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Abstract—Many IoT applications consist of two types of
actions: interaction with the device, which can be sensors or
actuators, and interaction with the data, for example, to reveal
insights. In this poster, we introduce a software stack that
provides these functionalities in a scalable manner. The API
for device interaction is designed with generality in mind so
that widest possible array of devices are supported and in large
numbers. The analytics framework, called Composer, is designed
to allow user code to be easily integrated into data analytics. We
present the design, describe the implementation and deployment,
and present some evaluation results. We share the performance
data from a live deployment with tens of thousands of active
users to demonstrate the scalability of the design.

I. INTRODUCTION

The two common functionalities required in an IoT stack

are device interaction and data analytics. Many IoT applica-

tions have physical devices such as sensors and actuators.

Traditional examples are sensing applications. Lately, these

applications increasingly have components that interact with

the users or the environment.

An IoT technology provider must deal with a large number

of such devices. Depending on how the system is designed,

these devices perform a large number of small requests to the

server. In some systems, these devices keep a large number

of persistent connections. Thus, IoT software stack must

overcome these scaling challenges.

The other aspect that is becoming increasingly common is

the ability to analyze the data, in nearly real time, and perform

action in response. Several examples exist in the industry and

research [1], [2]. The data analytics needs can be diverse

depending on the application and often extends far beyond

simple graphs or triggers. It is increasingly common for data

analytics to include sophisticated statistics, data modeling,

or machine learning functionalities. Thus, an IoT technology

provider must provide a way to plug in data analytics modules

into the core of data processing pipeline. Only with such

flexiblity will it be possible to support diverse IoT applications

with tens of thousands of active users.

In this poster, we present an architecture that scales to meet

these demands. We briefly describe the design rationale, use

cases in which the architecture is being used, and share some

performance results.
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Fig. 1. Scalable Device IO Server Architecture. Device IO servers handle the
API calls made by the devices such as sensors.

II. DESIGN AND IMPLEMENTATION

Although the software stack on the device and the Cloud

has many components, we focus our discussion on Device IO

and Analytics.

A. Scaling Device IO

Figure 1 shows the architecture of the infrastructure de-

signed to process a large number of device API calls. In

addition to periodically uploading sensor data to the cloud

server, device API calls typically include a long-polling per-

sistent bi-directional connection with the server to facilitate

the rapid delivery of commands from the server to the sensor

device. For each long-polling persistent connection, one port is

continuously consumed on the side of the cloud server. Under

these conditions, standard load balancers become ineffective.

Therefore, under this design, devices that are directly con-

nected with the cloud server must load balance themselves

across a pool of available servers. This is accomplished by

periodically (currently every 24 hours) using a load-balanced

Application API to retrieve a server instance to which the

device should connect. When the Application API server

receives this request, the server evaluates a pool of candidate

device servers (e.g., A or B) and returns the address for the best

candidate. This architecture has been used to handle 20,000-

40,000 open connections in a server and may scale further.

B. Scaling the Analytics

Scaling the Analytics is even harder than scaling the device

APIs. Figure 2 shows the architecture of Composer, the data

analytics portion of the infrastructure. The key insight is



!"#$%"&

!'('&
!"#$%"&)*+%",,+*&

-(+*".&!"#$%",&

'/.&0%%+1/(&!'('&

2'%(,&

3(4*+154&

678&
0/'9:;%,&</5$/"&

0/'9:;%,&=19",&

Fig. 2. Data flow architecture to support Analytics (Composer).
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Fig. 3. Device IO API Latency.

carefully designing the dataflow within the system so that the

flows do not block each other and have minimal dependency

among the components despite the analytics requiring not

only data sources of different types (e.g., fresh data from the

devices, synthesized facts, or stored data) but also the ability

to execute rules and analytics applications. In Composer,

carefully sanitized Python scripts perform the analytics tasks

and can trigger actions.

III. EVALUATION

During the week of February 8th 2016, the system received

about 30 million data posts from devices (device IO API), or

in average 48 API device posts per second. Average response

time was 500 ms. In parallel the server processed 27.5 million

analytics requests, which is 46 analytic events per second.

All of this was done on a server with 8 CPU’s, which are

shared between device processing and apps API calls. Device

processing took 4-6% of CPU and database server another 15-

25% of CPU. Figure 4 shows the performance of the server

over one week duration.

To drill down the latency performance further, we generated

two sets of device post APIs from a machine. The first is

from a machine at home and the second from the Cloud to

provide the lower bound or baseline performance. Figure 3

shows the results suggesting that the device API with low

latency is feasible even with modest server resources.
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Fig. 4. CPU load due to data analytics.

IV. DEPLOYMENTS

The sytem has been deployed to support IoT applications

with tens of thousands of daily active users. We are currently

also deploying the system to support several smart home and

educational settings.

In one application, the device APIs are offered to students

and researchers who require cloud-enabled software to connect

devices and sensors. The Composer analytics software will

allow researchers to create analytics that run in real-time on

top of the data flowing into the server. The command center

helps manage the deployments across a community, provide a

direct access to users and device data, and offers methods to

communicate with end users who are taking part in a study.

We are beginning to explore the use of the described system

for supporting aging-in-place and remote patient monitoring

for clinical decision-making. Similar to existing systems that

support remote patient monitoring, we will deploy a system of

sensors and actuators that can record everyday behaviors, such

as amount of time in each room and patterns of movement.

Using Composer to perform analytics, we will examine the

potential to discover possibly problematic behaviors (the stove

is on and no one present) from the data and offer alerts or

notifications to the resident to allow them to take action or

dismiss. For individuals managing a chronic disease, more

advanced sensing devices in combination with analytics may

allow caregivers to intervene if behaviors, such as night-time

bathroom trips increase - a known indicator of urinary tract

infection as well as congestive heart failure exacerbation [3].

V. CONCLUSIONS

In this poster, we presented an IoT stack that supports

a large number of device API calls and allows integration

of user-defined analytics into the core of the dataflow. The

system has been used to support IoT applications with tens of

thousands of daily active users. In the future, we plan to use

the system to support educational and smarthome applications.
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