
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2014

Application of Cellular Automata to Detection of
Malicious Network Packets
Robert L. Brown
Nova Southeastern University, robebrow@nova.edu

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Robert L. Brown. 2014. Application of Cellular Automata to Detection of Malicious Network Packets. Doctoral dissertation. Nova
Southeastern University. Retrieved from NSUWorks, Graduate School of Computer and Information Sciences. (106)
https://nsuworks.nova.edu/gscis_etd/106.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

Application of Cellular Automata
to Detection of Malicious Network Packets

by

Robert L. Brown

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in
Computer Information Systems

Graduate School of Computer and Information Sciences
Nova Southeastern University

2014

We hereby certify that this dissertation, submitted by Robert L. Brown, conforms to acceptable

standards and is fully adequate in scope and quality to fulfill the dissertation requirements for

the degree of Doctor of Philosophy.

___ ________________

James D. Cannady, Ph.D. Date

Chairperson of Dissertation Committee

___ ________________

Bob Harbort, Ph.D. Date

Dissertation Committee Member

___ ________________

Wei Li, Ph.D. Date

Dissertation Committee Member

Approved:

___ ________________

Eric S. Ackerman, Ph.D. Date

Dean, Graduate School of Computer and Information Sciences

Graduate School of Computer and Information Sciences

Nova Southeastern University

2014

An Abstract of a Dissertation Submitted to Nova Southeastern University
in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Application of Cellular Automata

to Detection of Malicious Network Packets
by

Robert L. Brown
January, 2014

A problem in computer security is identification of attack signatures in network packets.
An attack signature is a pattern of bits that characterizes a particular attack. Because
there are many kinds of attacks, there are potentially many attack signatures.
Furthermore, attackers may seek to avoid detection by altering the attack mechanism so
that the bit pattern presented differs from the known signature. Thus, recognizing attack
signatures is a problem in approximate string matching. The time to perform an
approximate string match depends upon the length of the string and the number of
patterns. For constant string length, the time to match n patterns is approximately O(n);
the time increases approximately linearly as the number of patterns increases.

A binary cellular automaton is a discrete, deterministic system of cells in which each cell
can have one of two values. Cellular automata have the property that the next state of
each cell can be evaluated independently of the others. If there is a processing element
for each cell, the next states of all cells in a cellular automaton can be computed
simultaneously.

Because there is no programming paradigm for cellular automata, cellular automata to
perform specific functions are created ad hoc by hand or discovered using search
methods such as genetic algorithms.

This research has identified, through evolution by genetic algorithm, cellular automata
that can perform approximate string matching for more than one pattern while operating
in constant time with respect to the number of patterns, and in the presence of noise.
Patterns were recognized by using the bits of a network packet payload as the initial state
of a cellular automaton. After a predetermined number of cycles, the ones density of the
cellular automaton was computed. Packets for which the ones density was below an
experimentally determined threshold were identified as target packets. Six different
cellular automaton rules were tested against a corpus of 7.2 million TCP packets in the
IDEval data set. No rule produced false negative results, and false positive results were
acceptably low.

Acknowledgements

My thanks go to my committee members, Dr. Bob Harbort and Dr. Wei Li, who provided
support and guidance throughout the process, and most especially to Dr. James Cannady,
who never gave up on me, even when I had given up on myself.

Thanks go to my colleagues at Southern Polytechnic State University who were patient
with me while I divided my time between my teaching duties and my studies, and to the
hundreds of my students who were similarly patient.

I am grateful to Cindy Neck, who volunteered for proofreading again. Thank you again,
Cindy. Thank you, Betty Abbott, for the second round of proofreading.

Thank you, Campers, for making me a member of the family, for support over many
years, and for keeping me fed! Thank you for understanding all those times when I said I
had to work.

Finally, to Gina, who may not remember saying, “I will when you do.” You’ve got a lot
of catching up to do, Child!

v

Table of Contents

Abstract iii
List of Tables vii
List of Figures viii

Chapters

1. Introduction 1

Background 1
Problem Statement 2
Dissertation Goal 4
Relevance and Significance 6
Barriers and Issues 7

 Research Questions 4
Limitations and Delimitations 9
Summary 10

2. Review of the Literature 11
Introduction 11
Intrusion Detection 14
Cellular Automata 19
Cellular Automata for Pattern Recognition 23
Use of Genetic Algorithms to Evolve Cellular Automaton Rules 25
Realization of Cellular Automata in Software or Hardware 28

3. Methodology 31
 Introduction 31
 Overview of Research Methodology 34
 Specific Research Approach 39
 Resources Used 47
 Summary 48

4. Results 50
 Data Analysis 50
 Summary of Results 54

5. Conclusions, Implications, Recommendations, and Summary 56

Conclusions 56
Implications 59
Recommendations 60
Summary 64

vi

Appendices
A. Tables 65
B. Figures 81

References 85

vii

List of Tables

Tables

 1. True incidence of target packets 66

 2. Performance of rule −369784237 (strict) on back attack packets 67

 3. Performance of rule −1144617577 (strict) on back attack packets 68

 4. Performance of rule −1023231863 (strict) on back attack packets 69

 5. Performance of rule 1205312089 (strict) on back attack packets 70

 6. Performance of rule 1360891913 (strict) on back attack packets 71

 7. Performance of rule 1386779481 (strict) on back attack packets 72

 8. Performance of rule −369784237 (relaxed) on back attack packets 73

 9. Performance of rule −1144617577 (relaxed) on back attack packets 74

10. Performance of rule −1023231863 (relaxed) on back attack packets 75

11. Performance of rule 1205312089 (relaxed) on back attack packets 76

12. Performance of rule 1360891913 (relaxed) on back attack packets 77

13. Performance of rule 1386779481 (relaxed) on back attack packets 78

14. Comparison of strict and relaxed rules 79

15. Sensitivity to perturbation 79

16. Rules tested with their fitness and density values 79

17. Data collected in the experiments 80

viii

List of Figures

Figures

1. Visualization of a cellular automaton rule with non-target data 82

2. Visualization of a cellular automaton rule with back attack data 82

3. Visualization of a cellular automaton rule with IMAP attack data 82

4. Evaluation of a single cellular automaton cell in hardware 83

5. A conceptual hardware pattern recognizer based on a cellular automaton 84

1

Chapter 1

Introduction

Background

A problem in computer security is the detection of malicious data in transit

through networks or on entry to a host computer. One approach to this problem is

signature-based detection, in which data are compared against known patterns (Stallings

& Brown, 2008). This is very similar to pattern detection in large data sets. In both

cases, efficient algorithms for comparing data to multiple known patterns are required.

Cellular automata have been used for language recognition (Sommerhalder &

Westrhenen, 1983), pattern recognition (Ganguly et al., 2004), and as associative

memories (Chowdhury et al., 2002). This research demonstrates that a cellular

automaton can be an effective tool for both signature-based detection of malicious data

and for pattern searching in large data sets. A cellular automaton is a Moore model1

finite state machine in which the next state of a node (cell) depends only upon the current

state of the node and the current states of neighboring nodes (Sarkar, 2000). Thus, the

next state of each cell can be computed independently of the next states of any others;

with sufficiently many computing elements, the next state of every cell can be computed

in parallel with all the others (Sommerhalder & Westrhenen, 1983). Because of the

1 In a Moore model finite state machine, the outputs are driven by the state register, and so can
change only when the state changes. This is in contrast to the Mealy model finite state machine, in which
the outputs are driven by combinational logic and can change as a result of changing inputs, independent of
a state change (Mano & Kime, 2007).

 2

inherent parallelism in cellular automata, this approach is potentially faster than other

methods of pattern recognition provided that the implementation is able to take advantage

of the parallelism.

While cellular automata have the advantages just described, there is a major

disadvantage: there is no programming paradigm that will produce a cellular automaton

for a specified task (Crutchfield et al., 1998). Instead, cellular automata for specific

applications must be discovered. Because the search space gets very large for even

simple cellular automata (Mitchell et al., 1996) a heuristic search rather than an

exhaustive search is needed. One mechanism for such a heuristic search is the genetic

algorithm (Reeves & Rowe, 2003).

This report describes cellular automata that can recognize specific patterns

relevant to computer security in constant time and in the presence of noise. Such cellular

automata are potentially applicable to searching of large databases. Heuristic search with

a genetic algorithm was used to discover the cellular automata described here.

Problem Statement

There is currently no way of identifying single packet network attack signatures in

less than approximately linear time. A network attack is the transmission of data to a

system with the intent of violating the system’s security policy (Bishop, 2003). A single

packet attack signature is a characteristic pattern that can be identified without reference

to the other packets that may accompany it. The time required by current methods to

check for characteristic patterns increases approximately linearly as the number of

signatures to be tested increases. However, if two or more patterns could be checked

simultaneously, the process of testing for those patterns would operate in constant time,

 3

O(1). Cellular automata have the property that a given number of cycles requires

constant time (Sommerhalder & Westrhenen, 1983). This report identifies a specific pair

of patterns that can be detected in constant time through the application of a cellular

automaton. However, it may not be the case that any arbitrary set of patterns can be

detected in constant time.

For known attacks against computer or network resources, malicious packets can

often be detected using signature analysis, matching incoming packets against patterns

known to represent attacks (Bishop, 2003). However, signature matching to detect

malicious packets is complicated by the fact that the contents of the packets may change

over time. Sometimes the changes are result of modifications by the attacker. Often,

malicious software is designed to be self-modifying, substituting equivalent instructions,

so the function of the malicious packet remains the same but the actual bits transmitted

change in an attempt to defeat signature-matching defenses (Vinod et al., 2009). These

perturbations appear as noise with respect to the signature (pattern) and the data being

checked (Erdogan & Cao, 2007).

Thus, the problem of detecting known malicious network packets through

signature analysis is a problem of approximate string matching. Navarro (2001) provides

an extensive survey of approximate string matching and shows that the best algorithms

operate in near linear time, O(n), where n is the size of the string to be searched.

Checking each signature pattern requires time O(n). As the number of signatures to be

checked increases, the time to examine each packet increases. So, for m signatures, the

time to check a packet is O(nm), linear time if n is constant. When the number of patterns

becomes large, the time to check each packet against every pattern also becomes large.

 4

This report describes the use of cellular automata for malicious packet detection,

including the degree of parallelism possible and the sensitivity and specificity of

detection.

Dissertation Goal

This report describes a proof of concept mechanism for comparing payload

portion of network packets to two patterns known to represent attacks through the use of

a cellular automaton. The mechanism detects such patterns even in the presence of small

changes in the actual packet and has constant detection time with respect to the number

of patterns checked. Specifically, adding a second pattern does not increase detection

time.

Implementation was on a standard personal computer without parallel

computation capability. However, the mechanism itself is capable of highly-parallel

operation if implemented in a parallel computing environment. Testing used the

MIT/DARPA Intrusion Detection System Evaluation data set, a publicly available data

set, as described in (Haines et al., 2001) and others.

Research Questions

Three principal questions were addressed by this research. First, whether it is

possible to identify cellular automata that can recognize the patterns of more than one

known network attack. Second, whether recognizing such patterns is possible in the

presence of noise or perturbation. Third, whether genetic algorithms are an appropriate

vehicle for identifying such cellular automata. Each of these questions has been

addressed separately by others. They are considered together here, and in the context of

intrusion detection and the recognition of patterns in the presence of noise.

 5

Cellular automata have been applied to the task of pattern recognition since

Smith’s work in 1971 (Smith, 1971) and to language recognizers, including the work of

Sommerhalder and Westrhenen (1983). The work of Wolfram (2002) has shown that

there exist cellular automata that are sensitive to initial conditions. Mitchell et al. (1994)

and Crutchfield et al. (1998) have successfully evolved cellular automata using genetic

algorithms and have shown that there exist cellular automata that reach known

configurations under certain conditions of initial input but not others. Wolfram (1994), in

describing three classes of cellular automata, observed that Class 2 cellular automata

function as filters. Wolfram (1994) suggested their application to enhancing specific

patterns in digital image processing. Ganguly et al. (2004) have used cellular automata in

pattern recognition.

A major advantage of using a cellular automaton for pattern recognition is the

ability to detect patterns in the presence of noise or perturbation (Maji et al., 2003).

Another advantage is the ability to operate in constant time (Ganguly et al., 2004;

Sommerhalder & Westrhenen, 1983) . A third advantage is that the nature of the cellular

automaton can be changed by changing the rule that is evaluated; changes to the

underlying implementation of the cellular automaton are not needed (Wolfram, 1994).

It follows from the characteristics of cellular automata as described by Wolfram

(1994) that, if there is a processing unit for each cell, the next state for every cell can be

computed in parallel. Thus, in the case of fully parallel computation, the time to detect a

pattern depends only on the number of cycles required to reach a recognizable state, and

not on the number of cells in the cellular automaton. For the patterns studied, the time to

recognize a pattern is also independent of the number of patterns recognized (Ganguly et

 6

al., 2004). Such a cellular automaton operates in constant time, O(1) because the number

of cycles necessary to identify a pattern is independent of the size of the string being

checked and of the number of patterns being compared. If fully associative comparison

is used to detect the state of the cellular automaton that signals recognition, then the

entire mechanism operates in constant time. However, operation in constant time is

possible only for the special case that there exists a cellular automaton that can detect a

specific set of patterns.

This report describes the use of a genetic algorithm to evolve a cellular automaton

that can detect two specific patterns, each of which characterizes an attack against a

network, even in the presence of noise or purposeful perturbation, and which operates in

constant time with respect to the number of patterns.

Relevance and Significance

The results reported here directly address the problem of identifying malicious

network packets by their signatures in the presence of perturbations and in constant time

for a given packet size regardless of whether one or two patterns were checked. The

resulting mechanism could be applied to network packets at the point that they enter a

protected computing system, namely at the network interface. It could also provide an

efficient, highly parallel mechanism for searching large data sets for known patterns. In

either case, the inherent parallelism of cellular automata allows all bits of the packet to be

examined simultaneously provided sufficient parallelism is available in the hardware

running the cellular automaton. Fully parallel implementation would require specialized

hardware, such as multiple graphics processor cards or an application-specific integrated

 7

circuit (ASIC). A detector for a 1,500 byte Ethernet packet requires 12,000 processing

elements.

This report describes a mechanism capable of identifying malicious network

packets at hardware speeds provided suitable parallel computation resources are

provided. Although it is in no respect a complete solution to the problem of protecting

networks and computing systems, it fits well with other current research in the area.

Specifically, it represents a contribution to distributed intrusion detection as described by

Rhodes et al. (2000) and Forrest et al. (1997), among others. Further, it contributes to the

area of NIC-based intrusion detection as described by Singaraju et al. (2005), Clark et al.

(2004) and Otey et al. (2003).

The result described is a proof of concept implementation in software of the

cellular automaton. Such a cellular automaton is capable of improved protection of

computer systems from identifiable attack signatures, even in the presence of noise. An

important result of this research is a detection algorithm that can be implemented in a

highly parallel fashion.

Barriers and Issues

The test data set used was the MIT/DARPA Intrusion Detection System

Evaluation (IDEval) test data set. There has been considerable criticism of the qualities

of this data set. Most of the criticism is of anomalies introduced through production of

synthetic data. The experimental team at MIT synthesized the test data rather than using

data captured from an operating network for considerations of privacy and the probability

that sensitive data would be captured and subsequently exposed to the intrusion detection

systems under evaluation (Mahoney & Chan, 2003).

 8

Mahoney and Chan (2003) identified eight simulation artifacts in the TCP or IP

headers and only three in the payload portion. Because the pattern recognition described

here focuses on the payload data, the header artifacts do not constitute a barrier to the use

of the data set.

The three payload-related simulation artifacts were all related to higher-level

protocol information carried as payload in the TCP/IP packets, and not the actual data

part of the payload. They included highly regular HTTP request headers, similar

regularity in SMTP requests, and the fact that the same version number was used in all

SSH requests (Mahoney & Chan, 2003) . Thus, the payload related artifacts did not

constitute a barrier to the use of the data set in the work reported here.

The critique by McHugh (2000) was more qualitative than quantitative but neither

his critique nor that of Mahoney and Chan (2003) identified simulation artifacts in the

data portion of malicious packets.

The data set used for validation is the largest publicly-available one which has the

payload portion intact. The other large data sets have had the payload portion stripped to

protect privacy (Mahoney & Chan, 2003). Because the research reported here focuses

entirely on the payload data, and as no anomalies have been identified in the payload

data, the MIT/DARPA IDEval data set is a suitable test vehicle for the reported research.

In spite of criticism, the MIT/DARPA IDEval data set continues to be used by others,

including Tavallaee et al. (2010) and Löf and Nelson (2010). The use of a publicly-

available data set will allow interested researchers to replicate and verify the results that

are reported here.

 9

Limitations and Delimitations

Because this is a proof of concept demonstration, search for cellular automata that

can detect malicious patterns ceased when a rule that detects two such patterns was

discovered.

The demonstration system was implemented on a single processor personal

computer running standard software. For that reason, although complete parallelism is

possible in computing the next state of cellular automata when there is one computing

element per cell, that parallelism is not present in the demonstration. However, the

demonstration shows the ability to detect two distinct patterns in a single execution of the

cellular automaton and with a fixed number of cycles of the cellular automaton. That is

the principal level of parallelism in the system. Parallel execution of next states is the

second level; the next states of all cells can be computed simultaneously. Evaluating the

state of the cellular automaton involves examining each individual bit. Accomplishing

that in constant time requires a fully associative comparison. The time for determination

of state does not increase when more than one pattern is recognized.

It is important to note in the context of the reported research that there exist

attacks which cannot be recognized at all through inspection of network packets. One

example is the ping flood, in which the attacked node is overwhelmed by a large volume

of ICMP echo requests. The purpose is to saturate either the incoming network

connection or the processing power of the node under attack. Another is the SYN flood,

in which the attacker creates a large number of half-open TCP connections. The

attacker’s purpose is to exhaust the node resources used to account for connections in the

process of being established (Stallings & Brown, 2008). In the first case, any one of the

 10

flood of pings is indistinguishable from an innocent diagnostic ping intended to

determine whether the node is operational and reachable. As with pings, a single SYN

packet cannot, by itself, be determined to be part of an attack. In neither case does

inspection of the network packets in isolation reveal the malicious intent of the attacker.

These attacks must be detected or prevented using some mechanism other than the one

described here.

This research was not intended to result in an entire intrusion detection system.

Instead, it provides the proof of concept of one component of a distributed intrusion

detection system that can respond quickly to specific events, and an approximate pattern

matching system that can be implemented in a highly parallel fashion.

Summary

The ubiquitous network connectivity that arose at the beginning of the twenty-

first century means that information systems are potentially exposed to attack from

anywhere in the world. One method of detecting attacks is by their signatures, specific

bit patterns that characterize known attacks. An important consideration in signature

checking is the speed with which it can be accomplished. In order not to cause a

bottleneck, such checking must operate at the speed of the network connection. This

research has identified a mechanism that can check for two distinct signatures

simultaneously and, with a suitable number of processing elements, can operate in a

highly parallel fashion.

 11

Chapter 2

Review of the Literature

Introduction

Information security is characterized by three properties: confidentiality, integrity,

and availability. Each property describes a state or condition of an information asset

(Bishop, 2003). Confidentiality is achieved when information assets are not disclosed

other than to those who are, by policy, authorized to have access. Integrity addresses the

trustworthiness of information, and exists when information in an automated system

agrees with the source from which it was derived and has not been incorrectly altered or

destroyed. Availability means that information assets are accessible to authorized

persons when and where needed, with suitable response time (Stallings & Brown, 2008).

The confidentiality, integrity, or availability of information assets can be

compromised through accident or by malicious intent. One refers to an “attacker” in

cases of intentional attempts to compromise the confidentiality, integrity, or availability

of information assets. According to Stallings and Brown (2008), the goals of the attacker

are duals of the three properties of information security, namely disclosure, alteration,

and denial of availability.

McCumber (1991) identifies three states of information in addition to the three

properties. They are processing, transmission, and storage. The work described here

addresses information during processing, transmission, and a subset of storage. Only

 12

information in online storage is addressed; that is, information that is accessible through

the execution of instructions on a computer processor and without manual intervention.

According to Pfleeger and Pfleeger (2006), a computer system is secure when it

does what it is intended to do and nothing else. Technical security breaches are the result

of a system being forced to operate outside its design parameters. Thus, technical

security breaches are the result of errors in specification, design, or implementation.

However, it is extraordinarily difficult to build non-trivial systems of hardware and

software that are free of error (Stallings & Brown, 2008). It is necessary to compensate

for potential errors in specification, design, or implementation through other means.

Some attacks against information assets involve intrusions into computer systems.

An intrusion sometimes involves the introduction of executable instructions into a

computer system with the intent of causing disclosure, alteration, or denial of availability

(Solomon & Chapple, 2005) by executing actions contrary to the security policy of the

system. Such executable instructions are called malicious software or malware (Bishop,

2003). Widespread Internet connectivity has made introduction of malicious software

through network connections a frequent vector of such attacks. However, network

connectivity is not the only such vector. Intrusions through malicious software can also

be accomplished through portable storage devices if physical access is available

(Stallings & Brown, 2012).

Although there are still people who attempt to intrude into computer systems for

reasons of curiosity or notoriety, an important motivator is crime for financial gain (Hald

& Pedersen, 2012). Although bank robber Willie Sutton denied in his autobiography that

he robbed banks “because that’s where the money is,” (Sutton & Linn, 1976), that is

 13

clearly a motivator today. Losses are difficult to quantify, but estimates in the billions of

dollars have been given (Florêncio & Herley, 2011). Financial gain can be direct, such as

use of credit card numbers or bank account credentials, or indirect, such as through the

sale of stolen credentials or rental of botnet services (Egele et al., 2012). Use of intrusion

for indirect gain has resulted in a very large underground economy (Zhuge et al., 2009).

Another motivator mentioned by Hald and Pedersen (2012) is cyber warfare,

intrusion carried on using the resources of a national government to further that

government’s ends. Chen (2010) points to the Stuxnet worm as a probable example of

cyber warfare based on the narrow choice of targets and the sophistication of the

software. Governments may also employ malicious software for surveillance.

Malicious software can be categorized by its behavior or by its intended effect.

For example, the terms “worm” and “virus” describe behavior. A worm is malicious

software that is independent and self-propagating. A virus is self-propagating, but

attaches itself to other software. “Spyware” and “bot” describe the intended effect.

Spyware covertly retrieves information from the system under attack and sends it to the

attacker. A bot is software that allows for covert remote control of the system under

attack. The phrase can also refer to a system that is covertly remote controlled. A botnet

is a collection of such systems (Egele et al., 2012)

There are several mechanisms for attempting to detect malicious software which

are described in detail below. One common mechanism is to compare the incoming data

stream to bit patterns known to characterize an attack (Egele et al., 2012). This is called

signature detection. Signature detection is the prevalent approach in commercial anti-

virus scanners (Stallings & Brown, 2012). Authors of malicious software attempt to

 14

avoid signature detection by obscuring their software or changing it over time (Vinod et

al., 2009).

The research reported here encompasses intrusion detection, detection of

malicious software through recognition of signature patterns, cellular automata and their

use in pattern recognition in the presence of noise, and the evolution of cellular automata

using genetic algorithms. The literature of each of these subjects is reviewed here.

Intrusion Detection

Intrusion detection can be host-based, in which case events that cause protection

state changes in host computers are analyzed, or network-based, in which case data

transiting a network are analyzed (Pfleeger & Pfleeger, 2006). This research was focused

on network-based intrusion detection, in which network traffic is examined for

indications of malicious activity, although it is equally applicable to searching databases

or files.

Bishop (2003) defines intrusion detection as monitoring to detect attempts at

violating the security policies of a system, regardless of whether the attempt is successful.

According to Bishop, intrusion detection systems have four goals: detecting a variety of

intrusions, including novel forms of attack, detecting intrusions within an appropriate

time frame, presenting an easy-to-understand analysis, and discriminating accurately

between attacks and normal traffic.

Bishop’s remarks on timely detection are particularly relevant to this research.

He observes that not all intrusion attempts need to be detected in real time, but that they

must be detected in time to take appropriate action. This research was predicated on the

proposition that some kinds of events, namely those that can result in the compromise of

 15

a computing system within seconds or minutes, should be detected and prevented in near

real time if possible. Doing so can save the expense and difficulty of recovering a system

that is potentially compromised (Bishop, 2003).

One goal of research into intrusion detection has been that of improving

performance. Clark et al. (2004) describe a hardware platform for detecting and

preventing intrusions. In this context, prevention implies detection in real time. Their

research involved von Neumann architecture network processors coupled with micro-

engine processors to run certain threads in parallel and a field programmable gate array

(FPGA) for pattern comparison. Otey et al. (2003) describe research into intrusion

detectors that are an integral part of network interface cards. Their algorithms run on von

Neumann-style processors. Sekar et al. (1999) attack the problem of improving

performance by improving pattern matching algorithms.

Another approach to improving performance is the use of content-addressable, or

associative, memory. Yu, Katz, and Lakshman (2004) describe gigabit rate pattern

matching hardware bases on ternary content-addressable memory, or TCAM. Each bit in

such a memory has three states, zero, one, and “do not care.” The latter state will match

either zero or one in the data packet. That allows for approximate string matching.

However, the position of the bits to be skipped must be known, and a successful match

depends on the position of the matching bits in the data packet.

Salmela et al. (2007) recognize the need for both good performance and the

ability to match multiple patterns simultaneously. In the absence of simultaneous

matching techniques, the time to analyze a packet becomes the product of the time to

check one pattern and the number of patterns. They address this problem using

 16

overlapping q-grams and report good performance even with large numbers of patterns.

Q-grams break a string into substrings, each of which is considered to be a single

semantic token. Overlapping q-grams are formed by taking a string of length q from each

consecutive position of the original text. In an example given by Salmela et al., an

overlapping q-gram of length two on the string “pony” produces the strings “po-on-ny.”

Zu et al. (2012) describe the use of regular expressions for intrusion detection.

Regular expressions can be evaluated using finite automata. They point out that the state

space of deterministic finite automats (DFA) expands rapidly to hundreds of thousands of

states as the number of patterns increases, making DFA impractical for intrusion

detection. Nondeterministic finite automata (NFA) can have more than one state

transition on an input character, which has the effect of reducing the state space. More

than one transition on an input character implies the possibility of multiple states being

simultaneously active. Zu et al. achieve the desired speed through the use of a GPU to

provide for parallel processing of multiple active states.

Q. Zhang et al. examine the problem of detecting encrypted network code. They

observe that the decryption routine itself must be directly executable, although it may be

obscured in a number of ways. The executable decryption code is often, but not always,

preceded by the NO-OP sled that is characteristic of buffer overflow attacks (Q. Zhang et

al., 2007).

J. Zhang et al. (2008) attempt to avoid false positives when checking signatures

for polymorphic worms through characterizing normal traffic. Their premise is that the

signature patterns in polymorphic worms are relatively small because a large part of the

code is deliberately masked. It is, therefore, possible that the same patterns could appear

 17

in normal traffic, resulting in false positives. They describe the characteristics of normal,

non-malicious traffic by identifying strings that occur frequently in normal traffic. They

call this a “white list.” They then develop signatures for malicious traffic by identifying

strings that occur frequently in the malicious traffic and are not on the white list. They

also analyze protocol characteristics, such as the traffic flow between source and

destination IP addresses. Having thus characterized malicious data, they then treat

normal network traffic as noise and attempt to distinguish the malicious data from the

noise.

Bishop (2003) describes three approaches to intrusion detection. Misuse

detection involves comparing signatures of known attacks against current activity. In the

case of network-based intrusion detection, this means network packets or sequences of

packets. Misuse detection can discriminate very precisely between patterns known to

represent attacks and other patterns. It will produce few false positives, but cannot detect

unknown types of attacks. Tavallaee (2009) observes that signature based detection is the

favored approach in current commercial intrusion detection products.

Misuse detection need not be based on explicit comparison of events to patterns.

Cannady (1998) describes training a neural network to recognize events characteristic of

misuse. Rhodes et al. (2000) apply Kohonen self-organizing maps to differentiate normal

and malicious traffic.

Anomaly modeling (Bishop, 2003) involves looking for deviations from a

statistical characterization of a normal operating environment. Unlike misuse detection,

anomaly modeling can detect previously unknown types of attacks, but at the cost of a

number of false positive indications that depend on the precision of the model.

 18

Specification-based detection (Bishop, 2003) compares current activity to a

formal specification of states “known not to be good” and reports exceptions. Properly-

modeled specification-based detection should be relatively immune to false positives, but

cannot detect attacks outside its specification model.

Another trend in intrusion detection is distribution of the detection functions. In

some cases this is an outgrowth of a detection method, as with detection engines

integrated into network interface cards. However, distribution is also driven by the

improvements available through specialization. Rhodes et al. (2000) describe the idea of

a “monitor stack” organized analogously to a network protocol stack. The principle is

that misuse can best be detected at the appropriate protocol level. That drives

specialization and the gains from specialization drive distribution of detection efforts and

concepts like the monitor stack.

Brooks et al. (2002) describe a model of information flow based on heterogeneous

and rule-heterogeneous cellular automata and conjecture that this model can be used for

anomaly detection through flow modeling. The research reported here also seeks to

apply cellular automata to detect anomalies. However the automata used in this work are

much simpler, with the intent that they could be implemented in hardware or in software

suitable for execution on computers with a high degree of parallelism, such as graphics

processing units. The idea that a “normal” pattern might be recognized by a cellular

automaton rule represents a different approach, although similar to the white list of J.

Zhang et al. (2008).

Crowcroft et al. (2003) characterize the state of the Internet in about 2002 as

being composed of a 10Gb/s core infrastructure with an access infrastructure of at most

 19

100Mb/s Ethernet. They recognize a cycle in which access speeds increase, necessitating

an increase in core speeds. In 2003 they observed the beginning of a trend towards

gigabit access speeds. We are currently on the access speed part of the cycle, with access

speeds trending from the 100 Mbps connections of a few years ago to gigabit

connections.

If a goal is detection quickly enough to discard malicious packets and so prevent

intrusion, the bar is raised by the increase in access speeds. A reasonable assumption is

that most (but not all) intrusion attempts will come from outside. In that case, “real time”

means at the signaling speed of the access connection. Today, that means gigabit rates.

Current intrusion detection systems are operating at the edge of their capabilities. It will

be necessary to find improved mechanisms to safeguard the next generation Internet

(Otey et al., 2003).

Cellular Automata

A cellular automaton is a discrete, deterministic, dynamical system (Wolfram,

1984). It consists of a lattice, or “game board,” of n cells, an alphabet k of possible states

for each cell in the lattice, a generator function, and an initial condition. The lattice and

alphabet reflect the discrete nature of cellular automata. The generator function, also

called a rule, specifies the next state of each cell in terms of the current state of the cell

and the current states of its near neighbors (Wolfram, 2002). It is this property that

allows fully parallel implementation of cellular automata. Sommerhalder and

Westrhenen (1983) view one-dimensional cellular automata as a collection of Moore

model finite state machines, one for each cell of the cellular automaton. Such a

 20

collection of finite state machines can be directly implemented in hardware, although the

cellular automata used in this research were simulated in software.

“Near” is defined by a radius r. The generator function examines each cell and its

r neighbors on either side. The radius is generally small; cellular automata operate on

local interactions only. The cellular automaton described below has r = 1, so that the

generator function considers the cell itself and its left and right neighbors. The initial

condition is the set of states at time t0. Even extremely simple cellular automata such as

these can exhibit complex behavior (Wolfram, 1994).

Binary cellular automata are those with alphabet k = 2, only two possible states

per cell. Other numbers of states, or alphabets, are equally possible. Cellular automata

for which the lattice is one cell high by n cells wide are one-dimensional cellular

automata. A cellular automaton in which the number of states is different for different

cells is called heterogeneous. If different cells have different generator functions, the

cellular automaton is called rule-heterogeneous (Wolfram, 2002). Given these variations,

the descriptions of cellular automata can become quite complex.

The research described in this report focused on implementations that can take

advantage of parallel computing using simple computing elements, and so employed

binary, one-dimensional, rule-uniform cellular automata with r = 2.

A striking feature of cellular automata is that some of them are self-organizing.

Some cellular automata “evolve” to the same patterns even when given random and

differing initial states (Wolfram, 2002). Cellular automata constructed from such rules

exhibit a lack of sensitivity to initial conditions that may be interpreted as immunity to

noise in initial conditions (Wolfram, 2002). For that reason, a cellular automaton used in

 21

the way that is described in this report intrinsically does an approximate string search;

perturbation of a number of bits in the target does not significantly impair the ability of

the cellular automaton to recognize the pattern.

Cellular automata that reach a particular, recognizable state in this way are said to

relax, even though the pattern need not be repeating and need not converge to any

particular value (Wolfram, 2002). A state to which a cellular automaton relaxes is called

a basin of attraction by Ganguly et al. (2002). They point out that a particular cellular

automaton may have more than one basin of attraction, and in that way recognize more

than one pattern. In the trivial state of relaxation, each cell repeatedly produces either

zero or one. However, any identifiable pattern meets the definition of relaxation and of a

basin of attraction.

Other cellular automata are very sensitive to initial conditions; a small

perturbation in initial conditions can lead to large differences in results (Wolfram, 2002).

It is this sensitivity to initial conditions that has made possible the differentiation of

network packets reported here.

Wolfram (1994) describes a class of one-dimensional cellular automata in which

the alphabet is binary (0/1) and the generator function F is:

where a is the value of a cell in the cellular automaton, i is the position of the cell, and t is

a discrete time interval or generation number. This generator describes a rule for

producing the next generation of cells that looks only at the current cell and its left and

right neighbors, so r =1. Since the alphabet of this class of cellular automata is binary,

there are only eight possible inputs to computation of the next generation: 000, 001, …

 22

110, 111. Each specific rule is characterized by an eight-bit number, one output bit for

each of the possible input combinations. That means there are 28=256 distinct cellular

automata that can be described with this general function and a binary alphabet.

Wolfram’s (1994) convention of referring to these rules by their characteristic output

function has been widely adopted, so one speaks of rules zero to 255 for such a cellular

automaton.

Chaudhuri et al. (1997) describe how a generator function like that given by

Wolfram (1994) can be implemented with combinational logic and a state register, but

also show how the generator function can be implemented in hardware or software as a

table look-up. For example, the combinational logic for rule 90 is:

The same rule can be represented as a table look-up as follows:

Neighborhood: 111 110 101 100 011 010 001 000
Next state: 0 1 0 1 1 0 1 0

The “neighborhood” represents the bit whose next state is to be determined, together with

its left and right neighbors. The three bits of neighborhood can be used as an index into a

table that holds the next state. For cellular automata of r = 1, the neighborhood is three

bits and the table has eight entries, as shown. When r = 2, there are five bits and 32 table

entries. Note that the zero value of the neighborhood refers to the low-order bit of the

rule. The table can be implemented in software, as in this research, but it could also be

implemented in hardware as a control store.

Some of the cellular automaton rules examined by Wolfram (2002) are

symmetrical about one another, and some, like rule zero, degenerate immediately. There

are 88 distinct and interesting cellular automata of this type. If there were only 88, or

 23

even 256, possible binary, one-dimensional cellular automata, one could determine by

exhaustive search whether any of them can partition network packets into normal and

malicious categories. However, there are many other possible binary, one-dimensional

cellular automata. Looking at the two nearest neighbors on each side, r = 2, (five bits in

total) gives a generator function of five bits, 25 = 32 input values and 232 possible

combinations. In general, the number of bits in the rule space is b = 22r+1 and the number

of possible rules is 2b (Mitchell et al., 1996). Thus, one goes from 256 rules when r = 1

to 232 rules when r = 2 and 2128 rules when r = 3. Other generator function classes and

different combinations can raise the number of possible combinations exponentially.

Regardless of the choice of r, cellular automata consider only nearby cells. It is for

precisely this reason that the characteristics of malicious packets can be encoded in a

cellular automaton rule. It also makes imperative the use of an approach like genetic

algorithms; an exhaustive search of such a large rule space is impossible in a reasonable

amount of time (Mitchell et al., 1996).

Cellular Automata for Pattern Recognition

Although the use of cellular automata for pattern recognition dates back to

Smith’s work in 1971, there is also current research in the area, particularly with respect

to error correction, approximate matching, and the ability of a single cellular automaton

to detect two or more patterns. Each of these areas is relevant to the results reported here.

Chady and Poli (1997) worked with small feed-forward cellular automata. Feed-

forward cellular automata are two-dimensional cellular automata for which the update

rule allows propagation in only one direction. One can visualize such a cellular

automaton as a rectangle in which the input bits are applied on the left and the result or

 24

output bits appear on the right after a number of cycles. Chady and Poli applied small

(8×8 and 16×16) feed-forward cellular automata to associative memory look-ups in the

presence of noise. Their cellular automata can recognize up to four patterns with error

correction capability of up to 20% noise applied to the input. Their cellular automaton

rules were found using genetic algorithms, as is the case for this research.

Chady and Poli observe that the 8×8 cellular automaton performs better than the

16×16 version and conjecture that it is because the portion of the pattern analyzed by a

single cell is greater than the noise applied to the input (Chady & Poli, 1997).

Brewer (2008) shows that the propagation property for cellular neural networks

described by Chua and Yang (1988) also applies to cellular automata. The propagation

property states that, as the number of cycles increases, each cell of a cellular automaton is

influenced by an increasingly large area. This is a helpful counter to the conjecture of

Chady and Poli because, as the number of cycles of the cellular automaton increases,

each cell is influenced by an increasing portion of the input. The propagation property

does seem to suggest that the number of cycles needed for pattern recognition may

increase with increasing input sizes. For the research reported here, operation in four or

eight cycles was found to be effective.

More recent work by Saha et al. (2002), Maji et al. (2003), and Ganguly et al.

(2004) describe one-dimensional cellular automata that can recognize patterns in the

presence of noise. The cellular automata described in these papers are rule-

heterogeneous, that is, each cell may have a different generation rule. Most rules appear

to be hand-crafted although the authors suggest finding appropriate rules using genetic

 25

algorithms. The paper by Saha is specific to the discussion of evolving such rules

through use of genetic algorithms.

Latif et al. (2010) have shown that a classification mechanism based on cellular

automata for functional magnetic resonance imaging brain scans produces better results

than singular value decomposition (SVD). The alphabet of the cellular automaton

consists of the voxels of the fMRI image and the transition rule is based on the voxel

distance of a cell’s adjacent neighbors. The cellular automaton approach also provides

better time performance than SVD. Because sorting the voxels is required, the cellular

automaton approach requires time O(nlog2n) while SVD requires O(n2).

Kundu and Roy (2010) suggested using cellular automata with multiple basins of

attraction as classifiers for Web pages. Their paper describes a classifier for a relatively

small lexicon and applies rule-heterogeneous cellular automata to the problem.

Brewer (2008) also points out that homogeneous cellular automata are translation

invariant; that is, the position of a feature in the input space will not affect how it is

processed. The implication is that rearrangement of the features of a malicious packet

may not prevent it from being recognized as such. Ganguly et al. (2004) observe that

“the time to recognize a pattern is independent of the number of patterns stored.” Adding

more signatures to be compared does not increase the time to perform the check provided

the number of cycles of the cellular automaton can be held constant.

Use of Genetic Algorithms to Evolve Cellular Automaton Rules

The generator function described in Wolfram (1994) and given earlier in this

paper defines 256 different cellular automata. Each rule can be specified as an eight-bit

number and permuting the number in some way generates a new rule.

 26

Matthew Cook (2004) showed that there exist cellular automata capable of

universal computation by showing that the cellular automaton defined by rule 110 is

equivalent to a universal Turing machine. According to Church’s conjecture, every

computable function can be computed by a Turing machine (Wood, 1987), so a proof that

a cellular automaton is equivalent to a universal Turing machine provides the strongest

possible evidence that the cellular automaton is capable of universal computation.

According to Crutchfield et al. (1998), even though there exist cellular automata

capable of universal computation, there is no satisfactory programming paradigm for

harnessing the inherent parallelism of cellular automata. Instead, programs for cellular

automata are discovered through three major approaches. The first is hand-crafting on an

ad hoc basis. The second is through the use of programs that simulate serial processes

without taking advantage of the inherent parallelism of cellular automata. Finally,

cellular automata for specific applications can be evolved using genetic algorithms. This

research has taken explicit advantage of the parallelism of cellular automata by using

genetic algorithms to evolve cellular automata that effectively classify malicious network

packets.

Mitchell et al. (1994) observed that a cellular automaton that considered a

neighborhood of seven cells could be represented as a 128-bit number. They considered

this number to be the chromosome to be manipulated by the genetic algorithm. The size

of the chromosome varies as 2b where b is the number of bits needed to specify the rule.

Even relatively large neighborhoods yield chromosomes of tractable size. A

neighborhood of eleven cells (r = 5, eleven bits, and 211 rules) can be specified using a

2,048 bit chromosome to explore the 22048 possible values. Notice also that a rule-set

 27

defining a neighborhood of n cells in a cellular automaton of given radius subsumes all

rules of neighborhoods of smaller sizes; it is only necessary to encode zeroes for those

combinations that are never used (Wolfram, 2002).

 Mitchell et al. (1994) and Crutchfield et al. (1998) experimented with evolving

cellular automata to do density classification by permuting the characteristic number that

defines a cellular automaton’s rule. They used the hand-crafted Gács, Kurdyumov and

Levin (GKL) rule as a benchmark. The GKL rule has two basins of attraction; it relaxes

to all zeros or all ones. Mitchell et al. (1994) describe epochs of innovation where the

strategy of the genetic algorithm apparently changes. Although the cellular automaton

produced by the genetic algorithm got successively better at density classification, it

never achieved the effectiveness of the GKL rule. Mitchell et al. (1994) point out that the

GKL rule was not invented for density classification; it was part of a study of phase

transition and computation in one dimension.

The fitness function used by Mitchell et al. (1994) is that the cellular automaton

relaxes to all ones when the input density is over one half and to all zeros otherwise. This

is a very stringent condition. Cellular automata may relax to many other identifiable

states. It is not even required that such a cellular automaton relax at all, provided it

achieves a state that can be recognized easily.

The experiments reported here were designed to take advantage of the two

sources of parallelism described above: the fact that a single cellular automaton is

capable of recognizing more than one pattern in a single set of operations of the cellular

automaton, and the fact that cellular automata are inherently parallel mechanisms that can

be readily implemented using parallel processing hardware.

 28

Realization of Cellular Automata in Software or Hardware

A cellular automaton can be realized in software by programming the generator

function as described by Wolfram (1994) and iterating over the cells of the cellular

automaton, and that is the approach used in the proof of concept reported here. However,

doing so essentially serializes what should be a highly parallel operation. The parallelism

can be preserved if a cellular automaton of n cells is evaluated on a computer with n

processing elements because it is of the nature of a cellular automaton that the successor

to each cell can be evaluated independently of the others (Sarkar, 2000). That suggests

the possibility of a realization of the cellular automaton in a way that takes full advantage

of the parallelism. Such a cellular automaton would require 12,000 computing elements

to process a 1,500 byte Ethernet packet. Modern graphics cards include thousands of

graphics processing units (GPUs). Programming paradigms are available to take

advantage of the large number of GPUs and to increase the number of GPUs available by

using more than one graphics card (Sanders & Kandrot, 2011). An implementation with

12,000 computing elements is very much within reach using commercial hardware. Such

an implementation is also applicable to searching files or databases for target patterns.

Even rule-heterogeneous cellular automata with relatively large radii are simple

and regular. Binary, one-dimensional cellular automata are the simplest and most regular

of all. The next state of any cell can be computed with combinational logic consisting of

only a few gates. Each computing element takes n bits of input, determined by the radius

of the cellular automaton, and produces a single bit of output, the next state.

Only a single bit of state storage is needed per cell (Porter & Bergmann, 1999).

This need not be a conventional memory; all that is needed is a latch, a bi-stable device

 29

capable of storing a single bit (Katz, 1994). The next state of every cell can be computed

simultaneously. The duration of the clock cycle is dictated only by the combinational

logic settling time. Thus, it is reasonable to project that a cycle of such a cellular

automaton could be completed in a few nanoseconds or less.

These characteristics make simple cellular automata ideal for implementation in

very large scale integration. Chaudhuri et al. (1997) describe, among many other

applications, the use of cellular automata to implement built-in self-test functions for

other VLSI circuits. Because of the small demands for power and chip area made by

cellular automata, it would be practical to include such an automaton in the network

processing chips of network interface cards. On-chip attachment to the de-serialization

shift register would make the input packet available to set an initial condition with very

little circuitry and no time penalty. A stand-alone implementation could be produced

using an application specific integrated circuit (ASIC).

For prototypes or lower volumes, an alternative is the field programmable gate

array, or FPGA. Porter and Bergmann (1999) describe the use of cellular automata

implemented in FPGAs for evaluating fitness functions in genetic algorithm processing.

Clark et al. (2004) and Singaraju et al. (2005) incorporated FPGA hardware in their

hardware-based intrusion detector. An FPGA implementation of cellular automata was

described by Sommerhalder and Westrhenen (1983).

Regardless of whether ASIC, VLSI, or FPGA technology is chosen, an important

feature of a hardware-based cellular automaton is that it can be made reconfigurable if a

control store consisting of a few bits per cell is provided. The size of the control store is

determined by the maximum radius of the cellular automaton. A cellular automaton with

 30

r=2 has 25=32 possible input states, so a 32 bit control store is needed. If an input to the

generator function is provided for each of the neighbors of a particular cell, AND gates

connected to appropriate bits of the control store can select which neighbors participate in

the generation function. In such a design, the control store is used only to drive

combinational circuits, and not as a conventional memory, so there is no memory cycle

and no time penalty other than one additional gate delay to making the cellular automaton

reconfigurable (Clark et al., 2004).

The ability to reconfigure a hardware cellular automaton means that if a more

effective pattern matching rule is developed, hardware already in the field could be

upgraded to the newest configuration. A possible disadvantage is that the control store

itself must now be protected from attack.

 31

Chapter 3

Methodology

Introduction

A series of experiments was conducted during the development of the idea paper

for this research to validate that at least some types of malicious network packets can, in

fact, be discriminated from ordinary network traffic using cellular automata. Wolfram

(1994) uses k to refer to the number of values possible for a cell in a cellular automaton,

and r to refer to the number of adjacent cells that participate in computation of the next

state. A binary cellular automaton has k = 2. When r = 1, the cell and its immediate left

and right neighbors participate in the computation of the next state.

The preliminary experiments were confined to cellular automata of form k = 2 and

r = 1. There are 256 such cellular automata (Wolfram, 1994), a sufficiently small number

to allow for exhaustive testing. A cellular automaton can be considered to be linear, in

which case the cells before the first and after the last are assumed to contain zeros, or

circular, in which case the first and last cells are assumed to be adjacent (Wolfram, 1994).

A one-dimensional cellular automaton simulator of 80 cells and capable of

displaying 80 cycles was programmed. The simulator took parameters of rule, initial

state, and whether the cellular automaton was linear or circular. The rule is specified as a

decimal number 0...255, each representing one of the 256 possible rules for k = 2 and r =

1. The initial state is entered as up to 10 pairs of hexadecimal digits. Hexadecimal input

was chosen to allow for binary data in the packets to be examined.

 32

The two attacks simulated were a buffer overflow attack and the backslash attack

against an Apache HTTP server.

Detection was deemed to be successful if the cellular automaton reached a

detectable state when presented with a packet containing the attack signature, and not for

other packets.

Because it was easy to do so, all 256 possible one-dimensional cellular automata

of type k = 2 and r = 1 were tested. Class 1 cellular automata are those that quickly reach

a stable state regardless of input (Wolfram, 2002). As expected, the class 1 cellular

automata and several others, such as the identity rule (rule 204) were not useful in

differentiating potentially malicious packets from others. However, other rules gave

more hopeful results.

The first test was for a simulated buffer overflow attack. For testing purposes, it

was assumed that the attack is characterized by a “NO-OP sled” of four or more i86 no-

operation instructions, hexadecimal 90 (Berghel, 2003).

Rule 90, which Wolfram (1994) classifies as an additive class 3 rule, produced a

line of one-bits in the third cycle when presented with a string of hexadecimal 90. Not

surprisingly, it reacted the same way when presented with a string of hexadecimal 09, but

did not react in this fashion for other repeated values, including hexadecimal 80 and A0.

Thus, rule 90 was shown to indicate the presence of hexadecimal 90, and so to indicate

the presence of the NO-OP sled, but gave a false indication if confronted with hexadecimal

09. Rule 94 behaved similarly.

At first inspection, rule 102 also appeared to behave similarly. However, what

was being detected was repetition, and not a specific sequence of characters. Rule 104

 33

similarly detected repeating characters. Rule 126 appeared to detect any repeating

pattern.

Rule 129 built an inverted triangle of all one-bits under the part of the packet

containing hexadecimal 90 in the fifth cycle. That area was all zeros in the previous

cycle. Further, the left bits of the pattern were discernibly different between 90 and 09 if

the digit to the left is non-zero. Thus, rule 129 detected the NO-OP sled with fewer false

positives than rule 90. Rule 161 behaved similarly to rule 129.

A second round of preliminary experiments tested data from the backslash attack.

This attack is effective against some HTTP implementations on operating systems that

use the backslash as a path delimiter, e.g. Microsoft systems, and is not the same as the

“back attack” discussed later. It depends upon the use of backslash characters to traverse

the file system tree to reach areas outside the server’s document root. The backslash

characters can be explicit or URL-encoded. The ten-byte string, “a.u\..\..\” was tested

against the 256 cellular automata. Rule 183 detected this pattern by producing a very

high ones-density in the area of the backslash-dot data in cycle four. This rule was

effective for both linear and circular cellular automata.

When the backslashes were URL-encoded, that is, represented as %5C, rule 183

again produced a high density of one-bits in cycle four. In addition, rule 62 produced a

high density of one-bits in cycle 1. Other encodings of the backslash attack are possible,

for example, %255C where %25 encodes the percent sign (Mahoney & Chan, 2003).

Only the two encodings mentioned above were tested.

The preliminary testing described above tested patterns associated with attacks

using the simplest possible binary, one-dimensional cellular automata, namely those with

 34

r = 1. The actions of the cellular automata were not codified in recognition rules. The

tests did not recognize actual attack signatures nor was there any attempt to recognize

more than one pattern with a single cellular automaton rule. Rather, those tests provided

motivation for the research reported here.

The principal goal of the research reported here was the discovery of cellular

automaton rules that can distinguish malicious traffic within the context of a narrow

definition of “malicious packet” and for more than one kind of malicious packets.

Discovery of two such rules, as reported below, establish the proof of concept. The

resulting mechanism can be used for either offline searching or real-time identification of

the specified patterns.

As explained in the research methodology below, the experimentation reported

here was conducted with a rule-uniform, binary, one-dimensional, linear cellular

automaton. Much more complex cellular automata are possible, but the research

objective was to discover rules that could later be implemented readily in hardware or

using parallel processor computers. That objective implied a simple cellular automaton

and an evaluation function that could be computed in a fully-associative manner, for

example, using only combinational logic.

Overview of Research Methodology

The research approach used was construction of software prototypes and

demonstration that the prototypes addressed the research questions outlined in Chapter 1

above (Baskerville et al., 2009). Experimentation concluded successfully with a proof of

concept implementation of a cellular automaton that could detect either of two actual

attacks from the experimental data set.

 35

Wolfram (1994) and others described the parallel evaluation of cellular automata.

That parallelism is important in a fully-functioning detector, but the work of others made

it unnecessary to demonstrate it experimentally. Instead, a software implementation was

used to demonstrate that the concept was viable.

Because the use of genetic algorithms to find suitable cellular automata is part of

developing a detector, not a part of its operation, it should remain a software component

even if a hardware-based detector were developed. The implementation in hardware of

the detector is left for future research.

This research was conducted in four phases. Phase one was the specification and

establishment of test data. Both normal and malicious test data packets were taken from

the DARPA Intrusion Detection System Evaluation data for 1998, described by Haines

(2001). The suitability of this data was discussed in Chapter 1. This is the same type of

test data set used by Rhodes et al. (2000) and others and was chosen for this project

expressly because it has already been shown that it is possible to distinguish between

normal traffic of this type and malicious traffic. What was tested here is the ability to

achieve similar results using a cellular automaton as the detector.

Phase two was implementation of the cellular automaton and genetic algorithm

test beds. The cellular automaton test bed was produced first. Experimentation began

with the simplest type of binary, rule-uniform, linear cellular automaton. Initial testing

was performed using binary, rule-uniform, linear cellular automata with r = 1 and 256

cells. This is the same configuration used by Wolfram (2002), and correctness of the

implementation was confirmed by duplicating several of Wolfram’s results.

 36

The preliminary experiments described above had shown promise in detecting

malicious network packets, but also showed that a cellular automaton with r = 1 was not

sufficient to the task. The experiments described here began with a binary, rule-uniform,

linear cellular automaton with r = 2, with the intention of trying successively larger

values for r until a successful rule was found. It was not necessary to go beyond r = 2.

This research has shown that a cellular automaton of r = 2 can reliably detect the two

malicious packets selected from the test data. Had that not been the case, further

experimentation would have been conducted using r = 3 or with other forms or cellular

automata. Recommendations are in Chapter 5.

The software used for genetic algorithm development was JGAP, the Java Genetic

Algorithm Program, developed by Klaus Meffert, Neil Rotstan, and others (Hall, 2013).

It was chosen over other genetic algorithm platforms for a number of reasons. It is under

active development, the version that was used for this research having been released in

April, 2012. It is compatible with current releases of the Java platform. It is free

software, licensed under the Free Software Foundation’s lesser GPL and available from

SourceForge. Most important, it is highly modular, released as source code as well as

compiled classes, and amenable to modification by the researcher. The JGAP fitness

function is a class that receives a chromosome and returns a fitness number. The fitness

function class was developed in Java as part of this research and is described below.

In the default configuration of JGAP, the crossover operation randomly selects

35% of the population and produces two new individuals from each crossover operation,

using a random crossover point. By default, mutation is applied to 1/12 of the

population, so the probability of a gene being mutated is 1/12 × p × c where p represents

 37

the population size and c represents the chromosome size (Hall, 2013). The selector is

elitist and returns the top 90% of the population as ranked by fitness. After selection, the

top 10% of elements by fitness are cloned to return the population size to 100% (Hall,

2013).

The default values supplied by JGAP were used in these experiments. The

chromosome used consisted of a single gene, the cellular automaton rule to be evaluated.

The datatype of the gene was defined to be a 32-bit integer with a range of –231 to

+231−1, allowing all 32 bits to be varied. The population size was set to 100 and the

number of evolutions was set to 50. Initial populations were selected randomly by JGAP.

As there was only one gene in the chromosome used, crossover is not meaningful in the

experiments reported here. The fitness function used was developed for this research and

is described below.

Although parallel implementations of genetic algorithms are possible

(Shonkwiler, 1993), parallelism in the operation of the genetic algorithm engine was not

required because the operation of the genetic algorithm is not a part of the actual detector,

only a tool to find suitable cellular automata. Therefore, performance of the genetic

algorithm is not relevant to the operational performance of the pattern matching engine.

Each run of the genetic algorithm took 45 to 60 seconds on the equipment used.

 The third phase of research was development of a fitness function. Previous

work, such as the density classification work by Crutchfield et al. (1998), used relaxation

to a state of all ones or a state of all zeroes after a specified number of iterations, in their

case, 320. This is quite a restrictive measure. Sarkar (2000) suggested that a single bit is

sufficient to represent an accepting or rejecting state, provided it is reliably on or off.

 38

Although fitness functions could possibly have been determined by cluster

analysis, the only suitable functions are those that can be computed by combinational

logic or direct comparison. That follows from the research goal of finding an approach

that would later be suitable for implementation in a highly parallel fashion.

The first attempt at a fitness function selected for a cellular automaton that

generated high ones densities for target packets and much lower ones densities for

packets not in the target population. Subsequent refinement produced a fitness function

that produced a particular range of ones densities for the target packets and ones densities

outside that range for packets not in the target population.

The fourth phase was testing the cellular automaton rules, evaluation of their

effectiveness, and iterative refinement of the fitness function. Inputs to the test runs were

a cellular automaton rule and associated evaluation rule, a cycle limit, and data packets

from the MIT/DARPA IDEval data set. Initial testing was performed using only the

Friday, week two test data of the IDEval data set. The test bed program read the entire

data set and evaluated each packet according to the cellular automaton rule and also using

string comparison rules hand-crafted to detect the specific attacks chosen for the

demonstration. Use of such string comparisons was necessary to allow evaluation of the

effectiveness of the cellular automaton as detector by providing an independent check

against the data. Initial experiments were performed using the back attack packets from

the Friday week two data of the training data set. When back attack packets could be

detected reliably, the IMAP attack packet from the same data set was added.

 39

Specific Research Approach

The MIT/DARPA IDEval data set from 1998 was used as the source of test data.

Rationale for selection of that data set has been described in Chapter 1. The data set itself

is described in Haines (2001) and in Lippmann (2000).

The JGAP program was installed and tested using the makeChange example fitness

function that is provided with JGAP. A cellular automaton simulator program using the

table look-up approach described in Chapter 3 was written and validated by duplicating

several of Wolfram’s (2002) results using cellular automata with r = 1. Once validated,

the cellular automaton simulator was extended to 12,000 cells, representing the 1,500

bytes of an Ethernet packet, and radius r = 2. Although the cellular automaton

accommodates a full 1,500 byte Ethernet packet, only the payload data is used for pattern

matching.

Because the chosen test data are in TCPDUMP2 format (Haines et al., 2001), Java

programming to read that format was required. The most direct approach appeared to be

the use of the SJPCAP program, published anonymously on Google Code. Testing showed

that SJPCAP did not correctly account for whether the files to be parsed stored integers in

big endian or little endian format, and in fact, mixed modes between 16 bit numbers

(little endian) and 32 bit numbers (big endian). According to Mahoney (2003), some of

the MIT/DARPA IDEval files are in big endian format and some are in little endian

format. It was necessary to correct SJPCAP to handle endian-ness properly based on the

“magic number,” 0xA1B2C3D4, that is included for that purpose in the global header

2 TCPDUMP and Ethereal, later renamed Wireshark, are utility programs for capturing network
traffic, saving files of captured traffic, and examining such files. They are described and compared by
Fuentes (2005).

 40

found in TCPDUMP files. There was already a defect report about conversion of shortInt

being little endian on the Google Code page for SJPCAP. As a result of this research, the

Google Code page has been updated with a brief discussion of endian-ness of input files

and correct use of the “magic number.”

Characteristics of the Malicious Packets

Two types of malicious, or attack, packets were chosen for experimentation.

They are called “back attack” and “IMAP attack” in Lippmann (2000) and in the

MIT/DARPA documentation. Attack packets in the Friday, week 2 training data set were

inspected with Wireshark to determine their characteristics.

Each IMAP attack pattern used in this research was a single packet consisting of

the string “301 LOGIN” followed by 0x22 and the series of 0x90 bytes that characterize

the NO-OP sled of a buffer overflow attack. Shell code following the NO-OP sled leads to a

root compromise. The IMAP attack packet used in the genetic algorithm was packet

number 175,454 from the Friday, week two training data. That is the only IMAP attack

packet in that particular data file.

The back attack is a denial of service attack effective against versions of the

Apache web server in use at the time. Despite the name of the attack, the 0x2f character

is the forward slash. The back attack consists of two slightly different types of packets:

initial packets and continuation packets. Initial packets consist of the string “GET /cgi-

bin” with the remainder of the packet filled with 0x2f characters to a total of 1,460 bytes.

Continuation packets consist of HTTP continuations with up to 1,460 bytes of 0x2f

characters. When a network attack consists of multiple packets, as with the back attack,

 41

it is important to detect the first packet so that it and subsequent packets of the attack can

be blocked.

Non-Target Packets

Two packets were chosen arbitrarily from the Friday, week two training data as

“non-target” or non-malicious packets used for comparison in the genetic algorithm. The

first was packet number 825,453, a relatively short HTTP GET packet. The TCP packet

length was 328 bytes. The second was packet number 1,819, a full-length packet of text

HTML markup.

Development of Fitness Functions

Although the fitness function was refined iteratively during experimentation, all

fitness functions used were based on the ones density of the cellular automaton after a

predefined number of cycles. Only binary (k = 2) cellular automata were tested, so the

ones density is the number of one-bits in the cellular automaton’s cells after the final

cycle divided by the number of cells. It is important to note that for the rules which were

developed, the packets under test are of variable length, from a few bytes to 1,460 bytes.

The cellular automaton under test was of fixed size, 12,000 cells, equivalent to the 1,500

byte size of an Ethernet frame. When a packet is loaded into the cellular automaton,

remaining bits on the right are filled with zeros. The ones density calculation is over all

12,000 bits of the cellular automaton, and not over the area defined by the packet. The

propagation property described by Brewer (2008) says that, as the number of cycles of a

cellular automaton increases, the number of cells influenced by each initial bit also

increases. After some number of cycles, the fact that a portion of the cellular automaton

was filled with zeros is much less significant.

 42

It is not enough for the cellular automaton to reach an identifiable state in the

presence of a target packet. It must also reach some distinctly different state in the

presence of non-target packets. So, cellular automata must be tested by the fitness

function against both target and non-target samples from the data set. Development of

fitness functions began with the hypothesis that the ones density of target packets would

be different from the ones density of other packets. Experimentation confirmed that

hypothesis for the two types of target packets tested.

Initial testing was conducted using only a back attack packet and a fitness

function that attempted to find a rule that produced a ones density of less than 0.1 or

greater than 0.9, i.e. nearly all ones or nearly all zeros for the target packets, and a density

between 0.1 and 0.9 for the non-target packets. The same cellular automaton Java class

used for pattern matching was used to determine densities in the fitness function. The

number of cycles was adjusted iteratively, starting with 64 cycles and adjusting

downward. A fitness function with ones density of target packets less than 0.1 or greater

than 0.9 proved to be ineffective when tested against the full data set.

The first refinement was to look only for very dense configurations of the cellular

automaton, with ones densities > 0.9 for the target packets and less for non-target

packets. Although this appears to be more restrictive than the first fitness criterion, the

genetic algorithm generated more effective cellular automaton rules.

A fitness function based on the average Hamming distance between target and

non-target packets after operation of the cellular automaton was considered. This

approach was discarded because of the computational effort needed to evaluate the result.

 43

The fitness function that was adopted for the experimental phase was a density

band approach. The assumption that the target packets would have a ones density

different from that of the non-target packets was carried forward. The difference from

previous attempts was the hypothesis that the target packets would occupy a density

range of Tmin to Tmax, with few or no non-target packets also generating densities within

that range. The fitness function also computed Nmin and Nmax, the minimum and

maximum ones densities of the non-target packets. Using this approach, the genetic

algorithm generated the cellular automaton rules discussed in the next chapter. The

fitness function used was Tmin – Nmax for Nmax < Tmin and Nmin – Tmax for Tmax < Nmin with

the added condition that no non-target’s ones density be allowed to fall between Tmin and

Tmax. If that occurred, fitness was set to zero. This revision of the fitness function

differentiates ones density of target packets from that of non-target packets, but without

the artificial high or low density requirement of the prior attempts. In addition to

computing a fitness number, the fitness function logged the density values for later use.

Testing of Generated Cellular Automaton Rules

All IDEval test data containing either back or IMAP attacks similar to the packets

selected for testing were used for testing. Each day’s TCPDUMP file was first scanned by a

program that counted and identified the two attacks under study using hand-crafted string

comparison rules. That provided comparative data for evaluation of the effectiveness of

the cellular automaton rules. The IMAP attacks were identified by looking for “301

LOGIN” in the first bytes of the packet, followed by 0x22 and five bytes of 0x90. Back

attack initial packets were identified by checking for the string “GET /cgi-bin/” followed

by only 0x2f characters to the end of the packet. Continuation packets contain only the

 44

0x2f character; generally the entire packet is filled, but this was observed not to happen

always. In particular, the final continuation packet was often not filled. Early in the

experimental phase, the classification code was merged into the program used to test the

cellular automata filters, rendering the separate classification program unnecessary.

Once the data files were characterized, the cellular automaton rules generated by

the genetic algorithm were tested using a program that read the MIT/DARPA IDEval

data and evaluated each packet in two ways. The first evaluation was based on the ones

density classification into target or non-target packets. Experimentation showed that

most rules performed better with a single comparison of ones density to the upper limit,

rather than comparing for both upper and lower limits. Each packet was then evaluated

according to the manual rules described above. Packets classified as target or malicious

packets according to ones density but not identified by one of the manual classification

rules were counted as false positives. Packets identified by the manual classification

rules but not by the ones density rule were counted as false negatives and, for back attack

packets, further divided according to the rules above. Because the two attacks are based

on TCP packets, only TCP packets were evaluated. Similarly, because the two attacks

were external attacks, only packets entering the test network from outside were evaluated.

Incoming packets were identified as those not on the list of internal addresses provided

with the IDEval data.

To check a packet for the presence of one of the patterns in the pattern set, the

payload portion of the packet was used to establish the initial state of the cellular

automaton. Bits of the cellular automaton not initialized from the payload were filled

with zeros. The cellular automaton was allowed to operate for the number of cycles

 45

identified during determination of the fitness value. During operation, the next state of

each bit was determined by using the current state of that bit and its two left and two right

neighbors, for a total of five bits. That five-bit number was used as an address for a table

look up, as described on page 22. After the specified number of cycles, the ones density

of the cellular automaton was determined by counting the one bits of the state vector. If

the ones density was less than or equal to the target maximum density for the rule under

test, the packet was determined to have matched a pattern in the pattern set. The rules

tested, their fitness factors, and the density values for both strict and relaxed comparison

are shown in Table 16. Detailed results for each rule tested are shown in Table 2 through

Table 13.

Operation of the cellular automaton is visualized in Figures 1, 2, and 3. The rule

used is 1205310289. In order to produce a visualization that fits the page, only 96 bits of

the cellular automaton are shown. In Figure 1, the cellular automaton is initialized with

the first 96 bits of the payload portion of packet 1,819 of the Friday, week two training

data, representing a non-target packet. The initial ones density is 0.520. The behavior of

the cellular automaton is apparently chaotic, producing no identifiable pattern. The

cellular automaton has a ones density of 0.542 in cycles one, two, and three. In cycle

four, the last cycle for rule 1205312089, the density is 0.406, which is greater than the

threshold density for that rule (see Table 16) with the result that the data do not match

either pattern.

Figure 2 shows the same 96 bits, initialized with 0x2f characters, representing a

back attack packet. Initial ones density is 0.625. After two cycles, a clear pattern of four

zero bits followed by four one bits emerges. The density after cycle two is 0.479. In

 46

cycle three, the pattern becomes alternating ones and zeros and the density is 0.510. In

cycle four, nearly every bit is zero, the density is 0.073, and the packet is identified as

matching a target pattern in the pattern set.

Figure 3 demonstrates the initialization of the cellular automaton with 0x90

characters, representing the IMAP attack. The initial ones density is 0.250, which is below

the threshold for selection. However, the initial density is not used in the algorithm. By

cycle two, the same pattern of four zero bits followed by four one bits has emerged; the

density is 0.489. In cycle three the pattern again becomes alternating ones and zeros with

a density of 0.500. In cycle four, nearly every bit is zero, the density is 0.042, and the

packet is identified as matching a target pattern in the pattern set.

The problem addressed by this research is one of approximate string matching; a

certain number of incorrect matches are to be expected. The accuracy of such matching

can be presented as sensitivity and specificity. The sensitivity of a test is the number of

cases correctly identified divided by the total number of instances of the target value in

the population tested. The specificity of a test is the proportion of true negatives divided

by the total number of non-target instances in the population tested. False positives are

1 – specificity, and false negatives are 1 – sensitivity (Jaeschke et al., 2006). The

classification scheme described above provided the measures of sensitivity and

specificity given in Chapter 4.

Evaluating Tolerance for Perturbation

Each cellular automaton rule tested was also evaluated for sensitivity to

perturbation, or noise. This was accomplished by taking a single sample packet for the

back attack and the IMAP attack and randomly inverting bits using sampling with

 47

replacement. From one percent to 25% of bits were modified, in steps of one percent.

Cases where the ones density produced by operation of the cellular automaton was

outside the range generated by the genetic algorithm were recorded. The number of bits

changed while still remaining within the specified ones density was expressed as a

fraction of total bits in the packet.

Experiment showed that the IMAP packet was the determining factor in

establishing the target maximum ones density. Even a small perturbation of the IMAP

packet often exceeded the density bound. To compensate for this, the density bound was

relaxed by adding 25%, determined by experiment, of the distance between the target

band and the non-target band. The perturbation tests performed prior to adding the

tolerance band are not reported here. Tests of the sensitivity and specificity of the

generated rules were re-run, and both sets of results are reported here.

The IMAP attack consists of a single packet, and the packet used for operation of

the genetic algorithm was also used for testing sensitivity to perturbation. The back

attack consists of multiple packets; only the initial packet was tested for perturbation.

The basis of that decision was that detecting the initial packet is the requirement for

identifying the attack.

Resources Used

All research described here was completed with a standard office computer and

can be readily duplicated without special equipment. The operating system used was

Windows XP-SP3 with current Microsoft patches as of the time of the experiments. The

programming language was Java, using the Java 7 runtime environment and the jGRASP

development environment. Genetic algorithm functions were performed by JGAP 3.6.2.

 48

The test data were obtained from the MIT IDEval pages in TCPDUMP format. Wireshark

version 1.4.15 was used to extract test cases and when it was necessary to examine the

test data directly. Microsoft Excel 2007 was used to import the text files of false

positives and false negatives produced by the experiments. Conversion from the binary

TCPDUMP format to Java objects used SJPCAP, a program contributed anonymously to

Google Code, and which received substantial revision by the author to handle the MIT

IDEval data as described above. All other programming was done in Java by the author.

Version control was accomplished by copying all programming files to directories

named using month, day, and year prior to making changes to the programming. A

laboratory notebook of the results of the experimental phase experiments was recorded in

a word processing document, most recent entry first.

Summary

The research approach used was prototype and demonstration. Genetic algorithm

functionality was provided by JGAP, a standard genetic algorithm implementation with

substantial opportunity for customization. Only the size of the initial population, the

datatype of the single chromosome, and the fitness function were customized. The

fitness functions and cellular automaton evaluation programs were coded in Java by the

author.

After a suitable fitness function was devised, operation of the genetic algorithm

produced cellular automaton rules that were able to identify the two types of malicious

packets selected for testing from the rest of the packet population. There were no false

positives in the test data. No initial packets from either attack were missed. False

 49

negatives were all back attack continuation packets. Detailed results are given in the next

chapter.

 50

Chapter 4

Results

Data Analysis

Data were collected from four of the training data sets and all ten of the testing

data sets of the MIT/DARPA IDEval 1998 data corpus. Two passes were made through

the data. The first pass used a strict bound on ones density as determined by the genetic

algorithm. The second pass used a relaxed density rule, in which the density boundary

for selection was relaxed by 25% of the difference between the target density bound and

the non-target density bound. The rationale for the relaxed density rule is to improve

performance in the presence of noise or perturbation, as explained in Chapter 3.

Six cellular automaton rules were tested. Rule −369784237 3 with a fitness of

0.8530 was the first rule generated by the genetic algorithm using the final version of the

fitness function, and was used as a benchmark for most subsequent testing. The

remaining rules were chosen in order of their fitness values from subsequent runs of the

genetic algorithm using a cycle parameter of four. The rules and their fitness values are

given in Table 16.

Most of the data collected during the experiments is presented in Tables 1 – 15; a

complete list of data items collected is in Table 17. Some items are omitted from this

3 This report follows the convention established by Wolfram (1994) in representing cellular
automaton rules as decimal integers. The programming language used for these experiments was Java, and
the rules were represented as signed integers. A rule expressed as a negative integer indicates that the
leftmost bit is one.

 51

report because they are not relevant to the analysis, and one data item is omitted because

it exhibited no variation. Data on detection of IMAP attack packets is omitted from the

tables because there were only two such packets in the corpus of data, and all six rules

detected them without false negatives. Total number of packets read is omitted from the

tables because, although relevant to validating the correct operation of the experimental

programs, it is not relevant to the analysis of the effectiveness of cellular automata as

recognizers of multiple patterns. Only TCP packets were screened by the cellular

automaton.

Desired Outcomes

There are four characteristics that together characterize successful operation of a

rule for detection of the target packets. They are minimal false negative results, minimal

false positive results, few cellular automaton cycles to reach an accepting state, and

tolerance for noise or perturbation. Of those, minimizing false negatives is arguably the

most important. Whether the cellular automaton is used for initial screening or as the

only detector, a false negative means that target data will be missed.

False positives mean that either subsequent screening by another method is

required or that there will be false alarms. The best rule (−369784237, see Table 2)

produced 1,215 false positives on data for fourteen days, or an average of 87 false alarms

each day. Such a false alarm rate indicates that some post-screening mechanism would

be required to limit false alarms.

Although cellular automata operate in constant time both with respect to the

number of cells (Sarkar, 2000) and, as shown by this research, with respect to the number

of patterns detected, the number of cycles required to reach an accepting state does

 52

influence performance. Best performance comes from minimizing the number of cycles.

Ability to function correctly in the presence of noise means that data different from the

target pattern, but similar, can be detected reliably.

Performance of the Rules under Test

An important result of these experiments is that each rule tested recognized every

instance of the IMAP attack and also every instance of the back attack initial packet. The

absence of false negatives means no target data was missed by any of the cellular

automaton rules. Although there were false negatives for back attack continuation

packets, those are not relevant to the information security application. Detecting the

initial packet would enable protective action prior to any of the continuation packets

being processed. Back attack continuation packets were not part of the sample data

processed by the genetic algorithm, and so were expected to be recognized only to the

extent that they are similar to the back attack initial packets.

Best recognition was exhibited by rule −369784237 (Tables 2 and 8), which

required eight cycles to reach an accepting state. Changing from strict to relaxed density

boundaries reduced the number of false negative continuation packets by 15 but increased

the number of false positives by 95 cases, as shown in Table 14. Rule 1205312089

produced performance almost as good, as shown in Tables 5 and 11. The number of false

negative continuation packets was identical to rule −369784237. The number of false

positives increased by 756, an increase of 62%.

Best performance for noise tolerance was given by rule −369784237, followed by

rule −1144617577, as shown in Table 15.

 53

Although rule −1023231863 produced the best results with respect to false

negative continuation packets, it also produced many times more false positives, as

shown in Tables 4 and 10.

Analysis of False Negatives

As shown by Tables 2 to 13, false negative back attack continuation packets occur

only when a back attack is present, and almost always in number slightly fewer than the

number of back attack initial packets. The program used for the experiment wrote all

false negative packets to text data files in hexadecimal form. Length, packet number, and

computed density were recorded with each packet. These were imported into Microsoft

Excel 2007 and examined manually. In every case, the packet consisted only of a string

of 0x2f, with lengths varying from 40 bytes to 1,088 bytes, with 520 bytes being the most

frequently occurring length. In almost every case, the number of false negatives is the

same as or slightly less than the number of initial back attack packets. The exceptions are

data for training week two Friday and training week three Wednesday, when some rules

found slightly more false negatives. The data show that packets significantly shorter than

the 1,460 bytes common to most back attack packets are not reliably recognized by the

cellular automaton. This could potentially be corrected in future research by including

samples of such short packets in the input to the genetic algorithm and using a rule-

heterogeneous cellular automaton, as suggested in Chapter 5.

The output recorded included the packet number, making manual inspection of

the original TCPDUMP file possible. A small sample of the false negative packets was

examined in that way. In every case in the sample, the false negative packet was in the

middle of a sequence of back attack packets. That finding disproved an earlier conjecture

 54

that these short packets represented the last packet of a back attack. All that can be

inferred from the data are that these short packets are an artifact of the attack generation

process used when the data were prepared.

Analysis of False Positives

False negatives fell neatly into a single category: short packets containing all

0x2f. Characterizing the false positives is not as neatly done. However, the false

positives all share the characteristic of repetition. All false positives for rule −369784237

were examined. The four from training, week 7, Friday all had long sequences of 0x90,

characteristic of a buffer overflow attack. The ones from testing, week 1, Tuesday all had

long, repeating sequences of 0x21. Those from Wednesday had sequences of 0x90. The

same is true of testing, week 2, Monday, Tuesday, and Friday. Thursday of that week

had two sequences of 0x90, with the remaining 1,191 all containing long sequences of

0x84, the Unicode “control” character. Sampling the false positives from the other rules

revealed similar patterns, and on the same days. For all six rules, the largest number of

false positives was testing, week 2, Thursday. The conclusion is that the cellular

automaton correctly detects long strings of 0x2f and 0x90 found in the target packets, but

also detects certain other repeating patterns.

Summary

All six cellular automaton rules generated by the genetic algorithm detected the

two target patterns with no false negatives. False negatives for back attack continuation

packets were reported because they may give some insight into the operation of the

cellular automaton as a pattern recognizer. All false negatives are explained as shorter

 55

packets of 0xf2. Four of the six cellular automata were shown to be resistant to noise

injected in up to 25% of their bits.

False positives were triggered by repeating patterns in the data. At least two of

the false positives were actually other attacks, namely buffer overflow attacks against a

mail transport agent program as shown by the receiving port number in the TCPDUMP file.

Such attacks are characterized by the same sequence of 0x90 no-operation characters as

is found in the IMAP attack, a pattern specifically intended to be recognized.

The best performing rule was −369784237, which required eight cycles to reach

the accepting or rejecting state. Rule 1205312089 produced results almost as good, and

only one of the six, rule −1023231863 produced extremely large numbers of false

positives. This demonstrates that there exist multiple rule-uniform, linear cellular

automaton rules in r=2 that can detect both of the two patterns selected for study, and that

such rules can be discovered through the application of a genetic algorithm.

 56

Chapter 5

Conclusions, Implications, Recommendations, and Summary

Conclusions

The research reported here has demonstrated the concept that a single cellular

automaton rule can recognize more than one target pattern, can do so in the presence of

noise, and with few cycles of the cellular automaton. Such a result is potentially

applicable to recognizing patterns in network communications, and also to searching data

repositories so large that other approaches to approximate string matching are

impractical.

The proposal for this research anticipated the need for post-screening using

another matching method to remove false positives. The value of using the cellular

automaton would have been to reduce the number of applications of the secondary

matching method to a manageable number. For the particular sample of patterns chosen,

very little post screening has been shown to be necessary for the best rules. It is

important to recognize that the cellular automaton mechanism provides only a binary,

match / no-match result; a particular record could match any pattern in the pattern set. If

a particular application makes it necessary to further distinguish data that have matched

the pattern set, post screening will be necessary in any case.

Six distinct cellular automaton rules have been shown to be capable of detecting

the initial packets of both the IMAP attack and the back attack. The rules studied do not

always identify every packet that is part of a back attack. For example, rule 1360891913

 57

fails to identify 1,018 back attack continuation packets in the Friday, week two training

data. This is not a fatal flaw because that rule identified every initial back attack packet,

with no false positives. In the case of detecting malicious network packets, with the

initial packet identified, the remaining packets from the same source would be discarded

without the need to examine their contents.

Because a cellular automaton can be implemented using a table look-up

(Chaudhuri et al., 1997), the rule used to drive the pattern match can be changed by

changing the contents of the table. There is no need to modify any other part of the

mechanism. Thus, a rule for a new set of patterns, or an improved rule for a particular

pattern set, can be implemented without change to the underlying mechanism.

Considerations of Timing

Cellular automata operate in constant time, as previously shown by others,

including Sommerhalder and Westrhenen (1983). Because the next state of each cell in a

cellular automaton can be determined independent of the next states of the other cells, the

number of cells in a cellular automaton, and so, the size of the pattern to be recognized,

does not influence the timing. This research has shown that, for the two patterns

examined, the number of patterns tested does not influence the time required.

However, there are two considerations that do influence the timing of the

mechanism described here. The first is the number of cycles of the cellular automaton

required to generate a recognizable result. A cellular automaton that requires fewer

cycles to reach the desired result is clearly faster (given the same implementation) as one

that requires more cycles. Because there is no general programming paradigm for

cellular automata (Crutchfield et al., 1998), cellular automata for a particular task must be

 58

discovered. This research used an iterative process to discover cellular automata that

would identify the patterns under study while attempting to minimize the number of

cycles required. A better approach might be to incorporate the number of cycles required

into the fitness function of the genetic algorithm as described below.

The other factor influencing timing is the need to differentiate between a final

state of the cellular automaton that indicates recognition of the pattern, an accepting state,

from states that do not, the rejecting states. For this research, the two states are

differentiated by the ones density of the cellular automaton. Unlike the operation of the

cellular automaton itself, the calculation of ones density does vary with the size of the

cellular automaton, and so with the size of the pattern to be recognized, but not with the

number of patterns to be recognized. The software used for these experiments computed

the ones density by sequentially counting the one bits. Such an approach is suitable in a

proof of concept demonstration such as this one, but is far too slow for practical

application. It requires n additions for a cellular automaton of n bits. The computation of

ones density can be parallelized if sufficient computing elements are available. Blelloch

(1993) describes the reduction operation, in which the sum of a vector of n elements can

be computed in time O(log2n) with n/2 computing elements. The reduction operation

begins by adding pairs of elements in parallel, then adding pairs of sums, and so on until

the final sum is produced. For implementation in hardware, it may be possible to

construct a combinational circuit of depth two to perform the addition (Alon & Bruck,

1994). Such a circuit would operate in constant time. It is important to note that the time

required for computation of the ones density depends only on the size of the cellular

automaton, and not on the number of patterns it recognizes.

 59

This research used only bit density to indicate an accepting state in the cellular

automaton. Other descriptions of the accepting state may be possible, depending upon

how the fitness function is designed. As noted above, Sarkar (2000) has pointed out that

only a single bit is necessary to indicate an accepting state, provided it is reliably on or

off. A different definition of accepting state would require a different recognition

algorithm.

Implications

The research presented has demonstrated a proof of concept that a single cellular

automaton can detect more than one pattern in data presented to it, in constant time with

respect to the number of patterns checked, and can do so in the presence of noise.

However, the sequential programming used for this proof of concept would be far too

slow for practical application. The cellular automaton approach has a speed advantage

only if its inherent parallel nature is exploited. A mechanism such as is described here

could take advantage of the parallelism of cellular automata through implementation on a

general purpose computer with parallel computing capability, or through implementation

directly in hardware.

Parallel Implementation on a General Purpose Computer

Parallel computation is readily available using off the shelf computers by taking

advantage of the processing units that exist on graphics cards. Modern graphics cards

incorporate thousands of graphics processing units and there is programming language

support for application of multiple graphics cards in a single host computer (Sanders &

Kandrot, 2011). Kauffmann (2008) has demonstrated the implementation of cellular

automata using a general purpose computer with graphics cards. If the mechanism

 60

described here were implemented using the parallel processing capabilities of graphics

cards, the reduction algorithm described by Blelloch (1993) could be used to compute the

ones density. Although per-processor local storage on graphics cards is limited, it is

sufficient to hold the cellular automaton rule used for determination of the next state as

well as the state bit itself (Sanders & Kandrot, 2011).

Parallel Implementation in Hardware

Each cell of a cellular automaton can be expressed as a one-bit latch (Katz, 1994).

A writable control store holding the cellular automaton rule would be required for the

table look-up function. A conceptual diagram showing computation of the next state of a

cell using table look-up from a control store is presented in Figure 4. The reduction

method described by Blelloch (1993) is amenable to implementation as a cascade of full

adders, and would still operate in O(log2n) time where n is the size of the cellular

automaton. Such a circuit could potentially be implemented directly on a network

interface card. A conceptual diagram of a cellular automaton pattern recognizer

implemented in hardware is given in Figure 5.

Recommendations

The research presented here has confirmed the hypothesis that there exist cellular

automaton rules that can recognize more than one pattern in constant time with respect to

the number of patterns, and in the presence of noise or perturbation. It remains to be

shown whether other patterns than those chosen, or more than two patterns can be

matched. There may exist better fitness functions than the one presented here, or more

effective arrangements of the cellular automaton. Evaluation of the cellular automaton’s

final state for accepting or rejecting a pattern based on ones density takes O(log2n) time if

 61

implemented in parallel using multiple processing units, where n is the number of cells in

the cellular automaton (Blelloch, 1993). While the time to evaluate the final state is

constant with respect to the number of patterns, it may be possible to improve upon it.

Only two patterns were tested in the experiments reported here. Empirical testing

might establish an upper limit on the number of patterns that can be recognized by the

cellular automaton described here, or by other types of cellular automata.

Regardless of the improvements that may be possible, if best evaluation speed is

to be achieved, it is clear that most of the work must be in the genetic algorithm and not

in the cellular automaton. This may mean a greater focus on the fitness function than on

the cellular automaton itself. In any case, changes in the structure of the cellular

automaton must be reflected in the fitness function.

Modification to the Cellular Automaton

The research presented here started with the simplest possible cellular automaton,

a binary, rule-uniform, linear cellular automaton. Because preliminary research had

shown that a radius of one was unlikely to be effective at matching more than one

pattern, experiments began with cellular automata of r = 2. Radii larger than two

increase the number of bits of the pattern that participate in the computation of the next

state of the cellular automaton, which may offer an opportunity for improvement.

Increased radii also increase the number of potential rules exponentially. A radius of

three examines seven bits of the pattern when computing the next state of each cell and

uses 128-bit rules, of which there are 2128. An increase to a radius of four would mean a

rule space of 2512. It is unknown whether increasing the radius would improve the pattern

recognition ability of the cellular automaton, nor whether such large rule spaces can be

 62

searched effectively using genetic algorithms. The fact that there exist several rules for

cellular automata of r = 2 that recognize the patterns studied suggests that the same

condition may hold true for cellular automata of larger radius. If that is the case,

searching by genetic algorithm may be practical even in the face of very large rule

spaces.

The cellular automata presented here are rule-uniform; the same rule is used to

evaluate the next state of every cell. Although the rules studied produced very high

sensitivity, there were false negative results for some back attack continuation packets.

That is expected because back attack continuation packets were not a part of the pattern

set being tested. Packets that produced false negatives for continuation packets were

written to a file and examined individually. In every case, they were shorter than the

packets that were detected correctly. This research was based on a cellular automaton of

fixed length. The shorter packets were padded on the right with zeros to make all packets

the same length. A rule-heterogeneous cellular automaton might perform better by

allowing those rightmost bits to be evaluated by a different rule than the leftmost bits.

Each rule would be represented by a gene in the chromosome evaluated by the genetic

algorithm. Alternatively, the length of the cellular automaton itself might be varied

depending upon the size of the patterns in the set of target patterns. If all states are

evaluated in parallel, there is no time penalty for doing so.

Improvements in the Fitness Function

The experiments reported here identified several rules that would recognize the

patterns under study. Even rules with fitness > 0.75 varied in sensitivity and specificity,

suggesting that improvements are possible in the fitness function. One such

 63

improvement might be the inclusion of more samples of the pattern to be detected in the

evaluation by the fitness function. An entirely different approach to the fitness function

might also produce better results.

The number of cycles required for a cellular automaton to reach an accepting or

rejecting state is an important parameter with respect to performance. The cycle count

was determined iteratively by experiment for the results reported here. Incorporating the

cycle count as a gene in the chromosome evaluated by the genetic algorithm could

potentially identify cellular automata that require fewer cycles and still exhibit equivalent

performance.

More Effective Accepting State Conditions

The accepting and rejecting states for the cellular automata studied here are

derived from the ones density of the cellular automaton after a specified number of

cycles. The fastest programmatic computation of ones density is the reduction operation

described by Blelloch (1993), which requires O(log2n) operations. The two-level digital

logic construction described by Alon and Bruck (1994) could potentially compute the

ones density in constant time, but requires direct implementation in digital logic. Speed

improvements might also be possible by defining the accepting state in terms other than

ones density. A single bit is enough to define an accepting state if it reliably reflects the

accepting or rejecting state (Sarkar, 2000). A simpler accepting state consisting of a

pattern of bits might thus be recognizable in less time than that required for computation

of the ones density.

Another alternative is an accepting state that generates a repeating value in the

cellular automaton itself. Such a condition can be recognized by a bitwise comparison of

 64

current cell values of the cellular automaton with previous cell values. If the

implementation includes one processor per cell, the comparisons can be made in parallel.

The amount of storage for previous states depends upon the period of repetition of the

pattern.

Summary

This research has produced a prototype that demonstrates the hypothesis that a

cellular automaton can recognize more than one pattern using a single rule. Sensitivity

was greater than 0.97 for all six of the rules tested and specificity was 1.0 for four of the

rules tested. For the patterns selected for testing, very little post screening would have

been necessary.

Discovery of rules suitable for pattern recognition through the application of

genetic algorithms has been shown to be possible. The genetic algorithm was able to

identify multiple rules that can detect the patterns chosen for these experiments.

Pattern recognition has been shown to be possible even in the presence of noise.

When the density tolerance was widened to include 25% of the distance between the

target density and the non-target density, four of the rules recognized the two patterns

tested even when up to 25% of the bits in the packet were modified. Testing patterns for

recognition using the relaxed density band produced results nearly identical to the

original tests.

Experimentation was done entirely using sequential programming on a von

Neumann architecture computer. Parallel implementation would be necessary to achieve

processing times competitive with other approximate string matching algorithms.

 65

Appendix A

Tables

 66

Table 1. True incidence of target packets as determined by hand-crafted string
comparison rules. For the training data sets, only those marked as having attack packets
of the types under study were tested. All “testing” data sets were tested. “Total Packets”
is the number of TCP packets subjected to testing. The total number of packets in each
data set is larger because there are packets from protocols other than TCP. Those were
not tested.

Data Set
IMAP

Attack
Back Attack

Initial
Back Attack
Continuation

Total
Attacks

Total
Packets

Training , Week 2, Fri 1 1,000 36,711 37,712 215,666
Training , Week 3, Wed 0 1,000 36,729 37,729 264,776
Training , Week 6, Wed 0 100 3,694 3,794 475,551
Training , Week 7, Fri 0 108 3,507 3,615 636,290
Testing, Week 1, Mon 0 0 0 0 712,669
Testing, Week 1, Tue 0 0 0 0 719,181
Testing, Week 1, Wed 0 0 0 0 416,752
Testing, Week 1, Thu 0 0 0 0 520,950
Testing, Week 1, Fri 0 1,013 36,438 37,451 637,774
Testing, Week 2, Mon 0 0 0 0 520,025
Testing, Week 2, Tue 0 0 0 0 559,699
Testing, Week 2, Wed 1 100 3,666 3,767 40,026
Testing, Week 2, Thu 0 0 0 0 898,028
Testing, Week 2, Fri 0 0 0 0 625,445

Totals 2 3,321 120,745 124,068 7,242,832

 67

Table 2. Performance of rule −369784237 with strict density evaluation on back attack
packets. A packet was selected as an attack packet if it had a ones density less than or
equal to 0.22758333 after eight cycles of the cellular automaton. Rule −369784237 had a
fitness of 0.8530 by the fitness function used for this report.

Data Set

Back
Attack
Initial

Back
Attack
Cont

False
Pos

False
Neg
Initial

False
Neg
Cont

True
Negative

Sensi-
tivity

Speci-
ficity

Train Wk 2 Fri 1,000 35,693 0 0 1,018 177,954 0.973 1.000
Train Wk 3 Wed 1,000 35,728 0 0 1,001 227,047 0.973 1.000
Train Wk 6 Wed 100 3,594 0 0 100 471,757 0.974 1.000
Train Wk 7 Fri 108 3,413 4 0 94 632,675 0.974 1.000
Test Wk 1 Mon 0 0 0 0 0 712,669
Test Wk 1 Tue 0 0 6 0 0 719,181
Test Wk 1 Wed 0 0 1 0 0 416,752
Test Wk 1 Thu 0 0 2 0 0 520,950
Test Wk 1 Fri 1,013 35,475 0 0 963 600,323 0.974 1.000
Test Wk 2 Mon 0 0 4 0 0 520,025
Test Wk 2 Tue 0 0 4 0 0 559,699
Test Wk 2 Wed 100 3,566 0 0 100 36,259 0.973 1.000
Test Wk 2 Thu 0 0 1,193 0 0 898,028
Test Wk 2 Fri 0 0 1 0 0 625,445

Totals 3,321 117,469 1,215 0 3,276 7,118,764 0.974 1.000

 68

Table 3. Performance of rule −1144617577 with strict density evaluation on back attack
packets. A packet was selected as an attack packet if it had a ones density less than or
equal to 0.34941667 after four cycles of the cellular automaton. Rule −1144617577 had
a fitness of 0.7659 by the fitness function used for this report.

Data Set

Back
Attack
Initial

Back
Attack
Cont

False
Pos

False
Neg
Initial

False
Neg
Cont

True
Negative

Sensi-
tivity

Speci-
ficity

Train Wk 2 Fri 1,000 35,693 0 0 1,018 177,954 0.973 1.000
Train Wk 3 Wed 1,000 35,728 0 0 1,001 227,047 0.973 1.000
Train Wk 6 Wed 100 3,594 0 0 100 471,757 0.974 1.000
Train Wk 7 Fri 108 3,413 4 0 94 632,675 0.974 1.000
Test Wk 1 Mon 0 0 0 0 0 712,669
Test Wk 1 Tue 0 0 6 0 0 719,181
Test Wk 1 Wed 0 0 1 0 0 416,752
Test Wk 1 Thu 0 0 2 0 0 520,950
Test Wk 1 Fri 1,013 35,475 0 0 963 600,323 0.974 1.000
Test Wk 2 Mon 0 0 4 0 0 520,025
Test Wk 2 Tue 0 0 11 0 0 559,699
Test Wk 2 Wed 100 3,566 0 0 100 36,259 0.973 1.000
Test Wk 2 Thu 0 0 1,341 0 0 898,028
Test Wk 2 Fri 0 0 30 0 0 625,445

Totals 3,321 117,469 1,399 0 3,276 7,118,764 0.974 1.000

 69

Table 4. Performance of rule −1023231863 with strict density evaluation on back attack
packets. A packet was selected as an attack packet if it had a ones density less than or
equal to 0.51041670 after four cycles of the cellular automaton. Rule −1023231863 had
a fitness of 0.8730 by the fitness function used for this report.

Data Set

Back
Attack
Initial

Back
Attack
Cont

False
Pos

False
Neg
Initial

False
Neg
Cont

True
Negative

Sensi-
tivity

Speci-
ficity

Train Wk 2 Fri 1,000 35,745 214 0 966 177,954 0.975 0.999
Train Wk 3 Wed 1,000 35,759 264 0 970 227,047 0.974 0.999
Train Wk 6 Wed 100 3,594 477 0 100 471,757 0.977 0.999
Train Wk 7 Fri 108 3,415 799 0 92 632,675 0.979 0.999
Test Wk 1 Mon 0 0 684 0 0 712,669
Test Wk 1 Tue 0 0 9,663 0 0 719,181
Test Wk 1 Wed 0 0 715 0 0 416,752
Test Wk 1 Thu 0 0 1,192 0 0 520,950
Test Wk 1 Fri 1,013 35,486 693 0 952 600,323 0.975 0.999
Test Wk 2 Mon 0 0 9,296 0 0 520,025
Test Wk 2 Tue 0 0 960 0 0 559,699
Test Wk 2 Wed 100 3,566 16,287 0 100 36,259 0.995 0.69
Test Wk 2 Thu 0 0 8,478 0 0 898,028
Test Wk 2 Fri 0 0 7,879 0 0 625,445

Totals 3,321 117,565 57,601 0 3,180 7,118,764 0.974 0.992

 70

Table 5. Performance of rule 1205312089 with strict density evaluation on back attack
packets. A packet was selected as an attack packet if it had a ones density less than or
equal to 0.22483334 after four cycles of the cellular automaton. Rule 1205312089 had a
fitness of 0.8622 by the fitness function used for this report.

Data Set

Back
Attack
Initial

Back
Attack
Cont

False
Pos

False
Neg
Initial

False
Neg
Cont

True
Negative

Sensi-
tivity

Speci-
ficity

Train Wk 2 Fri 1,000 35,693 0 0 1,018 177,954 0.973 1.000
Train Wk 3 Wed 1,000 35,728 0 0 1,001 227,047 0.973 1.000
Train Wk 6 Wed 100 3,594 0 0 100 471,757 0.974 1.000
Train Wk 7 Fri 108 3,413 2 0 94 632,675 0.974 1.000
Test Wk 1 Mon 0 0 0 0 0 712,669
Test Wk 1 Tue 0 0 6 0 0 719,181
Test Wk 1 Wed 0 0 1 0 0 416,752
Test Wk 1 Thu 0 0 2 0 0 520,950
Test Wk 1 Fri 1,013 35,475 0 0 963 600,323 0.974 1.000
Test Wk 2 Mon 0 0 4 0 0 520,025
Test Wk 2 Tue 0 0 4 0 0 559,699
Test Wk 2 Wed 100 3,566 0 0 100 36,259 0.973 1.000
Test Wk 2 Thu 0 0 1,196 0 0 898,028
Test Wk 2 Fri 0 0 1 0 0 625,445

Totals 3,321 117,469 1,216 0 3,276 7,118,764 0.974 1.000

 71

Table 6. Performance of rule 1360891913 with strict density evaluation on back attack
packets. A packet was selected as an attack packet if it had a ones density less than or
equal to 0.25925000 after four cycles of the cellular automaton. Rule 1360891913 had a
fitness of 0.8126 by the fitness function used for this report.

Data Set

Back
Attack
Initial

Back
Attack
Cont

False
Pos

False
Neg
Initial

False
Neg
Cont

True
Negative

Sensi-
tivity

Speci-
ficity

Train Wk 2 Fri 1,000 35,693 192 0 1,018 177,954 0.973 0.999
Train Wk 3 Wed 1,000 35,728 120 0 1,001 227,047 0.974 0.999
Train Wk 6 Wed 100 3,594 42 0 100 471,757 0.974 1.000
Train Wk 7 Fri 108 3,413 304 0 94 632,675 0.976 1.000
Test Wk 1 Mon 0 0 209 0 0 712,669
Test Wk 1 Tue 0 0 143 0 0 719,181
Test Wk 1 Wed 0 0 28 0 0 416,752
Test Wk 1 Thu 0 0 246 0 0 520,950
Test Wk 1 Fri 1,013 35,475 137 0 963 600,323 0.974 1.000
Test Wk 2 Mon 0 0 156 0 0 520,025
Test Wk 2 Tue 0 0 238 0 0 559,699
Test Wk 2 Wed 100 3,566 171 0 100 36,259 0.975 0.995
Test Wk 2 Thu 0 0 1,490 0 0 898,028
Test Wk 2 Fri 0 0 101 0 0 625,445

Totals 3,321 117,469 3,577 0 3,276 7,118,764 0.974 0.999

 72

Table 7. Performance of rule 1386779481 with strict density evaluation on back attack
packets. A packet was selected as an attack packet if it had a ones density less than or
equal to 0.25208333 after four cycles of the cellular automaton. Rule 1386779481 had a
fitness of 0.8745 by the fitness function used for this report.

Data Set

Back
Attack
Initial

Back
Attack
Cont

False
Pos

False
Neg
Initial

False
Neg
Cont

True
Negative

Sensi-
tivity

Speci-
ficity

Train Wk 2 Fri 1,000 35,693 0 0 1,018 177,954 0.973 1.000
Train Wk 3 Wed 1,000 35,728 0 0 1,001 227,047 0.973 1.000
Train Wk 6 Wed 100 3,594 0 0 100 471,757 0.974 1.000
Train Wk 7 Fri 108 3,413 0 0 94 632,675 0.974 1.000
Test Wk 1 Mon 0 0 0 0 0 712,669
Test Wk 1 Tue 0 0 7 0 0 719,181
Test Wk 1 Wed 0 0 1 0 0 416,752
Test Wk 1 Thu 0 0 2 0 0 520,950
Test Wk 1 Fri 1,013 35,475 0 0 963 600,323 0.974 1.000
Test Wk 2 Mon 0 0 4 0 0 520,025
Test Wk 2 Tue 0 0 2 0 0 559,699
Test Wk 2 Wed 100 3,566 0 0 100 36,259 0.973 1.000
Test Wk 2 Thu 0 0 1,391 0 0 898,028
Test Wk 2 Fri 0 0 1 0 0 625,445

Totals 3,321 117,469 1,408 0 3,276 7,118,764 0.974 1.000

 73

Table 8. Performance of rule −369784237 with relaxed density evaluation on back
attack packets. A packet was selected as an attack packet if it had a ones density less
than or equal to 0.28314583 after eight cycles of the cellular automaton. Rule
−369784237 had a fitness of 0.8530 by the fitness function used for this report.

Data Set

Back
Attack
Initial

Back
Attack
Cont

False
Pos

False
Neg
Initial

False
Neg
Cont

True
Negative

Sensi-
tivity

Speci-
ficity

Train Wk 2 Fri 1,000 35,701 0 0 1,010 177,954 0.973 1.000
Train Wk 3 Wed 1,000 35,734 0 0 995 227,047 0.974 1.000
Train Wk 6 Wed 100 3,594 0 0 100 471,757 0.974 1.000
Train Wk 7 Fri 108 3,413 4 0 94 632,675 0.974 1.000
Test Wk 1 Mon 0 0 0 0 0 712,669
Test Wk 1 Tue 0 0 12 0 0 719,181
Test Wk 1 Wed 0 0 1 0 0 416,752
Test Wk 1 Thu 0 0 3 0 0 520,950
Test Wk 1 Fri 1,013 35,476 0 0 962 600,323 0.974 1.000
Test Wk 2 Mon 0 0 4 0 0 520,025
Test Wk 2 Tue 0 0 4 0 0 559,699
Test Wk 2 Wed 100 3,566 2 0 100 36,259 0.973 1.000
Test Wk 2 Thu 0 0 1,279 0 0 898,028
Test Wk 2 Fri 0 0 1 0 0 625,445

Totals 3,321 117,484 1,310 0 3,261 7,118,764 0.974 1.000

 74

Table 9. Performance of rule −1144617577 with relaxed density evaluation on back
attack packets. A packet was selected as an attack packet if it had a ones density less
than or equal to 0.421625003 after four cycles of the cellular automaton. Rule
−1144617577 had a fitness of 0.7659 by the fitness function used for this report.

Data Set

Back
Attack
Initial

Back
Attack
Cont

False
Pos

False
Neg
Initial

False
Neg
Cont

True
Negative

Sensi-
tivity

Speci-
ficity

Train Wk 2 Fri 1,000 35,702 0 0 1,009 177,954 0.973 1.000
Train Wk 3 Wed 1,000 35,735 2 0 994 227,047 0.974 1.000
Train Wk 6 Wed 100 3,594 0 0 100 471,757 0.974 1.000
Train Wk 7 Fri 108 3,413 6 0 94 632,675 0.974 1.000
Test Wk 1 Mon 0 0 2 0 0 712,669
Test Wk 1 Tue 0 0 32 0 0 719,181
Test Wk 1 Wed 0 0 2 0 0 416,752
Test Wk 1 Thu 0 0 3 0 0 520,950
Test Wk 1 Fri 1,013 35,476 1 0 962 600,323 0.974 1.000
Test Wk 2 Mon 0 0 5 0 0 520,025
Test Wk 2 Tue 0 0 12 0 0 559,699
Test Wk 2 Wed 100 3,566 47 0 100 36,259 0.974 0.999
Test Wk 2 Thu 0 0 1,450 0 0 898,028
Test Wk 2 Fri 0 0 31 0 0 625,445

Totals 3,321 117,486 1,593 0 3,259 7,118,764 0.974 1.000

 75

Table 10. Performance of rule −1023231863 with relaxed density evaluation on back
attack packets. A packet was selected as an attack packet if it had a ones density less
than or equal to 0.5233542 after four cycles of the cellular automaton. Rule
−1023231863 had a fitness of 0.8730 by the fitness function used for this report.

Data Set

Back
Attack
Initial

Back
Attack
Cont

False
Pos

False
Neg
Initial

False
Neg
Cont

True
Negative

Sensi-
tivity

Speci-
ficity

Train Wk 2 Fri 1,000 35,746 469 0 965 177,954 0.975 0.997
Train Wk 3 Wed 1,000 35,759 559 0 970 227,047 0.975 0.998
Train Wk 6 Wed 100 3,594 1,204 0 100 471,757 0.980 0.997
Train Wk 7 Fri 108 3,415 2,037 0 92 632,675 0.984 0.997
Test Wk 1 Mon 0 0 1,739 0 0 712,669
Test Wk 1 Tue 0 0 11,530 0 0 719,181
Test Wk 1 Wed 0 2 1,716 0 0 416,752
Test Wk 1 Thu 3 0 2,385 0 0 520,950
Test Wk 1 Fri 1,013 35,488 1,739 0 950 600,323 0.976 0.997
Test Wk 2 Mon 0 0 11,020 0 0 520,025
Test Wk 2 Tue 0 0 2,061 0 0 559,699
Test Wk 2 Wed 100 3,566 20,474 0 100 36,259 0.996 0.639
Test Wk 2 Thu 0 0 16,359 0 0 898,028
Test Wk 2 Fri 0 0 8,963 0 0 625,445

Totals 3,324 117,570 82,255 0 3,177 7,118,764 0.974 0.989

 76

Table 11. Performance of rule 1205312089 with relaxed density evaluation on back
attack packets. A packet was selected as an attack packet if it had a ones density less
than or equal to 0.290145838 after four cycles of the cellular automaton. Rule
1205312089 had a fitness of 0.8622 by the fitness function used for this report.

Data Set

Back
Attack
Initial

Back
Attack
Cont

False
Pos

False
Neg
Initial

False
Neg
Cont

True
Negative

Sensi-
tivity

Speci-
ficity

Train Wk 2 Fri 1,000 35,701 0 0 1,010 177,954 0.973 1.000
Train Wk 3 Wed 1,000 35,734 0 0 995 227,047 0.974 1.000
Train Wk 6 Wed 100 3,594 0 0 100 471,757 0.974 1.000
Train Wk 7 Fri 108 3,413 4 0 94 632,675 0.974 1.000
Test Wk 1 Mon 0 0 0 0 0 712,669
Test Wk 1 Tue 0 0 15 0 0 719,181
Test Wk 1 Wed 0 0 1 0 0 416,752
Test Wk 1 Thu 0 0 2 0 0 520,950
Test Wk 1 Fri 1,013 35,476 0 0 962 600,323 0.974 1.000
Test Wk 2 Mon 0 0 4 0 0 520,025
Test Wk 2 Tue 0 0 4 0 0 559,699
Test Wk 2 Wed 100 3,566 2 0 100 36,259 0.973 1.000
Test Wk 2 Thu 0 0 1,938 0 0 898,028
Test Wk 2 Fri 0 0 1 0 0 625,445

Totals 3,321 117,484 1,971 0 3,261 7,118,764 0.974 1.000

 77

Table 12. Performance of rule 1360891913 with relaxed density evaluation on back
attack packets. A packet was selected as an attack packet if it had a ones density less
than or equal to 0.27354167 after four cycles of the cellular automaton. Rule
1360891913 had a fitness of 0.8126 by the fitness function used for this report.

Data Set

Back
Attack
Initial

Back
Attack
Cont

False
Pos

False
Neg
Initial

False
Neg
Cont

True
Negative

Sensi-
tivity

Speci-
ficity

Train Wk 2 Fri 1,000 35,693 297 0 1,018 177,954 0.973 0.998
Train Wk 3 Wed 1,000 35,728 199 0 1,001 227,047 0.974 0.999
Train Wk 6 Wed 100 3,594 94 0 100 471,757 0.974 1.000
Train Wk 7 Fri 108 3,413 441 0 94 632,675 0.977 0.999
Test Wk 1 Mon 0 0 331 0 0 712,669
Test Wk 1 Tue 0 0 238 0 0 719,181
Test Wk 1 Wed 0 0 79 0 0 416,752
Test Wk 1 Thu 0 0 385 0 963 520,950
Test Wk 1 Fri 1,013 35,475 237 0 0 600,323 1.000 1.000
Test Wk 2 Mon 0 0 325 0 0 520,025
Test Wk 2 Tue 0 0 415 0 100 559,699
Test Wk 2 Wed 100 3,566 297 0 0 36,259 1.000 0.992
Test Wk 2 Thu 0 0 1,656 0 0 898,028
Test Wk 2 Fri 0 0 254 0 0 625,445

Totals 3,321 117,469 5,248 0 3,276 7,118,764 0.974 0.999

 78

Table 13. Performance of rule 1386779481 with relaxed density evaluation on back
attack packets. A packet was selected as an attack packet if it had a ones density less
than or equal to 0.333624998 after four cycles of the cellular automaton. Rule
1386779481 had a fitness of 0.8745 by the fitness function used for this report.

Data Set

Back
Attack
Initial

Back
Attack
Cont

False
Pos

False
Neg
Initial

False
Neg
Cont

True
Negative

Sensi-
tivity

Speci-
ficity

Train Wk 2 Fri 1,000 35,702 0 0 1,009 177,954 0.973 1.000
Train Wk 3 Wed 1,000 35,735 0 0 994 227,047 0.974 1.000
Train Wk 6 Wed 100 3,594 30 0 100 471,757 0.974 1.000
Train Wk 7 Fri 108 3,413 20 0 94 632,675 0.974 1.000
Test Wk 1 Mon 0 0 9 0 0 712,669
Test Wk 1 Tue 0 0 30 0 0 719,181
Test Wk 1 Wed 0 0 73 0 0 416,752
Test Wk 1 Thu 0 0 3 0 0 520,950
Test Wk 1 Fri 1,013 35,476 0 0 962 600,323 0.974 1.000
Test Wk 2 Mon 0 0 9 0 0 520,025
Test Wk 2 Tue 0 0 24 0 0 559,699
Test Wk 2 Wed 100 3,566 40 0 100 36,259 0.974 0.999
Test Wk 2 Thu 0 0 1,556 0 0 898,028
Test Wk 2 Fri 0 0 5 0 0 625,445

Totals 3,321 117,486 1,799 0 3,259 7,118,764 0.974 1.000

 79

Table 14. Comparison of strict and relaxed rules. For each rule tested, the table shows
the difference in false positive results and false negative results for the strict and relaxed
density rules. False negatives are for back attack continuation packets only; there are no
false negatives for initial packets for any rule.

Rule Strict Relaxed Diff Strict Relaxed Diff
-369784237 1,215 1,310 95 3,276 3,261 -15
-1144617577 1,399 1,593 194 3,276 3,259 -17
-1023231863 57,601 82,255 24,654 3,180 3,177 -3
1205312089 1,216 1,971 755 3,276 3,261 -15
1360891913 3,577 5,248 1,671 3,276 3,276 0
1386779481 1,408 1,799 391 3,276 3,259 -17

–––– False Positives ––––– – False Negative Continuation –

Table 15. Sensitivity to perturbation. Bits in two test packets were complemented
randomly with replacement. The table shows the percentage of bits that could be
modified before the density of the cellular automaton exceeded the upper density bound.
Testing was with the relaxed density rule. Testing stopped at 0.25 (25%) of bits
modified.

Rule Perturbation
Tolerated

-369784237 0.25
-1144617577 0.25
-1023231863 0.04
1205312089 0.25
1360891913 0.04
1386779481 0.25

Table 16. Rules tested with their density and fitness values. “Cycles” is the number of
cellular automaton cycles used in the tests. Packets were considered attack packets if
their ones densities were less than or equal to the values given.

Rule Cycles Fitness
Strict

Density
Relaxed
Density

-369784237 8 0.8530 0.2275833 0.28315
-1144617577 4 0.7659 0.3494167 0.42163
-1023231863 4 0.8731 0.5104167 0.52335
1205312089 4 0.8622 0.2248333 0.29015
1360891913 4 0.8127 0.25925 0.27354
1386779481 4 0.8746 0.2520833 0.33362

 80

Table 17. Experimental data collected.

Actual IMAP attack packets (detected by string comparison)
Actual back attack initial packets (detected by string comparison)
Actual back attack continuation packets (detected by string comparison)
IMAP attack packets detected by cellular automaton
Back attack initial packets detected by cellular automaton
Back attack continuation packets detected by cellular automaton
False positive packets
False negative IMAP attack packets
False negatice back attack initial packets
False negative back attack contiuation packets
Total packets read
IP packets read
TCP packets read and processed by cellular automaton

 81

Appendix B

Figures

 82

Figure 1. Operation of cellular automaton rule 1205312089 with the first 96 bits of data
from packet 1,819 of the Friday week two training data. The initial data and four cycles
of the cellular automaton cell values are shown as five rows in the figure. The ones
density does not decrease below the density threshold for this rule. This packet would
not be selected as a match.

Figure 2. Operation of cellular automaton rule 1205312089 with 96 bits 0x2f characters,
representing a back attack packet. The initial data and four cycles of the cellular
automaton cell values are shown as five rows in the figure. A pattern of four zero bits
and four one bits emerges in cycle two. In cycle three, the bits alternate between zero
and one except near the boundaries. In cycle four, nearly all bits are zero. The ones
density is 0.073, indicating that this packet matches a pattern in the set.

Figure 3. Operation of cellular automaton rule 1205312089 with 96 bits 0x90 characters,
representing an IMAP attack packet. The initial data and four cycles of the cellular
automaton cell values are shown as five rows in the figure. Cycles two, three, and four
exhibit the same patterns seen in Figure 2. At the end of cycle four, the ones density is
0.042, indicating that this packet matches a pattern in the set.

 83

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

32 x 1
Control
Store

i

i+1

i+2

i-2

i-1

Clock

Figure 4. A conceptual diagram showing how the next state of a cellular automaton can
be computed using the table look-up mechanism with a control store.

The next state of cell i is to be computed. The computation relies on the current states of
cells i–2, i–1, i, i+1, and i+2. The contents of those five cells form a five bit address into
the control store.

 84

Cellular
Automaton

Bit Density
Summation

Low Limit
Comparator

High Limit
Comparator

High Limit
Control Store

Low Limit
Control Store

Result
n bits log2 n bitsn bitsInput

Packet

Rule
Control Store

Figure 5. A conceptual diagram showing the implementation in hardware of a pattern
recognizer based on the use of cellular automata, with accepting state defined by bit
density bands.

85

 References

Alon, N., & Bruck, J. (1994). Explicit Constructions of Depth-2 Majority Circuits for
Comparison and Addition. SIAM J. Discret. Math., 7(1), 1-8.

Baskerville, R., Pries-Heje, J., & Venable, J. (2009). Soft design science methodology.
Proceedings of the 4th International Conference on Design Science Research in
Information Systems and Technology. New York: ACM. (pp. 1-11)

Berghel, H. (2003). Malware month. Communications of the ACM, 46(12), 15-19.

Bishop, M. (2003). Computer Security: Art and Science. Boston: Addison-Wesley
Professional.

Blelloch, G. E. (1993). Prefix sums and their applications. In J. H. Reif (Ed.), Synthesis of
Parallel Algorithms (pp. 35-60). San Mateo, CA: Morgan-Kauffman Publishers.

Brewer, G. (2008). Spiking Cellular Associative Neural Networks for Pattern
Recognition (Unpublished doctoral dissertation.) University of York, Uork, U.K.

Brooks, R., Orr, N., Zachary, J., & Griffin, C. (2002). An interacting automata model for
network protection. Fifth International Conference on Information Fusion.
Annapolis, MD: IEEE (pp. 1090-1097).

Cannady, J. (1998). Artificial neural networks for misuse detection. 21st National
Information Systems Security Conference. Gaithersburg, MD: National Institute of
Standards and Technology / National Computer Security Center. (pp. 368-381).

Chady, M., & Poli, R. (1997). Evolution of cellular-automaton-based associative
memories. Cognitive Science Research Papers. University of Birmingham, U.K.

Chaudhuri, P., Chowdhury, D., & Nandi, S. (1997). Additive cellular automata: theory
and applications: Piscataway, NJ: Wiley-IEEE Computer Society Press.

Chen, T. M. (2010). Stuxnet, the real start of cyber warfare? [Editor's Note]. Network,
IEEE, 24(6), 2-3.

Chowdhury, D., Gupta, I., & Chaudhuri, P. (2002). A low-cost high-capacity associative
memory design using cellular automata. Computers, IEEE Transactions on,
44(10), 1260-1264.

Chua, L. O., & Yang, L. (1988). Cellular neural networks: applications. IEEE
Transactions on Circuits and Systems,35(10), 1273-1290.

Clark, C., Lee, W., Schimmel, D., Contis, D., Koné, M., & Thomas, A. (2004). A
hardware platform for network intrusion detection and prevention. Proceedings of
Third Workshop on Network Processors & Applications (NP3), St. Louis, MO:
Washington University in St. Louis. (pp. 68-74).

 86

Cook, M. (2004). Universality in elementary cellular automata. Complex Systems, 15(1),
1-40.

Crowcroft, J., Hand, S., Mortier, R., Roscoe, T., & Warfield, A. (2003). QoS’s downfall:
at the bottom, or not at all! Proceedings of the ACM SIGCOMM workshop on
Revisiting IP QoS: What have we learned, why do we care?, New York: ACM.
(pp. 109-114).

Crutchfield, J. P., Mitchell, M., & Das, R. (1998). The evolutionary design of collective
computation in cellular automata. In J. Crutchfield & P. Schuster (Eds.),
Evolutionary Dynamics: Exploring the Interplay of Selection, Accident,
Neutrality, and Function (pp. 361–411). New York: Oxford University Press.

Egele, M., Scholte, T., Kirda, E., & Kruegel, C. (2012). A survey on automated dynamic
malware-analysis techniques and tools. ACM Computing Surveys, 44(2), 1-42.

Erdogan, O., & Cao, P. (2007). Hash-AV: fast virus signature scanning by cache-resident
filters. International Journal of Security and Networks, 2(1), 50-59.

Florêncio, D., & Herley, C. (2011). Sex, Lies and Cyber-crime Surveys. Proceedings of
the The Tenth Workshop on Economics of Information Security. Fairfax, VA:
George Mason University.

Forrest, S., Hofmeyr, S. A., & Somayaji, A. (1997). Computer immunology.
Communications of the ACM, 40(10), 88-96.

Fuentes, F., & Kar, D. C. (2005). Ethereal vs. Tcpdump: a comparative study on packet
sniffing tools for educational purpose. J. Comput. Small Coll., 20(4), 169-176.

Ganguly, N., Maji, P., Das, A., Sikdar, B., & Chaudhuri, P. (2002). Characterization of
Non-Linear Cellular Automata Model for Pattern Recognition. Advances in Soft
Computing—AFSS 2002. Berlin/Heidelberg: Springer-Verlag. (pp 141-150)

Ganguly, N., Maji, P., Sikdar, B., & Chaudhuri, P. (2004). Design and characterization of
cellular automata based associative memory for pattern recognition. Systems,
Man, and Cybernetics, Part B: IEEE Transactions on Cybernetics, 34(1), 672-
678.

Haines, J. W., Rossey, L. M., Lippmann, R. P., & Cunningham, R. K. (2001). Extending
the DARPA off-line intrusion detection evaluations. Proceedings of the DARPA
Information Survivability Conference and Exposition (DISCEX) 2000. Los
Alamitos, CA: IEEE Computer Society Press. (Vol. 1, pp. 35-45)

Hald, S. L. N., & Pedersen, J. M. (2012). An updated taxonomy for characterizing
hackers according to their threat properties. Fourteenth International Conference
on Advanced Communication Technology (ICACT). Piscataway, NJ: IEEE. (Vol.
2, pp. 81-86)

 87

Hall, M. J. (2013). Improving Software Remodularisation. (Unpublished doctoral
dissertation.) University of Sheffeld, Sheffield, U.K.

Jaeschke, R., Guyatt, G. H., & Scackett, D. L. (2006). Determining the Presence or
Absence of Disease: Reporting the Performance Characteristics of Diagnostic
Tests. In T. A. Lang & M. Secic (Eds.), How to report statistics in medicine
annotated guidelines for authors, editors, and reviewers (pp. 125-158).
Philadelphia: American College of Physicians.

Katz, R. H. (1994). Contemporary logic design. Redwood City, California:
Benjamin/Cummings.

Kauffmann, C., & Piche, N. (2008). Cellular automaton for ultra-fast watershed
transform on GPU. Proceedings of the19th International Conference on Pattern
Recognition (ICPR) Piscataway, NJ: IEEE (pp. 1-4)

Kundu, A., & Roy, D. (2010). An efficient approach to Web page classification using
non-linear cellular automata. Proceedings of the First International Conference
on Parallel Distributed and Grid Computing (PDGC) Piscataway, NJ: IEEE. (pp.
313-318)

Latif, A., Dalhoum, A., & Al-Dhamari, I. (2010). fMRI brain data classification using
cellular automata. In Mastorakis, N., Mladenov, V., & Bojkovic, Z. (Eds.) New
Aspects of Applied Informatics, Biomedical Electronics &Informatics and
Communications, 10th WSEAS International Conference on Applied Informatics
and Communications, Taipei, Taiwan: WSEAS (pp. 348-352).

Lippmann, R. P., Fried, D. J., Graf, I., Haines, J. W., Kendall, K. R., McClung, D., …
Zissman, M. A. (2000). Evaluating intrusion detection systems: the 1998 DARPA
off-line intrusion detection evaluation. Proceedings of the DARPA Information
Survivability Conference and Exposition (DISCEX) 2000. Los Alamitos, CA:
IEEE Computer Society Press. (Vol. 2, pp. 12-26)

Löf, A., & Nelson, R. (2010). Comparing Anomaly Detection Methods in Computer
Networks. Proceedings of the Fifth International Conference on Internet
Monitoring and Protection (ICIMP) Red Hook, NY: Curran Associates (pp. 7-
10).

Mahoney, M. V., & Chan, P. K. (2003). An Analysis of the 1999 DARPA/Lincoln
Laboratory Evaluation Data for Network Anomaly Detection. In G. Vigna, C.
Kruegel & E. Jonsson (Eds.), Recent Advances in Intrusion Detection Vol. 2820.
Berlin / Heidelberg: Springer (pp. 220-237).

Maji, P., Ganguly, N., & Chaudhuri, P. (2003). Error correcting capability of cellular
automata based associative memory. Systems, Man and Cybernetics, Part A:
IEEE Transactions on Systems and Humans, 33(4), 466-480.

 88

Mano, M. M., & Kime, C. (2007). Logic and Computer Design Fundamentals (4th
Edition). Boston: Prentice Hall.

McCumber, J. R. (1991). Information systems security: a comprehensive model.
Fourteenth NIST-NCSC National Computer Security Conference. Gaithersburg,
MD: National Institute of Standards and Technology / National Computer
Security Center. (pp. 328-337)

McHugh, J. (2000). Testing Intrusion detection systems: a critique of the 1998 and 1999
DARPA intrusion detection system evaluations as performed by Lincoln
Laboratory. ACM Transactions on Information Systems Security, 3(4), 262-294.

Mitchell, M., Crutchfield, J., & Das, R. (1996). Evolving cellular automata with genetic
algorithms: A review of recent work. In Goodman, E. D. (Ed.), Proceedings of the
First International Conference on Evolutionary Computation and its Applications
(EvCA’96) Moscow: Presidium of the Russian Academy of Sciences (pp. 1-14).

Mitchell, M., Crutchfield, J., & Hraber, P. (1994). Evolving cellular automata to perform
computations: Mechanisms and impediments. Physica D: Nonlinear Phenomena,
75(1-3), 361-391.

Navarro, G. (2001). A guided tour to approximate string matching. ACM Computing
Surveys, 33(1), 31-88.

Otey, M., Parthasarathy, S., Ghoting, A., Li, G., Narravula, S., & Panda, D. (2003).
Towards NIC-based intrusion detection. Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining, Washington,
DC (pp. 723-728).

Pfleeger, C. P., & Pfleeger, S. L. (2006). Security in Computing Fourth Edition. Upper
Saddle River, NJ: Prentice Hall Professional.

Porter, R., & Bergmann, N. (1999). Evolving FPGA based cellular automata. Simulated
Evolution and Learning, 114-121.

Reeves, C. R., & Rowe, J. E. (2003). Genetic Algorithms: Principles and Perspectives A
Guide to GA Theory. Boston: Kluwer Academic Publishers.

Rhodes, B., Mahaffey, J., & Cannady, J. (2000). Multiple self-organizing maps for
intrusion detection. Proceedings of the 23rd National Information Systems
Security Conference, Gaithersburg, MD: National Institute of Standards and
Technology / National Computer Security Center. (pp. 16-19).

Saha, S., Maji, P., Ganguly, N., Sikdar, B. K., & Chaudhuri, P. P. (2002, 6-9 Oct. 2002).
Evolving cellular automata model for pattern recognition and classification. In El
Kamel, A., Mellouli, K. & Borne, Pierre (Eds.) Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics, New York: IEEE
(pp. 114-119).

 89

Salmela, L., Tarhio, J., & Kytöjoki, J. (2007). Multipattern string matching with q-grams.
Journal of Experimental Algorithmics, 11, 1-19.

Sanders, J., & Kandrot, E. (2011). CUDA by example; an introduction to general-
purpose GPU programming. Boston: Addison-Wesley.

Sarkar, P. (2000). A brief history of cellular automata. ACM Computing Surveys, 32(1),
80-107.

Sekar, R., Guang, Y., Verma, S., & Shanbhag, T. (1999). A high-performance network
intrusion detection system. Proceedings of the 6th ACM conference on Computer
and Communications Security, New York: ACM (pp. 8-17).

Shonkwiler, R. (1993). Parallel genetic algorithms. Proceedings of the 5th International
Conference on Genetic Algorithms, San Francisco: Morgan Kaufmann Publishers
(pp. 199-205)

Singaraju, J., Bu, L., & Chandy, J. (2005). A signature match processor architecture for
network intrusion detection. In Arnold, J. & Pocek, K. (Eds.) Proceedings of the
13th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines, Napa, CA: IEEE (pp. 235-242).

Smith, A. (1971). Two-dimensional formal languages and pattern recognition by cellular
automata. Conference Record of the 12th Annual Symposium on Switching and
Automata Theory, East Lansing, MI: IEEE (pp. 144-152).

Solomon, M. G., & Chapple, M. (2005). Information Security Illuminated. Sudbury, MA:
Jones and Bartlett Publishers.

Sommerhalder, R., & Westrhenen, S. C. (1983). Parallel Language Recognition in
Constant Time by Cellular Automata. Acta Informatica, 19(4), 397-407.

Stallings, W., & Brown, L. (2008). Computer Security Principles and Practice. Upper
Saddle River, NJ: Pearson Prentice Hall.

Stallings, W., & Brown, L. (2012). Computer Security Principles and Practice Second
Edition. Upper Saddle River NJ: Pearson Prentice Hall.

Sutton, W. F., & Linn, E. (1976). Where the Money Was, The Memoirs of a Bank Robber
(2004 ed.) New York: Broadway Books.

Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A detailed analysis of the
kdd cup 99 data set. Proceedings of the IEEE Symposium on Computational
Intelligence for Security and Defense Applications, Ottawa, ON, Canada: IEEE
(pp. 1-6).

 90

Tavallaee, M., Stakhanova, N., & Ghorbani, A. A. (2010). Toward Credible Evaluation
of Anomaly-Based Intrusion-Detection Methods. Systems, Man, and Cybernetics,
Part C: Applications and Reviews, IEEE Transactions on, 40(5), 516-524.

Vinod, P., Jaipur, R., Laxmi, V., & Gaur, M. (2009). Survey on Malware Detection
Methods. Proceedings of the Proceedings of the 3rd Hackers' Workshop on
Computer and Internet Security, Kanpur, UP, India: Prabhu Goel Research Centre
for Computer & Internet Security (pp. 74-79).

Wolfram, S. (1994). Cellular Automata and Complexity: Collected Papers. Reading,
MA: Addison-Wesley.

Wolfram, S. (2002). A New Kind of Science. Champaign, IL: Wolfram Media.

Wood, D. (1987). Theory of Computation. New York: John Wiley and Sons.

Yu, F., Katz, R. H., & Lakshman, T. V. (2004, 5-8 Oct. 2004). Gigabit rate packet
pattern-matching using TCAM. Proceedings of the 12th IEEE International
Conference on Network Protocols, Piscataway, NJ: IEEE (pp. 174-183).

Zhang, J., Duan, H., Wang, L., Guan, Y., & Wu, J. (2008). A Fast Method of Signature
Generation for Polymorphic Worms. In Xie, Y., Li, W., & Zhou, J. (Eds.),
Proceedings of the 2008 International Conference on Computer and Electrical
Engineering, Piscataway, NJ: IEEE (pp. 8-13).

Zhang, Q., Reeves, D. S., Ning, P., & Iyer, S. P. (2007). Analyzing network traffic to
detect self-decrypting exploit code. In Deng, R. & Samarati, P. (Eds.),
Proceedings of the 2nd ACM Symposium on Information, Computer and
Communications Security, New York: ACM (pp. 4-12).

Zhuge, J., Holz, T., Song, C., Guo, J., Han, X., & Zou, W. (2009). Studying malicious
websites and the underground economy on the Chinese web. In Johnson, M. E.
(Ed.) Managing Information Risk and the Economics of Security (pp. 225-244)
New York: Springer U.S.

Zu, Y., Yang, M., Xu, Z., Wang, L., Tian, X., Peng, K., & Dong, Q. (2012). GPU-based
NFA implementation for memory efficient high speed regular expression
matching. Proceedings of the 17th ACM SIGPLAN symposium on Principles and
Practice of Parallel Programming. New York: ACM (pp. 129-140).

	Nova Southeastern University
	NSUWorks
	2014

	Application of Cellular Automata to Detection of Malicious Network Packets
	Robert L. Brown
	Share Feedback About This Item
	NSUWorks Citation

	Application of Cellular Automata to Detection of Malicious Network Packets

