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A problem in computer security is identification of attack signatures in network packets.  
An attack signature is a pattern of bits that characterizes a particular attack.  Because 
there are many kinds of attacks, there are potentially many attack signatures.  
Furthermore, attackers may seek to avoid detection by altering the attack mechanism so 
that the bit pattern presented differs from the known signature.  Thus, recognizing attack 
signatures is a problem in approximate string matching.  The time to perform an 
approximate string match depends upon the length of the string and the number of 
patterns.  For constant string length, the time to match n patterns is approximately O(n); 
the time increases approximately linearly as the number of patterns increases.   
 
A binary cellular automaton is a discrete, deterministic system of cells in which each cell 
can have one of two values.  Cellular automata have the property that the next state of 
each cell can be evaluated independently of the others.  If there is a processing element 
for each cell, the next states of all cells in a cellular automaton can be computed 
simultaneously. 
 
Because there is no programming paradigm for cellular automata, cellular automata to 
perform specific functions are created ad hoc by hand or discovered using search 
methods such as genetic algorithms.   
 
This research has identified, through evolution by genetic algorithm, cellular automata 
that can perform approximate string matching for more than one pattern while operating 
in constant time with respect to the number of patterns, and in the presence of noise.  
Patterns were recognized by using the bits of a network packet payload as the initial state 
of a cellular automaton.  After a predetermined number of cycles, the ones density of the 
cellular automaton was computed.  Packets for which the ones density was below an 
experimentally determined threshold were identified as target packets.  Six different 
cellular automaton rules were tested against a corpus of 7.2 million TCP packets in the 
IDEval data set.  No rule produced false negative results, and false positive results were 
acceptably low. 
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Chapter 1 

Introduction 

Background 

A problem in computer security is the detection of malicious data in transit 

through networks or on entry to a host computer.  One approach to this problem is 

signature-based detection, in which data are compared against known patterns (Stallings 

& Brown, 2008).  This is very similar to pattern detection in large data sets.  In both 

cases, efficient algorithms for comparing data to multiple known patterns are required. 

Cellular automata have been used for language recognition (Sommerhalder & 

Westrhenen, 1983), pattern recognition (Ganguly et al., 2004), and as associative 

memories (Chowdhury et al., 2002).  This research demonstrates that a cellular 

automaton can be an effective tool for both signature-based detection of malicious data 

and for pattern searching in large data sets.  A cellular automaton is a Moore model1 

finite state machine in which the next state of a node (cell) depends only upon the current 

state of the node and the current states of neighboring nodes (Sarkar, 2000).  Thus, the 

next state of each cell can be computed independently of the next states of any others; 

with sufficiently many computing elements, the next state of every cell can be computed 

in parallel with all the others (Sommerhalder & Westrhenen, 1983).  Because of the 

                                                 

1 In a Moore model finite state machine, the outputs are driven by the state register, and so can 
change only when the state changes.  This is in contrast to the Mealy model finite state machine, in which 
the outputs are driven by combinational logic and can change as a result of changing inputs, independent of 
a state change (Mano & Kime, 2007). 
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inherent parallelism in cellular automata, this approach is potentially faster than other 

methods of pattern recognition provided that the implementation is able to take advantage 

of the parallelism.   

While cellular automata have the advantages just described, there is a major 

disadvantage: there is no programming paradigm that will produce a cellular automaton 

for a specified task (Crutchfield et al., 1998).  Instead, cellular automata for specific 

applications must be discovered.  Because the search space gets very large for even 

simple cellular automata (Mitchell et al., 1996) a heuristic search rather than an 

exhaustive search is needed.  One mechanism for such a heuristic search is the genetic 

algorithm (Reeves & Rowe, 2003). 

This report describes cellular automata that can recognize specific patterns 

relevant to computer security in constant time and in the presence of noise.  Such cellular 

automata are potentially applicable to searching of large databases.  Heuristic search with 

a genetic algorithm was used to discover the cellular automata described here. 

Problem Statement  

There is currently no way of identifying single packet network attack signatures in 

less than approximately linear time.  A network attack is the transmission of data to a 

system with the intent of violating the system’s security policy (Bishop, 2003).  A single 

packet attack signature is a characteristic pattern that can be identified without reference 

to the other packets that may accompany it.  The time required by current methods to 

check for characteristic patterns increases approximately linearly as the number of 

signatures to be tested increases.   However, if two or more patterns could be checked 

simultaneously, the process of testing for those patterns would operate in constant time, 
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O(1).  Cellular automata have the property that a given number of cycles requires 

constant time (Sommerhalder & Westrhenen, 1983). This report identifies a specific pair 

of patterns that can be detected in constant time through the application of a cellular 

automaton.  However, it may not be the case that any arbitrary set of patterns can be 

detected in constant time. 

For known attacks against computer or network resources, malicious packets can 

often be detected using signature analysis, matching incoming packets against patterns 

known to represent attacks  (Bishop, 2003).   However, signature matching to detect 

malicious packets is complicated by the fact that the contents of the packets may change 

over time.  Sometimes the changes are result of modifications by the attacker.  Often, 

malicious software is designed to be self-modifying, substituting equivalent instructions, 

so the function of the malicious packet remains the same but the actual bits transmitted 

change in an attempt to defeat signature-matching defenses (Vinod et al., 2009).  These 

perturbations appear as noise with respect to the signature (pattern) and the data being 

checked (Erdogan & Cao, 2007). 

Thus, the problem of detecting known malicious network packets through 

signature analysis is a problem of approximate string matching.  Navarro (2001) provides 

an extensive survey of approximate string matching and shows that the best algorithms 

operate in near linear time, O(n), where n is the size of the string to be searched.  

Checking each signature pattern requires time O(n).  As the number of signatures to be 

checked increases, the time to examine each packet increases.  So, for m signatures, the 

time to check a packet is O(nm), linear time if n is constant. When the number of patterns 

becomes large, the time to check each packet against every pattern also becomes large.   
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This report describes the use of cellular automata for malicious packet detection, 

including the degree of parallelism possible and the sensitivity and specificity of 

detection.   

Dissertation Goal 

This report describes a proof of concept mechanism for comparing payload 

portion of network packets to two patterns known to represent attacks through the use of  

a cellular automaton.  The mechanism detects such patterns even in the presence of small 

changes in the actual packet and has constant detection time with respect to the number 

of patterns checked.  Specifically, adding a second pattern does not increase detection 

time.   

Implementation was on a standard personal computer without parallel 

computation capability.  However, the mechanism itself is capable of highly-parallel 

operation if implemented in a parallel computing environment.  Testing used the 

MIT/DARPA Intrusion Detection System Evaluation data set, a publicly available data 

set, as described in (Haines et al., 2001) and others.   

Research Questions 

Three principal questions were addressed by this research.  First, whether it is 

possible to identify cellular automata that can recognize the patterns of more than one 

known network attack.  Second, whether recognizing such patterns is possible in the 

presence of noise or perturbation.  Third, whether genetic algorithms are an appropriate 

vehicle for identifying such cellular automata.  Each of these questions has been 

addressed separately by others.  They are considered together here, and in the context of 

intrusion detection and the recognition of patterns in the presence of noise. 
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Cellular automata have been applied to the task of pattern recognition since 

Smith’s work in 1971 (Smith, 1971)  and to language recognizers, including the work of 

Sommerhalder and Westrhenen (1983).  The work of Wolfram (2002) has shown that 

there exist cellular automata that are sensitive to initial conditions.  Mitchell et al. (1994) 

and Crutchfield et al. (1998) have successfully evolved cellular automata using genetic 

algorithms and have shown that there exist cellular automata that reach known 

configurations under certain conditions of initial input but not others.  Wolfram (1994), in 

describing three classes of cellular automata, observed that Class 2 cellular automata 

function as filters.  Wolfram (1994) suggested their application to enhancing specific 

patterns in digital image processing.  Ganguly et al. (2004) have used cellular automata in 

pattern recognition.   

A major advantage of using a cellular automaton for pattern recognition is the 

ability to detect patterns in the presence of noise or perturbation (Maji et al., 2003).  

Another advantage is the ability to operate in constant time (Ganguly et al., 2004; 

Sommerhalder & Westrhenen, 1983) .  A third advantage is that the nature of the cellular 

automaton can be changed by changing the rule that is evaluated; changes to the 

underlying implementation of the cellular automaton are not needed (Wolfram, 1994).   

It follows from the characteristics of cellular automata as described by Wolfram 

(1994) that, if there is a processing unit for each cell, the next state for every cell can be 

computed in parallel.  Thus, in the case of fully parallel computation, the time to detect a 

pattern depends only on the number of cycles required to reach a recognizable state, and 

not on the number of cells in the cellular automaton.   For the patterns studied, the time to 

recognize a pattern is also independent of the number of patterns recognized (Ganguly et 
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al., 2004).  Such a cellular automaton operates in constant time, O(1) because the number 

of cycles necessary to identify a pattern is independent of the size of the string being 

checked and of the number of patterns being compared.  If fully associative comparison 

is used to detect the state of the cellular automaton that signals recognition, then the 

entire mechanism operates in constant time.  However, operation in constant time is 

possible only for the special case that there exists a cellular automaton that can detect a 

specific set of patterns. 

This report describes the use of a genetic algorithm to evolve a cellular automaton 

that can detect two specific patterns, each of which characterizes an attack against a 

network, even in the presence of noise or purposeful perturbation, and which operates in 

constant time with respect to the number of patterns.   

Relevance and Significance 

The results reported here directly address the problem of identifying malicious 

network packets by their signatures in the presence of perturbations and in constant time 

for a given packet size regardless of whether one or two patterns were checked.  The 

resulting mechanism could be applied to network packets at the point that they enter a 

protected computing system, namely at the network interface.  It could also provide an 

efficient, highly parallel mechanism for searching large data sets for known patterns.  In 

either case, the inherent parallelism of cellular automata allows all bits of the packet to be 

examined simultaneously provided sufficient parallelism is available in the hardware 

running the cellular automaton.  Fully parallel implementation would require specialized 

hardware, such as multiple graphics processor cards or an application-specific integrated 
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circuit (ASIC).  A detector for a 1,500 byte Ethernet packet requires 12,000 processing 

elements. 

This report describes a mechanism capable of identifying malicious network 

packets at hardware speeds provided suitable parallel computation resources are 

provided.  Although it is in no respect a complete solution to the problem of protecting 

networks and computing systems, it fits well with other current research in the area. 

Specifically, it represents a contribution to distributed intrusion detection as described by 

Rhodes et al. (2000) and Forrest et al. (1997), among others.  Further, it contributes to the 

area of NIC-based intrusion detection as described by Singaraju et al. (2005), Clark et al. 

(2004) and Otey et al. (2003).  

The result described is a proof of concept implementation in software of the 

cellular automaton.  Such a cellular automaton is capable of improved protection of 

computer systems from identifiable attack signatures, even in the presence of noise.  An 

important result of this research is a detection algorithm that can be implemented in a 

highly parallel fashion. 

Barriers and Issues 

The test data set used was the MIT/DARPA Intrusion Detection System 

Evaluation (IDEval) test data set.  There has been considerable criticism of the qualities 

of this data set.  Most of the criticism is of anomalies introduced through production of 

synthetic data.  The experimental team at MIT synthesized the test data rather than using 

data captured from an operating network for considerations of privacy and the probability 

that sensitive data would be captured and subsequently exposed to the intrusion detection 

systems under evaluation (Mahoney & Chan, 2003). 
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Mahoney and Chan (2003) identified eight simulation artifacts in the TCP or IP 

headers and only three in the payload portion.  Because the pattern recognition described 

here focuses on the payload data, the header artifacts do not constitute a barrier to the use 

of the data set. 

The three payload-related simulation artifacts were all related to higher-level 

protocol information carried as payload in the TCP/IP packets, and not the actual data 

part of the payload.  They included highly regular HTTP request headers, similar 

regularity in SMTP requests, and the fact that the same version number was used in all 

SSH requests (Mahoney & Chan, 2003) .  Thus, the payload related artifacts did not 

constitute a barrier to the use of the data set in the work reported here.  

The critique by McHugh (2000) was more qualitative than quantitative but neither 

his critique nor that of Mahoney and Chan (2003) identified simulation artifacts in the 

data portion of malicious packets.   

The data set used for validation is the largest publicly-available one which has the 

payload portion intact.  The other large data sets have had the payload portion stripped to 

protect privacy (Mahoney & Chan, 2003).  Because the research reported here focuses 

entirely on the payload data, and as no anomalies have been identified in the payload 

data, the MIT/DARPA IDEval data set is a suitable test vehicle for the reported research.  

In spite of criticism, the MIT/DARPA IDEval data set continues to be used by others, 

including Tavallaee et al. (2010) and Löf and Nelson (2010).  The use of a publicly-

available data set will allow interested researchers to replicate and verify the results that 

are reported here. 
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Limitations and Delimitations 

Because this is a proof of concept demonstration, search for cellular automata that 

can detect malicious patterns ceased when a rule that detects two such patterns was 

discovered. 

The demonstration system was implemented on a single processor personal 

computer running standard software.  For that reason, although complete parallelism is 

possible in computing the next state of cellular automata when there is one computing 

element per cell, that parallelism is not present in the demonstration.  However, the 

demonstration shows the ability to detect two distinct patterns in a single execution of the 

cellular automaton and with a fixed number of cycles of the cellular automaton.  That is 

the principal level of parallelism in the system.  Parallel execution of next states is the 

second level; the next states of all cells can be computed simultaneously.  Evaluating the 

state of the cellular automaton involves examining each individual bit.  Accomplishing 

that in constant time requires a fully associative comparison.  The time for determination 

of state does not increase when more than one pattern is recognized.     

It is important to note in the context of the reported research that there exist 

attacks which cannot be recognized at all through inspection of network packets.  One 

example is the ping flood, in which the attacked node is overwhelmed by a large volume 

of ICMP echo requests.  The purpose is to saturate either the incoming network 

connection or the processing power of the node under attack.  Another is the SYN flood, 

in which the attacker creates a large number of half-open TCP connections.  The 

attacker’s purpose is to exhaust the node resources used to account for connections in the 

process of being established (Stallings & Brown, 2008).  In the first case, any one of the 
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flood of pings is indistinguishable from an innocent diagnostic ping intended to 

determine whether the node is operational and reachable.  As with pings, a single SYN 

packet cannot, by itself, be determined to be part of an attack.  In neither case does 

inspection of the network packets in isolation reveal the malicious intent of the attacker.  

These attacks must be detected or prevented using some mechanism other than the one 

described here. 

This research was not intended to result in an entire intrusion detection system.  

Instead, it provides the proof of concept of one component of a distributed intrusion 

detection system that can respond quickly to specific events, and an approximate pattern 

matching system that can be implemented in a highly parallel fashion. 

Summary 

The ubiquitous network connectivity that arose at the beginning of the twenty-

first century means that information systems are potentially exposed to attack from 

anywhere in the world.  One method of detecting attacks is by their signatures, specific 

bit patterns that characterize known attacks.  An important consideration in signature 

checking is the speed with which it can be accomplished.  In order not to cause a 

bottleneck, such checking must operate at the speed of the network connection.  This 

research has identified a mechanism that can check for two distinct signatures 

simultaneously and, with a suitable number of processing elements, can operate in a 

highly parallel fashion. 
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Chapter 2 

Review of the Literature 

Introduction 

Information security is characterized by three properties: confidentiality, integrity, 

and availability.  Each property describes a state or condition of an information asset 

(Bishop, 2003).  Confidentiality is achieved when information assets are not disclosed 

other than to those who are, by policy, authorized to have access.  Integrity addresses the 

trustworthiness of information, and exists when information in an automated system 

agrees with the source from which it was derived and has not been incorrectly altered or 

destroyed.  Availability means that information assets are accessible to authorized 

persons when and where needed, with suitable response time (Stallings & Brown, 2008). 

The confidentiality, integrity, or availability of information assets can be 

compromised through accident or by malicious intent.  One refers to an “attacker” in 

cases of intentional attempts to compromise the confidentiality, integrity, or availability 

of information assets.  According to Stallings and Brown (2008), the goals of the attacker 

are duals of the three properties of information security, namely disclosure, alteration, 

and denial of availability. 

McCumber (1991) identifies three states of information in addition to the three 

properties.  They are processing, transmission, and storage.  The work described here 

addresses information during processing, transmission, and a subset of storage.  Only 



     12 

   

information in online storage is addressed; that is, information that is accessible through 

the execution of instructions on a computer processor and without manual intervention. 

According to Pfleeger and Pfleeger (2006), a computer system is secure when it 

does what it is intended to do and nothing else.  Technical security breaches are the result 

of a system being forced to operate outside its design parameters.  Thus, technical 

security breaches are the result of errors in specification, design, or implementation.  

However, it is extraordinarily difficult to build non-trivial systems of hardware and 

software that are free of error (Stallings & Brown, 2008).  It is necessary to compensate 

for potential errors in specification, design, or implementation through other means. 

Some attacks against information assets involve intrusions into computer systems.  

An intrusion sometimes involves the introduction of executable instructions into a 

computer system with the intent of causing disclosure, alteration, or denial of availability 

(Solomon & Chapple, 2005) by executing actions contrary to the security policy of the 

system.  Such executable instructions are called malicious software or malware (Bishop, 

2003).  Widespread Internet connectivity has made introduction of malicious software 

through network connections a frequent vector of such attacks.  However, network 

connectivity is not the only such vector.  Intrusions through malicious software can also 

be accomplished through portable storage devices if physical access is available 

(Stallings & Brown, 2012). 

Although there are still people who attempt to intrude into computer systems for 

reasons of curiosity or notoriety, an important motivator is crime for financial gain (Hald 

& Pedersen, 2012).  Although bank robber Willie Sutton denied in his autobiography that 

he robbed banks “because that’s where the money is,” (Sutton & Linn, 1976), that is 
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clearly a motivator today.  Losses are difficult to quantify, but estimates in the billions of 

dollars have been given (Florêncio & Herley, 2011).  Financial gain can be direct, such as 

use of credit card numbers or bank account credentials, or indirect, such as through the 

sale of stolen credentials or rental of botnet services (Egele et al., 2012).  Use of intrusion 

for indirect gain has resulted in a very large underground economy (Zhuge et al., 2009). 

Another motivator mentioned by Hald and Pedersen (2012) is cyber warfare, 

intrusion carried on using the resources of a national government to further that 

government’s ends.  Chen (2010) points to the Stuxnet worm as a probable example of 

cyber warfare based on the narrow choice of targets and the sophistication of the 

software.  Governments may also employ malicious software for surveillance. 

Malicious software can be categorized by its behavior or by its intended effect.  

For example, the terms “worm” and “virus” describe behavior.  A worm is malicious 

software that is independent and self-propagating.  A virus is self-propagating, but 

attaches itself to other software.  “Spyware” and “bot” describe the intended effect.  

Spyware covertly retrieves information from the system under attack and sends it to the 

attacker.  A bot is software that allows for covert remote control of the system under 

attack.  The phrase can also refer to a system that is covertly remote controlled.  A botnet 

is a collection of such systems (Egele et al., 2012) 

There are several mechanisms for attempting to detect malicious software which 

are described in detail below.  One common mechanism is to compare the incoming data 

stream to bit patterns known to characterize an attack (Egele et al., 2012).  This is called 

signature detection.  Signature detection is the prevalent approach in commercial anti-

virus scanners (Stallings & Brown, 2012).  Authors of malicious software attempt to 
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avoid signature detection by obscuring their software or changing it over time (Vinod et 

al., 2009).   

The research reported here encompasses intrusion detection, detection of 

malicious software through recognition of signature patterns, cellular automata and their 

use in pattern recognition in the presence of noise, and the evolution of cellular automata 

using genetic algorithms.  The literature of each of these subjects is reviewed here.  

Intrusion Detection 

Intrusion detection can be host-based, in which case events that cause protection 

state changes in host computers are analyzed, or network-based, in which case data 

transiting a network are analyzed (Pfleeger & Pfleeger, 2006).  This research was focused 

on network-based intrusion detection, in which network traffic is examined for 

indications of malicious activity, although it is equally applicable to searching databases 

or files. 

Bishop (2003) defines intrusion detection as monitoring to detect attempts at 

violating the security policies of a system, regardless of whether the attempt is successful.  

According to Bishop, intrusion detection systems have four goals: detecting a variety of 

intrusions, including novel forms of attack, detecting intrusions within an appropriate 

time frame, presenting an easy-to-understand analysis, and discriminating accurately 

between attacks and normal traffic.   

Bishop’s remarks on timely detection are particularly relevant to this research.  

He observes that not all intrusion attempts need to be detected in real time, but that they 

must be detected in time to take appropriate action.  This research was predicated on the 

proposition that some kinds of events, namely those that can result in the compromise of 
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a computing system within seconds or minutes, should be detected and prevented in near 

real time if possible.  Doing so can save the expense and difficulty of recovering a system 

that is potentially compromised (Bishop, 2003).   

One goal of research into intrusion detection has been that of improving 

performance. Clark et al. (2004) describe a hardware platform for detecting and 

preventing intrusions.  In this context, prevention implies detection in real time.  Their 

research involved von Neumann architecture network processors coupled with micro-

engine processors to run certain threads in parallel and a field programmable gate array 

(FPGA) for pattern comparison. Otey et al. (2003) describe research into intrusion 

detectors that are an integral part of network interface cards.  Their algorithms run on von 

Neumann-style processors. Sekar et al.  (1999) attack the problem of improving 

performance by improving pattern matching algorithms. 

Another approach to improving performance is the use of content-addressable, or 

associative, memory.  Yu, Katz, and Lakshman (2004) describe gigabit rate pattern 

matching hardware bases on ternary content-addressable memory, or TCAM.  Each bit in 

such a memory has three states, zero, one, and “do not care.”  The latter state will match 

either zero or one in the data packet.  That allows for approximate string matching.  

However, the position of the bits to be skipped must be known, and a successful match 

depends on the position of the matching bits in the data packet. 

Salmela et al. (2007) recognize the need for both good performance and the 

ability to match multiple patterns simultaneously.  In the absence of simultaneous 

matching techniques, the time to analyze a packet becomes the product of the time to 

check one pattern and the number of patterns.  They address this problem using 
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overlapping q-grams and report good performance even with large numbers of patterns.  

Q-grams break a string into substrings, each of which is considered to be a single 

semantic token.  Overlapping q-grams are formed by taking a string of length q from each 

consecutive position of the original text.  In an example given by Salmela et al., an 

overlapping q-gram of length two on the string “pony” produces the strings “po-on-ny.” 

Zu et al. (2012) describe the use of regular expressions for intrusion detection.  

Regular expressions can be evaluated using finite automata.  They point out that the state 

space of deterministic finite automats (DFA) expands rapidly to hundreds of thousands of 

states as the number of patterns increases, making DFA impractical for intrusion 

detection.  Nondeterministic finite automata (NFA) can have more than one state 

transition on an input character, which has the effect of reducing the state space.  More 

than one transition on an input character implies the possibility of multiple states being 

simultaneously active.  Zu et al. achieve the desired speed through the use of a GPU to 

provide for parallel processing of multiple active states. 

Q. Zhang et al. examine the problem of detecting encrypted network code.  They 

observe that the decryption routine itself must be directly executable, although it may be 

obscured in a number of ways.  The executable decryption code is often, but not always, 

preceded by the NO-OP sled that is characteristic of buffer overflow attacks (Q. Zhang et 

al., 2007). 

J. Zhang et al. (2008) attempt to avoid false positives when checking signatures 

for polymorphic worms through characterizing normal traffic.  Their premise is that the 

signature patterns in polymorphic worms are relatively small because a large part of the 

code is deliberately masked.  It is, therefore, possible that the same patterns could appear 
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in normal traffic, resulting in false positives.  They describe the characteristics of normal, 

non-malicious traffic by identifying strings that occur frequently in normal traffic.  They 

call this a “white list.”  They then develop signatures for malicious traffic by identifying 

strings that occur frequently in the malicious traffic and are not on the white list.  They 

also analyze protocol characteristics, such as the traffic flow between source and 

destination IP addresses.  Having thus characterized malicious data, they then treat 

normal network traffic as noise and attempt to distinguish the malicious data from the 

noise. 

Bishop (2003) describes three approaches to intrusion detection.  Misuse 

detection involves comparing signatures of known attacks against current activity.  In the 

case of network-based intrusion detection, this means network packets or sequences of 

packets.  Misuse detection can discriminate very precisely between patterns known to 

represent attacks and other patterns.  It will produce few false positives, but cannot detect 

unknown types of attacks.  Tavallaee (2009) observes that signature based detection is the 

favored approach in current commercial intrusion detection products. 

Misuse detection need not be based on explicit comparison of events to patterns.  

Cannady (1998) describes training a neural network to recognize events characteristic of 

misuse. Rhodes et al. (2000) apply Kohonen self-organizing maps to differentiate normal 

and malicious traffic.   

Anomaly modeling (Bishop, 2003) involves looking for deviations from a 

statistical characterization of a normal operating environment.  Unlike misuse detection, 

anomaly modeling can detect previously unknown types of attacks, but at the cost of a 

number of false positive indications that depend on the precision of the model. 
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Specification-based detection (Bishop, 2003) compares current activity to a 

formal specification of states “known not to be good” and reports exceptions.  Properly-

modeled specification-based detection should be relatively immune to false positives, but 

cannot detect attacks outside its specification model. 

Another trend in intrusion detection is distribution of the detection functions.  In 

some cases this is an outgrowth of a detection method, as with detection engines 

integrated into network interface cards.  However, distribution is also driven by the 

improvements available through specialization. Rhodes et al. (2000) describe the idea of 

a “monitor stack” organized analogously to a network protocol stack.  The principle is 

that misuse can best be detected at the appropriate protocol level.  That drives 

specialization and the gains from specialization drive distribution of detection efforts and 

concepts like the monitor stack. 

Brooks et al. (2002) describe a model of information flow based on heterogeneous 

and rule-heterogeneous cellular automata and conjecture that this model can be used for 

anomaly detection through flow modeling.  The research reported here also seeks to 

apply cellular automata to detect anomalies.  However the automata used in this work are 

much simpler, with the intent that they could be implemented in hardware or in software 

suitable for execution on computers with a high degree of parallelism, such as graphics 

processing units.  The idea that a “normal” pattern might be recognized by a cellular 

automaton rule represents a different approach, although similar to the white list of J. 

Zhang et al. (2008). 

Crowcroft et al. (2003) characterize the state of the Internet in about 2002 as 

being composed of a 10Gb/s core infrastructure with an access infrastructure of at most 
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100Mb/s Ethernet.  They recognize a cycle in which access speeds increase, necessitating 

an increase in core speeds.  In 2003 they observed the beginning of a trend towards 

gigabit access speeds. We are currently on the access speed part of the cycle, with access 

speeds trending from the 100 Mbps connections of a few years ago to gigabit 

connections.   

If a goal is detection quickly enough to discard malicious packets and so prevent 

intrusion, the bar is raised by the increase in access speeds.  A reasonable assumption is 

that most (but not all) intrusion attempts will come from outside.  In that case, “real time” 

means at the signaling speed of the access connection.  Today, that means gigabit rates. 

Current intrusion detection systems are operating at the edge of their capabilities.  It will 

be necessary to find improved mechanisms to safeguard the next generation Internet 

(Otey et al., 2003). 

Cellular Automata 

A cellular automaton is a discrete, deterministic, dynamical system (Wolfram, 

1984).  It consists of a lattice, or “game board,” of n cells, an alphabet k of possible states 

for each cell in the lattice, a generator function, and an initial condition. The lattice and 

alphabet reflect the discrete nature of cellular automata. The generator function, also 

called a rule, specifies the next state of each cell in terms of the current state of the cell 

and the current states of its near neighbors (Wolfram, 2002).  It is this property that 

allows fully parallel implementation of cellular automata.   Sommerhalder and 

Westrhenen (1983) view one-dimensional cellular automata as a collection of Moore 

model finite state machines, one for each cell of the cellular automaton.  Such a 
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collection of finite state machines can be directly implemented in hardware, although the 

cellular automata used in this research were simulated in software. 

“Near” is defined by a radius r.  The generator function examines each cell and its 

r neighbors on either side.  The radius is generally small; cellular automata operate on 

local interactions only.  The cellular automaton described below has r = 1, so that the 

generator function considers the cell itself and its left and right neighbors.  The initial 

condition is the set of states at time t0.  Even extremely simple cellular automata such as 

these can exhibit complex behavior (Wolfram, 1994).   

Binary cellular automata are those with alphabet k = 2, only two possible states 

per cell.  Other numbers of states, or alphabets, are equally possible.  Cellular automata 

for which the lattice is one cell high by n cells wide are one-dimensional cellular 

automata.  A cellular automaton in which the number of states is different for different 

cells is called heterogeneous.  If different cells have different generator functions, the 

cellular automaton is called rule-heterogeneous (Wolfram, 2002).  Given these variations, 

the descriptions of cellular automata can become quite complex. 

The research described in this report focused on implementations that can take 

advantage of parallel computing using simple computing elements, and so employed 

binary, one-dimensional, rule-uniform cellular automata with r = 2. 

A striking feature of cellular automata is that some of them are self-organizing.  

Some cellular automata “evolve” to the same patterns even when given random and 

differing initial states (Wolfram, 2002).  Cellular automata constructed from such rules 

exhibit a lack of sensitivity to initial conditions that may be interpreted as immunity to 

noise in initial conditions (Wolfram, 2002).  For that reason, a cellular automaton used in 
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the way that is described in this report intrinsically does an approximate string search; 

perturbation of a number of bits in the target does not significantly impair the ability of 

the cellular automaton to recognize the pattern. 

Cellular automata that reach a particular, recognizable state in this way are said to 

relax, even though the pattern need not be repeating and need not converge to any 

particular value (Wolfram, 2002).  A state to which a cellular automaton relaxes is called 

a basin of attraction by Ganguly et al. (2002).  They point out that a particular cellular 

automaton may have more than one basin of attraction, and in that way recognize more 

than one pattern.  In the trivial state of relaxation, each cell repeatedly produces either 

zero or one.  However, any identifiable pattern meets the definition of relaxation and of a 

basin of attraction.   

Other cellular automata are very sensitive to initial conditions; a small 

perturbation in initial conditions can lead to large differences in results (Wolfram, 2002).  

It is this sensitivity to initial conditions that has made possible the differentiation of 

network packets reported here. 

Wolfram (1994) describes a class of one-dimensional cellular automata in which 

the alphabet is binary (0/1) and the generator function F is: 

where a is the value of a cell in the cellular automaton, i is the position of the cell, and t is 

a discrete time interval or generation number.  This generator describes a rule for 

producing the next generation of cells that looks only at the current cell and its left and 

right neighbors, so r =1.   Since the alphabet of this class of cellular automata is binary, 

there are only eight possible inputs to computation of the next generation: 000, 001, … 
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110, 111.  Each specific rule is characterized by an eight-bit number, one output bit for 

each of the possible input combinations.  That means there are 28=256 distinct cellular 

automata that can be described with this general function and a binary alphabet.  

Wolfram’s (1994) convention of referring to these rules by their characteristic output 

function has been widely adopted, so one speaks of rules zero to 255 for such a cellular 

automaton.   

Chaudhuri et al. (1997) describe how a generator function like that given by 

Wolfram (1994) can be implemented with combinational logic and a state register, but 

also show how the generator function can be implemented in hardware or software as a 

table look-up.  For example, the combinational logic for rule 90 is: 

The same rule can be represented as a table look-up as follows: 

Neighborhood: 111 110 101 100 011 010 001 000 
Next state: 0 1 0 1 1 0 1 0 
         

The “neighborhood” represents the bit whose next state is to be determined, together with 

its left and right neighbors.  The three bits of neighborhood can be used as an index into a 

table that holds the next state.  For cellular automata of r = 1, the neighborhood is three 

bits and the table has eight entries, as shown.  When r = 2, there are five bits and 32 table 

entries.  Note that the zero value of the neighborhood refers to the low-order bit of the 

rule.  The table can be implemented in software, as in this research, but it could also be 

implemented in hardware as a control store. 

Some of the cellular automaton rules examined by Wolfram (2002) are 

symmetrical about one another, and some, like rule zero, degenerate immediately.  There 

are 88 distinct and interesting cellular automata of this type.  If there were only 88, or 
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even 256, possible binary, one-dimensional cellular automata, one could determine by 

exhaustive search whether any of them can partition network packets into normal and 

malicious categories.  However, there are many other possible binary, one-dimensional 

cellular automata.  Looking at the two nearest neighbors on each side, r = 2, (five bits in 

total) gives a generator function of five bits, 25 = 32 input values and 232 possible 

combinations.  In general, the number of bits in the rule space is b = 22r+1 and the number 

of possible rules is 2b (Mitchell et al., 1996).   Thus, one goes from 256 rules when r = 1 

to 232 rules when r = 2 and 2128 rules when r = 3.  Other generator function classes and 

different combinations can raise the number of possible combinations exponentially.  

Regardless of the choice of r, cellular automata consider only nearby cells.  It is for 

precisely this reason that the characteristics of malicious packets can be encoded in a 

cellular automaton rule.  It also makes imperative the use of an approach like genetic 

algorithms; an exhaustive search of such a large rule space is impossible in a reasonable 

amount of time (Mitchell et al., 1996). 

Cellular Automata for Pattern Recognition 

Although the use of cellular automata for pattern recognition dates back to 

Smith’s work in 1971, there is also current research in the area, particularly with respect 

to error correction, approximate matching, and the ability of a single cellular automaton 

to detect two or more patterns.  Each of these areas is relevant to the results reported here.   

Chady and Poli (1997) worked with small feed-forward cellular automata.  Feed-

forward cellular automata are two-dimensional cellular automata for which the update 

rule allows propagation in only one direction.  One can visualize such a cellular 

automaton as a rectangle in which the input bits are applied on the left and the result or 
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output bits appear on the right after a number of cycles.  Chady and Poli applied small 

(8×8 and 16×16) feed-forward cellular automata to associative memory look-ups in the 

presence of noise.  Their cellular automata can recognize up to four patterns with error 

correction capability of up to 20% noise applied to the input.   Their cellular automaton 

rules were found using genetic algorithms, as is the case for this research. 

Chady and Poli observe that the 8×8 cellular automaton performs better than the 

16×16 version and conjecture that it is because the portion of the pattern analyzed by a 

single cell is greater than the noise applied to the input (Chady & Poli, 1997).   

Brewer (2008) shows that the propagation property for cellular neural networks 

described by Chua and Yang (1988) also applies to cellular automata.  The propagation 

property states that, as the number of cycles increases, each cell of a cellular automaton is 

influenced by an increasingly large area.  This is a helpful counter to the conjecture of 

Chady and Poli because, as the number of cycles of the cellular automaton increases, 

each cell is influenced by an increasing portion of the input.  The propagation property 

does seem to suggest that the number of cycles needed for pattern recognition may 

increase with increasing input sizes.  For the research reported here, operation in four or 

eight cycles was found to be effective. 

More recent work by Saha et al. (2002), Maji et al. (2003), and Ganguly et al. 

(2004) describe one-dimensional cellular automata that can recognize patterns in the 

presence of noise.  The cellular automata described in these papers are rule-

heterogeneous, that is, each cell may have a different generation rule.  Most rules appear 

to be hand-crafted although the authors suggest finding appropriate rules using genetic 
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algorithms.  The paper by Saha is specific to the discussion of evolving such rules 

through use of genetic algorithms. 

Latif et al. (2010) have shown that a classification mechanism based on cellular 

automata for functional magnetic resonance imaging brain scans produces better results 

than singular value decomposition (SVD).  The alphabet of the cellular automaton 

consists of the voxels of the fMRI image and the transition rule is based on the voxel 

distance of a cell’s adjacent neighbors.  The cellular automaton approach also provides 

better time performance than SVD.  Because sorting the voxels is required, the cellular 

automaton approach requires time O(nlog2n) while SVD requires O(n2). 

Kundu and Roy (2010)  suggested using cellular automata with multiple basins of 

attraction as classifiers for Web pages.  Their paper describes a classifier for a relatively 

small lexicon and applies rule-heterogeneous cellular automata to the problem. 

Brewer (2008) also points out that homogeneous cellular automata are translation 

invariant; that is, the position of a feature in the input space will not affect how it is 

processed.  The implication is that rearrangement of the features of a malicious packet 

may not prevent it from being recognized as such.  Ganguly et al. (2004) observe that 

“the time to recognize a pattern is independent of the number of patterns stored.”  Adding 

more signatures to be compared does not increase the time to perform the check provided 

the number of cycles of the cellular automaton can be held constant. 

Use of Genetic Algorithms to Evolve Cellular Automaton Rules 

The generator function described in Wolfram (1994) and given earlier in this 

paper defines 256 different cellular automata.  Each rule can be specified as an eight-bit 

number and permuting the number in some way generates a new rule. 
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Matthew Cook (2004) showed that there exist cellular automata capable of 

universal computation by showing that the cellular automaton defined by rule 110 is 

equivalent to a universal Turing machine.  According to Church’s conjecture, every 

computable function can be computed by a Turing machine (Wood, 1987), so a proof that 

a cellular automaton is equivalent to a universal Turing machine provides the strongest 

possible evidence that the cellular automaton is capable of universal computation.   

According to Crutchfield et al. (1998), even though there exist cellular automata 

capable of universal computation, there is no satisfactory programming paradigm for 

harnessing the inherent parallelism of cellular automata.   Instead, programs for cellular 

automata are discovered through three major approaches.  The first is hand-crafting on an 

ad hoc basis.   The second is through the use of programs that simulate serial processes 

without taking advantage of the inherent parallelism of cellular automata.  Finally, 

cellular automata for specific applications can be evolved using genetic algorithms.  This 

research has taken explicit advantage of the parallelism of cellular automata by using 

genetic algorithms to evolve cellular automata that effectively classify malicious network 

packets. 

Mitchell et al. (1994) observed that a cellular automaton that considered a 

neighborhood of seven cells could be represented as a 128-bit number.  They considered 

this number to be the chromosome to be manipulated by the genetic algorithm.  The size 

of the chromosome varies as 2b where b is the number of bits needed to specify the rule.  

Even relatively large neighborhoods yield chromosomes of tractable size.  A 

neighborhood of eleven cells (r = 5, eleven bits, and 211 rules) can be specified using a 

2,048 bit chromosome to explore the 22048 possible values.  Notice also that a rule-set 
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defining a neighborhood of n cells in a cellular automaton of given radius subsumes all 

rules of neighborhoods of smaller sizes; it is only necessary to encode zeroes for those 

combinations that are never used (Wolfram, 2002). 

 Mitchell et al. (1994)  and Crutchfield et al. (1998) experimented with evolving 

cellular automata to do density classification by permuting the characteristic number that 

defines a cellular automaton’s rule. They used the hand-crafted Gács, Kurdyumov and 

Levin (GKL) rule as a benchmark.  The GKL rule has two basins of attraction; it relaxes 

to all zeros or all ones.  Mitchell et al. (1994) describe epochs of innovation where the 

strategy of the genetic algorithm apparently changes.  Although the cellular automaton 

produced by the genetic algorithm got successively better at density classification, it 

never achieved the effectiveness of the GKL rule.  Mitchell et al. (1994) point out that the 

GKL rule was not invented for density classification; it was part of a study of phase 

transition and computation in one dimension. 

The fitness function used by Mitchell et al. (1994) is that the cellular automaton 

relaxes to all ones when the input density is over one half and to all zeros otherwise.  This 

is a very stringent condition.  Cellular automata may relax to many other identifiable 

states.  It is not even required that such a cellular automaton relax at all, provided it 

achieves a state that can be recognized easily.   

The experiments reported here were designed to take advantage of the two 

sources of parallelism described above: the fact that a single cellular automaton is 

capable of recognizing more than one pattern in a single set of operations of the cellular 

automaton, and the fact that cellular automata are inherently parallel mechanisms that can 

be readily implemented using parallel processing hardware.   
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Realization of Cellular Automata in Software or Hardware 

A cellular automaton can be realized in software by programming the generator 

function as described by Wolfram (1994) and iterating over the cells of the cellular 

automaton, and that is the approach used in the proof of concept reported here.  However, 

doing so essentially serializes what should be a highly parallel operation.  The parallelism 

can be preserved if a cellular automaton of n cells is evaluated on a computer with n 

processing elements because it is of the nature of a cellular automaton that the successor 

to each cell can be evaluated independently of the others (Sarkar, 2000).  That suggests 

the possibility of a realization of the cellular automaton in a way that takes full advantage 

of the parallelism.  Such a cellular automaton would require 12,000 computing elements 

to process a 1,500 byte Ethernet packet.  Modern graphics cards include thousands of 

graphics processing units (GPUs).  Programming paradigms are available to take 

advantage of the large number of GPUs and to increase the number of GPUs available by 

using more than one graphics card (Sanders & Kandrot, 2011).  An implementation with 

12,000 computing elements is very much within reach using commercial hardware.  Such 

an implementation is also applicable to searching files or databases for target patterns. 

Even rule-heterogeneous cellular automata with relatively large radii are simple 

and regular.  Binary, one-dimensional cellular automata are the simplest and most regular 

of all.  The next state of any cell can be computed with combinational logic consisting of 

only a few gates.  Each computing element takes n bits of input, determined by the radius 

of the cellular automaton, and produces a single bit of output, the next state.   

Only a single bit of state storage is needed per cell (Porter & Bergmann, 1999).  

This need not be a conventional memory; all that is needed is a latch, a bi-stable device 
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capable of storing a single bit (Katz, 1994).  The next state of every cell can be computed 

simultaneously.  The duration of the clock cycle is dictated only by the combinational 

logic settling time.  Thus, it is reasonable to project that a cycle of such a cellular 

automaton could be completed in a few nanoseconds or less. 

These characteristics make simple cellular automata ideal for implementation in 

very large scale integration. Chaudhuri et al. (1997) describe, among many other 

applications, the use of cellular automata to implement built-in self-test functions for 

other VLSI circuits.  Because of the small demands for power and chip area made by 

cellular automata, it would be practical to include such an automaton in the network 

processing chips of network interface cards.  On-chip attachment to the de-serialization 

shift register would make the input packet available to set an initial condition with very 

little circuitry and no time penalty.  A stand-alone implementation could be produced 

using an application specific integrated circuit (ASIC). 

For prototypes or lower volumes, an alternative is the field programmable gate 

array, or FPGA. Porter and Bergmann (1999) describe the use of cellular automata 

implemented in FPGAs for evaluating fitness functions in genetic algorithm processing.  

Clark et al. (2004)  and Singaraju et al. (2005)  incorporated FPGA hardware in their 

hardware-based intrusion detector.  An FPGA implementation of cellular automata was 

described by Sommerhalder and Westrhenen (1983). 

Regardless of whether ASIC, VLSI, or FPGA technology is chosen, an important 

feature of a hardware-based cellular automaton is that it can be made reconfigurable if a 

control store consisting of a few bits per cell is provided.  The size of the control store is 

determined by the maximum radius of the cellular automaton.  A cellular automaton with 
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r=2 has 25=32 possible input states, so a 32 bit control store is needed.  If an input to the 

generator function is provided for each of the neighbors of a particular cell, AND gates 

connected to appropriate bits of the control store can select which neighbors participate in 

the generation function.  In such a design, the control store is used only to drive 

combinational circuits, and not as a conventional memory, so there is no memory cycle 

and no time penalty other than one additional gate delay to making the cellular automaton 

reconfigurable (Clark et al., 2004). 

The ability to reconfigure a hardware cellular automaton means that if a more 

effective pattern matching rule is developed, hardware already in the field could be 

upgraded to the newest configuration.  A possible disadvantage is that the control store 

itself must now be protected from attack. 
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Chapter 3 

Methodology 

Introduction 

A series of experiments was conducted during the development of the idea paper 

for this research to validate that at least some types of malicious network packets can, in 

fact, be discriminated from ordinary network traffic using cellular automata.  Wolfram 

(1994) uses k to refer to the number of values possible for a cell in a cellular automaton, 

and r to refer to the number of adjacent cells that participate in computation of the next 

state.  A binary cellular automaton has k = 2.  When r = 1, the cell and its immediate left 

and right neighbors participate in the computation of the next state.   

The preliminary experiments were confined to cellular automata of form k = 2 and 

r = 1.  There are 256 such cellular automata (Wolfram, 1994), a sufficiently small number 

to allow for exhaustive testing.  A cellular automaton can be considered to be linear, in 

which case the cells before the first and after the last are assumed to contain zeros, or 

circular, in which case the first and last cells are assumed to be adjacent (Wolfram, 1994). 

A one-dimensional cellular automaton simulator of 80 cells and capable of 

displaying 80 cycles was programmed.  The simulator took parameters of rule, initial 

state, and whether the cellular automaton was linear or circular.  The rule is specified as a 

decimal number 0...255, each representing one of the 256 possible rules for k = 2 and r = 

1. The initial state is entered as up to 10 pairs of hexadecimal digits.  Hexadecimal input 

was chosen to allow for binary data in the packets to be examined.   
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The two attacks simulated were a buffer overflow attack and the backslash attack 

against an Apache HTTP server. 

Detection was deemed to be successful if the cellular automaton reached a 

detectable state when presented with a packet containing the attack signature, and not for 

other packets. 

Because it was easy to do so, all 256 possible one-dimensional cellular automata 

of type k = 2 and r = 1 were tested.  Class 1 cellular automata are those that quickly reach 

a stable state regardless of input (Wolfram, 2002).  As expected, the class 1 cellular 

automata and several others, such as the identity rule (rule 204) were not useful in 

differentiating potentially malicious packets from others.  However, other rules gave 

more hopeful results. 

The first test was for a simulated buffer overflow attack.  For testing purposes, it 

was assumed that the attack is characterized by a “NO-OP sled” of four or more i86 no-

operation instructions, hexadecimal 90 (Berghel, 2003).   

Rule 90, which Wolfram (1994) classifies as an additive class 3 rule, produced a 

line of one-bits in the third cycle when presented with a string of hexadecimal 90.  Not 

surprisingly, it reacted the same way when presented with a string of hexadecimal 09, but 

did not react in this fashion for other repeated values, including hexadecimal 80 and A0.  

Thus, rule 90 was shown to indicate the presence of hexadecimal 90, and so to indicate 

the presence of the NO-OP sled, but gave a false indication if confronted with hexadecimal 

09.  Rule 94 behaved similarly. 

At first inspection, rule 102 also appeared to behave similarly.  However, what 

was being detected was repetition, and not a specific sequence of characters.  Rule 104 



     33 

   

similarly detected repeating characters.  Rule 126 appeared to detect any repeating 

pattern. 

Rule 129 built an inverted triangle of all one-bits under the part of the packet 

containing hexadecimal 90 in the fifth cycle.  That area was all zeros in the previous 

cycle.  Further, the left bits of the pattern were discernibly different between 90 and 09 if 

the digit to the left is non-zero.  Thus, rule 129 detected the NO-OP sled with fewer false 

positives than rule 90.  Rule 161 behaved similarly to rule 129. 

A second round of preliminary experiments tested data from the backslash attack.  

This attack is effective against some HTTP implementations on operating systems that 

use the backslash as a path delimiter, e.g. Microsoft systems, and is not the same as the 

“back attack” discussed later.  It depends upon the use of backslash characters to traverse 

the file system tree to reach areas outside the server’s document root.  The backslash 

characters can be explicit or URL-encoded.  The ten-byte string, “a.u\..\..\” was tested 

against the 256 cellular automata.  Rule 183 detected this pattern by producing a very 

high ones-density in the area of the backslash-dot data in cycle four.  This rule was 

effective for both linear and circular cellular automata. 

When the backslashes were URL-encoded, that is, represented as %5C, rule 183 

again produced a high density of one-bits in cycle four.  In addition, rule 62 produced a 

high density of one-bits in cycle 1.  Other encodings of the backslash attack are possible, 

for example, %255C where %25 encodes the percent sign (Mahoney & Chan, 2003).  

Only the two encodings mentioned above were tested. 

The preliminary testing described above tested patterns associated with attacks 

using the simplest possible binary, one-dimensional cellular automata, namely those with 
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r = 1.  The actions of the cellular automata were not codified in recognition rules.  The 

tests did not recognize actual attack signatures nor was there any attempt to recognize 

more than one pattern with a single cellular automaton rule.  Rather, those tests provided 

motivation for the research reported here.   

The principal goal of the research reported here was the discovery of cellular 

automaton rules that can distinguish malicious traffic within the context of a narrow 

definition of “malicious packet” and for more than one kind of malicious packets.   

Discovery of two such rules, as reported below, establish the proof of concept.  The 

resulting mechanism can be used for either offline searching or real-time identification of 

the specified patterns.  

As explained in the research methodology below, the experimentation reported 

here was conducted with a rule-uniform, binary, one-dimensional, linear cellular 

automaton.  Much more complex cellular automata are possible, but the research 

objective was to discover rules that could later be implemented readily in hardware or 

using parallel processor computers.  That objective implied a simple cellular automaton 

and an evaluation function that could be computed in a fully-associative manner, for 

example, using only combinational logic.   

Overview of Research Methodology 

The research approach used was construction of software prototypes and 

demonstration that the prototypes addressed the research questions outlined in Chapter 1 

above (Baskerville et al., 2009).  Experimentation concluded successfully with a proof of 

concept implementation of a cellular automaton that could detect either of two actual 

attacks from the experimental data set.   
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Wolfram (1994) and others described the parallel evaluation of cellular automata.  

That parallelism is important in a fully-functioning detector, but the work of others made 

it unnecessary to demonstrate it experimentally.  Instead, a software implementation was 

used to demonstrate that the concept was viable.  

Because the use of genetic algorithms to find suitable cellular automata is part of 

developing a detector, not a part of its operation, it should remain a software component 

even if a hardware-based detector were developed.  The implementation in hardware of 

the detector is left for future research. 

This research was conducted in four phases.  Phase one was the specification and 

establishment of test data.  Both normal and malicious test data packets were taken from 

the DARPA Intrusion Detection System Evaluation data for 1998, described by Haines 

(2001).  The suitability of this data was discussed in Chapter 1.  This is the same type of 

test data set used by Rhodes et al. (2000) and others and was chosen for this project 

expressly because it has already been shown that it is possible to distinguish between 

normal traffic of this type and malicious traffic.  What was tested here is the ability to 

achieve similar results using a cellular automaton as the detector.   

Phase two was implementation of the cellular automaton and genetic algorithm 

test beds.  The cellular automaton test bed was produced first.  Experimentation began 

with the simplest type of binary, rule-uniform, linear cellular automaton.  Initial testing 

was performed using binary, rule-uniform, linear cellular automata with r = 1 and 256 

cells.  This is the same configuration used by Wolfram (2002), and correctness of the 

implementation was confirmed by duplicating several of Wolfram’s results.   
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The preliminary experiments described above had shown promise in detecting 

malicious network packets, but also showed that a cellular automaton with r = 1 was not 

sufficient to the task.  The experiments described here began with a binary, rule-uniform, 

linear cellular automaton with r = 2, with the intention of trying successively larger 

values for r until a successful rule was found.  It was not necessary to go beyond r = 2.  

This research has shown that a cellular automaton of r = 2 can reliably detect the two 

malicious packets selected from the test data.  Had that not been the case, further 

experimentation would have been conducted using r = 3 or with other forms or cellular 

automata.  Recommendations are in Chapter 5. 

The software used for genetic algorithm development was JGAP, the Java Genetic 

Algorithm Program, developed by Klaus Meffert, Neil Rotstan, and others (Hall, 2013).  

It was chosen over other genetic algorithm platforms for a number of reasons.  It is under 

active development, the version that was used for this research having been released in 

April, 2012.  It is compatible with current releases of the Java platform.  It is free 

software, licensed under the Free Software Foundation’s lesser GPL and available from 

SourceForge.  Most important, it is highly modular, released as source code as well as 

compiled classes, and amenable to modification by the researcher.  The JGAP fitness 

function is a class that receives a chromosome and returns a fitness number.  The fitness 

function class was developed in Java as part of this research and is described below. 

In the default configuration of JGAP, the crossover operation randomly selects 

35% of the population and produces two new individuals from each crossover operation, 

using a random crossover point.  By default, mutation is applied to 1/12 of the 

population, so the probability of a gene being mutated is 1/12 × p × c where p represents 
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the population size and c represents the chromosome size (Hall, 2013).  The selector is 

elitist and returns the top 90% of the population as ranked by fitness.  After selection, the 

top 10% of elements by fitness are cloned to return the population size to 100% (Hall, 

2013).   

The default values supplied by JGAP were used in these experiments.  The 

chromosome used consisted of a single gene, the cellular automaton rule to be evaluated.  

The datatype of the gene was defined to be a 32-bit integer with a range of –231 to 

+231−1, allowing all 32 bits to be varied.  The population size was set to 100 and the 

number of evolutions was set to 50.  Initial populations were selected randomly by JGAP.  

As there was only one gene in the chromosome used, crossover is not meaningful in the 

experiments reported here.  The fitness function used was developed for this research and 

is described below. 

Although parallel implementations of genetic algorithms are possible 

(Shonkwiler, 1993), parallelism in the operation of the genetic algorithm engine was not 

required because the operation of the genetic algorithm is not a part of the actual detector, 

only a tool to find suitable cellular automata.  Therefore, performance of the genetic 

algorithm is not relevant to the operational performance of the pattern matching engine.  

Each run of the genetic algorithm took 45 to 60 seconds on the equipment used. 

 The third phase of research was development of a fitness function.  Previous 

work, such as the density classification work by Crutchfield et al. (1998), used relaxation 

to a state of all ones or a state of all zeroes after a specified number of iterations, in their 

case, 320.  This is quite a restrictive measure.  Sarkar (2000) suggested that a single bit is 

sufficient to represent an accepting or rejecting state, provided it is reliably on or off. 
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Although fitness functions could possibly have been determined by cluster 

analysis, the only suitable functions are those that can be computed by combinational 

logic or direct comparison.  That follows from the research goal of finding an approach 

that would later be suitable for implementation in a highly parallel fashion.   

The first attempt at a fitness function selected for a cellular automaton that 

generated high ones densities for target packets and much lower ones densities for 

packets not in the target population.  Subsequent refinement produced a fitness function 

that produced a particular range of ones densities for the target packets and ones densities 

outside that range for packets not in the target population. 

The fourth phase was testing the cellular automaton rules, evaluation of their 

effectiveness, and iterative refinement of the fitness function.  Inputs to the test runs were 

a cellular automaton rule and associated evaluation rule, a cycle limit, and data packets 

from the MIT/DARPA IDEval data set.  Initial testing was performed using only the 

Friday, week two test data of the IDEval data set.  The test bed program read the entire 

data set and evaluated each packet according to the cellular automaton rule and also using 

string comparison rules hand-crafted to detect the specific attacks chosen for the 

demonstration.  Use of such string comparisons was necessary to allow evaluation of the 

effectiveness of the cellular automaton as detector by providing an independent check 

against the data.  Initial experiments were performed using the back attack packets from 

the Friday week two data of the training data set.  When back attack packets could be 

detected reliably, the IMAP attack packet from the same data set was added. 
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Specific Research Approach 

The MIT/DARPA IDEval data set from 1998 was used as the source of test data.  

Rationale for selection of that data set has been described in Chapter 1.  The data set itself 

is described in Haines (2001) and in Lippmann (2000).   

The JGAP program was installed and tested using the makeChange example fitness 

function that is provided with JGAP.  A cellular automaton simulator program using the 

table look-up approach described in Chapter 3 was written and validated by duplicating 

several of Wolfram’s (2002) results using cellular automata with r = 1.  Once validated, 

the cellular automaton simulator was extended to 12,000 cells, representing the 1,500 

bytes of an Ethernet packet, and radius r = 2.  Although the cellular automaton 

accommodates a full 1,500 byte Ethernet packet, only the payload data is used for pattern 

matching.   

Because the chosen test data are in TCPDUMP2 format (Haines et al., 2001), Java 

programming to read that format was required.  The most direct approach appeared to be 

the use of the SJPCAP program, published anonymously on Google Code.  Testing showed 

that SJPCAP did not correctly account for whether the files to be parsed stored integers in 

big endian or little endian format, and in fact, mixed modes between 16 bit numbers 

(little endian) and 32 bit numbers (big endian).  According to Mahoney (2003), some of 

the MIT/DARPA IDEval files are in big endian format and some are in little endian 

format.  It was necessary to correct SJPCAP to handle endian-ness properly based on the 

“magic number,” 0xA1B2C3D4, that is included for that purpose in the global header 

                                                 

2  TCPDUMP and Ethereal, later renamed Wireshark, are utility programs for capturing network 
traffic, saving files of captured traffic, and examining such files.  They are described and compared by 
Fuentes (2005).  
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found in TCPDUMP files.  There was already a defect report about conversion of shortInt 

being little endian on the Google Code page for SJPCAP.  As a result of this research, the 

Google Code page has been updated with a brief discussion of endian-ness of input files 

and correct use of the “magic number.”   

Characteristics of the Malicious Packets 

Two types of malicious, or attack, packets were chosen for experimentation.  

They are called “back attack” and “IMAP attack” in Lippmann (2000) and in the 

MIT/DARPA documentation.  Attack packets in the Friday, week 2 training data set were 

inspected with Wireshark to determine their characteristics. 

Each IMAP attack pattern used in this research was a single packet consisting of 

the string “301 LOGIN” followed by 0x22 and the series of 0x90 bytes that characterize 

the NO-OP sled of a buffer overflow attack.  Shell code following the NO-OP sled leads to a 

root compromise.  The IMAP attack packet used in the genetic algorithm was packet 

number 175,454 from the Friday, week two training data.  That is the only IMAP attack 

packet in that particular data file. 

The back attack is a denial of service attack effective against versions of the 

Apache web server in use at the time.  Despite the name of the attack, the 0x2f character 

is the forward slash.  The back attack consists of two slightly different types of packets: 

initial packets and continuation packets.  Initial packets consist of the string “GET /cgi-

bin” with the remainder of the packet filled with 0x2f characters to a total of 1,460 bytes.  

Continuation packets consist of HTTP continuations with up to 1,460 bytes of 0x2f 

characters.  When a network attack consists of multiple packets, as with the back attack, 
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it is important to detect the first packet so that it and subsequent packets of the attack can 

be blocked. 

Non-Target Packets 

Two packets were chosen arbitrarily from the Friday, week two training data as 

“non-target” or non-malicious packets used for comparison in the genetic algorithm.  The 

first was packet number 825,453, a relatively short HTTP GET packet.  The TCP packet 

length was 328 bytes.  The second was packet number 1,819, a full-length packet of text 

HTML markup.   

Development of Fitness Functions 

Although the fitness function was refined iteratively during experimentation, all 

fitness functions used were based on the ones density of the cellular automaton after a 

predefined number of cycles.  Only binary (k = 2) cellular automata were tested, so the 

ones density is the number of one-bits in the cellular automaton’s cells after the final 

cycle divided by the number of cells.  It is important to note that for the rules which were 

developed, the packets under test are of variable length, from a few bytes to 1,460 bytes.  

The cellular automaton under test was of fixed size, 12,000 cells, equivalent to the 1,500 

byte size of an Ethernet frame.  When a packet is loaded into the cellular automaton, 

remaining bits on the right are filled with zeros.  The ones density calculation is over all 

12,000 bits of the cellular automaton, and not over the area defined by the packet.  The 

propagation property described by Brewer (2008) says that, as the number of cycles of a 

cellular automaton increases, the number of cells influenced by each initial bit also 

increases.  After some number of cycles, the fact that a portion of the cellular automaton 

was filled with zeros is much less significant.   



     42 

   

It is not enough for the cellular automaton to reach an identifiable state in the 

presence of a target packet.  It must also reach some distinctly different state in the 

presence of non-target packets.  So, cellular automata must be tested by the fitness 

function against both target and non-target samples from the data set.  Development of 

fitness functions began with the hypothesis that the ones density of target packets would 

be different from the ones density of other packets.  Experimentation confirmed that 

hypothesis for the two types of target packets tested.   

Initial testing was conducted using only a back attack packet and a fitness 

function that attempted to find a rule that produced a ones density of less than 0.1 or 

greater than 0.9, i.e. nearly all ones or nearly all zeros for the target packets, and a density 

between 0.1 and 0.9 for the non-target packets.  The same cellular automaton Java class 

used for pattern matching was used to determine densities in the fitness function.  The 

number of cycles was adjusted iteratively, starting with 64 cycles and adjusting 

downward.  A fitness function with ones density of target packets less than 0.1 or greater 

than 0.9 proved to be ineffective when tested against the full data set.  

The first refinement was to look only for very dense configurations of the cellular 

automaton, with ones densities > 0.9 for the target packets and less for non-target 

packets.  Although this appears to be more restrictive than the first fitness criterion, the 

genetic algorithm generated more effective cellular automaton rules.   

A fitness function based on the average Hamming distance between target and 

non-target packets after operation of the cellular automaton was considered.  This 

approach was discarded because of the computational effort needed to evaluate the result.   
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The fitness function that was adopted for the experimental phase was a density 

band approach.  The assumption that the target packets would have a ones density 

different from that of the non-target packets was carried forward.  The difference from 

previous attempts was the hypothesis that the target packets would occupy a density 

range of Tmin to Tmax, with few or no non-target packets also generating densities within 

that range.  The fitness function also computed Nmin and Nmax, the minimum and 

maximum ones densities of the non-target packets.   Using this approach, the genetic 

algorithm generated the cellular automaton rules discussed in the next chapter.  The 

fitness function used was Tmin – Nmax for Nmax < Tmin and Nmin – Tmax  for Tmax < Nmin with 

the added condition that no non-target’s ones density be allowed to fall between Tmin and 

Tmax.  If that occurred, fitness was set to zero.  This revision of the fitness function 

differentiates ones density of target packets from that of non-target packets, but without 

the artificial high or low density requirement of the prior attempts.  In addition to 

computing a fitness number, the fitness function logged the density values for later use. 

Testing of Generated Cellular Automaton Rules 

All IDEval test data containing either back or IMAP attacks similar to the packets 

selected for testing were used for testing.  Each day’s TCPDUMP file was first scanned by a 

program that counted and identified the two attacks under study using hand-crafted string 

comparison rules.  That provided comparative data for evaluation of the effectiveness of 

the cellular automaton rules.   The IMAP attacks were identified by looking for “301 

LOGIN” in the first bytes of the packet, followed by 0x22 and five bytes of 0x90.  Back 

attack initial packets were identified by checking for the string “GET /cgi-bin/”  followed 

by only 0x2f characters to the end of the packet.  Continuation packets contain only the 
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0x2f character; generally the entire packet is filled, but this was observed not to happen 

always.  In particular, the final continuation packet was often not filled.  Early in the 

experimental phase, the classification code was merged into the program used to test the 

cellular automata filters, rendering the separate classification program unnecessary. 

Once the data files were characterized, the cellular automaton rules generated by 

the genetic algorithm were tested using a program that read the MIT/DARPA IDEval 

data and evaluated each packet in two ways.  The first evaluation was based on the ones 

density classification into target or non-target packets.  Experimentation showed that 

most rules performed better with a single comparison of ones density to the upper limit, 

rather than comparing for both upper and lower limits.  Each packet was then evaluated 

according to the manual rules described above.  Packets classified as target or malicious 

packets according to ones density but not identified by one of the manual classification 

rules were counted as false positives.  Packets identified by the manual classification 

rules but not by the ones density rule were counted as false negatives and, for back attack 

packets, further divided according to the rules above.  Because the two attacks are based 

on TCP packets, only TCP packets were evaluated.  Similarly, because the two attacks 

were external attacks, only packets entering the test network from outside were evaluated.  

Incoming packets were identified as those not on the list of internal addresses provided 

with the IDEval data.   

To check a packet for the presence of one of the patterns in the pattern set, the 

payload portion of the packet was used to establish the initial state of the cellular 

automaton.  Bits of the cellular automaton not initialized from the payload were filled 

with zeros.  The cellular automaton was allowed to operate for the number of cycles 
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identified during determination of the fitness value.  During operation, the next state of 

each bit was determined by using the current state of that bit and its two left and two right 

neighbors, for a total of five bits.  That five-bit number was used as an address for a table 

look up, as described on page 22.  After the specified number of cycles, the ones density 

of the cellular automaton was determined by counting the one bits of the state vector.  If 

the ones density was less than or equal to the target maximum density for the rule under 

test, the packet was determined to have matched a pattern in the pattern set.  The rules 

tested, their fitness factors, and the density values for both strict and relaxed comparison 

are shown in Table 16.  Detailed results for each rule tested are shown in Table 2 through 

Table 13. 

Operation of the cellular automaton is visualized in Figures 1, 2, and 3.  The rule 

used is 1205310289.  In order to produce a visualization that fits the page, only 96 bits of 

the cellular automaton are shown.  In Figure 1, the cellular automaton is initialized with 

the first 96 bits of the payload portion of packet 1,819 of the Friday, week two training 

data, representing a non-target packet.  The initial ones density is 0.520.  The behavior of 

the cellular automaton is apparently chaotic, producing no identifiable pattern.  The 

cellular automaton has a ones density of 0.542 in cycles one, two, and three.  In cycle 

four, the last cycle for rule 1205312089, the density is 0.406, which is greater than the 

threshold density for that rule (see Table 16) with the result that the data do not match 

either pattern. 

Figure 2 shows the same 96 bits, initialized with 0x2f characters, representing a 

back attack packet.  Initial ones density is 0.625.  After two cycles, a clear pattern of four 

zero bits followed by four one bits emerges.  The density after cycle two is 0.479.  In 
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cycle three, the pattern becomes alternating ones and zeros and the density is 0.510.  In 

cycle four, nearly every bit is zero, the density is 0.073, and the packet is identified as 

matching a target pattern in the pattern set. 

Figure 3 demonstrates the initialization of the cellular automaton with 0x90 

characters, representing the IMAP attack.  The initial ones density is 0.250, which is below 

the threshold for selection.  However, the initial density is not used in the algorithm.  By 

cycle two, the same pattern of four zero bits followed by four one bits has emerged; the 

density is 0.489.  In cycle three the pattern again becomes alternating ones and zeros with 

a density of 0.500.  In cycle four, nearly every bit is zero, the density is 0.042, and the 

packet is identified as matching a target pattern in the pattern set. 

The problem addressed by this research is one of approximate string matching; a 

certain number of incorrect matches are to be expected.  The accuracy of such matching 

can be presented as sensitivity and specificity.  The sensitivity of a test is the number of 

cases correctly identified divided by the total number of instances of the target value in 

the population tested.  The specificity of a test is the proportion of true negatives divided 

by the total number of non-target instances in the population tested.  False positives are 

1 – specificity, and false negatives are 1 – sensitivity (Jaeschke et al., 2006).  The 

classification scheme described above provided the measures of sensitivity and 

specificity given in Chapter 4. 

Evaluating Tolerance for Perturbation 
 

Each cellular automaton rule tested was also evaluated for sensitivity to 

perturbation, or noise.  This was accomplished by taking a single sample packet for the 

back attack and the IMAP attack and randomly inverting bits using sampling with 
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replacement.  From one percent to 25% of bits were modified, in steps of one percent.  

Cases where the ones density produced by operation of the cellular automaton was 

outside the range generated by the genetic algorithm were recorded.  The number of bits 

changed while still remaining within the specified ones density was expressed as a 

fraction of total bits in the packet. 

Experiment showed that the IMAP packet was the determining factor in 

establishing the target maximum ones density.  Even a small perturbation of the IMAP 

packet often exceeded the density bound.  To compensate for this, the density bound was 

relaxed by adding 25%, determined by experiment,  of the distance between the target 

band and the non-target band.  The perturbation tests performed prior to adding the 

tolerance band are not reported here.  Tests of the sensitivity and specificity of the 

generated rules were re-run, and both sets of results are reported here. 

The IMAP attack consists of a single packet, and the packet used for operation of 

the genetic algorithm was also used for testing sensitivity to perturbation.  The back 

attack consists of multiple packets; only the initial packet was tested for perturbation.  

The basis of that decision was that detecting the initial packet is the requirement for 

identifying the attack. 

Resources Used 

All research described here was completed with a standard office computer and 

can be readily duplicated without special equipment.  The operating system used was 

Windows XP-SP3 with current Microsoft patches as of the time of the experiments.  The 

programming language was Java, using the Java 7 runtime environment and the jGRASP 

development environment.  Genetic algorithm functions were performed by JGAP 3.6.2.  
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The test data were obtained from the MIT IDEval pages in TCPDUMP format.  Wireshark 

version 1.4.15 was used to extract test cases and when it was necessary to examine the 

test data directly.  Microsoft Excel 2007 was used to import the text files of false 

positives and false negatives produced by the experiments.  Conversion from the binary 

TCPDUMP format to Java objects used SJPCAP, a program contributed anonymously to 

Google Code, and which received substantial revision by the author to handle the MIT 

IDEval data as described above.  All other programming was done in Java by the author. 

Version control was accomplished by copying all programming files to directories 

named using month, day, and year prior to making changes to the programming.  A 

laboratory notebook of the results of the experimental phase experiments was recorded in 

a word processing document, most recent entry first. 

Summary 

The research approach used was prototype and demonstration.  Genetic algorithm 

functionality was provided by JGAP, a standard genetic algorithm implementation with 

substantial opportunity for customization.  Only the size of the initial population, the 

datatype of the single chromosome, and the fitness function were customized.  The 

fitness functions and cellular automaton evaluation programs were coded in Java by the 

author. 

After a suitable fitness function was devised, operation of the genetic algorithm 

produced cellular automaton rules that were able to identify the two types of malicious 

packets selected for testing from the rest of the packet population.  There were no false 

positives in the test data.  No initial packets from either attack were missed.  False 
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negatives were all back attack continuation packets.  Detailed results are given in the next 

chapter. 
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Chapter 4 

Results 

Data Analysis 

Data were collected from four of the training data sets and all ten of the testing 

data sets of the MIT/DARPA IDEval 1998 data corpus.  Two passes were made through 

the data.  The first pass used a strict bound on ones density as determined by the genetic 

algorithm.  The second pass used a relaxed density rule, in which the density boundary 

for selection was relaxed by 25% of the difference between the target density bound and 

the non-target density bound.  The rationale for the relaxed density rule is to improve 

performance in the presence of noise or perturbation, as explained in Chapter 3.   

Six cellular automaton rules were tested.  Rule −369784237 3 with a fitness of 

0.8530 was the first rule generated by the genetic algorithm using the final version of the 

fitness function, and was used as a benchmark for most subsequent testing.  The 

remaining rules were chosen in order of their fitness values from subsequent runs of the 

genetic algorithm using a cycle parameter of four.  The rules and their fitness values are 

given in Table 16. 

Most of the data collected during the experiments is presented in Tables 1 – 15; a 

complete list of data items collected is in Table 17.  Some items are omitted from this 

                                                 

3  This report follows the convention established by Wolfram (1994) in representing cellular 
automaton rules as decimal integers.  The programming language used for these experiments was Java, and 
the rules were represented as signed integers.  A rule expressed as a negative integer indicates that the 
leftmost bit is one. 
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report because they are not relevant to the analysis, and one data item is omitted because 

it exhibited no variation.  Data on detection of IMAP attack packets is omitted from the 

tables because there were only two such packets in the corpus of data, and all six rules 

detected them without false negatives.  Total number of packets read is omitted from the 

tables because, although relevant to validating the correct operation of the experimental 

programs, it is not relevant to the analysis of the effectiveness of cellular automata as 

recognizers of multiple patterns.  Only TCP packets were screened by the cellular 

automaton. 

Desired Outcomes 

There are four characteristics that together characterize successful operation of a 

rule for detection of the target packets.  They are minimal false negative results, minimal 

false positive results, few cellular automaton cycles to reach an accepting state, and 

tolerance for noise or perturbation.  Of those, minimizing false negatives is arguably the 

most important.  Whether the cellular automaton is used for initial screening or as the 

only detector, a false negative means that target data will be missed.   

False positives mean that either subsequent screening by another method is 

required or that there will be false alarms.  The best rule (−369784237, see Table 2) 

produced 1,215 false positives on data for fourteen days, or an average of 87 false alarms 

each day.  Such a false alarm rate indicates that some post-screening mechanism would 

be required to limit false alarms.   

Although cellular automata operate in constant time both with respect to the 

number of cells (Sarkar, 2000) and, as shown by this research, with respect to the number 

of patterns detected, the number of cycles required to reach an accepting state does 
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influence performance.  Best performance comes from minimizing the number of cycles.   

Ability to function correctly in the presence of noise means that data different from the 

target pattern, but similar, can be detected reliably.    

Performance of the Rules under Test 

An important result of these experiments is that each rule tested recognized every 

instance of the IMAP attack and also every instance of the back attack initial packet.  The 

absence of false negatives means no target data was missed by any of the cellular 

automaton rules.  Although there were false negatives for back attack continuation 

packets, those are not relevant to the information security application.  Detecting the 

initial packet would enable protective action prior to any of the continuation packets 

being processed.  Back attack continuation packets were not part of the sample data 

processed by the genetic algorithm, and so were expected to be recognized only to the 

extent that they are similar to the back attack initial packets. 

Best recognition was exhibited by rule −369784237 (Tables 2 and 8), which 

required eight cycles to reach an accepting state.  Changing from strict to relaxed density 

boundaries reduced the number of false negative continuation packets by 15 but increased 

the number of false positives by 95 cases, as shown in Table 14.  Rule 1205312089 

produced performance almost as good, as shown in Tables 5 and 11.  The number of false 

negative continuation packets was identical to rule −369784237.  The number of false 

positives increased by 756, an increase of 62%.   

Best performance for noise tolerance was given by rule −369784237, followed by 

rule −1144617577, as shown in Table 15.   
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Although rule −1023231863 produced the best results with respect to false 

negative continuation packets, it also produced many times more false positives, as 

shown in Tables 4 and 10.   

Analysis of False Negatives 

As shown by Tables 2 to 13, false negative back attack continuation packets occur 

only when a back attack is present, and almost always in number slightly fewer than the 

number of back attack initial packets.  The program used for the experiment wrote all 

false negative packets to text data files in hexadecimal form.  Length, packet number, and 

computed density were recorded with each packet.  These were imported into Microsoft 

Excel 2007 and examined manually.  In every case, the packet consisted only of a string 

of 0x2f, with lengths varying from 40 bytes to 1,088 bytes, with 520 bytes being the most 

frequently occurring length.  In almost every case, the number of false negatives is the 

same as or slightly less than the number of initial back attack packets.  The exceptions are 

data for training week two Friday and training week three Wednesday, when some rules 

found slightly more false negatives.  The data show that packets significantly shorter than 

the 1,460 bytes common to most back attack packets are not reliably recognized by the 

cellular automaton.  This could potentially be corrected in future research by including 

samples of such short packets in the input to the genetic algorithm and using a rule-

heterogeneous cellular automaton, as suggested in Chapter 5. 

The output recorded included the packet number, making manual inspection of 

the original TCPDUMP file possible.  A small sample of the false negative packets was 

examined in that way.  In every case in the sample, the false negative packet was in the 

middle of a sequence of back attack packets.  That finding disproved an earlier conjecture 
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that these short packets represented the last packet of a back attack.  All that can be 

inferred from the data are that these short packets are an artifact of the attack generation 

process used when the data were prepared.   

Analysis of False Positives 

False negatives fell neatly into a single category: short packets containing all 

0x2f.  Characterizing the false positives is not as neatly done.  However, the false 

positives all share the characteristic of repetition.  All false positives for rule −369784237 

were examined.  The four from training, week 7, Friday all had long sequences of 0x90, 

characteristic of a buffer overflow attack.  The ones from testing, week 1, Tuesday all had 

long, repeating sequences of 0x21.  Those from Wednesday had sequences of 0x90.  The 

same is true of testing, week 2, Monday, Tuesday, and Friday.  Thursday of that week 

had two sequences of 0x90, with the remaining 1,191 all containing long sequences of 

0x84, the Unicode “control” character.  Sampling the false positives from the other rules 

revealed similar patterns, and on the same days.  For all six rules, the largest number of 

false positives was testing, week 2, Thursday.  The conclusion is that the cellular 

automaton correctly detects long strings of 0x2f and 0x90 found in the target packets, but 

also detects certain other repeating patterns. 

Summary 

All six cellular automaton rules generated by the genetic algorithm detected the 

two target patterns with no false negatives.  False negatives for back attack continuation 

packets were reported because they may give some insight into the operation of the 

cellular automaton as a pattern recognizer.  All false negatives are explained as shorter 
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packets of 0xf2.  Four of the six cellular automata were shown to be resistant to noise 

injected in up to 25% of their bits. 

False positives were triggered by repeating patterns in the data.  At least two of 

the false positives were actually other attacks, namely buffer overflow attacks against a 

mail transport agent program as shown by the receiving port number in the TCPDUMP file.    

Such attacks are characterized by the same sequence of 0x90 no-operation characters as 

is found in the IMAP attack, a pattern specifically intended to be recognized. 

The best performing rule was −369784237, which required eight cycles to reach 

the accepting or rejecting state.  Rule 1205312089 produced results almost as good, and 

only one of the six, rule −1023231863 produced extremely large numbers of false 

positives.  This demonstrates that there exist multiple rule-uniform, linear cellular 

automaton rules in r=2 that can detect both of the two patterns selected for study, and that 

such rules can be discovered through the application of a genetic algorithm. 
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Chapter 5 

Conclusions, Implications, Recommendations, and Summary 

Conclusions 

The research reported here has demonstrated the concept that a single cellular 

automaton rule can recognize more than one target pattern, can do so in the presence of 

noise, and with few cycles of the cellular automaton.  Such a result is potentially 

applicable to recognizing patterns in network communications, and also to searching data 

repositories so large that other approaches to approximate string matching are 

impractical.   

The proposal for this research anticipated the need for post-screening using 

another matching method to remove false positives.  The value of using the cellular 

automaton would have been to reduce the number of applications of the secondary 

matching method to a manageable number.  For the particular sample of patterns chosen, 

very little post screening has been shown to be necessary for the best rules.  It is 

important to recognize that the cellular automaton mechanism provides only a binary, 

match / no-match result; a particular record could match any pattern in the pattern set.  If 

a particular application makes it necessary to further distinguish data that have matched 

the pattern set, post screening will be necessary in any case. 

Six distinct cellular automaton rules have been shown to be capable of detecting 

the initial packets of both the IMAP attack and the back attack.  The rules studied do not 

always identify every packet that is part of a back attack.  For example, rule 1360891913 
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fails to identify 1,018 back attack continuation packets in the Friday, week two training 

data.  This is not a fatal flaw because that rule identified every initial back attack packet, 

with no false positives.  In the case of detecting malicious network packets, with the 

initial packet identified, the remaining packets from the same source would be discarded 

without the need to examine their contents. 

Because a cellular automaton can be implemented using a table look-up 

(Chaudhuri et al., 1997), the rule used to drive the pattern match can be changed by 

changing the contents of the table.  There is no need to modify any other part of the 

mechanism.  Thus, a rule for a new set of patterns, or an improved rule for a particular 

pattern set, can be implemented without change to the underlying mechanism.   

Considerations of Timing 

Cellular automata operate in constant time, as previously shown by others, 

including Sommerhalder and Westrhenen (1983).  Because the next state of each cell in a 

cellular automaton can be determined independent of the next states of the other cells, the 

number of cells in a cellular automaton, and so, the size of the pattern to be recognized, 

does not influence the timing.  This research has shown that, for the two patterns 

examined, the number of patterns tested does not influence the time required.   

However, there are two considerations that do influence the timing of the 

mechanism described here.  The first is the number of cycles of the cellular automaton 

required to generate a recognizable result.  A cellular automaton that requires fewer 

cycles to reach the desired result is clearly faster (given the same implementation) as one 

that requires more cycles.  Because there is no general programming paradigm for 

cellular automata (Crutchfield et al., 1998), cellular automata for a particular task must be 
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discovered.  This research used an iterative process to discover cellular automata that 

would identify the patterns under study while attempting to minimize the number of 

cycles required.  A better approach might be to incorporate the number of cycles required 

into the fitness function of the genetic algorithm as described below. 

The other factor influencing timing is the need to differentiate between a final 

state of the cellular automaton that indicates recognition of the pattern, an accepting state, 

from states that do not, the rejecting states.  For this research, the two states are 

differentiated by the ones density of the cellular automaton.  Unlike the operation of the 

cellular automaton itself, the calculation of ones density does vary with the size of the 

cellular automaton, and so with the size of the pattern to be recognized, but not with the 

number of patterns to be recognized.  The software used for these experiments computed 

the ones density by sequentially counting the one bits.  Such an approach is suitable in a 

proof of concept demonstration such as this one, but is far too slow for practical 

application.  It requires n additions for a cellular automaton of n bits.  The computation of 

ones density can be parallelized if sufficient computing elements are available.  Blelloch 

(1993) describes the reduction operation, in which the sum of a vector of n elements can 

be computed in time O(log2n) with n/2 computing elements.  The reduction operation 

begins by adding pairs of elements in parallel, then adding pairs of sums, and so on until 

the final sum is produced.  For implementation in hardware, it may be possible to 

construct a combinational circuit of depth two to perform the addition (Alon & Bruck, 

1994).  Such a circuit would operate in constant time.  It is important to note that the time 

required for computation of the ones density depends only on the size of the cellular 

automaton, and not on the number of patterns it recognizes. 
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This research used only bit density to indicate an accepting state in the cellular 

automaton.  Other descriptions of the accepting state may be possible, depending upon 

how the fitness function is designed.  As noted above, Sarkar (2000) has pointed out that 

only a single bit is necessary to indicate an accepting state, provided it is reliably on or 

off.  A different definition of accepting state would require a different recognition 

algorithm. 

Implications 

The research presented has demonstrated a proof of concept that a single cellular 

automaton can detect more than one pattern in data presented to it, in constant time with 

respect to the number of patterns checked, and can do so in the presence of noise.  

However, the sequential programming used for this proof of concept would be far too 

slow for practical application.  The cellular automaton approach has a speed advantage 

only if its inherent parallel nature is exploited.  A mechanism such as is described here 

could take advantage of the parallelism of cellular automata through implementation on a 

general purpose computer with parallel computing capability, or through implementation 

directly in hardware.  

Parallel Implementation on a General Purpose Computer 

Parallel computation is readily available using off the shelf computers by taking 

advantage of the processing units that exist on graphics cards.  Modern graphics cards 

incorporate thousands of graphics processing units and there is programming language 

support for application of multiple graphics cards in a single host computer (Sanders & 

Kandrot, 2011).  Kauffmann (2008) has demonstrated the implementation of cellular 

automata using a general purpose computer with graphics cards.  If the mechanism 
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described here were implemented using the parallel processing capabilities of graphics 

cards, the reduction algorithm described by Blelloch (1993) could be used to compute the 

ones density.  Although per-processor local storage on graphics cards is limited, it is 

sufficient to hold the cellular automaton rule used for determination of the next state as 

well as the state bit itself (Sanders & Kandrot, 2011).   

Parallel Implementation in Hardware 

Each cell of a cellular automaton can be expressed as a one-bit latch (Katz, 1994).  

A writable control store holding the cellular automaton rule would be required for the 

table look-up function.  A conceptual diagram showing computation of the next state of a 

cell using table look-up from a control store is presented in Figure 4.  The reduction 

method described by Blelloch (1993) is amenable to implementation as a cascade of full 

adders, and would still operate in O(log2n) time where n is the size of the cellular 

automaton.  Such a circuit could potentially be implemented directly on a network 

interface card.  A conceptual diagram of a cellular automaton pattern recognizer 

implemented in hardware is given in Figure 5. 

Recommendations 

The research presented here has confirmed the hypothesis that there exist cellular 

automaton rules that can recognize more than one pattern in constant time with respect to 

the number of patterns, and in the presence of noise or perturbation.  It remains to be 

shown whether other patterns than those chosen, or more than two patterns can be 

matched.  There may exist better fitness functions than the one presented here, or more 

effective arrangements of the cellular automaton.  Evaluation of the cellular automaton’s 

final state for accepting or rejecting a pattern based on ones density takes O(log2n) time if 
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implemented in parallel using multiple processing units, where n is the number of cells in 

the cellular automaton (Blelloch, 1993).  While the time to evaluate the final state is 

constant with respect to the number of patterns, it may be possible to improve upon it. 

Only two patterns were tested in the experiments reported here.  Empirical testing 

might establish an upper limit on the number of patterns that can be recognized by the 

cellular automaton described here, or by other types of cellular automata. 

Regardless of the improvements that may be possible, if best evaluation speed is 

to be achieved, it is clear that most of the work must be in the genetic algorithm and not 

in the cellular automaton.   This may mean a greater focus on the fitness function than on 

the cellular automaton itself.  In any case, changes in the structure of the cellular 

automaton must be reflected in the fitness function. 

Modification to the Cellular Automaton 

The research presented here started with the simplest possible cellular automaton, 

a binary, rule-uniform, linear cellular automaton.  Because preliminary research had 

shown that a radius of one was unlikely to be effective at matching more than one 

pattern, experiments began with cellular automata of r = 2.  Radii larger than two 

increase the number of bits of the pattern that participate in the computation of the next 

state of the cellular automaton, which may offer an opportunity for improvement.  

Increased radii also increase the number of potential rules exponentially.  A radius of 

three examines seven bits of the pattern when computing the next state of each cell and 

uses 128-bit rules, of which there are 2128.  An increase to a radius of four would mean a 

rule space of 2512.  It is unknown whether increasing the radius would improve the pattern 

recognition ability of the cellular automaton, nor whether such large rule spaces can be 
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searched effectively using genetic algorithms.  The fact that there exist several rules for 

cellular automata of r = 2 that recognize the patterns studied suggests that the same 

condition may hold true for cellular automata of larger radius.  If that is the case, 

searching by genetic algorithm may be practical even in the face of very large rule 

spaces. 

The cellular automata presented here are rule-uniform; the same rule is used to 

evaluate the next state of every cell.  Although the rules studied produced very high 

sensitivity, there were false negative results for some back attack continuation packets.  

That is expected because back attack continuation packets were not a part of the pattern 

set being tested.  Packets that produced false negatives for continuation packets were 

written to a file and examined individually.  In every case, they were shorter than the 

packets that were detected correctly.  This research was based on a cellular automaton of 

fixed length.  The shorter packets were padded on the right with zeros to make all packets 

the same length.  A rule-heterogeneous cellular automaton might perform better by 

allowing those rightmost bits to be evaluated by a different rule than the leftmost bits.  

Each rule would be represented by a gene in the chromosome evaluated by the genetic 

algorithm.  Alternatively, the length of the cellular automaton itself might be varied 

depending upon the size of the patterns in the set of target patterns.  If all states are 

evaluated in parallel, there is no time penalty for doing so. 

Improvements in the Fitness Function 

The experiments reported here identified several rules that would recognize the 

patterns under study.  Even rules with fitness > 0.75 varied in sensitivity and specificity, 

suggesting that improvements are possible in the fitness function.  One such 
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improvement might be the inclusion of more samples of the pattern to be detected in the 

evaluation by the fitness function.  An entirely different approach to the fitness function 

might also produce better results. 

The number of cycles required for a cellular automaton to reach an accepting or 

rejecting state is an important parameter with respect to performance.  The cycle count 

was determined iteratively by experiment for the results reported here.  Incorporating the 

cycle count as a gene in the chromosome evaluated by the genetic algorithm could 

potentially identify cellular automata that require fewer cycles and still exhibit equivalent 

performance. 

More Effective Accepting State Conditions 

The accepting and rejecting states for the cellular automata studied here are 

derived from the ones density of the cellular automaton after a specified number of 

cycles.  The fastest programmatic computation of ones density is the reduction operation 

described by Blelloch (1993), which requires O(log2n) operations.  The two-level digital 

logic construction described by Alon and Bruck (1994) could potentially compute the 

ones density in constant time, but requires direct implementation in digital logic.  Speed 

improvements might also be possible by defining the accepting state in terms other than 

ones density.  A single bit is enough to define an accepting state if it reliably reflects the 

accepting or rejecting state (Sarkar, 2000).  A simpler accepting state consisting of a 

pattern of bits might thus be recognizable in less time than that required for computation 

of the ones density.   

Another alternative is an accepting state that generates a repeating value in the 

cellular automaton itself.  Such a condition can be recognized by a bitwise comparison of 
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current cell values of the cellular automaton with previous cell values.  If the 

implementation includes one processor per cell, the comparisons can be made in parallel.  

The amount of storage for previous states depends upon the period of repetition of the 

pattern. 

Summary 

This research has produced a prototype that demonstrates the hypothesis that a 

cellular automaton can recognize more than one pattern using a single rule.  Sensitivity 

was greater than 0.97 for all six of the rules tested and specificity was 1.0 for four of the 

rules tested.  For the patterns selected for testing, very little post screening would have 

been necessary.   

Discovery of rules suitable for pattern recognition through the application of 

genetic algorithms has been shown to be possible.  The genetic algorithm was able to 

identify multiple rules that can detect the patterns chosen for these experiments.   

Pattern recognition has been shown to be possible even in the presence of noise.  

When the density tolerance was widened to include 25% of the distance between the 

target density and the non-target density, four of the rules recognized the two patterns 

tested even when up to 25% of the bits in the packet were modified.  Testing patterns for 

recognition using the relaxed density band produced results nearly identical to the 

original tests.   

Experimentation was done entirely using sequential programming on a von 

Neumann architecture computer.  Parallel implementation would be necessary to achieve 

processing times competitive with other approximate string matching algorithms. 
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Table 1. True incidence of target packets as determined by hand-crafted string 
comparison rules.  For the training data sets, only those marked as having attack packets 
of the types under study were tested.  All “testing” data sets were tested.  “Total Packets” 
is the number of TCP packets subjected to testing.  The total number of packets in each 
data set is larger because there are packets from protocols other than TCP.  Those were 
not tested. 

Data Set
IMAP

Attack
Back Attack

Initial
Back Attack
Continuation

Total 
Attacks

Total
Packets

Training , Week 2, Fri 1 1,000 36,711 37,712 215,666
Training , Week 3, Wed 0 1,000 36,729 37,729 264,776
Training , Week 6, Wed 0 100 3,694 3,794 475,551
Training , Week 7, Fri 0 108 3,507 3,615 636,290
Testing, Week  1, Mon 0 0 0 0 712,669
Testing, Week  1, Tue 0 0 0 0 719,181
Testing, Week  1, Wed 0 0 0 0 416,752
Testing, Week  1, Thu 0 0 0 0 520,950
Testing, Week  1, Fri 0 1,013 36,438 37,451 637,774
Testing, Week  2, Mon 0 0 0 0 520,025
Testing, Week  2, Tue 0 0 0 0 559,699
Testing, Week  2, Wed 1 100 3,666 3,767 40,026
Testing, Week  2, Thu 0 0 0 0 898,028
Testing, Week  2, Fri 0 0 0 0 625,445

Totals 2 3,321 120,745 124,068 7,242,832  
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Table 2. Performance of rule −369784237 with strict density evaluation on back attack 
packets.  A packet was selected as an attack packet if it had a ones density less than or 
equal to 0.22758333 after eight cycles of the cellular automaton.  Rule −369784237 had a 
fitness of 0.8530 by the fitness function used for this report. 
 

Data Set

Back 
Attack
Initial

Back 
Attack
Cont

False
Pos

False 
Neg
Initial

False 
Neg
Cont

True
Negative

Sensi-
tivity

Speci-
ficity

Train  Wk 2 Fri 1,000 35,693 0 0 1,018 177,954 0.973 1.000
Train Wk 3 Wed 1,000 35,728 0 0 1,001 227,047 0.973 1.000
Train Wk 6 Wed 100 3,594 0 0 100 471,757 0.974 1.000
Train Wk 7 Fri 108 3,413 4 0 94 632,675 0.974 1.000
Test Wk  1 Mon 0 0 0 0 0 712,669
Test Wk  1 Tue 0 0 6 0 0 719,181
Test Wk 1 Wed 0 0 1 0 0 416,752
Test Wk 1 Thu 0 0 2 0 0 520,950
Test Wk 1 Fri 1,013 35,475 0 0 963 600,323 0.974 1.000
Test Wk 2 Mon 0 0 4 0 0 520,025
Test Wk 2 Tue 0 0 4 0 0 559,699
Test Wk 2 Wed 100 3,566 0 0 100 36,259 0.973 1.000
Test Wk 2 Thu 0 0 1,193 0 0 898,028
Test Wk 2 Fri 0 0 1 0 0 625,445

Totals 3,321 117,469 1,215 0 3,276 7,118,764 0.974 1.000  
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Table 3.  Performance of rule −1144617577 with strict density evaluation on back attack 
packets.  A packet was selected as an attack packet if it had a ones density less than or 
equal to 0.34941667 after four cycles of the cellular automaton.  Rule −1144617577 had 
a fitness of 0.7659 by the fitness function used for this report. 
 

Data Set

Back 
Attack
Initial

Back 
Attack
Cont

False
Pos

False 
Neg
Initial

False 
Neg
Cont

True
Negative

Sensi-
tivity

Speci-
ficity

Train  Wk 2 Fri 1,000 35,693 0 0 1,018 177,954 0.973 1.000
Train Wk 3 Wed 1,000 35,728 0 0 1,001 227,047 0.973 1.000
Train Wk 6 Wed 100 3,594 0 0 100 471,757 0.974 1.000
Train Wk 7 Fri 108 3,413 4 0 94 632,675 0.974 1.000
Test Wk  1 Mon 0 0 0 0 0 712,669
Test Wk  1 Tue 0 0 6 0 0 719,181
Test Wk 1 Wed 0 0 1 0 0 416,752
Test Wk 1 Thu 0 0 2 0 0 520,950
Test Wk 1 Fri 1,013 35,475 0 0 963 600,323 0.974 1.000
Test Wk 2 Mon 0 0 4 0 0 520,025
Test Wk 2 Tue 0 0 11 0 0 559,699
Test Wk 2 Wed 100 3,566 0 0 100 36,259 0.973 1.000
Test Wk 2 Thu 0 0 1,341 0 0 898,028
Test Wk 2 Fri 0 0 30 0 0 625,445

Totals 3,321 117,469 1,399 0 3,276 7,118,764 0.974 1.000   



     69 

   

Table 4.  Performance of rule −1023231863 with strict density evaluation on back attack 
packets.  A packet was selected as an attack packet if it had a ones density less than or 
equal to 0.51041670 after four cycles of the cellular automaton.  Rule −1023231863 had 
a fitness of 0.8730 by the fitness function used for this report. 
 

Data Set

Back 
Attack
Initial

Back 
Attack
Cont

False
Pos

False 
Neg
Initial

False 
Neg
Cont

True
Negative

Sensi-
tivity

Speci-
ficity

Train  Wk 2 Fri 1,000 35,745 214 0 966 177,954 0.975 0.999
Train Wk 3 Wed 1,000 35,759 264 0 970 227,047 0.974 0.999
Train Wk 6 Wed 100 3,594 477 0 100 471,757 0.977 0.999
Train Wk 7 Fri 108 3,415 799 0 92 632,675 0.979 0.999
Test Wk  1 Mon 0 0 684 0 0 712,669
Test Wk  1 Tue 0 0 9,663 0 0 719,181
Test Wk 1 Wed 0 0 715 0 0 416,752
Test Wk 1 Thu 0 0 1,192 0 0 520,950
Test Wk 1 Fri 1,013 35,486 693 0 952 600,323 0.975 0.999
Test Wk 2 Mon 0 0 9,296 0 0 520,025
Test Wk 2 Tue 0 0 960 0 0 559,699
Test Wk 2 Wed 100 3,566 16,287 0 100 36,259 0.995 0.69
Test Wk 2 Thu 0 0 8,478 0 0 898,028
Test Wk 2 Fri 0 0 7,879 0 0 625,445

Totals 3,321 117,565 57,601 0 3,180 7,118,764 0.974 0.992  
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Table 5.  Performance of rule 1205312089 with strict density evaluation on back attack 
packets.  A packet was selected as an attack packet if it had a ones density less than or 
equal to 0.22483334 after four cycles of the cellular automaton.  Rule 1205312089 had a 
fitness of 0.8622 by the fitness function used for this report. 
 

Data Set

Back 
Attack
Initial

Back 
Attack
Cont

False
Pos

False 
Neg
Initial

False 
Neg
Cont

True
Negative

Sensi-
tivity

Speci-
ficity

Train  Wk 2 Fri 1,000 35,693 0 0 1,018 177,954 0.973 1.000
Train Wk 3 Wed 1,000 35,728 0 0 1,001 227,047 0.973 1.000
Train Wk 6 Wed 100 3,594 0 0 100 471,757 0.974 1.000
Train Wk 7 Fri 108 3,413 2 0 94 632,675 0.974 1.000
Test Wk  1 Mon 0 0 0 0 0 712,669
Test Wk  1 Tue 0 0 6 0 0 719,181
Test Wk 1 Wed 0 0 1 0 0 416,752
Test Wk 1 Thu 0 0 2 0 0 520,950
Test Wk 1 Fri 1,013 35,475 0 0 963 600,323 0.974 1.000
Test Wk 2 Mon 0 0 4 0 0 520,025
Test Wk 2 Tue 0 0 4 0 0 559,699
Test Wk 2 Wed 100 3,566 0 0 100 36,259 0.973 1.000
Test Wk 2 Thu 0 0 1,196 0 0 898,028
Test Wk 2 Fri 0 0 1 0 0 625,445

Totals 3,321 117,469 1,216 0 3,276 7,118,764 0.974 1.000  
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Table 6.  Performance of rule 1360891913 with strict density evaluation on back attack 
packets.  A packet was selected as an attack packet if it had a ones density less than or 
equal to 0.25925000 after four cycles of the cellular automaton.  Rule 1360891913 had a 
fitness of 0.8126 by the fitness function used for this report. 
 

Data Set

Back 
Attack
Initial

Back 
Attack
Cont

False
Pos

False 
Neg
Initial

False 
Neg
Cont

True
Negative

Sensi-
tivity

Speci-
ficity

Train  Wk 2 Fri 1,000 35,693 192 0 1,018 177,954 0.973 0.999
Train Wk 3 Wed 1,000 35,728 120 0 1,001 227,047 0.974 0.999
Train Wk 6 Wed 100 3,594 42 0 100 471,757 0.974 1.000
Train Wk 7 Fri 108 3,413 304 0 94 632,675 0.976 1.000
Test Wk  1 Mon 0 0 209 0 0 712,669
Test Wk  1 Tue 0 0 143 0 0 719,181
Test Wk 1 Wed 0 0 28 0 0 416,752
Test Wk 1 Thu 0 0 246 0 0 520,950
Test Wk 1 Fri 1,013 35,475 137 0 963 600,323 0.974 1.000
Test Wk 2 Mon 0 0 156 0 0 520,025
Test Wk 2 Tue 0 0 238 0 0 559,699
Test Wk 2 Wed 100 3,566 171 0 100 36,259 0.975 0.995
Test Wk 2 Thu 0 0 1,490 0 0 898,028
Test Wk 2 Fri 0 0 101 0 0 625,445

Totals 3,321 117,469 3,577 0 3,276 7,118,764 0.974 0.999  
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Table 7.  Performance of rule 1386779481 with strict density evaluation on back attack 
packets.  A packet was selected as an attack packet if it had a ones density less than or 
equal to 0.25208333 after four cycles of the cellular automaton.  Rule 1386779481 had a 
fitness of 0.8745 by the fitness function used for this report. 
 

Data Set

Back 
Attack
Initial

Back 
Attack
Cont

False
Pos

False 
Neg
Initial

False 
Neg
Cont

True
Negative

Sensi-
tivity

Speci-
ficity

Train  Wk 2 Fri 1,000 35,693 0 0 1,018 177,954 0.973 1.000
Train Wk 3 Wed 1,000 35,728 0 0 1,001 227,047 0.973 1.000
Train Wk 6 Wed 100 3,594 0 0 100 471,757 0.974 1.000
Train Wk 7 Fri 108 3,413 0 0 94 632,675 0.974 1.000
Test Wk  1 Mon 0 0 0 0 0 712,669
Test Wk  1 Tue 0 0 7 0 0 719,181
Test Wk 1 Wed 0 0 1 0 0 416,752
Test Wk 1 Thu 0 0 2 0 0 520,950
Test Wk 1 Fri 1,013 35,475 0 0 963 600,323 0.974 1.000
Test Wk 2 Mon 0 0 4 0 0 520,025
Test Wk 2 Tue 0 0 2 0 0 559,699
Test Wk 2 Wed 100 3,566 0 0 100 36,259 0.973 1.000
Test Wk 2 Thu 0 0 1,391 0 0 898,028
Test Wk 2 Fri 0 0 1 0 0 625,445

Totals 3,321 117,469 1,408 0 3,276 7,118,764 0.974 1.000  
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Table 8.  Performance of rule −369784237 with relaxed density evaluation on back 
attack packets.  A packet was selected as an attack packet if it had a ones density less 
than or equal to 0.28314583 after eight cycles of the cellular automaton.  Rule 
−369784237 had a fitness of 0.8530 by the fitness function used for this report. 
 

Data Set

Back 
Attack
Initial

Back 
Attack
Cont

False
Pos

False 
Neg
Initial

False 
Neg
Cont

True
Negative

Sensi-
tivity

Speci-
ficity

Train  Wk 2 Fri 1,000 35,701 0 0 1,010 177,954 0.973 1.000
Train Wk 3 Wed 1,000 35,734 0 0 995 227,047 0.974 1.000
Train Wk 6 Wed 100 3,594 0 0 100 471,757 0.974 1.000
Train Wk 7 Fri 108 3,413 4 0 94 632,675 0.974 1.000
Test Wk  1 Mon 0 0 0 0 0 712,669
Test Wk  1 Tue 0 0 12 0 0 719,181
Test Wk 1 Wed 0 0 1 0 0 416,752
Test Wk 1 Thu 0 0 3 0 0 520,950
Test Wk 1 Fri 1,013 35,476 0 0 962 600,323 0.974 1.000
Test Wk 2 Mon 0 0 4 0 0 520,025
Test Wk 2 Tue 0 0 4 0 0 559,699
Test Wk 2 Wed 100 3,566 2 0 100 36,259 0.973 1.000
Test Wk 2 Thu 0 0 1,279 0 0 898,028
Test Wk 2 Fri 0 0 1 0 0 625,445

Totals 3,321 117,484 1,310 0 3,261 7,118,764 0.974 1.000  
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Table 9. Performance of rule −1144617577 with relaxed density evaluation on back 
attack packets.  A packet was selected as an attack packet if it had a ones density less 
than or equal to 0.421625003 after four cycles of the cellular automaton.  Rule 
−1144617577 had a fitness of 0.7659 by the fitness function used for this report. 
 

 

Data Set

Back 
Attack
Initial

Back 
Attack
Cont

False
Pos

False 
Neg
Initial

False 
Neg
Cont

True
Negative

Sensi-
tivity

Speci-
ficity

Train  Wk 2 Fri 1,000 35,702 0 0 1,009 177,954 0.973 1.000
Train Wk 3 Wed 1,000 35,735 2 0 994 227,047 0.974 1.000
Train Wk 6 Wed 100 3,594 0 0 100 471,757 0.974 1.000
Train Wk 7 Fri 108 3,413 6 0 94 632,675 0.974 1.000
Test Wk  1 Mon 0 0 2 0 0 712,669
Test Wk  1 Tue 0 0 32 0 0 719,181
Test Wk 1 Wed 0 0 2 0 0 416,752
Test Wk 1 Thu 0 0 3 0 0 520,950
Test Wk 1 Fri 1,013 35,476 1 0 962 600,323 0.974 1.000
Test Wk 2 Mon 0 0 5 0 0 520,025
Test Wk 2 Tue 0 0 12 0 0 559,699
Test Wk 2 Wed 100 3,566 47 0 100 36,259 0.974 0.999
Test Wk 2 Thu 0 0 1,450 0 0 898,028
Test Wk 2 Fri 0 0 31 0 0 625,445

Totals 3,321 117,486 1,593 0 3,259 7,118,764 0.974 1.000  
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Table 10.  Performance of rule −1023231863 with relaxed density evaluation on back 
attack packets.  A packet was selected as an attack packet if it had a ones density less 
than or equal to 0.5233542 after four cycles of the cellular automaton.  Rule 
−1023231863 had a fitness of 0.8730 by the fitness function used for this report. 
 

Data Set

Back 
Attack
Initial

Back 
Attack
Cont

False
Pos

False 
Neg
Initial

False 
Neg
Cont

True
Negative

Sensi-
tivity

Speci-
ficity

Train  Wk 2 Fri 1,000 35,746 469 0 965 177,954 0.975 0.997
Train Wk 3 Wed 1,000 35,759 559 0 970 227,047 0.975 0.998
Train Wk 6 Wed 100 3,594 1,204 0 100 471,757 0.980 0.997
Train Wk 7 Fri 108 3,415 2,037 0 92 632,675 0.984 0.997
Test Wk  1 Mon 0 0 1,739 0 0 712,669
Test Wk  1 Tue 0 0 11,530 0 0 719,181
Test Wk 1 Wed 0 2 1,716 0 0 416,752
Test Wk 1 Thu 3 0 2,385 0 0 520,950
Test Wk 1 Fri 1,013 35,488 1,739 0 950 600,323 0.976 0.997
Test Wk 2 Mon 0 0 11,020 0 0 520,025
Test Wk 2 Tue 0 0 2,061 0 0 559,699
Test Wk 2 Wed 100 3,566 20,474 0 100 36,259 0.996 0.639
Test Wk 2 Thu 0 0 16,359 0 0 898,028
Test Wk 2 Fri 0 0 8,963 0 0 625,445

Totals 3,324 117,570 82,255 0 3,177 7,118,764 0.974 0.989  
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Table 11. Performance of rule 1205312089 with relaxed density evaluation on back 
attack packets.  A packet was selected as an attack packet if it had a ones density less 
than or equal to 0.290145838 after four cycles of the cellular automaton.  Rule 
1205312089 had a fitness of 0.8622 by the fitness function used for this report. 
 

Data Set

Back 
Attack
Initial

Back 
Attack
Cont

False
Pos

False 
Neg
Initial

False 
Neg
Cont

True
Negative

Sensi-
tivity

Speci-
ficity

Train  Wk 2 Fri 1,000 35,701 0 0 1,010 177,954 0.973 1.000
Train Wk 3 Wed 1,000 35,734 0 0 995 227,047 0.974 1.000
Train Wk 6 Wed 100 3,594 0 0 100 471,757 0.974 1.000
Train Wk 7 Fri 108 3,413 4 0 94 632,675 0.974 1.000
Test Wk  1 Mon 0 0 0 0 0 712,669
Test Wk  1 Tue 0 0 15 0 0 719,181
Test Wk 1 Wed 0 0 1 0 0 416,752
Test Wk 1 Thu 0 0 2 0 0 520,950
Test Wk 1 Fri 1,013 35,476 0 0 962 600,323 0.974 1.000
Test Wk 2 Mon 0 0 4 0 0 520,025
Test Wk 2 Tue 0 0 4 0 0 559,699
Test Wk 2 Wed 100 3,566 2 0 100 36,259 0.973 1.000
Test Wk 2 Thu 0 0 1,938 0 0 898,028
Test Wk 2 Fri 0 0 1 0 0 625,445

Totals 3,321 117,484 1,971 0 3,261 7,118,764 0.974 1.000  
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Table 12.  Performance of rule 1360891913 with relaxed density evaluation on back 
attack packets.  A packet was selected as an attack packet if it had a ones density less 
than or equal to 0.27354167 after four cycles of the cellular automaton.  Rule 
1360891913 had a fitness of 0.8126 by the fitness function used for this report. 
 

Data Set

Back 
Attack
Initial

Back 
Attack
Cont

False
Pos

False 
Neg
Initial

False 
Neg
Cont

True
Negative

Sensi-
tivity

Speci-
ficity

Train  Wk 2 Fri 1,000 35,693 297 0 1,018 177,954 0.973 0.998
Train Wk 3 Wed 1,000 35,728 199 0 1,001 227,047 0.974 0.999
Train Wk 6 Wed 100 3,594 94 0 100 471,757 0.974 1.000
Train Wk 7 Fri 108 3,413 441 0 94 632,675 0.977 0.999
Test Wk  1 Mon 0 0 331 0 0 712,669
Test Wk  1 Tue 0 0 238 0 0 719,181
Test Wk 1 Wed 0 0 79 0 0 416,752
Test Wk 1 Thu 0 0 385 0 963 520,950
Test Wk 1 Fri 1,013 35,475 237 0 0 600,323 1.000 1.000
Test Wk 2 Mon 0 0 325 0 0 520,025
Test Wk 2 Tue 0 0 415 0 100 559,699
Test Wk 2 Wed 100 3,566 297 0 0 36,259 1.000 0.992
Test Wk 2 Thu 0 0 1,656 0 0 898,028
Test Wk 2 Fri 0 0 254 0 0 625,445

Totals 3,321 117,469 5,248 0 3,276 7,118,764 0.974 0.999  
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Table 13.  Performance of rule 1386779481 with relaxed density evaluation on back 
attack packets.  A packet was selected as an attack packet if it had a ones density less 
than or equal to 0.333624998 after four cycles of the cellular automaton.  Rule 
1386779481 had a fitness of 0.8745 by the fitness function used for this report. 
 

Data Set

Back 
Attack
Initial

Back 
Attack
Cont

False
Pos

False 
Neg
Initial

False 
Neg
Cont

True
Negative

Sensi-
tivity

Speci-
ficity

Train  Wk 2 Fri 1,000 35,702 0 0 1,009 177,954 0.973 1.000
Train Wk 3 Wed 1,000 35,735 0 0 994 227,047 0.974 1.000
Train Wk 6 Wed 100 3,594 30 0 100 471,757 0.974 1.000
Train Wk 7 Fri 108 3,413 20 0 94 632,675 0.974 1.000
Test Wk  1 Mon 0 0 9 0 0 712,669
Test Wk  1 Tue 0 0 30 0 0 719,181
Test Wk 1 Wed 0 0 73 0 0 416,752
Test Wk 1 Thu 0 0 3 0 0 520,950
Test Wk 1 Fri 1,013 35,476 0 0 962 600,323 0.974 1.000
Test Wk 2 Mon 0 0 9 0 0 520,025
Test Wk 2 Tue 0 0 24 0 0 559,699
Test Wk 2 Wed 100 3,566 40 0 100 36,259 0.974 0.999
Test Wk 2 Thu 0 0 1,556 0 0 898,028
Test Wk 2 Fri 0 0 5 0 0 625,445

Totals 3,321 117,486 1,799 0 3,259 7,118,764 0.974 1.000  
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Table 14.  Comparison of strict and relaxed rules.  For each rule tested, the table shows 
the difference in false positive results and false negative results for the strict and relaxed 
density rules.  False negatives are for back attack continuation packets only; there are no 
false negatives for initial packets for any rule. 
 

Rule Strict Relaxed Diff Strict Relaxed Diff
-369784237 1,215 1,310 95 3,276 3,261 -15
-1144617577 1,399 1,593 194 3,276 3,259 -17
-1023231863 57,601 82,255 24,654 3,180 3,177 -3
1205312089 1,216 1,971 755 3,276 3,261 -15
1360891913 3,577 5,248 1,671 3,276 3,276 0
1386779481 1,408 1,799 391 3,276 3,259 -17

–––– False Positives ––––– – False Negative Continuation –

 
 
 
Table 15.  Sensitivity to perturbation.  Bits in two test packets were complemented 
randomly with replacement.  The table shows the percentage of bits that could be 
modified before the density of the cellular automaton exceeded the upper density bound.  
Testing was with the relaxed density rule.  Testing stopped at 0.25 (25%) of bits 
modified. 
 

Rule Perturbation
Tolerated

-369784237 0.25
-1144617577 0.25
-1023231863 0.04
1205312089 0.25
1360891913 0.04
1386779481 0.25  

 
 
Table 16.  Rules tested with their density and fitness values.  “Cycles” is the number of 
cellular automaton cycles used in the tests.  Packets were considered attack packets if 
their ones densities were less than or equal to the values given. 
 

Rule Cycles Fitness
Strict

Density
Relaxed 
Density

-369784237 8 0.8530 0.2275833 0.28315
-1144617577 4 0.7659 0.3494167 0.42163
-1023231863 4 0.8731 0.5104167 0.52335
1205312089 4 0.8622 0.2248333 0.29015
1360891913 4 0.8127 0.25925 0.27354
1386779481 4 0.8746 0.2520833 0.33362  
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Table 17.  Experimental data collected. 
 
Actual IMAP attack packets (detected by string comparison)
Actual back attack initial packets (detected by string comparison)
Actual back attack continuation packets (detected by string comparison)
IMAP attack packets detected by cellular automaton
Back attack initial packets detected by cellular automaton
Back attack continuation packets detected by cellular automaton
False positive packets 
False negative IMAP attack packets
False negatice back attack initial packets
False negative back attack contiuation packets
Total packets read
IP packets read
TCP packets read and processed by cellular automaton  
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Figure 1.  Operation of cellular automaton rule 1205312089 with the first 96 bits of data 
from packet 1,819 of the Friday week two training data.  The initial data and four cycles 
of the cellular automaton cell values are shown as five rows in the figure.  The ones 
density does not decrease below the density threshold for this rule.  This packet would 
not be selected as a match. 
 
 
 
 
 

 
 
Figure 2.  Operation of cellular automaton rule 1205312089 with 96 bits 0x2f characters, 
representing a back attack packet.  The initial data and four cycles of the cellular 
automaton cell values are shown as five rows in the figure.  A pattern of four zero bits 
and four one bits emerges in cycle two.  In cycle three, the bits alternate between zero 
and one except near the boundaries.  In cycle four, nearly all bits are zero.  The ones 
density is 0.073, indicating that this packet matches a pattern in the set. 
 
 
 
 
 

 
 
Figure 3.  Operation of cellular automaton rule 1205312089 with 96 bits 0x90 characters, 
representing an IMAP attack packet.  The initial data and four cycles of the cellular 
automaton cell values are shown as five rows in the figure.  Cycles two, three, and four 
exhibit the same patterns seen in Figure 2.  At the end of cycle four, the ones density is 
0.042, indicating that this packet matches a pattern in the set. 
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Figure 4. A conceptual diagram showing how the next state of a cellular automaton can 
be computed using the table look-up mechanism with a control store. 
 
The next state of cell i is to be computed.  The computation relies on the current states of 
cells i–2, i–1, i, i+1, and i+2.   The contents of those five cells form a five bit address into 
the control store. 
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Figure 5. A conceptual diagram showing the implementation in hardware of a pattern 
recognizer based on the use of cellular automata, with accepting state defined by bit 
density bands. 
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