 − 𝐷𝑢) 

+[(𝐼�̅� − 𝐻𝐶̅)�̅� − 𝑇�̅�]𝑢 + (𝐼�̅� − 𝐻𝐶̅)�̅�𝑑1𝑑1 

+(𝐼�̅� − 𝐻𝐶̅)�̅�𝑑2𝑑2                                                                   (6)   

where    [�̅�𝑑1 �̅�𝑑2] = �̅�𝑑.       

If one can make the following relationships hold, 

(𝐼�̅� − 𝐻𝐶̅)�̅�𝑑1 = 0                         (7) 

𝑅 = �̅� − 𝐻𝐶̅�̅� − 𝐾1𝐶̅                             (8) 

𝑇 = 𝐼�̅� −𝐻𝐶̅                                     (9) 

𝐾2 = 𝑅𝐻                                (10) 

the state estimation error dynamics (6) reduces to  

�̇̅� = 𝑅�̅� + (𝐼�̅� − 𝐻𝐶̅)�̅�𝑑2𝑑2.                        (11) 

From (11), one can see 𝑑1  has been decoupled under the 
conditions (7)-(10), but 𝑑2 still exists. Therefore, the observer 
design is transformed into seeking the solution to (7), and 
designing an algorithm to make the observer system matrix 𝑅 
stable, and minimizing the influence from the unknown input 
𝑑2.  

It is ready to develop the existence condition of the UIO 
with original system matrices, and the following lemma is 
useful for the proof of Theorem 1.  

Lemma 1 [2, 21]. The necessary and sufficient conditions for 
the existence of the UIO (4) for the system (3) are: 

(i)  rank(𝐶̅�̅�𝑑1) = rank(�̅�𝑑1); 

(ii) (𝐶̅, �̅�1) is a detectable pair, where �̅�1 = (𝐼𝑛 − 𝐻𝐶̅)�̅�. 

Remark 1.  

(a) Condition (i) in Lemma 1 can ensure equation (7) to be 
solvable, and a special solution is: 

 𝐻∗ = �̅�𝑑1[(𝐶̅�̅�𝑑1)
𝑇(𝐶̅�̅�𝑑1)]

−1(𝐶̅�̅�𝑑1)
𝑇 . 

(b) Condition (ii) in Lemma 1 is standard for arbitrarily 
assigning the unstable poles of 𝑅. Moreover, the condition 
(ii) is equivalent to the condition that the transmission zeros 
from the unknown inputs to the measurements must be stable, 
i.e., 

[
𝑠𝐼�̅� − �̅� �̅�𝑑1
𝐶̅ 0

]                                (13) 

is of full column rank for all 𝑠 with 𝑅𝑒(𝑠) ≥ 0. 

Theorem 1. The necessary and sufficient conditions for the 
existence of the UIO (4) for the system (3) are 

(i) rank(𝐶𝐵𝑑1) = rank(𝐵𝑑1); 

(ii) [
𝐴 𝐵𝑓 𝐵𝑑1
𝐶 𝐷𝑓 0

] is of full column rank; 

(iii)  rank [
𝑠𝐼𝑛 − 𝐴 𝐵𝑑1
𝐶 0

] = 𝑛 + 𝑙𝑑1  for all 𝑠 with 𝑅𝑒(𝑠) ≥ 0, 

but 𝑠 ≠ 0. 

Proof.  It is noted that 

𝐶̅�̅�𝑑1 = [𝐶 0 𝐷𝑓] [
𝐵𝑑1
0
0
] = 𝐶𝐵𝑑1 

and 

rank(�̅�𝑑1) = rank(𝐵𝑑1). 

Therefore, one can know that condition (i) in Lemma 1, that 

is  rank(𝐶̅�̅�𝑑1) = rank(�̅�𝑑1), is equivalent to the condition (i) 
in Theorem 1, that is,  rank(𝐶𝐵𝑑1) = rank(𝐵𝑑1).  

It is noted that  

rank [
𝑠𝐼�̅� − �̅� �̅�𝑑1
𝐶̅ 0

] 

= rank

[
 
 
 
 
𝑠𝐼𝑛 − 𝐴 0
0 𝑠𝐼𝑙𝑓

−𝐵𝑓 𝐵𝑑1
0  0

      0      −𝐼𝑙𝑓
      𝐶       0

𝑠𝐼𝑙𝑓   0

𝐷𝑓   0 ]
 
 
 
 

 

= {
rank [

𝐴 𝐵𝑓 𝐵𝑑1
𝐶 𝐷𝑓 0

] + 𝑙𝑓 , 𝑠 = 0

rank [
𝑠𝐼𝑛 − 𝐴 𝐵𝑑1
𝐶 0

] + 2𝑙𝑓 , 𝑠 ≠ 0

         (14) 

Therefore, (14) implies that the conditions (ii) and (iii) in 
Theorem 1 are equivalent to (13) being full of column rank for 
all 𝑠 with 𝑅𝑒(𝑠) ≥ 0, which is also equivalent to (ii) in Lemma 
1. This completes the proof.  

The next step for designing robust observer (4) is to make 
the matrix 𝑅  stable and reduce the influence from the 
disturbance that cannot be decoupled,  that is, 𝑑2.  
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Theorem 2. For system (3), there exists a robust UIO in the 
form of (4) such that ‖�̅�‖𝑇𝑓 ≤ 𝑟‖𝑑2‖𝑇𝑓 , if there exists a 

positive definite matrix 𝑃 and matrix 𝑄, such that 

[
𝐼�̅� + �̅�1

 𝑇𝑃 + 𝑃�̅�1 − 𝐶̅
𝑇𝑄𝑇 − 𝑄𝐶 𝑃(𝐼�̅� − 𝐻𝐶̅)�̅�𝑑2

∗ −𝑟2𝐼𝑙𝑑2
] < 0

where �̅�1 = (𝐼𝑛 − 𝐻𝐶̅)�̅�, and 𝑄 = 𝑃𝐾1. 

Proof. Take the following Lyapunov function candidate for 
error dynamic system (11): 

𝑉(𝑒̅) = �̅�𝑇𝑃�̅� .                        (16) 

Using (11) and (16), one has  

�̇�(𝑒̅) = �̅�𝑇𝑃�̇̅� + �̇̅�𝑇𝑃�̅� 
         = �̅�𝑇(�̅�1

 𝑇𝑃 + 𝑃�̅�1 − 𝐶̅
𝑇𝑄𝑇 − 𝑄𝐶̅)�̅� 

            +2�̅�𝑇𝑃(𝐼�̅� − 𝐻𝐶̅)�̅�𝑑2𝑑2.                                           (17) 

Form (15), one can see 

𝐼�̅� + �̅�1
 𝑇𝑃 + 𝑃�̅�1 − 𝐶̅

𝑇𝑄𝑇 − 𝑄𝐶̅ < 0, 

indicating �̅�1
 𝑇𝑃 + 𝑃�̅�1 − 𝐶̅

𝑇𝑄𝑇 − 𝑄𝐶̅ < 0. 

Apparently, when 𝑑2 = 0 , one can obtain �̇�(�̅�) < 0 , 
implying  that the error dynamics in (11) is asymptotically 
stable. 

Let 

 Γ = ∫ (�̅�𝑇�̅� − 𝑟2𝑑2
𝑇𝑑2)𝑑𝑡

𝑇𝑓

0
. 

By using (17) and (18), one has: 

  Γ = ∫ (�̅�𝑇�̅� − 𝑟2𝑑2
𝑇𝑑2 + �̇�(𝑒̅)) 𝑑𝑡 − ∫ �̇�(�̅�)𝑑𝑡

𝑇𝑓

0

𝑇𝑓

0
 

     = ∫ [�̅�𝑇(𝐼�̅� + �̅�1
 𝑇𝑃 + 𝑃�̅�1 − 𝐶̅

𝑇𝑄𝑇 − 𝑄𝐶̅)�̅�
𝑇𝑓

0
 

       +2�̅�𝑇𝑃(𝐼�̅� − 𝐻𝐶̅)�̅�𝑑2𝑑2 − 𝛾
2𝑑2

𝑇𝑑2]𝑑𝑡 − ∫ �̇�(�̅�)𝑑𝑡
𝑇𝑓

0
 

      = ∫ [�̅�𝑇 𝑑2
𝑇]Π [

�̅�
𝑑2
] 𝑑𝑡 − ∫ �̇�(�̅�)𝑑𝑡

𝑇𝑓

0

𝑇𝑓

0
                        (19) 

where  

Π = [
𝐼�̅� + �̅�1

 𝑇𝑃 + 𝑃�̅�1 − 𝐶̅
𝑇𝑄𝑇 − 𝑄𝐶̅ 𝑃(𝐼�̅� − 𝐻𝐶̅)�̅�𝑑2

∗ −𝑟2𝐼𝑙𝑑2
]. 

Under zero initial condition �̅�(0) = 0, one has 

 ∫ �̇�(�̅�)𝑑𝑡
𝑇𝑓

0
= �̅�𝑇(𝑇𝑓)𝑃�̅�(𝑇𝑓) − �̅�

𝑇(0)𝑃�̅�(0) 

                     = 𝑉(�̅�(𝑇𝑓) ) > 0.                                              (20)                                           

Since Π < 0 in terms of (15), and from (19) and (20), one 
has Γ < 0 , which indicates ‖�̅�‖𝑇𝑓 ≤ 𝑟‖𝑑2‖𝑇𝑓 . The proof is 

completed. 

C. Design procedure of the UIO for fault estimation 

Based on Theorems 1 and 2, we can summarize the design 
procedure of the UIO as follows. 

Procedure1. The design of robust UIO for fault estimation 

i) Construct the augmented system in the form of (3). 

ii) Select the matrix 𝐻∗ in the form of (12). 

iii) Solve the LMI (15) to obtain the matrices 𝑃 and 𝑄, and 
calculate the gain 𝐾1 = 𝑃−1𝑄. 

iv) Calculate the other gain matrices 𝑅, 𝑇 and 𝐾2  following 
the formulae (8)-(10), respectively.  

v) Implement the robust UIO (4), and obtain the augmented 

estimate �̂̅� , leading to the simultaneous state and fault 
estimates as follows: 

�̂� = [𝐼𝑛 0𝑛×2𝑙𝑓]�̂̅�                                (21) 

𝑓 = [0𝑛×(𝑛+𝑙𝑓) 𝐼𝑙𝑓]�̂̅�.                           (22) 

 

III. UIO-BASED FAULT ESTIMATION FOR LIPSCHITZ NONLINEAR 

SYSTEMS 

A. Nonlinear systems subjected to process disturbances  

In this subsection, UIO-based fault estimation approaches 
are to be proposed for Lipschitz nonlinear system subjected to 
process disturbances. The Lipschitz nonlinear system under 
consideration is represented as follows: 

{
�̇� = 𝐴𝑥+ 𝐵𝑢 + 𝐵𝑑𝑑 + 𝐵𝑓𝑓 + 𝛷(𝑡, 𝑥, 𝑢)

𝑦 = 𝐶𝑥 + 𝐷𝑢 + 𝐷𝑓𝑓
         (23) 

where 𝛷(𝑡, 𝑥, 𝑢) ∈ ℛ𝑛 is a real nonlinear vector function with 
Lipschitz constant 𝜃, namely, 

‖𝛷(𝑡, 𝑥, 𝑢) − 𝛷(𝑡, �̂�, 𝑢)‖ ≤ 𝜃‖𝑥 − �̂�‖, 

∀(𝑡, 𝑥, 𝑢), (𝑡, �̂�, 𝑢) ∈ ℛ×ℛ𝑛×ℛ𝑚,              (24) 

and the other symbols are the same as defined as (1). Lipschitz 

nonlinear systems, locally Lipschitz nonlinear systems at least, 

can be found in many practical systems. All the results derived 

for a globally Lipschitz system can be applied to a locally 

Lipschitz system directly.  

Defining an augmented state vector in the form of (2), one 
can obtain an equivalent augmented system as follows: 

{
�̇̅� = �̅��̅� + �̅�𝑢 + �̅�𝑑𝑑 + �̅�(𝑡, 𝑥, 𝑢)

𝑦 = �̅��̅� + 𝐷𝑢
           (25) 

where �̅�(𝑡, 𝑥, 𝑢) = [𝛷𝑇(𝑡, 𝑥, 𝑢) 0 0]𝑇 ∈ ℛ�̅�, and the other 
symbols are defined the same as those in (3). 

A nonlinear UIO is in the form of  

{
𝑧̅̇ = 𝑅𝑧̅ + 𝑇�̅�𝑢 + 𝐾(𝑦 − 𝐷𝑢) + 𝑇�̅�(𝑡, �̂�, 𝑢)

�̂̅� = 𝑧̅ + 𝐻(𝑦 − 𝐷𝑢)
   (26) 

where 𝐾 = 𝐾1 + 𝐾2, the gains 𝐻, 𝑅, 𝑇, and 𝐾2 satisfy (7)-(10), 
and 𝐾1 is to be designed. 

The estimation error is defined by (5). In terms of (5), (25) 
and (26), the estimation error dynamics is represented as  

�̇̅� = (�̅� − 𝐻𝐶̅�̅� − 𝐾1𝐶̅)𝑒 + (�̅� − 𝐻𝐶̅�̅� − 𝐾1𝐶̅ − 𝑅)𝑧̅ 
       +[(�̅� − 𝐻𝐶̅�̅� − 𝐾1𝐶̅)𝐻 − 𝐾2](𝑦 − 𝐷𝑢) 
       +[(𝐼�̅� − 𝐻𝐶̅)�̅� − 𝑇�̅�]𝑢 + (𝐼�̅� − 𝐻𝐶̅)�̅�𝑑1𝑑1 
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+(𝐼�̅� − 𝐻𝐶̅)�̅�𝑑2𝑑2  + (𝐼�̅� − 𝐻𝐶̅)�̃�                                    (27) 

in which �̃� = �̅�(𝑡, 𝑥, 𝑢) − �̅�(𝑡, �̂�, 𝑢).  

Substitution (7)-(10) into (27) yields  

�̇̅� = 𝑅�̅� + (𝐼�̅� − 𝐻𝐶̅)�̅�𝑑2𝑑2 + (𝐼�̅� − 𝐻𝐶̅)�̃�.             (28) 

It is time to design the observer 𝐾1 to ensure the estimation 
error dynamics above to be asymptotically stable and satisfy 
the robust performance index. The following two lemmas are 
useful in deriving Theorem 3. 

Lemma 2 [38]. For any matrices 𝑋 ∈ ℛ𝑠×𝑡  and  𝑌 ∈ ℛ𝑡×𝑠, a 
time-varying matrix 𝐹(𝑡) ∈ ℛ𝑡×𝑡  with ‖𝐹(𝑡)‖ ≤ 1,  and any 
scalar 𝜀 > 0, we have: 

𝑋𝐹(𝑡)𝑌 + 𝑌𝑇𝐹𝑇(𝑡)𝑋𝑇 ≤ 𝜀−1𝑋𝑋𝑇 + 𝜀𝑌𝑇𝑌. 

Lemma 3 (Schur complement) [39]. Let 𝑆 = [
𝑆11 𝑆12
∗ 𝑆22

] be  

a symmetric matrix. 𝑆 < 0 is equivalent to 𝑆22 < 0 and 𝑆11 −
𝑆12𝑆22

−1𝑆12
𝑇 < 0. 

Theorem 3. For system (25), there exists a robust observer in 
the form of (26), such that ‖�̅�‖𝑇𝑓 ≤ 𝑟‖𝑑2‖𝑇𝑓,if there exists a 

positive definite matrix 𝑃 and matrix 𝑄, such that 

[

Λ 𝑃(𝐼�̅� −𝐻𝐶̅)�̅�𝑑2 𝑃(𝐼�̅� − 𝐻𝐶̅)

∗ −𝑟2𝐼𝑙𝑑2 0

∗ ∗ −𝜀𝐼�̅�

]<0            (29) 

where Λ = (𝜀𝜃2 + 1)𝐼�̅� + �̅�1
 𝑇𝑃 + 𝑃�̅�1 − 𝐶̅

𝑇Q𝑇 − Q𝐶̅,  

�̅�1 = (𝐼�̅� − 𝐻𝐶̅)�̅�, 𝑄 = 𝑃𝐾1, 𝜀 is a given positive number, 𝑟 is 
a performance index, standing for the magnitude of error 
compared with disturbances. 

Proof. Choosing the Lyapunov function in the form of (16), 

and using (28), and noticing that 𝑅 = �̅�1 − 𝐾1𝐶,̅ one has 

�̇�(𝑒̅) = �̅�𝑇(�̅�1
 𝑇𝑃 + 𝑃�̅�1 − 𝐶̅

𝑇𝑄𝑇 − 𝑄𝐶̅)�̅�  

            +2�̅�𝑇𝑃(𝐼�̅� − 𝐻𝐶̅)�̅�𝑑2𝑑2 

            +�̅�𝑇𝑃(𝐼�̅� − 𝐻𝐶̅)�̃�   + �̃�
𝑇(𝐼 − 𝐻𝐶̅)𝑇𝑃�̅�                 (30) 

Applying Lemma 2 to the last two terms in (30) and using 
(24), one has  

�̇�(𝑒̅) ≤ �̅�𝑇(�̅�1
 𝑇𝑃 + 𝑃�̅�1 − 𝐶̅

𝑇𝑄𝑇 − 𝑄𝐶̅ + 𝜀𝜃2𝐼�̅� 

             +𝜀−1𝑃(𝐼�̅� − 𝐻𝐶̅)(𝐼�̅� − 𝐻𝐶̅)
𝑇𝑃)�̅�               

             +2�̅�𝑇𝑃(𝐼�̅� −𝐻𝐶̅)�̅�𝑑2𝑑2                                           (31) 

In terms of Lemma 3, one can see that (29) implies 

Λ + 𝜀−1𝑃(𝐼�̅� − 𝐻𝐶̅)(𝐼�̅� − 𝐻𝐶̅)
𝑇𝑃 < 0,                     (32) 

which is equivalent to 

�̅�1
 𝑇𝑃 + 𝑃�̅�1 − 𝐶̅

𝑇𝑄𝑇 − 𝑄𝐶̅ + 𝜀𝜃2𝐼�̅� 

                      +𝜀−1𝑃(𝐼�̅� −𝐻𝐶̅)(𝐼�̅� −𝐻𝐶̅)
𝑇𝑃 < 0.              (33) 

When  𝑑2 = 0 , from (31) and (33) one has �̇�(�̅�) < 0 , 
indicating the error dynamics is asymptotically stable. 

Letting 

Γ𝑎 = ∫ (�̅�𝑇�̅� − 𝑟2𝑑2
𝑇𝑑2 + �̇�(�̅�)) 𝑑𝑡 − ∫ �̇�(�̅�)𝑑𝑡

𝑇𝑓

0

𝑇𝑓

0
    (34) 

and using (31), one has 

 Γ𝑎 ≤ ∫ [�̅�𝑇(𝐼�̅� + �̅�1
 𝑇𝑃 + 𝑃�̅�1 − 𝐶̅

𝑇𝑄𝑇 − 𝑄𝐶̅
𝑇𝑓

0
 

         +𝜀𝜃2𝐼�̅� + 𝜀
−1𝑃(𝐼�̅� − 𝐻𝐶̅)(𝐼�̅� − 𝐻𝐶̅)

𝑇𝑃)𝑒      

         +2�̅�𝑇𝑃(𝐼�̅� − 𝐻𝐶̅)�̅�𝑑2𝑑2 − 𝑟
2𝑑2

𝑇𝑑2]𝑑𝑡 − ∫ �̇�(�̅�)𝑑𝑡
𝑇𝑓

0
  

      = ∫ [�̅�𝑇 𝑑2
𝑇]𝛺 [

�̅�
𝑑2
] 𝑑𝑡 − ∫ �̇�(�̅�)𝑑𝑡

𝑇𝑓

0

𝑇𝑓

0
                      (35) 

where  

𝛺 = 

[
Λ + 𝜀−1𝑃(𝐼�̅� − 𝐻𝐶̅)(𝐼�̅� − 𝐻𝐶̅)

𝑇𝑃 𝑃(𝐼�̅� −𝐻𝐶̅)�̅�𝑑2
∗ −𝑟2𝐼𝑙𝑑2

].    (36) 

In terms of Lemma 3, the inequality (29) implies 𝛺 < 0. It is 

also noted that ∫ �̇�(𝑒̅)𝑑𝑡
𝑇𝑓

0
= 𝑉 (�̅�(𝑡𝑓)) > 0 under zero initial 

condition. As a result, from (35) one has Γ𝑎 < 0 , implying  

‖�̅�‖𝑇𝑓 ≤ 𝑟‖𝑑2‖𝑇𝑓.                  (37) 

This completes the proof. 

B. Nonlinear systems with process and sensor disturbances  

In this subsection, a more general case is taken into 
consideration, that is, a Lipschitz nonlinear system corrupted 
by both process and sensor disturbances, described by  

{
�̇� = 𝐴𝑥 + 𝐵𝑢 + 𝐵𝑓𝑓 + 𝐵𝑑𝑑 + 𝛷(𝑡, 𝑥, 𝑢)

𝑦 = 𝐶𝑥 + 𝐷𝑢 + 𝐷𝑑𝑑𝑠 + 𝐷𝑓𝑓
           (38) 

where 𝐷𝑑  is constant known matrix, standing for the 
distribution matrix of the measurement noise 𝑑𝑠 ∈ ℛ

𝑠, and the 
other symbols are the same as defined before.   

Defining an augmented state vector in the form of (2), an 
equivalent augmented system is given as 

{
�̇̅� = �̅��̅� + �̅�𝑢 + �̅�𝑑𝑑 + �̅�(𝑡, 𝑥, 𝑢)

𝑦 = 𝐶̅�̅� + 𝐷𝑢 + 𝐷𝑑𝑑𝑠
                (39) 

where the symbols are the same as defined in (25) except for 
𝐷𝑑  and 𝑑𝑠. 

The nonlinear UIO takes the same form as (26). From (26) 
and (39), one can see the estimation error as  

�̅� = �̅� − �̂̅�      

= �̅� − 𝑧̅ − 𝐻(𝑦 − 𝐷𝑢)           

= (𝐼�̅� −𝐻𝐶̅)�̅� − 𝑧̅ − 𝐻𝐷𝑑𝑑𝑠.                                (40)              

Furthermore, in terms of (26), (39) and (40), one can obtain 
the estimation error dynamic equation as follows: 

�̇̅� = 𝑅�̅� + (𝐼�̅� − 𝐻𝐶̅)�̅�𝑑2𝑑2 + (𝐼�̅� − 𝐻𝐶̅)�̃�       

      −𝐾1𝐷𝑑𝑑𝑠 − 𝐻𝐷𝑑𝑑�̇�                                                        (41) 

where �̃� = �̅�(𝑡, 𝑥, 𝑢) − �̅�(𝑡, �̂�, 𝑢). 
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To design the parameters of the observer (26), the following 

theorem is addressed. 

Theorem 4. For system (39), there exists a robust observer in 

the form of (26) such that ‖�̅�‖𝑇𝑓 ≤ 𝑟‖�̅�‖𝑇𝑓 ,if there exists a 

positive definite matrix 𝑃 and matrix 𝑄, such that 

[
 
 
 
 
 
Λ 𝑃(𝐼�̅� − 𝐻𝐶̅)�̅�𝑑2 𝑃(𝐼�̅� − 𝐻𝐶̅) −𝑄𝐷𝑑 −𝑃𝐻𝐷𝑑
∗ −𝑟2𝐼𝑙𝑑2 0 0 0

∗ ∗ −𝜀𝐼�̅� 0 0

∗ ∗ ∗ −𝑟2𝐼𝑠 0

∗ ∗ ∗ ∗ −𝑟2𝐼𝑠 ]
 
 
 
 
 

< 0    (42) 

where Λ = (𝜀𝜃2 + 1)𝐼�̅� + �̅�1
 𝑇𝑃 + 𝑃�̅�1 − 𝐶̅

𝑇Q𝑇 − Q𝐶̅,  

 �̅�1 = (𝐼�̅� − 𝐻𝐶̅)�̅� , 𝑄 = 𝑃𝐾1 , �̅� = [𝑑2
𝑇 𝑑𝑠

𝑇 �̇�𝑠
𝑇]𝑇 , 𝜀  is a 

given positive number, and 𝑟 is a performance index. 

Proof. Taking the Lyapunov function in the form of (16), using 
(41) and the proof methodology of (30) and (31), one has 

�̇�(𝑒̅) ≤ �̅�𝑇(�̅�1
 𝑇𝑃 + 𝑃�̅�1 − 𝐶̅

𝑇𝑄𝑇 − 𝑄𝐶̅ + 𝜀𝜃2𝐼�̅� 

             +𝜀−1𝑃(𝐼�̅� − 𝐻𝐶̅)(𝐼�̅� − 𝐻𝐶̅)
𝑇𝑃) �̅�  

             +2�̅�𝑇𝑃(𝐼 − 𝐻𝐶̅)�̅�𝑑2𝑑2 − 2�̅�
𝑇𝑃𝐾1𝐷𝑑𝑑𝑠 

             −2�̅�𝑇𝑃𝐻𝐷𝑑𝑑�̇�.                                                         (43) 

For  𝑑2 = 0 , and 𝑑𝑠 = 0 , one can see that the error 
estimation system (41) is asymptotically stable, similar to the 
proof in Theorem 3. 

Letting 

 Γ𝑏 = ∫ (�̅�𝑇�̅� − 𝑟2�̅�𝑇�̅� + �̇�(�̅�)) 𝑑𝑡 − ∫ �̇�(�̅�)𝑑𝑡
𝑇𝑓

0

𝑇𝑓

0
      (44) 

and using (43), one has 

 Γ𝑏 = ∫ [�̅�𝑇 𝑑2
𝑇 𝑑𝑠

𝑇 �̇�𝑠
𝑇]Ψ [

�̅�
𝑑2
𝑑𝑠
𝑑�̇�

] 𝑑𝑡 − ∫ �̇�(�̅�)𝑑𝑡
𝑇𝑓

0

𝑇𝑓

0
   (45) 

where 

 Ψ =

[
 
 
 
 
Σ 𝑃(𝐼�̅� − 𝐻𝐶̅)�̅�𝑑2 −𝑄𝐷𝑑 −𝑃𝐻𝐷𝑑
∗ −𝑟2𝐼𝑙𝑑2 0 0

∗ ∗ −𝑟2𝐼𝑠 0

∗ ∗ ∗ −𝑟2𝐼𝑠 ]
 
 
 
 

       (46) 

  Σ = Λ + 𝜀−1𝑃(𝐼�̅� − 𝐻𝐶̅)(𝐼�̅� − 𝐻𝐶̅)
𝑇𝑃                   (47) 

and Λ is defined in (42). 

In terms of Lemma 3, the inequality (42) implies Ψ < 0. It 

is also noted that ∫ �̇�(�̅�)𝑑𝑡
𝑇𝑓

0
= 𝑉 (�̅�(𝑡𝑓)) > 0  under zero 

initial condition. Therefore, from (45), one has Γ𝑏 < 0 , 

indicating ‖�̅�‖𝑇𝑓 ≤ 𝑟‖�̅�‖𝑇𝑓.   This completes the proof.                   

C. Design procedure of the Nonlinear UIO for fault estimation 

On the basis of Theorems 3 and 4, we can summarize the 

design procedure of the robust nonlinear UIO estimator as 

follows. 

 Procedure 2. The design of nonlinear UIO for fault estimation 

i) Construct the augmented system in the form of (25) or 
(39), respectively, for systems subjected to either process 
disturbances or both disturbances in the process and 
measurement. 

ii) Select the matrix 𝐻∗ in the form of (12). 

iii) Solve the LMI (29) or (42) to obtain the matrices 𝑃 and 𝑄, 
and calculate the gain 𝐾1 = 𝑃

−1𝑄. 

iv) Calculate the other gain matrices 𝑅, 𝑇 and 𝐾2  following 
the formulae (8)-(10), respectively.  

v) Implement the robust UIO (26), and obtain the augmented 

estimate �̂̅� , leading to the simultaneous state and fault 
estimates in the forms of (21) and (22), respectively. 

 
 

IV. SIMULATION STUDY 

A. Three-shaft gas turbine engine 

A three-shaft gas turbine engine can be characterized by a 
14-order linearized model: 

 {
�̇� = 𝐴𝑥 + 𝐵𝑢 + 𝐵𝑎𝑓𝑎 + 𝐵𝑑𝑑
𝑦 = 𝐶𝑥 + 𝐷𝑢 + 𝐷𝑎𝑓𝑎 + 𝐷𝑠𝑓𝑠

                    (48) 

where the state vector, input vector and output vector are 
defined respectively as 

𝑥 = [𝑁𝐿 , 𝑁𝐼 , 𝑁𝐻 , 𝑃2𝐿𝑀 , 𝑃2𝐼 , 𝑃2 , 𝑇3, 𝑃4𝐻 , 𝑃4𝐼 , 𝑃4𝑀 , 𝑊𝐻 , 𝑊𝐶 , 𝑃5 , 𝑇6]
𝑇, 

𝑢 = [𝑊𝐹𝐸 ,𝑊𝐹𝑅 , 𝐴𝐽]
𝑇, 

𝑦 = [𝑊1,𝑊2, 𝑃6, 𝑇2𝐿𝑀 , 𝑇2𝐼 , 𝑇𝐻]
𝑇. 

The meanings of the symbols above are presented in Table 
1. The coefficient matrices 𝐴, 𝐵, 𝐶, and 𝐷 are provided by [37, 
40], which are omitted here for brevity.  

In this simulation study, three actuator faults and two sensor 
faults are to be considered. Therefore, 𝐵𝑎 = 𝐵,  𝐷𝑠 =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
𝑇

. 

Denote 𝑓 = [𝑓𝑎
𝑇 𝑓𝑠

𝑇]𝑇 , we can have 𝐵𝑓 = [𝐵𝑎 0]  and  

𝐷𝑓 = [𝐷𝑎 𝐷𝑠], correspondingly.   

The unknown input disturbance vector is 𝑑 =
[𝑑1

𝑇 𝑑2
𝑇 𝑑3

𝑇]𝑇 ,  where 𝑑1 = 5 sin (10𝑡) , 𝑑2  is random 
number between −0.5  to 0.5 , and  𝑑3 = 0.5 sin (50𝑡) . The 
control input vector is 𝑢 = [2 2 2]𝑇.  

The three actuator faults are: 

𝑓𝑎1 = {

0,
𝑡 − 10,
20 − 𝑡,
0,

𝑡 < 10
10 ≤ 𝑡 < 15
15 ≤ 𝑡 < 20
𝑡 ≥ 20

                                 (49) 
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TABLE 1 

 PARAMETER SYMBOLS OF GAS TURBINE ENGINE 

 

𝑓𝑎2 =

{
 
 

 
 

0,
25 − 𝑡,
−5,

𝑡 − 40,
0,

𝑡 < 25
25 ≤ 𝑡 < 30
30 ≤ 𝑡 < 35
35 ≤ 𝑡 < 40
𝑡 ≥ 40

                               (50) 

𝑓𝑎3 = {
0, 𝑡 < 2

0.2t − 0.4, 2 ≤ 𝑡 < 6
0.1 sin(2𝑡) + 0.8, 𝑡 ≥ 6

                  (51) 

and the two sensor faults concerned are: 

𝑓𝑠1 = {
0, 𝑡 < 65
1, 𝑡 ≥ 65

                                                              (52) 

𝑓𝑠2 = {

0, 𝑡 < 40

0.1 sin(0.5t) + 0.2sin (t +
𝜋

2
), 40 ≤ 𝑡 < 65

0, 𝑡 ≥ 65

      (53) 

By using the design procedure 1, one obtains the robust UIO 
in the form of (4) (the obtained observer gains are omitted here 
for brevity). The unknown input 𝑑1 is decoupled whereas the 
influences of 𝑑2  and 𝑑3  are attenuated via the designed 
observer gains. Due to the limit of space, we only present the 
curves of the three dominant states (i.e., states corresponding to 
the three dominant poles) and their estimates, shown in Figs. 
1−3, showing excellent estimation performance. The estimates 
of the three actuator faults and two sensor faults are depicted 
by Figs. 4−8, respectively. It can be seen that the proposed 
UIO-based fault estimation techniques can successfully 
estimate abrupt faults, incipient faults and even sinusoidal 
faults.  

 

 

 

Fig. 1. 𝑥12 (the 12th state) and its estimation. 

 

Fig. 2. 𝑥13 (the 13th state) and its estimation. 

 

Fig. 3. 𝑥14 (the 14th state) and its estimation. 
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Fig. 4. 𝑓𝑎1 (engine fuel actuator fault) and its estimation. 

 

Fig. 5. 𝑓𝑎2 (reheat fuel actuator fault) and its estimation. 

 

Fig. 6. 𝑓𝑎3 (nozel area actuator fault) and its estimation. 

 

 

Fig. 7. 𝑓𝑠1 (fan mass flow sensor fault) and its estimation. 

 

Fig. 8. 𝑓𝑠2 (HP compressor mass flow sensor fault) and its estimation. 

 

B. Single-link flexible joint robot 

The single-link manipulator with revolute joints actuated by 
a DC motor can be described by a Lipschtiz nonlinear system 
[41,42]: 

{
 
 

 
 
�̇�𝑚 = 𝜔𝑚

�̇�𝑚 =
𝑘

𝐽𝑚
(𝜃𝑙 − 𝜃𝑚) −

𝐺

𝐽𝑚
𝜔𝑚 +

𝑘𝜏

𝐽𝑚
𝑢

𝜃�̇� = 𝜔𝑙

�̇�𝑙 = −
𝑘

𝐽𝑙
(𝜃𝑙 − 𝜃𝑚) −

𝑚𝑔ℎ

𝐽𝑙
sin (𝜃𝑙)

                 (54) 

where 𝐽𝑚 represents the inertia of the DC motor, 𝐽𝑙 is the inertia 
of the link, 𝜃𝑚 and 𝜃𝑙 denote the angles of the rotations of the 
motor and link, respectively, 𝜔𝑚  and 𝜔𝑙  are the angular 
velocities of the motor and link, respectively, 𝑘 is torsional 
spring constant, 𝑘𝜏  is the amplifier gain, 𝐺  is the viscous 
friction, 𝑚 is the pointer mass, 𝑔 is the gravity constant, and ℎ 
is the distance from the rotor to the center of the gravity of the 
link, and 𝑢  is the control input (DC voltage) to produce the 
motor torque. Let 𝑥 = [𝜃𝑚   𝜔𝑚    𝜃𝑙   0.1𝜔𝑙], the system can be 
written in the form of (38), where  
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𝐴 = [

0 1 0 0
−48.6 −1.25 48.6 0
0 0 0 10
1.95 0 −1.95 0

], 𝐵 = [

0
21.6
0
0

], 

 𝐶 = [
1 0 0 0
0 1 0 0

], 𝛷(𝑥) = [

0
0
0

−0.333sin (𝑥3)

]. 

The fault and disturbance distribution matrices are 
respectively 𝐵𝑓𝑎 = 𝐵, and  

𝐵𝑑 = [

−0.2 0.01 −0.02
−0.1 0.02 −0.04
0.1 −0.02 0.04
0.2 0.02 −0.04

], 𝐷𝑑 = [
0.1
−0.02

]. 

The actuator fault is: 

𝑓𝑎 = {
1 + 0.1sin (4𝑡) 𝑡 ≥ 4

0.5(𝑡 − 2) 2 ≤ 𝑡 < 4
0 𝑡 < 2

, 

The unknown input disturbances are as follows: 𝑑1 =
5sin(10𝑡),  corrupted by a uniform-random-number signal, 
𝑑2 = 2sin(10𝑡), 𝑑3 = sin(20𝑡) and 𝑑𝑠 = 0.1 sin(10𝑡).  The 
control input is added as 𝑢 = 2sin (2𝜋𝑡) and the initial state 
value is given as 𝑥(0) = [0.01 −5 0.01 5  ]𝑇. 

Choose 𝑟 = 0.58, 𝜀 = 50, and using the procedure 2, we 
can obtain the observer gains as follows: 

𝐻 =

[
 
 
 
 
 
0.8000 0.4000
0.4000 0.2000
−0.4000 −0.2000
−0.8000 −0.4000

0 0
0 0 ]

 
 
 
 
 

, 

𝑇 =

[
 
 
 
 
 
0.2000 −0.4000 0 0 0 0
−0.4000 0.8000 0 0 0 0
0.4000 0.2000 1 0 0 0
0.8000 0.4000 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

, 

𝐾 = 𝐾1 + 𝐾2 =

[
 
 
 
 
 
−2851.2 5761.3
396.33 −910.70
3172.4 −6393.8
−1638.4 3224.6
−6308.5 12617
−14930 29859 ]

 
 
 
 
 

, 

𝑅 =

[
 
 
 
 
 
−1595.9 −7993.9 −19.440 0 0 −8.6400
210.82 1232.3 38.880 0 0 17.280
1781.0 8875.5 9.7200 10 0 4.3200
−924.22 −4496.9 17.490 0 0 8.6400
−3540.0 −17541 0 0 0 0
−8378.3 −41513 0 0 1 0 ]

 
 
 
 
 

. 

By choosing the above parameters, 𝑑1 is decoupled and the 
influences of 𝑑2 , 𝑑3  and 𝑑𝑠  are minimized. The curves 
displayed in Figs. 9−11 exhibit the estimation performance for 

angular velocities of the motor and link, and actuator fault 
respectively.  

 

Fig. 9: 𝑥2 (motor angular velocity) and its estimation. 

 

Fig. 10.  𝑥4 (10% link angular velocity) and its estimation. 

 

Fig. 11.  𝑓𝑎 (DC input voltage actuator fault) and its estimation. 
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V.  CONCLUSION 

In this paper, a novel UIO-based simultaneous state and 
fault estimation technique has been proposed, which can be 
utilized to handle systems subjected to partially decoupled 
process disturbances and even sensor disturbances. The design 
procedures of the estimators for both linear and nonlinear 
systems are presented. The robustness is ensured by 
decoupling partial process disturbances with the UIO 
approach, and attenuating the process disturbances and sensor 
disturbances that cannot be decoupled, with LMI optimisation 
technique. The simultaneous estimation is realized with the 
integration of the system augmentation and the estimator 
design for the augmented system. The proposed techniques 
have been illustrated by using two engineering-oriented 
systems: the three-shaft gas turbine engine and the single link 
robot. The proposed techniques have great potentials to apply 
to various engineering systems.  It is encouraged to extend the 
proposed techniques to more complex systems such as 
nonlinear systems, delay systems, and distributed systems.  In 
addition, from the viewpoint of digital monitoring and real-
time implementation, it is of interest to investigate discrete-
time systems and delta operator systems [43-45] by taking into 
account stability, robustness, reliability and optimal operation 
performance.   
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