
2

Test Data Generation of Bytecode
by CLP Partial Evaluation

Elvira Albert1 , Miguel Gómez-Zamalloa1 , and Germán Puebla2

1 DSIC, Complutense University of Madrid, E-28040 Madrid, Spain
CLIP, Technical University of Madrid, E-28660 Boadilla del Monte, Madrid, Spain

Abs t r ac t . We employ existing partial evaluation (PE) techniques de-
veloped for Constraint Logic Programming (CLP) in order to automati-
cally genérate test-case generators for glass-box testing of bytecode. Our
approach consists of two independent CLP PE pilases. (1) First, the
bytecode is transformed into an equivalent (decompiled) CLP program.
This is already a well studied transformation which can be done either by
using an ad-hoc decompiler or by specialising a bytecode interpreter by
means of existing PE techniques. (2) A second PE is performed in order
to supervise the generation of test-cases by execution of the CLP de
compiled program. Interestingly, we employ control strategies previously
defined in the context of CLP PE in order to capture coverage criterio,
for glass-box testing of bytecode. A unique feature of our approach is
that, this second PE phase allows generating not only test-cases but also
test-case generators. To the best of our knowledge, this is the first time
that (CLP) PE techniques are applied for test-case generation as well as
to genérate test-case generators.

1 Introduction

Bytecode (e.g., Java bytecode [19] or .Net) is becoming widely used, especially in
the context of mobile applications for which the source code is not available and,
henee, there is a need to develop veriñeation and validation tools which work
directly on bytecode programs. Reasoning about complex bytecode programs
is rather difñcult and time consuming. In addition to object-oriented features
such as objeets, virtual method invocation, etc., bytecode has several low-level
language features: it has an unstructured control flow with several sources of
branching (e.g., conditional and unconditional jumps) and uses an operand stack
to perform intermedíate computations.

Test da ta generation (TDG) aims at automatically generating test-cases for
interesting test coverage crítería. The coverage criteria measure how well the
program is exercised by a test suite. Examples of coverage criteria are: state-
rnent coverage which requires tha t each line of the code is executed; path cov
erage which requires tha t every possible trace through a given par t of the code
is executed; etc. There are a wide variety of approaches to T D G (see [27] for
a survey).Our work focuses on glass-box testing, where test-cases are obtained
from the concrete program in contrast to black-box testing, where they are de-
duced from a speciñeation of the program. Also, our focus is on statíc testing,

where we assume no knowledge about the input data, in contrast to dynamic
approaches [9,14] which execute the program to be tested for concrete input
valúes.

The standard approach to generating test-cases statically is to perform a
symbolíc execution of the program [7,22,23,17,13], where the contents of variables
are expressions rather than concrete valúes. The symbolic execution produces a
system of constraínts consisting of the conditions to execute the different paths.
This happens, for instance, in branching instructions, like if-then-else, where we
might want to genérate test-cases for the two alternative branches and henee
accumulate the conditions for each path as constraints. The symbolic execution
approach has been combined with the use of constraínt solvers [23,13] in order to:
handle the constraints systems by solving the feasibility of paths and, afterwards,
to instantiate the input variables. For the particular case of Java bytecode, a
symbolic JVM machine (SJVM) which integrates several constraints solvers has
been designed in [23]. A SJVM requires non-trivial extensions w.r.t. a JVM: (1)
it needs to execute the bytecode symbolically as explained above, (2) it must
be able to backtrack, as without knowledge about the input data, the execution
engine might need to execute more than one path. The backtracking mechanism
used in [23] is essentially the same as in logic programming.

We propose a novel approach to TDG of bytecode which is based on PE tech-
niques developed for CLP and which, in contrast to previous work, does not
require the devising a dedicated symbolic virtual machine. Our method com-
prises two CLP PE phases which are independent. In fact, they rely on different
execution and control strategies:

1. The decompilation of bytecode into a CLP program. This has been the subject
of previous work [15,3,12] and can be achieved automatically by relying
on the ñrst Futamura projection by means of partial evaluation for logic
programs, or alternatively by means of an adhoc decompiler [21].

2. The generatíon of test-cases. This is a novel application of PE which allows
generating test-case generators from CLP decompiled bytecode. In this case,
we rely on a CLP partial evaluator which is able to solve the constraint
system, in much the same way as a symbolic abstract machine would do.
The two control operators of a CLP partial evaluator play an essential role:
(1) The local control applied to the decompiled code will allow capturing
interesting coverage criteria for TDG of the bytecode. (2) The global con
trol will enable the generation of test-case generators. Intuitively, the TDG
generators we produce are CLP programs whose execution in CLP returns
further test-cases on demand without the need to start the TDG process
from scratch.

We argüe that our CLP PE based approach to TDG of bytecode has several
advantages w.r.t. existing approaches based on symbolic execution: (i) It is more
generíc, as the same techniques can be applied to other both low and high-
level imperative languages. In particular, once the CLP decompilation is done,
the language features are abstracted away and, the whole part related to TDG
generation is totally language independent. This avoids the difñculties of dealing

with recursion, procedure calis, dynamic memory, etc. that symbolic abstract
machines typically face, (ii) It is more flexible, as different coverage criteria can
be easily incorporated to our framework just by adding the appropriate local
control to the partial evaluator. (iii) It is more powerful as we can genérate test-
case generators. (iv) It is simpler to implement compared to the development of
a dedicated SJVM, as long as a CLP partial evaluator is available.

The rest of the paper is organized as follows. The next section recalls some
preliminary notions. Sec. 3 describes the notion of CLP block-level decompilation
which corresponds to the ñrst phase above. The second phase is explained in the
remainder of the paper. Sec. 4 presents a na'ive approach to TDG using CLP
decompiled programs. In Sec. 5, we introduce the block count-k coverage criterion
and outline an evaluation strategy for it. In Sec. 6, we present our approach to
TDG by partial evaluation of CLP. Sec. 7 discusses related work and concludes.

2 Preliminaries and Notat ion in Constraint Logic
Programs

We now introduce some basic notions about Constraint Logic Programming
(CLP). See e.g. [20] for more details. A constraint store, or store for short,
is a conjunction of expressions built from predeñned predicates (such as term
equations and equalities or inequalities over the integers) whose arguments are
constructed using predeñned functions (such as addition, multiplication, etc.).
We let 3p9 be the constraint store 9 restricted to the variables of the syntactic
object L. An atorn has the form p(t\, ...,tn) where p is a predicate symbol and
the ti are terms. A literal L is either an atom or a constraint. A goal L\,..., Ln is
a possibly empty ñnite conjunction of literals. A rule is of the form H: -B where
H, the head, is an atom and B, the body, is a goal. A constraint logic program,
or program, is a ñnite set of rules. We use rngu to denote a most general uniñer
for two uniñable terms.

The operational semantics of a program P is in terms of its derivations which
are sequences of reductions between states. A state (G I 9) consists of a goal G
and a constraint store 9. A state (L, G I 9) where L is a literal can be reduced as
follows:

1. If L is a constraint and 9 A L is satisñable, it is reduced to (G I 9 A L).
2. If L is an atom, it is reduced to (B, G I 9 A 9') for some renamed apart rule

(JJ: -B) in P such that L and L' unify with mgu 9'.

A derivation from state S for program P is a sequence of states SQ -^P S\ -^p
... -^p Sn where SQ is S and there is a reduction from each <S¿ to <S¿+i. Given
a non-empty derivation D, we denote by curr_state(D) and curr_store(D) the
last state in the derivation, and the store in this last state, respectively. E.g.,
if D is the derivation SQ —>p Sn, where ^ * denotes a sequence of steps, with
Sn = (G I 9) then currstate(D) = Sn and currstore(D) = 9. A query is a
pair (L, 9) where L is a literal and 9 a store for which the CLP system starts a
computation from (L I 9).

The observational behavior of a program is given by its "answers" to queries.
A ñnite derivation D from a query Q = (L, 9) for program P is finíshed if
curr_state(D) cannot be reduced. A ñnished derivation D from a query Q =
(L,6) is successful if currstate(D) = (e I 6'), where e denotes the empty con-
junction. The constraint 3^9' is an answer to Q. A ñnished derivation is failed if
the last state is not of the form (e I 9). Since evaluation trees may be infinite, we
allow unfinished derivations, where we decide not to further perform reductions.
Derivations can be organized in execution trees: a state S has several children
when its leftmost atom unifies with several program clauses.

3 Decompilation of Bytecode to CLP

Let us first briefly describe the bytecode language we consider. It is a very
simple imperative low-level language in the spirit of Java bytecode, without
object-oriented features and restricted to manipúlate only integer numbers. It
uses an operand stack to perform computations and has an unstructured control
flow with explicit conditional and unconditional goto instructions. A bytecode
program is organized in a set of methods which are the basic (de)compilation
units of the bytecode. The code of a method m consists of a sequence of byte
code instructions BCm =<pco : bco,... ,pcnm : bcnm > with peo,... ,pcnm being
consecutive natural numbers. The instruction set is:

Bclnst ::= push(x) | load(v) | store(v) | add | sub | muí | div | rem | neg |
¡fo(pc) | ¡fOo(pc) | goto(pc) | return | call(mn)

where o is a comparison operator (eq, le, gt, etc.), v a local variable, x an integer,
pe an instruction Índex and rnn a method ñame. The instructions push, load and
store transfer valúes or constants from a local variable to the stack (and vice
versa); add, sub, muí, div, rem and neg perform arithmetic operations, rem is the
división remainder and neg the negation; if and ¡fO are conditional branching in
structions (with the special case of comparisons with 0); goto is an unconditional
branching; return marks the end of methods returning an integer and cali invokes
a method.

Figure 1 depiets the control flow graphs (CFGs) [1] and, within them, the
bytecode instructions associated to the methods lem (on the left), gcd (on the
right) and abs (at the bottom). A Java-like source code for them is shown to
the left of the figure. It is important to note that we show source code only for
clarity, as our approach works directly on the bytecode. The use of the operand
stack can be observed in the example: the bytecode instructions at pe 0 and 1
in lem load the valúes of parameters x and y (resp.) to the stack before invoking
the method gcd. Method parameters and local variables in the program are
referenced by consecutive natural numbers starting from 0 in the bytecode. The
result of executing the method gcd has been stored on the top of the stack.
At pe 3, this valué is popped and assigned to variable 2 (called gcd in the Java
program). The branching at the end of Blocki is due to the fact that the división
bytecode instruction div can throw an exception if the divisor is zero (control

int lcm(int x,int y){
int gcd = gcd(x,y);
return abs(x*y/gcd)

}

int gcd(int x,int y){
int res;
while (y != 0){

res = x°/„y;
x = y; y = res;

}
return abs(x);

int abs(int x){
if (x >= 0)
return x;

else return -x;

}

Blocki

lcm/2

it:
0:load(0)
l : load(l)
2:cali(gcd)
3:store(2)
4:load(0)
5:load(l)
6: muí
7:load(2)

, ' >
g c i / 0 l I ^ ^

BlocRn

4:load(0)
5:neg
6:return

Block5

l l : load(0)
12:cali(abs)
13:return

^ _ J
Block7 ' \
excep t ion (rembyO) • a=o_

Block3

- \
exception(divbyO)

Blockio

2:load(0)
3:return

v_

Block9
T x > 0

0:load(0)
l : i f01t(4)

_ _g£d/2_

°ck4 T T
gcd=0

a=°- 0:load(l)
l : i f0eq (l l)

| y / o
Block6

2:load(0)
3:load(l)

[y/o

abs / l

Block8 f

4
5
6
7
8
9

rem
store(2)
load(l)
store(0)
load(2)
s to re (l)

10:goto(0)
V

Fig. 1. Working example. Source code and CFGs for the bytecode.

goes to Block3) . In the bytecode for gcd, we ñnd: conditional jumps, like i f Oeq
at pe 1, which corresponds to the loop guard, and unconditional jumps, like go to
in pe 10, where the control returns to the loop entry. Note tha t the bytecode
instruction rem can throw an exception as before.

3.1 D e c o m p i l a t i o n by P E and Block-Leve l D e c o m p i l a t i o n

The decompilation of low-level code to CLP has been the subject of previous
research, see [15,3,21] and their references. In principie, it can be done by deñning
an adhoc decompiler (like [2,21]) or by relying on the technique of P E (like
[15,3]). The decompilation of low-level code to CLP by means of P E consists in
specializing a bytecode interpreter implemented in CLP together with (a CLP
representation of) a bytecode program. As the ñrst Futamura projection [11]
prediets, we obtain a CLP residual program which can be seen as a decompiled
and transíated versión of the bytecode into high-level CLP source. The approach
to T D G tha t will be presented in the remaining of this paper is independent of
the technique used to genérate the CLP decompilation. Thus, we will not explain
the decompilation process (see [15,3,21]) but rather only s tate the decompilation
requirements our method imposes.

The correetness of decompilation must ensure that there is a one to one corre-
spondence between execution paths in the bytecode and derivations in the CLP
decompiled program. In principie, depending on the particular type of decompi
lation - a n d even on the options used within a particular m e t h o d - we can obtain
different correct decompilations which are valid for the purpose of execution.
However, for the purpose of generating useful test-cases, additional requirements

l cm([X,Y] ,Z) : - gcd([X,Y] ,GCD) ,P #= X*Y,
l c m l c ([G C D , P] , Z) .

l cmlc([GCD,P] ,Z) : - GCD #\= 0,D #= P/GCD,

abs ([D] , Z) .
l c m l c ([0 , _] .divbyO) .

abs ([X] ,Z)
abs9c(X,X)
abs9c(X,Z)

a b s 9 c (X , Z) .
X #>= 0 .
X #< O, Z #= -X.

gcd4(X,Y,Z) : - gcd4c (X ,Y ,Z) .

gcd4c (X,0 ,Z) : - a b s ([X] , Z) .
gcd4c(X,Y,Z) : - Y # \= O,

gcd6c (X ,Y ,Z) .

gcd6c(X,Y,Z) : - Y # \= O,
R #= X mod Y,

g c d 4 (Y , R , Z) .
g c d 6 c (_ , 0 , r e m b y 0) .

g c d ([X , Y] , Z) : - gcd4 (X ,Y,Z) .

F i g . 2 . Block-level decompilat ion to C L P for working example

are needed: we must be able to define coverage criteria on the CLP decompi
lation which produce test-cases which cover the equívalent coverage criteria for
the bytecode. The following notion of block-level decompilation, introduced in
[12], provides a sufficient condition for ensuring tha t equivalent coverage criteria
can be defined.

Def in i t ion 1 (b lock- leve l d e c o m p i l a t i o n) . Gíven a bytecode program BC
and its CLP-decompilation P, a block-level decompilation ensures that, for each
block in the CFGs of BC, there exists a single corresponding rule in P which
contains all bytecode instructions within the block.

The above notion was introduced in [12] to ensure optimality in decompilation, in
the sense tha t each program point in the bytecode is traversed, and decompiled
code is generated for it, at most once. According to the above definition there is
a one to one correspondence between blocks in the CFG and rules in P, as the
following example illustrates. The block-level requirement is usually an implicit
featureofadhocdecompilers (e.g., [2,21]) and can be also enforced in decompilation
by P E (e.g., [12]).

Example 1. Figure 2 shows the code of the block-level decompilation to CLP of
our running example which has been obtained using the decompiler in [12] and
uses CLP(FD) built-in operations (in particular those in the c l p f d library of
S i c s t u s Prolog). The input parameters to methods are passed in a list (first
argument) and the second argument is the output valué. We can observe tha t
each block in the CFG of the bytecode of Fig. 1 is represented by a correspond
ing clause in the above CLP program. For instance, the rules for lcm and l cmlc
correspond to the three blocks in the CFG for method lcm. The more inter-
esting case is for method gcd, where the whi le loop has been converted into
a cycle in the decompiled program formed by the predicates gcd4, gcd4c, and
gcd6c. In this case, since gcd4 is the head of a loop, there is one more rule (gcd)
than blocks in the CFG. This additional rule corresponds to the method entry.
Bytecode instructions are decompiled and translated to their corresponding op
erations in CLP; conditional s ta tements are captured by the continuation rules.

For instance, in gcd4, the bytecode instruction at pe 0 is executed to unify a
stack position with the local variable y. The conditional i f Oeq at pe 1 leads
to two continuations, i.e. two rules for predicate gcd4c: one for the case when
y=0 and another one for y^O. Note that we have explicit rules to capture the
exceptional executions (which will allow generating test-cases which correspond
to exceptional executions). Note also that in the decompiled program there is no
difference between calis to blocks and method calis. E.g., the ñrst rule for lem
includes in its body a method cali to gcd and a block cali lcmlc.

4 Test Da ta Generation Using CLP Decompiled
Programs

Up to now, the main motivation for CLP decompilation has been to be able
to perform static analysis on a decompiled program in order to infer properties
about the original bytecode. If the decompilation approach produces CLP pro
grams which are executable, then such decompiled programs can be used not
only for static analysis, but also for dynamic analysis and execution. Note that
this is not always the case, since there are approaches (like [2,21]) which are
aimed at producing static analysis targets only and their decompiled programs
cannot be executed.

4.1 Symbolic Execution for Glass-Box Testing

A novel interesting application of CLP decompilation which we propose in this
work is the automatic generation of glass-box test data. We will aim at generating
test-cases which traverse as many different execution paths as possible. From this
perspective, different test data should correspond to different execution paths.
With this aim, rather than executing the program starting from different input
valúes, a well-known approach consists in performing symbolic execution such
that a single symbolic run captures the behaviour of (inñnitely) many input
valúes. The central idea in symbolic execution is to use constraint variables
instead of actual input valúes and to capture the effeets of computation using
constraints (see Sec. 1).

Several symbolic execution engines exist for languages such as Java [4] and
Java bytecode [23,22]. An important advantage of CLP decompiled programs
w.r.t. their bytecode counterparts is that symbolic execution does not require,
at least in principie, to build a dedicated symbolic execution mechanism. In
stead, we can simply run the decompiled program by using the standard CLP
execution mechanism with all arguments being distinct free variables. E.g., in
our case we can execute the query lcm([X, Y], Z). By running the program with-
out input valúes on a block level decompiled program, each successful execution
corresponds to a different computation path in the bytecode. Furthermore, along
the execution, a constraint store on the program's variables is obtained which

can be used for inferring the conditions tha t the input valúes (in our case X and
Y) must satisfy for the execution to follow the corresponding computat ion path.

4.2 From Constra int S tores t o Test D a t a

An inherent assumption in the symbolic execution approach, regardless of whether
a dedicated symbolic execution engine is built or the default CLP execution is
used, is tha t all valuations of constraint variables which satisfy the constraints
in the store (if any) result in input da ta whose computat ion traverses the same
execution path. Therefore, it is irrelevant, from the point of view of the execution
path, which actual valúes are chosen as representatives of a given store. In any
case, it is often required to ñnd a valuation which satisñes the store. Note tha t
this is a strict requirement if we plan to use the bytecode program for testing,
though it is not strictly required if we plan to use the decompiled program for
testing, since we could save the ñnal store and directly use it as input test data .
Then, execution for the test da ta should load the store ñrst and then proceed
with execution. In what follows, we will concéntrate on the ñrst alternative, Le.,
we genérate actual valúes as test data .

This postprocessing phase is straightforward to implement if we use CLP(FD)
as the underlying constraint domain, since it is possible to enumérate valúes
for variables until a solution which is consistent with the set of constraints is
found (i.e., we perform labeting). Note, however, tha t it may happen tha t some
of the computed stores are indeed inconsistent and tha t we cannot ñnd any
valuation of the constraint variables which simultaneously satisñes all constraints
in the store. This may happen for unfeasible paths, i.e., those which do not
correspond to any actual execution. Given a decompiled method M, an integer
subdomain [RMin.RMax]; t n e predicate genera te_ te s t_data /4 below produces,
on backtracking, a (possibly infinite) set of valúes for the variables in Args and
the result valué in Z.

generate_test_data(M,Args , [RMin.RMax] ,Z) : -
domain(Args,RMin.RMax), Goal = . . [M , A r g s , Z] ,
c a l i (G o a l) , o n c e (l a b e l i n g ([f f] , A r g s)) .

Note tha t the generator first imposes an integer domain for the program vari
ables by means of the cali to domain /3 ; then builds the Goal and executes it
by means of c a l i (Goal) to genérate the constraints; and finally invokes the
enumeration predicate l a b e l i n g / 2 to produce actual valúes compatible with
the constraints1 . The test da ta obtained are in principie specific to some inte
ger subdomain; indeed our bytecode language only handles integers. This is not
necessarily a limitation, as the subdomain can be adjusted to the underlying
bytecode machine limitations, e.g., [—231,231 — 1] in the Java virtual machine.
Note tha t if the variables take floating point valúes, then other constraint do-
mains such as CLP(R) or CLP(Q) should be used and then, other mechanisms
for generating actual valúes should be used.

1 We are using the clpfd library of Sics tus Prolog. See [26] for details on predicates
domain/3, l abe l ing /2 , etc.

5 An Evaluation Strategy for Block-Count(k) Coverage

As we have seen in the previous section, an advantage of using CLP decompiled
programs for test da ta generation is that there is no need to build a symbolic
execution engine. However, an important problem with symbolic execution, re-
gardless of whether it is performed using CLP or a dedicated execution engine,
is tha t the execution tree to be traversed is in most cases infinite, since programs
usually contain iterative constructs such as loops and recursion which induce an
infinite number of execution paths when executed without input valúes.

Example 2. Consider the evaluation of the cali lcm([X,Y] ,Z) , depicted in Fig. 3.
There is an infinite derivation (see the rightmost derivation in the tree) where
the cycle { gcd4 ,gcd4c ,gcd6c} is traversed forever. This happens because the
valué in the second argument position of gcd4c is not ground during symbolic
computation.

Therefore, it is essential to establish a termínatíon críteríon which guarantees
tha t the number of paths traversed remains finite, while at the same time an
interesting set of test da ta is generated.

5.1 Block-count(k): A Coverage Cri ter ia for B y t e c o d e

In order to reason about how interesting a set of test da ta is, a large series
of coverage criteria have been developed over the years which aim at guaran-
teeing tha t the program is exercised on interesting control and /or da ta flows.
In this section we present a coverage criterion of interest to bytecode programs.
Most existing coverage criteria are defined on high-level, s tructured programming
languages. A widely used control-flow based coverage criterion is loop-count(A;),
which dates back to 1977 [16], and limits the number of times we itérate on loops
to a threshold k. However, bytecode has an unstructured control flow: CFGs can
contain múltiple different shapes, some of which do not correspond to any of the
loops available in high-level, s tructured programming languages. Therefore, we
introduce the block-count(A;) coverage criterion which is not explicitly based on
limiting the number of times we itérate on loops, but rather on counting how
many times we visit each block in the CFG within each computation. Note tha t
the execution of each method cali is considered as an independent computation.

Def in i t ion 2 (block-count(A;)). Given a natural number k, a set of compu
tation paths satisfies the block-count(A;) criterion if the set includes all finished
computation paths which can he built such that the number of times each block
is visited within each computation does not exceed the given k.

Therefore, if we take k = 1, this criterion requires tha t all non-cyclic paths be
covered. Note tha t k = 1 will in general not visit all blocks in the CFG, since
traversing the loop body of a w h i l e loop requires k > 2 in order to obtain a
finished path. For the case of structured CFGs, block-count(A;) is actually equiv-
alent to loop-countfV), by simply taking k' to be k-í. We prefer to formúlate
things in terms of block-count(A;) since, formulating loop-count(A;) on unstruc
tured CFGs is awkward.

lcm([X,Y],Z) : Rl

gcd([X,Y],Z), P # = X*Y, lcmlc([GCD,P],Z) : R2

;cd6c(X,Y,GCD), . . . : R5

[Y^O} | {R=XmodY}

;cd4(Y,R,GCD) I, . . . : R6

;cd4c(Y,R,GCD),

{ K = o } |

: RIO gcd6c(R, R'.GCD),. . . : R8

l {R^O, R' = YmodR} Y

t rue(L 4) t rue (L 5) t rue (L 6) t rue (L 7) gcd4(R,R',GCD) , . . . : R9

Fig. 3. An evaluation tree for lcm([X,Y] ,Z)

5.2 A n Intra-procedura l Eva luat ion S t r a t e g y for Block-Count(fe)

Fig. 3 depicts (part of) an evaluation tree for lcm([X,Y] , Z). Each node in the
tree represents a state, which as introduced in Sec. 2, consists of a goal and a
store. In order not to clutter the figure, for each state we only show the relevant
par t of the goal, but not the store. Also, an are in the tree may involve several
reduction steps. In particular, the constraints which precede the leftmost a tom
(if any) are always processed. Likewise, at least one reduction step is performed
on the leftmost a tom w.r.t. the program rule whose head unifies with the atom.
When more than one step is performed, the are is labelled with "*". Ares are
annotated with the constraints processed at each step. Each branch in the tree
represents a derívatíon.

Our aim is to supervise the generation of the evaluation tree so tha t we gen
érate sufñciently many derivations so as to satisfy the block-count(A;) criterion
while, at the same time, guaranteeing termination.

Def in i t ion 3 (intra-procedural eva lua t ion s t r a t e g y) . The following two
conditions provide an evaluation strategy which ensures block-count(k) in intra-
procedural bytecode (i.e., we consider a single CFG for one method):

(i) annotate every state in the evaluation tree with a multiset, which we refer to
as visited, and which contains the predicates which have been already reduced
during the derivation;

(ii) atoras can only be reduced if there are at most k — 1 occurrences of the
corresponding predícate in visited.

It is easy to see that this evaluation strategy is guaranteed to always produce a
ñnite evaluation tree since there is a ñnite number of rules which can unify with
any given atom and therefore non-termination can only be introduced by cycles
which are traversed an unbounded number of times. This is clearly avoided by
limiting the number of times which resolution can be performed w.r.t. the same
predicate.

Example 3. Let us consider the rightmost derivation in Fig. 3, formed by goals
Rl to R9. Observe the framed atoms for gcd4, the goals R3, R6 and R9 contain
an atom for gcd4 as the leftmost literal. If we take k = 1 then resolvent R6
cannot be further reduced since the termination criterion forbids it, as gcd4 is
already once in the multiset of visited predicates. If we take k = 2 then R6 can
be reduced and the termination criterion is ñred at R9, which cannot be further
reduced.

5.3 An Inter-procedural Evaluation Strategy Based on Ancestors

The strategy of limiting the number of reductions w.r.t. the same predicate
guarantees termination. Furthermore, it also guarantees that the block-count(A;)
criterion is achieved, but only if the program consists of a single CFG, i.e.,
at most one method. If the program contains more than one method, as in
our example, this evaluation strategy may forcé termination too early, without
achieving block-count(A;) coverage.

Example 4- Consider the predicate abs. Any successful derivation which does
not correspond to exceptions in the bytecode program has to execute this pred
icate twice, once from the body of method lcm and another one from the body
of method gcd. Therefore, if we take k = 1, the leftmost derivation of the tree in
Fig. 3 will be stopped at R12, since the atom to be reduced is considered to be a
repeated cali to predicate abs. Thus, the test-case for the successful derivation
Ll is not obtained. As a result, our evaluation strategy would not achieve the
block-count(A;) criterion.

The underlying problem is that we are in an inter-procedural setting, i.e., byte
code programs contain method calis. In this case -meanwhile decompiled ver-
sions of bytecode programs without method calis always consist of binary rules-
decompiled programs may have rules with several atoms in their body. This is
indeed the case for the rule for lcm in Ex. 1, which contains an atom for predicate
gcd and another one for predicate lcmlc. Since under the standard left-to-right
computation rule, the execution of gcd is ñnished by the time execution reaches
lcmlc there is no need to take the computation history of gcd into account when
supervising the execution of lcmlc. In our example, the execution of gcd often
involves an execution of abs which is ñnished by the time the cali to abs is
performed within the execution of lcmlc. This phenomenon is well known prob
lem in the context of partial evaluation. There, the notion of ancestor has been
introduced [5] to allow supervising the execution of conjuncts independently by

only considering visited predicates which are actually ancestors of the current
goal. This allows improving accuracy in the specialization.

Given a reduction step where the leftmost atom A is substi tuted by £> i , . . . , Bm.
we say tha t A is the parent of the instance of B¿ for i = 1 , . . . , m in the new goal
and in each subsequent goal where the instance originating from B¿ appears. The
ancestor relation is the transitive closure of the parent relation. The multiset of
ancestors of the a tom for abs in goal R12 in the SLD tree is { l c m l c . l c m } , as
l cmlc is its parent and lcm the parent of its parent. Importantly, abs is not in
such multiset. Therefore, the leftmost computat ion in Fig. 3 will proceed upon
R12 thus producing the corresponding test-case for every k > 1. The evaluation
strategy proposed below relies on the notion of ancestor sequence.

Def in i t ion 4 (in ter -procedural eva lua t ion s t r a t e g y) . The following two
conditions provide an evaluation strategy which ensures block-count(k) in inter-
procedural bytecode (i.e., we consider several CFGs and methods):

(i) annotate every atom in the evaluation tree with a multiset which contains its
ancestor sequence which we refer to as ancestors;

(ii) atoms can only he reduced if there are at most k — 1 occurrences of the
corresponding predícate in its ancestors.

The next section provides practical means to implement this strategy.

6 Test Data Generation by Partial Evaluation

We have seen in Sec. 5 tha t a central issue when performing symbolic execu-
tion for T D G consists in building a ñnite (possibly unñnished) evaluation tree
by using a non-standard execution strategy which ensures both a certain cover-
age criterion and termination. An important observation is tha t this is exactly
the problem tha t unfolding rules, used in partial evaluators of (C)LP, solve. In
essence, part ial evaluators are non-standard interpreters which receive a set of
partially instantiated atoms and evalúate them as determined by the so-called
unfolding rule. Thus, the role of the unfolding rule is to supervise the process of
building ñnite (possibly unñnished) SLD trees for the atoms. This view of T D G
as a P E problem has important advantages. First, as we show in Sec. 6.1, we
can directly apply existing, powerful, unfolding rules developed in the context of
PE . Second, in Sec. 6.2, we show tha t it is possible to explore additional abilities
of partial evaluators in the context of TDG. Interestingly, the generation of a
residual program from the evaluation tree returns a program which can be used
as a test-case generator for obtaining further test-cases.

6.1 U s i n g a n Unfo ld ing R u l e for I m p l e m e n t i n g Block-Count(fe)

Sophisticated unfolding rules exist which incorpórate non-trivial mechanisms
to stop the construction of SLD trees. For instance, unfolding rules based on
comparable atoms allow expanding derivations as long as no previous comparable
atom (same predicate symbol) has been already visited. As already discussed, the

use of ancestors [5] can reduce the number of atoms for which the comparabihty
test has to be performed.

In PE terminology the evaluation strategy outlined in Sec. 5 corresponds to
an unfolding rule which allows k comparable atoms in every ancestor sequence.
Below, we provide an implementation, predicate unf o ld /3 , of such an unfold
ing rule. The CLP decompiled program is stored as c lause/2 facts. Predicate
unf o ld /3 receives as input parameters an atom as the initial goal to evalúate,
and the valué of constant k. The third parameter is used to return the resolvent
associated with the corresponding derivation.

unfold(A,K,[load_st(St)IRes]) :-
unf([A],K, [] ,Res) ,
co l lec t_vars ([A |Res] ,Vars) ,
save_s t (Vars ,S t) .

unf ([] ,_K,_AS,[]) .
unf([A|R],K,AncS,Res) : -

c o n s t r a i n t (A) , ! , c a l l (A) ,
unf(R,K,AncS,Res).

unf (['pop ' |R],K, LIAncS] ,Res)
!, unf(R,K,AncS,Res).

unf([A|R],K,AncS,Res) : -
clause(A,B), functor(A,F,Ar) ,
(check(AncS,F,Ar,K) ->

append(B,['pop' |R],NewGoal),
unf(NewGoal,K,[F/Ar|AncS],Res)

; Res = [A |R]) .

check([] ,_ ,_ ,K) : - K > 0.
check([F/Ar|As],F,Ar,K) : - !, K > 1,

Kl i s K - 1, check(As,F,Ar,Kl).
check([_|As],F,Ar,K) : - check(As,F,Ar,K).

Predicate unf o ld /3 ñrst calis unf/4 to perform the actual unfolding and then,
after collecting the variables from the resolvent and the initial atom by means of
predicate col lec t_vars /2 , it saves the store of constraints in variable St so that
it is included inside the cali load_st(St) in the returned resolvent. The reason
why we do this will become clear in Sect. 6.2. Let us now explain intuitively the
four rules which define predicate unf/4. The first one corresponds to having an
empty goal, i.e., the end of a successful derivation. The second rule corresponds
to the first case in the operational semantics presented in Sec. 2, i.e., when the
leftmost literal is a constraint. Note that in CLP there is no need to add an
argument for explicitly passing around the store, which is implicitly maintained
by the execution engine by simply executing constraints by means of predicate
c a l l / 1 . The second case of the operational semantics in Sec. 2, i.e., when the
leftmost literal is an atom, corresponds to the fourth rule. Here, on backtracking
we look for all rules asserted as c lause/2 facts whose head unifies with the
leftmost atom. Note that depending on whether the number of occurrences of
comparable atoms in the ancestors sequence is smaller than the given k or not,
the derivation continúes or it is stopped. The termination check is performed by
predicate check/4.

In order to keep track of ancestor sequences for every atom, we have adopted
the efficient implementation technique, proposed in [25], based on the use of a
global ancestor stack. Essentially, each time an atom A is unfolded using a rule
H : —Bi,... ,Bn, the predicate ñame of A, pred(A), is pushed on the ancestor
stack (see third argument in the recursive cali). Additionally, a pop mark is
added to the new goal after Bi , . . . ,Bn (cali to append/3) to delimit the scope
of the predecessors of A such that, once those atoms are evaluated, we find the
mark pop and can remove pred(A) from the ancestor stacks. This way, the

ancestor stack, at each stage of the computation, contains the ancestors of the
next a tom which will be selected for resolution. If predícate check/4 detects tha t
the number of occurrences of pred(A) is greater than k, the derivation is stopped
and the current goal is returned in Res.The third rule of unf / 4 corresponds to
the case where the leftmost a tom is a pop literal. This indicates tha t the the
execution of the a tom which is on top of the ancestor stack has been completed.
Henee, this a tom is popped from the stack and the pop literal is removed from
the goal.

Example 5. The execution of unf o ld (l cm([X,Y] ,Z) , 2 , [J) builds a ñnite (and
henee unñnished) versión of the evaluation tree in Fig. 3. For k = 2, the infinite
branch is stopped at goal R9, since the ancestor stack at this point is [gcd6c,
g c d 4 c , g c d 4 , g c d 6 c , g c d 4 c , g c d 4 , l c m] and henee it already contains gcd4 twice.
This will make the check/4 predicate fail and therefore the derivation is stopped.
More interestingly, we can genérate test-cases, if we consider the following cali:

findall(([X,Y] ,Z),unfold([gen_test_data(lcm, [X,Y], [-1000,1000] ,Z)] ,2, [_]),TCases).

where generate_tes t_data is defined as in Sec. 4. Now, we get on backtrack-
ing, concrete valúes for variables X, Y and Z associated to each finished deriva
tion of the tree.2 They correspond to test da ta for the block-count(2) coverage
criteria of the bytecode. In particular, we get the following set of test-cases:
TCases = [([1,0],0), ([0,0],divbyO), ([-1000,0],0), ([0,1],0), ([-1000,1],1000), ([-1000,-
1000], 1000),([1,-1],1)] which correspond, respectively, to the leaves labeled as
(L1) , . . . , (L7) in the evaluation tree of Fig. 3. Essentially, they constitute a par
ticular set of concrete valúes tha t traverses all possible paths in the bytecode,
including exceptional behaviours, and where the loop body is executed at most
once.

The soundness of our approach to T D G amounts to saying tha t the above im-
plementation, executed on the CLP decompiled program, ensures termination
and block-count(A;) coverage on the original bytecode.

P r o p o s i t i o n 1 (s o u n d n e s s) . Let m be a method with n arguments and BCm

its bytecode instructions. Let m([Xi,. . . , Xn], Y) be the corresponding decompiled
method and let the CLP block-level decompilation of BCm be asserted as a set
of c l a u s e / 2 facts. For every positive number k, the set of successful derivations
computed by unf (m([Xi,. . . , Xn], Y), k, [],[], _) ensures block-count(k) coverage of
BCm.

Intuitively, the above result follows from the facts that : (1) the decompilation
is correct and block-level, henee all traces in the bytecode are derivations in
the decompiled program as well as loops in bytecode are eyeles in CLP; (2) the
unfolding rule computes all feasible pa ths and traverses eyeles at most k times.

2 We forcé to consider just finished derivations by providing [_] as the obtained re
sult ant.

6.2 Generating Test Data Generators

The ñnal objective of a partial evaluator is to genérate optimized residual code.
In this section, we explore the applications of the code generation phase of par
tial evaluators in TDG. Let us ñrst intuitively explain how code is generated.
Essentially, the residual code is made up by a set of resultarás or residual rules
(i.e., a program), associated to the root-to-leaf derivations of the computed eval-
uation trees. For instance, consider the rightmost derivation of the tree in Fig. 3,
the associated resultant is a rule whose head is the original atom (applying the
mgu's to it) and the body is made up by the atoms in the leaf of the derivation.
If we ignore the constraints gathered along the derivation (which are encoded in
load_st(S) as we explain below), we obtain the following resultant:

l cm([X,Y] ,Z) : - l o a d _ s t (S) , gcd4(R,R> ,GCD) , P#= X*Y, l c m l c ([GCD.P] ,Z) .

The residual program will be (hopefully) executed more efñciently than the orig
inal one since those computations that depend only on the static data are per-
formed once and for all at specialization time. Due to the existence of incom-
plete derivations in evaluation trees, the residual program might not be complete
(i.e., it can miss answers w.r.t. the original program). The partial evaluator in-
cludes an abstractíon operator which is encharged of ensuring that the atoms
in the leaves of incomplete derivations are "covered" by some previous (par-
tially evaluated) atom and, otherwise, adds the uncovered atoms to the set of
atoms to be partially evaluated. For instance, the atoms gcd4(R,R' ,GCD) and
lcmlc([GCD,P] , Z) above are not covered by the single previously evaluated
atom lcm([X,Y] , Z) as they are not instances of it. Therefore, a new unfolding
process must be started for each of the two atoms. Henee the process of build-
ing evaluation trees by the unfolding operator is iteratively repeated while new
atoms are uncovered. Once the ñnal set of trees is obtained, the resultants are
generated from their derivations as described above.

Now, we want to explore the issues behind the application of a full partial
evaluator, with its code generation phase, for the purpose of TDG. Novel inter-
esting questions arise: (i) what kind of partial evaluator do we need to specialize
decompiled CLP programs?; (ii) what do we get as residual code?; (iii) what are
the applications of such residual code? Below we try to answer these questions.

As regards question (i), we need to extend the mechanisms used in standard
PE of logic programming to support constraints. The problem has been already
tackled, e.g., by [8] to which we refer for more details. Basically, we need to take
care of constraints at three different points: ñrst, during the execution, as already
done by ca l i within our unfolding rule unf o ld /3 ; second, during the abstraction
process, we can either deñne an aecurate abstraction operator which handles
constraints or, as we do below, we can take a simpler approach which safely
ignores them; third, during code generation, we aim at generating constrained
rules which intégrate the store of constraints associated to their corresponding
derivations. To handle the last point, we enhance our schema with the next
two basic operations on constraints which are used by unf old/3 and were left

unexplained in Sec. 6.1. The store is saved and projected by means of predícate
save_st/2, which given a set of variables in its ñrst argument, saves the current
store of the CLP execution, projects it to the given variables and returns the
result in its second argument. The store is loaded by means of load_s t / l which
given an explicit store in its argument adds the constraints to the current store.
Let us illustrate this process by means of an example.

Example 6. Consider a partial evaluator of CLP which uses as control strate-
gies: predicate unfold/3 as unfolding rule and a simple abstraction opera-
tor based on the combination of the most specífic generalizaüon and a check
of comparable terms (as the unfolding does) to ensure termination. Note
that the abstraction operator ignores the constraint store. Given the entry
gen_test_data(lcm, [X,Y] , [-1000,1000] ,Z), we would obtain the following resid
ual code for k = 2:

gen_tes t_da ta (lcm, [1 ,0] , [-1000 ,1000] ,0) .
gen_tes t_da ta (lcm,[0 ,0] , [-1000 ,1000] ,

divbyO).

gen_test_data(lcm,[X,Y],[-1000,1000],Z)
l o a d _ s t (S l) , gcd4(R,R',GCD),
P #= X*Y, lcmlc([GCD,P],Z),
once(labe l ing([f f] , [X,Y])) .

gcd4(R,0,R) : - load_s t (S2) .
gcd4(R,0,GCD) : - load_s t (S3) .
gcd4(R,R',GCD) : - l o a d . s t (S 4) ,

gcd4(R ' ,R" ,GCD) .

lcmlc([GCD,P],Z) : - load_s t (S5) .
lcmlc([GCD,P],Z) : - load_s t (S6) .
lcmlc([0 ,_P] ,d ivby0) .

The residual code for gen_test_data/4 contains eight rules. The ñrst seven
ones are facts corresponding to the seven successful branches (see Fig. 3). Due
to space limitations here we only show two of them. Altogether they repre-
sent the set of test-cases for the block-count(2) coverage criteria (those in
Ex. 6.1). It can be seen that all rules (except the facts3) are constrained as
they include a residual cali to load_s t / l . The argument of load_s t / l contains
a syntactic representation of the store at the last step of the corresponding
derivation. Again, due to space limitations we do not show the stores. As an
example, SI contains the store associated to the rightmost derivation in the
tree of Fig. 3, namely {x in -1000..1000, Y in (-1000. .-1)V(1. . 1000), R in
(- 9 9 9 . . - 1) V (1 . . 9 9 9) , R> i n - 9 9 8 . . 998 , R = X mod Y, R> = Y mod R}. T h i s

store acts as a guard which comprises the constraints which avoid the execu
tion of the paths previously computed to obtain the seven test-cases above.

We can now answer issue (ii): it becomes apparent from the example above that
we have obtained a program which is a generator of test-cases for larger valúes
of k. The execution of the generator will return by backtracking the (infinite) set
of valúes exercising all possible execution paths which traverse blocks more than
twice. In essence, our test-case generators are CLP programs whose execution
in CLP returns further test-cases on demand for the bytecode under test and
without the need of starting the TDG process from scratch.

3 For t he facts, there is no need to consider the store, because a cali to l a b e l i n g has
removed all variables.

Here, it comes issue (iii): Are the above generators useíul? How should we
use them? In addition to execution (see inherent problems in Sec. 4), we might
íurther partially evalúate them. For instance, we might partially evalúate the
above specialized versión oí gen_test_data/4 (with the same entry) in order
to incrementally genérate test-cases for larger valúes oí k. It is interesting to
observe that by using k = 1 for all atoms different írom the initial one, this
íurther specialization will just increment the number oí gen_test_data/4 facts
(producing more concrete test-cases) but the rest oí the residual program will
not change, in fact, there is no need to re-evaluate it later.

7 Conclusions and Related Work

We have proposed a methodology for test data generation of imperative, low-level
code by means of existing partial evaluation techniques developed for constraint
logic programs. Our approach consist of two sepárate phases: (1) the compilation
of the imperative bytecode to a CLP program and (2) the generation of test-cases
from the CLP program. It naturally raises the question whether our approach
can be applied to other imperative languages in addition to bytecode. This is
interesting as existing approaches for Java [23], and for C [13], struggle for dealing
with features like recursion, method calis, dynamic memory, etc. during symbolic
execution. We have shown in the paper that these features can be uniformly
handled in our approach after the transformation to CLP. In particular, all kinds
of loops in the bytecode become uniformly represented by recursive predicates in
the CLP program. Also, we have seen that method calis are treated in the same
way as calis to blocks. In principie, this transformation can be applied to any
language, both to high-level and to low-level bytecode, the latter as we have seen
in the paper. In every case, our second phase can be applied to the transformed
CLP program.

Another issue is whether the second phase can be useful for test-case genera
tion of CLP programs, which are not necessarily obtained from a decompilation
of an imperative code. Let us review existing work for declarative programs.
Test data generation has received comparatively less attention than for impera
tive languages. The majority of existing tools for functional programs are based
on black-box testing [6,18]. Test cases for logic programs are obtained in [24] by
ñrst computing constraints on the input arguments that correspond to execution
paths of logic programs and then solving these constraints to obtain test inputs
for the corresponding paths. This corresponds essentially to the naive approach
discussed in Sec. 4, which is not sufñcient for our purposes as we have seen in
the paper. However, in the case of the generation of test data for regular CLP
programs, we are interested not only in successful derivations (execution paths),
but also in the failing ones. It should be noted that the execution of CLP decom-
piled programs, in contrast to regular CLP programs, for any actual input valúes
is guaranteed to produce exactly one solution because the operational semantics
of bytecode is deterministic. For functional logic languages, speciñc coverage cri-
teria are deñned in [10] which capture the control flow of these languages as well

as new language features are considered, namely laziness. In general, declara-
tive languages pose different problems to testing related to their own execution
models -like laziness in functional languages and failing derivations in (C)LP-
which need to be captured by appropriate coverage criteria. Having said this,
we believe our ideas related to the use of PE techniques to genérate test data
generators and the use of unfolding rules to supervise the evaluation could be
adapted to declarative programs and remains as future work.

Our work is a proof-of-concept that partial evaluation of CLP is a power-
ful technique for carrying out TDG in imperative low-level languages. To de-
velop our ideas, we have considered a simple imperative bytecode language
and left out object-oriented features which require a further study. Also, our
language is restricted to integer numbers and the extensión to deal with real
numbers is subject of future work. We also plan to carry out an experi
mental evaluation by transforming Java bytecode programs from existing test
suites to CLP programs and then trying to obtain useful test-cases. When
considering realistic programs with object-oriented features and real num
bers, we will surely face additional difñculties. One of the main practical is-
sues is related to the scalability of our approach. An important threaten to
scalability in TDG is the so-called infeasibility problem [27]. It happens in
approaches that do not handle constraints along the construction of execution
paths but rather perform two independent phases (1) path selection and 2) con-
straint solving). As our approach integrates both parts in a single phase, we do
not expect scalability limitations in this regard. Also, a challenging problem is
to obtain a decompilation which achieves a manageable representation of the
heap. This will be necessary to obtain test-cases which involve data for objects
stored in the heap. For the practical assessment, we also plan to extend our
technique to include further coverage criteria. We want to consider other classes
of coverage criteria which, for instance, genérate test-cases which cover a certain
statement in the program.

Acknowledgments. This work was funded in part by the Information Soci-
ety Technologies program of the European Commission, Future and Emerging
Technologies under the IST-15905 MOBIUS project, by the Spanish Ministry
of Education under the TIN-2005-09207 MERIT project, and by the Madrid
Regional Government under the S-0505/TIC/0407 PROMESAS project.

References

1. Alio, A.V., Sethi, R., Ullman, J.D.: Compilers - Principies, Techniques and Tools.
Addison-Wesley, Reading (1986)

2. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis of
Java Bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 157-172.
Springer, Heidelberg (2007)

3. Albert, E., Gómez-Zamalloa, M., Hubert, L., Puebla, G.: Verification of Java Byte
code using Analysis and Transformation of Logic Programs. In: Hanus, M. (ed.)
PADL 2007. LNCS, vol. 4354, pp. 124-139. Springer, Heidelberg (2006)

4. Beckert, B., Háhnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft
ware. LNCS, vol. 4334. Springer, Heidelberg (2007)

5. Bruynooghe, M., De Schreye, D., Martens, B.: A General Criterion for Avoiding
Infinite Unfolding during Partial Deduction. New Generation Computing 1(11),
47-79 (1992)

6. Claessen, K., Hughes, J.: Quickcheck: A lightweight tool for random testing of
haskell programs. In: ICFP, pp. 268-279 (2000)

7. Clarke, L.A.: A system to genérate test data and symboíically execute programs.
IEEE Trans. Software Eng. 2(3), 215-222 (1976)

8. Craig, S.-J., Leuschel, M.: A compiler generator for constraint logic programs. In:
Ershov Memorial Conference, pp. 148-161 (2003)

9. Ferguson, R., Korel, B.: The chaining approach for software test data generation.
ACM Trans. Softw. Eng. Methodol. 5(1), 63-86 (1996)

10. Fischer, S., Kuchen, H.: Systematic generation of glass-box test cases for ftmctional
logic programs. In: PPDP, pp. 63-74 (2007)

11. Futamura, Y.: Partial evaluation of computation process - an approach to a
compiler-compiler. Systems, Computers, Controls 2(5), 45-50 (1971)

12. Gómez-Zamalloa, M., Albert, E., Puebla, G.: Modular Decompilation of Low-Level
Code by Partial Evaluation. In: 8th IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM 2008), pp. 239-248. IEEE Com
puter Society, Los Alamitos (2008)

13. Gotlieb, A., Botella, B., Rueher, M.: A clp framework for computing structural test
data. In: Palamidessi, C , Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U.,
Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS, vol. 1861,
pp. 399-413. Springer, Heidelberg (2000)

14. Gupta, N., Mathur, A.P., Soffa, M.L.: Generating test data for branch coverage.
In: Automated Software Engineering, pp. 219-228 (2000)

15. Henriksen, K.S., Gallagher, J.P.: Abstract interpretation of pie programs through
logic programming. In: SCAM 2006: Proceedings of the Sixth IEEE International
Workshop on Source Code Analysis and Manipulation, pp. 184-196. IEEE Com
puter Society, Los Alamitos (2006)

16. Howden, W.E.: Symbolic testing and the dissect symbolic evaluation system. IEEE
Transactions on Software Engineering 3(4), 266-278 (1977)

17. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385-
394 (1976)

18. Koopman, P., Alimarine, A., Tretmans, J., Plasmeijer, R.: Gast: Generic auto
mated software testing. In: IFL, pp. 84-100 (2002)

19. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. Addison-Wesley,
Reading (1996)

20. Marriot, K., Stuckey, P.: Programming with Constraints: An Introduction. MIT
Press, Cambridge (1998)

21. Méndez-Lojo, M., Navas, J., Hermenegildo, M.: A Flexible (C)LP-Based Approach
to the Analysis of Object-Oriented Programs. In: King, A. (ed.) LOPSTR 2007.
LNCS, vol. 4915. Springer, Heidelberg (2008)

22. Meudec, C : Atgen: Automatic test data generation using constraint logic program
ming and symbolic execution. Softw. Test., Verif. Reliab. 11(2), 81-96 (2001)

23. Müller, R.A., Lembeck, C , Kuchen, H.: A symbolic java virtual machine for test
case generation. In: IASTED Conf. on Software Engineering, pp. 365-371 (2004)

24. Mweze, N., Vanhoof, W.: Automatic generation of test inputs for mercury pro
grams. In: Pre-proceedings of LOPSTR 2006 (July 2006) (extended abstract)

25. Puebla, G., Albert, E., Hermenegildo, M.: Efñcient Local Unfolding with Ancestor
Stacks for Full Prolog. In: Etalle, S. (ed.) LOPSTR 2004. LNCS, vol. 3573, pp.

