
1111111111111111111imuuuu ~

(12) United States Patent
Rosu et al.

(54) PARAMETRIC TRACE SLICING

(75) Inventors: Grigore Rosu, Champaign, IL (US);
Feng Chen, Urbana, IL (US); Guo-fang
Chen, legal representative, Fuzhou (CN);
Yamei Wu, legal representative, Fuzhou
(CN); Patrick O. Meredith, Granite
City, IL (US)

(73) Assignee: The Board of Trustees of the
University of Illinois, Urbana, IL (US)

(*) Notice: 	Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 450 days.

(21) Appl. No.: 13/012,133

(1o) Patent No.: 	US 8,719,796 B2
(45) Date of Patent: 	May 6, 2014

RE41,228 E 	* 4/2010 Kodo sky et al 717/130
7,926,043 132 * 4/2011 Vaswani et al 717/130
7,926,044 132 * 4/2011 Iley et al 717/131
8,176,475 132 * 5/2012 Kosche et al 717/130
8,276,124 132 * 9/2012 Maennel 717/128
8,413,121 132 * 4/2013 Hinkley et al 717/128

2005/0091645 Al* 4/2005 Chilimbi et al 717/130
2006/0101416 Al* 5/2006 Callahan et al 717/128
2007/0006174 Al* 1/2007 Sohm et al 717/131
2009/0089759 Al* 4/2009 Raj an et al 717/126
2009/0125887 Al* 5/2009 Kahlon et al 717/128
2009/0259989 Al* 10/2009 Cifulentes et al 717/131
2010/0198799 Al* 8/2010 Krishnan et al 717/128
2010/0281469 Al* 11/2010 Wang et al 717/131
2011/0167412 Al* 7/2011 Kahlon et al 717/128
2012/0233599 Al* 9/2012 Valdiviezo Basauri

et 	al 717/126

OTHER PUBLICATIONS

Rosu, Grigore, and Feng Chen, Parametric Trace Slicing and Moni-
(22) Filed: 	Jan. 24, 2011 	 toring, [Online] Technical Report UIUCDCS, Jul. 2008, [Retrieved

from the Internet] <https://www.ideals.illinois.edu/bitstream/
(65) 	 Prior Publication Data 	 handle/2142/10873/UIUCDCS-R-2008-2977.pdf> 16 pages.*

US 2011/0320878 Al 	Dec. 29, 2011 	 (Continued)

	

Related U.S. Application Data 	
Primary Examiner Thuy Dao

(60) Provisional application No. 61/298,303, filed on Jan. 	Assistant Examiner Ravi K Sinha
26, 2010. 	 (74) Attorney, Agent, or Firm Wolfe-SBMC

(51) Int. Cl.
G06F 9144 	 (2006.01)

(52) U.S. Cl.
USPC 717/128; 717/130; 717/131

(58) Field of Classification Search
None
See application file for complete search history.

(56) 	 References Cited

U.S. PATENT DOCUMENTS

7,441,234 132 * 10/2008 Cwalina et al 717/128
7,536,602 132 * 	5/2009 Dams 717/131

(57) 	 ABSTRACT

A program trace is obtained and events of the program trace
are traversed. For each event identified in traversing the pro-
gram trace, a trace slice of which the identified event is a part
is identified based on the parameter instance of the identified
event. For each trace slice of which the identified event is a
part, the identified event is added to an end of a record of the
trace slice. These parametric trace slices can be used in a
variety of different manners, such as for monitoring, mining,
and predicting.

18 Claims, 5 Drawing Sheets

144

102

recuton

Direct Progr edictive Program
Instrumenta nstrumentation

Module Module

Pa ution

106

Trace Slices
122

	

108

Monitoring 	

110

Mining Module
Module

	

Monitoring 	 Mining Results

	

Results 124 	 12fi

US 8,719,796 B2
Page 2

(56) 	 References Cited

OTHER PUBLICATIONS

Chen, Feng, Traian Florin Serbanuta, and Grigore Rosu, j Predictor: A
predictive Runtime Analysis Tool for Java, [Online] ICSE'08. ACM/

IEEE 30th International Conference on Software Engineering, 2008,
[Retrieved from the Internet] <http://ieeexplore.ieee.org/stamp/

stamp .jsp?tp=&arnumber-4814133> pp. 221-230.*
Chen, Feng, and Grigore Rosu, Java-MOP: A monitoring oriented
programming environment for Java, [Online] Tools and Algorithms
for the Construction and Analysis of Systems. Springer Berlin
Heidelberg, 2005, [Retrieved from the Internet] <http://link.springer.
corn/content/pdf/10.1007%2F978-3-540-31980-136.pdf> 546-
550.*
Field, John; Ganesan Ramalingam; and Frank Tip, Parametric Pro-
gram Slicing, [Online] 1995, Proceedings of the 22nd ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, [Retrieved from the Internet] <http://delivery.acm.org/10 .
1145/200000/199534/p379-field.pdf> pp. 379-392.*
Cheng, P. S., Trace-driven system modeling, [Online] 1969, IBM
Systems Journal , vol. 8, No. 4, [Retrieved from the Internet] <http://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber-5388334
&isnumber=5388331> pp. 280-289.*
Zhai et al., FACT: fast communication trace collection for parallel
applications through program slicing, [Online] 2009, In Proceedings
of the Conference on High Performance Computing Networking,
Storage and Analysis (SC '09), [Retrieved from the Internet] <http://
delivery.acm.org/10.1 14 5/1 6600 0 0/16 5 40 87/a27-zhai.pdf> total 12
pages.*
"Apache James Project", retrieved from <<http://james.apache.
org/>> on Jan. 19, 2011, (Nov. 15, 2010),1 page.
"Apache Lucene Project", retrieved from <<http://lucene.apache.
org>> on Jan. 19, 2011, (Dec. 3, 2010), 7 pages.
"AspectJ", retrieved from <<http://eclipse.org/aspectj >> on Jan. 18,
2011, (Jun. 29, 2010), 3 pages.
"JavaMOP Experiment Enable Sets", http://fsl.cs.uiuc.edu/index .
php/JavaMOPExperiment Enable Sets., (2009), 14 pages.
"JFreeChart", retrieved from <<http://www.jfree.org/jfreechart >>
on Jan. 19, 2011, (2005-2009), 3 pages.
"JMiner Webpage", retrieved from <<http://fsl.cs.uiuc.edu/jminer >>
on Jan. 19, 2011, (Apr. 15, 2010), 12 pages.
"Scan Website", retrieved from <<http://scan.sourceforge.net >> on
Jan. 19, 2011, (2007-2009), 1 page.
"Soot Website", retrieved from <<http://www.sable.mcgill.ca/
soot/>> on Jan. 18, 2011, (Mar. 29, 2010), 4 pages.
"Temporal Rover", retrieved from http://www.time-rover.com on
Jan. 18, 2011, 1 page.
Acharya, Mithun et al., "Mining API Patterns as Partial Orders from
Source Code: From Usage Scenarios to Specifications", ESEC/
FSE'07, (Sep. 3-7, 2007), 10 pages.
Allan, et al., "Adding Trace Matching with Free Variables to
AspectJ", OOPSLA '05, (Oct. 16-20, 2005), 20 pages.
Ammons, Glenn et al., "Mining Specifications", POPL '02, proceed-
ings ofthe 29thAMCSIGPLAN-SIGACTsymposium on Principles of
programming languages, vol. 37, (Jan. 16-18, 2002), pp. 4-16.
Avgustinov, Pavel et al., "Making Trace Monitors Feasible",
OOPSLA '07, (Oct. 21-25, 2007), pp. 589-607.
Barringer, Howard et al., "Rule Systems for Run-Time Monitoring:
From Eagle to RuleR", RV'07, vol. 4839 ofLNCS, (Jan. 26, 2007),
pp. 111-125.
Barringer, Howard et al., "Rule-Based Runtime Verification", Verifi-
cation, Model Checking, and Abstract Interpretation (VM CAI '04,
ser. LNCS, vol. 2937, (2004), 14 pages.
Blackburn, Stephen et al., "The DaCapo Benchmarks: Java
Benchmarking Development and Analysis", OOPSLA '06, (2006),
22 pages.
Bodden, Eric "J-LO, A Tool for Runtime-Checking Temporal Asser-
tions", Master's Thesis, RWTHAachen University, (Oct. 13, 2005),
146 pages.

Bodden, Eric et al., "A Staged Static Program Analysis to Improve the
Performance of Runtime Monitoring", ECOOP '07, (2007), 25
pages.
Bodden, Eric et al., "Dependent Advice: A General Approach to
Optimizing History-based Aspects", AOSD 09 (Mar. 2-6, 2009), pp.
3-14.
Briand, Lionel C., et al., "Toward the Reverse Engineering of UML
Sequence Diagrams for Distributed Java Software", IEEE Transac-
tions on Software Engineering, vol. 32, No. 9, (Sep. 2006), 22 pages.
Brzozowski, Janusz A., "Derivatives of Regular Expressions", Jour-
nal oftheAssociation for Computing Machinery (JACM), vol. 11, No.
4, (Oct. 1964), pp. 481-494.
Chen, et al., "JPredictor: a Predictive Runtime Analysis Tool for
Java", ICSE'08 (May 10-18, 2008), pp. 221-230
Chen, et al., "Parametric and Sliced Causality", Communications of
the ACM (CAV)'07, (2007), 13 pages.
Chen, Feng et al., "Efficient Formalism-Independent Monitoring of
Parametric Properties", University of Illinois at Urbana-Champaign,
Tech Rep. 2142-11787, Available: http://hdi.handle.net/2142/11787,
(May 12, 2009), 18 pages.
Chen, Feng et al., "Mining Parametric State-Based Specifications
from Executions", TechnicalReport UIUCDCS-R-2008-3000, Dept.
of Computer Science at UZUC, (2008), 11 pages.
Chen, Feng et al., "MOP: An Efficient and Generic Runtime Verifi-
cation Framework", OOPSLA '07, ACM Press, (Oct. 21-25, 2007),
pp. 569-588.
Chen, Feng et al., "Parametric Trace Slicing and Monitoring",
TACAS'09, LNCS vol. 5505 (2009), pp. 246-261.
Chen, Feng et al., "Towards Monitoring-Oriented Programming: A
Paradigm Combining Specification and Implementation", Electronic
Notes in Theoretical Computer Science, vol. 89, No. 2, (2003), 20
pages.
Damn, Werner et al., "LSCs: Breathing Life into Message Sequence
Charts", Formal Methods in System Design, vol. 19 No. 1(2001), pp.
45-80.
Drusinsky, Doron "The Temporal Rover and the ATG Rover", Pro-
ceedings of the 7th International SPIN Workshop on SPIN Model
Checking And Software VericationSpringer-Verlag London, UK
02000, (2000), 9 pages.
Ernst, Michael D., et al., "Quickly Detecting Relevant Program
Invariants", ISCE '00, (1999), 10 pages.
Gabel, Mark et al., "Symbolic Mining of Temporal Specifications",
ICSE '08, Proceedings of the 30th international conference on Soft-
ware engineering, (May 10-18, 2008), pp. 51-60.
Goldsmith, Simon et al., "Relational Queries Over Program Traces",
OOPLSA '05, Proceedings of the 20th annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, systems, languages, and
applications, (Oct. 16-20, 2005), 18 pages.
Hangal, Sudheendra et al., "Tracking Down Software Bugs Using
Automatic Anomaly Detection", 24th International Conference on
Software Engineering, (May 2002), 11 pages.
Havelund, Klaus et al., "Monitoring Java Programs with Java
PathExplorer", Runtime Verification (RV'01), ser ENTCS, vol. 55 No.
2 (May 2001), 20 pages.
Joshi, Pallavi et al., "Predictive Typestate Checking of Multithreaded
Java Programs", ASE '08, (Sep. 2008), 9 pages.
Kiczales, Gregor et al., "An Overview of AspectJ", European Con-
ference on Object Oriented Programming (SCOOP) '01, (2001), 28
pages.
Lamport, Leslie "Time, clocks, and the Ordering of Events in a
Distributed System", Communications of the ACM, vol. 21, No. 7,
(Jul. 1978), pp. 558-565.
Lo, David et al., "Mining Scenario-Based Triggers and Effects", ASE
'08, (2008), pp. 109-118.
Lorenzoli, Davide et al., "Automatic Generation of Software Behav-
ioral Models", ICSE '08, (May 10-18, 2008), 10 pages.
Martin, Michael et al., "Finding Application Errors and Security
Flaws Using PQL: a Program Query Language", OOPLSA'05, (Oct.
16-20, 2005), pp. 365-383.
Meredith, Patrick O., et al., "Efficient Monitoring of Parametric
Context-Free Patterns", ASE '08, IEEE/ACM, (2008), pp. 148-157.

US 8,719,796 B2
Page 3

(56) 	 References Cited

OTHER PUBLICATIONS

Moaz, Shahar et al., "From Multi-Modal Scenarios to Code: Com-
piling LSCs into AspectY', SIGSOFT'061FSE-14, Proceedings of the
14th ACM SIGSOFT international symposium on Foundations of
software engineering, Nov. 5-11, 2006, pp. 219-229.
Raman, Anand et al., "The sk-strings method for inferring PFSA",
International Conference on Machine Learning (ICML) '97, (1997),
7 pages.
Ramanathan, Murali K., et al., "Path-Sensitive Inference of Function
Precedence Protocols", 29th International Conference on Software
Engineering (ICSE) '07, (2007), 10 pages.

Ramanathan, Murali K., et al., "Static Specification Inference Using
Predicate Mining", PLDI'07, (Jun. 11-13, 2007), 12 pages.

Shoham, Sharon et al., "Static Specification Mining Using

Automata-Based Abstractions", ISSTA '07, (Jul. 9-12, 2007), 11
pages.

Yang, Jinlin et al., "Perracotta: Mining Temporal API Rules from

Imperfect Traces", ICSE '06, (May 20-28, 2006), 10 pages.

* cited by examiner

U.S. Patent 	May 6, 2014 	Sheet 1 of 5
	

US 8,719,796 B2

100

102---, 	 104

Direct Program
	

Predictive Program
Instrumentation
	

Instrumentation
Module
	

Module

Parametric Execution
Traces 120

106 	
Parametric

Trace Slicing
Module

Trace Slices
122

108
	

110

Monitoring I 	I Mining Module
Module

Monitoring 	 Mining Results
Results 124 	 126

Fig. 1

U.S. Patent 	May 6, 2014 	Sheet 2 of 5 	 US 8,719,796 B2

200

202

Obtain Program Trace

Traverse Trace From The First Event To
The Last Event

Identify First Event In Trace During
Traversal

Identify, Based On Parameter Instances In
The Identified Event, Each Trace Slice Of

Which The Identified Event Is A Part
210

Add Identified Event To The End Of Trace
Slice Record For Each Trace Slice Of
Which The Identified Event Is A Part

No 	 Identified Event Is
Last Event In Trace?

216

Identify Next Event In Trace
During Traversal

212

nYes

214

Finished

Fig. 2

204

206

208

U.S. Patent 	May 6, 2014 	Sheet 3 of 5
	

US 8,719,796 B2

300
	

302

Obtain Parametric Trace

304

Traverse Trace From The First Event To
The Last Event

306

Identify First Event In Trace During
Traversal

308

Identify, Based On Parameter Instances In
The Identified Event, The Monitor Instance

Corresponding To The Identified Event 	
310

Add Identified Event To The Identified
Monitor Instance

312

Determine Output Corresponding To The
Identified Monitor Instance

314

Add Indication Of Output Corresponding
To The Identified Monitor Instance Record

316

No 	 Identified Event Is 	Yes
Last Event In Trace?

320 —\

Identify Next Event In Trace
During Traversal

Finished

318

Fig. 3

U.S. Patent 	May 6, 2014 	Sheet 4 of 5 	 US 8,719,796 B2

402

400

Obtain Trace Slices

Produce Deterministic Finite Automata By
Analyzing Trace Slices Using Probabilistic

Finite State Automata Learner

404

406

Produce Refined Deterministic Finite
Automata By Using Use Trace Slices To

Refine Automata

Generate Equivalent Regular Patterns
From Refined Deterministic Finite State

Automata

Output Regular Patterns And Refined
Deterministic Finite Automata

Fig. 4

408

410

U.S. Patent 	May 6, 2014 	Sheet 5 of 5 	 US 8,719,796 B2

500

502 	 504

Processor(s) 	System Memory

510

Mass Storage
	

Input/Output
Device(s)
	

(1/0) Device(s)

506--/ 	 508

Fig. 5

US 8,719,796 B2

PARAMETRIC TRACE SLICING

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 61/298,303, filed Jan. 26, 2010, entitled
"Parametric Trace Slicing", to Grigore Rosu, Feng Chen, and
Patrick O. Meredith, which is hereby incorporated by refer-
ence herein.

GOVERNMENT LICENSE

This invention was made with Government support under
Grant Numbers CCF-0448501, CNS-0509321, and
CNS-0720512 awarded by the National Science Foundation
(NSF), and Contract Number NNL08AA23C awarded by the
National Aeronautics and Space Administration (NASA).
The Government has certain rights in the invention.

BACKGROUND

Analyzing execution traces of programs is oftentimes per-
formed to debug and/or otherwise analyze computer pro-
grams. Unfortunately, many computer programs can result in
execution traces that are very long and/or complex. This
problem is exacerbated for parametric traces, which are traces
that contain events with parameter bindings. In parametric
traces, the execution trace typically includes multiple trace
slices merged together, with each trace slice corresponding to
a parameter binding. Accordingly, it can be difficult to ana-
lyze execution traces, particularly for parametric traces.

SUMMARY

This Summary is provided to introduce subject matter that
is further described below in the Detailed Description.
Accordingly, the Summary should not be considered to
describe essential features nor used to limit the scope of the
claimed subject matter.

In accordance with one or more aspects, a program trace is
obtained and events of the program trace are traversed. For
each event identified in traversing the program trace, a trace
slice of which the identified event is a part is identified based
on one or more parameter instances in the identified event.
For each trace slice of which the identified event is a part, the
identified event is added to an end of a record of the trace slice.

BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting and non-exhaustive embodiments are
described with reference to the following figures, wherein
like reference numerals refer to like parts throughout the
various views unless otherwise specified.

FIG. 1 illustrates an example system employing the para-
metric trace slicing in accordance with one or more embodi-
ments.

FIG. 2 is a flowchart illustrating an example process for
parametric trace slicing in accordance with one or more
embodiments.

FIG. 3 is a flowchart illustrating an example process for
parametric trace slice monitoring in accordance with one or
more embodiments.

FIG. 4 is a flowchart illustrating an example process for
parametric trace slice mining in accordance with one or more
embodiments.

2
FIG. 5 is a block diagram illustrating an example comput-

ing device in which the parametric trace slicing can be imple-
mented in accordance with one or more embodiments.

5 	 DETAILED DESCRIPTION

Parametric trace slicing is discussed herein. A program
trace is a parametric execution trace containing events with
parameter bindings, and is traversed to identify multiple para-

10 metric trace slices in the program trace. During the traversal,
a table of parametric trace slices is generated. This table can
be subsequently accessed to retrieve one or more parametric
trace slices without re-traversing the program trace. These

15 parametric trace slices can be used in a variety of different
manners, such as for one or more of monitoring, mining, and
predicting.

FIG. 1 illustrates an example system 100 employing the
parametric trace slicing in accordance with one or more

20 embodiments. System 100 includes a direct program instru-
mentation module 102, a predictive program instrumentation
module 104, a parametric trace slicing module 106, a moni-
toring module 108, and a mining module 110. Each of mod-
ules 102, 104, 106, 108, and 110 can be implemented in

25 software, firmware, and/or hardware. Additionally, each
module 102,104,106,108, 110 canbeimplementedby one or
more computing devices. Furthermore, modules 102, 104,
106, 108, and 110 can all be implemented in the same com-
puting device, or alternatively implemented by different com-

30 puting devices. In embodiments where system 100 is imple-
mented by multiple computing devices, the multiple
computing devices can communicate with one another via a
variety of different types of communications networks. For
example, the computing devices can communicate with one

35 another using a direct wired or wireless coupling of the com-
puting device, the Internet, a local area network (LAN), a
public telephone network, a cellular or other wireless phone
network, combinations thereof, and so forth.

Parametric execution traces 120 can be generated using a
40 variety of different techniques, such as using direct program

instrumentation and/or predictive program instrumentation.
In one or more embodiments, parametric execution traces 120
are generated by module 102 using direct program instrumen-
tation. In such embodiments, parametric traces are con-

45 structed in the order events occur in the actual program.
In alternate embodiments, parametric execution traces 120

are generated by module 104 using predictive program instru-
mentation. In such embodiments, multiple parametric execu-
tion traces 120 are output by module 104, one of which

50 corresponds to the actual order of observed events in a pro-
gram. The other parametric execution traces correspond to
possible sequences of events with respect to a partial order
such as "happens-before" or "sliced causality", and are rel-
evant in multi-threaded or distributed programs. These other

55 parametric execution traces are not the actual observed trace,
although these other parametric execution traces may occur in
different runs or executions of the program. Thus, using pre-
dictive program instrumentation additional bugs or errors can
be found that did not occur when the program was actually

60 run.
Parametric trace slicing module 106 receives one or more

execution traces 120. Module 106 analyzes parametric execu-
tion traces 120 and outputs one or more trace slices 122
obtained from the parametric execution traces 120. In one or

65 more embodiments, trace slices 122 are output by system 100
for analysis (e.g., by a program developer). In addition to (or
alternatively in place of) system 100 outputting trace slices

US 8,719,796 B2
3

122, trace slices 122 can be input to one or more of monitoring
module 108 and mining module 110.

A parametric execution trace 120 is an execution trace that
contains events with parameter bindings. Events with param-
eter bindings are present in programs where abstract param-
eters (e.g., variable names) are bound to concrete data (e.g.,
heap objects) at runtime. Accordingly, a parametric execution
trace 120 can include numerous events with numerous param-
eter bindings. Parametric trace slicing module 106 analyzes a
parametric execution trace 120 and obtains the trace slices
corresponding to each instance of a parameter. Module 106
generates a record (e.g., a table) of parametric trace slices
while traversing trace 120, thereby avoiding any need to
re-traverse the trace for each instance of a parameter. Module
106 also obtains the trace slices without imposing restrictions
on the type of parametric execution trace 120. For example,
the first event for a particular property instance need not bind
all the parameters for the property.

Monitoring module 108 monitors parametric execution
traces and determines whether the monitored traces comply
with particular constraints. These constraints can be speci-
fied, for example, as regular expressions identifying the for-
mat that monitored traces are to follow. Monitoring module
108 can operate on parametric execution traces 120 and/or
trace slices 122. An indication of whether traces and/or trace
slices comply with the particular constraints can be output by
monitoring module 108 in a variety of different manners, such
as by generating one or more tables and/or other records.
These indications are output by module 108 as monitoring
results 124.

Mining module 110 analyzes trace slices 122 to generate
non-parametric state-based specifications together with
equivalent regular expressions. An indication of these speci-
fications and/or regular expressions are output by module 110
as mining results 126. Mining module 110 automatically
detects various aspects regarding the manner in which the
underlying program (that was executed to generate paramet-
ric execution traces 120) operates. For example, mining mod-
ule 110 can automatically detect Application Programming
Interface (API) patterns, usage scenarios, and so forth.

Direct Program Instrumentation

Direct program instrumentation refers to obtaining a para-
metric execution trace corresponding to an actual execution
of a program. Direct program instrumentation is performed
by, for example, direct program instrumentation module 102
of FIG. 1.

Generally, using direct program instrumentation, particu-
lar points of interest in a program are specified. The location
of these points of interest can be specified in different man-
ners, such as by a user (e.g., a program developer or system
administrator), or by another module or device. When such
specified points of interest in the program are reached, they
are reported as an event to one or more other modules in the
system. A set of such events reported for a program are the
parametric execution trace for the program. Direct program
instrumentation can be performed in a variety of different
conventional manners. For example, direct program instru-
mentation can be performed using an aspect language such as
AspectJ. Additional information regarding the Aspect) aspect
language can be found in, for example, `An Overview of
Aspect)", by G. Kiczales, E. Hilsdale, J. Hugunin, M. Ker-
sten, J. Palm, and W. G. Griswold, European Conference on
Object Oriented Programming (SCOOP) '01 (2001).

Predictive Program Instrumentation

Predictive program instrumentation refers to attempting to
infer all possible execution traces in a multi-threaded or dis-

4
tributed program in which different inter-leavings of execu-
tion of the threads or distributed pieces can result in different
execution traces. Predictive program instrumentation is per-
formed by, for example, predictive program instrumentation

5 module 104 of FIG. 1. It should be noted that although infer-
ring all possible execution traces is attempted, the predictive
program instrumentation may actually infer fewer than all
possible execution traces.

Predictive program instrumentation begins by generating a
l0 direct trace of program events (e.g., using direct program

instrumentation as discussed above). At predetermined points
during the collection of the direct trace, a partial order of
events is determined using control relations such as "hap-

15 pens-before" or "sliced causality". The partial order of events
can be determined using a variety of different control rela-
tions. Additional information regarding the "happens-before"
control relation can be found in, for example, "Time, Clocks,
and the Ordering of Events in Distributed Systems", by L.

20 Lamport, Communications of the ACM, 21(7):558565
(1978). Additional information regarding the "sliced causal-
ity" control relation can be found in, for example, "Parametric
and Sliced Causality", by F. Chen and G. Rosu, Computer
Aided Verification (CAV) '07 (2007).

25 	The location of these predetermined points canbe specified
by a user (e.g., a program developer or system administrator),
orby another module or device. In one or more embodiments,
the location of the predetermined points is determined by
balancing precision of the partial orders (which is increased

30 or improved by spacing the predetermined points further
apart) against runtime overhead (which is decreased or
improved by spacing the predetermined points closer
together).

The feasible traces with respect to these determined partial
35 orders of events are generated. For example, assume a pro-

gram generates a trace a b c, where each letter represents an
event, and that the control relation used determines that a
must occur before c. In this example, then, the feasible traces
b a c and a c b can be inferred. The parametric execution traces

40 generated by the predictive program instrumentation include
these feasible traces as well as the actual traces from the direct
trace of program events. Thus, the parametric execution trace
includes feasible traces that were not actually part of the
tested execution of the program. This allows errors that occur

45 within a feasible trace (but do not occur in the actual tested
execution of the program) to be identified or predicted. Refer-
ring to FIG. 1, this allows the monitoring performed by moni-
toring module 108 and/or the mining performed by mining
module 110 to be performed based on feasible traces that did

50 not occur in the actual tested execution of the program.

Parametric Trace Slicing

Parametric trace slicing refers to obtaining from (or iden-
55 tifying in) a parametric execution trace multiple trace slices

each of which corresponds to an instance of a parameter in the
parametric execution trace. Parametric execution traces can
be obtained using a variety of different instrumentation tech-
niques, such as the direct program instrumentation and/or

60 predictive program instrumentation techniques discussed
above. Parametric trace slicing is performed by, for example,
parametric trace slicing module 106 of FIG. 1.

In the discussions herein, e refers to a set of non-parametric
events (also referred to as base events). An e-trace is a non-

65 parametric trace when e is understood or not important. An
e-trace is referred to as any finite sequence of events in e, also
referred to as an element in E*. An event can be referred to as

US 8,719,796 B2
5

e and a trace can be referred to as w, and if an event eEE
appears in a trace WEE*, this situation is also referred to as
eEW.

An E-property P, also referred to as a base or non -paramet-
ric property, is a function P:E—C that partitions a set of traces
into categories C. In one or more embodiments , categories in
C include "validating", "violating", and "don't know" (also
referred to as "?"). Other categories for C can alternatively be
used , such as "matching" and "don ' t care".

A regular expression can be used to identify an acceptable
or proper format for a trace (or portion thereof). This can also
be referred to as a constraint on the trace (or portion thereof).
Assuming C is the set {validating, violating, don't know},
and for a given regular expression E of a trace, the property
PE:E *—C of the regular expression E is defined as follows:
Px(w)=validating if and only if w is in the language of E,
Px(w)=violating if and only if there is no w'EE* such that w
w' is in the language of E, and PE(w)-don't know otherwise.

These preceding definitions can be extended to the para-
metric case where events carry concrete data instantiating
abstract parameters as follows. For example, assume an event
Acquire and an event Release are parametric in their resource
(a resource to be acquired and released). Assume r is the name
of the generic resource parameter , and that r 1 and r2 are two
concrete resources. Following this assumption , parametric

acquire/release events have the form Acquire(rH r1) ,

Release(rH r2) , and so forth. It should be noted that not all
events need carry instances for all parameters . For example,
Begin and End parametric events (signifying the beginning
and ending, respectively, of a procedure), have the form Begin

(_) and End(_) , where 1 refers to the partial map undefined
everywhere and instantiates no parameter . The sets of total/
partial functions from A to B are also referred to as [A—B]/
[A, B] .

A set of parameters is referred to as X, and a set of corre-
sponding parameter values is referred to as V. A set of base

events is referred to as E as discussed above, and E(X) is a set

of corresponding parametric events e (6) where e is a base
event in E and 6 is a partial function [X, V]. A parametric

trace is a trace with events in E(X,, also referred to as a word
in EH X) *.

In the discussions herein, the parameter values set V is
implicit to simplify writing . For example , a parametric trace

can be: Begin(_) Acquire(6 1) Acquire(6) Acquire(0)

Release (0) End(_) Begin) _) Acquire (o) Release(6)

End(1), where e1 maps r to r 1 and e2 maps r to r2 . Addition-
ally, in the discussions herein just the parameter values are

listed when writing parameter instance , such as (r 1 , instead

of (rhH r1) , ti [r2 instead of ti [rH r2, and so forth. Using this
notation , the previous example parametric trace can be writ-

ten 	as: 	Begin() Acquire(r) Acquire(r) Acquire(r)

Release (r) End () Begin () Acquire (r) Release(r) End

() . This example parametric trace thus involves two
resources (r 1 and r2), and includes two trace slices (one for
each of the two resources). The Begin and End events in the
parametric trace belong to both trace slices. The trace slice
corresponding to e 1 is: Begin Acquire Acquire Release End
Begin End. The trace slice corresponding to e2 is: Begin
Acquire End Begin Acquire Release End.

Partial functions 6 in [X, V] are referred to as parameter
instances. The 6 and 6'E[A, B] are referred to as being com-

6
patible if for any xEDom(o)nDom(6') where 6(x) –O'(x).
Compatible instances 6 and 6' can be combined, written as
6_6', as follows:

B(x) when B(x) is defined

(BLB')(x) _ B'(x) when B'(x) is defined

undefined otherwise

to

The 6 L 6' is also referred to as the least upper bound (lub)
of 6 and 6'. The 6' is less informative than 6, or 6 is more
informative than 6', also written as 6', 6 if and only if for any
xEX, if 6 '(x) is defined then 6(x) is also defined and 6'(x)=6

15 (x). For example, () is compatible with (r1) and with (r) ,

but (r 1) and (r) are not compatible . Additionally, O (r1)

and ()'(r).

20 	
Given a parametric trace TEE(X) * and 6 in [X, V], then

the 6 - trace slice ti 16EE* is the non-parametric trace defined
as:

E –E, where E is the empty trace/word, and

25 	(teH 6)) 16=(ti, 6)e when 0'r.- 6, and

(tieH 6 1) [6,t [6 when 6' 6
The trace slice ti) 6 first filters out the parametric events that

are not relevant for the instance 6. The parametric events that
are not relevant for the instance 6 are the parametric events

30 that contain instances of parameters that 6 does not care about
(e.g., instances of parameters not included in 6). For the

remaining events relevant to 6, the trace slice ti 6 forgets or
drops the parameters so that the trace can be checked against

35 base, non-parametric properties. It should be noted obtaining
such trace slices is different from extracting traces from
executions and abstracting traces from executions . Extracting
traces refers to determining the events to include in the trace,
as well as parameter instances carried by events. Abstracting

40 traces refers to dispatching each event in the given trace to
corresponding trace slices according to the event ' s parameter
instance.

A set of parameters together with their corresponding
parameter values V is referred to as X, and P:E*—C refers to

45 a non-parametric property as discussed above. The paramet-
ric property AX•P is defined as the property (over traces

E(X) * and categories [[X, V]—C]):

AX-P:E(X) *— [[X,] —C]

50 which is referred to as (AX•P)(ti)(6)=P(ti 6) for any tiEEH
X) * and any 6E[X, V]. If X=1x 11 ... , xJ, then (A{x 1 , ... ,
xJ -P) can be written as Ax 1 , ... , x„ •P. Additionally, P V refers
to a pattern or formula ~ in some particular trace specification
formalism, then AX-P., is written as AX• ~ .

55 	Parametric properties AX•P over base properties P:E*—C
are thus properties taking traces in EH X) * to categories [[X
, V] —C], in other words to function domains from parameter
instances to base property categories. AX•P is defined as if
many instances of P are observed at the same time on the

60 parametric trace, one property instance for each parameter
instance, and each property instance concerned with its
events only (dropping the unrelated events).

Generally, to slice parametric traces, a parametric slicing
process is used that takes a parametric execution trace incre-

65 mentally and builds a partial function of finite domain as a
lookup table for all slices of the parametric trace. The param-
eter instances are the index used to lookup slices in the lookup

US 8,719,796 B2
7

table. The various parametric trace slices in the parametric
trace are identified in this lookup table. A trace slice is com-
puted for all combinations of parameter instances observed in
parametric trace events in the trace. In order to obtain a
particular slice for a particular set of functions instantiating a
particular set of parameter values, a most informative set of
parameter instances is calculated. This most informative set
of parameter instances refers to all the parameter instances
used in the particular slice. The lookup table is then accessed
to identify the parametric trace slice identified by the most
informative set of parameters. Thus, the parametric trace can
be processed or traversed one time as the lookup table is being
generated. Appropriate data structures are maintained as the
lookup table so that parametric trace slices can be subse-
quently retrieved for any parameter instance without process-
ing or traversing the parametric trace again.

FIG. 2 is a flowchart illustrating an example process 200
for parametric trace slicing in accordance with one or more
embodiments. Process 200 can be implemented in software,
firmware, hardware, or combinations thereof. Process 200 is
carried out by, for example, a parametric trace slicing module
106 of FIG. 1. Process 200 is shown as a set of acts and is not
limited to the order shown for performing the operations of
the various acts. Process 200 is an example process for para-
metric trace slicing; additional discussions of parametric
trace slicing are included herein with reference to different
figures.

In process 200, a program trace is obtained (act 202). The
program trace can be obtained from a variety of different
sources in a variety of different conventional manners. The
program trace can be a trace of a previously run program, or
alternatively an on-going trace of a program currently run-
ning

The trace is traversed from the first event in the trace to the
last event in the trace (act 204). Each event in the trace is
analyzed as the trace is traversed. Alternatively, the program
trace can be traversed in different orders other than from the
first event to the last event.

The first event in the trace is identified during the traversal
(act 206). This first event can be a parametric event or a
non-parametric event.

Based on the parameter instances in the identified event,
each trace slice of which the identified event is a part is
identified (act 208). An event is part of a trace slice if the
parameter instance of the event is less informative than (,)
the parameter instance of the trace slice. If the event includes
no parameter instances, then the event is a part of all trace
slices. A record of each different trace slice identified in the
trace is maintained. These different trace slices correspond to
different possible combinations of parameter instances
observed while traversing the trace. A record of each possible
trace slice resulting from each possible combination of
parameter instances observed in the trace can be maintained
regardless of whether the particular combination of param-
eter instances is actually observed in the trace. Alternatively,
a record of each possible trace slice resulting from the com-
binations of parameter instances actually observed in the
trace can be maintained.

The identified event is added to the end of the trace slice
record for each trace slice of which the identified event is a
part (act 210). For each trace slice identified in act 208, the
identified event is added to the end of the record of that trace
slice. It should be noted that the identified event can be added
with or without its parameter instances.

8
A check is then made as to whether the identified event is

the last event in the trace (act 212). If the identified event is the
last event in the trace, then process 200 is finished for the
obtained trace (act 214).

5 	However, if the identified event is not the last event in the
trace, then the next event in the trace is identified during the
traversal (act 216). Process 200 then returns to act 208 to
identify, based on the parameter instances in the identified
event, each trace slice of which the identified event is a part.

i0 Process 200 illustrates an example process for parametric
trace slicing. Examplepseudo code for an algorithm perform-
ing parametric trace slicing is included in Table I below. The

algorithm A(X) in Table I takes a parametric trace TEeH
15 X) * incrementally and builds a partial function TE[[X

, V]-e*] of finite domain as a quick lookup table for all
Slices of T. Given sets of partial functions O, & - [X, V], _E)
is the least informative partial function OE[)(, —V] such that
for any WEE), 0', 0; max O is the most informative BEE); O

20 L E)'={0 L 0'I BEE), WE& such that 0_0' exists} and
(0] 0={0'10'EE) and 0',01. It should be noted that _E) and
max E) may not exist. The algorithm AH X) in Table I takes
an input of a parametric trace tiEeH X) * , and outputs a map

25
or lookup table TE[[X, V]-e*] and a set E) =:[X, V].

TABLE

1 	 T-1;T(1)—E;6—(1}

2 	 for each e4 in order in T do

30 	 3 	 : for each WE {0} — O do
4 	 :: T (0') F T(max(0'] 0)e
5 	 : end for
6 	 : O F {1,0} LO
7 	 end for

35 	The algorithm AH X) in Table I operates on input T, also
written as AH X) (ti), traverses T from its first event to its last
event and, for each encountered event eH 0) , updates both its
data structures T and E). After processing each event, the

40
relationship between T and E) is that E) is a domain of T.

In the algorithm AH X) in Table I, at line 1 the data struc-
tures T and E) are initialized. T is undefined everywhere (1)
except for the undefined everywhere function 1, where
T(1)=f. E) is initialized to the set {1}. The code at lines 3 to

45 6, inside the outer loop (at lines 2 to 7) is triggered when a new
event is received. When a new event eH 0) is received, T is
updated as follows. For each 0'[X, V] that can be obtained by
combining 0 with the compatible partial functions in the
domain of the current T, update T(0') by adding the non-

50 parametric event e to the end of the slice corresponding to the
largest (the most knowledgeable) entry in the current table T
that is less informative or as informative as 0'. Then, at line 6,
E) is extended.

As an example, consider a sample parametric trace with

55 parametric events in {a, b, c}. The sample parametric trace

T–e1Ha1) e2Ha2) e3Hb1) e4Ha2b1) esHa1) eeO e7
Hbi). The following example records illustrate how the
algorithm AH X) works on the sample parametric trace T.

An entry of the form H 0) :w in a record corresponding to a
60 current parametric event eH 0) means that T(0) –w after pro-

cessing all the parametric events up to and including the
current parametric event; T is undefined on any other partial
function. The E) corresponding to a record is the union of all
the 0's that appear in pairs H 0) :w in that record. It should be

65 noted that as each parametric event eH 0) is processed, the
non-parametric event e is added at most once to the record of
each slice. Tables II-VIII below illustrate the contents of each

US 8,719,796 B2
9

record for a trace slice after the event identified in each table
has been analyzed during traversal of the sample trace.

TABLE II

el(a)

(): E

(a): e l

TABLE III

e2(a)

O:E

(a): el

(a): e2

TABLE IV

e3(b)

O:E
(a): el

(a): e2

(b): e3
(a lb): e l e3

(a2b): e2e3

TABLE V

e4(a2b 1)

(): E

(a): el

(a) : e2

(b): e3

(alb): ele3

(a2b): e2e3e4

TABLE VI

e5(a)

(): E

(a): e l e,

(a): e2

(b): e3

(alb): ele3e5

(a2b): e2e3e4

TABLE VII

e6

O e6

(al): ele5e6

(a2): e2e6

(

b,) : e3e6

(albl): ele3e5e6

(a2b 1): e2e3e4e6

10
TABLE VIII

e7(bl)

5 	 0: e6
(al) e l e5 e6

(a2) e2e6

(bl) e3e6e7

(albl): ele3e5e6e7

(a2b 1): e2e3e4e6e7

to

Parametric Trace Slice Monitoring

Trace slice monitoring refers to analyzing the parametric
is trace slices to verify parametric properties in the execution

trace. This monitoring can be used, for example, to assist in
the identification of errors or problems in the underlying
program (the program whose execution results in the execu-

20 tion trace). Monitoring of the parametric trace slices is per-
formed by a monitoring module, such as module 108 of FIG.
1. The monitoring of the parametric trace slices can be per-
formed as the underlying program is running, or alternatively
after the underlying program has run.

25 	For parametric trace slice monitoring, a set of monitors M
and a set of parametric monitors AX•M are defined. Paramet-
ric monitors refer to monitors for parametric events and have
parameter instance-indexed states and output categories. A
parametric monitor AX•M is a monitor for the property AX-P,

30 with P being the property monitored by M.
A monitor M is a tuple (S, E, C, L, 6:SxE—S, y:S—C),

where S refers to a set of states, E refers to a set of input events,
C refers to a set of output categories, LES is the initial state, a
is the transition function, and y is the output function. The

35 transition function is extended to 6:SxE *—S in the standard
way: 6(s,E)=s and u(s,we)=a(u(s,w),e) for any sES, eEE, and
WEE*. It should be noted, however, that implementations of
monitors need not generate all the state space ahead of time,
but rather can generate the state space as needed. It should

4o also be noted that, although a finite number of states is
reached during any given (finite) execution trace, in general
there is no bound on the number of states.

A monitor M=(S, E, C, L, u, y) is a monitor for property
P:E*—C if and only if y(a(L,W))=P(W) for each WEE*. Each

45 monitor M defines the property P M:E*—C with PM(w)–y(6
(L,W)). Each suchmonitor M is referred to as a monitor for PM.
Two monitors M and M' are equivalent, referred to as M M'
and only if PM PM,.

Given parameters X with corresponding values V, and
50 monitor M=(S, E, C, L, 6:SxE—S, y:S—C), the parametric

monitor AX•M is the monitor
([[X, V]—S], EH X) ,[[X, V]—C], XO'L,AX'6,AX-y)
withAX•a: [[X,V] —S]xE>X) — [[X,V] — S]
and AX•y:[[X,V]—S]—[[X,V]—C] defined as, for any

55 6E[[X, V]—S] and any 0, 6'E[X~ V], the following:
(AX-6)(6eH 0'))(e)=6(6(0),e) if 0', 0, and
(AX-a)(6, eH e'))(0)=6(0) if 0' r- 0, and
(AX-y)(6) (8)°y(6(8))•

In other words, a state 6 of parametric monitor AX•M main-
60 tains a state 6(6) of M for each parameter instance 0, takes

parametric events as input, and outputs categories indexed by
parameter instances (one output category of M per parameter
instance).

Generally, to monitor parametric trace slices, a monitoring
65 process is used that takes parametric trace slices and builds

records of states of monitor instances, and also builds records
indicating violation or validation of a property. Similar to the

US 8,719,796 B2
11

parametric slicing process discussed above, the parametric
trace slices can be processed or traversed one time as the
records are generated.

FIG. 3 is a flowchart illustrating an example process 300
for parametric trace slice monitoring in accordance with one
or more embodiments. Process 300 can be implemented in
software, firmware, hardware, or combinations thereof. Pro-
cess 300 is carried out by, for example, a monitoring module
108 of FIG. 1. Process 300 is shown as a set of acts and is not
limited to the order shown for performing the operations of
the various acts. Process 300 is an example process for para-
metric trace slice monitoring; additional discussions of para-
metric trace slice monitoring are included herein with refer-
ence to different figures.

In process 300, a program trace is obtained (act 302). The
program trace can be obtained from a variety of different
sources in a variety of different conventional manners. The
program trace can be a trace of a previously run program, or
alternatively an on-going trace of a program currently run-
ning Additionally, the program trace can be a parametric trace
slice (e.g., generated by slicing module 106 of FIG. 1) rather
than an entire program trace (in which case the parameter
instance of every event will be _I_).

The trace is traversed from the first event in the trace to the
last event in the trace (act 304). Each event in the trace is
analyzed as the trace is traversed. Alternatively, the trace can
be traversed in different orders other than from the first event
to the last event.

The first event in the trace is identified during the traversal
(act 306). This first event can be a parametric event or a
non-parametric event.

Based on the parameter instances in the identified event,
the monitor instance corresponding to the identified event is
identified (act 308). An event is part of a trace slice if the
parameter instance of the event is less informative than (,)
the parameter instance of the trace slice. A record of each
different monitor instance identified in the trace is main-
tained. These different monitor instances correspond to dif-
ferent possible combinations of parameter instances observed
while traversing the trace. A record of each possible monitor
instance resulting from each possible combination of param-
eter instances observed in the trace can be maintained regard-
less of whether the particular combination of parameter
instances is actually observed in the trace. Alternatively, a
record of each possible monitor instance resulting from the
combinations of parameter instances actually observed in the
trace can be maintained.

The identified event is added to the monitor instance record
for each monitor instance corresponding to the identified
event (act 310). For each monitor instance identified in act
308, the identified event is added to the record of that monitor
instance. The identified event can be added to the end of the
record, or alternatively elsewhere in the record. It should be
noted that the identified event can be added with or without its
parameter instances.

An output corresponding to the identified monitor instance
is also determined (act 312). The output corresponding to the
identified monitor instance, based on the events added to the
identified monitor instance thus far, is calculated. This output
comprises determining, for example, whether the trace slice
corresponding to that monitor instance is validating, violat-
ing, or don't know. In other words, whether the trace slice
corresponding to that monitor instance complies with the
appropriate constraints. This determination is made, for
example, based on a regular expression of a trace as discussed
above. For example, if a regular expression indicates that an
Acquire event is to precede a Release event, then it can be

12
determined that the output corresponding to the identified
monitor instance is validating if an Acquire event precedes the
Release event in a trace slice (and any other regular expres-
sions for the trace slice are satisfied), but violating if an

5 Acquire event does not precede the Release event.
An indication of the determined output is added to a record

corresponding to the identified monitor instance (act 312).
For example, an indication of validating, violating, or don't
know can be added to the record. Alternatively, indications of

10 validating or violating may be added to the record, but indi-
cations of don't know are not added.

A check is then made as to whether the identified event is
the last event in the trace (act 316). If the identified event is the
last event in the trace, then process 300 is finished for the

15 obtained trace (act 318).
However, if the identified event is not the last event in the

trace, then the next event in the trace is identified during the
traversal (act 320). Process 300 then returns to act 308 to
identify, based on the parameter instances in the identified

20 event, the monitor instance corresponding to the identified
event.

Process 300 illustrates an example process for parametric
trace slice monitoring. Example pseudo code for an algorithm
performing parametric trace slice monitoring is included in

25 Table IX below. The algorithm BH X) in Table IX encodes
functions [[X, V], S] as tables with entries indexed by
parameters instances in [X, V] and with content states in S.
The algorithm BH X) in Table IX uses a data structure A that
is a record of monitor instance states, and a data structure E

30 that is a record of indications of whether the output corre-
sponding to the monitor instance violates or validates the
property (e.g., whether one or more regular expressions for
the trace or trace slice is satisfied). In the algorithm BHX) in
Table IX, A is mapped to [[X, V], S], and E is mapped to [[X

35 , V], C].

TABLE IX

1 A-1;A(1)—L;6—(1}

40 	 2 for each e(0) in order in t do
3 : for each WE {0}-6 do
4 :: 4 (0') F a(A(max(0'] ®),e)
5 :: F (0') F 1'(0(0'))
6 : end for
7 : O F {1,0} LO

45 	 8 end for

The algorithm BHX) in Table IX is similar to the algo-
rithm AH X) for which pseudo code is included in Table I
discussed above. The algorithm BH X) in Table IX operates

50 on input L, traverses L from its first event to its last event and,
for each encountered event eH 0) , updates both its data
structures A, E, and O.

In the algorithm BHX) in Table IX, at line 1 the data
structure A is initialized as undefined everywhere (1) except

55 for the undefined everywhere function 1, A(1) is initialized to
L, and O is initialed to the set {1}. The code at lines 3 to 7,
inside the outer loop (at lines 2 to 8) is triggered when a new
event is received. When anew event eH 0) is received, at line
4 the state of the monitor instance corresponding to 0' is

60 calculated and stored in the record A corresponding to 0' by
sending e to the corresponding monitor instance. Addition-
ally, at line 5 a determination is made whether the output
corresponding to the monitor instance violates or validates
the property, and an indication of the determination is stored

65 in the data structure E. Then, at line 7, O is extended.
In the implementation of algorithm BH X) in Table IX, a

search is made (at line 3) for all parameter instances in O that

US 8,719,796 B2
13

are compatible with 0. Alternatively, an auxiliary data struc-
ture can be used to reduce the amount searching that is per-
formed , so that a search for all parameter instances in O that
are compatible with 0 need not be performed. The auxiliary
data structure maps each parameter instance 0 into the finite
set of parameter instances encountered in A thus far that are
more informative than 0. For example, the auxiliary data
structure can be referred to as U, and is defined as
U(0)={0'10'E Dom(A) and 0 F- 0'}. Accordingly, the amount
of searching that is performed is reduced as only the param-
eter instances encountered thus far that are more informative
than the current parameter instance need be considered.

Example pseudo code for another algorithm performing
parametric trace slice monitoring is included in Table X
below. The algorithm CH X) in Table X is similar to the
algorithm BH X) in Table IX, except that the search at line 3
of algorithm BH X) in Table IX is replaced so that a reduced
amount of searching is performed. The algorithm CH X) in
Table X uses the auxiliary data structure U discussed above.

TABLE X

Initialize U(0) F (} for any 0 E [X, V]
Initialize A(1) F L

function main (e(0))
1 if A(6) undefined then
2 : for each 0__x - 0 (in reversed topological order (larger to smaller)) do
3 :: if A(O__) defined then
4 ::: go to line 7
5 :: end if
6 : end for
7 : defineTo (0,0m_)
8 : for each Omar 0 (in reversed topological order (larger to smaller)) do
9 :: for each 0,, P E U(O__) compatible with 0 do

10 ::: if A(6,o P L6) undefined then
11 :.:: defineT6(6,o,,,P_6,6,o,,,P)
12 ::: end if
13 :: end for
14 : end for
15 end if
16 for each 6'E {0} 	U(6) do
17 : A (0') F a(A(6'), e)
18 : F (8') F 1'(A(8'))
19 end for

function defineTo(0,0')
1 A(a) — A(a-)
2 for each 0" ~ 0 do
3 : U(6") F U(6") 	{ 0 }
4 end for

The algorithm CH X) in Table X using mappings for A
and E as discussed above with reference to algorithm BH
X) in Table IX, and in addition U is mapped to [X, V]—Pf
([[X, V]]), where Pf(S) is the finite power set of set S. The
algorithm CH X) in Table X is composed of two functions:
"main" and "defineTo". The "defineTo" function takes two
parameter instances , 0 and 0', and adds a new entry corre-
sponding to 0 into A and U. More specifically, the "defineTo"
function sets A(0) to A(0') and adds 0 into the set U(0") for
each 0" r- 0'.

The "main" function differentiates two cases when a new
event eH e) is received and processed. The first case is that A
is already defined on 0, in other words 0E0 at the beginning
of the outer loop (lines 2-8) of the algorithm BH X) in Table
IX. In this first case, {0}-0={0'1 WEE) and 0, 0'} - O, so
lines 3 to 6 of the algorithm BH X) in Table IX become the
lines 16 to 19 of the algorithm CH X) in Table X.

In the second case of the "main " function , when A is not
already defined on 0, two steps are taken to process e. The first
step searches for new parameter instances introduced by
{0}-0 and adds entries for these new parameter instances
into A (at lines 2 to 15). More specifically , at lines 2 to 7 an

14
entry is added to A for 0. A search for all parameter instances

0,,_p that are compatible with 0, making use of U (at lines 8
and 9), and for each such 0__p an appropriate entry is added
to A for its least upper bound with 0, and U is updated

5 accordingly (at lines 10 to 12). Thus, A is defined on the new
parameter instances introduced by 10 L O after the first step.
In the second step , the related monitor states and outputs are
updated in a similar way as in the first case (at lines 16 to 19).

Example pseudo code for another algorithm performing
10 parametric trace slice monitoring is included in Table XI

below, and is referred to as algorithm C'H X) . Algorithm C'
H X) in Table XI is similar to algorithm CH X) in Table X,
but extends algorithm CH X) in Table X to include creation
events. Creation events refer to events that lead to creation of

15 new monitor states. The algorithm CH X) in Table X can be
viewed as a special case of the algorithm C'H X) in Table XI
in which all events are creation events. The creation events
typically occur as a result of a request (e.g., a user request or
a request from another component or module) to begin moni-

2o toring each new event encountered after the request to begin
monitoring is a creation event. The algorithm C'H X) in
Table XI uses the data structure A that is a record of monitor
instance states, the data structure E that is a record of indica-
tions of whether the output corresponding to the monitor

25 instance violates or validates the property , and the auxiliary
data structure U discussed above.

The algorithm C+H X) in Table XI includes an additional
function "defineNew" that takes a parameter instance 0 and

30
adds a new entry corresponding to 0 into A and U.

TABLE XI

Initialize U(0) F (} for any 0 E [X, V]

function main (e(0))

35 	1 if A(6) undefined then
2 : for each 0m.r-8 (in reversed topological order (larger to smaller)) do
3 :: if A(O__) defined then
4 ::: go to line 7
5 :: end if
6 : end for
7 : if A(6 m_) defined then defineTo (0,0m_)

40 	g ; else if e is a creation event then defineNew(6)
9 end if

10 : for each am.F-8 (in reversed topological order (larger to smaller)) do
11 :: for each 0,, P E U(6__) compatible with 0 do
12 ::: if A(6,o P L0) undefined then
13 :.:: defineT6 (6,o,,,P_6,6,o,,,P)

45 	14 ::: end if
15 :: end for
16 : end for
17 end if
18 for each 6'E {0} ~ U(6) do
19 : A (0') F a(A(6'), e)

5o 20 : F (8') F 1'(A(8'))
21 end for

function defineTo(0,0')
1 A(a) — A(a-)
2 for each 0" ~ 0 do
3 : U(6") F U(6") ~ {0}

55 	4 end for
function defineNew(6)

1 A(6) F L
2 for each 0" ~- 0 do
3 : U(6") F U(6") ~ {0}
4 end for

60

Parametric Trace Slice Mining

Parametric trace slice mining refers to generating specifi-
65 cations for the underlying program based on the parametric

trace slices obtained from an execution trace. The specifica-
tions identify various aspects regarding the manner in which

US 8,719,796 B2
15
	

16
the underlying program, such as API patterns, usage sce- 	The probabilistic finite state automata learner infers a finite
narios, and so forth. In addition to generating the specifica- 	state machine (automaton) from a set of strings, which are the
tions, regular expressions equivalent to the specifications can 	trace slices discussed above. The inferred state machine
also be generated. 	 accepts at least the input trace slices and may allow more as

FIG. 4 is a flowchart illustrating an example process 400 5 oftentimes the probabilistic finite state automata learner gen-
for parametric trace slice mining in accordance with one or 	eralizes during its learning process. A variety of different
more embodiments. Process 400 can be implemented in soft- 	well-known probabilistic finite state automata learners can be
ware, firmware, hardware, or combinations thereof. Process 	used with the parametric trace slice mining discussed herein.
400 is carried out by, for example, a mining module 110 of

	
In one or more embodiments, the probabilistic finite state

FIG. 1. Process 400 is shown as a set of acts and is not limited 10 automata learner is the well-known sk-string algorithm.
to the order shown for performing the operations of the vari- 	Additional information regarding the sk-string algorithm can
ous acts. Process 400 is an example process for parametric

	
be found in, for example, "The sk-strings method for inferring

trace slice mining; additional discussions of parametric trace 	pfsa", by A. V. Raman and J. D. Patrick, International Con-
slice mining are included herein with reference to different

	
ference on Machine Learning (ICML) '97 (1997).

figures. 	 15 	Generally, the sk-string PFSA learner first constructs a
In process 400, trace slices are obtained (act 402). These 	prefix tree, which is essentially a finite state automaton that

trace slices are parametric trace slices as discussed above. It 	accepts precisely the input set of strings. Each arc of the prefix
should be noted that although these trace slices are referred to 	tree is labeled with a frequency that represents how many
as parametric trace slices, in one or more embodiments they 	times the arc was traversed during the creation of the tree. The
do not include parameters. As discussed above, events are 20 sk-string algorithm is then used to merge states in the prefix
added to trace slices during the parametric trace slicing pro- 	tree to build a more compact and more general nondetermin-
cess, but these different slices correspond to particular com- 	istic finite automaton.
binations of parameters. Thus, the parameters for these events

	
State merging is based on a concept referred to as "sk-

need not recorded in the different slices as the events are 	equivalence". In sk-equivalence, E refers to the set of words
associated with particular combinations of parameters by 25 used in the strings, Q refers to the set of states in the prefix
virtue of their being included in a particular trace slice. 	tree, 6: QxE*-2Q refers to the transition function, and F D

Deterministic finite automata are produced based on the 	refers to the set of final states. The set of k-strings of state q is
obtained trace slices (act 404). A deterministic finite automa- 	then defined as the set jZ1ZEE*,Iz1=kn6(q,z)-QvIz1<k
ton (DFA) is a finite state machine in which for each pair of

	
A 6(q,z nFD;-{ })}. Each k-string has aprobability associated

state and input, there is a single transition to a next state. 30 with it that is the product of the probabilities of the arcs
These deterministic finite automata are generated using a 	traversed in generating the string. Two states are considered
probabilistic finite state automata (PFSA) learner. 	 mergeable if the sets consisting of the top s percent of their

Refined deterministic automata are produced based on the
	

distribution of k-string are the same (that is, sk-equivalence).
use trace slices (act 406). Generally, the refined deterministic

	
This is computed as follows: the k-strings of a state are

finite automata refines the deterministic finite automata pro- 35 arranged in decreasing order of their probabilities. The top n
duced in act 404 by expanding the deterministic finite 	strings, whose probabilities add up to s percent or more with
automata produced in act 404 to split each state according to 	n being as small as possible, are retained and the remaining
its incoming edges (e.g., one state per incoming edge). The 	strings (those having lower probabilities) are ignored. Two
expanded deterministic finite automata is then traversed using 	states are sk-equivalent if the sets of the top n strings of both
the obtained trace slices and edges in the expanded determin- 4o are the same. The process of merging states is repeated until
istic finite automata that are not used in any of the obtained

	
no more states are sk-equivalent. This way, the algorithm

trace slices are removed. The resulting deterministic finite
	

infers a nondeterministic finite automaton accepting a super-
automata is compressed by merging states having the same 	set of the input strings. This nondeterministic finite automa-
outgoing transitions and removing those states have no 	ton is then converted into a deterministic finite automaton.
incoming transitions to produce the refined deterministic 45 	Thus, the probabilistic finite state automata learner outputs
finite automata. 	 deterministic finite automata, each automaton having nodes

Equivalent regular patterns are generated from the refined
	

that represent the involved components and edges are labeled
deterministic finite automata (act 408). These regular patterns 	with events.
are generated using a regular pattern generator that generates

	
The deterministic finite automata output by the probabilis-

equivalent regular patterns from finite state machines. 	50 tic finite state automata learner can be over-generalized. To
The regular patterns generated in act 408 and the refined

	
compensate for such over-generalization, the automata

deterministic finite automata produced in act 406 are output 	refiner refines the deterministic finite automata output by the
(act 410). One or more deterministic finite automata are gen- 	probabilistic finite state automata learner using the trace
erated for each trace slice obtained in act 402 and output in act 	slices.
410 as the specification for the trace slice. Alternatively, both 55 	Example pseudo code for an algorithm performing para-
the regular patterns and refined deterministic finite automata 	metric trace slice mining is included in Table XII below, and
are not output in act 410 (e.g., only one of the regular patterns

	
is referred to as algorithm R. An automaton refers to a tuple

and refined deterministic finite automata may be output). 	(S, e, i, 6, F), where S refers to a set of states, e refers to a set
The following describes an example implementation of

	
of events, iES is the initial state, 6: [Sxe, S] is the transition

parametric trace slice mining. The trace slices are input to a 60 function, and FES is the set of final states. Algorithm R
probabilistic finite state automata learner, the output

	
includes a function "main" and a function "expand". The

automata are input to an automata refiner. The automata
	

"main" function of algorithm R takes as an input an automa-
refiner refines the automata, generating the finite state 	ton A—(S, e, i, 6: [Sxe, S], F) and a set of trace slices T =: E*,

machines that are the specifications for the trace slices. These 	and outputs an automaton A,,. The "main" function of algo-
finite state machines are also input to a regular pattern gen- 65 rithm R uses local values of automaton A' —(S', e, i', 6', F'),
erator, which generates equivalent regular patterns from the 	state s, s', and transition function 6,,. The "expand" function of
finite state machines. 	 algorithm R takes as an input an automaton A —(S, e, i, 6, F)

US 8,719,796 B2
17

and outputs an automaton A' –(S', e, i', S', F'). The "expand"
function of algorithm R is initialized by setting S' to { },
setting F' to { }, and setting 6' to 1. The "expand" function of
algorithm R also use local values of integer n, set of states D,
and map (3:S-2".

TABLE XII

Function main ()
1 A'— Expand(A)
2 6,_1

3 for each T E T do
4 :s — i'
5 : for each e E T do
6 :s' 	s

7 : s F $(s,e)
8 : 6,(s',e) F s

9 :: if 6r S' then
10 :: go to line 14
11 :: end if
12 : end for
13 end for
14 A' F (S', e, i', 6„ F')
15 A, F MergeIdenticalStates(A')

Function Expand
1 for each s E S do
2 : n F CountlncomingEdges(s,A)
3 : if s=i then
4 ::n—n+1
5 : end if
6 : D F GetFreshStates(n)
7 :S'—DDS'

8 :P(s)—D
9 end for

10 for each s E S do
11 : for each s'xE S such that 6(s',e)=s for some e do
12 :: s" F PickGneWithNolncomingEdge(p(s),6')
13 :: for each s"' E P(s') do
14 : &(s"',e)=s"
15 :: end for
16 : end for
17 : ifs E F then
18 :: F'— F'~ P(s)
19 : end if
20 ifs=I then
21 :: i'— PickGneWithNolncomingEdge(p(s),6')
22 : end if
23 end for
24 return A'

In algorithm R, the input automaton is expanded using the
"expand" function, which splits each state according to its
incoming edges. The incoming edges are counted as follows:
if 6(s, e)=s' for some sus', then e represents an incoming edge
to s'. Additionally, it is assumed that the initial state has a
default incoming edge (at lines 3 to 5 in the "expand" func-
tion). If state s has n incoming edges then n new states are
generated for the new automaton and the mapping from s to
the corresponding set of newly created states is kept in R (at
lines 6 to 8 in the "expand" function). The "expand" function
then builds transitions in the new automaton (at lines 10 to 23)
as follows. If 6(s', e) –s is a transition in the input automaton
and sus' then a state s" from (3(s) with no incoming edges yet
is chosen and transitions are added from every state in (3(s') to
s". Ifs is a final state then all states in (3(s) are also final; if s is
the initial state then a state from R (s) with no incoming edges
is chosen as the new initial state. Thus, the input automaton is
expanded to an equivalent automaton in which every state has
a set of incoming edges corresponding to one incoming edge
in the original automaton.

The algorithm R then traverses the expanded automaton
using the input set of trace slices and marks the transitions
used in the traversal (at lines 3 to 13 of the "main" function).
After all the traces are applied, the unmarked transitions
(which are not traversed in the trace slice) are removed from

18
the expanded automaton to generate a reduced automaton.
The reduced automaton is then compressed by merging states
that have the same outgoing transitions and removing those
states that have no incoming states. At the end, the com-

5 pressed automaton is associated with parameter information
(the combination of parameters associated with the trace slice
being analyzed) removed when performing the parametric
trace slicing discussed above. The output of the algorithm R is
the finite state machines that are the specifications for the

10 trace slices.
The output of the algorithm R can also be input to a regular

pattern generator that generates equivalent regular patterns
form the finite state machines. A variety of different well-
known regular pattern generators can be used with the para-

15 metric trace slice mining discussed herein. In one or more
embodiments, the regular pattern generator uses the well-
known Brzozowski method. Additional information regard-
ing the Brzozowski method can be found in, for example,
"Derivatives of regular expressions", by J. A. Brzozowski,

20 Journal of the Association for Computing Machinery (ACM),
11(4):481-494 (1964).

Example Computing Device

25 	FIG. 5 is a block diagram illustrating an example comput-
ing device 500 in which the parametric trace slicing can be
implemented in accordance with one or more embodiments.
Computing device 500 can be used to implement the various
techniques and processes discussed herein. Computing

3o device 500 can be any of a wide variety of computing devices,
such as a desktop computer, a server computer, a handheld
computer, a laptop or netbook computer, a personal digital
assistant (PDA), an internet appliance, a game console, a
set-top box, a cellular phone, a digital camera, audio and/or

35 video players, audio and/or video recorders, and so forth.
Computing device 500 includes one or more processor(s)

502, computer readable media such as system memory 504
and mass storage device(s) 506, input/output (I/O) device(s)
508, and bus 510. Processor(s) 502 include one or more

40 processors or controllers that execute instructions stored in
system memory 504 and/or mass storage device(s) 506. Pro-
cessor(s) 502 may also include computer readable media,
such as cache memory.

System memory 504 includes various computer readable
45 media, including volatile memory (such as random access

memory (RAM)) and/or nonvolatile memory (such as read
only memory (ROM)). System memory 504 may include
rewritable ROM, such as Flash memory.

Mass storage device (s) 506 include various computerread-
5o able media, such as magnetic disks, optical discs, solid state

memory (e.g., Flash memory), and so forth. Various drives
may also be included in mass storage device(s) 506 to enable
reading from and/or writing to the various computer readable
media. Mass storage device(s) 506 include removable media

55 and/or nonremovable media.
I/O device(s) 508 include various devices that allow data

and/or other information to be input to and/or output from
computing device 500. Examples of I/O device(s) 508
include cursor control devices, keypads, microphones, moni-

60 tors or other displays, speakers, printers, network interface
cards, modems, lenses, CCDs or other image capture devices,
and so forth.

Bus 510 allows processor(s) 502, system 504, mass storage
device(s) 506 , and I/O device(s) 508 to communicate with

65 one another. Bus 510 can be one or more of multiple types of
buses, such as a system bus, PCI bus, IEEE 1394 bus, USB
bus, and so forth.

US 8,719,796 B2
19

Although the description above uses language that is spe-
cific to structural features and/or methodological acts in pro-
cesses, it is to be understood that the subject matter defined in
the appended claims is not limited to the specific features or
processes described. Rather, the specific features and pro-
cesses are disclosed as example forms of implementing the
claims. Various modifications, changes, and variations appar-
ent to those skilled in the art may be made in the arrangement,
operation, and details of the disclosed embodiments herein.

What is claimed is:
1. A method implemented in one or more computing

devices, the method comprising:
obtaining a program trace of a program, the program trace

having been generated using predictive program instru-
mentation and including one or more feasible traces that
were not part of a program execution from which the
program trace is generated, the one or more feasible
traces having been generated based on partial orders of
events determined at each of multiple predetermined
points during collection of a direct trace of the program;

traversing events of the program trace;
identifying, for each event identified in traversing the pro-

gram trace, a trace slice of which the identified event is
a part based on one or more parameter instances in the
identified event;

adding, for each trace slice of which the identified event is
a part, the identified event to an end of a record of the
trace slice;

obtaining one or more trace slices obtained from the pro-
gram trace;

generating a specification for each of the one or more trace
slices, each specification comprising a finite state
machine indicating a manner in which the program oper-
ates; and

outputting the specification for each of the one or more
trace slices.

2. A method as recited in claim 1, wherein the program
trace is a program trace of a program running while the
method is being performed.

3. A method as recited in claim 1, wherein an event having
no parameter instances is part of all trace slices.

4. A method as recited in claim 1, further comprising main-
taining a record of trace slices for each possible combination
of parameter instances in the program trace, the possible
combination of parameter instances being identified based on
the parameter instances observed while traversing the pro-
gram trace.

5. A method as recited in claim 1, wherein traversing the
events of the program trace comprises traversing the program
trace from a first event of the program trace towards a last
event of the program trace.

6. A method as recited in claim 1, wherein traversing the
program trace comprises traversing the program trace one
time regardless of the number of parametric trace slices that
are obtained from the program trace.

7. A method as recited in claim 1, further comprising:
determining, for at least part of the program trace, whether

a set of constraints for the program trace is complied
with; and

outputting an indication of whether the set of constraints
for the program trace is complied with.

8. A method as recited in claim 1, further comprising moni-
toring the program trace by:

maintaining a record of monitor instance states, wherein
each monitor instance state indicates, for a particular set
of parameter instances, a set of identified events; and

20
maintaining a record of whether each monitor instance

state complies with one or more constraints on the pro-
gram trace.

9. A method as recited in claim 1, further comprising:
5 	generating, for each specification, a regular expression

equivalent to the specification; and
outputting the regular expression for each of the one or

more trace slices.
10. One or more computer readable memories or non-

lo transitory storage devices having stored thereon multiple
instructions execution of which, by one or more processors of
a device, causes the one or more processors to:

obtain a program trace of a program, the program trace
15 having been generated using predictive program instru-

mentation and including one or more feasible traces that
were not part of a program execution from which the
program trace is generated, the one or more feasible
traces having been generated based on partial orders of

20 	events determined at each of multiple predetermined
points during collection of a direct trace of the program;

traverse events of the program trace;
identify, for each event identified in traversing the program

trace, a trace slice of which the identified event is a part
25 	based on one or more parameter instances in the identi-

fied event;
add, for each trace slice of which the identified event is a

part, the identified event to an end of a record of the trace
slice;

so 	obtain one or more trace slices obtained from the program
trace;

generate a specification for each of the one or more trace
slices, each specification comprising a finite state
machine indicating a manner in which the program oper-

35 	ates; and
output the specification for each of the one or more trace

slices.
11. One or more computer readable memories or non-

transitory storage devices as recited in claim 10, the multiple
40 instructions further causing the one or more processors to

maintain a record of trace slices for each possible combina-
tion of parameter instances in the program trace, the possible
combination of parameter instances being identified based on
the parameter instances observed while traversing the pro-

45 gram trace.
12. One or more computer readable memories or non-

transitory storage devices as recited in claim 10, wherein to
traverse the events of the program trace is to traverse the
program trace from a first event of the program trace towards

5o a last event of the program trace.
13. One or more computer readable memories or non-

transitory storage devices as recited in claim 10, wherein to
traverse the program trace is to traverse the program trace one
time regardless of the number of parametric trace slices that

55 are obtained from the program trace.
14. One or more computer readable memories or non-

transitory storage devices as recited in claim 10, the multiple
instructions further causing the one or more processors to:

determine, for at least part of the program trace, whether a
60 	set of constraints for the program trace is complied with;

and
output an indication of whether the set of constraints for the

program trace is complied with.
15. One or more computer readable memories or non-

65 transitory storage devices as recited in claim 10, the multiple
instructions further causing the one or more processors to
monitor the program trace by:

US 8,719,796 B2
21

maintaining a record of monitor instance states, wherein
each monitor instance state indicates, for a particular set
of parameter instances, a set of identified events; and

maintaining a record of whether each monitor instance
state complies with one or more constraints on the pro-
gram trace.

16. One or more computer readable memories or non-
transitory storage devices as recited in claim 10, the multiple
instructions further causing the one or more processors to:

generate, for each specification, a regular expression
equivalent to the specification; and

output the regular expression for each of the one or more
trace slices.

17. A computing device comprising:
a processor; and
one or more computer readable non-transitory media,

coupled to the processor, to store multiple instructions
execution of which by the processor causes the proces-
sor to:
obtain a program trace of a program, the program trace

having been generated using predictive program
instrumentation and including one or more feasible
traces that were not part of a program execution from
which the program trace is generated, the one or more

22
feasible traces having been generated based on partial
orders of events determined at each of multiple pre-
determined points during collection of a direct trace
of the program,

s 	traverse events of the program trace,
identify, for each event identified in traversing the pro-

gram trace, a trace slice of which the identified event
is a part based on one or more parameter instances in
the identified event,

10 	add, for each trace slice of which the identified event is
a part, the identified event to an end of a record of the
trace slice,

obtain one or more trace slices obtained from the pro-
gram trace,

is 	generate a specification for each of the one or more trace
slices, each specification comprising a finite state
machine indicating a manner in which the program
operates, and

output the specification for each of the one or more trace
20 slices.

18. A method as recited in claim 1, wherein the direct trace
of the program is a trace corresponding to an actual execution
of the program.

	8719796-p0001.pdf
	8719796-p0002.pdf
	8719796-p0003.pdf
	8719796-p0004.pdf
	8719796-p0005.pdf
	8719796-p0006.pdf
	8719796-p0007.pdf
	8719796-p0008.pdf
	8719796-p0009.pdf
	8719796-p0010.pdf
	8719796-p0011.pdf
	8719796-p0012.pdf
	8719796-p0013.pdf
	8719796-p0014.pdf
	8719796-p0015.pdf
	8719796-p0016.pdf
	8719796-p0017.pdf
	8719796-p0018.pdf
	8719796-p0019.pdf

