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 Abstract 

Observations are made regarding the pattern of the composite numbers that have a particular 
prime factor for their lowest prime factor. It is subsequently proven that this pattern repeats over 
intervals equal to the primorial of that lowest prime factor such that the number and distribution 
of such composites is constant. The value of that constant composite to primorial ratio is proven 
to be related to the previous prime numbers and its constant composite to primorial ratio. 
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1 Introduction 

It seems well known that the pattern of composite numbers repeats with a period equal to the 
primorial of each prime factor. Dickson [1] refers to remarks by H.J.S Smith in 1857 and papers 
by J. DeChamps published in 1907 regarding this property, and Weisstein [2] makes note of it. 
However, actual proofs of these properties do not seem to be readily available. This paper 
attempts to rectify that situation by starting from the ground up and deriving some general 
relationships and developing proofs based on them. 

2 Singular Identities 

A prime number is a number greater than 1 that has no positive integer divisors other than 1 and 
itself.[3] By the fundamental theorem of arithmetic, every positive integer greater than 1 can be 
uniquely represented by its prime divisors in what is called a prime factorization.[4, 5] Since a 
prime pN has no other positive integer divisors besides 1 and itself, the prime factorization of pN 
is simply pN. A positive integer greater than 1 which is not prime is a composite number.[6] 

By convention the number 1 is considered neither prime nor composite. Every positive integer 
greater than 1 is either a prime number or a composite number. For every positive integer greater 
than 1, then, one of the following statements must be true: 
 1. The prime pN is a factor in its prime factorization. 
 2. The prime pN is not a factor in its prime factorization. 

If a number n has a prime factorization where pN is a single factor, that is pNi is a factor and i = 1, 
and if pN1 is the only factor other than 1, then n = pN and it is prime. Otherwise it is a composite 
number which we can label C. 

Lemma 1: For every composite number C having pN as a factor, one of the following statements 
must be true: 
 1. The lowest prime factor of C is smaller than pN. That is, pN-J is the lowest prime factor 
and pN-J < pN. 
 2. The lowest prime factor is pN and it is the lone prime factor, i.e. pNi = C where i ≥  2. 
 3. pN is the lowest prime factor while the other factor is a larger prime pN+J > pN or a 
product of one or more larger primes such as (pN+J)k or (pN+J) • (pN+L) or combinations of their 
higher powers. 

Proof: If pN is a factor by itself, then it is of the form pNi, but i cannot be 1 because then the 
number would be prime, so i must be greater than 1 and thus satisfy condition 2. If pN is not a 
factor by itself, then it must be combined with at least one other prime. If any of the other primes 
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in the prime factorization is less than pN then condition 1 is satisfied, otherwise all of them must 
be greater than pN, in which is the case covered by condition 3. 
           Q.E.D. 
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3 Primorial Soup 

The primorial is analogous to a factorial applied to the sequence of prime numbers.[7] The 
primorial for the prime pN is the product of all primes up to and including pN, and it is denoted as  
pN#. By the definition of factorial, p1# = 2, and then for every prime greater than 2: 

 pN# = pN • pN–1#        (1) 

What happens, though, if instead of just multiplying pN–1# by pN to get the next primorial value, 
we multiply all of the positive integers in the interval up to and including pN–1# by pN? What can 
we say about these numbers, and what about the other integers that we might need to fill in the 
new interval up to and including pN#? What would happen if we were to add some multiple of 
pN# onto all of them? What can we say about the lowest prime factors of those numbers? 

For example, start with the number 1, and multiply it by the first prime p1 = 2. We now have an 
interval the width of the primorial p1# = 2 containing the numbers 1 and 2. Add any multiple of 2 
onto these two numbers. That is, let n be a non-negative integer where n = 0, 1, 2, 3, 4, 5… The 
result of the addition is an interval of width p1# = 2 containing the numbers 2n + 1 and 2n + 2. 
For those numbers, the statements that follow, where ≡ indicates congruence, are always true.[8] 

 (2n + 1) ≡ 1 (mod 2)  
 (2n + 2) ≡ 0 (mod 2)  

Therefore within every interval of width p1# = 2 we have one number that has p1 = 2 for its 
lowest prime factor and another number that does not have 2 for a factor. Except for the case 
where n = 0 and that other number is 1, that other number must either be prime or it must be a 
composite that has a higher prime pN+J > p1 for its lowest prime factor. Essentially we have just 
found that every even number is evenly divisible by 2 and that every odd number is not. 

Now take that first primorial and multiply it by the second prime, p2 = 3 and fill in the spaces in 
between. The result is an interval of width p2# = 6 containing the numbers 1, 2, 3, 4, 5, 6. Add 
any multiple of 6 on to those numbers. The result will be an interval the width of the primorial 
p2# = 6, still, containing the following numbers: 

 (6n + 1), (6n + 2), (6n + 3), (6n + 4), (6n + 5), (6n + 6) 

Let us factor these values. While we could factor a 3 from out of two of those numbers, though, 
let us instead only factor the lowest prime factor possible out of each. This factoring produces: 

 (6n + 1) ≡ 1 (mod 6) 
 2 • (3n + 1) ≡ 2 (mod 6) ≡ 0 (mod 2) 
 3 • (2n + 1) ≡ 3 (mod 6) ≡ 0 (mod 3) 
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 2 • (3n + 2) ≡ 4 (mod 6) ≡ 0 (mod 2) 
 (6n + 5) ≡ 5 (mod 6) 
 2 • (3n + 3) ≡ 0 (mod 6) ≡ 0 (mod 2) 

Performing a lowest prime factorization like this allows us to more easily count the numbers 
within the primorial interval in terms of their lowest prime factor. 

Out of every p2# primorial interval, we can see that there are three numbers that have 2 for their 
lowest prime factor, one number that has 3 for its lowest prime factor (the 3 • (2n + 1) term), and 
two other numbers which do not have 2 or 3 as a factor at all. That there are three numbers that 
have 2 for their lowest prime factor makes sense because we multiplied the previous primorial by 
3 and that primorial interval had one number that had 2 for its lowest prime factor. But notice 
also that the term that does have 3 for its lowest prime factor has the same form as the term that 
did not have 2 as a factor in that previous p1# primorial interval. That is: 

 (2n + 1) ≡ 1 (mod 2) → 3 • (2n + 1) ≡ 3 (mod 6) ≡ 0 (mod 3) 

To summarize what can be concluded so far: 
a. 1 out of every 2 and 3 out of every 6 numbers have 2 for their lowest prime factor. 
b. 1 out of every interval of 6 numbers has 3 for its lowest prime factor. 
c. 4 numbers total out of every 6 have either 2 or 3 for their lowest prime factor. 
d. 2 out of every 6 numbers do not have 2 or 3 as a factor. Ignoring the trivial case where 

one of those is 1, those two numbers individually are either prime or have a prime that is 
higher than 3 for their lowest prime factor. 

The count in (d) can be calculated as the primorial value minus the count from (a) that have 2 for 
their lowest prime factor minus the count from (b) that has 3 for its lowest prime factor. But the 
count from (a) corresponds back to the count in the p1# = 2 interval that had 2 for a lowest prime 
factor and the count from (b) matches the count from the previous p1# = 2 interval which did not 
have 2 as a factor. Thus the count in (d) is directly related to counts in the previous primorial. 

4 A Preliminary Proof by Induction 

By induction then, if we multiply the first interval of 6 by p3 = 5 and then add any multiple of 
p3# = 5 • 6 = 30, we should expect the three numbers that had 2 as their lowest prime factor in 
the previous p2# = 6 primorial to lead to 3 • 5 = 15 = 30 / 2 which have 2 as their lowest prime 
factor in each p3# = 30 primorial interval. We should also expect the one that had 3 as its lowest 
prime factor in the previous to lead to 1 • 5 = 5 = 30 / 6 that have 3 as their lowest prime factor in 
this interval, and the 2 that had neither 2 nor 3 as a factor should now relate to two composites 
that have 5 for their lowest prime factor. That will leave 30 – 15 – 5 – 2 = 8 that have do not have 
2, 3 or 5 as a factor. If not equal to 1, then each of those eight must either be prime themselves or 
must have a prime higher than 5 as their lowest prime factor. 
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Let us set about proving what has been implied by induction. Take the first 30 positive integers 
and add any multiple of p3# = 30 onto them. The result is a set having the values {(30n + 1), (30n 
+ 2), (30n + 3), (30n + 4), (30n + 5), (30n + 6), …(30n + 29), (30n + 30)}. Now factor the lowest 
prime factor possible out of each of them. The results of this lowest prime factorization including 
various relevant residues are shown in Table 1. 

Table 1: Lowest Prime Factorization of Any Multiple of the p3# = 5# = 30 Primorial Interval  

Primorial 
Interval 
Member

Lowest Prime 
Factorization

Residues

Modulo p3# Modulo p2# Modulo 
Lowest pN

30n + 1 (30n + 1) 1 (mod 30) 1 (mod 6)

30n + 2 2 • (15n + 1) 2 (mod 30) 2 (mod 6) 0 (mod 2)

30n + 3 3 • (10n + 1) 3 (mod 30) 3 (mod 6) 0 (mod 3)

30n + 4 2 • (15n + 2) 4 (mod 30) 4 (mod 6) 0 (mod 2)

30n + 5 5 • (6n + 1) 5 (mod 30) 5 (mod 6) 0 (mod 5)

30n + 6 2 • (15n + 3) 6 (mod 30) 0 (mod 6) 0 (mod 2)

30n + 7 (30n + 7) 7 (mod 30) 1 (mod 6)

30n + 8 2 • (15n + 4) 8 (mod 30) 2 (mod 6) 0 (mod 2)

30n + 9 3 • (10n + 3) 9 (mod 30) 3 (mod 6) 0 (mod 3)

30n + 10 2 • (15n + 5) 10 (mod 30) 4 (mod 6) 0 (mod 2)

30n + 11 (30n + 11) 11 (mod 30) 5 (mod 6)

30n + 12 2 • (15n + 6) 12 (mod 30) 0 (mod 6) 0 (mod 2)

30n + 13 (30n + 13) 13 (mod 30) 1 (mod 6)

30n + 14 2 • (15n + 7) 14 (mod 30) 2 (mod 6) 0 (mod 2)

30n + 15 3 • (10n + 5) 15 (mod 30) 3 (mod 6) 0 (mod 3)

30n + 16 2 • (15n + 8) 16 (mod 30) 4 (mod 6) 0 (mod 2)

30n + 17 (30n + 17) 17 (mod 30) 5 (mod 6)

30n + 18 2 • (15n + 9) 18 (mod 30) 0 (mod 6) 0 (mod 2)
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As expected there are 15 numbers within each interval of 30 that have 2 as their lowest prime 
factor. All of them relate to a value within a primorial interval of the previous prime. That is, all 
of them are congruent to either 2 or 4 or 0 (mod 6). 

There are 5 numbers within each interval of 30 that have 3 as their lowest prime factor. Those 5 
relate to a specific value within a primorial interval of p2# = 6 in that all of them have a residue 
of 3 (mod 6). 

Then there are 2 numbers (as highlighted in bold in Table 1) within each interval of 30 that have 
5 as their lowest prime factor. Those two are directly related to the two factors that did not have 2 
or 3 as a factor within the primorial of the previous prime. They are the values with residues of 1 
(mod 6) and 5 (mod 6): 

 (6n + 1) ≡ 1 (mod 6) → 5 • (6n + 1) ≡ 1 (mod 6) ≡ 0 (mod 5) 
 (6n + 5) ≡ 5 (mod 6) → 5 • (6n + 5) ≡ 5 (mod 6) ≡ 0 (mod 5) 

Finally that leaves 8 numbers within each interval of 30 that do not have 2, 3, or 5 as a factor. 
The results for the primorial p3# = 30 match what we predicted by induction from p2#. Let us 
now generalize this as a theorem and prove it for any primorial. 

5 Deriving the General Theorems 

30n + 19 (30n + 19) 19 (mod 30) 1 (mod 6)

30n + 20 2 • (15n + 10) 20 (mod 30) 2 (mod 6) 0 (mod 2)

30n + 21 3 • (10n + 7) 21 (mod 30) 3 (mod 6) 0 (mod 3)

30n + 22 2 • (15n + 11) 22 (mod 30) 4 (mod 6) 0 (mod 2)

30n + 23 (30n + 23) 23 (mod 30) 5 (mod 6)

30n + 24 2 • (15n + 12) 24 (mod 30) 0 (mod 6) 0 (mod 2)

30n + 25 5 • (6n + 5) 25 (mod 30) 1 (mod 6) 0 (mod 5)

30n + 26 2 • (15n + 13) 26 (mod 30) 2 (mod 6) 0 (mod 2)

30n + 27 3 • (10n + 9) 27 (mod 30) 3 (mod 6) 0 (mod 3)

30n + 28 2 • (15n + 14) 28 (mod 30) 4 (mod 6) 0 (mod 2)

30n + 29 (30n + 29) 29 (mod 30) 5 (mod 6)

30n + 30 2 • (15n + 15) 0 (mod 30) 0 (mod 6) 0 (mod 2)
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Theorem 1: Over any interval equal to the primorial pN# of a particular prime pN, the count of 
the numbers having pN as their lowest prime factor is constant, as is the count of the numbers 
having any prime pN-J  that is less than pN as their lowest prime factor a constant as well. 

Proof: Let the sequence of numbers a0, a1, a2, … am-2, am-1 represent all of the integers within 
any interval of the primorial pN# such that ai ∈ {a} and (n • pN# + A) < ai ≤  ((n + 1) • pN# + A), 
where n is a non-negative integer and A is an integer offset. Since we are only concerned with 
prime factors, and 1 has no prime factors, let us also stipulate that 1 ≤  A ≤  pN# so that all ai > 1. 

Divide every integer in the interval by the primorial value. Since every integer is unique, each 
one will have a unique residue with respect to the primorial. That is, each will produce an integer 
residue going from 0 up to the primorial value minus 1 with the primorial as the modulus. 

 pN# | {a} → [ ≡ {0, 1, 2, 3 … (pN# – 2), (pN# –1)} (mod pN#) ] 

The entity on the right is a residue system. Because each integer value from zero up to the 
modulus minus 1 is represented as a residue, this is a complete residue system.[9] 

Label this residue system {r}N. Since the primorial is a factorial product of the previous lower 
primes, let us divide those residues by the primorial value of the next lower prime. Since each 
residue is unique within the range from 0 up to the original primorial, each new residue with 
respect to the primorial of the previous prime will be unique within an interval of that primorial, 
and the number of subintervals of that primorial will be equal to the value of the original prime 
pN that we started with. Thus each lower residue system with the lower primorial value as the 
modulus will be repeated a number of times equal to the value of that original, next higher prime. 

 pN-1# | {a} → [ ≡ {0, 1, 2, 3 … (pN-1# – 2), (pN-1# –1)} (mod pN-1#) ] x pN 

Label the new residue system in brackets as {r}N-1. There are pN of these {r}N-1 residue systems 
within each pN# primorial, and each of them is a complete residue system. We can continue by 
dividing all of these residue systems by pN-2# to produce the {r}N-2 system in brackets below: 

 pN-2# | {a} → [ ≡ {0, 1, 2, 3 … (pN-2# – 2), (pN-2# –1)} (mod pN-2#) ] x (pN •  pN-1) 

There are (pN •  pN-1) of these {r}N-2 residue systems within the original pN# primorial. This 
process can continue all the way down to p1# = 2, where the complete residue system labeled {r}
1 is [ ≡ {0, 1} (mod 2) ]. There would be (pN • pN-1 • pN-2 •... • p2) = (pN# / 2) of these {r}1 residue 
systems within an interval of pN#. 

We can use {r}NL to represent the count of complete residue systems {r}L that have for their 
modulus the primorial pL# of a lower prime pL < pN within an interval of the primorial pN#. 
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 {r}NL = pN# / pL#        (2) 

There is always just one complete residue system {r}N within an interval of pN#, thus {r}NN = 1, 
and there would be (pN# / p1#) = (pN# / 2) = {r}N1 instances of the {r}1 residue system within 
pN#. All of the values from the original pN# primorial interval that are congruent to 0 (mod 2) 
have p1 = 2 as their lowest prime factor. There would be (pN# / 2) = {r}N1 such values. Only 
those values that are congruent to 1 (mod 2) can have a higher prime number pH > p1 as their 
lowest prime factor. 

Let ρN represent the ratio of numbers within the primorial for pN that have pN as their lowest 
prime factor. There is only one value that is congruent to 0 (mod 2) in each interval of p1# = 2, 
therefore ρ1 = 1. That means that there is always one number in each interval of 2 that is not a 
multiple of 2. That is the value that is congruent to 1 (mod 2) and its count can be calculated as 
p1# – ρ1 = 2 – 1 = 1. Theorem 1 definitely applies to the first prime and its primorial. 

For an interval of p2# = 6, the residue system {r}2 contains {0, 1, 2, 3, 4, 5} (mod 6). There must 
be ρ1 • {r}21 = ρ1 • (p2# / p1#) = 3 numbers within that interval that have 2 as their lowest prime 
factor. Those three are congruent to {0, 2, 4} (mod 6). Another way to think of this is that, since 
initially multiplying the primorial of 2 by p2 = 3 generates the primorial of 6, there must be three 
multiples of 2 within that 6, because there is always one multiple of 2 within each interval of 2. 

When the value congruent to 0 (mod 2) in an interval of 2 is multiplied by 3 in generating an 
interval of 6, the result is congruent to 0 (mod 6) and since 6 is divisible by 2, it is still congruent 
to 0 (mod 2). An even number times any positive integer is always an even number. So while 
there are two multiples of 3 in each interval of 6, one of them must have 2 as its lowest prime 
factor. The other one corresponds back to a value that was congruent to 1 (mod 2) in the interval 
of 2, the count of which was p1# – ρ1. When it is multiplied by 3 the result is congruent to 3 
(mod 6) and hence to 0 (mod 3). That there is one such value means ρ2 = 1 = p1# – ρ1. 

The count of what is left, then, is p2# – ρ1 • (p2# / p1#) – ρ2 = 6 – 3 – 1 = 2. There are two 
numbers in each multiple of 6 that do not have 2 or 3 as their lowest prime factor. They are the 
numbers congruent to 1 or 5 (mod 6). Those numbers are each either a composite that has a 
prime greater than p2 as their lowest prime factor or they themselves are prime. When an interval 
of 6 is multiplied by p3 = 5 to initially generate an interval of p3# = 30, it is these two values and 
only these two values that can produce composites that have 5 as their lowest prime factor. 

The other four numbers in the interval of 6 will, when multiplied by 5, result in composites that 
still have 2 or 3 as a prime factor. This implies that ρ3 = 2 = p2# – ρ1 • (p2# / p1#) – ρ2. 

Since p2# = p2 •  p1#, we can factor p2 from the first two terms on the right side of that 
expression: 
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ρ3 = p2 • (p1# – ρ1 • (p1# / p1#)) – ρ2 = p2 • (p1# – ρ1) – ρ2 

But ρ2 = (p1# – ρ1), so substituting yields: 

ρ3 = p2 • ρ2 – ρ2 = ρ2 • (p2 – 1) = 1 • (3 – 1) = 2 

An interval of p3# = 30 would contain {r}31 = (p3# / p1#) = 15 instances of the {r}1 residue 
system, {r}32 = (p3# / p2#) = 5 instances of the {r}2 residue system, and of course {r}33 = (p3# / 
p3#) = 1 instance of the {r}3 residue system. Thus there would be ρ1 • {r}31 = 15 numbers that 
have 2 as their lowest prime factor, ρ2 • {r}32 = 5 numbers that have 3 as their lowest prime 
factor, and ρ3 • {r}33 = 2 numbers that have 5 as their lowest prime factor. The numbers that are 
left do not have 2, 3, or 5 as a factor. When this interval of p3# = 30 is multiplied by p4 = 7 to 
generate an interval of p4# = 210, it is these numbers that will have p4 = 7 as their lowest prime 
factor: 

 ρ4 = p3# – ρ1 • {r}31 – ρ2 • {r}32 – ρ3 • {r}33 = p3# – Σ (ρL • {r}3L)  {for L = 1 to 3 

In this case, ρ4 = 30 – 15 – 5 – 2 = 8. The factorization of those 8 numbers is shown in Table 2. 

Table 2: Factorization of Any p4# = 210 Primorial Interval for the Lowest Prime Factor p4 = 7 

The count of the numbers that do not have a prime pN or lower as their lowest prime factor 
within an interval of pN# represents the count of the numbers that will have pN+1 as their lowest 
prime factor in an interval of pN# • pN+1 = pN+1#. The previous expression can be generalized as: 

 ρN+1 = pN# – Σ (ρL • {r}NL) {for L = 1 to N    (3)  

Primorial 
Interval Member

Lowest Prime 
Factorization

Residues

Modulo p4# Modulo p3# Modulo p2#

210n + 7 7 • (30n + 1) 7 (mod 210) 1 (mod 30) 1 (mod 6)

210n + 49 7 • (30n + 7) 49 (mod 210) 7 (mod 30) 1 (mod 6)

210n + 77 7 • (30n + 11) 77 (mod 210) 11 (mod 30) 5 (mod 6)

210n + 91 7 • (30n + 13) 91 (mod 210) 13 (mod 30) 1 (mod 6)

210n + 119 7 • (30n + 17) 119 (mod 210) 17 (mod 30) 5 (mod 6)

210n + 133 7 • (30n + 19) 133 (mod 210) 19 (mod 30) 1 (mod 6)

210n + 161 7 • (30n + 23) 161 (mod 210) 23 (mod 30) 5 (mod 6)

210n + 203 7 • (30n + 29) 203 (mod 210) 29 (mod 30) 5 (mod 6)
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From equation (2) we have {r}NL = pN# / pL#, and from equation (1) we have pN# = pN • pN-1#, so 
pN can be factored from all of the terms on the right of equation (3) similar to what was done 
with ρ3, which leads to ρN+1 = ρN • (pN – 1), or alternatively, with N > 1: 

ρN = ρN-1 • (pN-1 – 1)        (4) 

Thus ρN is a constant for all pN# intervals. Solving equation (4) for ρ4 gives ρ4 = ρ3 • (p3 – 1) = 2 
• (5 – 1) = 8, which is in agreement with what we arrived at previously. Not only have we proven 
that ρN is a constant, but we have proven that it is related to previous values of ρ. 
           Q.E.D. 

This relationship also corresponds to the local minima of Euler’s totient (phi) function and 
appears in the On-Line Encyclopedia of Integer Sequences as A005867.[10] 

Obviously there are no numbers less than pN that can have pN as a factor, and since pN itself is 
prime, it is not necessary to consider any primorial intervals that start at pN or lower. It is the 
intervals that start at pN + 1 and above that are important. In those intervals, the numbers 
represented by ρN all must be composite; therefore we can refer to ρN as the composite to 
primorial ratio. The interval that starts at pN + 1 would complete its first full primorial interval 
at pN + pN#. Because in some ways we can think of composite numbers as molecules composed 
of their constituent prime factor atoms and arranged in a lattice across their primorial interval, 
this value shall be called the first atomic boundary and labeled αN. If we make a function TN(x) 
to count the number of composites that have pN as their lowest prime factor, then we can say that 
ρN = TN(αN). Table 3 lists these values for the first twelve primes. 

Table 3: Composite to Primorial Ratio and Ratio Summation for the First Twelve Primes 

N pN pN# αN = pN# + pN ρN = TN(αN) Σ (Numerator)

1 2 2 4 1 1

2 3 6 9 1 4

3 5 30 35 2 22

4 7 210 217 8 162

5 11 2310 2321 48 1830

6 13 30030 30043 480 24270

7 17 510510 510527 5760 418350

8 19 9699690 9699709 92160 8040810
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Now that we have a proof that the count of the numbers having pN as their lowest prime factor is 
constant over any interval of pN#, what can we say about the pattern of those numbers? 

Theorem 2: The pattern of the numbers having pN as their lowest prime factor repeats over 
intervals of the primorial pN#. 

Proof: Again let the sequence of numbers a0, a1, a2, … am-2, am-1 represent all the integers within 
any interval of the primorial pN# such that ai ∈ {a} and (n • pN# + A) < ai ≤  ((n + 1) • pN# + A), 
where n is a non-negative integer and A is an integer offset where 1 ≤  A ≤  pN# so that all ai > 1. 

When the primorial pN# is divided into {a}, the resulting residue system {r}N is a complete 
residue system. This means that each residue ri in {r}N can be mapped to exactly one of the 
integers in {a}. Map the residue r0 = 0 to a0, and the residue r1 = 1 to a1, and so on, up to rm-1 = 
m – 1, which maps to am-1. The result of this mapping is that ai ≡ i (mod pN#) for all i where 0 ≤  
i ≤  m – 1 and where m represents the modulus pN# so that m – 1 = pN# – 1. 

Let n = n + 1 so that a new sequence {aʹ} is generated for the next primorial interval. That is, let 
a0ʹ, a1ʹ, a2ʹ, … am-2ʹ, am-1ʹ represent all the integers within the next primorial interval such that ((n 
+ 1) • pN# + A) < aiʹ ≤  ((n + 2) • pN# + A) for all aiʹ. 

This means that ai¢ = ai + pN# for all i where again 0 ≤  i ≤  m – 1 and m – 1 = pN# – 1. Since ai 
≡ i (mod pN#) for all i and pN# ≡ 0 (mod pN#), this implies that ai¢ ≡ i (mod pN#) for all i, 
meaning that the residues for the next primorial interval can be mapped to the integers within the 
primorial in the exact same order every time. 

As shown in the proof of theorem 1, the numbers that have pN as their lowest prime factor have 
residue modules the primorial pN# that relates to a specific residue in the previous pN-1# 
primorial. For example, the numbers that are 0 (mod 5) within a primorial of 5# = 30 and thus 
have p3 = 5 for their lowest prime factor have residues of 1 or 5 (mod 6). Since those residues are 
mapped in the same order for every interval, the numbers that have pN as their lowest prime 
factor occur in the same order in every interval as well. This can easily be seen in Table 1 where 
the residues modulo p3# = 30 would repeat in the same order for the next n + 1 interval. 

           Q.E.D. 

9 23 223092870 223092893 1658880 186597510

10 29 6469693230 6469693259 36495360 5447823150

11 31 200560490130 200560490161 1021870080 169904387730

12 37 7420738134810 7420738134847 30656102400 6317118448410
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Theorem 3: The pattern of the numbers having pN as their lowest prime factor is symmetrical 
within intervals of the primorial pN#. 

Proof: Again let the sequence of numbers a0, a1, a2, … am-2, am-1 represent all the integers within 
any interval of the primorial pN# such that ai ∈ {a} and (n • pN# + A) < ai ≤  ((n + 1) • pN# + A), 
where n is a non-negative integer and A is an integer offset where 1 ≤  A ≤  pN# so that all ai > 1. 

Then once again divide the primorial pN# into {a} and map the resulting residues r0 = 0 to a0, 
and r1 = 1 to a1, and so on, up to rm-1 = m – 1 to am-1, such that ai ≡ i (mod pN#) for all i. 

Now pair up the members of the interval based on the residues. Pair a0 with am-1, a1 with am-2, 
and so on, such that for each pair (aj, ak) the sum j + k = m – 1. Since aj ≡ j (mod pN#) and ak ≡ k 
(mod pN#), then by the properties of congruence, (aj + ak) ≡ (j + k) (mod pN#) ≡ (m – 1) (mod 
pN#).[11] Since m – 1 = pN# – 1, that is equivalent to saying (aj + ak) ≡ (–1) (mod pN#). 

Now suppose we pair up the members of the interval again, but this time pair a0 with a1, then a2 
with am-1, and a3 with am-2, and so on, such that for each pair (aj, ak) either the sum j + k = 1 or 
the sum j + k = m + 1. Since m represents the modulus pN#, that is equivalent to saying (aj + ak) 
≡ 1 (mod pN#). 

Likewise it is possible to produce pairs (aj, ak) for every residue ri in the original complete 
residue system so that (aj + ak) ≡ ri (mod pN#). We can say that the residue system {r} is 
invariant under this pair-wise transformation. 

We can also invert the residue system by subtracting each ai from ((n + 1) • pN# + A) + 1 to 
generate a new sequence {a¢}. Dividing the primorial pN# into {a¢} will result in the complete 
residue system {r¢}, where ri¢ = m – ri. For example, we previously noted that an interval for 
the primorial p2# = 6 contains the values (6n + 1), (6n + 2), (6n + 3), (6n + 4), (6n + 5), and (6n + 
6) which produces the residue system {1, 2, 3, 4, 5, 0} (mod 6). Subtract these values from (6n + 
7) and the results are the values 6, 5, 4, 3, 2, 1 which produces the residue system {0, 5, 4, 3, 2, 
1} (mod 6), which is the inverse of the original residue system. So we can also say that the 
residue system {r} is invariant under inversion. 

That {r} is invariant under these transformations allows us to conclude that the pattern is 
symmetrical. That symmetry can readily be seen in Table 1. 
           Q.E.D. 

Conclusions 

The technique of characterizing composites by their lowest prime factor over primorial intervals 
potentially has several useful applications. It is hoped that these proofs can help in the 
development of such applications. 
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