
FACULTAD DE INFORMÁTICA
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A mis padres, Martiniano y Elóısa.





Agradecimientos
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Sinopsis

El Análisis de Consumo de Recursos o Análisis de Coste trata de aproximar

el coste de ejecutar un programa como una función dependiente de sus datos

de entrada. A pesar de que existen trabajos previos a esta tesis doctoral que

desarrollan potentes marcos para el análisis de coste de programas orientados a

objetos, algunos aspectos avanzados, como la eficiencia, la precisión y la fiabilidad

de los resultados, todav́ıa deben ser estudiados en profundidad. Esta tesis aborda

estos aspectos desde cuatro perspectivas diferentes:

(1) Las estructuras de datos compartidas en la memoria del programa son

una pesadilla para el análisis estático de programas. Trabajos recientes proponen

una serie de condiciones de localidad para poder mantener de forma consistente

información sobre los atributos de los objetos almacenados en memoria compar-

tida, reemplazando éstos por variables locales no almacenadas en la memoria

compartida. En esta tesis presentamos dos extensiones a estos trabajos: la pri-

mera es considerar, no sólo los accesos a los atributos, sino también los accesos

a los elementos almacenados en arrays; la segunda se centra en los casos en los

que las condiciones de localidad no se cumplen de forma incondicional, para lo

cual, proponemos una técnica para encontrar las precondiciones necesarias para

garantizar la consistencia de la información acerca de los datos almacenados en

memoria.

(2) El objetivo del análisis incremental es, dado un programa, los resulta-

dos de su análisis y una serie de cambios sobre el programa, obtener los nuevos

resultados del análisis de la forma más eficiente posible, evitando reanalizar aque-

llos fragmentos de código que no se hayan visto afectados por los cambios. Los

analizadores actuales todav́ıa leen y analizan el programa completo de forma no

incremental. Esta tesis presenta un análisis de coste incremental, que, dado un

cambio en el programa, reconstruye la información sobre el coste del programa de

todos los métodos afectados por el cambio de forma incremental. Para esto, pro-

ponemos (i) un algoritmo multi-dominio y de punto fijo que puede ser utilizado

en todos los análisis globales necesarios para inferir el coste, y (ii) una novedosa

forma de almacenar las expresiones de coste que nos permite reconstruir de forma



incremental únicamente las funciones de coste de aquellos componentes afectados

por el cambio.

(3) Las garant́ıas de coste obtenidas de forma automática por herramientas

de análisis estático no son consideradas totalmente fiables salvo que la implemen-

tación de la herramienta o los resultados obtenidos sean verificados formalmente.

Llevar a cabo el análisis de estas herramientas es una tarea titánica, ya que se

trata de herramientas de gran tamaño y complejidad. En esta tesis nos centra-

mos en el desarrollo de un marco formal para la verificación de las garant́ıas de

coste obtenidas por los analizadores en lugar de analizar las herramientas. Hemos

implementado esta idea mediante la herramienta COSTA, un analizador de coste

para programas Java y KeY, una herramienta de verificación de programas Java.

De esta forma, COSTA genera las garant́ıas de coste, mientras que KeY prueba

la validez formal de los resultados obtenidos, generando de esta forma garant́ıas

de coste verificadas.

(4) Hoy en d́ıa la concurrencia y los programas distribuidos son clave en el

desarrollo de software. Los objetos concurrentes son un modelo de concurrencia

asentado para el desarrollo de sistemas concurrentes. En este modelo, los objetos

son las unidades de concurrencia y se comunican entre ellos mediante llamadas

aśıncronas a sus métodos. La distribución de las tareas sugiere que el análisis de

coste debe inferir el coste de los diferentes componentes distribuidos por separado.

En esta tesis proponemos un análisis de coste sensible a objetos que, utilizando

los resultados obtenidos mediante un análisis de apunta-a, mantiene el coste de

los diferentes componentes de forma independiente.
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Abstract

Resource Analysis (a.k.a. Cost Analysis) tries to approximate the cost of exe-

cuting programs as functions on their input data sizes and without actually hav-

ing to execute the programs. While a powerful resource analysis framework on

object-oriented programs existed before this thesis, advanced aspects to improve

the efficiency, the accuracy and the reliability of the results of the analysis still

need to be further investigated. This thesis tackles this need from the following

four different perspectives.

(1) Shared mutable data structures are the bane of formal reasoning and static

analysis. Analyses which keep track of heap-allocated data are referred to as

heap-sensitive. Recent work proposes locality conditions for soundly tracking field

accesses by means of ghost non-heap allocated variables. In this thesis we present

two extensions to this approach: the first extension is to consider arrays accesses

(in addition to object fields), while the second extension focuses on handling cases

for which the locality conditions cannot be proven unconditionally by finding

aliasing preconditions under which tracking such heap locations is feasible.

(2) The aim of incremental analysis is, given a program, its analysis results

and a series of changes to the program, to obtain the new analysis results as effi-

ciently as possible and, ideally, without having to (re-)analyze fragments of code

that are not affected by the changes. During software development, programs

are permanently modified but most analyzers still read and analyze the entire

program at once in a non-incremental way. This thesis presents an incremental

resource usage analysis which, after a change in the program is made, is able to

reconstruct the upper-bounds of all affected methods in an incremental way. To

this purpose, we propose (i) a multi-domain incremental fixed-point algorithm

which can be used by all global analyses required to infer the cost, and (ii) a

novel form of cost summaries that allows us to incrementally reconstruct only

those components of cost functions affected by the change.

(3) Resource guarantees that are automatically inferred by static analysis

tools are generally not considered completely trustworthy, unless the tool imple-

mentation or the results are formally verified. Performing full-blown verification



of such tools is a daunting task, since they are large and complex. In this the-

sis we focus on the development of a formal framework for the verification of

the resource guarantees obtained by the analyzers, instead of verifying the tools.

We have implemented this idea using COSTA, a state-of-the-art cost analyzer for

Java programs and KeY, a state-of-the-art verification tool for Java source code.

COSTA is able to derive upper-bounds of Java programs while KeY proves the

validity of these bounds and provides a certificate. The main contribution of our

work is to show that the proposed tools cooperation can be used for automatically

producing verified resource guarantees.

(4) Distribution and concurrency are today mainstream. Concurrent objects

form a well established model for distributed concurrent systems. In this model,

objects are the concurrency units that communicate via asynchronous method

calls. Distribution suggests that analysis must infer the cost of the diverse dis-

tributed components separately. In this thesis we propose a novel object-sensitive

cost analysis which, by using the results gathered by a points-to analysis, can

keep the cost of the diverse distributed components separate.
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Chapter 1

Introduction

Resource Analysis (a.k.a. Cost Analysis) tries to approximate the cost of exe-

cuting programs by means of cost functions on their input data sizes without

actually having to execute the programs. In the context of resource analysis, ter-

mination analysis can be presented as a simple type of resource analysis. Proving

termination implies that the amount of resources consumed by the program is

finite but we do not have a bound for it. During last two decades, a wide variety

of cost analysis frameworks have been proposed, most of them for functional lan-

guages [Ben01, Ros89] and for logic programs [NMLGH07, DL93]. Partly due to

the complexity of their semantics, cost analysis of imperative and object-oriented

languages (OO for short), have received much less attention. However, in the last

years, sophisticated resource and termination analysis frameworks for imperative

languages have been developed [AAGP11, SMP10, OBvEG09, GMC09, HH10].

These frameworks have shown that it is feasible to apply a resource analysis on

object oriented programs, but that some advanced aspects still need to be inves-

tigated in order to improve the efficiency, accuracy and reliability of the results.

This thesis proposes novel techniques along this direction of research.

Handling shared mutable data structures, such as those stored in the heap, is

one of the main challenges for static analyzers of imperative languages [Min06].

In OO languages, this problem is even worse because most of the data resides

in fields or in arrays stored in the heap. The crucial aspect is to find a balance

between the two extremes, a heap-insensitive analysis, which is too imprecise, and
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a fully heap-sensitive analysis, which is sometimes computationally intractable.

In the context of cost analysis, a field-sensitive analysis for OO languages has

already been proposed [AAGP09, AAG+10, RD11]. This approach is based on

the observation that by analyzing program fragments rather than the application

as a whole, under certain locality conditions that must hold unconditionally, it

is possible to keep track of heap-allocated data by means of local (non heap-

allocated) variables. However, this work is focused on fields and cannot handle

other data structures that are also heap-allocated, like arrays. Besides, since

heap references can alias and access the same memory location, the termination

of the programs might depend on aliasing conditions. Our work in Chapter 3

presents a novel conditional termination framework for programs with loops over

heap-allocated data.

Resource usage analyzers are powerful tools which may be very useful during

software development. Analyzers can help not only to detect bugs, like spotting

non-terminating loops, but also to improve the quality of the software, helping to

reduce the amount of resources consumed by the program. During software devel-

opment, programs are permanently modified, e.g. because a new implementation

of an existing method is provided or because a method is extended with new

functionality. In such cases, existing analysis information previously computed

may no longer be correct and/or accurate. Resource analysis is a costly task and

its execution may require a large amount of resources. Despite the great progress

made in static analysis in general, and in resource analysis in particular, most

analyzers still read and analyze the entire program at once. Thus, traditional an-

alyzers do not reuse previous analysis information and instead they reanalyze the

whole program from scratch after each modification, resulting, in most cases, in

an inefficient and non-practical analysis. In the context of termination analysis, a

modular approach, based on the composition of the analysis results, has been pro-

posed [RCP12]. However, modularity per se does not handle the recomputation

of analysis results after a program modification. While some incremental analysis

algorithms have been proposed in different contexts [KMSS97, Ryd88, WG97],

current resource analyse for OO programs lack an incremental approach for han-

dling modifications in the source code that resuses already computed information

and recomputes only those parts of the program affected by a change. This thesis
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proposes an incremental analysis framework in Chapter 4.

Another aspect that we consider in this thesis is the reliability of the analysis

results. Formally proving the correctness of software and its properties can be

crucial for many applications, e.g., in safety critical systems or real time systems.

Program properties that are automatically inferred by static analysis tools are

generally not considered to be completely trustworthy unless the tool implemen-

tation or the results are formally verified. Nowadays, a number of cost analyzers

exist [AAGP11, GMC09, HH10] that can generate resource guarantees in a fully

automatic way. Resource guarantees allow being certain to some extent that pro-

grams will run within the indicated amount of resources. Unfortunately, verifying

the correctness of modern static analysis tools is rather challenging, because of the

sophisticated algorithms used in them and their evolution over time. A simpler

alternative is to construct a validating tool [PSS98] which, after every analysis,

formally verifies the correctness of the resource guarantees by cost analyzers, as

we will pursue in the Chapter 5 of this thesis.

The last issue we tackle in the thesis is the extension of the cost analysis

framework to the context of distributed and concurrent programs. Distribution

and concurrency are today mainstream. The Internet and the broad availability

of multi-processors radically influence software. However, while cost analysis for

sequential programming languages has received considerable attention, because

of its complexity, concurrency and distribution have been notably less studied.

Modern programming languages, like Java or C#, present a concurrency model

that needs to consider too many interleaving possibilities. That ends up in a

cost analysis limited to very small programs in practice. Concurrent objects is

a concurrency model based on the notion of concurrently running (groups of)

objects, similar to the actor-based and active-objects approaches [SPH10, SM08].

These models take the advantage of the concurrency implicit in the notion of

object in order to provide programmers with high-level constructs that help in

producing concurrent applications more modularly and in a less error-prone way.

We consider such concurency model in Chapter 6 of this thesis for studying the

distribution of the cost among objects.
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1.1 Thesis objectives

The main objective of this thesis is to extend and improve the existing resource

analysis techniques in order to make them capable of handling a larger number

of programs and scenarios and doing it in a more accurate way. The starting

point for this thesis is the state-of-the-art resource analisys framework proposed

in [AAG+12b, AAGP11].

The first concrete objective of this thesis is to generalize the idea of field-

sensitive analysis [AAGP09, AAG+10, RD11] to heap-sensitive analysis, by

handling not only fields accesses, but also array accesses and their indexes. Be-

sides, while in previous work locality conditions must hold unconditionally, in

this thesis we seek to generate aliasing preconditions which, when satified in

the initial state, can guarantee the termination of the program.

The second objective of this thesis is to define incremental algorithms to

improve the performance of resource analysis. This allows handling modifications

in the source code by reusing previously computed information and recomputing

only those components of the cost functions affected by the changes.

Our third objective is the design and development of a formal framework for

certification of the resource guarantees. The aim is to construct a validating

tool which, after every cost analysis, formally confirms the correctness of the

results. The final step of this objective is to generate correctness proofs that can

be translated into verified resource guarantees.

The last objective of this thesis is to extend the resource analysis from sequen-

tial programs to concurrent programs for the concurrent objects model. Cost

analysis for this concurrency model has been initially studied in [AAG+11]. In

this thesis we aim at extending this work by adding to it object-sensitivity, in

order to automatically separate the cost among different objects (cost centers)

by using the results inferred by a points-to analysis.
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1.2 Structure of the Work

This thesis contains the following chapters:

Chapter 2. Background: Resource Analysis in COSTA

This part of the thesis overviews the techniques used in resource analyses

and sets up the terminology used in the thesis.

Chapter 3. Conditional Termination of loops over Heap-Allocated Data

We extend a previously developed semantic constancy analysis to consider

also arrays. In an ideal scenario where fields or array accesses are uncon-

ditionally local, we can transform each heap access by its equivalent access

using local variables. However, there are cases when the locality conditions

cannot be proven unconditionally, e.g. two input arguments that might

alias and access the same field. In such cases, it is often possible to provide

aliasing preconditions under which tracking such heap locations is feasible.

This part of the thesis seeks to generate aliasing preconditions that, when

hold in the initial state, guarantee the termination of the program.

Our experimental results, performed on examples that combine the use of

arrays with numeric and reference fields, show that this approach is able

to automatically infer interesting preconditions and introduces a reasonable

overhead on the resource analysis.

Chapter 4. Incremental Resource Usage Analysis

This part of the thesis presents an incremental resource usage analysis

for a sequential Java-like language which, after a change in the program

is made, is able to reconstruct the upper-bounds of all affected methods

in an incremental way. The main contributions are (1) a multi-domain

incremental fixed-point algorithm that can be used by all global pre-analyses
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required to infer the cost, and that takes care of propagating dependencies

among such domains, and (2) a novel form of cost summaries that allows

us to incrementally reconstruct only those components of cost functions

affected by the change.

The incremental analysis has been implemented in COSTA [AAG+09]. An

experimental evaluation has been performed in selected benchmarks from

the standarized JOlden benchmark suite [Sui] and from the Apache Com-

mons Project [Pro] by simulating different development scenarios. The ex-

perimental results show that the proposed incremental analysis performs

very efficiently in practice in comparison with the non-incremental ap-

proach, resulting in significant speedups.

Chapter 5. Verified Resource Guarantees

This part of the thesis investigates how to formally prove the correctness of

the resource guarantees generated by cost analyzers, instead of performing

a full-blown verification of the tools. This objective is implemented using

COSTA for producing the resource guarantees, and KeY [BHS06], a state-

of-the-art verification tool, for formally verifying the correctness of such

resource guarantees.

We start the chapter by describing and formalizing the verification frame-

work for resource guarantees that depend only on integer data. In the first

part of this chapter we identify the Java Modelling Language annotations

needed by KeY to verify the results obatined by the cost analysis of integer

manipulating programs.

However, in realistic programs, the resource consumption is often bounded

by the size of heap-allocated data structures. Bounding their size requires

to perform a number of structural heap analyses. The second part of this

chapter (i) identifies what exactly needs to be verified to guarantee sound

analysis of heap manipulating programs, (ii) provides a suitable extension

of the program logic used for verification in order to handle structural heap

properties in the context of resource guarantees, and (iii) improves the
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underlying theorem prover so that proof obligations can be automatically

discharged.

The experimental evaluation shows that the proposed tool cooperation can

be used for automatically producing Verified Resource Guarantees for both

integer manipulating and heap manipulating Java programs.

Chapter 6. Object-Sensitive Cost Analysis for Concurrent Objects

In the concurrent objects model, objects are the concurrency units that

communicate via asynchronous method calls. Distribution suggests that

analyses must infer the cost of the diverse distributed components sepa-

rately. We capture this distribution by means of a novel form of object-

sensitive recurrence equations that use cost centers in order to keep the

resource usage assigned to the different components separate.

Object-sensitive cost analysis has been implemented and evaluated on sev-

eral small applications that are classical examples of concurrent program-

ming showing that splitting the cost of concurrent programs in different

cost centers is feasible in practice.

1.3 Contributions

The main contributions of this thesis are the following:

• A generalization of the field-sensitive analysis to a heap-sensitive analysis

that handles both fields and array elements in an uniform way. This requires

an extension of the reference constancy analysis and of the notion of locality

described at [AAGP09] to determine if heap-allocated data behave as local

variables.

Sometimes, heap-allocated data behave locally only under certain aliasing

conditions. This thesis introduces the notion of locality partition which, by

assuming such aliasing conditions, guarantees the locality of the considered

heap-allocated data. Based on the locality partitions, we introduce a novel
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transformation and composition algorithms for automatically inferring the

aliasing preconditions for the initial state that guarantee the termination of

the program. An initial version of these contributions has been presented

at Bytecode’12 [AGRD12]:

E. Albert, S. Genaim, and G. Román-Dı́ez. Conditional Ter-

mination of Loops over Arrays. In ETAPS Workshop on

Bytecode Semantics, Verification, Analysis and Transformation

(BYTECODE’12), Tallin, Estonia, March 2012.

And an extended version of this work is under revision for a special issue

of Bytecode’12 in the journal Science in Computer Programming.

• A multi-domain incremental analysis engine that can be used by all global

pre-analyses required to infer the resource usage of a program. Such pre-

analyses include class analysis, sharing, cyclicity, constancy and size anal-

ysis. The algorithm is multi-domain in the sense that it interleaves the

computation for the different domains and takes into account dependencies

among them, in such a way that it is possible to invalidate only partial

pre-computed information.

Even a small change within a method (e.g., adding an instruction) can

change the overall cost of the program. A fundamental idea to minimize

the amount of information that needs to be recomputed is to be able to

distinguish within a cost summary the cost subcomponent associated to

each method, so that the final cost functions can be recomputed by replacing

only the affected subcomponents. This work has been presented as a poster

in [ACPRD11] and, as a regular paper, in [ACPRD12]:

E. Albert, J. Correas, G. Puebla, and G. Román-Dı́ez. To-

wards Incremental Resource Usage Analysis. In The

Ninth Asian Symposium on Programming Languages and Systems

(APLAS’11), Kenting, Taiwan. Poster Presentaion. Springer,

December 2011.
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E. Albert, J. Correas, G. Puebla, and G. Román-Dı́ez. Incre-

mental Resource Usage Analysis. In ACM SIGPLAN Work-

shop on Partial Evaluation and Program Manipulation (PEPM

2012), Philadelphia, Pennsylvania, USA, pages 25–34. ACM

Press, January 2012.

• The main contribution of the third part of the thesis is to show that it

is possible to formally and automatically certificate the correctness of the

resource guarantees created by COSTA. This work is based on the idea

that the static analysis tool COSTA and the formal verification tool KeY

have complementary strengths. COSTA is able to derive the UB, annotate

it within a Java file by using the Java Modelling Language (JML). Then

KeY is able to prove the validity of the bounds and generate a proof. This

work, published as a tool demo at PEPM’11 [ABG+11a] focuses on integer

manipulating programs only:

E. Albert, R. Bubel, S. Genaim, R. Hähnle, G. Puebla, and

G. Román-Dı́ez. Verified Resource Guarantees using COSTA

and KeY. In Siau-Cheng Khoo and Jeremy G. Siek, editors,

Proceedings of the 2011 ACM SIGPLAN Workshop on Partial

Evaluation and Program Manipulation (PEPM’11), Austin, TX,

USA, pages 73–76. ACM Press, January 2011.

The second phase is the extension of the previous phase to handle heap

manipulating programs. In particular, this work identifies the structural

properties inferred by COSTA that need to be verified, and extends JML

by means of suitable new constructs. A new extension of the program logic

used during verification by additional theories for structural heap properties

including acyclicity or disjointness of heap regions has been added to KeY.

Realizing the cooperation between COSTA and KeY has required non-trivial

extensions in both systems. This work has been informally presented in the

“KeY Symposium 2011” [ABG+11b] and finally published in [ABG+12]:

E. Albert, R. Bubel, S. Genaim, R. Hähnle, and G. Román-
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Dı́ez. Verified Resource Guarantees for Heap Manipu-

lating Programs. 10th KeY Symposium, August 2011.

E. Albert, R. Bubel, S. Genaim, R. Hähnle, and G. Román-

Dı́ez. Verified Resource Guarantees for Heap Manip-

ulating Programs. In Proceedings of the 15th International

Conference on Fundamental Approaches to Software Engineering

(FASE’12), Tallinn, Estonia. volume 7212 of LNCS, pages 130-

145. Springer, March 2012.

• The last part of the thesis contains two relevant contributions (1) a flow-

sensitive object-sensitive points-to analysis for the concurrent objects con-

currency model; and (2) a novel form of object-sensitive cost relation system

which relies on information gathered by the points-to analysis in order to

generate the cost equations. Interestingly, the resulting cost relations can

still be solved to closed-form upper/lower bounds using standard solvers for

cost analysis for sequential programs.

Non-distributed cost analysis for concurrent object model has been initially

studied in [AAG+11] and in this thesis we have extended it by adding object-

sensitivity. This work is under revision for the special issue of QAPL’12 in

the journal Theoretical Computer Science.
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Chapter 2

Preliminaries

In this chapter, we provide some introductory notions and fix some notation used

in resource analysis in general, and in the COSTA system in particular.

2.1 Introduction

Resource Usage Analysis aims at approximating the cost of programs, i.e. the

amount of resources required to run a given program in terms of its input values.

COSTA is an abstract interpretation based COSt and Termination Analyzer for

object oriented programs. It was originally developed for the analysis of Java

bytecode programs, and has been recently extended to analyze ABS programs

[JHS+12, AAG+12a], an ABStract behavioral language for modeling systems.

COSTA receives as input a Java bytecode program and a resource of interest

and tries to infer an upper-bound (UB) of the resource consumption of the pro-

gram. The techniques followed by COSTA for inferring the resource consumption

of executing a program follow the classical two-fold approach to cost analysis due

by Wegbreit [Weg75], (1) a program is first transformed into a set of cost rela-

tions [AAG+12b] which (2) can then be solved into a closed-form upper/lower

bound [AAGP11]. This section details the techniques used in COSTA for inferring

UBs from bytecode programs.

Figure 2.1 shows the architecture of the COSTA analyzer. The input and out-
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Figure 2.1: Architecture of COSTA

put to the system are depicted on the left: COSTA takes a Java bytecode program

(JBC) and a cost model and yields as output an UB of its resource consumption,

together with information about the termination of the program. Ellipses rep-

resent what the system produces, rounded boxes indicate the steps performed

by the analyzer and auxiliary analyses are represented by dashed arrows. These

phases are described in the current section to make the thesis self-contained and

they can be summarized in three main steps:

(1) A control flow graph (CFG) is obtained from the bytecode program. The

generation of the CFG is guided by a class analysis [SJ03] for determining

the set of reachable classes at any program point and for solving the dynamic

dispatching. The CFG helps to transform the unstructured control flow of

bytecode into a Rule-Based Representation (RBR), which is a convenient

intermediate representation form which later facilitates the formalization of

the analysis. Several optimizations can be performed on the RBR to enable

more efficient and accurate results, namely; loop extraction, which makes

possible to deal with nested loops by extracting loop-like constructs from the

CFG; single static assignment, that allows denotational program analyses;

stack variables elimination, that enables the removal of a large number of

stack variables that correspond to intermediate states; and, constant prop-
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agation, where variables are unified to constants when it is feasible. These

transformations yield an improved RBR, named RBR’ in the figure.

(2) The next step consists in setting up a set of cost recurrence equations, or

cost relations for short, from the rule-based representation of the program

[AAG+12b]. Cost relations consist of two parts, (1) an expression that cap-

tures the cost of executing the program in terms of its input data, and (2)

a set of constraints for defining the applicability conditions and the relations

between variable values. Soundness and precision of the cost relations are

guaranteed by applying a set of pre-analyses, namely, nullness and sign that

allow COSTA to eliminate useless branches from the rules; and heap analyses

that are required for the soundness of the size analysis. COSTA applies an

abstract compilation, and a size analysis on the RBR’, which, together with

the cost model, allow the generation of the Cost Relation System (CRS) of

the program.

(3) Finally, COSTA tries to solve the CRS and express the cost relations as cost

functions [AAGP11], that are not in recursive form and hence can be directly

evaluated. Since a precise solution for the cost relations seldom exists, COSTA

infers an upper bound for the cost relations. A lower-bound can also be

inferred similarly, but in this thesis we focus on the UB. Inferring an UB is a

global process which starts by solving the cost relations which do not depend

on any other and continue by replacing the computed cost functions on the

equations that call such relations until all cost relations are solved.

The rest of the chapter describes all these components in detail.

Example 2.1.1. Figure 2.2 shows a Java program which consists of four classes:

List, a classical implementation of a linked list; IncClass and IncClass2 that im-

plement a method to move forward to the next position of the list; and C which

implements some methods that operate on lists. Method C.getInc can return two

different object instances, an object of type IncClass or an object of type IncClass2,

depending on the guard of an if-then-else statement. The difference between both

instances is in the implementation of nextElem: objects of type IncClass incre-

ment the list one by one, while IncClass2.nextElem moves forward two elements at
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class C {
static void modify (List l) {

IncClass o = getInc(l);
decList(o, o.nextElem(l));
}
static IncClass getInc (List l) {

if (l.data == 1)
return new IncClass();

else
return new IncClass2();

}
static void decList (IncClass o, List l) {

while (l 6= null) {
l.data = l.data - 1;
l = o.nextElem(l);
}
}
}

class IncClass {
List nextElem (List l) {

return l.next;
}
}
class IncClass2 extends IncClass {

List nextElem (List l) {
return l.next.next;
}
}
class List {

List next;
int data;
}

Figure 2.2: Preliminaries Running Example

a time. Method C.decList traverses the list l by using nextElem of object o. Thus,

depending on the instance returned by getInc, decList will decrement by one all

elements of the list or only half of them.

Figure 2.3 depicts the bytecode for each method of the Java source. Let us fo-

cus on the instructions of method C.decList. The indexes 0, 1 in the bytecode

instructions correspond respectively to parameters o, l. For clarity,variable this is

ignored because it is not relevant for the cost analysis. Method C.decList contains

the typical structure for executing a loop in bytecode. The instruction 0: load 1

pushes the reference to l on the stack. The next instruction ifnull 13 evaluates

the condition of the loop by comparing the top of the stack with null and, if it

is null, the program counter jumps to the instruction 13, exiting from the loop.

Otherwise, the execution continues to instruction 1, and executes the loop body,

whose last instruction, 12: goto 0, jumps again to the loop guard. At the end of

the conditional instructions the top of the stack is automatically popped.

Fields are accessed using two instructions, the load instruction which pushes on

the stack the reference variable and getfield/putfield f that are used to read/write
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bcC
modify =



0: load 0
1: invokestatic getInc
2: store 1
3: load 1
4: load 1
5: load 0
6: invokevirtual nextElem
7: invokestatic decList
8: return

bcCgetInc =



0: load 0
1: getfield data
2: push 1
3: ifne 6
4: new IncClass
5: return
6: new IncClass2
7: return

bcCdecList =



0: load 1
1: ifnull 13
2: load 1
3: load 1
4: getfield data
5: push 1
6: sub
7: putfield data
8: load 0
9: load 1
10: invokevirtual nextElem
11: store 1
12: goto 0
13: return

bcIncClassnextElem =

 0: load 1
1: getfield next
2: return

bcIncClass2nextElem =


0: load 1
1: getfield next
2: getfield next
3: return

Figure 2.3: Java bytecode for the Runnig Example

the field f of the pushed variable, e.g. 4: load 1 pushes l on the stack and 5:

getfield data accesses the value of the field data of reference l. The value obtained

by reading a field is pushed on the stack after popping the reference used to access

the field. After writing a field, the reference is popped from the stack.

Non-static methods are executed by means of the bytecode instruction invokevirtual.

Method parameters are previously pushed onto the stack. Dynamic dispatching is

handled similarly by evaluating the runtime class of the instance of the first pa-

rameter pushed on the stack, which corresponds to the this reference. For instance,

the instructions 8: load 0 and 9: load 1 push the parameters o and l on the stack

respectively. The method which will be finally executed depends on the class of the

object stored in o and it is evaluated by the Java Virtual Machine at runtime.
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2.2 From Bytecode to a Rule-Based Represen-

tation

During this phase, Java bytecode is transformed into a rule-based representation.

The purpose of this transformation is twofold: (1) to represent the unstructured

control flow of bytecode into a procedural form, and (2) to have an uniform

treatment of stack and local variables.

2.2.1 Generation of the Control Flow Graph guided by

Class Analysis

The control flow of Java bytecode is unstructured, and it allows conditional and

unconditional jumps. The notion of Control Flow Graph facilitates the reasoning

on a Java bytecode program. CFGs are created by adopting standard techniques

from compiler theory: instructions sequences are splitted into its maximal subse-

quences of non-branching instructions, conforming the basic blocks of the initial

graph. Blocks are connected by guarded edges that describe all possible transi-

tions. Guarded edges are introduced by considering the last bytecode instruction

of each block which represents the condition for the control going from one block

to another one. The branching instructions considered in this thesis include con-

ditional jumps and dynamic dispatching. Exceptions can be handled similarly by

means of guarded edges, but they will be ignored for clarity of the presentation.

For further details about the CFG generation we refer to [AAG+12b].

As customary in the analysis of object oriented languages, a class analysis

[SJ03] is required to precisely approximate virtual invocations. Computing a

precise approximation of the reachable methods at each program point is not

trivial. COSTA constructs the CFG of the entry method and the class analysis

infers all possible runtime classes at each program point. This information is used

to resolve virtual invocations. The CFGs of the methods that can be called at

runtime are constructed iteratively until no new CFG is created.

A subsequent loop extraction transformation is applied to the initial CFG to

separate the sub-graphs that correspond to loops. This step has been well studied
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0: load 1
1: ifnull 13

2: load 1
3: load 1
4: getfield data
5: push 1
6: sub
7: putfield data
8: load 0
9: load 1
10: invokevirtual nextElem

invoke(IncClass.nextElem) invoke(IncClass2.nextElem)

11: store 1
12: goto 0

13: return

null ¬ null

type(o,IncClass) type(o,IncClass2)

Figure 2.4: CFG of method decList

in the context of program decompilation [All70], termination analysis [AAC+08]

and cost analysis [AAG+12b]. Loop isolation is crucial when the program contains

nested loops, since it allows reasoning on one loop at a time.

Example 2.2.1. Figure 2.4 depicts the CFG of method decList. Observe that

branching instructions, like ifnull, generate two edges and their corresponding

mutually exclusive conditions. Dynamic dispatching is handled similarly by a

branching instruction (see invokevirtual) but using the information gathered by

the class analysis, which indicates the existence of two possible implementations

for nextElem (one in class IncClass and another in IncClass2). If-then-else state-

ments will result in a similar structure that is guarded by the if condition. Note

that unconditional branching instructions, like return or goto are represented by

edges without any condition.
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2.2.2 Rule-Based Representation

A rule-based program P consists of a set of procedures and a set of classes. The

set of class names C defined in P is denoted by Class(P ). A procedure p with

k input arguments x̄ = 〈x1, . . . , xk〉 and m output arguments ȳ = 〈y1, . . . , ym〉 is

defined by one or more guarded rules which adhere to this grammar:

rule ::= p(x̄, ȳ) ← g, body.

g ::= true | exp1 op exp2 | type(x,C)

body ::= ε | b, body
b ::= x := exp | x := new C | x := y .f | x .f := y | x := newarray(D , y) |

x[y] := z | z := x[y] | x := arraylength(y) | q(x̄, ȳ)

exp ::= x | null | n | x aop y

aop ::= + | − | / | ∗
op ::= > | < | ≤ | ≥ | = | 6=

where p(x̄, ȳ) is the head of the rule; g its guard, which specifies conditions for

the rule to be applicable; body the body of the rule; n an integer; x, y and z

variables; f a field name; and q(x̄, ȳ) a procedure call by value.

The RBR supports class definition and includes instructions for object and

array creation and manipulation. A class contains a finite set of typed field names,

where a type can be (1) an integer; (2) a class C ∈ Class(P ); or (3) an array

whose elements are of type integer or Class(P ). For the sake of simplicity, the

same field name, if used in different classes, has the same type. This can be done

by automatically encoding the type into the field name. The set of all field names

defined in P is denoted by fields(P ). The instruction new C creates an object of

type C and returns a reference to it, newarray(D, y) creates an array of y elements

of type D ∈ {int} ∪ Class(P ) and arraylength(y) returns the length of the array

y. For simplicity, we support only unidimensional arrays.

Classes, in the RBR, are in fact closer to records in C than to classes in Java,

as they encapsulate only fields and not methods, and do not use inheritance or

interfaces as in Java. We do not give an explicit syntax for defining classes; when

needed, we simply use Java’s syntax.

The translation from Java bytecode to the rule-based form is performed in two
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bj dec(bj)

load i st+1 := li
store i li := st
push n st+1 := n
pop nop(pop)
dup st+1 := st
add st−1 := st−1 + st
sub st−1 := st−1 − st
lt st−1 < st
gt st−1 > st
eq st−1 = st
null st = null
¬ lt st−1 ≥ st
¬ gt st−1 ≤ st

bj dec(bj)

¬ eq st−1 6= st
¬ null st 6= null
type(n, c) type(st−n, c)
new c st+1 := new c
getfield f st := st.f
putfield f st−1.f := st
newarrayc st := newarray(c, st)
aload st−1 := st−1[st]
astore st−2[st−1] := st
arraylength st := arraylength(st)
invoke m m(st−n, . . . , st, st−n)
return out := st
nop(b) nop(b)

Figure 2.5: Compiling bytecode instructions (as they appear in the CFG) to rule-
based instructions (t stands for the height of the stack before the instruction).

steps that are described in detail in [AAG+12b]. First, the CFG is built for each

method (as described in Section 2.2.1) and each bytecode instruction is compiled

into the RBR representation according to the mapping depicted in Figure 2.5.

Second, a procedure is defined for each basic block in the graph and the operand

stack is flattened by considering its elements as additional local variables. In this

thesis, the language does not include features of Java, such as exceptions, static

fields, access control and primitive types besides integers, arrays and references.

However, COSTA deals with full sequential Java bytecode.

2.2.3 RBR Semantics

First, we assume that programs have been verified for well-typeness. By well-

typeness we mean that any program variable at a given program point can hold

(in any possible execution) either a reference or an integer, but not both. We

refer to such types as static types. Given a variable x, we let stype(x) denote its

static type, which can be, respectively ref or int. Due to well-typeness, for the

case of x[y] := z and z := x[y], the variable x can be (in any execution) either a
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reference to an array of integers or to an array of references (because z has always

the same static type). For such case, we assume that stype(x) returns aref or

aint respectively. Note that, for simplicity, we assume that variable x implicitly

contains information on the program point at which it appears so that its stype

can uniquely identify this variable.

The execution of rule-based programs mimics standard bytecode [LY96].

The rules in Figure 2.6 define an operational semantics for the language (see

[AAG+12b] for more details). An activation record (ar) has the form 〈p, bc, tv〉,
where p is a procedure name, bc is a sequence of instructions, and tv is a variable

mapping. Given a variable x, tv(x) refers to the value of x, and tv [x 7→v] updates

tv by making tv(x) = v while tv remains the same for all other variables. A heap

h is a partial map from an infinite set of memory locations (or reference) to ob-

jects. We use h(r) to denote the object referred to by r in h. We use h[r 7→ o] to

indicate the result of updating the heap h by making h(r) = o while h stays the

same for all locations different from r. For any location r and heap h, r ∈ dom(h)

iff there is an object associated to r in h. Given an object o, o.f refers to the

value of the field f in o, and o[f 7→v] sets the value of o.f to v. We use h[o.f 7→v]

as a shortcut for h(r)[f 7→v], with o = h(r).

In rule (1), eval(exp, tv) returns the evaluation of the arithmetic or boolean ex-

pression exp for the values of the corresponding variables from tv in the standard

way; for reference variables, it returns the reference. We assume that well-typing

forbids pointer arithmetics. Rules (2), (3) and (4) deal with objects as expected.

Procedure newobject(C) creates a new object of class C by initializing its fields

to either 0 or null, depending on their types. Rules (5), (6), (7) and (8) account

for arrays. For simplicity, an array of length v is modeled as an object o with a

special (read-only) field length initialized to v, and fields 1, . . . , v corresponding

to the array elements. The call newarray(D , v) creates an array of v elements ini-

tialized to 0 or null. Note that Rule (7) prevents “simulating” multi-dimensional

arrays. Rule (9) (resp., (10)) corresponds to calling (resp., returning from) a

procedure. The notation p[ȳ′, ȳ] records the association between the formal and
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(1)
b ≡ x := exp, v := eval(exp, tv)

〈p, b·bc, tv〉·ar ;h; 〈p, bc, tv [x 7→ v]〉·ar ;h

(2)
b ≡ x := new C, o := newobject(C), r is a new location not in dom(h)

〈p, b·bc, tv〉·ar ;h; 〈p, bc, tv [x 7→ r]〉·ar ;h[r 7→ o]

(3)
b ≡ x := y.f, tv(y) 6= null, o := h(tv(y))

〈p, b·bc, tv〉·ar ;h; 〈p, bc, tv [x 7→ o.f ]〉·ar ;h

(4)
b ≡ x.f := y, tv(x) 6= null, o := h(tv(x))

〈p, b·bc, tv〉·ar ;h; 〈p, bc, tv〉·ar ;h[o.f 7→ tv(y)]

(5)

b ≡ x := newarray(D, y), v =: tv(y), v ≥ 0,
o = newarray(D, v), r is a new location not in dom(h)

〈p, b·bc, tv〉·ar ;h; 〈p, bc, tv [x 7→ r]〉·ar ;h[r 7→ o]

(6)
b ≡ x := arraylength(y), tv(y) 6= null, o = h(tv(y))

〈p, b·bc, tv〉·ar ;h; 〈p, bc, tv [x 7→ o.length]〉·ar ;h

(7)

b ≡ x[y] := z, tv(x) 6= null, o := h(tv(x)), v := tv(y),
1 ≤ v ≤ o.length, tv(z) is not an array

〈p, b·bc, tv〉·ar ;h; 〈p, bc, tv〉·ar ;h[o.v 7→ tv(z)]

(8)

b ≡ x := y[z], tv(y) 6= null, o := h(tv(y)), v := tv(z),
1 ≤ v ≤ o.length

〈p, b·bc, tv〉·ar ;h; 〈p, bc, tv [x 7→ o.v]〉·ar ;h

(9)

b ≡ q(x̄, ȳ), there is a rule q(x̄′, ȳ′):=g, b1, · · · , bk ∈ P,
tv ′ := newenv(q), tv ′[x′i 7→ tv(xi)], eval(g, tv ′) = true

〈p, b·bc, tv〉·ar ;h; 〈q, b1 · · · bk, tv ′〉·〈p[ȳ′, ȳ], bc, tv〉·ar ;h

(10) 〈q, ε, tv ′〉·〈p[ȳ′, ȳ], bc, tv〉·ar ;h; 〈p, bc, tv [ȳ 7→ tv ′(ȳ′)]〉·ar ;h

Figure 2.6: Operational semantics of bytecode programs in rule-based form

actual return variables. newenv creates a new mapping of local variables for the

method, where each variable is initialized to either 0 or null.

An execution for a program P starts from an initial configuration of the form

〈start, p(x̄, ȳ), tv〉;h, and ends in a final configuration 〈start, ε, tv ′〉;h′, where:

1. start is an auxiliary name to indicate an initial activation record;

2. p(x̄, ȳ) is a call to the procedure from which the execution starts;
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modify(〈l〉, 〈〉) ← s1 := l, getInc(〈l〉, 〈s′1〉),
o := s′1, s

′′
1 := o, s2 := o, s3 := l,

call nextElem(〈s2, s3〉, 〈s′2〉),
decList(〈s′′1, s′2〉, 〈〉).

getInc(〈l〉, 〈out〉) ← s1 := l, s′1 := s1.data, call if(〈s′1〉, 〈out〉).
call if(〈v〉, 〈out〉) ← v = 0,

s1 := new IncClass, out := s1.

call if(〈v〉, 〈out〉) ← v 6= 0,
s1 := new IncClass2, out := s1.

call nextElem(〈o, l〉, 〈l′〉) ← type(o,IncClass),

IncClass.nextElem(〈l〉, 〈l′〉).
call nextElem(〈o, l〉, 〈l′〉) ← type(o,IncClass2),

IncClass2.nextElem(〈l〉, 〈l′〉).
decList(〈o, l〉, 〈)〉 ← while(〈o, l〉, 〈〉).
while(〈o, l〉, 〈〉) ← whilec(〈o, l〉, 〈l′〉).

whilec(〈o, l〉, 〈l〉) ← l = null.
whilec(〈o, l〉, 〈l′〉) ← l 6= null,

s1 := l, s2 := l, s′2 := s2.data,

s3 := 1, s′′2 := s′2 − s3, s1.data := s′′2,

s′1 := o, s′′′2 := l, call nextElem(〈s′1, s′′′2 〉, 〈s′′1〉),
l′ := s′′1, while(〈o, l〉, 〈l′〉).

IncClass.nextElem(〈l〉, 〈out〉) ← s1 := l, s′1 := s1.next, out := s′1.

IncClass2.nextElem(〈l〉, 〈out〉) ← s1 := l, s′1 := s1.next, s
′′
1 := s′1.next, out := s′′1.

Figure 2.7: RBR of the example

3. h is an initial heap; and

4. tv is a variable mapping such that dom(tv) = {x̄} ∪ {ȳ}, and all variables

are initialized to an integer value, null or a reference to an object in h.

Executions can be regarded as traces of the form S0 ; S1 ; · · · ; Sf

(abbreviated S0 ;∗ Sf ), where Sf is a final configuration. Non-terminating

executions have infinite traces.

Example 2.2.2. Figure 2.7 shows the RBR of the program shown in Figure 2.2.

By looking at method decList, we can observe that each rule in the RBR corre-
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sponds to one block in the CFG. The conditional statement if-then-else of method

getInc is handled by the rule call if. In turn, the guards of the rule call if, de-

cide which block will be executed, the “if” block, when v = 0, or the “else” one,

when v 6= 0 (note that the guards of the rules are mutually exclusive). Dynamic

dispatching is handled similarly: the rule call nextElem includes an instruction

type(o, Class), which checks if o is an instance of type IncClass or IncClass2, and

depending on the type of o, calls the corresponding method, IncClass.nextElem

or IncClass2.nextElem, respectively. The rule while contains a continuation rule,

whilec, to evaluate the loop condition and either perform the recursive call (when

the loop condition holds) or, otherwise, exit from the loop.

2.3 From the RBR to a Cost Relation System

Once the RBR is generated, the next step consists in setting up cost recurrence

equations (a.k.a. cost relation system). The global analysis underlying this step is

the inference of size relations which determine how the sizes of data changes along

the execution of the program. Before applying the size analysis, some previous

(pre-)analyses are applied in order to optimize the RBR and to guarantee the

soundness of the size analysis.

2.3.1 Context Sensitive (Pre-)Analyses

Nullness Analysis

Nullness analysis aims at keeping track of the reference variables which point to

non-null objects at concrete program points. The nullness analysis allows us to

guarantee that no NullPointerException can be thrown when accessing fields or

invoking methods using reference variables. When the analysis can ensure that

the reference variable is definitely non-null, those branches created by the com-

piler for handling the NullPointerException can be removed. This optimization

significantly reduces the number of branches in the program.
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Sign Analysis

Sign analysis keeps track of the sign of the program variables at concrete program

points. The information about the sign of the data allows us to remove redundant

rules that correspond to useless branches created for handling arithmetic excep-

tions. This results in an improvement in the precision of the resource analysis

and the efficiency as the amount or rules analyzed is smaller.

2.3.2 Heap Analysis

Programming languages with dynamic memory allocation, such as Java, allow cre-

ating and manipulating heap-allocated data structures. Handling data structures

allocated in the program memory (the heap) is a challenging issue in the context

of termination analysis, resource usage analysis, garbage collection, etc. The in-

formation about the structures stored in the heap is needed for guaranteeing the

soundness of the size analysis detailed in Section 2.3.4. COSTA implements three

analyses for obtaining information related to local variables, fields and arguments

located in the heap:

• Sharing [SS05] aims at detecting the pairs of reference variables that may

point to common heap locations (see Section 5.4).

• Cyclicity [RS06] aims at detecting those variables that points to data

structures that might be cyclic (see Section 5.4).

• Constancy [GS08] aims at detecting those heap structures that are not

modified during the execution of the parts of the program.

2.3.3 Cost Models

Resource analysis is a generic technique that can be used for inferring different

types of resources. Traditional resources include the number of executed instruc-

tions, the memory consumption, and the number of times a method is invoked.

Each resource is defined by a corresponding cost model.
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We consider platform independent cost models (e.g., worst-case execution

time or energy consumption are excluded). The following is a cost model for

approximating the number of executed instructions :

Mi(b)=


0 b ≡ q( , ) ∧ q is not a method

Mi(g1) +Mi(g2) b ≡ g1 ∧ g2

1 otherwise

Mi assigns cost 1 to all instructions except calls to blocks, as they do not appear

in the original program. The total memory allocated by the program can be

obtained similarly by the cost model Mm(b) = size(C), if b ≡ new C where

size returns the number of bytes required to create an object of type C; and

Mm(b) = 0, otherwise. A cost model that simply counts the total number of

objects created along the execution can be defined as Mo(b) = 1 if b ≡ new C

and Mo(b) = 0 otherwise We can also count the number of calls to an specific

method m , e.g., by adding 1 only when the instruction m( , ) is find and m is

not a block.

2.3.4 Size Analysis

The notion of Size Measure

From the RBR, the objective of the size analysis is to determine how the size of

the data is modified along the program execution. To this end the notion of size

measure is crucial [AAG+12b]. The size of a piece of data at a given program

point is an abstraction of the information it contains. In the scenario of cost

analysis, data structures are usually abstracted to their size. Depending on the

type of the variable we are interested in, we can find different size measures:

• Integer variables are mapped to their value. The size of integer variables is

typically used in loops with a counter and it is required for approximating

the maximum number of iterations such loops can execute.

• Arrays are mapped to their length, allowing us to bound the number of

loop iterations used to traverse an array by using as bound int length.
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• Data Structures are abstracted by using the path-length [SMP10] of the

structure, that is, an object is mapped to the length of the maximum path

reachable from it by dereferencing. Provided x, a non-cyclic data structure,

the size of x is greater than the size of any reference field of x. Thus, to

guarantee the soundness of this abstraction, a cyclicity analysis is first per-

formed. Path-length abstraction is used to bound the number of iterations

of loops that traverse data structures.

Abstract Compilation

The aim of our abstract compilation is to transform the RBR program into an

abstraction of the program with respect to the size measures. For example,

when analyzing a loop with an integer counter i that goes from 0 to a threshold,

size analysis with respect to integer value should see that the size of i in the

n-th iteration of the loop is greater by 1 than its size in the n−1-th iteration.

In this step of the cost analysis, the RBR instructions are abstracted by linear

constraints on the size of its variables. For instance, from x=x+1 we obtain

the RBR instruction s0 := s0 + 1. From this instruction, we are interested in

representing that the value of s0 after the execution of the instruction is equal

to the value of s0 before the instruction plus 1. This information is obtained

via a Single Static Assignment transformation, which produces the instruction

s′0 := s0 + 1, that, represent the value x before/after the instruction, that is,

x’:=x+1. Field instructions, like s0 := s0.f , are abstracted by s′0 ≤ s0−1, which

means that the output size is less than the input size, due to the field access.

This step results in an abstract compilation which approximates the cost and

termination behaviour of the original program.

Example 2.3.1. Observing the rules IncClass.nextElem in the RBR of Figure

2.7 we can determine how the size of the the list l changes during the execution

of nextElem. As it is described in Section 2.3.4, the size of list l is abstracted to

its path-length, that is ”l”. The first instruction, s1 := l, just assigns the abstract

value of ”l” to s1. Besides, instruction s′1 := s1.next will generate the constraint

s′1 ≤ s1 − 1, which means that the abstract value stored in s′1 is less than the size

s1, i.e., less than the size of the list ”l”. Rule guards, like l = null or v = 0, will
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also be abstracted to linear constraints. In the latter case, this abstraction can be

done directly because ”v” is an integer variable, so its size is represented by its

content. But, for the reference variable ”l” the constraint l = null is abstracted

by the constraint l = 0.

Input/Output Size Relations

A RBR rule can contain calls to other rules and the information propagated by

the calls by means of the output variables may be needed to obtain the cost of

executing a program. A call to a rule in the RBR may have output variables, but

the CRS cannot have output variables because a CRS is a set of mathematical

relations. The objective of this step is to obtain an abstract program where the

output variables do not appear. The basic idea relies on computing input/output

size relations relating the input and the output variables and use these relations to

propagate the effect of calling a rule. COSTA infers input/output size relations of

the form p(x, y)→ ϕ, where ϕ is a set of linear constraints describing the relation

between the size of the input variables (x) and the output variables (y).

In order to combine the information obtained for each method, linear con-

straints are propagated via bottom-up computation. Sound input-output size

relations can be obtained by taking the abstract rules generated by abstract

compilation, and combining them via a fixpoint computation, using abstract in-

terpretation techniques in order to avoid infinite computations.

Example 2.3.2. According to the abstract compilation described in the Example

2.3.1, the abstract value returned by the rule IncClass.nextElem in variable

out is the abstract value assigned to s′1, that is, s′1 ≤ s1− 1. We can express this

constraint in terms of the input/output variables (l/out) as follows:

IncClass.nextElem(〈l〉, 〈out〉)← out ≤ l − 1.

This constraint states that after executing the method IncClass.nextElem, the

size of the list returned by the method is equal to the size of the input list minus 1.

Next, by using the obtained input/output size relations, the abstract compilation

of the rule modify can determine how the size of s3 is modified after calling

call nextElem(〈s2, s3〉, 〈s′2〉), resulting in the constraint s′2 ≤ s3 − 1.
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2.3.5 Generation of Cost Relation System

Once the bytecode program has been transformed into its RBR and the size

relations have been inferred, the next step is to set up the Cost Relations System

(CRS) of the program. The CRS defines the cost of executing the program in

terms of the size of its input parameters. In particular, each rule in the RBR

program defines one equation in the CRS, which is composed of two parts, a cost

expression and the set of constraints as we will see now.

Given a sequence of instructions B, we use the following functions: calls(B)

to obtain the set of elements that are calls to methods or to blocks of the form

q(w, y) in B, and instr(B) to refer to the remaining set of elements of B (the

instructions). Given a cost model M, a rule p(x̄, ȳ)← B in the program and its

size abstraction ϕ, we generate the cost equation:

p(x̄) =
∑

b∈instr(B)

M(b) +
∑

b(w,z)∈calls(B)

b(w), ϕ

Given a program P , its cost relation system (CRS) is obtained by applying the

above transformation to all rules.

The above cost relations have the following characteristics: (i) they do not

have output arguments, as the cost is a function of the input; (ii) given a rule

being analyzed, its cost equation is obtained by applying the cost model M to

each of the basic instructions in the body (first summation in the equation); (iii)

a call in the program is substituted by a call to its corresponding cost equation

(second summation in the equation); (iv) the size abstractions ϕ are attached

to the rules to define the applicability constraints for the equations and the size

relations among the variables in the equations.

Example 2.3.3. Figure 2.8 shows the CRS for counting the number of in-

structions executed by the program (by using the cost model Mi defined in Sec-

tion 2.3.3) represented by the RBR of Figure 2.7. Observe that each rule in

the RBR corresponds to one equation in the CRS. The resulting constraints to

the right define the applicability conditions of the equations and the size rela-

tions between variables. Rule modify defines the cost expression ”8 + getInc +

call nextElem + decList”, where 5 out of the 8 corresponds to the cost of each
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modify(l)= 8+getInc(l)+call nextElem(l, l′)+decList(l′) {l′ ≤ l − 1}
getInc(l)=2 + call if() {}
call if()=3 {}
call if()=3 {}

call nextElem(l, l′)=IncClass.nextElem(l, l′) {l ≥ 1, l′ ≥ 0, l′ ≤ l−1}
call nextElem(l, l′)=IncClass2.nextElem(l, l′) {l ≥ 2, l′ ≥ 0, l′ ≤ l−2}

decList(l)=while(l) {}
while(l)=whilec(l) {}
whilec(l)=1 {l=0}
whilec(l)=11 + call nextElem(l, l′) + while(l′) {l ≥ 1, l′ ≥ 0, l′ ≤ l−1}

IncClass.nextElem(l, l′)=3 {l ≥ 1, l′ ≤ l−1}
IncClass2.nextElem(l, l′)=4 {l ≥ 2, l′ ≤ l−2}

Figure 2.8: CRS of the example

basic instruction, and the 3 corresponds to the cost of making the calls, plus the

cost of executing the corresponding methods. Calls to internal blocks, like the

calls to the while rule will not add any cost. Variables that are not involved in

the equation guards are omitted because they are useless for solving the equations.

Note also that the CRS entries do not have output variables, which have been

replaced by constraints using the input/output size relations between the variables

involved in the equation.

2.4 From the CRS to a Closed-Form Upper

Bound

The third phase in resource analysis consists in transforming the CRS obtained

in Section 2.3 into cost functions, that is, cost expressions without recurrences.

As an exact solution often does not exist, the objective of the resource analysis

is to infer Upper/Lower Bounds, which are an over/under approximation of the

worst/best-case cost. While this thesis will focus on the computation of the UB,

the problem of LB is dual. A cost function is in closed-form when the function

is a basic cost expression [AAGP11], i.e., a cost expression with all dependencies
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(calls to other relations) solved. The final objective of the resource analysis is

to obtain a Closed-Form Upper Bound of the cost of the program for a given

resource. For brevity, UB will refer to the “closed-form upper bound”.

2.4.1 Cost Relations compositionality

An important feature of the CRS is its compositionality. This feature allows

us computing the UB of the CRS by concentrating on one relation at a time.

Compositionality results in an effective mechanism when all recursions are direct,

so that, the first step consists in transforming all relations into direct recursion

(see [AAGP11] for details), resulting in a CRS with only one relation per Strongly

Connected Component (SCC). This transformation allows us focusing on one

relation at a time, starting by stand-alone cost relations, i.e. relations that do

not depend on any other relation.

2.4.2 Stand-Alone Relations

Intuitively, to infer an UB for a recursive relation (a loop or a recursive method),

the method proposed in [AAGP11] infers an UB in the number of iterations

(#iter) and an UB on the cost of a single execution of its body (Citer), resulting

in the UB #iter ∗ Citer.

Bounding the number of iterations

The problem of bounding the number of recursive iterations has been widely

studied in the context of termination analysis [AAC+08, PR04]. Termination

analyzers usually prove that the number of iterations of the loop is bounded by

proving that there exists a ranking function [Flo67] for that loop. A ranking

function is a function f in terms of the loop arguments such that f decreases in

any two consecutive calls and it is bounded from below. This function guarantees

the absence of infinite traces and can be safely used to bound the number of

iterations (#iter).

Example 2.4.1. Consider the CRS of Figure 2.8. Only recursive cost relations

will iterate, so let us focus on the cost relations of the while rule. Observe
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that, depending on the nextElem implementation, the length of the list can be

decremented by 1 or 2. Thus, the size of the list is decremented by at least one at

each iteration, and nat(l) can be used as a ranking function of the loop. Function

nat(x) = max({0, x}) is used by the UB solver to avoid negative evaluations. The

ranking function determines the UB for the number of iterations of the loop, that

is #iter = nat(l).

Bounding the cost of a single iteration of the loop

To compute the worst-case cost of a ginven call iteration of the loop, it is necessary

to determine how the values of the variables are modified within the loop. For

that purpose, the method of [AAGP11] uses (1) the loop invariant (ψ), which is

a set of linear constraints that relates the values of the variables inside the loop

with the variable values when entering into the loop; and (2) the size relations

ϕ between the program variables at different program points (see Section 2.3.4).

Intuitively, by using the loop invariant and the size relation, it is possible to

maximize the cost expression and obtain the worst possible cost for one iteration

of the loop.

Example 2.4.2. Let us infer the worst case of executing the while loop for the

CRS of Figure 2.8. The following invariant is obtained for this cost relation

ψ = {l0 ≥ l + 1}, which simply states that the length of the list in the recursive

call is strictly smaller that the length of the initial list (lo). In the while loop, the

invariant is not relevant for obtaining the worst cost of the cost relation because

it is constant. Thus, we just have to add the cost of the body of the while loop,

that is 11, plus the cost of the method called. The call to call nextElem can

add 3 or 4 depending on the nextElem selected. To obtain the UB we have to

select the worst case, i.e., 4. Adding both costs we obtain that the worst case for

a single iteration of the body is Citer = 15.

UB for Stand-Alone Relations

When the number of iterations is bounded (#iter) and the worst-case cost for each

iteration (Citer) is obtained, the cost of the loop can be bounded by #iter ∗Citer.
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The cost of non-recursive relations is obtained by replacing the calls with the UBs

obtained for them and adding the resulting expressions.

Example 2.4.3. Consider the CRS of Figure 2.8. The cost of non-recursive

relations (e.g. getInc(l)) is obtained by adding 2 (see the equation of getInc)

and the cost of call if, which is 3. This results in UBgetInc(l) = 5. Recursive

relations, like while, are obtanied by multiplying ranking function calculated in

the Example 2.4.1 (i.e. nat(l)) and the cost per iteration obtained in Example

2.4.2 (i.e. Citer = 15), resulting in the cost expression UBwhile(l) = 15 ∗ nat(l).

2.4.3 Bottom-Up Computation

The UB of the entry method, is computed by a bottom-up computation, which

firstly solves the stand-alone relations and then composes the computed UBs

on the equations that call such relations. The composition of the cost in the

different cost relations requires a maximization operation [AAGP11] in order to

obtain the worst-case cost for such call and express it in terms of the input

arguments in the calls. This maximization operation uses the loop invariants.

For the recursive cost relations, and the size relations to relate the values of the

variables before calling the loop (or method call) and the entry of its parent scope.

Cost relations with constant cost (which do not depend on any input argument),

can be directly replaced into the callers without requiring maximization, beacuse

its cost is constant.

Example 2.4.4. Let us now compute the UB for the relation modify(l). We first

have to compute the UB for all relations called by modify, given in Figure 2.8.

. UBgetInc has been computed in the previous example and UBcall nextElem can be

obtained similarly as UBcall nextElem = 4. The UB for decList uses UBwhile and

results in UBdecList(l) = 15 ∗ nat(l). In order to compose UBmodify(l), we have

to maximize the expressions that come from the calls with respect to the input

arguments of modify. By using the size relations of modify, ϕ = {l′≤l − 1},
we obtain that the expression that bounds the cost of decList in the context of

modify is ”15∗nat(l−1)”. Expressions from getInc and call nextElem can be

directly propagated to modify because they are constant. Finally, UBmodify(l) is
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obtained by adding the cost of all calls and the cost of its cost expression, resulting

in the Closed-Form Upper Bound for the running example:

UBmodify(l) = 8 + 5 + 4 + (15 ∗ nat(l − 1)).
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Chapter 3

Conditional Termination of

Loops over Heap-Allocated Data

This chapter presents our main results on proving conditional termination of

loops over heap-allocated data. These results were publised in Bytecode’12 and

an extended and revised version is currently under revision for its special issue to

be published in the Science in Computer Programming journal.

3.1 Introduction

It is well known that shared mutable data structures, such as those stored in

the heap, are the bane of formal reasoning and static analysis (see e.g. [Min06,

BNR08]). This problem is exacerbated in object-oriented programs, since most

data reside in objects and arrays stored in the heap. Analyses that keep track

(resp. do not keep track) of heap-allocated data are referred to as heap-sensitive

(resp. heap-insensitive). In most cases, neither of the two extremes (fully

heap-insensitive analysis or a fully heap-sensitive analysis) is acceptable: the

former produces too imprecise results while the latter is often computationally

intractable. There has been significant interest in developing techniques that

result in a good balance between the accuracy of analysis and its associated com-

putational cost. A number of heuristics exist that differ in how the value of
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heap-allocated data is modeled. A well-known heuristics is field-based analysis,

in which only one variable is used to model all instances of a field, regardless

of the number of objects for the same class that may exist in the heap. This

approach is efficient, but loses precision quickly.

The approach we propose in this thesis is based on the observation that, by

analyzing program fragments (or scopes), rather than the application as a whole,

it is often possible to keep track of the values of heap-allocated data in a similar

way as for non heap-allocated variables. Such fragments can be built starting from

methods, loops, or even blocks of contiguous sentences. Our final goal is to be

able to instrument programs in which accesses to heap-allocated data are replaced

with (or replicated by) equivalent accesses to, non-heap allocated, ghost variables

whose values represent the values of the corresponding heap-allocated data. The

instrumented program can then be input to any heap-insensitive static analysis,

which can now obtain heap-sensitive information, since the ghost variables expose

the heap-allocated values.

The kind of properties that can benefit from our approach are those that re-

quire a local or compositional reasoning, i.e., they require the inference of the

property for certain fragments, rather than a global inference for the whole pro-

gram execution. Termination, the target application of our analysis, is a property

that requires such kind of local reasoning, where the scopes of interest are the

loops. Basically, in order to prove termination, the analysis has to keep track

of how the size of the data involved in loop guards changes when the loop goes

through its iterations. This information is used for determining a ranking function

for the loop as it is described in Section 2.4.

Obviously, not all heap-allocated data are transformable, i.e., their behaviour

reproducible using ghost variables. In the most general characterization, the

replacement is possible when two sufficient conditions hold within the scope: (a)

the memory location where the heap-allocated data is stored does not change,

i.e., the reference to such data remains constant, and (b) all accesses (if any)

to such memory location are done through the same reference (and not through

aliases). This characterization captures the situations in which heap-allocated

data behave locally (i.e., like non heap-allocated variables) in the given scopes.
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3.1.1 Organization of the Chapter

This chapter is organized as follows: Section 3.2 is devoted to present the refer-

ence constancy analysis for programs written in the RBR language described in

Chapter 2. Section 3.3 introduces the heap-sensitive analysis in three main steps:

(1) we define a simple locality condition which relies on the information inferred

by a reference constancy analysis; (2) we discuss that such condition might only

hold under some aliasing (or not aliasing) conditions among the heap accesses;

and, (3) e finally present a transformation that replaces the heap accesses which

meet the locality condition by local variables for the given locality partition.

In Section 3.4 we propose an approach to infer the aliasing preconditions

based on two notions of termination: local termination, which guarantees that

the loops defined in a given scope S are terminating; and, global termination,

which guarantees by composition that the loops of S as well as those of scopes

that are transitively called from S are terminating.

Section 3.5 summarizes our experimental results performed on some micro-

benchmarks which are interesting because of their use of arrays and fields, and the

fact that they can be only proven terminating under certain (non-trivial) aliasing

preconditions. Finally, Section 3.6 relates our approach to previous work.

3.2 Reference Constancy Analysis

In this section, we develop a reference constancy analysis which allows us to

obtain the access paths to the fields, arrays and array elements that are constant

in the considered scopes. The idea behind this analysis is similar in spirit to

that of the classical numeric constant propagation analysis [CC77]. However, in

addition to numerical constants, the values computed by our analysis can include

symbolic expressions that refer to locations in (the initial) heap. Such expressions

encode as well the way that the corresponding memory locations are reached (e.g.,

the dereferenced fields).

Example 3.2.1. Consider the examples in Figure 3.1 . S1 and S2 are used to
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S2


if (k > 0) then x = z;

else x = y;
x.f = 10;

S1

{
for(; i < x.f; i++)

b[i] = x.b[i]; A©

S2


while ( x != null ) {

S1

{
for(; x.c < n; x.c++)

value[x.c]++;
x = x.next;
} B©

S1


while (x.size < 10) {

x.size++;
x=x.next;
} C©

S1


while (x[0].r.size < 10) {

x[0].r.size++;
y.r = z;
} D©

Figure 3.1: Small examples to illustrate the notion of constant access path

delimit scopes. In A©, the reference x remains constant within the scope of loop S1

since its value does not change. However, if we consider the whole code fragment

S2, x is no longer constant, since x can take two different values before the loop.

In B©, all occurrences of x are constant within the scope S1 of the inner loop.

However, x takes different values in different iterations of the outer loop, and

thus x is not constant in the whole scope S2. In C©, x is not constant because it

is updated at each iteration of the loop. In D©, it cannot be ensured that x[0].r is

constant, since if x[0] and y are aliases, updating y.r changes x[0].r.

3.2.1 The Set of Access Paths

We start by defining the set of (symbolic) abstract values that our analysis assigns

to each variable, at each program point. We refer to these values as access paths.

They are defined in terms of the (symbolic) input parameters of the initial call.

We denote these parameters by L = {l1, . . . , ln}, where li represents the value of

the i-th parameter. An access path will be denoted by ` (possibly subscribed or

primed), and it can be one of the following values:

1. n ∈ Z, which represents the corresponding integer;

2. `null, which represents the value null;

3. li·A1· · ·An or li[`
′]·A1· · ·An , where each Ai is of the form fi or fi[`

′′] and

fi ∈ fields(P ). Note that n can also be 0, in which case we do not access
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any field. Moreover, `′ and `′′ are different from `null.

An access path ` might refer to an integer or a value or a reference to an object or

to an array. Observe also that each li inherits the static type of its corresponding

parameter. In addition to the access paths defined by the above rules, we use

a special one, denoted by `any, that represents any value. Note that `any cannot

appear as part of any other access path.

Example 3.2.2. Intuitively, our analysis will assign to each variable (at each

program point) an access path which describes its possible values whenever the

execution reaches that point. Suppose that a variable x, at some program point,

is assigned the access path `. Let us intuitively explain the meanings for some

possible values of `: (1) if ` = 5, then the value of x is 5; (2) if ` = l2, then the

value of x is the value of its second initial parameter; (3) if ` = l1·f ·g, assuming

that the first parameter points to an object o, then x has the value of o·f ·g when

evaluated in the initial state; (4) if ` = l2[l4], assuming that the second initial

parameter points to an array a and that the fourth parameter is an integer n,

then the value of x is like that of a[n] (again, when evaluated in the initial state);

and (5) if ` = `any, then the value of x can be any reference or integer value,

depending on the type of x.

The set of all access paths, w.r.t. a given set L of initial parameters, is denoted

by AP(L). Given an access path `, we denote by `[l1/`1, . . . , ln/`n] the access

path that results from simultaneously replacing each occurrence of li by `i. If the

result includes `any, i.e., it is an non constant access path, then we assume that

`[l1/`1, . . . , ln/`n] is actually `any. This replacement operation trivially extends to

any entity that involves access paths. The set of access paths AP(L) is partially

ordered by va such that for any ` ∈ AP(L) we have ` va ` and ` va `any. We let

`1 ta `2 be `1 if `1 = `2; otherwise `any.

3.2.2 The Analysis

In order to assign access paths to variables at program point level, we need first

to define such program points. For this, we assume that the program’s rules are
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uniquely numbered starting from 1. The k-th program rule p(x̄, ȳ) ← g, bk1, . . . , b
k
t

has t+1 program points. The first one, k:1, after the execution of the guard g and

before the execution of b1, then k:2 between the execution of b1 and b2, until k:t+1

after the execution of bt. For an initial configuration C0 = 〈start, p(x̄, ȳ), tv〉;h,

we assume that the call p(x̄, ȳ) corresponds to program point 0:0. The set of all

program points of a program P , including 0:0, is denoted by pps(P ).

The analysis receives as input a program P and a procedure name p which

we refer to as the entry. We assume that p has n arguments, and their symbolic

values, as above, are denoted by L = {l1, . . . , ln}. The analysis assigns to each

program point k:j ∈ pps(P ) an abstract state, from which it is possible to obtain

the access path of each variable, at any program point. Given a set of (typed)

variables V , defined at a given program point, an abstract state over V and

L has the form 〈φ, θ〉, where φ : V 7→ AP(L) maps variables to access paths;

and θ ⊆ fields(P ) ∪ {aint, aref} is a set of field and array-types which are

guaranteed to be constant, i.e., are not modified in any execution that reaches

the corresponding program point. As it described in Section 2.2.2, aint and aref

are the values returned by the function stype(x) when x points to an integer

and when it points to a reference variable, respectively. Our main interest is in

inferring φ, the set θ is auxiliary to soundly construct φ during the analysis.

We let S(V ,L) be the set of all abstract states, w.r.t. some V and L. We

say 〈φ1, θ1〉 vs 〈φ2, θ2〉 if θ2 ⊆ θ1, and φ1(x) va φ2(x) for any x ∈ V . We let

〈φ1, θ1〉 ts 〈φ2, θ2〉 = 〈φ, θ1 ∩ θ2〉 where φ(x) = φ1(x) ta φ2(x) for any x ∈ V . We

denote by A(V ,L) the complete lattice 〈S(V ,L),>s,⊥s,ts,vs〉, where (1) the

top element >s corresponds to 〈φ, ∅〉 in which φ(x) = `any for any x ∈ V ; and

(2) the bottom element ⊥s is a symbolic value that represents an empty abstract

state. Next we lift A(V ,L) in order to represent a set of abstract states, one

for each k:j ∈ pps(P ). We represent such states as sets of elements of the form

k:j 7→ 〈φ, θ〉 where 〈φ, θ〉 ∈ S(Vk:j,L). Here Vk:j is the set of (typed) variables

that are available at program point k:j. Such set must include an abstract state

for each k:j ∈ pps(P ). The set of all such states is denoted by S̄P . We use ĀP
to denote the complete lattice 〈S̄P ,>p,⊥p,tp,vp〉 where >p, ⊥p, tp, and vp are

defined by lifting the corresponding ones of A(Vk:j,L).

The analysis is based on a transfer function τ , depicted in Figure 3.2, that
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Instruction b Transfer function τ(b, 〈φ, θ〉)
(1) x := y.f 〈φ[x 7→ `, θ〉
(2) x.f := y 〈φ, θ\{f}]〉
(3) x := n 〈φ[x 7→ n], θ〉
(4) x := null 〈φ[x 7→ `null], θ〉
(5) x := y 〈φ[x 7→ φ(y)], θ〉
(6) x := y aop z 〈φ[x 7→ `], θ〉
(7) x := newarray(D, y) 〈φ[x 7→ `any], θ〉
(8) x := y[z] 〈φ[x 7→ `], θ〉
(9) x[y] := z 〈φ, θ\{stype(x)}〉

(10) x := new C 〈φ[x 7→ `any], θ〉
(11) x := arraylength(y) 〈φ[x 7→ `any], θ〉
(12) otherwise 〈φ, θ〉

where we have the following conditions in rules:

(1) If f ∈ θ ∧ φ(y) 6= `any then ` = φ(y)·f ; otherwise ` = `any.

(6) If φ(y) and φ(z) are numbers, then ` = φ(y) aop φ(z); otherwise ` = `any.

(8) If stype(y) ∈ θ ∧ φ(y)6=`any ∧ φ(z)6=`any then ` = φ(y)[φ(z)]; otherwise
` = `any.

Figure 3.2: Transfer function for reference constancy analysis

defines the effect of executing each (simple) instruction on a given abstract state

〈φ, θ〉. Let us explain the different cases of the transfer function:

(1) When a variable x is assigned the value of y·f , the transfer function updates

the access path of x accordingly: if y is not `any, and field f has not been

updated so far, then the resulting access path is the concatenation of that

of y with the symbol f ; otherwise `any.

(2) When a field f is assigned a value, f is eliminated from θ, i.e., it is marked

as a field that has been updated and it is not constant. Note that in any

subsequent execution step, an access y·f (of case (1)) will result in `any.

(3) This case simply updates the access path of x to be number n.

(4) Similarly to the above case, it updates the access path of x to be `null.
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(5) This case updates the access path of x with that of y.

(6) If the access path of y and z are numbers, then the access path of x is

updated to be the result of applying the corresponding arithmetic operator;

otherwise it is updated to `any to indicate that it can be any number.

(7) In this case, when creating a new array, the access path of x is updated to

`any to indicate that it can be any reference value.

(8) If the access paths of y and z are not `any, and it is guaranteed that the

accessed array has not been modified (its static type is still in θ), then the

access path of x is computed accordingly; otherwise it is `any.

(9) It eliminates the static type of array x from θ. It is analogue to case (2).

(10) This case is similar to case (7). The access path of x is updated to `any, to

indicate that its value might be any reference value.

(11) Simply maps x to `any since the length of the array can be any number.

The remaining instructions do not alter constancy information. The anal-

ysis starts from an abstract state I#
0 ∈ ĀP that assigns ⊥p to each pro-

gram point k:j ∈ pps(P ), except for 0:0 which is assigned the abstract state

〈φ, fields(P ) ∪ {aint, aref}〉 where φ maps each xi (resp. yi) of the initial call

to li (resp. `null or 0 depending on its type). Then, it iteratively computes

I#
i+1 = I#

i tp F
#
P (I#

i ) until it reaches a state in which I#
i+1 = I#

i . The operator

F#
P : S̄P 7→ S̄P is defined as F#

P (X) = F#
1 (X)∪ F#

2 (X)∪ F#
3 (X) where each F#

i

is as follows:

F#
1 (X) =

k:j+1 7→ 〈φ′, θ′〉

∣∣∣∣∣∣∣
bkj ∈ P which is not a call

k:j 7→ 〈φ, θ〉 ∈ X
〈φ′, θ′〉 = τ(bkj , 〈φ, θ〉)


F#

2 (X) =

k′:1 7→ 〈φ′, θ′〉
∣∣∣∣∣∣∣
bkj ≡ q(w̄, z̄) ∈ P, q is defined by rule k′

k:j 7→ 〈φ, θ〉 ∈ X
φ′′ = init(k′), φ′ = φ′′[xi 7→ φ(wi)], θ

′ = θ
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F#
3 (X) =

k′:j+1 7→ 〈φ′, θ′〉

∣∣∣∣∣∣∣
p(x̄, ȳ)← g, bk1, . . . , b

k
t ∈ P, bk

′
j ≡ p(w̄, z̄) ∈ P

k:t+1 7→ 〈φ, θ〉 ∈ X, k′:j 7→ 〈φ′′, θ′′〉 ∈ X
φ′ = φ[yi 7→ φ′′(yi)], θ

′ = θ′′


Let us explain each F#

i :

• F#
1 handles cases in which the instruction bkj is a simple instruction (not

a call). It uses the current abstract state for program point k:j and the

transfer function τ in order propagate the information to program point

k:j+1.

• F#
2 handles cases in which k:j is a call q(w̄, z̄) to another procedure. In

this case we propagate the abstract state of program point k:j to the entry

program point k′:1 for each rule k′ that defines q. This is done by first

creating an initial mapping φ′′ that maps each variable of rule k′ to either

0 or `null, depending on its type at that program point, and then modifying

the access path of each xi to be as that of the i-th actual parameter.

• In a similar way, F#
3 handles cases in which we propagate the return values

to the calling context.

Example 3.2.3. Our running example is shown in Figure 3.3. Class ListIter

implements the Iterator interface. In OO programming, the iterator pattern

(also enumerator) is a design pattern in which the elements of a collection are

traversed systematically using a cursor. The cursor points to the current element

to be visited and there is a method, called next, which returns the current element

and advances the cursor to the next element, if any. In order to simplify the

example, the method next in Figure 3.3 returns (the new value of) the cursor itself

and not the element stored in the node. The important point, though, is that the

state field is updated at each call to next. Class List implements a linked list in

the standard way. Finally, class UseIterator contains the method of interest m.

The interesting features of this method are: the combined use of fields and arrays,

that it contains two nested loops which must be analyzed compositionally and that

its termination can be only proven conditionally.
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class ListIter implements
Iterator〈List〉 {

List state;

public ListIter(List l) {
state = l;
}
public List next() {

List obj = this.state
this.state = obj.next;
return obj;
}
public boolean hasNext() {

return (this.state != null);
}
public void remove() {

throw new Unsupported-
OperationException();

}
}

class List {
int data;
List next;

List(int x, List y) {
data = x; next = y;

}
}

class UseIterator {
public static void m(int[ ] a,int[ ] b, ListIter y) {

while (y.hasNext()){
List o = y.next();
int i= o.data; int j = i;
while(a[i] > 0) {

a[i]--;
b[j]++;
}
}
}
}

Figure 3.3: Running Example. Method m contains nested loops with iterator and
arrays

Figure 3.4 shows to the left the RBR of the inner while loop of method m of the

running example and to the right the abstract states, computed by the analysis,

for some selected program points. Each abstract state corresponds to the result

after analyzing the instructions in the corresponding line in the left side. We use

l1, l2, l3, l4 to refer to, respectively, the initial values of a, b, i and j. Observe that

at program point 1©, i.e., before executing s0 := s0[s1], the accesses paths assigned

to s0 and s1 are respectively l1 and l3. This means that the corresponding array

access will always refer to the memory location l1[l3]. We will see that this piece

of information is crucial to determine wether the corresponding heap access is

transformable into a local variable or not. Similarly, we can conclude that the

array accesses at 2© and 3© will always refer to l1[l3] and l2[l4] respectively.

In what follows, we let IP ∈ ĀP be the result of the analysis, which is computed

iteratively as described above. It is actually the least fixpoint of λX.I#
0 tpF

#
P (X).
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while(〈a, b, i, j〉, 〈〉)←
s0 := a,
s1 := i,

1©s0 := s0[s1],
whilec(〈a, b, i, j, s0〉, 〈〉).

whilec(〈a, b, i, j, s0〉, 〈〉)← s0 ≤ 0.
whilec(〈a, b, i, j, s0〉, 〈〉)← s0 > 0,
s1 := a, s2 := i, s3 := a, s4 := i,

2©s3 := s3[s4],
s3 := s3 − 1,
s1[s2] := s3,
s1 := b, s2 := j, s3 := b, s4 := j,

3©s3 := s3[s4],
s3 := s3 + 1,
s1[s2] := s3,
while(〈a, b, i, j〉, 〈〉).

{a 7→l1, b7→l2, i7→l3, j 7→l4}
{s0 7→l1, a7→l1, b7→l2, i7→l3, j 7→l4}
{s1 7→l3, s0 7→l1, a7→l1, b7→l2, i7→l3, j 7→l4}
{s1 7→l3, s0 7→`any, a7→l1, b7→l2, i7→l3, j 7→l4}
{s1 7→l3, s0 7→`any, a7→l1, b7→l2, i7→l3, j 7→l4}
{s0 7→`any, a7→l1, b7→l2, i7→l3, j 7→l4}
{s0 7→`any, a7→l1, b7→l2, i7→l3, j 7→l4} = X

{s4 7→l3, s3 7→l1, s2 7→l3, s1 7→l1} ∪X
{s4 7→l3, s3 7→`any, s2 7→l3, s1 7→l1} ∪X
{s4 7→l3, s3 7→`any, s2 7→l3, s1 7→l1} ∪X
{s4 7→l3, s3 7→`any, s2 7→l3, s1 7→l1} ∪X
{s4 7→l4, s3 7→l2, s2 7→l4, s1 7→l2} ∪X
{s4 7→l4, s3 7→`any 7→l4, s1 7→l2} ∪X
{s4 7→l4, s3 7→`any 7→l4, s1 7→l2} ∪X
{s4 7→l4, s3 7→`any 7→l4, s1 7→l2} ∪X
{s4 7→l4, s3 7→`any 7→l4, s1 7→l2} ∪X

Figure 3.4: RBR of the Running Example (left). Program point constancy infor-
mation (right)

We use 〈φk:j, θk:j〉 to refer to the abstract state assigned to program point k:j in

I#
P . In addition, for a given procedure p, we define:

〈φp, θp〉 = ts{〈φ, θ〉 | p(x̄, ȳ)← g, bk1, . . . , b
k
t ∈ P, k:t+1 7→ 〈φ, θ〉}

We refer to this abstract state as the summary of procedure p, which describes

the access paths of its parameter upon exit from p. We assume that dom(φp)

contains always variables with names x̄ and ȳ (just to avoid renamings).

3.2.3 Modular Analysis

References are often not globally constant, but they can be constant when we

look at smaller fragments. Fortunately, the analysis can be applied modularly by

partitioning the procedures (and therefore rules) of P into fragments which we

refer to as scopes, provided that there are no mutual calls between scopes. The
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smaller the scopes are, the more precise the analysis result will be. Therefore, the

strongly connected components (SCCs) of the program are the smallest scopes

we can consider. We assume that each scope has a single entry, this is not a

restriction since otherwise the analysis can be repeated for each entry.

Given a program P , we let S1, . . . , Sn be the partitioning of its procedures

into scopes, where the entry procedure of each Si is pi. Since scopes are not

mutually recursive, we can assume that if there is a call from a procedure in Si

to a procedure in Sj, then i ≥ j. We refer to an inter-scope (resp. intra-scope)

call as an external (resp. internal) call. Our aim is to apply the analysis of

Section 3.2.2 in a modular way, by analyzing each scope separately, starting from

S1, then S2, etc. Each scope Sk is analyzed by assuming an initial state, as in

the non-modular case, but with a call to the entry procedure pk(x̄, ȳ).

In order to achieve this modularity, we extend the transfer function τ for the

case of external procedure calls, such that it uses the corresponding summaries.

Let p(w̄, s̄) be an external call, the result of τ(p(w̄, s̄), 〈φ, θ〉) is 〈φ′, θ′〉 where:

1. θ′ = θ ∩ θp

2. ∀z ∈ dom(φ) \ s̄, we have φ′(z) = φ(z); otherwise

3. ∀si ∈ s̄, then φ′(si) = ren(φp(yi), φ, θ) where ren is:

ren(`, φ, θ):

if ` includes a field or array-type f 6∈ θ then return `any

else return `[l1/φ(w1), . . . , ln/φ(wn)]

Intuitively, in (1) fields and array-types that might be updated during the exe-

cution of p are eliminated in the calling context; in (2) variables in the calling

context which are not output variables of p keep their current access paths; and,

in (3) the access paths of the output variables s̄ are incorporated into the calling

context.

Example 3.2.4. We demonstrate the modular analysis on the example of Fig-

ure 3.3. We focus on method next, on the inner while loop of Example 3.2.3, and

on the (outer) while loop (whilem) inside method m, which calls method next and
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procedure while (and hence reuses their summaries). The translation of next and

the outer loop into the rule based representation is as follows:

next(〈this〉, 〈r〉)←
obj := this .state,

s0 := obj .next ,

this .state := s0 ,

r := obj .

whilem(〈a, b, y, o, i, j〉, 〈o, i, j〉)←
s0 := y,

hasNext(〈s0〉, 〈s0〉),
whilec

m(〈a, b, y, o, i, j, s0〉, 〈o, i, j〉).

whilec
m(〈a, b, y, o, i, j, s0〉, 〈o, i, j〉)← s0 = 0.

whilec
m(〈a, b, y, o, i, j, s0〉, 〈o, i, j〉)← s0 6= 0,

s0 := y,

4©next(〈s0〉, 〈s0〉),
o := s0,

s1 := o.data,

i := s1,

j := s1,

while(〈a, b, i, j〉, 〈〉),
whilem(〈a, b, y, o, i, j〉, 〈o, i, j〉).

Let us consider the scopes S1 = {next}, S2 = {while,whilec} and S3={whilem ,

whilec
m}. We first analyze S1 which, in addition to the abstract states for each

program point, computes this summary for next:

〈φnext , θnext〉=〈{this7→l1, r 7→l1·state}, {next, aint}〉

The set θnext does not include the field state, which indicates that its memory

location might be modified during the execution of next. The meaning of the

access path r 7→ l1 ·state is that the returned value of the method next is equal to

the value of dereferencing (upon entering the procedure) the first input argument

using the field state. Let us explain how this summary is reused when analyzing

the scope S3. When reaching program point 4© for the first time, we will have the

abstract state:

〈φ0, θ0〉=〈{a 7→l1, b7→l2, y 7→l3, s0 7→l3, o 7→ l4, i 7→ l5, j 7→ l6}, {state, next, aint}〉

Note that θ0 includes all fields and array-types that appear in S1, S2 and S3,

since no one has been updated so far. In order to incorporate the effect of ex-

ecuting the method next into the calling context, we apply the transfer function
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τ(next(〈s0〉, 〈s0〉), 〈φ0, θ0〉), which results in:

〈φ1, θ1〉=〈{a 7→l1, b7→l2, y 7→l3, s0 7→l3·state, o 7→ l4, i 7→ l5, j 7→ l6}, {next, aint}〉

Now, field state is not in θ1. The access path s0 7→ l3·state is obtained by taking

that of r, i.e., l1·state and renaming l1 to φ0(s0) = l3. We take φ0(s0) since l1

refers to the value of the first argument when calling method next, which is s0.

In the next iteration of the analysis, we reach 4© with the abstract state:

〈φ2, θ2〉=〈{a 7→l1, b7→l2, y 7→l3, s0 7→l3·state, o 7→ l4, i 7→ l5, j 7→ l6}, {next}〉

Observe that aint is not included in θ2, since it is removed when incorporat-

ing the summary of the inner while loop (computed from the analysis results

shown in Example 3.2.3), which modifies an array of integers. Next, applying

τ(next(〈s0〉, 〈s0〉), 〈φ2, θ2〉) results in:

〈φ3, θ3〉=〈{a 7→l1, b7→l2, y 7→l3, s0 7→`any, o 7→ l4, i 7→ l5, j 7→ l6}, {next}〉

The access path s0 7→`any is also obtained from r 7→ l1·state as before. However,

in this case ren returns `any since l1 · state includes the field state and state 6∈ θ3 .

Given an access path ` 6= `any and an initial state C0 = 〈start, pi(x̄, ȳ), tv〉;h,

we let J`K(C0) be the value that corresponds to ` in C0. For instance, for local

variables the value is obtained from the variable mapping Jl2K(C0) = tv(x2), for

fields the heap must be accessed as well Jl2·fK(C0) = h(tv(x2))·f , etc. (See the

proof of Theorem 3.2.5 for the exact definition). Now we state the soundness the-

orem, assuming that the analysis results for each program point k:j are obtained

in a modular way as explained above.

Theorem 3.2.5 (soundness). Given a scope Si, a program point k:j in Si, and

a variable x ∈ Vk:j such that φk:j(x) = ` 6= `any. Then, for any trace C0 =

〈start, pi(x̄, ȳ), tv〉;h ;∗ 〈q, bc, tv ′〉·ar ;h′ where bc corresponds to program point

k:j, it holds that tv(x) = J`K(C0).

Proof. Let us formally define J`K(C), i.e., how to interpret the access path ` 6= `any
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in a configuration C = 〈q, bc, tv〉·ar ;h:

J`nullK(C) = null

JnK(C) = n

Jli·f1· · ·fnK(C) = Jf1· · ·fnK(C, tv(xi))

Jli[`]·f1· · ·fnK(C) = Jf1· · ·fnK(C, h(tv(xi)).v)) where v = J`K(C)

Jf ·A1· · ·AnK(C, x) = JA1· · ·AnK(C, h(x).f)

Jf [`]·A1· · ·AnK(C, x) = JA1· · ·AnK(C, h(h(x).f).v) where v = J`K(C)

JεK(C, x) = x

The first two cases are straightforward. The third (resp. sixth) case evaluates

li (resp. li[`]), and then makes a recursive call to dereference (when n > 0) the

corresponding object with f1 . . . fn, which is done iteratively by the last three

cases.

Let us consider first the analysis of a standalone scope S, i.e., a scope that

does not call procedures from other scopes. Afterwards, we consider the modular

case. Assume a given standalone scope S with an entry procedure p, the analysis

is applied iteratively using I#
i+1 = I#

i tp F
#
i+1(I#

i ), starting from an abstract state

I#
0 that maps every program point k:j of S to ⊥p, except for program point

0:0 which is mapped to the initial abstract state 〈φ, fields(P ) ∪ {aint, aref}〉 in

which φ(xi) = li; and φ(yi) is 0 or `null depending on the type of yi.

Similarly to F#, we define F (X) = {C ′ | C ∈ X, C ; C ′}, Ii+1 = Ii ∪ F (Ii),

and I0 = {C0} where C0 = 〈start, p(x̄, ȳ), tv 0〉;h0. Each Ii represents a set

of reachable states in at most i derivation steps, when starting from C0. For

simplicity, we assume that each yi in the initial state is either 0 or null, this does

not restrict the correctness statements since these values are never used (they are

overwritten upon exit).

In order to show that Theorem 3.2.5 is correct for the standalone case, it is

enough to show that the following holds:

For any C0 = 〈start, p(x̄, ȳ), tv 0〉;h0, if C = 〈q, bc, tv〉·ar ;h ∈ Ii,

and bc corresponds to program point k:j (different from 0:0), then

k:j 7→ 〈φ, θ〉 ∈ I#
i such that
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(1) φ(x) = ` 6= `any ⇒ tv(x) = J`K(C0);

(2) if f ∈ θ, then:

(2.1) if f ∈ fields(P ), r ∈ dom(h0), and h(r) is an object that has

a field with name f , then h0(r).f = h(r).f ;

(2.2) if f ∈ {aint, aref}, r ∈ dom(h0), and h0(r) is an array of

static type f , then the elements of h0(r) and h(r) have the

same values;

We say that 〈φ, θ〉 correctly approximates C. Note that our main interest is in

showing that (1) holds, (2) is an auxiliary statement required for doing this.

We prove the above claim, for an arbitrary C0, by induction on the number

of iterations when computing Ii and I#
i (i.e., on i). The claim trivially holds for

i = 0. We assume it holds for Ii and I#
i , and now we show that it holds for Ii+1

and I#
i+1.

Pick an arbitrary C ′ = 〈q′, bc ′, tv ′〉·ar ′;h′ ∈ Ii+1, and let bc′ correspond to

program point k:j. Assume C ′ 6∈ Ii, otherwise the claim holds by the induction

hypothesis. Thus, C ′ ∈ F (Ii), i.e, we have C = 〈q, bc, tv〉·ar ;h ∈ Ii such that

C ; C ′. We prove that the claim holds for such case by considering all possible

ways to move from C to C ′. In particular we prove that there is 〈φ, θ〉 in F (I#
i+1),

associated to the program point of bc′, that correctly approximates C ′.

First note that, by the induction hypothesis, there is k:j 7→ 〈φ, θ〉 ∈ I#
i that

correctly approximates C, i.e., satisfies conditions (1) and (2) for C. In what

follows, when we refer to 〈φ, θ〉, we mean exactly this one.

Let us start by considering the simple instructions, i.e., those that do not

correspond to calling (or returning from) a procedure. For such cases, using

〈φ, θ〉 and F#
1 , we compute k:j+1 7→ 〈φ′, θ′〉. We claim that 〈φ′, θ′〉 correctly

approximates C ′.

Case 1: x := y.f We have θ′ = θ, and φ′ is different from φ only by the value of

x. Trivially, Condition (2) holds since the heap is not modified, and Condition (1)

holds for any variable different from x. We show that Condition (1) holds also for

x. If φ′(x) = `any then Condition (1) trivially holds for x. The other possibility

50



is that φ′(x) = `·f , in which case tv(y) = tv ′(y) = ` 6= `any and f ∈ θ, then we

have tv ′(x) = tv(y).f = J`K(C0).f = J`·fK(C0).

Case 2: x.f := y Condition (1) holds since no variable is updated. Also

Condition (2) holds since the only field that has been modified is removed from

the set θ.

Case 3: x := n Condition (1) holds for any variable different from x, and it

trivially holds for x since its access path is the number n. Condition (2) also

holds since these instructions does not modify the heap.

Case 4: x := null Straightforward using the same reasoning as in Case 3.

Case 5: x := y Condition (1) holds for any variable different from x. It holds

also for x because tv ′(x) = tv(y) = Jφ(y)K(C0) = Jφ(x)K(C0).

Case 6: x := y aop z Condition (1) holds for any variable different from x. If

φ′(x) = `any then it also trivially holds for x. If φ′(x) 6= `any, then φ(y) and φ(z)

must be numbers, and thus tv ′(x) = tv(y) + tv(z) = Jφ(x)K(C0) + Jφ(z)K(C0) =

Jφ′(x)K(C0).

Case 7: x := newarray(D, y) Clearly Condition (1) holds for any variable dif-

ferent from x. It holds also for x since φ′(x) = `any. Condition (2) holds since no

field or array-type is modified.

Case 8: x := y[z] Analogue to Case 1.

Case 9: x[y] := z Analogue to Case 2.

Case 10: x := new C Analogue to Case 7.

Case 11: x := arraylength(y) Condition (1) holds for any variable different

from x. It holds also for x since φ′(x) = `any. Condition (2) holds since no field

or array-type is modified.

Now we consider the case of a procedure call. For this, we assume that C

is of the form 〈q, q′(w̄, z̄) · bc′′, tv〉·ar ;h, and we make an execution step using

a corresponding rule q′(x̄, ȳ) ← g, bk
′

1 , · · · , bk
′
n ∈ P . Thus, according to the lan-

guage’s semantics we get C ′ = 〈q′, bk′1 · · · bk
′
n , tv

′〉·〈q, q[ȳ/z̄] · bc′′, tv〉·ar ;h where tv ′

maps every variable to either 0 or null, except for the formal parameters x̄ whose
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values are obtained from the actual ones w̄. Note that C ′ corresponds to pro-

gram point k′:1. In the abstract setting, using 〈φ, θ〉, rule k′ and F#
2 we compute

k′:1 7→ 〈φ′, θ′〉. We claim that 〈φ′, θ′〉 correctly approximates C ′. This is because

Condition (2) holds since θ′ = θ and the derivation step does not modify any

field or array; and Condition (1) also holds since all we do is to copy the values

of the access paths of actual parameters from those of the formal parameters, the

rest of local variables are initialized to 0 or `null for which Condition (1) trivially

holds.

Now we consider the case of a return from a procedure. For this we assume

that C is of the form 〈q, ε, tv〉·〈q′, q[ȳ/z̄] · bc′, tv ′′〉·ar ;h, which according to the

language’s semantics can, in a single step, only lead to C ′ = 〈q′, bc′, tv ′〉·ar ;h

where tv ′ maps all variables as in tv ′′, except for the output variables z̄ for which

we have tv ′(zi) = tv(yi). Now, note that there must be an abstract state C ′′ of the

form 〈q′, q(w̄, z̄) · bc′, tv ′′〉·ar ;h′ in Ii from which we have (transitively) obtained

C. Assume that C ′′ corresponds to program point k′:j. Thus, C ′ corresponds

to program point k′:j+1. By the induction hypothesis, I#
i must include k′:j 7→

〈φ′′, θ′′〉 that correctly approximates C ′′. It is easy to see that, using F#
3 , together

with 〈φ, θ〉 and 〈φ′′, θ′′〉, we get k′:j+1 7→ 〈φ′, θ′〉 that correctly approximates C ′.

We have proved that whenever F (Ii) introduces a state C ′, then F#(I#
i )

introduces an abstract state 〈φ′, θ′〉 that correctly approximates C ′. Merging

F#(I#
i ) with I#

i using tp keeps this approximation correct since the only changes

that can happen are: the access path of a variable x is upgraded to `any, or a field

or array-type f is removed from θ. In both cases, respectively, Conditions (1)

and (2) still hold.

Q.E.D.

Consider now the modular case. Let us first note the following immediate

consequence of Theorem 3.2.5. Assume that we have analyzed a scope S (that

does not call any other scope), and that we have obtained the following summary

for procedure p:

〈φp, θp〉 = ts{〈φ, θ〉 | p(x̄, ȳ)← g, bk1, . . . , b
k
t ∈ P, k:t+1 7→ 〈φ, θ〉}
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Let C ;∗ C ′ where C = 〈q, p(w̄, z̄) · bc, tv〉 · ar ;h, C ′ = 〈q, bc, tv ′〉 · ar ;h′, and q

(the procedure currently executed in C) is not in the same scope of p, i.e., p is

an external call. Then, clearly, if φp(yi) = ` 6= `any, we have tv ′(zi) = J`K(C).

Now let us change the definition of F (X) in order to collect the reachable

states that correspond to program points in a given scope only. This can be done

by changing F such that when C = 〈q, p(w̄, z̄) · bc, tv〉 · ar ;h and p is external,

then instead of making a single derivation step we use C ;∗ C ′ where C ′ =

〈q, bc, tv ′〉 · ar ;h′, i.e., we execute p completely.

We claim that Theorem 3.2.5 still holds when applied to a given scope S. The

proof is the same as for the standalone scope, except that, we must extend it to

handle calls to external procedures.

Assuming the C corresponds to program point k:j, and that k:j 7→ 〈φ, θ〉 ∈
I#
i correctly approximates C, we show that 〈φ′, θ′〉 = τ(p(w̄, z̄), 〈φ, θ〉) correctly

approximates C ′. Condition (2) holds since θ′ = θ∩θp. Condition (1) clearly holds

for any variable not in z̄. Next, we prove that it holds also for those variables in

z̄.

Applying the definition of τ for external calls, we get that each φ′(zi) equals

to ren(φp(yi), φ, θ). According to the definition of ren, if φp(yi) includes a field

or array-array type f 6∈ θ we get φ′(zi) = `any, so for such case Condition (1)

trivially holds. Assume that there is no such f , i.e., we are in the else branch of

ren. In such case, if φp(yi) = `any, or it includes lj such that φ(wj) is `any, then

φ′(zi) = `any, so for this case too Condition (1) trivially holds. Now, assume this is

not the case, then, φ′(zi) = `′ where `′ is obtained from φp(yi) by replacing each lj

by φ(wn). We prove that tv(zi) = J`′K(C0): As we have commented above (at the

beginning of the proof of the modular analysis) we have tv(zi) = Jφp(yi)K(C). Now

when evaluating Jφp(yi)K(C), we reach base-cases in which we need to evaluate

JljK(C), which is equal to tv(xi), and by the induction hypothesis it is equal to

Jφ(xj)K(C0). Thus, Jφp(yi)K(C) is equal to J`K(C0).
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3.3 Heap-Sensitive Analysis

This section presents the core of our method in three steps: we provide in Sec-

tion 3.3.1 some auxiliary definitions and the basic notion of (unconditional) local-

ity; then, Section 3.3.2 introduces the notion of conditional partition that will let

us transform a heap access by a local variable under certain conditions; finally,

we present in Section 3.3.3 an automatic transformation that actually carries out

the conversion.

3.3.1 Basic Locality

Let us first introduce two auxiliary notions which define the set of read and

write access paths to fields and to arrays within a scope. Intuitively, such sets

provide information on how a field or array-type is accessed in a scope (and in

its reachable scopes). This information is needed in Section 3.3.3 for soundly

tracking the values that are stored in such heap location.

Definition 3.3.1. Given a scope S and a field f , the set of read access paths for

f in S, denoted by R(S, f), is defined as R(S, f) = R+(S, f) ∪R∗(S, f) where

R+(S, f)= {` | bkj ≡ x := y.f ∈ S, ` = φk:j(y), ` 6= `null}
R∗(S, f) = {`′ | bkj ≡ q(x̄, ȳ) ∈ S, q ∈ S ′ 6= S, ` ∈ R(S ′, f), `′=ren(`, φk:j, θk:j)}

The set of write access paths for f in S, denoted W (S, f), is computed analo-

gously, by considering instructions of the form y.f := x.

Let us explain the above definition. In R+(S, f), for each access x := y.f we

add the access path that the analysis has computed for y. Computing the read

access paths for a scope S requires computing the read access paths for all other

scopes transitively called from S. This is done in R∗(S, f). For each call such

that q is the entry of scope S ′ we take R(S ′, f) and rename it according to the

calling context using ren as defined in Section 3.2.3. Note that all access paths in

R(S, f) and W (S, f) refer to memory locations, they do not include ` such that

` ∈ Z or ` = `null. The above definition extends for arrays in a natural way.
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Definition 3.3.2. Given a scope S and an array-type f ∈ {aref, aint}, the

set of read access paths for f in S, denoted by R(S, f), is defined as R(S, f) =

R+(S, f) ∪R∗(S, f) where

R+(S, f) = {` | bkj ≡ x := y[z] ∈ S, stype(y)=f, φk:j(y)6=`null, `=φk:j(y)[φk:j(z)]}

and R∗(S, f) is as in Definition 3.3.1. The set of write access paths for f in

S, denoted W (S, f), is computed analogously, by considering instructions of the

form y[z] := x.

Example 3.3.3. Using the results of the constancy analysis in Examples 3.2.3

and 3.2.4, we have that the read/write access sets are: R(S1 , next) = {l1 .state}
and W (S1 , next) = {} and R(S1 , state) = W (S1 , state) = {l1}. In the scope of

the inner loop, we have that R(S2, aint) = W (S2, aint) = {l1[l3], l2[l4]}, since the

array content is read and modified using the references a[i] and b[j]. In S3, we have

that R(S3 , next) = {l3 ·state}, W (S3 , next) = {}, R(S3 , state) = W (S3 , state) =

{l3} and R(S3 , aint) = W (S3 , aint) = {l1 [l5 ], l2 [l6 ]}.

Intuitively, in order to ensure a sound transformation, a field can be considered

local in a scope S if all read and write accesses to it in all reachable scopes are

performed through the same access path. This makes it safe to replace such heap

access by a corresponding local variable.

Definition 3.3.4 (locality). Given a field or an array-type f and a scope S, we

say that f is local in S if R(S, f) ∪W (S, f) = {l}.

Example 3.3.5. From the results computed in Example 3.3.3, we have that the

array type aint is not local in the scope S2 corresponding to the inner loop, because

R(S2, aint) = W (S2, aint) = {l1[l3], l2[l4]}, i.e., the union contains more than

one element. But we have that next and state are local in both S1 and S3.

Consider again the small examples in Figure 3.1: we have that in A©, field f

is local in S1 because R(S1, f) = {l1} and W (S1, f) = ∅. However, it is not

local in S2 because R(S2, f) ∪W (S2, f) = {`any}. In B©, we have that c is local

in S1 because R(S1, c) ∪ W (S1, c) = {l1}, while as before it is not local in S2

because R(S2, c)∪W (S2, c) = {`any}. In C©, size is not local because R(S1, size)∪
W (S1, size) = {`any}. Also, in D©, we have that R(S1, r) ∪W (S1, r) = {`any}.
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3.3.2 Locality Partition

In ideal scenarios in which fields are unconditionally local, we can transform

each local field access in the considered scope into an equivalent access using a

local variable which exposes the value of the field. However, there are cases in

which the read and write sets do not provide enough information for tracking the

values stored in the corresponding locations. In such cases, it is often possible

to provide preconditions under which tracking such locations is possible. When

such conditions are used, any property for the locations that we infer (e.g., using

static analysis) is sound only for inputs that satisfy the precondition.

Definition 3.3.6 (aliasing preconditions). An aliasing precondition ϕ is a Bool-

ean formula
∨
i(
∧
j)cij where each cij is an atomic aliasing proposition of the

form `1 ≈ `2 or `1 6≈ `2.

The meaning of `1 ≈ `2 (resp. `1 6≈ `2) is, as expected, that `1 and `2 alias (resp.

do not alias). For simplicity in the notation, we will use the term aliasing for

access paths that represent memory locations as well as integer values. Note that,

by definition, some propositions are true, e.g., l1 ≈ l1, and some are false, e.g.,

l1 6≈ l1. Moreover, for any access path ` we let ` 6≈ `any and ` ≈ `any be both false.

This is because such accesses are not constant. When an aliasing precondition ϕ

implies another precondition ϕ′ we write ϕ |= ϕ′. We will be mainly interested

in implied atomic aliasing propositions, e.g., ϕ |= `1 ≈ `2 and ϕ |= `1 6≈ `2.

Example 3.3.7. In our running example, we cannot precisely track the write

accesses to the arrays (a or b) in S2 because the memory location accessed depends

on an aliasing condition: if a and b point to the same array, the content of

such array may be modified using both accesses, a[i] or b[j]. Furthermore, if

i ≈ j, both accesses are modifying exactly the same element of the array. Thus,

the trackability of array accesses and, as a consequence, the number of ghost

variables needed to track them depends on some preconditions that are given in

terms of the initial parameters. E.g. assuming the precondition l1[l3] 6≈ l2[l4] over

the read/write sets in Example 3.3.3, we will need two different ghost variables

to safely represent these array references, because they are pointing to different

memory locations. However, if we assume that l1[l3] ≈ l2[l4], all accesses point
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to the same array element, so we just need one ghost variable to track both array

accesses.

Note that every ` ∈ R(S, f)∪W (S, f) is associated to a set of program points

in which the corresponding field/array access appear. The set of all such program

points is denoted by rwpps(`).

Definition 3.3.8 (locality partition). Given a field or an array-type f , a scope S,

and an aliasing precondition ϕ. We say that a partition G1, . . . , Gn of R(S, f) ∪
W (S, f) is a locality partition for f w.r.t. ϕ if:

1. ∀1 ≤ i ≤ n. ∀`1, `2 ∈ Gi. ϕ |= `1 ≈ `2; and

2. ∀1 ≤ i < j ≤ n. ∀`1 ∈ Gi. ∀`2 ∈ Gj. ϕ |= `1 6≈ `2.

3. ∀1 ≤ i < j ≤ n. ∀`1 ∈ Gi. ∀`2 ∈ Gj. rwpps(`1) ∩ rwpps(`2) = ∅.

We denote the locality partition by Pϕf .

Let us explain the above definition: Condition (1) requires that the access paths

in each Gi alias, i.e., they all refer to the same memory location to do all heap

accesses in Gi trackable. Condition (2) requires that access paths from different

partitions do not alias, i.e., they refer to different memory locations. The main

idea is that now each component Gi can be used to track the value stored in a

corresponding memory location by means of a different ghost variable. Condi-

tion (3) requires that every (trackable) access in the program always refers to the

same memory location. This condition is added for simplifying the presentation

and it could be omitted if we use a polyvariant transformation [AAG+10, RD11]

which clones the code for each calling pattern. We say that the memory location

induced by Gi is trackable.

If `any ∈ R(S, f) ∪W (S, f) then there is no partition that satisfies the above

definition. This is because in (1) we can take `1 = `2 = `any for which `1 ≈ `2

does not hold. Observe that Definition 3.3.4 induces a locality partition w.r.t.

the aliasing precondition true, i.e., the heap access is unconditionally local.

Example 3.3.9. Partitions can be built by considering all possible equalities and

disequalities of the elements in R(S, f)∪W (S, f). Consider the read/write access
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sets in S2 in Example 3.3.3, the following two locality partitions can be generated:

(1) G1 = {l1[l3], l2[l4]} which gives us the precondition ψ1 = {l1[l3] ≈ l2[l4]}, or

if we refer to the source code variables, then ψ1 = {a[i] ≈ b[j]}; (2) G1={l1[l3]},
G2={l2[l4]} which gives us the precondition ψ2 = {l1[l3] 6≈ l2[l4]} and equivalently,

using the source code variables, ψ2 = {a[i] 6≈ b[j]}.

3.3.3 Automatic Transformation

In addition to identifying when memory locations are trackable w.r.t. a given

precondition ϕ, we need to find a way to actually track them. As mention before,

our approach is based on instrumenting the program with extra local (ghost)

variables that expose the values of those locations to a heap-insensitive analysis.

This is done as follows: (1) for each trackable location induced by Gi, we introduce

a ghost variable g; (2) when the content of the memory location is modified,

we modify g accordingly; and (3) when the memory location is read, we read

the value from g. This approach has one clear advantage: there is no need to

change existing static analysis tools to make them heap-sensitive, we simply apply

them on the transformed program, and then the properties inferred for the ghost

variables hold also for the corresponding memory locations.

Definition 3.3.10 (locatity transformation). Given a scope S, and a correspond-

ing locality partition Pϕf = 〈G1, . . . , Gn〉. The instrumented program T (Pϕf ) is

obtained by transforming all rules of S∗ as follows:

1. Generate n different ghost variables names, ḡ = 〈g1, . . . , gn〉;

2. Every procedure call or rule head p(x̄, ȳ) is replaced by p(x̄·ḡ, ȳ·ḡ); and

3. For every ` ∈ Gi, and k:j ∈ rwpps(`), the field or array access at program

point k:j is replaced by gi.

Given k different fields f1, . . . , fk with locality partitions Pϕ1

f1
, . . . ,Pϕk

fk
, we let

T (Pϕ1

f1
, . . . ,Pϕk

fk
) be the program obtained by applying the above steps on each

Pϕi

fi
, iteratively.
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Let us explain the above transformation: in step (1) we create the ghost

variables 〈g1, . . . , gn〉, where gi will be used to track the content of the memory

location induced by Gi; in (2) we add the ghost variables as input and output

arguments to all rules in S∗; and in (3) we simply replace accesses to the memory

locations by accesses to the corresponding ghost variables. When several fields

or arrays are going to be transformed, the instrumented program is obtained by

applying the transformation on each corresponding locality partition iteratively.

This is safe since fi 6= fk, guaranteeing that the different partitions refer to

different memory locations.

Example 3.3.11. Using the preconditions and partitions of Example 3.3.9, we

apply Definition 3.3.10 twice, once for each precondition and obtain the two ver-

sions depicted in the first two columns of Figure 3.5, where arg stands for a, b, i, j.

The one in the first column corresponds to the transformation for ψ1, and has one

ghost variable g1, while the one in the second column corresponds the one for ψ2

and has two ghost variables g1 and g2. Observe that the second version always

terminates, while the first one might not because both array accesses, a[i] and

b[j], modify the same array location. Therefore, using the transformed program,

a heap-insensitive termination analyzer would infer that the while loop at hand

terminates for the precondition ψ2, i.e. {a 6≈ b ∨ i 6≈ j}.

We say that a configuration C satisfies an aliasing precondition ϕ, denoted

by C |= ϕ, iff for any `1 and `2 such that ϕ |= `1 ≈ `2 (resp. ϕ |= `1 6≈
`2), it holds that J`1K(C) = J`2K(C) (resp. J`1K(C) 6= J`2K(C)). The following

soundness theorem states that any reachable state in the original program, has

a corresponding “equivalent” one in the transformed program. Given a ghost

variable gi, we let `gi be the memory location that gi tracks.

Theorem 3.3.12. Let S be a scope with an entry p, Pϕ1

f1
, . . . ,Pϕk

fk
be locality

partitions such that fi 6= fj, C0 = 〈start, p(x̄, ȳ), tv 0〉;h0 such that C0 |= ϕ1 ∧
. . . ∧ ϕn, and C ′0 = 〈start, p(x̄ · ḡ, ȳ · ḡ), tv 0〉;h0 such that tv ′ extends tv with

tv ′(gi) = J`giKC0: If C0 ;n 〈q, bcn, tvn〉·ar ;hn is a possible execution using S,

then C ′0 ;n 〈q, bcn, tv
′
n〉·ar ;h′n is a possible execution using the corresponding

T (Pϕ1

f1
, . . . ,Pϕk

fk
) and tvn(x) = tv ′n(x) for any x ∈ dom(tvn).
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(pre-cond. ψ1) (pre-cond. ψ2)
while(〈arg , g1〉, 〈g1〉)←
s0 := a, s1 := i, s0 := g1,
whilec(〈arg , g1, s0〉, 〈g1〉).

whilec(〈arg , g1, s0〉, 〈g1〉)←s0≤0.
whilec(〈arg , g1, s0〉, 〈g1〉)←s0>0,
s1 := a, s2 := i,
s3 := a, s4 := i,
s3 := g1, s3 := s3 − 1,
g1 := s3, s1 := b,
s2 := j, s3 := b,
s4 := j, s3 := g1,
s3 := s3 + 1, g1 := s3,
while(〈arg , g1〉, 〈g1〉).

while(〈arg , g1, g2〉, 〈g1, g2〉)←
s0 := a, s1 := i, s0 := g1,
whilec(〈arg , g1, g2, s0〉, 〈g1, g2〉).

whilec(〈arg , g1, g2, s0〉, 〈g1, g2〉)←s0≤0.
whilec(〈arg , g1, g2, s0〉, 〈g1, g2〉)←s0>0,
s1 := a, s2 := i,
s3 := a, s4 := i,
s3 := g1, s3 := s3−1,
g1 := s3, s1 := b,
s2 := j, s3 := b,
s4 := j, s3 := g2,
s3 := s3+1, g2 := s3,
while(〈arg , g1, g2〉, 〈g1, g2〉).

Figure 3.5: Resulting RBR after applying the transformations

Proof. The correctness of this Theorem is straightforward given the correctness

of the access path analysis and the definition of locality partitions, as we explain

below.

First, by the correctness of the access path analysis, and the definition of local-

ity partition, it is clear that each ghost variable correctly tracks a corresponding

memory location. This is because in the read and write sets we have all possible

accesses, and the partition condition guarantees by definition the each Gi refers

to different memory locations. Moreover, each instruction can refer to only one

location. Second, the initial value of each gi is the value stored in the memory

location that it tracks.

3.3.4 Heuristics for References

In the above transformation, we track all possible heap accesses. However, it

is also safe not to track all of them. This means that we can select some of

the Gi to be transformed. This is especially interesting when the heap accesses

are reference fields or arrays of references. In theses cases, it is usually a good

heuristics to track the locations that are used for traversing the data structures,
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but do not track reference fields that are part of the data structure itself. This

distinction can often be discovered because cursors are both read and updated,

hence Gi ∩ R(S, f) 6= ∅ and Gi ∩W (S, f) 6= ∅, while references that are part of

the data structure are typically only read, i.e., Gi ∩W (S, f) = ∅.

Example 3.3.13. In order to prove termination of methods that use method next

to traverse the list (e.g., method m), we need to infer that the “size of state” de-

creases every time we execute method next. We use the path-length abstraction

[SMP10] (i.e., the longest reachable path from the considered reference) as a size

measure to check how the size of non-cyclic data structures is modified. By apply-

ing Definition 3.3.8 (or simply Definition 3.3.4), both reference fields state and

rest are local in the scope of the method unconditionally. Thus, it is possible to

convert them into respective ghost variables vs (for state) and vn (for rest). The

rule defining next of Example 3.2.4 would be transformed into:

next(〈this , vs , vn〉, 〈vs , vn , r〉) ← obj := vs, so := vn, vs := s0, r := obj .

for which we cannot infer that the path-length of vs in the output is smaller than

that of vs in the input. In particular, the path-length abstraction approximates

the effect of the instructions by the constraints {obj = vs , s0 = vn , v
′
s = s0 , r =

obj}. Primed variables are due to a single static assignment. The problem is that

the transformation replaces the assignment s0 := obj .next with s0 := vn. Such

assignment is crucial for proving that the path-length of vs decreases at each call

to next. If, instead, we transform this rule w.r.t. the field state only:

next(〈this , vs〉, 〈vs , r〉) ← obj := vs , s0 := obj .next , vs := s0 , r := obj .

the path-length abstraction approximates now the effect of the instructions by

{obj = vs , s0 < obj , v ′s = s0 , r = obj} which implies v′s<vs. The important point

is that, in the second constraint, when accessing a field of an acyclic data struc-

ture, the corresponding path-length decreases. This enables proving termination

of loops that use next (like in m) by relying only on the field-insensitive version

of path-length (note that [SMP10] is not field-sensitive).

In summary, our approach can be used to prove termination of programs that

use common patterns in OO languages such as iterators and enumerators by using

a heuristics that tries to transform only those reference heap accesses which are
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Input: A scope S
Output: Local termination preconditions

1: proc infer local term preconditions
2: Choose the set of fields of interest FS = {f1, . . . , fk}
3: Generate all possible locality partitions P∗ for FS
4: ϕ = false
5: for each 〈Pϕ1

f1
, . . . ,Pϕk

fk
〉 ∈ P∗ do

6: if Termin returns true on T (Pϕ1

f1
, . . . ,Pϕk

fk
) then

7: ϕ = ϕ ∨ (ϕ1 ∧ · · · ∧ ϕk)
8: return ϕ

Algorithm 1: Inference of local termination preconditions for a scope S

used as cursors to the data structures. This is achieved by requiring that the field

(or array) is both read and written in the scope.

3.4 Inference of Termination Preconditions

In this section, we describe our approach for inferring aliasing preconditions that,

when hold in the initial state, guarantee the termination of the program under

consideration. Our approach is defined in two stages: (i) we first find precondi-

tions that guarantee local termination, i.e., they guarantee that the loops defined

in a given scope S are terminating, ignoring the termination behavior of loops

defined in scopes that are called from S; and (ii) in a second step, we use the local

preconditions in order to obtain conditions on global termination which guarantee

that the loops of S as well as those of scopes that are transitively called from

S are terminating. Note that if S does not call any other scope, then local and

global termination are equivalent for S.

3.4.1 Inference of Local Termination Preconditions

Given a scope S, the purpose of this section is to describe how to infer an

aliasing precondition ϕ which guarantees the local termination of S. Algorithm 1

outlines the steps to generate ϕ. At line 2, we choose the set of fields of interest

FS from all fields that are accessed in S∗. Note that any subset chosen leads to
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a safe transformed program since the lack of some fields only implies computing

less precise information. For instance, for the sake of efficiency, one can select

only the fields that might affect the termination behaviour of the program (see,

e.g., the approximation of [AAG+08]).

Line 3 computes all possible partitions of the read and write sets for the

elements f ∈ FS, denoted P∗. For each field f , each corresponding partition

〈G1, . . . , Gn〉 is created by adding aliasing propositions that state the following:

(1) Any `1, `2 ∈ Gi are equal; and (2) Any `1 ∈ Gi and `2 ∈ Gj are different

when i 6= j. Stating that two access paths `1 and `2 are equal (resp. different) is

done by writing `1 ≈ `2 (resp. `1 6≈ `2). However, when `1 and `2 have a similar

structure, this can be done by comparing their corresponding components. For

example, if `1 = l1[l2] and `2 = l1[l3], we can use l2 ≈ l3 (resp. l2 6≈ l3), and if

`1 = l1[l2] and `3 = l3[l4], we could use l1 ≈ l3 ∧ l2 ≈ l4 (resp. l1 6≈ l3 ∨ l2 6≈ l4).

In line 6, we assume the existence of a heap-insensitive termination analysis

procedure Termin that is able to answer the question: does S locally terminate

for any input?. Note that local termination does not prove termination of loops

in scopes invoked from S; however, it needs to transform them in order to track

the modifications that invoked scopes might perform on the sizes of data. The

answer of Termin, as expected, is not definitive, it might be yes or don’t-know.

For each locality partition of the involved fields (line 5), we run the local termina-

tion analyzer on the program resulting from applying the locality transformation

in Definition 3.3.10 w.r.t. such locality partition. If Termin returns true, accord-

ing to Theorem 3.3.12, S locally terminates when the precondition holds in the

input state. In line 7, we perform the disjunction of the current result with the

preconditions obtained from the previous partitions such that the final result is

the disjunction of all preconditions for which the program terminates.

Example 3.4.1. Let us apply Algorithm 1 on the scope S2 (inner loop) of our

running example. Step at line 2 gives us the type aint. At line 3, the two

partitions of Example 3.3.9 are generated. Thus, the foreach loop performs two

iterations. When considering the locality partition Pψ2
aint where the precondition is

ψ2={l1 6≈l2 ∨ l3 6≈l4}, the transformed program of Figure 3.5 (right) is constructed

and Termin returns true in line 6. Hence, ϕ (initialized to false) takes now the
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value ψ2. In the next iteration, the locality partition Pψ1
aint is considered and the

transformed program of Figure 3.5 (left) is constructed. In this case, Termin re-

turns don’t-know and hence ϕ remains with the value ψ2 assigned in the previous

iteration, which is returned as result in line 8 of Algorithm 1.

3.4.2 Inference of Global Termination Preconditions

Let us explain intuitively how Algorithm 2 infers global termination precondi-

tions. Consider a scope S that includes a call bkj = p(x̄, ȳ) ∈ S to a procedure

p that is defined in a different scope S ′. Moreover, assume that S ′ does not call

procedures that are defined in other scopes. In a first step, we have inferred

local termination preconditions ϕ1 and ϕ2 for S and S ′, respectively, by means

of Algorithm 1. In this step, we will combine ϕ1 and ϕ2 into global termination

preconditions ψ1 and ψ2, respectively. For S ′, clearly we can take ψ2 = ϕ2, since

it does not call any other scope. For S, we seek a precondition ψ1 such that

ψ1 |= ϕ1; and ψ2 holds whenever the execution reaches the call to p. We take

ψ1 = ϕ1 ∧ ψ′2, where ψ′2 is obtained from ψ2 by replacing each li by φ
k:j

(xi).

Intuitively, ψ′2 is the global termination precondition of p, but expressed in terms

of the input to the entry of S. This process is applied for all scopes in reverse

topological order, i.e., starting from the one which does not call any other scope,

until the one that includes the main entry procedure.

Input: Scopes S1, . . . , Sn
Output: Local and Global termination preconditions

1: proc infer global termination preconditions
2: for each i← 1 . . . n do
3: LC[i] = LocalCondTermin(Si)
4: ϕ← LC[i]
5: for each external call bkj ≡ p(x̄, ȳ) ∈ Si where p ∈ Sh do
6: ϕ← ϕ ∧ ψ[l1/φk:j(x1), . . . , lm/φk:j(xm)] where ψ = GC[h]
7: GC[i]← ϕ

Algorithm 2: Computing termination preconditions

Algorithm 2 outlines the main steps to generate global termination precondi-

tions for all scopes. The outer loop iterates over the scopes in reverse topological
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order and computes a global termination precondition for each scope Si. At line

3, we compute a local termination condition LocalCondTermin(Si) for Si using

Algorithm 1. This condition is also used at line 4 as its initial global termina-

tion precondition. Then, the inner loop traverses all calls to external scopes,

for each such call, at line 6, it translates the global termination condition of the

corresponding Sh to be in terms of the input of Si, and adds it to the global

precondition of Si. When the algorithm terminates, LC[i] and GC[i] will be, re-

spectively, the local and global termination precondition for the scope Si.

Example 3.4.2. Consider the analysis of the scope S corresponding to method

m in Figure 3.3. Inferring global termination preconditions for m requires the

analysis of all scopes invoked in the method. Let us focus on S1 (method next),

S2 (the inner loop) and S3 (the outer loop). The application of Algorithm 1 on

S1 computes the precondition true (see Example 3.3.13). Algorithm 1 on S2 com-

putes the precondition ϕ = {l1 6≈ l2 ∨ l3 6≈ l4} (see Example 3.4.1). For scope

S3, Algorithm 2 is able to prove termination (ignoring the inner loop) uncondi-

tionally by using a unique ghost variable for the field state and considering the

size relations inferred in Example 3.3.13. Once all local conditions for S1, S2

and S3 have been computed, Algorithm 2 proceeds as follows: LC[1] and LC[2] are

initialized to values true and ϕ, respectively. As there are no external calls in

S1 nor in S2, the foreach loop at line 5 is not executed for any of the scopes,

and GC[1] = true and GC[2] = ϕ (line 7). In the iteration on S3, GC[3] is ini-

tialized to ϕ′ = true. The interesting point is in the call to the inner loop,

for which it is required a renaming according to the access path information φ

stored at the program point just before the inner loop. According to Examples

3.2.4 and 3.3.13, we have {i 7→ l3·state·data, j 7→ l3·state·data} ∈ φ. Line 6 of

Algorithm 2 computes ϕ′ = ϕ[l1/l1, l2/l2, l3/l3·state·data, l4/l3·state·data], which

results in ϕ′ = {l1 ≈ l2 ∨ l3 ·state·data ≈ l3 ·state·data} = {l1 ≈ l2} as global

precondition for S3, and thus for method m.
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3.5 Experimental Evaluation

In this section, we present an experimental evaluation of our implementation

on the set of micro-benchmarks shown in Table 3.1. The main focus of the

examples is on the combined use of arrays with numeric and reference fields, and

on requiring interesting aliasing conditions for proving their termination.

Table 3.1 aims at showing different types of preconditions that can be ob-

tained by our system for the programs shown on the leftmost column. Column

Preconditions displays the aliasing preconditions found by COSTA to guarantee

termination of each method. Variables are named using this convention: integers

are represented by variables i,j,k,l, arrays by variables a,b,c, and x,y,z,w represent

reference variables. Identifiers that start by f are declared as fields. Observe that

the preconditions obtained show different types of aliasing conditions that can be

inferred for guaranteeing the termination of the methods. Benchmarks m2, m7,

m8 and m9 show preconditions that involve aliasing between objects, while m3,

m4, m5 and m6 require aliasing conditions for arrays and their indexes. Method

m10 needs preconditions that combine arrays and object references aliasing. Note

also that the experiments show that we can obtain both disjunctive and conjunc-

tive conditions. For instance, benchmark m3 contains a disjunction of different

conjunctive components, that is obtained from a condition fa[i] 6=fb[j] encoded

as fa 6=fb or i 6=j. One interesting method is m8 because it receives four objects

as inputs parameters and all of them modify the same integer field fi. The loop

will terminate in four different cases (marked in the table): 1© if x ≈ y, the loop

condition never holds; 2© if y ≈ w and the rest of the objects do not alias, in

that case y.fi decreases while x.fi does not change; 3© if x ≈ z and the rest of the

objects do not alias, it is like the previous one because x.fi is incremented by z.fi;

and, 4© where x ≈ z and y ≈ w but x 6≈ y, because x.fi is incremented by z.fi and

y.fi is decremented by w.fi.

None of these examples can be handled by the heap-sensitive analyses in

[AAGP09, AAG+10, RD11] for two reasons: (1) such analyses were designed

only for fields and could not track array contents and (2) they could only handle

unconditional locality, while all our examples rely on aliasing preconditions.

Table 3.2 aims at showing the overhead introduced by the heap sensitive
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Program Preconditions
void m2 (A x) {

this ≈xwhile(x.fi > 0) fi--;
}
void m3(int i, int j, int k) { ((fb ≈fc ∧j ≈k)∧(fa 6≈fb ∨i 6≈j)∧(fa 6≈fc ∨i 6≈k)) ∨

while (fa[i] > fb[j]) fc[k]++; (fa ≈fb ≈fc ∧ i ≈j ≈k) ∨
} ((fa ≈fb ∧ i ≈j)∧(fa 6≈fc ∨ i 6≈k)∧(fb 6≈fc ∨ j 6≈k))
void m4(int i, int j)

i 6≈j ∧ fa ≈fb
while (fa[i] > 0) {

fb[i]--; fa[j]++;
}

}
void m5(int[] a,int i,int j,int k) {

(i ≈j ∧ i 6≈k) ∨ (i ≈j ≈k) ∨ (i ≈k ∧ i 6≈j)
while(a[i] > 0) {

a[j]--; a[k]--;
}

}
void m6(int[] a,int i,int j,int k,int l){

while(a[l] > 0) {
while(a[i] < 0) {

a[j]++; a[k]++; (i ≈j ∧ i 6≈k ∧ i 6≈l ∧ k 6≈l) ∨
} (i ≈j ∧ j ≈k ∧ i 6≈l)
while(a[i] < 0) a[j]++;
a[l]--;
}

}
void m7(A x, A y, A z){ (x ≈y ∧ x 6≈z) ∨

while(x.fi < y.fi) z.fi++; (x ≈y ≈z) ∨
} (x ≈z ∧ x 6≈y)
void m8(A x, A y, A z, A w) { 1©(x ≈y ∧ x 6≈z ∧ x 6≈w ∧ z 6≈w) ∨

while (x.fi < y.fi) { 1©(x ≈y ∧ z ≈w ∧ x 6≈z ∧ x 6≈w) ∨
z.fi++; w.fi--; 1©(x ≈y ≈z ∧ x 6≈w) ∨
} 1©(x ≈y ≈z ≈w) ∨

} 1©(x ≈y ≈w ∧ x 6≈z) ∨
2©(y ≈w ∧ x 6≈y ∧ x 6≈z ∧ x 6≈w ∧ y 6≈z) ∨
3©(x ≈z ∧ x 6≈y ∧ x 6≈w ∧ y 6≈w) ∨
4©(x ≈z ∧ y ≈w ∧ x 6≈y ∧ x 6≈w)

void m9(A x, A y, A z) { (y ≈z ∧ x 6≈y) ∨ (x ≈y ∧ x 6≈z) ∨ (x ≈y ≈z) ∨
m8(x,y,x,z);} (x 6≈y ∧ y 6≈z ∧ x 6≈z) ∨ (y ≈z ∧ x 6≈y)
void m10(A x, A y, int i) {

while(x.fa[fi] > 0) y.fb[i]--; (x.fa ≈y.fb ∧ this.fi ≈i)
}

Table 3.1: Some examples of constraints obtained by using the heap-sensitive
extension
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Unconditional Conditional Analysis

Method TU
N TU

H OH #P #T TG TE TT TT/P

Running 121 210 1.73 4 3 10 670 720 180
m2 7 10 1.42 2 1 0 60 70 35
m3 20 40 2.00 5 3 0 340 360 72
m4 40 30 0.75 5 1 10 240 260 52
m5 40 40 1,99 5 3 0 240 270 54
m6 70 90 1.28 22 11 60 3000 3100 140
m7 20 30 1.50 5 3 0 150 170 34
m8 30 60 2.00 15 8 140 590 650 43
m9 70 80 1.40 15 8 60 640 720 48
m10 30 30 1.00 2 1 0 160 180 90

Average 44.8 62 1.40 8 4.2 28 609 650 74.8

Table 3.2: Statistics about the Conditional Heap-Sensitive Analysis (times in ms)

analysis w.r.t. the heap insensitive one, and w.r.t. the unconditional version of

our heap-sensitive analysis, that can only handles unconditional locality. The

experiments have been performed on an Intel(R) Core(TM)2 Duo CPU 2.53GHz

with 4GB of RAM running Linux 3.2.0. Columns under Unconditional show the

total time taken by the two unconditional analyses: TU
N shows the time taken by

the heap-insensitive analysis and column TU
H the time (in milliseconds) taken by

the unconditional heap-sensitive analysis (i.e., using our analysis by relying on

Definition 3.3.4 instead of Definition 3.3.8 and applying the transformation using

the precondition true). The average overhead introduced by the heap sensitive

analysis is 1.40, which is reasonably small.

Columns under Conditional Analysis show information gathered from apply-

ing the conditional heap-sensitive analysis. Column #P shows the number of par-

titions for the recursive scopes generated for all heap accesses in this scope (and

transitive ones). This number corresponds also to the total number of versions

for which COSTA tries to prove termination after having applied the transfor-

mation in Section 3.3.3. Besides, column #T shows how many of such versions

are proven to be terminating. In all cases that could not be proven terminating,

we have checked that there might be actually non-terminating derivations. Thus,

our analysis is as precise as possible for these examples. As regards times, column

TG shows the time taken by the reference constancy analysis, the generation of
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the locality partitions and the transformed programs. This phase is quite efficient

and, only in one case (m8), it takes more than 10% of the total analysis time.

Column TE shows the time taken for proving termination of all generated ver-

sions, and TT shows the time taken by the whole analysis of the program (which

includes some pre-processing steps).

Our experiments clearly show that overhead introduced by the conditional

analysis is directly related to the number of partitions in each case. Thus, addi-

tionally, in column TT/P , we show the total time of the program divided by the

number of partitions. The most relevant conclusion is that the analysis taken by

one partition is similar to the unconditional heap-sensitive analysis, i.e., it does

not increase significantly and it is less than twice the time of the heap-insensitive

analysis, on average from 62 to 74.8.

3.6 Related Work

Traditionally, existing approaches to reason on shared mutable data structures

either track all possible updates of heap-allocated data (endangering efficiency)

or abstract all field updates into a single element (sacrificing accuracy). Our work

does not fall into either category, as it does not track all heap-allocated updates

but rather only those which behave like non heap-allocated variables. As our

experiments show, our approach is sufficiently precise for scope-based reasoning

while introducing a reasonable overhead, as required in important applications,

such as termination and resource analysis.

Miné’s [Min06] value analysis for C takes a different approach by enriching

the abstract domain to make the analysis field-sensitive. The motivation here is

different from ours, his analysis is developed to improve points-to analysis in the

presence of pointer arithmetics. Similarly, [CL05] enriches a numeric abstract do-

main with alien expressions (field accesses). Without additional information, such

as reference constancy analysis, this domain would be rather limited (imprecise)

for bytecode.

We have applied our approach to the context of termination analysis. In this

sense, our work continues and improves over the stream of work on termination
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analysis of object-oriented bytecode programs [AAGP09, OBvEG09, AAC+08,

SHP06, RS06]. For numeric data, termination analyzers rely on a value analysis

which approximates the value of numeric variables (e.g. [CH78]). Some field-

sensitive value analyses have been developed over the last years (see the work

of Miné mentioned above [Min06]). For heap-allocated data structures, path-

length [SHP06] is an abstract domain which provides a safe approximation of

the length of the longest reference chain reachable from the variables of interest.

This allows proving termination of loops that traverse acyclic data structures

such as linked lists, trees, etc. However, the path-length abstract domain, and

its corresponding abstract semantics, as defined in [SHP06] is field-insensitive in

the sense that the elements of such domain describe path-length relations among

local variables only and not among reference fields. Thus, analysis results do not

provide explicit information about the path-length of reference heap-allocated

data.

As regards to the reference constancy analysis, equivalent notions have been

defined for other languages (see [AFKT03] and its references) and for different

purposes. Our work adapts and extends such analyses to consider arrays and fields

in a uniform way. Also, the analysis in this chapter generalizes our previous refer-

ence constancy analyses [AAGP09] which infers information only on class fields,

to consider arrays, integer variables and arithmetic expressions. There is also a

lot of work devoted to infer the shape of the heap (see, e.g., [SRW99], [Rey02]).

In general, more accurate aliasing analysis [SRW99] can be used to improve the

precision of our analysis when computing the read and write sets, but at a higher

performance cost.

Techniques which rely on separation logic in order to track the depth (i.e.,

the path-length) of data-structures [BCDO06] would have the same limitation as

path-length based techniques, if they are applied in a field-insensitive manner.

For example, in the iterator example shown in Section 3.3.4, we have seen that

given an object x of type ListIter, it is necessary an analysis which is able to

model the path-length of field x.state and not that of x. Namely, we need a heap-

sensitive analysis based on path-length, which is one of our contributions in this

thesis. However, by applying these techniques which track the depth (i.e., the

path-length) on our transformed programs, we expect them to infer the required
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information without any modification to their analyses.

Finally, conditional termination has been considered before in [BIK12, CGLA+08].

In these works, the focus is in inferring termination conditions on the numerical

variables, and not on the reference variables as we do.
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Chapter 4

Incremental Resource Usage

Analysis

This chapter presents our approach to incremental resource usage analysis that

has been presented at PEPM’12 [ACPRD12] and also as a poster paper in

APLAS’11 [ACPRD11].

4.1 Introduction

The starting point for the Incremental Analysis is the global cost analysis de-

scribed in Chapter 2. Cost is inferred by a sequence of global analyses (or whole-

program analyses) which must analyze the whole program in order to obtain

sound and precise results. Despite the great progress made in static analysis,

most global analyzers still read and analyze the entire program at once in a non-

incremental way. In particular, all resource analyses to date are non-incremental

(COSTA and other analyzers [GMC09, JH11]). During software development,

programs are often modified, e.g., because a new implementation of an existing

method is provided (which improves its efficiency or fixes its correctness) or be-

cause an existing code is extended with new functionality (typically by extending

a class with further methods). In such cases, the existing analysis information

for the program may no longer be correct and/or accurate. However, resource
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analysis is a costly task and starting analysis from scratch is inefficient in most

cases. A key challenge for static analysis techniques is achieving a satisfactory

combination of precision and scalability. Making precise (and hence expensive)

static analysis incremental is a step forward in this direction.

In this chapter, we present an incremental approach of resource usage analysis

of an imperative and object-oriented programming language. The difficulty when

devising an incremental analysis framework is to recompute the least possible

information and do it in the most efficient way. In our setting, we achieve it by

means of the following two steps wich are our main contributions:

• A multi-domain incremental analysis engine which can be used by all global

pre-analyses required to infer the resource usage of a program (including the

class analysis, sharing, cyclicity, constancy and size analysis as mentioned

above). The engine is multi-domain in the sense that it interleaves the

computation for the different domains and takes into account dependencies

among them, in such a way that it is possible to invalidate only partial

pre-computed information.

• Even a small change within a method (e.g., adding an instruction) can

change the overall cost of the program. A fundamental idea to minimize

the amount of information that needs to be recomputed is to be able to

distinguish, within a cost summary, the cost subcomponent associated to

each method, so that the final cost functions can be recomputed by replacing

only the affected subcomponents.

Our incremental analysis has been implemented in the COSTA system. Ex-

perimental results are performed on selected benchmarks from the standardized

JOlden benchmark suite [Sui] and from the Apache Commons Project [Pro]. Our

results show that the proposed incremental analysis achieves a significant speedup

with respect to the non-incremental approach. To the best of our knowledge, this

is the first incremental resource usage analysis framework.
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class C
void main (List l) {

int s = len(l);
if (s % 2 6= 0 || s<2)

return;
mod(l);

}
void mod (List l) {

Inc o = get(l);
dup(o, o.incr(l));

}
Inc get (List l) {

return new Inc();
}
void dup (Inc o, List l) {

while (l != null) {
l.data = l.data * 2;
l = o.incr(l);
}

}

int len(List l) {
int i = 0;
for(; l != null; l = l.next) {

i++;
}
return i;
}
} //end of class C

class Inc {
List incr (List l) {

return l.next.next;
}
}
class Inc2 extends Inc {

List incr (List l) {
return l.next;
}
}
class List {

List next;
int data;
}

Figure 4.1: Incremental Algorithm Running Example

4.1.1 Organization of the Chapter

The chapter is organized as follows: Section 4.2 presents a typical event-based

global analysis algorithm. Section 4.3 introduces our multi-domain incremental

analysis algorithm which, given a change on a method, reconstructs the informa-

tion which needs to be recomputed for a given set of domains.

Section 4.4 explains how incremental resource analysis handles the CRS gen-

eration. Section 4.5 presents the incremental UBs inference that recomputes the

cost functions only of those subcomponents affected by the change. Section 4.6

presents the experimental results obtained by applying our approach over a set

of realistic programs, and Section 4.7 concludes relating our apprach to previous

work.
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4.2 A Fixed-Point Analysis Engine

The analysis algorithms are developed on programs written in the RBR defined

in Section 2.2.2. In this section, we present a global analysis fixed-point engine

for the RBR which is parametric w.r.t. the analysis domain and that will later

be extended to support incremental analysis.

Example 4.2.1 (RBR). The running example of this section, shown in Fig-

ure 4.1, is a simple example to show the interaction among the different domains

and the reanalysis required by the incremental extensions. Method main receives a

list of integers, checks the length of the list and modifies some of its elements by

invoking mod. Some methods of the example are transformed into the following

RBR:

mod(〈l〉, 〈〉) ← get(〈l〉, 〈o〉),
call incr(〈o, l〉, 〈l′〉),
dup(〈o, l′〉, 〈〉)

get(〈l〉, 〈r〉) ← r := new Inc

dup(〈o, l〉, 〈〉) ← while(〈o, l〉, 〈l′〉)
while(〈o, l〉, 〈l〉) ← l = null

while(〈o, l〉, 〈l′′′〉) ← l 6= null,

l′.data := l.data ∗ 2,

call incr(〈o, l′〉, 〈l′′〉),
while(〈o, l′′〉, 〈l′′′〉)

(∗)call incr(〈o, l〉, 〈l′〉) ← type(o,Inc),

Inc.incr(〈l〉, 〈l′〉)
Inc.incr(〈l〉, 〈l′′〉) ← l′ := l.next,

l′′ := l′.next

The RBR of the program is built during the execution of class analysis. Virtual

invocations are statically resolved and simulated by means of dispatch rules (e.g.,

call incr). Class analysis for this program determines that the object o returned

by method get is an instance of Inc. Thus, the dispatch rule defined by procedure

call incr (*) does not include a call to Inc2.incr.
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4.2.1 A Global Fixed-Point Analysis Engine

Algorithm 3 presents an event-based global fixed-point analysis engine for the

RBR, similar to other worklist algorithms [NNH99]. The algorithm is parametric

w.r.t. the abstract domain D that describes some property of interest. As usual,

the domain D is defined for all possible descriptions, which form a complete lattice

for which all ascending chains are finite. We assume that the operations of least

upper bound (denoted t), greatest lower bound (denoted u) and v are defined

on the particular abstract domain. Function alpha returns the abstraction of an

instruction in D. Function restrict(ST, V,D) projects an abstraction ST onto

the variables in the set V w.r.t. domain D , and extend(ST, V,D) extends the

abstraction ST to the variables in V w.r.t. domain D . The analysis results for a

procedure are computed with respect to a specific calling pattern CP , which is

a description in the abstract domain of the values that the input arguments can

take. The analysis is monovariant, i.e., the goal of the analysis is to compute for

each procedure p in the program at most one answer of the form CP 7→ AP ,

where AP is the answer pattern, which is also a description in the abstract domain

of the values that the output arguments can take, and the call pattern CP is

general enough to cover all possible patterns for p that appear during the analysis

of the program.

The algorithm uses two global data structures: (1) the local answer table LD

for domain D , where the answers for all procedures are stored, and (2) the queue

of events Q, which initially contains as single element the pair (m,CP ) with the

entry procedurem and a corresponding call pattern CP . The analysis of a method

is carried out in process analysis, where we analyze all rules defining a procedure

in Line 27 (L27 for short) and traverse the instructions in its body from left to

right (L29). When the instruction is not a procedure call, we abstract it according

to the abstract domain (L35). As usual, the abstract description obtained from

one instruction is conjoined with the previously computed one (L36). The anal-

ysis results obtained from the different rules which define a procedure are joined

together (L37). When the instruction is a procedure call (L30), get proc answer

first checks if a previously computed answer exists in L (L11). We assume that

get returns the answer for a given call properly renamed w.r.t. the arguments in
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1: proc analysis(m,CP ,D)
2: Q = ∅
3: LD=∅
4: Q.add(m,CP )
5: while (¬Q.empty()) do
6: (p,CP )=Q.extract first()
7: process analysis(p,CP ,D)

8: function get proc answer(p,CP ,D)
9: CP ′ = CP

10: AP ′ = ⊥
11: if (LD .exists(p)) then
12: (CPL 7→APL)= LD .get(p)
13: if (CP v CPL) then
14: return APL

15: CP ′ = CP t CPL

16: AP ′ = APL

17: Q.add(p,CP ′)
18: LD .update(p,CP ′ 7→ AP ′)
19: return AP ′

20: proc invalidate callers(p)
21: for all (p′ in callers(p)) do
22: if (LD .exists(p′)) then
23: (CP ′ 7→ AP ′)=LD .get(p′)
24: Q.add(p′,CP ′)

25: proc process analysis(p,CP ,D)
26: AP=⊥
27: for all (Ri : p← bi1, . . . , bin) do
28: ST=extend(CP ,vars(Ri),D)
29: for each (bij , 1 ≤ j ≤ n) do
30: if (bij = q( , )) then
31: CP ′=restrict(ST ,vars(bij),D)
32: ST ′=get proc answer(bij ,CP

′,D)
33: ST ′=extend(ST ′,vars(Ri),D)
34: else
35: ST ′=extend(alpha(bij ,D),vars(Ri),D)
36: ST= ST u ST ′

37: AP = AP t ST
38: (CPL 7→ APL)=LD .get(p)
39: if (AP 6v APL) then
40: invalidate callers(p)
41: LD .update(p,CP 7→ AP )

Algorithm 3: Fixed-point algorithm (operators t, v, u are parametric w.r.t.
the analysis domain, D)

the call (L12). If the existing calling pattern is general enough (L13), we just

use the previous answer (L14). Otherwise, since the algorithm is monovariant,

we join the calling patterns (L15), reanalyze the corresponding method (L17).

At the end of process analysis, if the answer for p has changed (L39), we need

to invalidate the information for all rules that invoke p (calling invalidate callers

in L40), and update the local answer table L (L41). invalidate callers adds to Q
those methods that invoke p, denoted callers(p) (L21), and have an entry in L
(L22).

Observe that the analysis engine adds entries to Q during its execution when

(i) a rule must be analyzed for a given calling pattern in L17, either because there
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was not an answer for it or because it had been analyzed for a less general calling

pattern and (ii) when the answer of a rule invoked from it changes (L24). The

execution finishes when there are not more events to process in Q (L5).

Example 4.2.2 (alg. 3). The following table shows some relevant states of ex-

ecution Algorithm 3 when analyzing method main of the running example w.r.t.

the calling pattern ρ ≡ {l : {List}} for the domain ”class”. In the class domain,

an abstract value represents the set of classes that the corresponding variable can

be typed to. Thus, the CP indicates that the type of the input list l is List.

(1) Q: (main,{l:{List}})
L: (main,{l:{List}} 7→ ⊥)

(2) Q: (len,{l:{List}}),(mod,{l:{List}})
L: (main,{l:{List}} 7→ ⊥), (len,{l:{List}} 7→ ⊥), (mod,{l:{List}} 7→ ⊥)

(3) Q: (mod,{l:{List}})
L: (main,{l:{List}} 7→ ⊥), (len,{l:{List}} 7→ ⊥), (mod,{l:{List}} 7→ ⊥),

(get,{l:{List}} 7→ ⊥), (dup,{o:⊥, l:{List}} 7→ ⊥), (*)

(4) Q: (get,{l:{List}}), (dup,{o:⊥,l:{List}}),

L: (main,{l:{List}} 7→ ⊥), (len,{l:{List}} 7→ ⊥), (mod,{l:{List}} 7→ ⊥),

(get,{l:{List}} 7→ {r:{Inc}}), (dup,{o:⊥, l:{List}} 7→ ⊥)

(5) Q: (dup,{o:⊥,l:{List}}), (mod,{l:{List}})
L: (main,{l:{List}} 7→ ⊥), (len,{l:{List}} 7→ ⊥), (mod,{l:{List}} 7→ ⊥),

(get,{l:{List}} 7→ {r:{Inc}}), (dup,{o:⊥, l:{List}} 7→ ⊥)

(6) Q: (mod,{l:{List}}), (Inc.incr,{l:{List}}), dup,{o:{Inc.incr}, l:{List}}
L: (main,{l:{List}} 7→ ⊥), (len,{l:{List}} 7→ ⊥), (mod,{l:{List}} 7→ ⊥),

(get,{l:{List}} 7→ {r:{Inc}}), (dup,{o:⊥, l:{List}} 7→ ⊥),

(Inc.incr,{l:{List}} 7→ ⊥)
...

...

In this example, internal rules are ignored because they do not add any relevant

information to the class analysis. Relevant iterations proceed as follows: At iter-

ation (1), method main is analyzed using the default CP, {l:{List}}. Method main

calls len and mod which are added to Q and to L, see L17 and L18 of Alg. 3,

with the default AP, ⊥. At (3), method mod is analyzed, adding to Q and L
methods get and dup. The call to incr is not resolved at (4) and (5) because the

callgraph is being built during class analysis and the type of o is not known yet.
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Iteration (4) corresponds to the analysis of method get where greater AP for get is

found. Thus, according to invalidate callers, mod is added again to Q. Iteration

(6) analyzes mod and the dynamic dispatching of incr can be solved, thus the calls

to Inc.incr and to dup are added to Q. The algorithm iterates until a fixpoint is

reached (which is shown later in Example 4.3.2).

4.3 Incremental Inference of Cost Relations

The goal of this section is to support incremental analysis in all global pre-analyses

required to infer the CRS which was explained in Section 2.3. First, Section 4.3.1

describes the notion of method summary which comprises the analysis information

that has been computed globally in a non-incremental way in order to set up the

CRS. Section 4.3.2 introduces a multi-domain incremental analysis which, given

a change and the method summaries, is able to reconstruct the summaries for all

domains.

4.3.1 Method Summary for Global Properties

All analysis information included within a method summary can be computed

by using the generic fixed-point engine in Algorithm 3 for each domain. As it

is described in Section 2.3.1, several analyses are executed consecutively and the

information inferred for one domain is used for analyzing subsequent domains.

Figure 4.2 shows the dependency graph between domains, where the order of

execution and the dependencies between domains are shown. Given a domain D ,

we will refer to the set of domains reachable from D in the dependency graph

(including D) as dep(D).

Definition 4.3.1 (method summary). Given a method m(x̄, ȳ), a method sum-

mary for m is a tuple of five answers CPD 7→ APD for the following domains:

(1) D=class, where x:{C1, . . . , Cn}∈APcl (respectively CPcl) represents the set

of classes that variable x may be typed to after (respectively before) executing

m [SJ03] (see Section 2.2.1);
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(2) D=sharing, where (x, y) ∈ APsh (respectively CPsh) means that x and

y might share after (respectively before) executing m [SS05] (see Sec-

tion 5.4.3);

(3) D=acyclicity, where x ∈ APac (respectively CPac) means that x may point

to a cyclic data structure after (respectively before) executing m [RS06] (see

Section 5.4.2);

(4) D=constancy, where x ∈ APcn if the shape of x may have changed during

the execution of m [GS08] (this analysis is context-insensitive, i.e. the AP

does not depend on the CP );

(5) D=size, where APsz (respectively CPsz) are a set of linear constraints de-

scribing the relation between the size of the variables x̄ and ȳ after (respec-

tively before) executing m [AAGZ11] (see Section 2.3.4).

cl

sh

cnac

sz

ub

Figure 4.2: Domains dependencies

Let us mention the most relevant issues re-

lated to the five points in the above defini-

tion and explain the domain dependencies

in Figure 4.2. The class analysis informa-

tion determines the overall code that must

be analyzed in the next steps. This domain

is finite since it only contains the classes

available in the program at run-time. In size

analysis, we assume that the size of a heap-

allocated data structure is its path-length

(i.e., the length of the longest path reach-

able from it), if the data structure is not

cyclic. Hence, acyclicity is a soundness re-

quirement for size analysis. Besides, if two variables x and y share and there is

a reference field assignment x.f = y, then no safe information can be provided

regarding the acyclicity of x nor y since cycles might be introduced. Hence, shar-

ing is a soundness requirement for acyclicity, constancy and, hence, for size. It is

essential to know the arguments of m whose shape remains constant upon return

because in such case their path-length is preserved on exit from m [GS08]. (5)

Once all previous analyses have been performed, size relations can be inferred in

order to determine how the size of data is modified along the program’s execution.
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Example 4.3.2 (summaries). The following method summaries are obtained for

the RBR in Example 4.2.1 by sequentially performing each of the global analyses

above in a top down order (the results of sharing, acyclicity and constancy are

not shown as they do not detect any sharing between data structures, cycles, nor

changes in the data structures shapes, respectively). Note that r stands for the

return value:

Method Summaries

void mod(l)
class {l:{List}} 7→ ⊥
size {l ≥ 2} 7→ {l ≥ 2}

Inc get(l)
class {l:{List}} 7→ {r:{Inc}}
size {l ≥ 2} 7→ {l ≥ 2, r = 1}

void dup(o,l)
class {o:{Inc}, l:{List}} 7→ ⊥
size {o = 1, l ≥ 0} 7→ {o = 1, l ≥ 0}

List incr(l)
class {l:{List}} 7→ {r:{List}}
size {l ≥ 2} 7→ {l ≥ r + 2, r ≥ 0}

Observe that after creating the object in get, the type of the object is instantiated

to Inc and its size is 1 (this means that it is not null). Also, notice that, after

analyzing len, the size analysis of main learns from the conditional statement that

the size of the list is greater than or equal to two. This size constraint is used as

precondition of the next methods. It is important to understand the size relation

obtained for method incr which allows us to know that the size of the output list is

the size of the input list decreased by two. This piece of information is essential

to bound the cost.

4.3.2 A Multi-Domain Incremental Fixed-Point Analyzer

When performing incremental analysis, after a modification in a program, a

change in the analysis results associated to one domain must invalidate the re-

sults previously inferred by subsequent dependent domains. Algorithm 4 presents

the extensions required to make Alg. 3 incremental by relying on the summaries

in Definition 4.3.1 and the dependencies in Figure 4.2. We use the notation
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noincr:m to refer a procedure m defined in Alg. 3 (see L10 and L30 in Alg. 4).

The incremental algorithm uses method noincr:analysis of Alg. 3 (and its data

structures) and two implementations of get proc answer, noincr:get proc answer

and incr:get proc answer. In L32 of noincr:process analysis of Alg. 3, we invoke

incr:get proc answer instead of noincr:get proc answer.

In contrast to other approaches [HPMS00], the granularity of our analysis is

set at the level of methods, i.e., we establish the method as the smallest piece of

code whose analysis information will be stored and reanalyzed in case of changes.

Procedure incremental fixpoint receives the signature of the method m which has

been changed. If there are multiple methods changed, changes will be handled one

after another. Note that class analysis determines the CFG of the program being

analyzed. Hence, after a change, the callers information used in L15 by Alg. 4

is recomputed. Observe that the objective of Alg. 4 is to recompute invalidated

information, but not to improve the precision of previously computed results.

Trying to improve the precision would require further recomputation in some

cases.

Algorithm 4 uses three global data structures: (1) the global answer table G,

which contains the set of summaries for all previously analyzed methods; (2) the

queue of pending events P , which is formed by pairs of the form (m,D) where D is

a list of domains for which m must be reanalyzed in the order stated in Figure 4.2;

and (3) a list, R, to store all methods that have been reanalyzed in the current

iteration of the while loop. The main goal of the incremental algorithm is, starting

from the modified method, to propagate the new information obtained from the

modification. When a method changes, its code must be reanalyzed with respect

to all domains. This is done in the algorithm in L2-3 where we add to P the

modified method for all domains and invalidate its entries in G. The three main

aspects of the algorithm are described below:

Multi-domain Our aim is to handle multiple domains in the context of incre-

mental analysis such that the minimal amount of reanalysis is performed. Our

approach consists in interleaving the computation of the incremental fixed point

for all domains by means of validity flags. The idea is that a change in a summary

for a specific domain invalidates only the entries for those dependent domains (in
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1: proc incremental fixpoint(m)
2: P =[(m,D)]; C = ∅;
3: G.invalidate(m,D)
4: while (¬P.empty()) do
5: R=∅
6: (m′,Dm′) =P.extract first()
7: for each D in Dm′ do
8: R.add(m′,D)
9: (CPm′ 7→ APm′)=G.get(m′,D)

10: noincr:analysis(m′,CPm′ ,D)
11: for all ((n,D) in R) do
12: (CPGn 7→ APGn )=G.get(n,D)
13: (CPLn 7→ APLn )=LD .get(n,D)
14: if (APLn 6v APGn )) then
15: P.add dom(callers(n),dep(D))
16: G.update(n,CPLn 7→APLn tAPGn )
17: P.remove(R)

18: function get proc answer(p,CP ,D)
19: CP ′=CP
20: if (is method(p) ∧ G.exists(p,D))

then
21: (CPG 7→ APG)=G.get(p,D)
22: if (G.valid(p,D)) then
23: if (CP v CPG) then
24: return APG

25: else
26: G.invalidate(p,dep(D))
27: P.add dom({p},dep(D))
28: CP ′=CP t CPG

29: R.add((p,D))
30: AP=noincr:get proc answer(p,CP ′,D)
31: return AP

Algorithm 4: Generic incremental fixed-point algorithm.

our case the dependencies in Fig. 4.2). This is handled in the algorithm by means

of G such that each entry stored in G has a flag to indicate whether the entry

for this particular domain is valid. Initially all entries are valid. We use func-

tion valid(p,D) to check if the summary for p and domain D is valid. The call

invalidate(p,D) sets up to invalid the flags for the set of domains D for method

p. Invalidated entries must be reanalyzed. This occurs in the algorithm when the

entries to be reanalyzed are added to P in L15 and L27. To that end, add dom

receives a set of methods M and a set of domains D and, for each m ∈ M,

D ∈ D, if there exists an entry (m,Dm), it is updated to (m, add(Dm, D)), where

the addition of D is ordered as established in Fig. 4.2. If an entry does not exist,

it adds (m, {D}).

Descendants L7-10 take care of reanalyzing those methods that are pending

to be reanalyzed. We use the CP stored in G to initiate the analysis (L9-L10).

Besides, all reanalyzed methods are added to R in L8 in order to later (L11)

decide the recomputation that must be done (see ancestors paragraph). The call
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noincr:analysis (L10) reanalyzes m for a particular domain by calling Alg. 3.

During the execution of noincr:analysis (Alg. 3) those methods reachable from m

(descendants) whose answer for such domain must be recomputed will also be re-

analyzed. Observe that the execution of noincr:analysis uses incr:get proc answer

instead of noincr:get proc answer. The new function get proc answer in Alg. 4

differs from the one in Alg. 3 in that, for method calls, it tries to reuse an exist-

ing answer from the method summary (stored in G) (L20) if its calling pattern is

general enough and the entry has not been invalidated (L22-23). Otherwise, both

calling patterns are joined (L28) and the pair of method signature and domain

is added in L29 to the list R. Entries of the method summary for dependent

domains are invalidated (L26) and added to P (L27). If there is no summary

for the method, or if it is an intermediate procedure of a method (L20), the

function noincr:get proc answer of Alg. 3 is invoked, and it analyzes m in the

non-incremental way (L30). As we have seen in the non-incremental analysis, the

analysis of one method may produce a new answer that must be propagated to

its callers, by means of noincr:invalidate callers (L40 of Alg. 3). Observe that,

in the incremental case, L only contains information regarding descendants of m

which have been reanalyzed. Therefore, noincr:invalidate callers only invalidates

methods which have been reanalyzed in the current call to noincr:analysis (L22

of Alg. 3). The execution of noincr:analysis finishes when no new information is

propagated and a fixpoint for the reanalyzed methods is reached. This process is

repetated for all domains for method the considered method (L7).

Ancestors When the call noincr:analysis finishes (L10), reanalyzed methods

have been added to the list R. Now, we need to take care of reanalyzing all those

methods that relied on answers for methods in R. The list P is used for this

purpose. Initially, P contains an entry for the changed method and all domains

(L2). It is later updated in L15 as follows. For each element in R, we know that

it is reanalyzed for such domain (L11). We compare the new answer APLn with

the one in the summary APGn (L12-14). If the new one is not contained in the

previous one (L14), we need to reanalyze all methods that invoke m (L15) for

such domain and its dependent domains. However, some methods that invoke m

may have been already reanalyzed in this iteration (during L7-10) and, therefore,
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they do not need to be reanalyzed again. All methods in R are removed from P
in L17. Finally, the fixed point is reached when there are no more methods to

analyze in P .

Example 4.3.3 (algorithm 4). Let us consider the following new implementation

of method get:

Inc get(List l) {
if ((l.data % 2)==0)

return new Inc();

else

return new Inc2();

}

As a result we have a new implementation of method get and thus execute

procedure incremental fixpoint(get). The following iterations of Algorithm 4 are

performed due to this change:

mod

get dup

Inc.incr Inc2.incr

(1)

(2)

(3)

(3)

(5)

Iter P
(1) {(get, cl), (get, sz)}
(2) {(get, sz), (mod, cl), (mod, sz)}
(3) {(mod, cl), (mod, sz)}
(4) {(mod, sz), (dup, sz)}
(5) {(dup, sz)}

The above left figure graphically represents the iterations of the incremental anal-

ysis algorithm. Dashed lines (arrows and boxes) represent the recomputed infor-

mation due to the application of the delta and the arrow are labeled with the step

that computes it. The table to the right shows the contents of P at each iteration.

Intuitively, the algorithm proceeds as follows:

(1) Procedure analysis(get, ,class) of Alg. 3 is executed. The new answer pat-

tern for get is {r:{Inc, Inc2}}. The class analysis info for get stored in G
does not contain the newly generated answer pattern. Therefore, all di-

rect ancestors of get must be reanalyzed, namely mod is added to P for
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dep(class). This is shown graphically by a dashed arrow from get to mod

labeled with (1).

(2) The size analysis for get does not propagate new information its callers.

(3) analysis(mod, ,class) is launched. During class analysis, calls to dup and

incr are found. According to the new results obtained for get, variable o

can now be of types {Inc, Inc2}. Due to this polymorphism, an invocation

to Inc2.incr∗ is found in addition to the previous Inc.incr. Since there are

no entries for Inc2.incr in G, it is analyzed during the execution of analysis

and added to G for the domain class. Besides, the entry for dup in G
has CP1 ≡ {o:{Inc}, l:{List}} and thus it does not cover the new CP2 ≡
{o:{Inc, Inc2}, l:{List}}. Both ρs are joined (resulting in CP2) and dup is

reanalyzed for the class domain w.r.t. CP2. During the class analysis of

dup a new call to Inc2.incr is found, but now G contains valid information

for Inc2.incr, and thus the AP stored in G can be directly used. As dup has

been reanalyzed for domain class, entries for dup for dep(class) in G are

invalidated and added to P. Note that (dup,cl) is not added to P because it

has been handled as a descendant of mod.

(4) Similarly to (3), during the analysis of mod for size domain, the entry for

(Inc2.incr,size) is added to G.

(5) Polymorphism of the call to incr forces that the size relations for procedure

while change. Now, we combine the size results of Inc.incr and Inc2.incr,

since any of the two methods can be executed within the loop.

At the end of (5) a fixed-point is reached since there are no further changes in

the answer pattern for any domain. Importantly, only affected methods have

been reanalyzed and their information in G is up-to-date. Methods main, len and

Inc.incr have not required reanalysis for any domain. The following table shows

these summaries that have changed w.r.t. the ones in Ex. 4.3.2:

∗Method references include the class they belong to when disambiguation is needed.
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Method Summaries

void mod(l)
cl {l:{List}} 7→ ⊥
sz {l ≥ 2} 7→ {l ≥ 2}

Inc get(l)
cl {l:{List}} 7→ {r:{Inc, Inc2}}
sz {l ≥ 2} 7→ {l ≥ 2, r = 1}

void dup(o,l)
cl {o:{Inc, Inc2}, l:{List}} 7→ ⊥
sz {o = 1, l ≥ 0} 7→ {o = 1, l ≥ 0}

List Inc.incr(l)
cl {l:{List}} 7→ {r:{List}}
sz {l ≥ 2} 7→ {l ≥ r + 2, r ≥ 0}

List Inc2.incr(l)
cl {l:{List}} 7→ {r:{List}}
sz {l ≥ 2} 7→ {l ≥ r + 1, r ≥ 0}

Theorem 4.3.4 (termination of Alg 4). Given a program P , its analysis results

stored in G, and a method m which has been modified, incremental fixpoint(m)

terminates.

Proof. For proving termination of the incremental algorithm (Alg. 4), we define

the pair (Λ, L) where:

• Λ is a measure of the distance to > of the elements in L, defined as

Λ =
∑

CPi 7→APi∈G

(δ(CPi) + δ(APi)) (4.1)

where δ(ST ) is the number of abstract states from the abstract substitution

ST to >. The ascending chain condition (ACC) of the abstract domains

guarantees that this distance is finite from any state (using widening when

needed).

• L is the length of P .

Let >Λ,L be the lexicographical ordering induced by >N over N2:

(Λ1, L1) >Λ,L (Λ2, L2) ⇐⇒ (Λ1 > Λ2) ∨ (Λ1 = Λ2 ∧ L1 > L2)
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Since >Λ,L is a well-founded ordering, termination of Algorithm 4 can be

concluded if we show that for each iteration i of Algorithm 4, (Λi−1, Li−1) >Λ,L

(Λi, Li).

We will assume that if in G there is no entry for method p, it contains p :

⊥ 7→ ⊥ for every rule p that is required by the analysis. At each iteration i of

the while loop in L4-17 of Alg. 4, Λ and L may change in the following cases:

• G is updated in incremental fixpoint in L16. Regarding the calling pattern

information, CPLn stored in G in L16 comes from the information contained

in L (L13). We will show that δ(CPLn ) ≤ δ(CPGn ) for any (n,D) ∈ R.

The analyses of pending methods in P are launched in the loop at L7-10.

These analyses use as calling patterns the information already existing in G
(L9). Therefore, noincr:process analysis will analyze the pending methods

using the calling pattern in G.

During the execution of noincr:process analysis there may be calls to other

methods which are handled by incr:get proc answer (L32 of Alg. 3). In

incr:get proc answer there are three possibilities:

– If there is a valid entry in G for an invoked method m which is appli-

cable (L23), the answer pattern in G is used (L24), without updating

L.

– If it is not applicable, the calling pattern for m is lubbed with the

existing calling pattern in G (L28), and then noincr:get proc answer

updates L with this lubbed calling pattern (L18, Alg. 3).

– If there is no entry in G, the calling pattern for m is stored in L, (L18,

Alg. 3).

In all cases, δ(CPLn ) ≤ δ(CPGn ), since CPLn w CPGn in any case.

• Regarding answer patterns, APLn tAPGn stored in G in L16 trivially verifies

APLn t APGn w APGn , and thus δ(APLn t APGn ) ≤ δ(APGn ).

In all cases, Λi−1 ≥ Λi. Let Gi be the state of G after iteration i. There are

two cases:
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• If Λi−1 > Λi, then (Λi−1, Li−1) >Λ,L (Λi, Li) holds.

• If Λi−1 = Λi, then all entries CP 7→ AP ∈ Gi−1 remain unchanged in Gi.
We now prove that no new element is added to P . Elements are added to

P in L27 and L15.

– L27 is not executed because CP v CPG is true in L23.

– L15 is not executed because APLn 6v APGn is false in L14.

Since no elements are added to P , its size decreases in L6. Thus, if Λi−1 = Λi

and the size of P decreases, then (Λi−1, Li−1)>Λ,L(Λi, Li) holds.

In every case the lexicographical order strictly decreases, thus the termination

of Alg. 4 is proved.

In order to prove the correctness of the results stored in G at the end of the

execution of the incremental algorithm (Alg. 4), we study the correctness of the

incremental analysis for only one domain. Let us introduce some notation and

definitions:

Definition 4.3.5 (summaries graph). Given a program P , a domain D, and a

global answer table G with entries of the form (m,D) : CP 7→ AP , a summaries

graph GP is a directed graph represented by the pair 〈N,E〉 where N is the set of

nodes and E ⊆ N ×N is the set edges defined as follows:

• N is the set of methods m for which there is an entry (m,D) : CP 7→ AP

stored in G

• E is the set of edges, generated from G according to the following rules. For

every entry (m,D) : CP 7→ AP ∈ G and every node n ∈ callers(m),

– there is an edge from n to m labeled with CP , and

– there is an edge from m to n labeled with AP

Let P0 be the initial program, and P1 the program after the modification of

method m. We will use GP0 and GP1 to represent the summaries graphs of P0
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and P1 and GP0 and GP1 to refer to the global answer tables generated by the

non-incremental algorithm (Alg. 3) for P0 and P1, respectively. We will use G|M
to refer to the subset of G that contains the entries related to methods in the set

M .

Given two answer tables G1 and G2, we say that G1 v G2 when ∀(m,D) :

CP1 7→ AP1 ∈ G1, there exists (m,D) : CP2 7→ AP2 ∈ G2 such that CP1 v
CP2 ∧ AP1 v AP2.

Definition 4.3.6 (affected edge). Let GP0 and GP1 be the summaries graphs for

programs P0 and P1, respectively. We say that an edge STP1 of GP1 that goes to

node m is an affected edge when:

• Node m exists in GP1 but not in GP0, or

• The corresponding edge from P0, STP0, satisfies the following condition:

STP0 6w STP1

An affected path in a summaries graph is a path formed by affected edges only.

Definition 4.3.7 (affected methods). Let GP0 and GP1 be the summaries graphs

for programs P0 and P1, respectively. We say that a method m is affected when

there is an affected edge that goes to m.

In what follows we exploit the fact that there is only one method m which has

been modified. It can be extended to several methods applying it one at a time.

Proposition 4.3.8. All affected nodes of GP1 are reachable from the modified

method m by an affected path.

Proof. Let us prove it by contradiction. Let us assume the following:

(*) “There exists an affected node n not reachable from the node cor-

responding to the modified method m by an affected path.”

We use the correctness result of Alg. 3, which is similar to other worklist

algorithms ([NNH99], Sec. 6.1). Observe that Alg. 3 returns the least fixed point

of the analysis regardless of the order in which events are processed.
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If n is an affected node, then, by definition, there is at least one affected edge

from another method n′ to n, and n′ is neither connected from m by an affected

path, since otherwise there would be an affected path from m to n. Let N be the

set of affected nodes connected to n by affected paths. This set does not contain

m. All edges STP1 that connect nodes not in N to nodes in N are such that

STP1 v STP0 , where STP0 is the corresponding edge in GP0 . Let M be the set of

such nodes not in N .

It is straightforward to prove that if STP1 v STP0 for an edge that connects

node a to node b, where a, b ∈ N and STPi
corresponds to a call pattern, then the

corresponding entries (b,D) : STP0 7→ APP0 ∈ GP0 and (b,D) : STP1 7→ APP1 ∈
GP1 satisfy APP1 v APP0 , and vice versa for STPi

corresponding to an answer

pattern. Therefore, GP1|M v GP0|M . Since Alg. 3 obtains the least fixed point,

it should have obtained results for methods in N such that GP1|N v GP0 |N , since

the information used during the analysis of N , i.e., the one related to methods in

M , is not affected by the modification. But edges in N are affected edges, and

therefore the non-incremental algorithm in Alg. 3 would have not obtained the

least fixed point when handling events related to methods in N for P1, which is

a contradiction.

In order to handle changes in several methods, this proposition can be ex-

tended for global answer tables which are obtained from the incremental algo-

rithm.

Theorem 4.3.9 (correctness of Alg 4). Given a program P , its analysis results

stored in G, and a method m which has been modified, incremental fixpoint(m)

returns a correct G for all methods in P .

Proof. For proving the correctness, let start by proving that one iteration of

the loop in L4-17 of the incremental analysis (Alg. 4) correctly propagates its

new information to other nodes. We consider a global answer table, G0, the

results from the analysis of method m, extracted from P , and with entry m :

CPm 7→ APm ∈ G0. The analysis of m starts by calling noincr:analysis, which

consecutively calls process analysis. During the analysis of m, we distinguish the

following two cases:
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• Descendants: the reanalysis of a method may find calls to another method

m′ with calling pattern CP ′ (L32 of Alg. 3). Let CP ′0 represent the call

pattern of the corresponding entry for m′ in G0, if it exists. One of the

following possibilities may occur:

(a) m calls m′, which has no entry in G0. As before, we will consider

w.l.o.g. that m′ : ⊥ 7→ ⊥ exists in G0. Method m′ must be reanalyzed

for the calling pattern CP ′. Alg. 4 covers this case by evaluating in

L20 if the method exists in G0 and forcing its reanalysis by calling

noincr:get proc answer with call pattern CP ′ in L30.

(b) m calls m′ with a call pattern CP ′ that is not contained in the call pat-

tern CP ′0 stored in G0, that is, (m′, D) : CP ′0 7→ AP ′0 ∈ G0 and CP ′ 6v
CP ′0. In this case, m′ must be reanalyzed taking into account the new

information. This condition is evaluated in incr:get proc answer (L23)

which compares the new call pattern with the one stored in G0. Since

the condition in L23 does not hold, m′ is scheduled for reanalysis by

calling noincr:get proc answer (L30) with CP ′0 t CP ′ as calling pat-

tern. m′ will be reanalized because it is added to Q in L17 of Alg. 3

and this reanalysis will transitively handle all methods that have a call

pattern not contained in G0.

(c) m calls m′ with a call pattern CP ′ that is contained in the one CP ′0
stored in G0, that is, CP ′ v CP ′0. The information stored in G0 is

valid for m′ in this iteration, so we can reuse the information stored

in G0. This is evaluated by Alg. 4 in L23 and the information stored

in G0 is returned in L24.

• Ancestors: the reanalysis of a method produces a resulting AP ′ for the

reanalyzed method m. AP0 represents the answer pattern of the corre-

sponding entry for m in G0. Let m′ represent a caller of method m. One of

the following possibilities may occur:

(a) Method m′ has not been reanalyzed during the execution of pro-

cess analysis for method m. In this case we can have two possibilities.
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∗ If AP ′ v AP , no new information is generated and, thus, no new

analysis is required. This case is handled by Algorithm 4 in L14,

checking if the new AP, stored in L, is greater than the one stored

in G0, that is, if APLn v AP Gn . In that case, the algorithm does

not generate any new event.

∗ If AP ′ 6v AP , new information must be propagated to m′. This

case is handled by Algorithm 4 in L14, checking if the new AP,

stored in L, is greater than the one stored in G0, that is, if

APLn 6v AP Gn . In that case, the algorithm adds m′ to P , forc-

ing its reanalysis in subsequent iterations.

(b) Methodm′ has been reanalyzed during the execution of process analysis

for method m. This is because m′ has a new calling pattern found

during the non-incremental analysis. In this case we can have two

possibilities.

∗ If AP ′ v AP , no new information is generated and, thus, no

new analysis is required. This case is handled by the incremental

algorithm (Alg. 4) in L14 and by the non-incremental algorithm

(Alg. 3) in L39, not generating any new event if AP ′ v AP .

∗ If AP ′ 6v AP , we have to propagate new information to m′. This

case is handled by Alg. 3 in L39-40 by calling invalidate callers, if

the new answer pattern is greater than the one stored in L (L39:

AP 6v APL). Procedure invalidate callers of Alg. 3 checks if L has

an entry for m′, if true, L24 schedules a new event to be processed

for m′, forcing its reanalysis.

Once the execution of the reanalysis is completed, G0 must be updated with

the new information to continue the analysis of the rest of remaining methods

that are pending to be analyzed with the up-to-date information. This is done

by the incremental algorithm in the loop in L11-16, that takes the information

from L and copies it to G.

Up to now, we have proved: (i) all affected methods are reachable from m, the

modified method, by propagating the new information along the affected edges
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(Prop. 4.3.8), and (ii) one iteration of the loop in L4-17 of the incremental algo-

rithm correctly propagates the new information to the ancestors and descendants

of the method taken from P . The incremental algorithm starts by executing

incremental fixpoint from the modified method m using the calling pattern infor-

mation taken from G (L9) and propagates its new information to its neighbours,

generating a sequence of global answer tables, G1 ; G2 ; G3 . . .Gn, one G for

each iteration of the loop in L4-19. As it is proved in (i), all affected methods are

reachable starting from m, and the incremental algorithm starts the propagation

of new information from m. Note that m is the only method that has been mod-

ified, the rest of the methods only propagate new information by receiving new

information from affected edges. Thus, when a fixpoint is reached, that is, when

no new information is propagated, the global answer table for the final iteration,

Gn, contains all the information propagated from the modified method through

the whole program and consequently, Gn will contain correct information for all

methods.

Proving the correctness of the algorithm handling multiple domains is straight-

forward. All methods that are reanalyzed must be invalidated and reanalyzed for

all dependant domains. The invalidation of one G entry just forces its reanalysis

but the behaviour of the algorithm is the same than handling only one domain.

G entries are invalidated by the incremental algorithm in L26 and L15, that add,

not only for the current domain, but also for all dependant domains.

4.4 Generation of Cost Relations

Given the size relations, the second phase of cost analysis (see Section 2.3) is

the generation of CRs. This step is performed locally to each rule and hence it

is already “incremental” (or local). Nevertheless, in order to link with the next

phase of the incremental cost analysis (in Section 4.5), we revise what CRs are

and how the incremental analysis has to treat them. Intuitively, the generation

of an equation for a rule consists of the next steps: (1) apply the selected cost

model to each instruction in the rule (a cost model maps an instruction into its
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corresponding cost), (2) abstract each basic instruction by a size constraint and,

(3) when we find a call to a method, the size constraint is the size relation in the

summary above and the cost of the call is defined by a corresponding equation.

Example 4.4.1. Consider the original program before the change in Exam-

ple 4.2.1. By using the cost model that counts number of instructions, the first

rule of Example 4.2.1 is transformed into the equation: mod(l) = 3 + get(l) +

call incr(l)+dup(l′) {l ≥ l′+2, l′ ≥ 0} where the 3 stands for the three calls in the

instruction. The cost of the calls to the methods will be defined by corresponding

equations. For the running example, we get:

mod(l) = 3 + get(l) + call incr(l′) + dup(l′) {l ≥ l′ + 2}
get(l) = 1 {}
while(l) = 3 + call incr(l) + while(l′) {l′ ≥ 0, l ≥ l′ + 2}
dup(l) = 1 + while(l) {l ≥ 0}
call incr(l) = 0 + Inc.incr(l) {}
while(l) = 0 {l = 0}
Inc.incr(l) = 2 {l ≥ 2}

The resulting constraints to the right define the applicability conditions of the

equations and the size relations between the variables. We omit in the equations

the variables that are not involved in the equation guards and because they are

useless for solving the equations.

After a modification in a program, when Algorithm 4 finishes, we need to

generate new CRs for all methods that have been reanalyzed (i.e., those that

have belonged to R). This is because their size relations may have changed; and,

besides, for the changed method its accumulated cost can change as well.

Example 4.4.2. Consider now the modification in Example 4.3.3. When Alg 4

finishes R has contained {get, mod, dup, Incr2.inc} for at least one domain. Thus,

the following CRs must be generated by using the standard CR generation as

explained above:
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mod(l) = 3 + get(l) + call incr(l′) + dup(l′) {l ≥ l′ + 1}
get(l) = 3 {}
dup(l) = 1 + while(l) {l ≥ 0}
while(l) = 3 + call incr(l) + while(l′) {l′ ≥ 0, l ≥ l′ + 1}
while(l) = 0 {l = 0}
call incr(l) = 0 + Inc.incr(l) {}
call incr(l) = 0 + Inc2.incr(l) {}
Inc2.incr(l) = 1 {l ≥ 1}

When comparing the equations with the ones in Example 4.4.1, we observe that

after merging the size information gathered for the two implementations of incr,

in the new CR, we lose information and have to assume that the length of the list

decreases (in the worst-case) by one. Cost relations main, len and Inc.incr do not

need to be updated.

4.5 Incremental Inference of Upper Bounds

As it is described in Chapter 2, the third phase in cost analysis consists in trans-

forming the CRs obtained in Section 4.4 into cost functions, i.e., cost expressions

without recurrences. Since a precise solution often does not exist, cost analyz-

ers infer upper bounds/lower bounds (UBs/LBs) from them which are, resp.,

over/under-approximations of the worst/best-case cost. For the sake of concrete-

ness, we focus on UBs (the problem of LBs is dual). In Section 4.5.1, we first

introduce the notion of UB summary which specifies the information that needs

to be stored in order to recompute UBs after a change in a program (and hence

in its CR). Section 4.5.2 presents an algorithm to support incremental inference

in this step.

4.5.1 The Notion of Cost Summary

Our starting point is the technique [AAGP11] (described in Chapter 2, Sec-

tion 2.4) which proposes an automatic approach to obtaining UBs from CRs by

(1) first, transforming all relations into direct recursion (this process leaves one

relation per SCC) and (2) then, obtaining an UB for the standalone CRs (which
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do not call any other relation) and consecutively replacing such UBs in the equa-

tions which call such relations until all CRs are solved. W.l.o.g., we consider

polynomial CRs defined by a set of equations, each of them containing at most

one recursive call:

〈C(x)=exp+
k∑
i=1

Di(yi) + C(y), ϕ〉 (4.2)

In [AAGP11], automatic techniques to solve C (as well exponential and loga-

rithmic relations) are proposed. The following definition summarizes the solving

process described intuitively in Section 2.4:

Definition 4.5.1 (upper bound [AAGP11]). An upper bound for C(x) is

UBC(x) = #iter ∗ mexp (base cases are ignored for simplicity) where:

1. #iter is an upper bound on the number of recursive calls of C,

2. the size relations (ϕ) are linear constraints on variables x and yi ∪ y,

3. the invariant (ψ) relates variables yi∪ y to their initial values x (we denote
the initial value of a variable x as x0),

4. ubi are upper bounds for each call Di(yi),

5. for each recursive equation, we have that:

mexp′=maximize(exp,x,ψ,ϕ)+
∑k

i=1 maximize(ubi, x, ψ, ϕ)

where function maximize(e, x, ψ, ϕ) returns the maximization of e for ψ and
ϕ w.r.t. the equation entry variables x,

6. if C has k recursive equations, mexp=max(mexp′1, ..., mexp
′
k), where mexp′j

is the maximized cost of equation j obtained in point 5, with j = 1, . . . , k.

Observe that the process of obtaining mexp requires an invariant generation

phase and a maximization of expressions. We cannot make any incrementalization

of these two parts because they are already locally obtained from the CRs (see

the details in [AAGP11]).
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Example 4.5.2 (ub). Let us apply the above definition to solve the CR mod

in Example 4.4.1 which has obtained before applying the modification in Exam-

ple 4.3.3. The standalone CRs Inc.incr and get are already solved since they are

not recursive. Next, we solve while(l′) which is required to solve dup. The follow-

ing invariant holds for this CR ψ = {l′0 ≥ l′ + 2}, which simply states that the

length of the list in the recursive call is strictly smaller than the length of the ini-

tial list. An UB of #iter for while is nat(l′/2). Function nat(v)= max({v, 0}) is

used by the UB solver to avoid negative evaluations. By applying Definition 4.5.1,

UBdup(l′) = 1+(3+2)∗nat(l′/2). Finally, when computing an UB for mod(l), the

UB for dup has to be maximized w.r.t. the entry variable l, ϕ = {l ≥ l′+2, l′ ≥ 0}
and ψ = {l0 = l, l0 ≥ 2}. This results in UBmod(l) = 6 + (1 + 5 ∗ nat(l/2 − 1)),

where we can observe that the maximum cost of dup within mod occurs when

l′ = l − 2.

In the above example, it can be seen that an UB is a global expression which

includes the UBs of the relations it calls. If the CR associated to one method m

changes, since it is not possible to distinguish within an UB which part of the

cost is associated to m, the whole expression must be recomputed. This affects

the UBs of all methods from which m is reachable and often forces recomputa-

tion of all cost functions upwards in the program call graph until reaching the

main method. A fundamental idea to support incremental inference of UBs is to

annotate each cost subexpression with the name of the relation it comes from.

If, additionally, we keep the invariants and the size relations, given an annotated

UB for a method m, it is possible to replace the cost subexpressions associated to

those methods invoked from m whose UB has changed by the new (maximized)

UBs, without having to recompute the whole UB for m. Thus, instead of using

the UBs in Definition 4.5.1, we use the notion of UB summary.

Definition 4.5.3 (upper bound summary). In the same conditions of Defini-

tion 4.5.1, an UB summary for C(x) is a tuple UBS
C(x) = 〈#iter · aexp, ψ, ϕ〉,

where

aexp = maximize(exp, ψ, ϕ, x) +
∑k

i=1[maximize(remove annot(aubi), ψ, ϕ, x)]Di:
such that:

• aubi is the annotated cost expression in the upper bound summary of Di,
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• function remove annot removes the annotations of an expression, and

• [e]D is an annotation of e with the name of the relation D it originates.

The notation aexp.set expr([e]m,exp) is used to rewrite in aexp the annotated
subexpression e with exp keeping the same annotations.

An important observation in the above definition is that the annotations refer

only to direct calls from the relations.

Example 4.5.4 (UB summary). UB summaries for some selected CRs are:

UBwhile(l) = 〈(3 + [2]Inc.incr(l′)) ∗ nat(l/2),

{l0 ≥ l + 2, l ≥ 0},
{l = l′}〉

UBS
dup(l) = 〈1 + [(3 + 2) ∗ nat(l/2)]while(l′),

{l0 = l, l0 ≥ 0},
{l = l′, l ≥ 0}〉

UBS
mod(l) = 〈3 + [1]get(l′) + [2]incr(l′′) + [(1 + 5 ∗ nat(l/2− 1))]dup(l′′′),

{l0 = l, l0 ≥ 2},
{l = l′, l = l′′, l ≥ l′′′ + 2, l′′′ ≥ 0}〉

UBS
main(l) = 〈6 + [2 + 3 ∗ nat(l)]len(l′) + [7 + 5 ∗ nat(l/2− 1)]mod(l′′),

{l0 = l},
{l = l′, l = l′′, l ≥ 2}〉

Observe that the annotations refer only to direct calls from the relations, i.e.,

those of transitive calls are removed before maximizing the expression.

Note that the only difference with the UB of Example 4.5.2 is in the annota-

tions.

4.5.2 Incremental Inference of Summaries

The input to the algorithm for reconstructing UB summaries is the table of sum-

maries, named U , which were previously computed, and the list of methods that

have been reanalyzed in Algorithm 4, named C (i.e., those elements that have
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belonged to P along the execution of Algorithm 4.) The first important point

to notice is that (1) the summaries for all methods in C must be recomputed, as

well as (2) those fragments of the summaries of the ancestors of methods in C
that correspond to the cost of the reanalyzed methods. However, the actions to

perform in each case are different: (1) while the summaries of C must be fully

recomputed, as a change in the size relations might affect all components of an

UB (#iter, invariants, size relations and maximized expressions can be different),

(2) in the summaries of the ancestors of a method m in C, we just need to re-

place those subexpressions annotated as m with the new maximized UB for m.

As in Algorithm 4, we use a flag in the summaries table U to indicate wether

the content of an entry is valid or not. An important idea is to first process all

methods in C and, since full summaries for them might not be yet produced (as

information about relations invoked from them might not be valid), generate only

UB skeletons.

Definition 4.5.5 (upper bound skeleton). In the same conditions of Defini-

tion 4.5.1, an upper bound skeleton for C(x) is a tuple SKC(x)=〈#iter·sexp, ψ, ϕ〉,
where sexp is the annotated expression exp+

∑k
i=1[ ]Di

and denotes any value.

In what follows, function do skeleton(C(x)) generates the upper bound skeleton

for C.

The difference between summaries and skeletons is that the UBs of the invoked

relations are not filled (we write ) and maximization is not yet performed. Once

the skeletons have been computed for all summaries in C, the algorithm can

treat in the same way C and their ancestors (i.e., actions 1 and 2 above must

not be distinguished anymore). In particular, given a relation m, all we need to

do is replace the UBs of the relations invoked from m by their new maximized

expressions (when needed). This is done by function do summary of Algorithm 5.

Example 4.5.6 (skeleton). The change of Example 4.3.3 leads to the following

skeletons for mod and dup:
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SKwhile(l) = 〈(3 +max([ ]Inc.incr(l′), [ ]Inc2.incr(l′))) ∗ (l),

{l0 ≥ l + 1, l ≥ 0},
{l = l′}〉

SKdup(l) = 〈1 + [ ]while(l′),

{l = l0, l0 ≥ 0},
{l = l′, l ≥ 0}〉

SKmod(l) = 〈3 + [ ]get(l′) +max([ ]Inc.incr(l′′), [ ]Inc2.incr(l′′)) + [ ]dup(l′′′),

{l0 = l, l0 ≥ 2},
{l = l′, l = l′′, l ≥ l′′′ + 1, l′′′ ≥ 0}〉

Note that the skeleton of dup differs from the initial one because of the new im-

plementation of incr. This leads to a different #iter and introduces the max

expression which includes the worst-case costs of both implementations of incr.

As main has not been reanalyzed, its skeleton will not be computed again.

1: proc reconstruct summaries()
2: P = ∅
3: for all m(x) in C do
4: 〈aexpm, ψ, ϕ〉=do skeleton(m(x))
5: U .update(m,〈aexpm, ψ, ϕ〉)
6: U .invalidate(m(x) ∪ ancestors(m))
7: P.add(m(x) ∪ ancestors(m))
8: for all m(x) in P do
9: do summary(m(x))

10: U .validate all()

11: function do summary(m(x))
12: 〈aexpm, ψ, ϕ〉 = U .get(m)
13: if m 6∈ P then
14: return remove annot(aexpm)
15: for all [ ]p(y) in aexpm do
16: if (m ∈ C) ∨ U .is invalid(p) then
17: expp = do summary(p(y))
18: expp = maximize(expp,x,ψ,ϕ)
19: aexpm.set expr([ ]p,expp)
20: P.remove(m);
21: U .update(m,〈aexpm, ψ, ϕ〉)
22: return remove annot(aexpm)

Algorithm 5: Incremental Upper Bounds Algorithm

Intuitively, Algorithm 5 works as follows. Procedure reconstruct summaries

updates the entries for all methods in C with their skeletons and activates the

invalid flag for all relations that require reprocessing (i.e., C and their ancestors).

It also builds the list P made up of such relations. Function do summary takes

care of replacing the affected components by the new maximized UBs. The base
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case of the recursion (L13) is when the relation is not in P (either because its

recomputation was not needed or because it has already been recomputed). We

remove its annotations because U only keeps the outer level of annotations, as

seen in Definition 4.5.3. If it is not a base case (L15-19), we need to obtain new

maximized expressions for those subexpressions of aexpm when (i) the expression

is in C (this is because its size relations might have changed and we need to

maximize again all components) or (ii) because the invoked relation is invalid.

Lines 17-19 take care of recursively obtaining the summary for the subexpression,

maximizing it and placing it inside the summary. Once all components of aexpm
have been treated (L20), the relation m is removed from the list of pending

relations to process P and its summary is updated (L21). The result is returned

without annotations in order to use it from the calling site.

Example 4.5.7 (algorithm 5). The change in Example 4.3.3 forces the execution

of do skeleton for all methods in C = {mod, dup, get, Inc2.incr}. All those methods

and their ancestors (main) are added to P. Let us assume that mod is the first

summary computed. Since mod is in C, it needs the summary of dup. Hence,

do summary(dup) is invoked and a new summary of dup is produced by using its

skeleton in Example 4.5.6. Then, dup is removed from P and we obtain:

UBS
while(l) = 〈(3 +max([2]Inc.incr(l′), [1]Inc2.incr(l′))) ∗ nat(l),

{l0 ≥ l + 1, l ≥ 0},
{l = l′}〉

UBS
dup(l) = 〈1 + [(3 + 2) ∗ nat(l)]while(l′),

{l = l0, l0 ≥ 0},
{l = l′, l ≥ 0}〉

In order to obtain UBmod, we need to maximize UBdup, which leads to:

UBS
mod(l) = 〈3 + [3]get(l′) +max([2]Inc.incr(l′′), [1]Inc2.incr(l′′))) + [1 + 5 ∗ nat(l − 1)]dup(l′′′),

{l0 = l, l0 ≥ 2},
{l = l′, l = l′′, l ≥ l′′′ + 1, l′′′ ≥ 0}〉
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For brevity, the recomputation of the UBs for incr and get is not described. Next,

the summary of main is recomputed. Since main was invalidated but not reana-

lyzed, its summary can be reused as a skeleton, maximizing again only its invali-

dated subexpressions. Only UBmod must be maximized, and UBlen can be reused:

UBS
main(l) = 〈5 + [2 + 3 ∗ nat(l)]len(l′) + [9 + 5 ∗ nat(l − 1)]mod(l′′),

{l = l0},
{l = l′, l = l′′, l ≥ 2}〉

All in all, the incremental recomputation of UBs has avoided computing the skele-

ton (#iter, invariant) and one maximization for main, and summaries of len and

Inc.incr remain the same.

Theorem 4.5.8 (termination of Alg. 5). Given a set of relations C whose CRs

have changed and a table of upper bounds summaries U , reconstruct summaries

terminates.

For proving the theorem, let us introduce some notation. Given a table of

summaries U , where C and D are two relations defined in U , we say that C

depends on D, denoted C 7→ D, iff there is an upper bound summary such that

UBS
C = 〈#iter · aexp, ψ, ϕ〉, where aexp = exp0 +

∑k
i=1[expi]Di

and expi denote

unannotated expressions. A directed graph G is a pair 〈N,E〉 where N is the

set of nodes and E ⊆ N × N is the set edges. We associate to each table of

summaries U a graph GU , which is the directed graph obtained from U by taking

the set of entries in U as N and where (C,D) ∈ E iff C 7→ D. A relation D is

reachable from a relation C in U iff there is a path from C to D in GU .

The resulting graph is a directed acyclic graph, since the entries in U are

in closed-form. Given a node n, ancestors(n) is the set of nodes in the graph

from which n is reachable (i.e., the set of entries whose closed-form upper bound

depends on the expression of n). descendants(n) is the set of nodes in the graph

reachable from n (the set of entries in U which must be computed to obtain

the upper bound of n). ancestors and descendants can also be applied to sets of

nodes. The level of a node n in a directed acyclic graph is the length of the longest

path reachable from n. The depth of a directed acyclic graph is the longest path

in the graph.
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We start the proof by demonstrating that all reanalyzed methods and their

ancestors will be added to the list of pending methods.

Proposition 4.5.9. All reanalyzed methods and their ancestors will be added to

P.

Proof. The first step of the algorithm is to invalidate all methods that depend on

methods reanalyzed and whose size relations may be affected by the modification

in the source code. Let us assume the following statement:

(*) “There exists an entry m in U whose upper-bound must be com-

puted and it is not included in P after the execution of lines 3-7”

The proof now is by contradiction. We make a case distinction:

• If m ∈ C: m is added to P in L7, which contradicts the assumption (*);

• else, if m ∈ ancestors(C): m is added to P in L7, which contradicts the

assumption (*);

In the second step, we demonstrate that all pending methods will be processed

and, at the end of the algorithm, all pending upper-bounds are computed. We

assume that L18-19 are correct.

Lemma 4.5.10. All methods in P are processed and, at the end of the algorithm,

all invalidated upper-bounds are computed.

Proof. Assuming the proposition 4.5.9, U contains all reanalyzed methods as

invalids in L8. Termination of function do summary is ensured by the fact that

GU is a directed acyclic graph. This is because the entries in U are in closed form.

The recursive do summary function performs a depth traversal of this graph.

As regards correctness, the proof is by induction on the depth of GU .

• Base case: Let GU be a graph of depth 0 and m be a node in GU of level

0. There are no paths starting from m in the graph. In L13 of function

do summary there are two cases:
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– If m 6∈ P , then the summary stored in U is correct.

– Otherwise, since there is no edge from m to any other node, loop in L15

does not iterate, and m is removed from P . The skeleton generated

and stored in U (L4-5) is correct.

• Inductive case: Let us suppose that the summaries stored in U are correct

for a graph Gi
U of depth smaller or equal than i.

Let Gi+1
U a graph of depth i + 1 and m be a node of level i + 1 in Gi+1

U .

According to L13, there are two cases:

– If m is not in P , we have two situations:

∗ m was not added to P in L7. This is because m 6∈ C and m 6∈
ancestors(C). The summary for m stored in U is not affected by

the change, and therefore correct.

∗ m was added to P in L7, its entry in U recomputed (L15-19),

updated in U (L21) and removed from P (L20). Therefore, in U
the entry has already been correctly recomputed.

– Otherwise, all relations from whichm directly depends on are traversed

in L15. They correspond in Gi+1
U to the nodes for which there is an

edge from m to them. Let nj, 1 ≤ j ≤ k be those nodes.

All relations in P are marked as invalid in U (L6), and are not validated

again until the algorithm finishes (L10).

L16 leads to several cases:

∗ If m ∈ C, then its skeleton was generated in L4 and its sum-

mary is reconstructed (L17-19), updated in U (L21) and removed

from P (L20) avoiding its recomputation. The recursive call to

do summary in L17 is applied to nj, which in Gi+1
U have levels

lj < i+ 1. The induction hypothesis guarantees that do summary

produces correct results for a graph of depth less or equal than i.

The subgraph formed by nj and all nodes reachable from nj is a

graph of depth less or equal than i, and thus the hypothesis holds.
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Consequently, the summary for m is reconstructed using correct

information from nj.

∗ If m 6∈ C, those nodes nj which are invalid in U are correctly

reconstructed in L17-19 as in the previous case, and the summary

for m is updated in U with the correct maximized subexpressions

for nj (L21).

Proof. [Theorem 4.5.8] Proof of theorem is straightforward by combining

Proposition 4.5.9 and Lemma 4.5.10.

4.6 Experiments

COSTA implements all global analyses in the method summary definition (see

Definition 4.3.1) and, in addition, it performs nullness and sign analyses (see

Section 2.3.1). The incremental multi-domain algorithm has been implemented

and applied to all domains.

Our experimental evaluation has been performed on slightly modified ver-

sions of programs Voronoi, Health, TSP, and MST, from the JOlden benchmark

suite [Sui], available at http://costa.ls.fi.upm.es. The modifications (de-

scribed in [AGGZ10] in detail) are performed in order to overcome some lim-

itations inherent to the size analysis and the UB solver of COSTA and are

not related to the incremental extensions presented in this chapter. Further-

more, we have used as benchmarks the following programs borrowed from the

Apache-Commons Project [Pro]: StringEncrypt and ParseTarHeader from Apache-

Commons-Math, and TestOrthogonal and TestDistance from Apache-Commons-

Compress. The source code of all of them is available at the Apache-Commons

web site. The cost model used in our experiments is the number of bytecode

instructions required for executing the corresponding programs.

Table 4.1 shows some information about the size and complexity of the bench-

mark programs. For each program, the column #BY shows the number of byte-

code instructions, #RU indicates the number of RBR rules, and #EQ the number
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Program Info. Analysis Times

Experiment #BY #RU #EQ TCRs TUB TT

MST 250 120 82 9870 570 10440
TSP 189 78 55 760 10940 11700

Health 209 73 47 4020 240 4260
Voronoi 202 66 40 460 140 600

StringEncrypt 204 136 101 419 750 1169
ParseTarHeader 341 164 115 1200 2590 3790
TestOrthogonal 221 88 56 500 180 680

TestDistance 150 93 62 550 90 640

Table 4.1: Benchmarks information

of relations in the CR. The table also contains information about the analysis

times (in ms) taken by the non-incremental analysis. The total analysis time

(TT) is split into the time taken to build the CRs (TCRs) and the time to obtain

a closed-form UB from the CRs (TUB).

Our experiments are based on making a series of systematic modifications

to the benchmark programs and comparing the time taken by the incremental

approach with the time taken by the non-incremental one. We use the notation

Pi−1 → Pi to represent a program change, where Pi−1 and Pi correspond to the

versions of the program before and after the change, respectively. We refer to the

non-incremental analysis of a program P starting from method m as A(P,m),

while A∆(Pi,mi) is used to represent the incremental analysis of Pi starting from

mi with respect to the information computed and stored in Gi−1 and Ui−1 in the

previous analysis. In what follows, as abbreviation, we use Ti to denote both Gi
and its associated Ui. Given a sequence of changes in a program, P0 → P1 →
· · · → Pi, the successive incremental analyses can be denoted as:

A(P0,m0)
T0−→ A∆(P1,m1)

T1−→ . . .
Ti−1−−→ A∆(Pi,mi)

We have performed a series of experiments which aim at evaluating the ben-

efits of using our proposed incremental approach. The first two experiments

capture the most common development scenario where (most of) the program is

available and the programmer is making relatively small changes which affect one
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method at a time. In our expected usage scenario, analysis is triggered whenever

the user saves the class file he/she is editing. Depending on the case, the change

can be minimal (for example, after refactoring the code) or important, where the

analysis results for the new version of the method drastically differ from the pre-

vious ones and they have to be propagated to calling methods. This first extreme

case is captured by our first experiment (Touch experiment), where we simply

replace the code of a method with a new version which in reality is identical to

the previous one. In this case, analysis will reanalyze the updated method, but no

change has to be propagated. The second extreme case is captured by our second

experiment (Adding experiment), where we replace a missing implementation of

a method, which simply returns the default value of the return type†, with the

final implementation.

We use the term unweighted speedup (S) to denote the ratio between the time

required to perform the non-incremental analysis of a program, and the time

required by the incremental analysis. In addition to S, experiments tables also

contain the weighted speedup (W), weighting formula S with respect to the number

of bytecode instructions of the modified method. Larger methods are more likely

to be changed, thus W provides a more realistic estimate.

(1) Touch experiment: In this experiment we just have one version of the

program, P0, on which the incremental and non-incremental analyses are per-

formed. The incremental analysis is systematically performed by starting from

each method mi in P0 and using the previously computed T 0:

A(P0,m0)
T0−→ A∆(P0,mi)

The speedup (S) is computed as the ratio between n times the time taken by

the non-incremental analysis of P0, and the addition of the times of the incre-

mental analysis starting the analysis from different methods in P (mi):

S =
n× time(A(P0,m0))
n∑
i=1

time(A∆(P0,mi))

† Methods that return a non-void type keep a default return statement: return null for
methods that return an object type, return 0 for methods that return an integer, etc.
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Incremental Vs. Non incremental Speedup

Unweighted Speedup Weighted Speedup

Benchmark SCRs SUB ST WCRs WUB WT

MST 29.05 6.97 24.77 18.89 4.10 15.78
TSP 2.72 3.97 3.85 1.77 2.09 2.07

Health 7.39 2.35 6.59 5.35 1.61 4.73
Voronoi 4.18 6.22 4.53 2.45 2.49 2.46

StringEncrypt 10.90 7.09 8.11 7.56 3.92 4.74
ParseTarHeader 5.52 2.03 2.54 8.09 3.31 4.07
TestOrthogonal 3.25 10.00 3.96 2.64 4.27 2.94

TestDistance 3.09 4.95 3.26 4.05 6.09 4.25

Arith. Mean 8.26 5.45 7.20 6.35 3.49 5.13

Table 4.2: Touch experiment results

The above results (Table 4.2) clearly show that the incremental approach is

much more efficient than the non-incremental one when handling small changes

in the program, with a weighted speedup of over 5.

(2) Adding experiment: This experiment captures the second extreme case

in which we replace a missing implementation of a method with its final code. In

this situation, the analysis of the new version will require triggering analysis of

possibly multiple (transitively) calling methods.

In this case, the experiment considers different initial versions of the program

P i
0, each one missing the implementation of one method. Each P i

0 is then ana-

lyzed using the non-incremental algorithm, A(P i
0,m0). Subsequently, the code of

mi is restored producing the version P1 (the final version of the program), and

incrementally reanalyzed, A∆(P1,mi), using T i0:

A(P i
0,m0)

T i
0−→ A∆(P1,mi)

This procedure is illustrated in Figure 4.3, using as example a small call graph

composed by four methods. Colored nodes represent empty methods, and white

nodes represent implemented methods.

This procedure is systematically applied in order to modify all methods of the

benchmark program. The speedup of the incremental approach is calculated as

follows:
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m0

m2
m1

m3 →

m0

m2
m1

m3

m0

m2
m1

m3 →

m0

m2
m1

m3 . . .

A(P 1
0 ,m0)

T 1
0−−→ A∆(P1,m1) A(P 2

0 ,m0)
T 2
0−−→ A∆(P1,m2)

Figure 4.3: Adding experiment scheme

S =
n× time(A(P1,m0))
n∑
i=1

time(A∆(P1,mi))

Experimental results (Table 4.3) clearly show that the incremental approach

efficiently handles method modifications in a program. It is efficient in both

parts of the resource usage analysis, in the generation of CRs and the UB solving.

Altogether it achieves a significant improvement over non-incremental analysis,

being almost two times faster.

Incremental Vs. Non incremental Speedup

Unweighted Speedup Weighted Speedup

Benchmark SCRs SUB ST WCRs WUB WT

MST 2.17 1.14 2.07 2.03 1.31 1.97
TSP 1.08 1.33 1.31 1.14 1.46 1.43

Health 2.57 1.17 2.41 1.75 1.23 1.71
Voronoi 1.55 2.07 1.64 1.31 1.86 1.40

StringEncrypt 1.26 1.30 1.28 2.04 2.40 2.26
ParseTarHeader 1.54 1.30 1.37 2.46 2.35 2.39
TestOrthogonal 1.14 1.79 1.26 1.22 1.55 1.30

TestDistance 1.38 1.80 1.43 1.90 2.44 1.96

Arith. Mean 1.59 1.49 1.60 1.73 1.82 1.80

Table 4.3: Adding experiment results

(3) Top-down development experiment: A question which remains to be

answered is whether the incremental approach can be less efficient than analyzing
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the whole program. This question is important since there is no formal guaran-

tee that the incremental analysis will be more efficient than the analysis from

scratch. In fact, it is possible to find situations where global analysis can be

more efficient. To assess this situation, our third experiment tries to perform a

stress test of the worst possible situation that can arise. This occurs when we

analyze in an incremental fashion a program, by adding a method at a time,

following a top-down order in the call graph. In the experiment, we start with

empty implementations that lack the content of the method for all methods. We

progressively add the implementations one by one starting from the root of the

call graph. This scenario will require the largest possible number of reanalysis.

m0

m2
m1

m3 →

m0

m2
m1

m3 →

m0

m2
m1

m3 →

m0

m2
m1

m3

A(P0,m0)
T0−→ A∆(P1,m1)

T1−→ A∆(P2,m2)
T2−→ A∆(P3,m3)

Figure 4.4: Top-down development experiment scheme

The scenario is illustrated in Figure 4.4. The experiment starts from the

analysis of an initial versionA(P0,m0) where all methods except the main method

m0 are empty. In the second step, the code of a method m1, directly invoked by

m0, is added generating a new version of the program P1, and the incremental

analysis A∆(P1,m1) is applied by using T 0. In the following steps, the contents

of the remaining methods are added one by one (mi), producing different versions

of the program (Pi). The speedup (S) of the incremental analysis is computed as

S =

n∑
i=1

time(A(Pi,mi))

n∑
i=1

time(A∆(Pi,mi))

Table 4.4 shows that, even in the extreme case of having the reanalyze a large

number of methods, the use of our incremental analysis is not worse than the

global one. Only in one example (TestOrthogonal) there is a small slowdown in
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Incremental Vs. Non incremental Speedup

Unweighted Speedup Weighted Speedup

Benchmark SCRs SUB ST WCRs WUB WT

MST 3.42 1.43 2.96 3.42 1.48 2.94
TSP 1.04 1.34 1.32 1.05 1.40 1.38

Health 1.18 1.09 1.17 1.05 0.96 1.04
Voronoi 1.33 1.74 1.40 1.10 1.52 1.17

StringEncrypt 1.35 1.31 1.32 1.51 1.63 1.58
ParseTarHeader 1.29 1.26 1.27 1.29 1.41 1.37
TestOrthogonal 1.09 1.85 1.23 0.84 1.16 0.91

TestDistance 1.36 2.26 1.44 1.39 2.16 1.46

Arith. Mean 1.51 1.53 1.51 1.46 1.46 1.48

Table 4.4: Top-down development experiments results

the total weighted speedup. While, there is an overall gain of 1.48. This, together

with the first two experiments, indicates that incremental analysis will provide

important gains in the most common and realistic scenarios while not introduce

overhead in the less optimal scenarios.

a

4.7 Related Work

The most related approach to ours is [HPMS00], which develops a generic incre-

mental analysis algorithm for constraint logic programs (CLP). In addition to the

language differences, their incremental algorithm does not handle domain depen-

dencies like ours, which is fundamental for an application such as resource usage

which relies on multiple pre-analyses with dependencies among them. Besides,

our work provides novel definitions for cost summaries which enable the incre-

mental reconstruction of cost functions, a problem that has not been considered

before. Another difference is that the granularity of the analysis is our case is

at the level of methods, while [HPMS00] considers modifications at the level of

rules. This is because in a CLP program the notion of method does not exist as

such. A method can be seen as a predicate definition and hence the changes in

CLP are handled at the level of rules. This finer-grained modularity does not fit
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well in the imperative setting.

Other approaches to incremental analysis are developed for other purposes,

e.g., [WG97] proposes an efficient incremental parser for general context-free

grammars which allows generating incremental tools. The work in [Hed89] de-

velops an approach to incremental static semantic analysis for object-oriented

languages using door attribute grammars as a way to maintain incremental in-

formation, while our work is mostly focused on the reconstruction of the analysis

information and the cost summaries. An incremental analysis based on incre-

mental specifications such as those found in formal models is presented in [GL98],

while we do not rely on specifications. The notion of summary has been previ-

ously used in other contexts [RHS95, DDA08] different from incremental analysis.

It is also worth mentioning recent work on incremental analysis [GKP12] which

defines an incremental analysis via domain specific solvers, for declarative mod-

eling language based on first-order logic with sets and relations. The latter work

is also related to directed incremental symbolic execution (DiSE) [PYRK11], a

technique which in principle is more related to testing than to static analysis.

However, the novelty of DiSE is to combine the efficiencies of static analysis tech-

niques to compute program difference information with the precision of symbolic

execution to explore program execution paths and generate path conditions af-

fected by the differences. We believe that a combined approach like this one could

be also adopted for the inference of resource consumption information.

Modular analysis [CC02, Log11] is related to incremental analysis in that it

aims at reducing the time and memory required to perform analysis by splitting

the program into smaller parts and storing analysis results, either automatically

or by using user-provided summaries. Our technique is modular in the sense

that it automatically stores summaries, though it does not split the program into

smaller parts. On the other hand, modularity per se does not handle the efficient

recomputation of analysis results after a program change.
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Chapter 5

Verified Resource Guarantees

This chapter presents our main results on the certification of resource guarantees

that were presented in the international conferences PEPM’11 [ABG+11a] and

FASE’12 [ABG+12].

5.1 Introduction

There is a growing awareness, both in industry and academia, of the crucial role

of formally proving the correctness of systems. The analysis algorithms used

in COSTA for inferring the main components of the UB generation were proven

correct at a theoretical level. However, there is no guarantee that correctness is

preserved in the actual implementation which is rather involved. Verifying the

correctness of modern static analyzers like COSTA is rather challenging, among

other things, because of the sophisticated algorithms used in them, their evolution

over time, and, possibly, proprietary considerations. A simpler alternative is to

construct a validating tool [PSS98] which, after every run of the analyzer, formally

confirms that the results are correct and, optionally, generates correctness proofs.

Such proofs could then be translated to resource certificates [CW00, Nec97].

KeY [BHS06] is a state-of-the-art source code verification tool for the Java

programming language. Its coverage of Java is comparable to that of COSTA

(nearly full sequential Java, plus a simplified concurrency model). KeY imple-

115



ments a logic-based setting of symbolic execution that allows deep integration

with aggressive first-order simplification. While the degree of automation of KeY

is very high on loop- and recursion-free programs, the user must in general supply

suitable invariants to deal with loops and recursion. In general, invariants that

are sufficient to prove complex functional properties cannot be inferred automat-

ically. However, simpler invariants that are sufficient to establish UBs can be

automatically derived in many cases and this is exactly COSTA’s forte. Our work

is based on the insight that the static analysis tool COSTA and the formal verifi-

cation tool KeY have complementary strengths: COSTA is able to derive UBs of

Java programs including the invariants needed to obtain them. This information

is enough for KeY to prove the validity of the bounds and provide a certificate.

The main contribution of this work is to show that, using the Java verification

tool KeY, it is possible to formally and automatically verify the correctness of

the UBs obtained by COSTA.

5.1.1 Organization of the Chapter

This chapter is structured as follows: Section 5.2 reviews the main components

of the UBs inferred by COSTA by means of a running example and describes

the JML annotations needed to verify the correctness of the UB. Section 5.3

describes how KeY verifies the JML annotations generated by COSTA by using

dinamic logic by focusing on integer manipulating programs only. Section 5.4

presents the additional components that need to be verified for carrying out the

extension for handling heap manipulating programs. Section 5.5 describes how

the KeY logic has been extended to express and verify structural heap properties

and path-length assertions. Experimental evaluation is described in Section 5.6.

Section 5.7 relates our approach with existing related work.

5.2 Upper-Bounds for Integer Manipulating Pro-

grams

In this section, we summarize the techniques used in COSTA for automatically

inferring UBs (we refer to Section 2.4 for more details), and we identify the proof
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obligations that need to be verified using KeY for integer manipulating programs.

5.2.1 Main Components of an Upper Bound

Figure 5.1 shows a Java source code (JML annotated), that implements the insert

sort algorithm. COSTA receives a non-annotated version of the above program

and, for the cost model that counts the number of executed bytecode instructions,

produces the (asymptotic) UB insert sort(a)=a2, where a refers to A.length. The

underlying analysis used in COSTA infers UBs for each iterative and recursive

constructs (loops) and then composes the results in order to obtain an UB for

the method of interest. As mentioned before, in order to infer an UB for a single

loop, it first infers an UB A on the cost of a single execution of its body, an UB I

on the number of iterations that it can make, and then A∗I is an UB for the loop.

In order to infer A and I COSTA relies on several program analysis components

that provide essential information (see Section 2.4 for further details):

Ranking functions. For each loop, COSTA infers a linear function from the

loop variables to N which is decreasing at each iteration. For example, for the

loop at line 17, it infers function f(a, j) = nat(a− j). This function can be safely

used to bound the number of iterations. In the example, if a3 and j3 are the initial

values of a and j, then it is guaranteed that f(a3, j3) is an UB on the number of

iterations of the loop.

Loop invariants. For each loop in the program, COSTA infers an invariant

that involves the loop’s variables and their initial values (i.e., their values before

entering the loop). Let us denote by i1 the initial value of i when entering the loop

at line 9. COSTA infers the invariant i ≤ i1, which states that i is always smaller

than or equal to its initial value when the program reaches the loop condition.

This information, together with the size relations below, is needed to compute

the worst-case cost of executing one loop iteration.

Size relations. Given a fragment of code or a scope (details below), COSTA

infers relations between the values of the program variables at a certain program
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1 void insert sort(int A[]) {
2 int i, j, v;
3 //@ ghost int i0 = i; int j0 = j; int a0 = a;
4 i=A.length-2;
5 //@ assert (i = i0 − 2 ∧ j = j0 ∧ a = a0)
6 //@ ghost int i1 = i; int j1 = j; int a1 = a;
7 //@ loop invariant i ≤ i1
8 //@ decreases i > 0 ? i : 0
9 while ( i ≥ 0 ) {
10 //@ ghost int i2 = i; int j2 = j; int a2 = a;
11 j=i+1;
12 v=A[i];
13 //@ assert j = i2 + 1 ∧ i2 ≥ 0
14 //@ ghost int i3 = i; int j3 = j; int a3 = a;
15 //@ loop invariant j ≤ a3

16 //@ decreases a− j>0 ? a− j : 0
17 while ( j < A.length && A[j] < v) {
18 A[j-1]=A[j];
19 j++;
20 }
21 A[j-1]=v;
22 i--;
23 }
24 }

Figure 5.1: Integer manipulating running example

point of interest within the scope and their initial values when entering the scope.

For example, at program point 13, it infers that j = i2 + 1, where i2 is the value

of i when entering the scope that contains line 13 (i.e., the scope here is the loop

body). In this case the relation is a simple consequence of the instruction at line

11. In general, however, it may not be trivial to infer such relations nor to prove

that they are correct.

Upper Bounds. Once the above information has been inferred, it is straight-

forward to compute an UB for the method. Let us show this process on the

integer manipulating running example:
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Inner loop. The process starts from the innermost loops. Thus, we start with the

loop at line 17. Assuming that executing the condition costs (at most) c1 instruc-

tions, and that the cost of each iteration (i.e., the loop body) is c2 instructions,

then it is clear that nat(a3 − j3) ∗ (c1 + c2) + c1 is an UB on the cost of this loop

(because c1 and c2 are constant).

Outer loop. Next, we move to the outer loop at line 9. Let us assume that the cost

of the comparison is c3 instructions, the code at lines 11–12 are c4 instructions,

and the code at lines 21–22 are c5 instructions. Then, the cost of each iteration of

this loop is c3 +c4 +nat(a3 − j3) ∗ (c1 + c2) + c1 +c5, where the underlined subex-

pression corresponds to the cost of the inner loop computed above. Note that in

this case, each iteration might have a different cost, since a3− j3 is not the same

for all iterations. Simply multiplying the number of iterations nat(i1) by such a

cost is unsound. The solution is to find an expression U in terms of the initial

values of a1, i1, j1 that does not change during the loop and such that U ≥ a3− j3
in all iterations. Then, nat(i1) ∗ [c3 + c4 + nat(U) ∗ (c1 + c2) + c1 + c5] + c3 is an

UB for the loop. In order to find such U , COSTA uses the loop invariant (line 7)

and the size relations (line 13) as follows: it solves the parametric integer pro-

gramming problem of maximizing the objective function a3 − j3 w.r.t. the loop

invariant and the size relations where i1, a1, j1 are the parameters. This produces

an expression in terms of i1, a1, j1 which is greater than or equal to a3 − j3 in all

iterations of the loop. In our example, it is U = a1 − 1.

Method. We finally can compute the cost of the insert sort method. Assume that

the cost of line 4 is c6, then the cost of the method is

c6 + nat(i1) ∗ [c3 + c4 + nat(a1 − 1) ∗ (c1 + c2) + c1 + c5] + c3.

We need to express this UB in terms of the input parameter a. For this, COSTA

maximizes (using parametric integer programming) i1 and a1 − 1 w.r.t. the size

relation at line 5 and, respectively, obtains a − 2 and a − 1. Therefore, the UB

for insert sort is:
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c6 + nat(a− 2) ∗ [c3 + c4 + nat(a− 1) ∗ (c1 + c2) + c1 + c5] + c3

5.2.2 UBs Claim as JML Annotations

To justify that the UBs obtained by COSTA are correct, we need to provide formal

correctness proofs for all the claims above. This includes the ranking functions,

invariants, size relations, the cost model that provides all ci, and the underlying

PIP solver.

Correctness of the cost model is trivial as it is a simple mapping from each

instruction to a number. Correctness of the underlying PIP solver is also straight-

forward if we use the maximization procedure defined in [AAGP11], which is

based only on the Gaussian elimination algorithm. Therefore, we concentrate on

verifying the correctness of the ranking functions, size relations and invariants.

They are inferred by large software components whose correctness has not been

verified. We now briefly describe the translation of the different pieces of infor-

mation generated by COSTA into JML annotations on the Java program, which

will allow their verification in KeY.

Ranking functions. For a given loop, when COSTA infers a ranking function

of the form nat(`), we translate it to the JML annotation

//@ decreasing ` > 0 ? ` : 0

since nat(`) can be defined as an if-then-else. COSTA might provide also ranking

functions of the form log(nat(`) + 1), which are handled similarly.

Invariants. COSTA infers an invariant ϕ for each loop. This invariant involves

the loop variables v̄ and auxiliary variables w̄ such that each wi represents the

initial value of vi. The JML annotation for this invariant consists of one line

defining all w̄ as ghost variables

//@ ghost int w1 = v1;. . .; int wn = vn

and one line for declaring the loop invariant

//@ loop invariant ϕ.
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Size relations. Size relations are linear constraints between the values of a set

of variables of interest between two program points. As we have seen, this allows

composing the cost of the different program fragments. For each loop (or method

call), COSTA infers the relation ϕ between the values before the loop entry (or

the call) and the entry of its parent scope. Suppose that the loop (or the call) is

at line Ll, its parent scope starts at line Lp, and that v̄ are the variables of interest

at Ll and w̄ represent their values at Lp. Then we add the JML annotation

//@ ghost int w1 = v1;. . .; int wn = vn

immediately after line Lp to capture the values of v̄ at line Lp, and the JML

annotation

//@ assert ϕ

immediately before line Ll to state that the relation ϕ must hold at the program

point.

Additional size relations inferred by COSTA are input-output size relations.

These are linear constraints that relate the return value of a given method to

its input values. For example, suppose that we replace “i--” in line 22 of the

insert sort program by “i=decrement(i)” where decrement is defined by

int decrement(int x) {return x-1;}.

Then COSTA infers the relation “ϕ ≡\result=x-1” which is used to bound the

number of iterations of that loop. In order to verify this relation in KeY we add

the JML annotation “//@ ensures ϕ” to the contract of decrement:

/*@ public behavior

@ requires true;

@ ensures \result=x-1;

@ signals only Exception;

@ signals (Exception) true; @*/

5.3 Verification of Upper Bounds using KeY

We now describe the verification techniques used in KeY to prove program cor-

rectness, focusing on those relevant to UB verification.
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5.3.1 Verification by Symbolic Execution

The program logic used by KeY is JavaCard Dynamic Logic (JavaDL) [BHS06], a

first-order dynamic logic with arithmetic. Programs are first-class citizens similar

to Hoare logics but, in dynamic logic, correctness assertions can appear arbitrar-

ily nested. JavaDL extends sorted first-order logic by a program modality 〈·〉·
(read “diamond”). Let p denote a sequence of executable Java statements and φ

an arbitrary JavaDL formula, then 〈p〉φ is a JavaDL formula which states that

program p terminates and in its final state φ holds. A typical formula in JavaDL

looks like

i
.
= i0 ∧ j

.
= j0 −> 〈

p︷ ︸︸ ︷
i = j− i; j = j− i; i = i + j;〉(i

.
= j0 ∧ j

.
= i0)

where i, j are program variables represented as non-rigid constants. Non-rigid

constants and functions are state-dependent: their value can be changed by pro-

grams. The rigid constants i0, j0 are state-independent: their value cannot be

changed. The formula above says that if program p is executed in a state where

i and j have values i0, j0, then p terminates and in its final state the values of

the variables are swapped. To reason about JavaDL formulas, KeY employs a

sequent calculus whose rules perform symbolic execution of the programs in the

modalities. Here is a typical rule:

ifSplit
Γ, b =⇒ 〈{p}rest〉φ,∆ Γ,¬b =⇒ 〈{q}rest〉φ,∆

Γ =⇒ 〈if (b) {p} else {q} rest〉φ,∆

As values are symbolic, it is in general necessary to split the proof whenever an

implicit or explicit case distinction is executed. It is also necessary to represent the

symbolic values of variables throughout execution. This becomes apparent when

statements with side effects are executed, notably assignments. The assignment

rule in JavaDL looks as follows:

assign
Γ =⇒ {x := val}〈rest〉φ,∆

Γ =⇒ 〈x = val; rest〉φ,∆
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The expression in curly braces in the premise is called update and is used in KeY

to represent symbolic state changes. An elementary update loc := val is a pair of

a location (program variable, field, array) and a value. The meaning of updates

is the same as that of an assignment, but they can be composed in different

ways to represent complex state changes. Updates u1, u2 can be composed into

parallel updates u1‖u2. In case of clashes (updates u1, u2 assign different values

to the same location) a last-wins semantics resolves the conflict. This reflects

left-to-right sequential execution. Apart from that, parallel updates are applied

simultaneously, i.e., they do not depend on each other. Update application to a

formula/term e is denoted by {u}e and forms itself a formula/term. Application

of updates is similar to explicit substitutions, but is aware of aliasing.

Loops and recursive method calls give rise to infinitely long symbolic execu-

tions. Invariants are used in order to deal with unbounded program structures

(an example is given below). Exhaustive application of symbolic execution and

invariant rules results in formulas of the form {u}〈〉φ where the program in the

modality has been fully executed. At this stage, symbolic updates are applied to

the postcondition φ resulting in a first-order formula that represents the weakest

precondition of the executed program wrt φ.

To verify UBs in KeY the annotated source code files provided by COSTA are

loaded. For methods where COSTA did not generate a contract, KeY provides

the following default contract:

/*@ public behavior

@ requires true;

@ ensures true;

@ signals only Exception;

@ signals (Exception) true; @*/

This contract requires to prove termination for any input and ensures that all

possible execution paths are analyzed. Abrupt termination by uncaught excep-

tions is allowed (signals clauses). To prove that a method m satisfies its contract,

a JavaDL formula is constructed which is valid iff m satisfies its contract. Slightly

simplified, for insert sort this formula (using the default contract) is:

∀o; ∀a0; {a := a0 ‖ self := o}(¬(a
.
= null) ∧ ¬(self

.
= null)→
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〈 try{ self.insert sort(a)@NestedLoops; }
catch(Exceptione){exc = e; }〉( exc

.
= null ∨ instanceException(exc))

The above formula states that for any possibly value o of self and any value a0 of

the argument a which satisfy the implicit JML preconditions (self and a are not

null), the method invocation self.insert sort(a) terminates (required by the use of

the diamond modality) and in its final state no exception has been thrown or any

thrown exception must be of type Exception.

Verification of Proof-Obligations

The proof obligation formulae must be proven valid by executing the method

insert sort symbolically starting with the execution of the variable declarations.

Ghost variable declarations and assignments to ghost variables (//@ set var=val;)

are symbolically executed just like Java assignments.

Verifying Size Relations. If a JML assertion assert ϕ; is encountered during

symbolic execution, the proof is split: the first branch must prove that the asser-

tion formula ϕ holds in the current symbolic state; the second branch continues

symbolic execution. In the insert sort example, a proof split occurs exactly before

entering each loop. This verifies the size relations among variables as derived by

COSTA and encoded in terms of JML assertion statements (see Section 5.2.2).

Input-output size relations encoded in terms of method contracts are proven cor-

rect as outlined in Section 5.3.1.

Verifying Invariants and Ranking Functions. Verification of the loop in-

variants and ranking functions obtained from COSTA is achieved with a tailored

loop invariant rule that has a variant term to ensure termination:

loopInv

(i) Γ =⇒ Inv ∧ dec ≥ 0,∆

(ii) Γ, {UA}(b ∧ Inv ∧ dec
.
= d0) ⇒

{UA}〈body〉(Inv ∧ dec < d0 ∧ dec ≥ 0),∆

(iii) Γ, {UA}(¬b ∧ Inv) =⇒ {UA}〈rest〉φ,∆

Γ =⇒ 〈while (b) { body } rest〉φ,∆
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Inv and dec are obtained, respectively, from the loop invariant and decreasing

JML annotations generated by COSTA. Premise (i) ensures that invariant Inv

is valid just before entering the loop and that the variant dec is non-negative.

Premise (ii) ensures that Inv is preserved by the loop body and that the variant

term decreases strictly monotonic while remaining non-negative. Premise (iii)

continues symbolical execution upon loop exit. The integer-typed variant term

ensures loop termination as it has a lower bound (0) and is decreased by each

loop iteration. Using COSTA’s derived ranking function as variant term obviously

verifies that the ranking function is correct. The update UA assigns to all locations

whose values are potentially changed by the loop a fixed, but unknown value.

This allows using the values of locations that are unchanged in the loop during

symbolic execution of the body.

Generated Proofs. A single proof for each method is sufficient to verify the

correctness of the derived loop invariants, ranking functions and size relations.

The reason is that the contracts capturing the input-output size relations are not

more restrictive w.r.t. the precondition than the default contracts are. Hence,

with the verification of the input-output size relation contracts, we analyze all

feasible execution paths and prove correctness of all loop invariants, ranking

functions and JML assertion annotations. We stress that the proofs run fully

automatic. Much of the time is needed to derive specific instances of arithmetic

properties. As future work, we plan to do proof profiling and to reduce the search

time by hashing frequently occuring normalisation steps.

5.4 Upper Bounds for Heap Manipulating Pro-

grams

When input arguments of a method are of reference type, its UB is usually not

specified in terms of the concrete values within the data structures, but rather in

terms of some structural properties of the involved data structures. For example,

if the input is a list, then the UB would typically depend on the length of the list

instead of the concrete values in the list.
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1 //@ requires \acyclic(x)
2 //@ ensures \acyclic(r)
3 //@ ensures \depth(r) ≤ \depth(x) + 1
4 public static List insert(List x, int v) {
5 //@ ghost List x0 = x;
6 List p = null;
7 List c = x;
8 List n = new List(v, null);
9 //@ ghost List c0 = c
10 //@ assert \depth(n) = 1 ∧ \depth(c0) = \depth(x0)
11 //@ decreasing \depth(c)
12 //@ loop invariant \depth(c0) ≥ \depth(c)
13 //@ loop invariant \acyclic(n) ∧ \acyclic(p) ∧ \acyclic(x) ∧ \acyclic(c)
14 //@ loop invariant \disjoint({n, x})∧\disjoint({n, c}) ∧ \disjoint({n, p})
15 //@ loop invariant !\reachPlus(p, x)∧!\reachPlus(n, x)∧!\reach(n, p)
16 while ( c != null ∧ c.data < v){
17 p = c;
18 c = c.next;
19 }
20 if ( p == null ) {
21 n.next = x;
22 x = n;
23 } else {
24 n.next = c;
25 p.next = n;
26 }
27 return x;
28 }

Figure 5.2: Heap manipulating running example, with (partial) JML annotations

Example 5.4.1. Consider the program in Figure 5.2 where class List implements

a linked list as usual. For method insert, COSTA infers the UB c1 ∗ nat(x) + c2

where x refers to the length of variable x, and c1/c2 are constants representing

the cost of the instructions inside/before and after the loop. The UB depends on

the length of x, because the list is traversed at lines 16–19.

The example shows that cost analysis of heap manipulating programs requires

inferring information on how the size of data structures changes during the exe-

cution, similar to the invariants and size-relations that are used to describe how
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the values of integer variables change. To do so, we first need to fix the meaning

of “size of a data structure”. We use the path-length measure which maps data

structures to their depth, such that the depth of a cyclic data structure is defined

to be ∞. Recall that the depth of a data structure is the maximum number of

nodes (i.e. objects) on a path from the root to a leaf. Using this size measure,

COSTA infers invariants and size relations that involve both integer and reference

variables, where the reference variables refer to the depth of the corresponding

data structures. Once the invariants are inferred, synthesizing the UBs follows

the same pattern as in Section 5.2. In the following, we identify the essential in-

formation of the path-length analysis (and related analyses) that must be verified

later by KeY.

5.4.1 Path-Length Analysis

Path-length analysis [SMP10] (see also the size analysis in Section 2.3.4) is based

on abstracting program states to linear constraints that describe the correspond-

ing path-length relations between the different data structures. For example, the

linear constraint x < y represents all program states in which the depth of the

data structure to which x points is smaller than the depth of the data structure to

which y points. Starting from an initial abstract state that describes the path-

length relations of the initial concrete state, the analysis computes path-length

invariants for each program point of interest. In order to verify the path-length

information inferred by COSTA using KeY, we have extended JML with the new

keyword \depth that gives the depth of a data structure to which a reference

variable points. In particular, for invariants, size-relations, and contracts, if the

corresponding constraints include a variable x, corresponding to a reference vari-

able x, we replace all occurrences of x by \depth(x).

Example 5.4.2. We explain the various path-length relations inferred by COSTA

for the method insert of Figure 5.2, and how they are used to infer an UB. Due

to space limitations, we only show the annotations of interest. For the loop at

lines 16–19, COSTA infers that the depth of the data structure to which c points

decreases in each iteration. Since the depth is bounded by 0, it concludes that

nat(c) is a ranking function for that loop. As a part of the loop invariant, COSTA
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infers that c0 ≥ c where c0 refers to the depth of the data structure to which c

points before entering the loop and c to the depth of the data structure to which c

points after each iteration. Using this invariant, together with the knowledge that

the depth of c0 equals to the depth of x, we have that c1 ∗ nat(x) + c2 is an UB

for insert (since the maximum value of c is exactly x). Another essential relation

inferred by the path-length analysis (captured in the ensures clause in line 3) is

that the depth of the list returned by insert is smaller than or equal to the depth

of x plus one. This is crucial when analyzing a method that uses insert since it

allows tracking the size of the list after inserting an element.

Path-length relations are obtained by means of a fixpoint computation which

(symbolically) executes the program over abstract states. As a typical example,

executing x=y.f adds the constraint x′ < y to the abstract state if the variable y

points to an acyclic data structure, and x′ ≤ y otherwise. On the other hand,

executing x.f=y adds the constraints
∧
{z′ ≤ z+ y | z might share with x} if it is

guaranteed that x does not become cyclic after executing this statement. This is

because, in the worst case, x might be a leaf of the corresponding data-structure

pointed to by z, and thus the length of its new paths can be longer than the old

ones at most by y. This constraint means that the depth of any reference variable

that might share a common region (in the heap) with x is modified to be smaller

than or equal to its previous depth plus the depth of y. Obviously, to perform

path-length analysis, we require information on (a) whether a variables certainly

points to an acyclic data structure; and (b) which variables might share common

regions in the heap.

5.4.2 Cyclicity analysis

The cyclicity analysis of COSTA [GZ10] infers information on which variables may

point to (a)cyclic data structures. This is essential for the path-length analysis.

The analysis abstracts program states to sets of elements of the form: (1) x y

which indicates that starting from x one may reach (with at least one step) the

object to which y points; (2) 	x which indicates that x might point to a cyclic

data structure; and (3) x�y which indicates that x might alias with y.
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Starting from an abstract state that describes the initial reachability, alias-

ing and cyclicity information, the analysis computes invariants (on reachability,

aliasing and cyclicity) for each program point of interest by means of a fixpoint

computation which (symbolically) executes the program instructions over the ab-

stract states. For example, when executing y=x.f, then y inherits the cyclicity

and reachability properties of x; and when executing x.f=y, then x becomes cyclic

if before the instruction the abstract state included 	y, y x, or y�x.

On the verification side, to make use of the inferred cyclicity relations, we ex-

tend JML by the new keyword \acyclic which guarantees acyclicity. In contrast

to COSTA, JML and KeY use shape predicates with must-semantics. Acyclicity

information is then added in JML annotations at entry points of contracts and

loops where we specify all variables which are guaranteed to be acyclic. For loop

entry points as invariants (as in line 13) and for contracts as pre- and postcondi-

tions (as in lines 1, 2). To make use of the reachability relations we extend JML

by the new keyword \reachPlus(x, y), which indicates that y must be reachable

from x in at least one step, and use the standard keyword \reach(x, y) which in-

dicates that y must be reachable from x in zero or more steps (i.e., they might

alias). The may-information of COSTA about reachability and aliasing is then

added as must-predicates in JML (in loop entries and contracts) as follows: let

A be the set of judgments inferred by COSTA for a given program point, then

we add !\reachPlus(x, y) whenever x y 6∈ A, and we add !\reach(x, y) whenever

x y 6∈ A ∧ x�y 6∈ A (for example, in line 15).

5.4.3 Sharing analysis

Knowledge on possible sharing is required by both path-length and cyclicity anal-

yses. The sharing analysis of COSTA is based on [SS05] where abstract states are

sets of pairs of the form x•y which indicate that x and y might share a common

region in the heap. Similarly to the path-length and cyclicity analysis, the sharing

invariants are propagated from an initial state by means of a fixpoint computa-

tion to the program points of interest. For example, when executing y=x.f, the

variable y will only share with anything that shared with x (including x itself); on

the other hand, when executing x.f=y, the variable x keeps its previous sharing
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relations, and in addition it might share with y and anything that shared with y

before.

Obviously, KeY needs to know about the sharing information inferred by

COSTA to verify acyclicity and path-length properties. To this end, we extended

JML by the new keyword \disjoint which states that its argument, a set of vari-

ables, does not share any common region in the heap (for example, in line 14).

5.5 Verification of Path-Length Assertions

As explained in the previous section, structural heap properties, including acyclic-

ity, reachability and disjointness, are essential both for path-length analysis and

for the verification of path-length assertions. However, while the path-length

analysis performed by COSTA maintains cyclicity and sharing, the complemen-

tary properties are used as primitives on the verification side. The reason is that

the symbolic execution machinery of KeY starts with a completely unspecified

heap structure that subsequently is refined using the inferred information about

acyclicity and disjointness. In the following we explain how structural heap prop-

erties are formalized in the dynamic logic (JavaDL) used in this chapter and

implemented in KeY [BHS06].

5.5.1 Heap Representation

First we briefly explain the logical modeling of the heap in JavaDL.∗ The heap

of a Java program is represented as an element of type Heap. The Heap data

type is formalized using the theory of arrays and associates locations to values. A

location is a pair (o, f) of an object o and a field f . The select function allows to

access the value of a location in a heap h by select(h, o, f). The complementary

update operation which establishes an association between a location (o, f) and

a value val is store(h, o, f, val). To improve readability, when the heap h it is

clear from the context, we use the familiar notation o.f and o.f := val instead

of select and store expressions. Based on this heap model, we define a rule for

∗Note that this is not the heap model described in earlier publications on KeY such as
[BHS06]. In the present chapter we use an explicit heap model based on [Wei11].
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symbolic execution of field assignments (cf. the assign rule in Section 5.3.1). It

simply updates the global heap program variable with the updated heap object:

assign
Γ =⇒ {heap := store(heap, o, f, v)}〈rest〉φ,∆

Γ =⇒ 〈o.f = v; rest〉φ,∆

5.5.2 Predicates for Structural Heap Properties

For the sake of readability, in Section 5.4, we gave simplified versions of the pred-

icates \depth, \acyclic , \reach, \reachPlus and \disjoint as compared to the actual

implementation. In reality, these predicates have an extra argument that restricts

their domain to a given set of fields. For example, instead of \depth(x) we might

actually have \depth({x.next}, x) which refers to the depth of x considering only

those paths that go through the field next. A syntactic analysis infers automat-

ically a safe approximation of these sets of fields by taking the fields explicitly

used in the corresponding code fragment.

Ultimately, the various structural heap properties are reduced to reachability

between objects which, therefore, must be expressible in the underlying program

logic. The counterpart of JML’s \reach predicate in Java DL is

\reach : Heap× LocSet×Object×Object× int
and expresses bounded reachability (or n-reachability): an object e is n-reachable

from an object s with respect to a heap h and a set of locations l (of type LocSet)

if and only if there exists a sequence s = o1o2 · · · on = e where oi+1 = oi.fi and

(oi, fi) ∈ l for all 0 < i < n. The predicate \reach(h, l, s, e, n) is formally defined

as n ≥ 0 ∧ s 6= null ∧ ((n
.
= 0 ∧ s .

= e) ∨ ∃f.(o, f) ∈ l ∧ \reach(h, l, s.f, e, n− 1)).

As a consequence, from null nothing is reachable and also null cannot be reached.

Location sets in Java DL are formalized in the data type LocSet which pro-

vides constructors and the usual set operations (see [Wei11] for a full account).

Here we need only three location set constructors: the constructor empty for the

empty set, the constructor singleton(o, f) which takes an object o and a field f

and constructs a location set with location (o, f) as its only member, and the

constructor allObjects(f) which stands for the location set {(o, f) | o ∈ Object}.

Example 5.5.1. \reach(h, allObjects(next), head, last, 5) is evaluated to true iff

the object last is reachable from object head in five steps by a chain of next fields.
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Based on \reach we could directly axiomatize structural heap predicates such

as \acyclic(h, l, o) or \disjoint(h, l, o, u). Instead we prefer to reduce structural

heap predicates to \reachPlus(h, l, o, u) which is the counterpart of the JML func-

tion of the same name in Section 5.4.2 and expresses reachability in at least one

step. This has several advantages over using \reach: (1) the definition of predi-

cates such as \acyclic does not use the step parameter of the \reach predicate and

one would use existential quantification to eliminate it which impedes automa-

tion; and (2) for \reachPlus(h, l, o, u) to hold one has to perform at least one step

using a location in l. This renders the definition of properties such as \acyclic
less cumbersome as the zero step case has been excluded.

The predicate \reachPlus can defined with the help of \reach and this def-

inition can be used if necessary, however, in the first place we use a separate

axiomatization of \reachPlus. This helps to avoid (or at least to delay as long as

possible) the reintroduction of the step parameter and, hence, an additional level

of quantification. We describe in the following section one central difficulty that

arises when reasoning about structural heap properties and how we solved it to

achieve higher automation.

5.5.3 Field Update Independence

When reasoning about structural heap predicates one often ends up in a situation

where one has to prove that a heap property is still valid after updating a location

on the heap, i.e, after executing one or several field assignments. For instance,

we might know that \acyclic(h, l, u) holds and have to prove that after executing

the assignment o.f=v; the formula \acyclic(store(h, o, f, v), l, u) holds.

A precise analysis of the effect of a field update is expensive and makes au-

tomation significantly harder. As it is common in this kind of situation, it helps

to optimize the common case. In the present context, this means to decide in

most cases efficiently that a field assignment does not effect a heap property at

all. This is sufficiently achieved by two simple checks:

1. The expression singleton(o, f) ⊆ l checks whether an updated location o.f

is in the location set l of the heap property to be preserved. This turns out
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to be inexpensive for most (if not all) practically occurring cases. Whenever

this check fails, the resulting store can be removed from the argument of

the heap property. For instance, an assignment o.data=5 to the data field

of a list does not change the list structure which depends solely on the

next field. In that case we can rewrite \acyclic(store(h, o, data, 5), l, u) to

\acyclic(h, l, u).

2. To check whether an object o whose field has been updated is reachable from

one of the other mentioned objects, is more expensive than the previous one,

but still cheaper than a full analysis. For example, we can check whether the

object o is reachable from object u in case of \acyclic(store(h, o, f, v), l, u).

If the answer is negative we can again discard the store expression.

5.5.4 Path-Length Axiomatization

In general, the JML assertions generated by COSTA refer to the path-length of

a data structure o as \depth(l, o) where l is the location set restricting the depth

to certain locations. This JML function is mapped to the Java DL function

\depth(h, l, o) which is evaluated to the maximal path-length of o in heap h using

only locations from l. Its axiomatization is based on the n-reachability predicate

\reach expressing that there exists an object u reachable in \depth(h, l, o) steps

and that there is no object z reachable from o in more than \depth(h, l, o) steps.

This definition is not used by default by the theorem prover, instead, automated

proof search relies mainly on a number of lemmas that state more useful higher-

level properties. For instance, given a term like \depth(store(h, o, f, v), l, u) there

is a lemma which checks that o is reachable from u and some acyclicity require-

ments. If that is positive then the lemma allows us to use the same approximation

for \depth in case of a heap update as detailed in Section 5.4.1.

5.6 Experimental Evaluation

The implementation of our approach has required the following non-trivial ex-

tensions to COSTA and KeY (note that COSTA works on Java bytecode, and
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Bench
COSTA KeY

Total
Tsize Tinv Trf Tana Tjml Nodes Branches Tver

slm 22 20 26 112 4 3641 36 6700 6816
nlf 30 16 24 106 6 5665 37 2800 2912
bubsort 38 24 144 296 14 14890 230 57800 58110
inssort 30 12 46 142 6 9875 167 29300 29448
selsort 40 20 112 232 8 12564 209 40700 40940
pastri 66 38 138 394 14 29723 337 110100 110508

Table 5.1: Statistics about integer manipulating programs

KeY on Java source): (1) output the proof obligations using the original variable

names (at the bytecode level, operand stack variables are often used); (2) place

the obligations in the Java source at the precise program points where they must

be verified (entry points of loops); (3) finding a suitable JML format for repre-

senting proof obligations on UBs has required a considerable number of iterations

(defining ghost variables, introducing assert constructs, etc.); (4) implement the

JML assert construct in KeY which was not supported hitherto.

Regarding heap manipulating programs, it requires the following extensions to

both COSTA and KeY: (1) generate and output in COSTA the JML annotations

\depth, \acyclic and \disjoint so that KeY can parse them; (2) synthesize suitable

proof obligations in Java DL that ensure correctness of the resource analysis; (3)

axiomatize the JML \depth, \acyclic and \disjoint functions in KeY as described in

Section 5.5 and implement heuristics for automation; and (4) implement heuristic

checks in KeY that allow fast verification of the common case as described in

Section 5.5.4.

Table 5.1 shows some experiments using a set of representative programs,

which include sorting algorithms for integer manipulating programs, namely bub-

ble sort (bubsort), insert sort (inssort), and selection sort (selsort); a method to

generate a Pascal Triangle (pastri); simple (slm) and nested loops (nlf). All times

are measured in ms and were obtained using an Intel Core2 Duo at 2.53GHz

with 4Gb of RAM running a Linux 2.6.32. Table 5.2 shows our experiments

using a set of representative programs that perform common list operations as

well as searching for an element in a binary tree. Columns Tsize, Tinv and Trf
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Bench
COSTA KeY

Total
Theap Tana Tjml Nodes Branches Tver

traverse 14 36 2 1208 52 2300 2338
create 54 150 8 1499 47 3100 3258
insert 282 374 16 19252 636 40800 41190
indexOf 26 86 4 2439 67 5900 5990
reverse 72 130 8 14206 673 20900 21038
array2List 62 154 8 1457 37 2600 2762
copy 76 132 10 14147 673 22600 22742
searchtree 142 202 6 2389 97 3700 3908

Table 5.2: Statistics about heap manipulating programs

(in Table 5.1), show, respectively, the times taken by COSTA to obtain the size

relations, loop invariants and ranking functions. Column Theap (in Table 5.2)

shows the time taken by COSTA to perform the heap analysis (cyclicity, sharing

and path-length). Columns Tana and Tjml show the time taken to perform the

whole analysis (which includes the previous times) and to generate the JML an-

notations. Column Tver shows the time taken by KeY in order to verify the JML

annotations generated by COSTA. As time measurements for Java are imprecise,

we state in addition the number of nodes and branches of the generated proof

to provide some insight on the proof complexity. Column Total shows the time

taken by the whole process.

Our preliminary experiments show already that a proof-carrying code ap-

proach to verified resource guarantees can be fully automatic using COSTA and

KeY. In our framework the code originating from an untrusted producer should

be bundled with the proof generated by COSTA + KeY for a given resource con-

sumption. A notable result of our experiments is that KeY was able to spot a

bug in COSTA, as it failed to prove correct one invariant which was incorrect. In

addition, KeY could provide a concrete counterexample that helped understand,

locate and fix the bug, which was related to a recently added feature of COSTA.
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5.7 Related work

We have demonstrated that automatic verification of the upper bounds inferred

by COSTA using KeY is feasible. Instead of verifying the correctness of the under-

lying static analysis, we take the alternative approach of verifying the correctness

of their results. Interestingly, this approach, though weaker in principle than

verification of the analyzer, has advantages in the context of mobile code. Fol-

lowing proof-carrying-code [Nec97] principles, code originating from an untrusted

producer can be bundled together with the proof generated by KeY for its de-

clared resource consumption. This way, the code consumer can check locally and

automatically using KeY whether the claimed resource guarantees are verified.

Many software verification tools including KeY [BHS06], Why [FM07], Veri-

Fast [SJPW08], or Dafny [Lei10] rely on automatic theorem proving technology.

While most of these systems are expressive enough to model and prove heap

properties of programs, such proofs are far from being automatic. The main

reason is that functional verification of heap properties requires complex invari-

ants that cannot be found automatically. In addition, automated reasoning over

heap-allocated symbolic data is far less developed than reasoning over integers or

arrays.

With this work we also show that the automation built into a state-of-the-

art verification system is sufficient to reason successfully about resource-related

heap properties. The main reasons for this are: (a) the required invariants are

inferred automatically in the resource analysis stage; (b) a limited and carefully

axiomatized signature for heap properties expressed in logic is used. This confirms

the findings of the SLAM project [BBL+10] that existing verification technology

can be highly automatic for realistic programs and a restricted class of properties.

There exist several other cost analyzers, like [GMC09, HH10], that automat-

ically infer resource guarantees for different programming languages. However,

none of them formally prove the correctness of the UBs they infer. An exception

is [CW00], which verifies and certifies resource consumption (for a small program-

ming language and not for heap properties). For the particular case of memory

resources, [DP11] formally certifies the correctness of the static analyzer. We have

taken the alternative approach of certifying the correctness of the upper bounds
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that the tool generates. This is not only much simpler, but has the additional

advantage that the generated proofs can act as resource certificates.
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Chapter 6

Concurrency: Object-Sensitive

Cost Analysis for Concurrent

Objects

This chapter presents our work on cost analysis for concurrent objects which adds

to the analysis described in [AAG+11] object-sensitivity to separate the cost in

different cost centers. This work is under revision for the special issue of QAPL’12

to be published in the journal Theoretical Computer Science.

6.1 Introduction

Distribution and concurrency are currently mainstream. The Internet and the

broad availability of multi-processors radically influence software. Many stan-

dard desktop programs have to deal with distribution aspects like network trans-

mission delay and failure. Furthermore, many chip manufactures are turning to

multicore processor designs as a way to increase performance in desktop, enter-

prise, and mobile processors. This brings renewed interest in developing both

new concurrency models and associated programming languages techniques that

help in understanding, analyzing, and verifying the behavior of concurrent and
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distributed programs.

One of the most important features of a program is its resource consump-

tion. By resource, we mean not only traditional cost measures (e.g., number

of executed instructions, or memory consumption) but also concurrency-related

measures (e.g., number of tasks spawned, number of requests to remote servers).

Automatically inferring the resource usage of concurrent programs is challenging

because of the inherent complexity of concurrent behaviors.

In addition to traditional applications, like optimization [Weg75], verification

and certification of resource consumption [CW00], cost analysis opens up inter-

esting applications in the context of concurrent programming. In general, having

anticipated knowledge on the resource consumption of the different components

which constitute a system is useful for distributing the load of work. Upper

bounds can be used to predict that one component may receive a large amount of

remote requests, while other siblings are idle most of the time. Also, our frame-

work allows instantiating the different component?s with the particular features

of the infrastructure on which they are deployed. Then, analysis can be used to

detect the components that consume more resources and may introduce bottle-

necks. Lower bounds on the resource usage can be used to decide if it is worth

executing locally a task or requesting remote execution.

In order to develop our analysis, we consider a concurrency model based on the

notion of concurrently running (groups of) objects, similar to the actor-based and

active-objects approaches [SPH10, SM08]. These models take advantage of the

concurrency implicit in the notion of object in order to provide programmers with

high-level concurrency constructs that help in producing concurrent applications

more modularly and in a less error-prone way. Concurrent objects communicate

via asynchronous method calls. Intuitively, each concurrent object is a monitor

and allows at most one active process to execute within the object. Scheduling

among the processes of an object is cooperative, i.e., a process has to release the

monitor lock explicitly, except for termination. Each object has an unbounded

set of pending processes. In case the lock of a concurrent object is free, any

process in the set of pending processes can grab the lock and start to execute.
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6.1.1 Organization of the Chapter

The remainder of the chapter is organized as follows. Section 6.2 presents the

concurrency model we consider in order to develop our analysis. Section 6.3

defines the notion of cost for the concurrent distributed programs that we aim at

approximating by means of the resource analysis.

In Section 6.4, we describe the field-sensitive size analysis for the concurrent

setting presented at [AAG+11]. Section 6.5 adapts the object-sensitive points-to

analysis of Milanova [MRR05, SBL11] to our setting. Then, the points-to infor-

mation gathered by the analysis allows us to define in Section 6.6 object-sensitive

recurrence relations which, together with the size abstractions, constitute the core

of our analysis. Section 6.7 presents the experimental results obtained by apply-

ing our approach over a set of typical applications of concurrent and distributed

programming. Finally, Section 6.8 reviews the related work.

6.2 A Language with Concurrent Objects

The concurrency model of Java and C# is based on threads that share mem-

ory and are scheduled preemptively, i.e., they can be suspended or activated

at any time. To avoid undesired interleavings, low-level synchronization mech-

anisms such as locks have to be used. Thread-based programs are error-prone,

difficult to debug, verify and maintain. In order to overcome these problems,

several higher-level concurrency models that take advantage of the inherent con-

currency implicit in the notion of object have been developed [SPH10, SM08,

JO07, dBCJ07, Mey97]. They provide simple language extensions that allow

programming concurrent applications with relatively little effort. Concurrent

objects [JO07, dBCJ07] form today a well established high-level model for dis-

tributed concurrent systems.

6.2.1 The Concurrency Model

We develop our analysis on the imperative subset of the ABS language [JHS+12],

a simple imperative language with concurrent objects. However, our techniques
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work for some other languages that use actors (e.g., there are implementations

of actor libraries for Scala, Java, Erlang, among others). The central concept of

this concurrency model is that of concurrent object. Conceptually, each object

has a dedicated processor and encapsulates a local heap which is not accessible

from outside this object, i.e., all fields are always accessed using the this object,

and any other object can only access such fields through method calls. Concur-

rent objects live in a distributed environment with asynchronous and unordered

communication by means of asynchronous method calls. Thus, an object has a

set of tasks (i.e., calls) to execute and, among them, at most one task is active

and the others are suspended on a task queue.

Process scheduling is by default non-deterministic, but controlled by processor

release points and future variables in a cooperative way. After asynchronously

calling f := o ! m(e) (object o invokes asynchronously method m with arguments

e), the caller may proceed with its execution without blocking on the call. Here

f is a future variable which refers to a return value that has yet to be computed.

There are two operations on future variables, which control external synchroniza-

tion. First, await f? suspends the active task (allowing other tasks in the object

to be scheduled) until the future variable f has been assigned a value. Second,

the value stored in f can be retrieved using f.get, which blocks all execution in

the object until f gets a value (in case it has not been assigned a value yet). It is

possible to unconditionally release the processor by means of a release instruc-

tion (not used in the running example) which suspends the current task and lets

a pending task in.

Example 6.2.1. Figure 6.1 shows the source code of our running example which

implements a simple file input stream (defined in class FileIS) that provides two

different ways of processing a file. The class contains three fields (defined as class

parameters) which represent, respectively, the name of the file fp, the length of the

file lth and the size of the block to be read from the field blockS. Method readBlock

reads file fp block by block (of sizes blockS) and sums the values retrieved using

get. Method readOnce reads the whole file in just one invocation to readContent.

The latter method calls method process of class Reader which reads and processes

elems elements of the file starting at position pos. Method hdRead represents the
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class FileIS (String fp, Int lth, Int blockS) {
Int readBlock () {

Int res = 0; Int i = lth;
Int incr = 0; Int pos = 0;
while (i > 0) {

if (blockS > i) incr = i;
else incr = blockS;
Fut〈Int〉 f;
f = this ! readContent(pos,incr);
await f?;
res = res + f.get;
i = i - incr;
pos = pos + incr;
}
return res;
}
Int readOnce () {

Fut〈Int〉 f = this ! readContent(0,lth);
await f?;
return f.get;
}

Int readContent(Int pos, Int elems) {
Reader r = new Reader (fp,elems);
Fut〈Int〉 f = r ! process(pos);
await f?; return f.get;
}
} // end class FileIS

class Reader(String fp, Int elems) {
Int hdRead(Int i){ · · · }
Int update(Int a, Int b){ · · · }
Int process(Int pos) {

Int i = 0; Fut〈Int〉 f; Int res = 0;
while (i < elems) {

f = this ! hdRead(pos + i);
await f?;
res = this.update(res,f.get);
i = i + 1;
}
return res;
}
}

main {
FileIS o1 = new FileIS(”A.txt”,20,2);
FileIS o2 = new FileIS(”A.txt”,20,3);
Fut〈Int〉 f1; Fut〈Int〉 f2;

(∗) f1 = o1 ! readOnce();
(∗) f2 = o2 ! readBlock();

await f1?; Int r1 = f1.get;
await f2?; Int r2 = f2.get;

}

Figure 6.1: Running Example

low-level access to the hard-disk and method update performs some arithmetic

operation on its arguments and returns an integer value. We do not show the

code of these methods as they are not relevant for the purpose of the analysis

presentation.
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6.2.2 A Rule-based Representation for Concurrent Ob-

jects

To formalize the resource analysis of concurrent objects, we use an intermediate

representation similar to the RBR of Chapter 2. In the sake of clarity, we ignore

some rules that are not relevant for our purpose (like arrays and some arithmetic

and comparison operators) and we include the concurrency primitives. The new

grammar is:

r ::= m(this, x̄, ȳ)← g, b1, . . . , bn.

b ::= x:=e | this.f :=e | x:=new C | call(ct ,m(rec, x̄, ȳ)) |await g | release |x :=y .get

g ::= true | g ∧ g | x? | e op e

e ::= null | a
a ::= x | n | a−a | a+a | a∗a | a/a

where op∈{>,=,≥}, m(this , x̄, ȳ) is the head of the rule, this is the identifier of

the object on which the method is executing, g specifies the conditions for the rule

to be applicable, and, b1, . . . , bn is the rule’s body. One aspect that is different

from the syntax of Chapter 2 is that calls are of the form call(ct ,m(rec, x̄ , ȳ))

where ct ∈ {m, b} which allows us to distinguish between calls to methods and

intermediate blocks (like while or if-then-else blocks); rec is a variable that refers

to the receiver object; the variables x̄ (resp. ȳ) are the formal parameters (resp.

return values). For intermediate blocks, rec is always this . For methods, ȳ is

either empty or contains a single output variable. Future variables (x?) can be

used in await instructions but not in rule guards. An instruction new C(̄t) is

represented in the RBR by new C followed by a call to the class constructor with

the corresponding parameters t̄. The translation from the high-level programs

to the RBR is (almost) identical to the translation of Java (bytecode) to the

RBR explained in Section 2.2, and thus we skip the details and illustrate it by

an example.

Example 6.2.2. Figure 6.2 depicts the RBR (left) and the CFG (right) of method

readBlock. Loops are extracted in separate CFGs to enable compositional cost

analysis (e.g., the CFG at the bottom is the one for the while loop). The method

is represented by four procedures, readBlock, while, if and if c, which have a cor-

respondence with blocks in the CFG and the entry to the loop. Each procedure
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readBlock(〈this〉, 〈r〉)←
res := 0 , i := this.lth,
incr := 0 , pos := 0 ,
call(b,while(inp, out)),
r := res.

while(inp, out)← i ≤ 0.
while(inp, out)← i > 0,

call(b, if (inp, out)).
if (inp, out)← this.blockS > i ,
incr := i,
call(b, if c(inp, out)).

if (inp, out)← this.blockS ≤ i ,
incr := this.blockS,
call(b, if c(inp, out)).

if c(inp, out)←
call(m, readContent(〈this, pos, incr〉, 〈f 〉)),
await f ?, v := f .get,
res := res + v , i := i − incr ,
pos := pos + incr ,
call(b,while(inp, out)).

yes

i > 0

yes

no

incr = i

blockS > i
no

incr = blockS

Fut〈Int〉 f ;

await f?;

res = res + f .get;

pos = pos + incr ;

Int incr = 0 ;

Int pos = 0 ;

Int res = 0 ;

Int i = lth;

return res;

while(this, res, i, pos);

f=this ! readContent(pos, incr);

i = i − incr ;

Figure 6.2: The RBR and CFG for method readBlock

is defined by means of guarded rules. inp stands for 〈this , res , i , incr , pos〉 and

out for 〈res , i , incr , pos〉. Guards in rules state the conditions under which the

corresponding blocks in the CFG can be executed. When there is more than one

successor in the CFG, we create a continuation procedure and a corresponding

call in the rule. Blocks in the continuation will in turn be defined by means of

(mutually exclusive) guarded rules. As a result of the translation, observe that

all forms of iteration in the program are represented by means of recursive calls.

The unique parameter of the procedure readBlock is the reference to this object.

When calling a block, we pass as arguments all local variables that are needed in

the block. The heap remains implicit.
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6.2.3 Operational Semantics

An execution state (or configuration S) has the form {|a1, . . . , an|}, where ai can

be either an object, a future event, or a method invocation. An object is of the

form ob(o, C, h, 〈tv , s〉,Q), where o is the object identifier, C is its class name, h

is its heap, tv is its table of local variables, s is a sequence of instructions to be

executed by the current task, and Q is the set of pending tasks. A heap h maps

field names (declared in C) to V = Z ∪ {null} ∪ Objects , where Objects denotes

the set of object identifiers. A table of variables tv maps local variables to V. It

contains the special entry destiny to associate the return variable of a method

to the corresponding future variable.

Future events have the form fut(fn, v) where v ∈ V ∪ ⊥. The symbol ⊥
indicates that fn does not have a value yet. A method invocation is of the form

invoke (m(o, x̄), tv , fn), where fn is the future variable in which the return value

should be stored. For simplicity, we assume that all methods return a value. The

operational semantics is given in a rewriting-based style, where, at each step, a

subset of the state is rewritten according to the following rules:

(1)
v = eval(e, h, tv ,Obj ), x ∈ dom(tv)

{|ob(o, C, h, 〈tv , x := e · s〉,Q)|Obj |}; {|ob(o, C, h, 〈tv [x 7→ v], s〉,Q)|Obj |}

(2)
v = eval(e, h, tv ,Obj )

{|ob(o, C, h, 〈tv , this.f := e · s〉,Q)|Obj |}; {|ob(o, C, h[f 7→ v], 〈tv , s〉,Q)|Obj |}

(3)

o′ is fresh, h′ is an empty heap

{|ob(o, C, h, 〈tv , x := new D · s〉,Q)|Obj |};
{|ob(o, C, h, 〈tv [x 7→ o′], s〉,Q), ob(o′, D, h′, ε, ∅)|Obj |}

(4)

ct ∈ {m, b}, r ≡ p(o, x̄ , ȳ)← g , b1 , . . . , bn �tv P ,

tv ′ is a default mapping over vars(r) \ (x̄ ∪ ȳ), eval(g, h, tv ∪ tv ′,Obj ) = true

{|ob(o, C, h, 〈tv , call(ct , p(o, x̄ , ȳ)) · s〉,Q)|Obj |};
{|ob(o, C, h, 〈tv ∪ tv ′, b1, . . . , bn · s〉,Q)|Obj |}

(5)

o′′ = eval(o′, h, tv ,Obj ), v̄ = eval(x̄, h, tv ,Obj ), fn is a fresh future name

{|ob(o, C, h, 〈tv , call(m,m(o′, x̄, y)) · s〉,Q)|Obj |};
{|ob(o, C, h, 〈tv [y 7→ fn], s〉,Q), invoke (m(o′′, v̄), fn), fut(fn,⊥)|Obj |}
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(6)

r ≡ m(this, x̄, y)← g, b1, . . . , bn � P, tv ′ is a default mapping over vars(r),

tv ′′ = tv ′[this 7→ o, x̄ 7→ v̄], eval(g, h, tv ′′,Obj ) = true

{|ob(o, C, h, 〈tv , s〉,Q), invoke (m(o, v̄), fn)|Obj |};
{|ob(o, C, a, 〈tv , s〉, {〈tv′′, b1, . . . , bn〉|Q})|Obj |}

(7)
tv(destiny) = (y, fn)

{|ob(o, C, h, 〈tv , ε〉,Q), fut(fn,⊥)|Obj |}; {|ob(o, C, h, ε,Q), fut(fn, v)|Obj |}

(8) fn = tv(y), v 6= ⊥
{|ob(o, C, h, 〈tv , x := y.get · s〉,Q), fut(fn, v)|Obj |};{|ob(o, C, h, 〈tv , x := v·s〉,Q)|Obj |}

(9)
eval(g, h, tv ,Obj ) = true

{|ob(o, C, h, 〈tv , await g · s〉,Q)|Obj |}; {|ob(o, C, h, 〈tv , s〉,Q)|Obj |}

(10) eval(g, h, tv ,Obj ) = false

{|ob(o, C, h, 〈tv , await g · s〉, q)|Obj |}; {|ob(o, C, h, 〈tv , release · await g · s〉,Q)|Obj |}

(11)
{|ob(o, C, h, 〈tv , release · s〉,Q)|Obj |}; {|ob(o, C, h, idle , {|〈tv , s〉|Q|})|Obj |}

(12)
b = ε or b = idle

{|ob(o, C, h, b,Q)|Obj |}; {|ob(o, C, h, s,Q− {|s|})|Obj |}

Let us intuitively explain the semantics. Function eval(e, h, tv ,Obj ) evaluates an

expression e using the heap h and the table of variables tv in the standard way.

If e is a future, then it uses Obj to see if it has a value. The notation tv [x 7→ v]

(resp. h[f 7→ v]) in the first two rules stands for storing v in the local variable

x (resp. field f). In rule 3, it can be observed that an instruction new creates

a new object initially empty. We assume that, after creating the object, the

scheduler always picks the task associated to the constructor before selecting any

other task. In rule 4, a call to a block is resolved by finding a matching rule and

adding (a renamed apart version of) its body to the sequence of instructions to

be executed.

The most important points in the semantics are: (a) the treatment of method

invocations and future variables (rules 5-7), and, (b) synchronization operations
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(rules 8-12). As regards to (a), when we find an asynchronous call in rule 5,

we create a (fresh) future variable fn on which the result will be returned and

establish the link between the return variable y of the method and fn by means

of an assignment instruction. The fact that the asynchronous call reaches the

object occurs in rule 6, where the asynchronous call is dequeued for execution,

and the destiny future variable is stored in the table of local variables. Then in

rule 7, when the corresponding method finishes execution, the future variable is

updated with the returned value. As regards (b), the instruction get blocks the

execution until the future variable has a value in 8. If the evaluation of the guard

in an await instruction succeeds, the execution continues in rule 9. If it fails,

the processor is released (rule 10) to allow another task to become active. This

can be seen in rule 11 in which the task becomes idle. In rule 12 another task is

dequeued (because the current one terminated or released the processor).

We assume that executions start from a main method. Thus, the initial con-

figuration is of the form {|ob(main,⊥,⊥, 〈tv , b̄〉, ∅)|} where local variables in tv

are initialized to default values. The execution ends in a final configuration S in

which all events are either future events or objects of the form ob(o, C, h, ε, ∅).
Execution proceeds non-deterministically by applying the above execution steps.

When there is no rule to apply the execution stops. Executions can be regarded

as traces of the form S0 ; S1 ; · · ·; Sn where Sn is a final configuration.

Example 6.2.3. Consider the main method of the running example (Figure

6.1). After executing the constructors we reach a configuration with three objects:

{|ob(main,⊥,⊥, 〈tv main, bc〉, ∅), ob(o1,FileIS , ho1 , ε, ∅), ob(o2 ,FileIS , ho2 , ε, ∅)|}
where bc corresponds to the sequence of instructions from (*) on. After processing

both asynchronous calls consecutively, the new state takes the form:

{| invoke (readOnce(o1, f1), fn1), ob(o1,FileIS , ho1 , ε, ∅), fut(fn1 ,⊥),

invoke (readBlock(o2, f2), fn2), ob(o2,FileIS , ho2 , ε, ∅), fut(fn2 ,⊥),

ob(main,⊥,⊥, 〈tv main[f1 7→ fn1, f2 7→ fn2], bc′〉, ∅) |}
The application of rule (6) to the first two elements of the above state removes the

invoke event and introduces 〈tvo1 , body〉 in the queue of o1, where body is the body

(possibly renamed) of method readOnce. Furthermore, tvo1 stores the assignment

tv(destiny) = (f1, fn1). When this event is extracted from the queue of o1 (rule
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(12)), its complete processing will replace fut(fn1,⊥) by fut(fn1, v) (rule(7)),

where v is the value returned by the method readOnce. Note then that rule (9)

can be used to process the instruction await f1? of the object main. At this point

the new state will take this form:

{| fut(fn1, v), ob(o1,FileIS , ho1 , ε, ∅),
invoke (readBlock(o2, f2), fn2), ob(o2,FileIS , ho2 , ε, ∅), fut(fn2 ,⊥),

ob(main,⊥,⊥, 〈tv main[f1 7→ fn1, f2 7→ fn2], bc′′〉, ∅) |}

6.3 Cost and Cost Models for Concurrent Pro-

grams

We now define the notion of cost for concurrent programs that we aim at ap-

proximating. An execution step is annotated as S ;b
o S
′, which denotes that we

move from a state S to a state S ′ by executing instruction b in object o. Note

that from a given state there may be several possible execution steps that can be

taken since we have no assumptions on task scheduling. In order to quantify the

cost of an execution step, we use a generic cost modelM : Ins 7→ R which maps

instructions built using the grammar in Section 6.2.2 to real numbers. The cost

of an execution step is defined as M(S ;b
o S
′) =M(b).

In the execution of sequential programs, the cumulative cost of a trace is ob-

tained by applying a given cost model to each step of the trace. In our setting, this

has to be extended because, rather than considering a single machine in which

all steps are performed, we have a potentially distributed setting, with multiple

objects possibly running concurrently on different CPUs. Thus, rather than ag-

gregating the cost of all executing steps, it is more useful to treat execution steps

which occur on different computing infrastructures separately. With this aim,

we adopt the notion of cost centers [RGM98], proposed for profiling functional

programs. Since the concurrency unit of our language is the object, cost centers

are used to charge the cost of each step to the cost center associated to the object

where the step is performed. For a given set of objects identifiers O and a trace

t, we use t|O = {Si ;bi
oi
Si+1 | Si ;bi

oi
Si+1 ∈ t, oi ∈ O} to denote the set of

execution steps that are performed on objects from O. The cost of t w.r.t. a cost
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model M and a cost center O is C(t, O,M) =
∑

e∈t|OM(e). O might contain

multiple object identifiers, but also only one. Observe that it is also possible to

apply different cost models to different cost centers.

Cost Models.

As it is mentioned in Section 2.3.3, we consider platform independent cost

models (e.g., worst-case execution time or energy consumption are excluded).

The cost models Mi , Mm and Mo of Section 2.3.3 can be directly used for our

concurrent programs. A cost model that counts call(m, ), can be used to infer the

number of tasks that are spawned along an execution. By ’ ’, we mean any (valid)

expression. We can also count the number of calls to specific methods or objects,

e.g., by counting call(m, (o, , )) we obtain bounds on the number of requests to a

remote component o. This is useful for approximating the components’ load and

finding optimal deployment configurations (e.g., group objects according to the

amount of tasks they receive to execute, by also taking into account the infras-

tructure on which they are deployed). The above cost models can also be used

to prove termination of the program by setting the underlying solver [AAGP11]

to only bound the number of iterations in loops (see Section 2.4).

6.4 Field-Sensitive Size Analysis for Concurrent

OO Programs

The objective of size analysis is to infer size abstractions which allow reasoning on

how the sizes of data change along a program’s execution, which is fundamental

for bounding the number of iterations that loops perform.

6.4.1 The Basic Size Analysis

We present the size analysis in two steps: we first recall the notion of size measure

of Section 2.3; and we then present an abstraction which compiles instructions

into size constraints, trying to keep as much information on global data (i.e.,

fields) as possible, while still being sound in concurrent executions.

Size Measures. The language on which we develop our analysis is deliberately
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simplified so that it only considers numerical and reference types. In the case

of numbers, the size is the actual numerical value. References however require a

more sophisticated treatment. A commonly used size measure is the path-length

decribed in Section 2.2 which counts the number of elements of the longest chain

of references that can be traversed through the initial object (e.g., length of a

list, depth of a tree, etc.). However, in our context, since objects are intended to

simulate concurrent computing entities and not data structures, it is hence not

common for them to directly affect loop iterations. Therefore, ignoring their sizes

is sound and precise enough in most cases. A slightly more precise abstraction

distinguishes between the case in which a reference variable points to an object

(size 1) or to null (size 0). The size of a future variable is the same as the size of

the value it holds. This is sound since such variables can be used only through

get, which blocks until the variable has a value. Our actual implementation

allows choosing among those size measures. Also, since it has support for strings

and for functional (parametric) types, it uses other size measures. Namely, for

strings, their length, and, for functional terms, the so-called term-size measure,

which counts the number of type constructors in a given term.

Abstract Compilation. Modeling shared memory is a main challenge in static

analysis of OO programs. Our starting point is [AAG+10, RD11], which models

fields as local variables when the field to be tracked satisfies: (1) its memory lo-

cation does not change; and (2) it is always accessed through the same reference

(i.e., not through aliases). Both conditions can often be proven statically and the

transformation of fields into local variables can then be applied for many frag-

ments of the program. If we ignore concurrency, this approach could be directly

adopted for our language. However, concurrency introduces new challenges.

Example 6.4.1. Consider the loop in the readBlock method in Figure 6.1. Ig-

noring the await instruction, the above soundness conditions (1) and (2) hold for

the field blockS, and hence, we can track it as if it was a local variable. In a con-

current setting, however, while readBlock is executing, another task in the same

object might modify blockS. Therefore, when analyzing readBlock, we cannot as-

sume that the value of blockS is locally trackable. For instance, readBlock might

introduce non-termination if we add a method void p() {blockS = blockS− 2; } to
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b αρ(b) ρ′

1 e op e αρ(e) op αρ(e) ρ′=ρ
2 e op′ e ρ′=ρ
3 null | x | this.f 0 | ρ(x) | ρ(f) ρ′=ρ
4 release true ρ′=ρ[f̄C 7→ ρ(f̄C)′]
5 await g αρ′(g) ρ′=ρ[f̄C 7→ ρ(f̄C)′]
6 x := y.get | x := e ρ′(x)=ρ(y) | ρ′(x)=αρ(e) ρ′=ρ[x 7→ ρ(x)′]
7 this.f := e ρ′(f)=αρ(e) ρ′=ρ[f 7→ ρ(f)′]
8 x := new C ρ′(x)=1 ρ′=ρ[x 7→ ρ(x)′]
9 call(b, q(rec, x̄, ȳ)) q(ρ(rec), ρ(x̄·f̄C), ρ′(ȳ·f̄C)) ρ′=ρ[ȳ·f̄C 7→ρ(ȳ·f̄C)′]

10 call(m, q(rec, x̄, ȳ)) q(ρ(rec), ρ(x̄), ρ′(ȳ)) ρ′=ρ[ȳ 7→ ρ(ȳ)′]
11 otherwise true ρ′=ρ

where in case (1) op ∈ {∧, >,≥,=,+,−} and in (2) op′ ∈ {∗, /}

Figure 6.3: Abstract compilation. ABST(bk:i, ρ)=〈αρ(bk:i), ρ
′〉

class FileIS. When the await is executed inside the loop, method p might change

the value of blockS to a non-positive value, and thus the loop counter i would not

decrement.

Handling fields requires identifying program points at which the shared mem-

ory might be modified by other tasks. This can happen when: (1) release or

await are explicitly executed, and thus allow other tasks (of the same object) to

run; and (2) an asynchronous invocation is issued, and until the called method

starts to execute, the fields of the called object might be changed by other tasks.

We refer to such program points as release points. The above observation sug-

gests that in a sequence of instructions not including release or await, the

shared memory can be tracked locally. However, the values in the shared mem-

ory when a method starts to execute may not be identical to those when it was

called. We first present a safe abstraction which loses all information at release

points and at method entries. In a second step we handle these points.

An abstract state is a set of linear constraints whose solutions define possible

concrete states. This representation allows describing relations that are essential

for inferring cost and proving termination, e.g., the size of x decreases by 1 in

two consecutive states. The building blocks for this representation are constraints

that describe the effect of each instruction b on a given state. We refer to such

constraints as the abstraction of b. Figure 6.3 depicts these abstractions. In order
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to abstract an instruction b, we use a mapping ρ from variables and field names

to constraint variables that represent their sizes in the state before executing b.

The result of abstracting b w.r.t. ρ are the constraints αρ(b), and a new mapping

ρ′ that refers to the sizes in the state after executing b.

Let us describe the abstraction of some instructions. In Line 6, the instruction

x := e is abstracted into the equality ρ′(x) = αρ(e), where αρ(e) is the size of e

w.r.t. ρ. Note that ρ′(x) (resp. ρ(x)) refers to the size of x after (resp. before)

executing the instruction. The abstraction of release at Line 4 “forgets” sizes of

the fields f̄C . This is because they might be updated by other methods that take

the control when the current task suspends. The abstraction of await is similar,

though we add to the abstract state the information that the guard g is satisfied

upon completion of await g. When abstracting a call to a block in Line 9, the

class fields are added as arguments in order to track their values. However, when

abstracting calls to methods (Line 10) the fields are not added. For methods, they

are not added because their values at call time might not be the same as when the

method actually starts to execute. Since we use linear constraints only, non-linear

arithmetic expressions (Line 2) are abstracted to a fresh constraint variable “ ”

that represents any value. A program P is transformed into an abstract program

Pα, that approximates its behavior w.r.t. a size measure, by abstracting its rules

as follows.

Definition 6.4.2 (abstract compilation). Given r ≡ m(this , x̄, ȳ) ← g, b1, . . .

, bn ∈ P , and an identity map ρ0 over vars(r) ∪ f̄C , the abstract compilation of r

is rα ≡ m(this , Ī , ρn+1(Ō))← gα, bα1 , . . . , b
α
n where:

- 〈gα, ρ1〉=ABST(g, ρ0), 〈bαi , ρi+1〉=ABST(bi, ρi) ; and

- Ī=x̄·f̄C and Ō=ρn+1(ȳ·f̄C) if m is a block; otherwise Ī=x̄ and Ō=ρn+1(ȳ). The

size abstraction for the rule r is gα ∧ bα1 ∧ . . . ∧ bαn.

Example 6.4.3. The following is the abstract compilation of the rule for ifc

in Figure 6.2, where inp, out and F denote, respectively, the input parame-

ters this , res, i, incr, pos, the output parameters res′′, i′′, incr′, pos′′ and the fields

fp, lth, blockS . The substitution ρ0 stands for the identity mapping.
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ifc(〈inp,F 〉, 〈out ,F
′′〉)← ρ0

a© readContent(〈this, pos, incr〉, 〈f ′〉), ρ1 = ρ0 [f 7→ f ′]

b© true, ρ2 = ρ1[F 7→ F
′
]

v ′ = f ′, ρ3 = ρ2[v 7→ v′]

res ′ = res+ v′ ρ4 = ρ3[res 7→ res ′]

i′ = i− incr ρ5 = ρ4[i 7→ i′]

pos′ = pos+ incr ρ6 = ρ5[pos 7→ pos ′]

c© while(〈this, res ′, i ′, incr , pos ′,F
′〉, ρ7 = ρ6[res ′ 7→ res ′′, i ′ 7→ i ′′,

〈res ′′, i ′′, incr ′, pos ′′,F
′′〉). incr 7→ incr′, pos′ 7→ pos′′, F̄ ′ 7→ F̄ ′′]

Note that at b© await is abstracted to true and the information on fields is lost,

at c© the fields are added to the call in order to keep track of their values, however,

when calling a method at a©, the abstraction “forgets” this information.

6.4.2 Class Invariants in Cost Analysis

The accuracy of the size analysis can be improved by using a generalization

of class invariants (see, e.g., [Mey97]). As discussed above, release points are

problematic since at these points other task(s) may modify the values of shared

fields. However, it is often possible to gather useful information about shared

variables, in the form of class invariants, which must hold at those points. In

sequential programs, class invariants have to be established by constructors and

must hold on termination of all (public) methods of the class. They can be

assumed at (public) method entry but may not hold temporarily at intermediate

states not visible outside the object. In our context, we need such invariants to

hold on method termination and also at all release points of all methods. This

way, we can use them to improve the abstraction at the release points. In the

following, given a class C, ΨC denotes the class invariant for class C, which is a

set of linear constraints over the fields of C and possibly some constant symbols.

Definition 6.4.4. We extend Definition 6.4.2 as follows: (1) when abstracting a

method rule, we add ΨC to the abstract rule (just before gα); and (2) we abstract

release (resp. await) to ΨC [f̄C 7→ ρ′(f̄C)] (resp. αρ(g) ∧ΨC [f̄C 7→ ρ′(f̄C)]).

Example 6.4.5. The following invariants will be required in order to obtain the

cost of all methods of our running example: (1) In class Reader, we need to

154



know that field elem is bounded, i.e., 0 ≤ elems ≤ elemsmax where elemsmax is

a constant symbol that bounds the value of elems. Besides, in order to bound

the number of iterations of the loop in method process, we need an invariant that

states elems = elemsinit , i.e., field elems is initialized in the constructor and it

is never modified again; and (2) In class FileIS, we also need to know that fields

blockS and lth are bounded. As before, we need an invariant blockS = blockSinit

for the loop in method readBlock. Such invariants can be inferred automatically

by means of a syntactic analysis that simply checks that the corresponding fields

are initialized and never updated again.

6.5 Points-to Analysis for Concurrent Programs

The aim of the points-to analysis is to approximate the set of objects which each

reference variable may point to during program execution. An analysis is object-

sensitive [MRR05, SBL11] if methods may be analyzed separately for different

(sets of) objects on which they are invoked. More precisely, the analysis uses a

finite set of object names to partition the (possibly infinite) set of objects allocated

at runtime into contexts which are analyzed separately.

This section presents a flow-sensitive object-sensitive points-to analysis for

concurrent programs. It is based on Milanova’s analysis framework [MRR05]

for Java. As Milanova’s analysis is flow-insensitive, it is sound for concurrent

programs because it implicitly considers all possible interactions and interleavings

between tasks that may happen in a concurrent program. However, our proposed

analysis is flow-sensitive since for the inference of the object-sensitive recurrence

relations, it is fundamental to track flow-sensitive relations among objects.

It is known that flow-sensitive analysis of concurrent programs is challenging

due to the complexity of their flow. All possible task interleavings must be

considered in order to develop a sound analysis. As our contribution in this

regard, we extend the analysis of [MRR05] to make it flow-sensitive in the presence

of concurrent behaviours. The main idea is to keep abstractions for local variables

and for fields separate such that, when the processor is released, only the state of

the fields is affected since, as we have already discussed in Section 6.4, the values
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of local variables cannot be modified at release points. Besides, as we will see in

the analysis, not all information on fields has to be lost. By keeping track of the

values of this, we can notably reduce information loss.

6.5.1 The Abstract Domain

The abstraction of each object created in the program is a syntactic construc-

tion of the form oij...pq that represents all run-time objects that were created

at program point q when the enclosing instance method was invoked on an ob-

ject represented by oij...p, which was in turn created at allocation site p, that is

program point where the “new” is executed.

Let S be the set of all allocation sites in a program. Given a constant k ≥ 1,

the analysis considers a finite set of object names, denoted N , which is defined

as: N = {ε}∪S∪S2 . . . Sk. Note that k defines the maximum size of sequences of

allocations, and it allows controlling the precision of the analysis. Sk represents

the set of allocation sequences of length k. Allocation sequences have in principle

unbounded length and thus it is sometimes necessary to lose precision during

analysis. This is done by just keeping the k rightmost positions in sequences whose

length is greater than k. We use |s| to denote the length of a sequence s. We define

the operation 〈i, j, . . . , p〉 ⊕ q which returns 〈i, j, . . . , p, q〉 if |〈i, j, . . . , p, q〉| ≤ k

and 〈j, . . . , p, q〉, otherwise. A variable can be assigned objects with different

object names. In order to represent all possible objects pointed to by a variable,

sets of object names are used.

V represents the set of all possible reference local variables that may occur in

a program. F represents all possible pairs (o, f) which denote all possible accesses

to the reference fields f through the objects o inN . In what follows, such pairs are

represented as o.f . Following Milanova’s approach, context sensitivity is achieved

by maintaining multiple replicas of each reference variable x for each possible

context in which x may be used for calling a method. Let x be a local variable

and l an object name to which this may point to, we use the fresh variable name

xl to store the analysis information for x and context l. We drop the superscript

l when it is not relevant. The set of replicas is defined by map : V ×N 7→ V ′. An

abstract state is a tuple 〈φ, θ〉 where:
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• φ is a mapping φ : V ′ 7→ ℘(N ), s.t. φ(xl) is the set of object names that

represents all possible objects that may be assigned to local variable x when

this points to object name l;

• θ is a mapping θ : F 7→ ℘(N ), s.t. θ(o.f) is the set of object names that

represents all possible objects that may be assigned to the field f for the

object name o;

The abstract domain is the lattice 〈AS,>,⊥,t,v〉, where AS is the set of ab-

stract states, > is the top of the lattice which is equal to 〈φ>, θ>〉 s.t. ∀v, φ>(v) =

N , and ∀o.f, θ>(o.f) = N , and ⊥ is the bottom of the lattice, ∀v, φ⊥(v) = ∅,
∀o.f, θ⊥(o.f) = ∅. Given two abstract states 〈φ1, θ1〉 and 〈φ2, θ2〉, we use

〈φ, θ〉 = 〈φ1, θ1〉t〈φ2, θ2〉 to denote that 〈φ, θ〉 is their least upper bound. It is de-

fined as ∀v, φ(v) = φ1(v)∪φ2(v) and ∀o.f, θ(o.f) = θ1(o.f)∪θ2(o.f). In the same

way, 〈φ1, θ1〉 v 〈φ2, θ2〉 holds iff ∀v, φ1(v) ⊆ φ2(v) and ∀o.f, θ1(o.f) ⊆ θ2(o.f).

6.5.2 The Transfer Function

Our proposed analysis is a standard forward analysis that assigns an abstract state

to each program point by relying on a transfer function τ : ℘(N )× Instr ×AS 7→
AS, where Instr is the set of basic instructions and AS the set of abstract states,

as defined in Figure 6.4. We use This to represent the set of object names which

currently approximate the value of this. We assume the considered instruction is

located at program point q, that x, y are reference (local) variables and that f , g

are reference fields. It is important to note that modifications to local variables

(rows 1-4) affect φ in a flow-sensitive way (i.e., updates on variables overwrite the

previous abstract value). However, updates on reference fields (rows 5-7) modify

θ in a flow-insensitive way (i.e., the information is added to the previous values for

such field). Method calls (rows 9-10) are handled by interp(〈φ, θ〉,This ,m(z̄, y)),

which (a) looks up the method definition for method m and projects z̄ using φ

and θ to fit the calling context of m, resulting in a new mapping φ′, (b) uses

φ′ and This , the set of possible values for this to analyze m, and (c) after the

analysis, which can modify θ, gets the analysis output φ′′ and modifies φ to set

the new value for y, namely φ[y 7→ φ′′(ret)]. In row 10, the only difference with
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q : instr τ(This, instr, 〈φ, θ〉)
(1) x = new C 〈φ[xl 7→ l ⊕ q], θ〉 ∀l ∈ This
(2) x = y 〈φ[xl 7→ φ(yl)], θ〉 ∀l ∈ This

(3) x = this.f 〈φ[xl 7→ θ(l.f)], θ〉 ∀l ∈ This
(4) x = null 〈φ[xl 7→ ∅], θ〉 ∀l ∈ This
(5) this.f = y 〈φ, θ[l.f 7→ (θ(l.f) ∪ φ(yl))]〉 ∀l ∈ This
(6) this.f = this.g 〈φ, θ[l.f 7→ (θ(l.f) ∪ θ(l.g))]〉 ∀l ∈ This
(7) this.f = null 〈φ, θ〉
(8) return x 〈φ[retl 7→ φ(xl)], θ〉, retl fresh ∀l ∈ This
(9) y = this!m(z) interp(〈φ, θ〉,This,m(this, z̄, y))

(10) y = x!m(z) interp(〈φ, θ〉, φ(x),m(x, z̄, y))
(11) otherwise 〈φ, θ〉

Figure 6.4: Transfer Function (where l ≡ oi...p, and l ⊕ q ≡ oi...p⊕q).

row 9 is that the abstract value of x, i.e., φ(x), is used instead of This . The

analysis of loops requires iterating the corresponding code several times until a

fixpoint is reached (convergence is guaranteed because the domain is finite). The

analysis merges abstract states at convergence points (i.e., after if and at loop

entries) using the join operation t.

Example 6.5.1. Figure 6.5 shows (part of) the result, at the end of the fixpoint,

of applying the points-to analysis to the running example with k = 2. This is the

smallest k for which no information is lost when handling object names. Keeping

track of the value of the this reference is crucial for the precision of the points-to

analysis. All object creations use the object name(s) pointed to by this to generate

new object names by adding the current allocation site. E.g., at p.p. 3©, this may

be either this 7→ o1 or this 7→ o2; the new object names created are o13 and

o23, respectively. Observe that we keep the calling context as a superscript to the

variable such that ro1 denotes the abstract value for r when this is o1. The value of

this within a method comes from the object name(s) for the variable used to call

the method. The example only shows φ from the transfer function, since only local

variables are changed. Assignments to field variables would affect θ accordingly,

as mentioned above.

The next theorem states the soundness of the analysis, which can be eas-
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Int readBlock () {
... f = this ! readContent(pos,incr); ...
}
Int readOnce () {

Fut〈Int〉 f = this ! readContent(0,lth);
await f?;
return f.get;
}
Int readContent(Int pos, Int elems) {
3© Reader r = new Reader (fp,elems);

Fut〈Int〉 f = r ! process(pos);
await f?; return f.get;
}

main {
1© FileIS o1 = new FileIS(”A.txt”,20,2);
2© FileIS o2 = new FileIS(”A.txt”,20,3);

Fut〈Int〉 f1; Fut〈Int〉 f2;
f1 = o1 ! readOnce();
f2 = o2 ! readBlock(); . . .

φ = {this 7→ o2}
φ = {this 7→ o2}

φ = {this 7→ o1}
φ = {this 7→ o1}
φ = {this 7→ o1}
φ = {this 7→ o1}

φ={this 7→ {o1, o2}
φ={this 7→ {o1, o2}, ro1 7→ o13, r

o2 7→ o23}
φ={this 7→ {o1, o2}, ro1 7→ o13, r

o2 7→ o23}
φ={this 7→ {o1, o2}, ro1 7→ o13, r

o2 7→ o23}

φ = {this 7→ ε}
φ = {this 7→ ε, o1 7→ o1}
φ = {this 7→ ε, o1 7→ o1, o2 7→ o2}
φ = {this 7→ ε, o1 7→ o1, o2 7→ o2}
φ = {this 7→ ε, o1 7→ o1, o2 7→ o2}
φ = {this 7→ ε, o1 7→ o1, o2 7→ o2}

Figure 6.5: Points-to analysis results for the running example.

ily proven correct by following the same proof scheme as in Milanova’s analysis

framework [Mil03], since it only differs in the flow-sensitive aspect.

Theorem 6.5.2. Given a program P , the transfer function τ generated for P

provides a safe approximation of the objects that can be pointed to by variables

and fields in any execution of P .

In what follows, given a reference variable (respectively a reference field) x,

we use pt(q , x , ot) to refer to the set of values φ(x) (resp. θ(x)) computed by the

points-to analysis at program point q when this points to the object name ot.

6.6 Object-Sensitive Resource Analysis

Our analysis follows the approach described in Chapter 2, a program is first

transformed into a set of cost relations [AAG+12b] which can then be solved into
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closed-form upper/lower bounds [AAGP11]. This section focuses exclusively on

the cost relation system (CRS) generation phase as the equations can be solved

using the approach described in Chapter 2 without requiring any change. We

illustrate in Section 6.6.1 how an object-insensitive analysis can be defined as in

sequential programming, by using the size abstraction computed in Section 6.4,

and point out its limitations. Then, Section 6.6.2 defines the object-sensitive anal-

ysis which, by relying on the object-sensitive points-to information of Section 6.5,

overcomes the limitations of the insensitive analysis.

6.6.1 Object-Insensitive Analysis

The generation of object-insensitive cost relations from our concurrent and dis-

tributed programs, for a generic cost modelM, can be done exactly as for sequen-

tial programs (see Section 2.3 and [AAG+12b]), by using the size abstractions

which already take the concurrent behaviour into account, and then simply apply-

ing the generic cost model to each instruction of each rule. This object insensitive

approach has a main drawback: it is not capable of distinguishing the different

distributed components. Instead, the resource usage contributed by all objects

(which represent potentially distributed components) is simply accumulated in

a single cost center which corresponds to the whole execution of the distributed

system.

Example 6.6.1. By applying the CRS generation techniques described in Sec-

tion 2.3.5 to the RBR of our running example (partly shown in Figure 6.2),

the size relations (partly shown in Example 6.4.3) and the invariants in Exam-

ple 6.4.5, the following CRS for the cost model Mi is obtained:
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readBlock() = 8+while(i , blockS ) {i=lth, 0 ≤ lth ≤ lthmax}
while(i , blockS ) = 1 {i ≥ 0}
while(i , blockS ) = 2+if (i , blockS ) {i<0}
if (i , blockS ) = 3+if0 (i , blockS , incr) {incr=i}
if (i , blockS ) = 3+if0 (i , blockS , incr) {incr = blockS}
if0 (i , blockS , incr) = 11+readContent()+ {i′ = i−incr ,

while(i ′, blockS ′) blockS ′ = blockSinit}

readContent() = 10+process() {}

readOnce() = 5+readContent()

process() = 4 + while1 (i, elems) {i=0 , 0 ≤ elems≤elemsmax}
while1 (i, elems) = 2 {i≥elems}
while1 (i, elems) = 15+while1 (i′, elems ′) {i<elems, elems ′=elemsinit , i

′=i + 1}

where, for method process we assume that the execution of methods hdRead and

update has a constant cost, which is included in the constant 15 of the second

equation for while1 . Likewise, the constant 10 in the equation for readContent

includes the cost of executing the constructor of class Reader which is assumed to

be constant. This CRS is solved using [AAGP11] into closed-form upper bounds:

UBreadBlock () = 9+nat(lthmax )∗(34+15∗nat(elemsmax ))

UBprocess() = 6 + 15 ∗ nat(elemsmax )

UBreadContent() = 16 + 15 ∗ nat(elemsmax )

UBreadOnce() = 21+15 ∗ nat(elemsmax )

Let us explain the different parts of the upper bound computed for readBlock.

The constant 9 comes from 8 (the constant in the equation readBlock) plus 1 (the

constant in the first equation of while1 that corresponds to the exit of the loop).

The cost of the loop is the following quadratic expression

nat(lthmax )∗(34+15∗nat(elemsmax )),

where nat(lthmax ) is an upper bound on the number of iterations of the loop

and 34+15∗nat(elemsmax ) is the worst-case cost of each iteration. Note that the

loop invokes method readContent which contains a loop whose cost is linear on

elemsmax .
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6.6.2 Adding Cost Centers to the Equations

As the main novelty of this work, CRS in the object-sensitive resource analysis

use cost centers in order to keep the resource usage assigned to the different

components separate. The main idea is to take advantage of the object-sensitive

points-to information to generate cost equations for all possible contexts (and

thus objects). In particular, the object-sensitive equations will allow us to count

separately the cost that corresponds to different instances of objects that are

created at the same allocation site but correspond to different object names and

may belong to different distributed components. We use a symbolic expression

c(ol) per object name l returned by the points-to analysis in order to denote the

cost center associated to ol. We assume all rules are annotated as follows:

R ≡ [p(x̄, ȳ)]This ← g, [b1]O1 , . . . , [bn]Oj ∈ P

where the head of the rule is annotated with the set of object names This =

{t1, . . . , tk} and each method call bi of the form q : call( ,m(x , w̄, y)) is annotated

with the set of sets Oi = {Ot1
i , . . . , O

tk
i }, where Otm

i = pt(q , x , tm), i.e., the

set of object names that x may point to when this points to the object name

tm. Given a rule R, we use the following functions: methods(R) to obtain the

annotated set of elements [p(x,w, y)]O which are calls to methods of the form

[call(m, p(x,w, y))]O in the body of R, blocks(R) to refer to the set of elements

b(w, y) which are calls to intermediate rules of the form call(b, b(this, w, y)) in the

body of R, and instr(R) to refer to the set of elements in the body of R that are

other instructions.

Definition 6.6.2 (object-sensitive resource analysis). Given an annotated rule

R ≡ [p(x̄, ȳ)]This ← ∈ P where methods(R) = {[m1(y1, z1, w1)]O1 , . . . ,

[mj(yj, zj, wj)]
Oj}, and its size abstraction ϕ, the following set of equations define

its cost: for each o ∈ This, and for each 〈o1, . . . , oj〉 ∈ Oo
1 × · · · × Oo

j such that

Oo
i ∈ Oi, we generate the equation

p o(x) =
∑

b∈instr(R)

c(o) ∗M(b) +
∑

b(y,w)∈blocks(R)

b o(y) +m1 o1(z1) + · · ·+mj oj(zj)
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where mi oi is the name of the equation that represents a call to method mi from

object oi.

Intuitively, the above definition generates, from one rule, as many equations as

needed for defining its cost such that all possible contexts (i.e., object names

of callees) are considered. The new names are obtained by concatenating the

corresponding object name to the rule name. Besides, as regards to method

invocations, all combinations have to be generated. This is done in the definition

by means of the cartesian product Oo
1 × · · · × Oo

j which gives us all possible

combinations for the elements in the sets. The cost expressions we accumulate

are multiplied by a symbolic expression c(o) which denotes the cost center of the

object on which the call is performed. As an example, if we have a rule:

[m1(x, y)]{o1,o2} ← [m2(x, u)]{{o3}
o1 ,{o4,o5}o2} + [m3(u, y)]{{o6,o7}

o1 ,{o8}o2}

These four equations are generated to cover all cases:

m1 o1(x) = m2 o3(x, u) +m3 o6(u, y)

m1 o1(x) = m2 o3(x, u) +m3 o7(u, y)

m1 o2(x) = m2 o4(x, u) +m3 o8(u, y)

m1 o2(x) = m2 o5(x, u) +m3 o8(u, y)

Multiple rules for the same procedure are interpreted as multiple choices and the

upper bound solver computes the maximum over them. Therefore, the fact that

multiple rules are introduced (e.g., two rules for m1 o1(x)) does not degrade the

quality of the upper bound obtained. If we replace c(o) by 1 (for all object names

o), the accuracy of object-insensitive CRS coincides with that of object-sensitive

CRS. The upper bound for a set of objects O, UBp|O, is obtained by setting c(o)

to 1 for all object names o ∈ O and to 0 for the remaining ones.

Example 6.6.3. The cost equation for main takes the form main() = 19 +

readOnce()+readBlock(). The context-insensitive resource analysis is not able to

distinguish between the cost centers 1© and 2© of Figure 6.5 (see Example 6.6.1)

where methods readOnce and readBlock execute and accumulates both costs to-

gether. Using the context-sensitive resource analysis of Definition 6.6.2, the an-
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notated rules for k = 2 are as follows (only relevant calls are shown):

[main()]{ε} ← ..., [call(m, readOnce())]{{o1}}, [call(m, readBlock())]{{o2}}, ...

[readBlock(〈this〉, 〈r〉)]{o2} ← ..., [call(b, while(〈in〉, 〈out〉))]{{o2}}, ...

[if c(〈in〉, 〈out〉)]{o2} ← ..., [call(m, readContent(〈this, pos, incr〉, 〈f〉))]{{o2}}, ...

[readOnce(〈this〉, 〈r〉)]{o1} ← ..., [call(m, readContent(〈this, pos, incr〉, 〈f〉))]{{o1}}, ...

[readContent(〈this, pos, incr〉, 〈f〉)]{o1,o2} ←

..., [call(m, process(〈this, pos〉, 〈r〉))]{{o13}o1 ,{o23}o2}, ...

[process(〈this, pos〉, 〈r〉)]{o13,o23} ← ...

Some blocks of method readBlock are omitted since all of them are annotated with

{o2}. Note that rules for readContent and process are annotated with {o1, o2}
and {o13, o23}, respectively, since they can be invoked using two different object

names for this. By applying Definition 6.6.2, the equations for each element in

the annotated sets are generated by replicating the equations for readContent and

process. For example, the (replicated) equations for readContent are as follows:

readContent o1() = c(o1) ∗ 10 + process o13()

readContent o2() = c(o2) ∗ 10 + process o23()

The closed-form upper bounds now keep separate the resource consumption as-

sociated to each cost center oi by means of a symbolic constant c(oi). From the

above equations for readContent the solver obtains the upper bounds:

UBreadContent o1 () = c(o1) ∗ 10 + c(o13) ∗ (6 + 15 ∗ nat(elemsmax ))

UBreadContent o2 () = c(o2) ∗ 10 + c(o23) ∗ (6 + 15 ∗ nat(elemsmax ))

In contrast to the upper bound obtained in Example 6.6.1, the closed-form upper

bound for main keeps the number of instructions executed on each object separate:

UBmain() = c(ε) ∗ 19 + c(o1) ∗ 15+

c(o13) ∗ (6 + 15 ∗ nat(elemsmax ))+

c(o2) ∗ (9 + 28 ∗ nat(lthmax ))+

c(o23) ∗ nat(lthmax ) ∗ (6 + 15∗nat(elemsmax ))
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E.g., the upper bound for O = {o13} is UBmain|O = 6 + 15 ∗ nat(elemsmax ). The

main observation is that the accuracy of the upper bound for main is significantly

better when the analysis is performed with k = 2 than with k = 1 (or with an

object-insensitive analysis). If the points-to analysis is performed for k = 1, the

object names o13 and o23 would collapse in a single object name o3. Therefore, it

would not be possible to distinguish between the objects created from o1 and from

o2 and the costs are aggregated together resulting in a much less precise upper

bound that accumulates the expressions for c(o13) and c(o23).

Since the length of object names is limited to a length k, allocation sequences

of length greater than k do not appear as such in the results of points-to analy-

sis. Instead, they are represented by object names that cover them. Therefore,

we need some means for relating allocation sequences to the object name that

approximates them. We now define such notion. Given an allocation sequence l

and a set of object names O, the approximation of l in O is the longest object

name in O which covers l. I.e., an object name ol′ ∈ O is the approximation of l

in O iff ol ≤ ol′ and ∀ol′′ ∈ O . ol ≤ ol′′ → |l′′| < |l′| or l′′ = l′.

Theorem 6.6.4 (soundness). Let P be a program, t a trace that includes a single

object with a single task scheduled for execution (not started yet) that corresponds

to a method p, and v̄ be the values of the input parameters of p and fields in the

initial state. If O is a set of objects in t, and O is a set of object names computed

by a points-to analysis such that each o ∈ O is approximated by a name l ∈ O,

then C(t, O,M) ≤ UBp(v̄)|O.

Proof. We sketch the main ideas of the proof for the object-insensitive analysis,

and then we comment on the straightforward changes required to handle the

object-sensitive case. The proof sketch consists of two parts:

• In the first one, we define an abstract operational semantics for the abstract

(size) program, in which abstract states are annotated with the amount

of resources consumed so far; and then we show that it can be used to

approximate the resource consumption behaviour of the original program.

• Then, in a second part, we show that the cost relations generated from the
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(1a)
C ≡ [ϕ · C ′, ȳ, ȳ′]

〈{C|Cs},Ψ, e〉 .
; 〈{[C ′, ȳ, ȳ′]|Cs}, ϕ ∧Ψ,M(ϕ) + e〉

(2a)
C ≡ [p(w̄, z̄) · C ′, ȳ, ȳ′], p is a block, p(w̄′, z̄′)← ϕg, C

′′ ∈ Pa,
Ψ ∧ w̄ = w̄′ ∧ ϕg 6|= false, Ψ′ ≡ w̄ = w̄′ ∧ z̄ = z̄′ ∧ ϕg ∧Ψ
〈{C|Cs},Ψ, e〉 .

; 〈{[C ′′ · C ′, ȳ, ȳ′]|Cs},Ψ′,M(p(w̄, z̄)) + e〉

(3a)
C ≡ [p(w̄, z̄) · C ′, ȳ, ȳ′], p is a method, p(w̄′, z̄′)← ϕg, C

′′ ∈ Pa
Ψ′ ≡ w̄ = w̄′ ∧ ϕg ∧Ψ, Ψ′ 6|= false,

〈{C|Cs},Ψ, e〉 .
; 〈{[C ′, ȳ, ȳ′], [C ′′, z̄, z̄′]|Cs},Ψ′,M(p(w̄, z̄)) + e〉

(4a)
C ≡ [ε, ȳ, ȳ′]

〈{C|Cs},Ψ, e〉 .
; 〈Cs, ȳ = ȳ′ ∧Ψ, e〉

Figure 6.6: Abstract (cost) operational semantics

abstract program indeed approximate the resource consumption behaviour

of the abstract program.

The abstract operational semantics is depicted in Figure 6.6. An abstract state

is of the form 〈Cs,Ψ, e〉 where Cs is a set of abstract tasks, Ψ is a conjunction

of linear constraints with integer constraint variables (the store), and e is a real

number that represents the resources consumed so far. An abstract task C ∈ Cs
has the form [bα1 · · · bαn, ȳ, ȳ′], where each bαi is an (abstract) instruction, i.e., a

linear constraint or a call, and ȳ and ȳ′ represent an association of actual and

formal output variables (for some call). These variables will be matched when the

execution of bα1 · · · bαn is completed to simulate returning a value through future

variables. For simplicity, we assume that M(bαi ) equals to M(bi), and that δ(C)

returns the mapping ρ that was used to abstract b1 into bα1 (usually with renamed

constraint variables).

Let us now explain the different rules of Figure 6.6. First note that all rules

select a task C from Cs and make one execution step, depending on the type of

the first abstract instruction in C:

• Rule (1a) is used for executing an abstract instruction ϕ that corresponds

to a simple instruction which is not a call. Recall that ϕ is a conjunction of

linear constraints. In this case ϕ is simply added to the store, to simulate
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the execution of the corresponding instruction, and its associated resource

consumption is accumulated.

• Rule (2a) is used for calling a block. It selects a matching and applicable

block rule for p, and then adds its instructions to the current task. Note

that the rule’s guard is added to the store. The store is also modified to

match the actual and formal input and output variables. It is essential

that the selected rule for p uses fresh variables that were never used before

during the execution.

• Rule (3a) is used for calling a method. It selects a matching method rule and

creates a new abstract task initialized with the corresponding instructions.

The store is modified to match the actual and formal input variables. Note

that the association of actual and formal output variables is kept in the

state in order to be matched later, upon completion of that task. It is

essential that the selected rule for p uses fresh variables that were never

used before during the execution.

• Rule (4a) corresponds to returning a value through future variables. Simply

the corresponding actual and formal output parameters are matched.

We say that an abstract state Sα = 〈Cs,Ψ, e〉 approximates a concrete state S,

denoted by Sα ≈ S, if every concrete task is covered by a different abstract task,

formally stated: For any ob(o, ClassTag, h, 〈tv , s〉,Q), if we pick up a task s′

from {s} ∪ Q (which is different from idle ), then there exists an abstract task

C ∈ Cs (which is different for each s′) such that:

A) The sequence of abstract instructions C corresponds to the abstract com-

pilation of the instructions in s′ (if s′ has a “meta” release that was in-

troduced in Rule (10) of the operational semantics then we ignore it);

B) Let ρ be the renaming that corresponds to δ(C), then there exists a model

σ of Ψ (i.e., a solution that maps constraint variables to integers) such

that for any x ∈ dom(tv) ∪ dom(h) it holds that σ(ρ(x)) equals to the size

measure of eval(x, h, tv , S). Note that if the variable ρ(x) does not appear
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syntactically in Ψ, then we assume that σ(ρ(x)) can be any value since the

variable ρ(x) is not involved in any constraint.

Now we state the first correctness claim, i.e., that the abstract program correctly

simulates the resource consumption of the original ABS program.

Let S0 = {|ob(main,⊥,⊥, 〈tv , b̄〉, ∅)|} where b̄ is the body of method main, and

let Sα0 = 〈[b̄α, 〈〉, 〈〉], true, 0〉 where b̄α is the abstract compilation of b̄. We claim

that if S0 ;∗ S then there is Sα = 〈C,Ψ, e〉 such that Sα0
.
;
∗ Sα, Sα ≈ S, and

e =M(S ;∗ S) where M(S0 ;∗ S) is the sum of the resource consumption of

all transitions in S0 ;∗ S. The proof can be done by induction on the length of

the concrete trace. We explain the essentials.

Base case Straightforward since clearly Sα0 ≈ S0.

Induction step We assume that the above claim holds when the length of

S0 ;∗ S is n, and we show that it holds for a trace S0 ;∗ S ; S ′ of length

n+ 1. By the induction hypothesis, there is Sα = 〈C,Ψ, e〉 such that Sα0
.
;
∗ Sα,

Sα ≈ S and e = M(S0 ;∗ S). Now we show that either we make one more

step Sα0
.
;
∗ Sα

.
; S ′α such that S ′α = 〈C ′,Ψ′, e′〉, Sα ≈ S, and e′ = M(S0 ;∗

S ; S ′), or simply we have that S ′ ≈ Sα and that the transition S ; S ′ does

not consume resources, i.e., we still have e = M(S0 ;∗ S ; S ′). We briefly

explain the cases by considering each of the semantic rules of Section 6.2.3 for

the transition S ; S ′ as follows:

• Assume S ′ is obtained by applying Rule (1), (2), (3), (8) or (9). First note

that these rules modify only one task in S by executing a corresponding

simple instruction b. In such case, we use Rule (1a) to obtain S ′α in a

similar way. Clearly S ′ ≈ S ′α since (i) ϕ is the abstract compilation of b;

and (ii) the variables in ϕ do not appear in any other abstract task in Sα,

so adding them to the store does not violate the covering of any other task.

Moreover:

e′ = e+M(ϕ) =M(S0 ;
∗ S) +M(b) =M(S0 ;

∗ S ; S ′)

168



• Assume S ′ is obtained by applying Rule (4). Note that this rule also mod-

ifies only one task in S. In such case, we use Rule (2a), and the abstract

version of the same rule for p that has been used in (4), to obtain S ′α.

Clearly we have S ′ ≈ S ′α since we have used the abstract version of the

same rule for p and also added w̄ = w̄′ ∧ z̄ = z̄′ to the store in order to

bind the actual and formal input and output variables. Moreover, we have

e′ =M(S0 ;
∗ S ; S ′) as in the previous case.

• Assume S ′ is obtained by first applying Rule (5) and then immediately

Rule (6) – we assume that both are applied just for simplicity, actually

they are separated in the semantics just for simplifying the notation. Note

that this case modifies one task in S and adds a new task that corresponds

to the invoked method. In such case, we use Rule (3a), in a similar way to

the above case in which we used (2a), to obtain the required S ′α. The only

difference is that the formal input and output variables are not matched,

they will be matched later when this new task terminates.

• Assume S ′ is obtained by applying Rule (7). Note that no task is modified,

we only modify the value of a future variable. This modification might

affect the value of local variables that are associated to this specific future

variable. In the abstract setting, this can be obtained by applying Rule (4a)

which propagates the value of the future variable in the abstract setting by

matching the associated actual and formal output variables.

• The rest of the rules do not modify the tasks in S, except adding some meta

information such as release when the await fails. Here, clearly A and B
still hold without making any execution step in the abstract setting.

Next we briefly explain why the cost relations generated from the abstract

rules approximate the resource consumption of the abstract program, and thus

the resource consumption of the original program. We do this by starting from

the abstract program and the abstract semantics of Figure 6.6, and then mod-

ify them several times until we obtain the corresponding cost relations and the

corresponding semantics [AAGP11].

169



In the first step, we consider a program that is obtained from the abstract

program by removing all output variables, we refer to this program as output-

free program. Clearly, any trace obtained using the abstract program has a

corresponding trace that is obtained using the output-free program with the same

resource consumption. This is true since the only difference is that in each step

we might add less constraints to the store (we do not add those that match the

formal and actual output parameters).

In the second step, we change the abstract semantics such that instead of

accumulating the resource consumption of each execution step, it accumulates

the resource consumption of all abstract instructions immediately when they are

added to the abstract state in rules (2a) and (3a). This change amounts to: (i)

changing rule (1a) such that it does not accumulateM(ϕ), and (ii) changing rules

(2a) and (3a) to accumulate also c =M(bα1 )+ · · ·+M(bαn) where C ′′ = bα1 , . . . , b
α
n.

Clearly, this change only anticipates the consumption of resources, and thus for

any abstract trace that is obtained using the output-free program and the abstract

semantics of Figure 6.6, we can generate a corresponding abstract trace using the

same program and the modified abstract semantics such that it consumes at least

the same amount of resources.

In the third step, we eliminate Rule (1a) from the abstract semantics and

modify rules (2a) and (3a) such that (i) they add all constraints that appear in the

body of the selected rules (let us call them ϕ = ϕ1∧·ϕk) to the store, and the rest,

which are calls, are added as usual to the corresponding task. It is still guaranteed

that using this abstract semantics we can reproduce the resource consumption

of any trace generated in the above step. This is because the constraints in the

body are obtained by applying a single static assignment transformation, thus

for any i > j the constraint ϕi does not restrict the values of variable in ϕj.

Now let us consider an equation 〈p(x̄) = c+ Σqi(w̄i), ϕ〉 in the cost relation.

Here c and ϕ are the total resource consumptions and the constraints of a given

rule respectively (as above). It is easy to see that this equation is just a deno-

tational form of the resource consumption as developed in the third step above.

Thus, any upper-bound of the cost relation is also an upper bound in the resource

consumption of the corresponding abstract traces.
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The correctness for the object-sensitive case is straightforward given the

soundness of the points-to analysis. The above proof can be adapted to the

object-sensitive case by: (i) modifying the abstract program such that it includes

corresponding points-to annotations; and (ii) change the abstract semantics in

order to accumulate expressions of the form c(o) ∗ M(b). The correctness of

the points-to analysis guarantees that if in the concrete setting we accumulate

M(b) when executing within object o′, then in the abstract setting we accumu-

late c(o) ∗M(b) where o is the approximation of the o′ inferred by the points-to

analysis. Finally, cloning the equation as done in Definition 6.6.2 just makes the

points-to information explicit in the rules names.

The use of cost centers easily allows us to instantiate our analysis with different

deployment strategies. Such strategies determine the groups of objects that share

the processor (see, e.g., JCobox [SPH10]). The resource consumption of each

group can be easily obtained by our approach.

6.7 Experimental Evaluation

We have developed COSTABS [AAG+11], a cost analyzer of ABS programs imple-

mented as an extension of COSTA. An experimental evaluation has been carried

out using several typical concurrent applications: PeerToPeer, a peer to peer

protocol implementation; BBuffer, a classical bounded-buffer for communicating

several producers; Chat, a chat application; Mail, a simple model of a Mail server;

and DistHT, a distributed implementation of a hash table. The experiments have

been performed on an Intel Core 2 Duo at 2.53GHz with 4GB of RAM, running

Lunix 3.2.0.

Table 6.1 summarizes the main results. For each application, three different

analyses have been performed: object-insensitive analysis (under the heading

Obj. Ins.), and object-sensitive analyses using a points-to analysis with constant

k=1, and with constant k=2. The experiments have been also performed for

k=3, but they are not shown because no relevant improvement has been noticed.

Column #M and #in show, respectively, the number of methods and the number
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Obj. Ins. k=1 k=2 %
Bench. #M #in #I Tcr #E Tub #o #E Tub #o #E Tub Impr.

BBuffer 6 53 2 30 44 100 8 56 190 13 87 640 62.5 %

Chat 26 125 6 30 76 160 12 78 170 17 143 410 25.0 %

Mail 6 51 4 31 45 230 8 52 370 13 68 580 62.5 %

DistHT 10 74 12 40 69 490 6 69 380 9 93 510 50.0 %

P2P 14 143 8 120 101 2380 11 188 4350 19 472 10600 75.0 %

Table 6.1: Statistics about the Object-Sensitive Resource Analysis (times in ms.)

of instructions (in the intermediate representation) for each benchmark. Column

#I shows the number of invariants needed to obtain an upper bound. Tcr shows

the time taken to generate the CRS of the program. Column #E shows the

number of equations generated by the analysis, and column Tub shows the time

taken to solve the CRS and obtain the closed-form upper bound. The time to

generate the equations for the object-sensitive analysis has not been shown as it

is almost identical to the object-insensitive one. However, it can be observed that

the time to solve the equations notably grows with the number of equations to

be solved (in [AAGP11] it is shown experimentally that this time grows almost

linearly with the number of equations).

Column #o shows the number of different cost centers obtained by the points-

to analysis for the corresponding k. Column Impr. aims at showing the further

accuracy of k=2 w.r.t. k=1. This is done by comparing, for each cost center, the

upper bound obtained for this cost center with k=1 with the upper bounds found

for k=2 in the corresponding cost centers (possibly more than one) created at such

allocation site. % Impr shows the percentage of the cost centers for which the

obtained expressions for k = 2 are smaller than the expression obtained for k = 1.

Note that the upper bounds are not constant, but rather are cost expressions (see,

e.g., the upper bounds in Example 6.6.1). Thus, cost expressions can be easily

compared to see which one is larger, but it is often not easy to quantify the gain

(as such gain might in turn not be constant).

Let us summarize the main conclusions of the experiments. The object-

insensitive columns show that cost analysis for concurrent objects is feasible and

efficient if we assume a single cost center for the whole application. Also, as
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expected, the number of different objects identified by the points-to analysis is

larger when we apply the analysis with k = 2 than for k = 1. This increment in

precision with k = 2 results in more precise upper bounds than those obtained

with k=1. In almost all cases, more than the 50% of the cost centers improve

their results, only Chat shows a lower percentage. There is an efficiency vs. pre-

cision tradeoff as achieving further precision requires generating a larger number

of equations and hence the process of inferring the upper bounds is less efficient.

Our system lets the user set up the value of k.

6.8 Related Work

Our work is closely related to other resource usage analysis frameworks [GMC09,

HH10]. Most of such frameworks assume a sequential execution model and thus do

not deal with the main challenges addressed in this chapter. Notable exceptions

are [KPJ10, FM95]. A live heap space analysis for a concurrent language is

proposed in [KPJ10] for a simple model of shared memory which only considers a

particular type of resource (memory). A completely different approach to ours is

the use of dynamic matrices for modeling cost analysis of concurrent programs as

introduced in [FM95]. The use of cost centers has been proposed in the context

of profiling, but to our knowledge, its use in the context of static analysis is new.

The termination of multi-threaded programs presented in [CPR07] is based on

inferring conditions on the global state that are sufficient to guarantee termination

and are similar to our class invariants. Observe that such conditions are only

one component within our cost analysis framework, which additionally requires

the generation of a new form of recurrence relations and the definition of cost

models for the concurrent setting. The particular case of occurrence counting

analysis in mobile systems of processes, which in our proposal can be obtained

using a particular cost model, has been addressed by several contributions in the

literature, although they focus on high-level models, such as the π-calculus and

BioAmbients [Fer01, RL05].

When considering cumulative cost models, as we do in this thesis, asyn-

chronous calls can be handled exactly as synchronous calls without sacrifying
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precision. This is because, in such cost models, what is important is to approxi-

mate the number of times a method is executed (i.e., called), and not how many

of them might be running in parallel. In contrast, when considering noncumu-

lative cost models, information on the lifetime of each task is important, since

it might directly affect the peak consumption of the corresponding resource. As

future work, we plan to integrate in our framework cost models that are noncu-

mulative [AAGZ11].
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The main motivation of this thesis has been to develop novel techniques that help

improve the efficiency, accuracy and reliability of the resource analysis for Java-

like programs. All the techniques described in this thesis have been implemented

and evaluated experimentally proving that our theoretical results can be applied

in practice.

Let us summarize the most relevant conclusions that can be drawn from this

thesis:

(1) We have presented a practical approach to heap-sensitive cost analysis that is

able to infer the aliasing conditions under which the termination of loops over

heap-allocated data can be ensured. The main strengths of this approach are:

It handles object fields and arrays in an uniform way.

Our approach handles in the same way all heap-allocated data. We

have generalized the reference constancy analysis for inferring the access

paths used not only for accessing object fields, but also for accessing

array elements. Heap accesses can be replaced by non heap-allocated

variables when such heap accesses are local in the considered scope.

We introduce the notion of locality partition.
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There are cases in which the field is not local unconditionally because

we do not have enough information for tracking the values stored in

the heap. Our technique can infer automatically locality partitions and

generate the conditions needed to track the heap locations. Given the

locality conditions, the transformation of the heap accesses into local

variables is sound if particular conditions are satisfied.

It infers aliasing preconditions on the input arguments.

Proving the global termination of the program requires the composition

of all locality conditions inferred for the involved scopes. Our technique

combines and propagates the aliasing conditions obtained for each scope

to obtain the aliasing conditions in terms of the input arguments of

the scopes that invoke it. If the conditions hold in the initial state,

termination of the whole program is guaranteed.

(2) We have presented a novel incremental resource usage analysis technique

that can handle modifications in the program in an incremental way. After

a modification in the program, our method takes the previously computed

analysis results and only recomputes the analysis of those parts affected by

the modification. The main strengths of our work are:

It handles several abstract domains simultaneously.

Our incremental approach is multi-domain in the sense that it inter-

leaves the computation of all pre-analysis domains and takes care of

dependencies among them, invalidating and recomputing only partial

pre-computed information.

It presents the notion of cost summary.

Any change might modify the overall cost of the program, forcing the

recomputation of the UB previously obtained. Our work shows that

keeping information about the cost subcomponents associated to each

method enables the efficient recomputation of those subcomponents af-

fected by the modification.
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It is efficient in practice.

Experiments performed on real programs have shown that our solution

is efficient in comparison to analyzing of the whole program from scratch

after each modification. We have applied systematic experiments over

the evaluated programs, and the results show that our incremental anal-

ysis performs much more efficiently in practice than non-incremental cost

analysis.

(3) We have presented a framework for the generation of verified resource guar-

antees by combining the capabilities of a cost analyzer and a verification tool.

The main strengths of our approach are:

It proves the correctness of the cost analysis results automatically.

Our work describes the combination of a resource analyzer and a for-

mal verification tool to infer and verify resource guarantees in a fully

automatic way. The resource analyzer generates the parts of an UB

and outputs them as JML annotations in the analyzed program. Then,

the verification tool verifies the correctness of the annotated program to

produce verified resource guarantees.

It handles integers and heap-allocated data structures.

Our work shows that the verification of the UBs obtained for both integer

manipulating programs and heap manipulating programs is feasible in

practice. Heap manipulating programs require us to keep track and

verify the size relations among heap-allocated data. To this aim, our

framework extends the JML language with new annotations to declare

structural heap properties, like path-length, cyclicity, reachability and

sharing.

(4) We have presented a novel object-sensitive resource usage analysis for concur-

rent programs by relying on the information gathered by a points-to analysis.

The main novelties of the object-sensitive approach presented in this thesis

are:

177



It separates the cost of distributed components in cost centers.

Standard cost analysis for sequential programs assumes a single cost

center which accumulates the cost of the whole execution. In our work

we propose a novel form of object-sensitive CRS which keeps the cost

of the diverse distributed components separate. The idea of having cost

center in the equations is of general applicability.

It generates CRSs that can be solved by standard solvers.

The CRSs generated by our object-sensitive approach can still be solved

into closed form upper/lower-bounds using standard solvers for cost

analysis of sequential programs.

7.2 Future Work

We plan to extend the work presented in this thesis along the following directions:

(1) Heap accesses are already the bane of resource analysis for sequential pro-

grams. The problem is even more complex in the context of concurrent pro-

grams because different threads can access to shared memory in a interleaved

way. We want to consider the thread-based concurrency of Java language and

study how our heap-sensitive analysis has to be adapted to produce sound

and precise results.

(2) The incremental resource usage analysis described in this thesis has been

developed for sequential programs. We plan to study how to adapt our in-

cremental algorithms to use them in a concurrent and distributed context in

order to recompute only those analysis results of the distributed system that

might be affected by the change.

(3) Software product lines[PBL05], or software product line development, refers

to software engineering methods, tools and techniques for creating a collec-

tion of similar software systems from a shared set of software assets using a

common means of production. It is quite natural to apply incremental analy-

sis on such adaptative software. In such a way that every time a new product
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is selected we only need to recompute the new features added, and still can

reuse some precomputed information. The application of our incremental

analysis to this context is an open and interesting problem that we plan to

address in the near future. Cost analysis of adaptative software and product

derivation may help to detect performance and safety issues in software. We

plan to study the applicability of the incremental cost analysis to software

product lines.

(4) We plan to improve the accuracy of the object-sensitive resource analysis

by using the results gathered by a may-happen-in-parallel (MHP) analy-

sis [AFMG12]. A MHP approximates the set of pairs of program points that

may be executing in parallel. This information can prevent the size analysis

from losing all information on object fields (see Section 6.4). Intuitively we

can track a field if it surely cannot be modified by another task running in

parallel with the current one.
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D. Ramı́rez, G. Román, and D. Zanardini. Termination and Cost

Analysis with COSTA and its User Interfaces. Electronic Notes of

Theoretical Computer Science, 258(1):109–121. Elsevier, 2009.

[AAG+10] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Ramı́rez. From

Object Fields to Local Variables: A Practical Approach to Field-

Sensitive Analysis. In Procs. of SAS 2010, volume 6337 of LNCS,

pages 100-116. Springer, 2010.

[AAG+11] E. Albert, P. Arenas, S. Genaim, M. Gómez-Zamalloa, and
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[SPH10] J. Schäfer and A. Poetzsch-Heffter. Jcobox: Generalizing Active

Objects to Concurrent Components. In Procs. of ECOOP’10, vol-

ume 6183 of LNCS, pages 275–299. Springer, 2010.

[SRW99] S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape analysis

via 3-valued logic. In Procs. of POPL’99, pages 105–118, 1999.

[SS05] S. Secci and F. Spoto. Pair-Sharing Analysis of Object-Oriented

Programs. In Procs. of SAS’05, volume 3672 of LNCS, pages 320–

335. Springer, 2005.

[Sui] JOlden Suite. http://www-ali.cs.umass.edu/DaCapo/

benchmarks.html.

[Weg75] B. Wegbreit. Mechanical Program Analysis. Communications of

the ACM, 18(9), 1975.

[Wei11] B. Weiß. Deductive Verification of Object-Oriented Software: Dy-

namic Frames, Dynamic Logic and Predicate Abstraction. PhD the-

sis, Karlsruhe Institute of Technology, 2011.

[WG97] T. A. Wagner and S. L. Graham. Incremental analysis of real pro-

gramming languages. In Procs. of PLDI’97, pages 31–43, 1997.

190

http://www-ali.cs.umass.edu/DaCapo/benchmarks.html
http://www-ali.cs.umass.edu/DaCapo/benchmarks.html

	Introduction
	Thesis objectives
	Structure of the Work
	Contributions

	Preliminaries
	Introduction
	From Bytecode to a Rule-Based Representation
	Generation of the Control Flow Graph guided by Class Analysis
	Rule-Based Representation
	RBR Semantics

	From the RBR to a Cost Relation System
	Context Sensitive (Pre-)Analyses
	Heap Analysis
	Cost Models
	Size Analysis
	Generation of Cost Relation System

	From the CRS to a Closed-Form Upper Bound
	Cost Relations compositionality
	Stand-Alone Relations
	Bottom-Up Computation


	Conditional Termination of Loops over Heap-Allocated Data
	Introduction
	Organization of the Chapter

	Reference Constancy Analysis
	The Set of Access Paths
	The Analysis
	Modular Analysis

	Heap-Sensitive Analysis
	Basic Locality
	Locality Partition
	Automatic Transformation
	Heuristics for References

	Inference of Termination Preconditions
	Inference of Local Termination Preconditions
	Inference of Global Termination Preconditions

	Experimental Evaluation
	Related Work

	Incremental Resource Usage Analysis
	Introduction
	Organization of the Chapter

	A Fixed-Point Analysis Engine
	A Global Fixed-Point Analysis Engine

	Incremental Inference of Cost Relations
	Method Summary for Global Properties
	A Multi-Domain Incremental Fixed-Point Analyzer

	Generation of Cost Relations
	Incremental Inference of Upper Bounds
	The Notion of Cost Summary
	Incremental Inference of Summaries

	Experiments
	Related Work

	Verified Resource Guarantees
	Introduction
	Organization of the Chapter

	Upper-Bounds for Integer Manipulating Programs
	Main Components of an Upper Bound
	UBs Claim as JML Annotations

	Verification of Upper Bounds using KeY
	Verification by Symbolic Execution

	Upper Bounds for Heap Manipulating Programs
	Path-Length Analysis
	Cyclicity analysis
	Sharing analysis

	Verification of Path-Length Assertions
	Heap Representation
	Predicates for Structural Heap Properties
	Field Update Independence
	Path-Length Axiomatization

	Experimental Evaluation
	Related work

	Concurrency: Object-Sensitive Cost Analysis for Concurrent Objects
	Introduction
	Organization of the Chapter

	A Language with Concurrent Objects
	The Concurrency Model
	A Rule-based Representation for Concurrent Objects
	Operational Semantics

	Cost and Cost Models for Concurrent Programs
	Field-Sensitive Size Analysis for Concurrent OO Programs
	The Basic Size Analysis
	Class Invariants in Cost Analysis

	Points-to Analysis for Concurrent Programs
	The Abstract Domain
	The Transfer Function

	Object-Sensitive Resource Analysis
	Object-Insensitive Analysis
	Adding Cost Centers to the Equations

	Experimental Evaluation
	Related Work

	Conclusions and Future Work
	Conclusions
	Future Work


