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Abstract

This paper describes the application of the Real-Time Maude tool to the formal specification
and analysis of the CASH scheduling algorithm and its suggested modifications. The CASH
algorithm is a sophisticated state-of-the-art scheduling algorithm with advanced capacity sharing
features for reusing unused execution budgets. Because the number of elements in the queue of
unused resources can grow beyond any bound, the CASH algorithm poses challenges to its formal
specification and analysis. Real-Time Maude extends the rewriting logic tool Maude to support
formal specification and analysis of object-based real-time systems. It emphasizes generality of
specification and supports a spectrum of analysis methods, including symbolic simulation and
(unbounded and time-bounded) reachability analysis and LTL model checking. We show how
we have used Real-Time Maude to experiment with different design modifications of the CASH
algorithm using both Monte Carlo simulation and reachability analysis. We could quickly and
easily specify and analyze these modifications using Real-Time Maude, and discovered subtle
behaviors in the modifications that lead to missed deadlines.

1 Introduction

Real-Time Maude [20, 22, 21] is a high-performance tool that extends the rewriting logic-based
Maude system [5, 6] to support the formal specification and analysis of object-based real-time sys-
tems. Real-Time Maude emphasizes ease and expressiveness of specification, and provides a spec-
trum of analysis methods, including symbolic simulation through timed rewriting, time-bounded
temporal logic model checking, and time-bounded and unbounded search for reachability analysis.
Real-Time Maude complements formal real-time tools such as the timed /hybrid automaton-based
tools UpPAAL [1], Kronos [26], and Hytech [8] by having a more expressive specification formal-
ism which supports well the specification of “infinite-control” systems which cannot be specified
by such automata. Real-Time Maude has proved useful for analyzing advanced communication
protocols [17, 23, 11] and wireless sensor network algorithms [24].

This paper describes the application of Real-Time Maude to the formal specification and analysis
of the sophisticated state-of-the-art CASH scheduling algorithm [4] developed by the second author



in joint work with Buttazzo and Sha. The CASH algorithm attempts to maximize system perfor-
mance while guaranteeing that critical tasks are executed in a timely manner. This is achieved by
maintaining a queue of unused execution budgets that can be reused by other jobs to maximize
processor utilization. The second author has suggested a modification of the algorithm which may
further improve its performance.

The CASH algorithm poses challenges to its formal modeling and analysis, since we discovered
during Real-Time Maude execution that there is no upper bound on the number of spare budgets
in the queue. This implies that finite-control formalisms cannot model this protocol, and that
standard decision procedures cannot be applied to analyze the reachable state space.

We have used Real-Time Maude to analyze the modified algorithm and some additional design al-
ternatives before the costly effort of implementing and testing it on a real-time kernel is undertaken.
Our analysis focused on the critical property that tasks do not miss their deadlines. Time-bounded
reachability analysis found a subtle scenario leading to a missed deadline in the modified algorithm.
We also describe how we subjected the scheduling algorithm to Monte Carlo simulation by gener-
ating jobs pseudo-randomly. Such simulation provides not only more “realistic” simulation of the
protocol, but also another light-weight analysis method which covers many—but not all—possible
behaviors of the system. Moreover, extensive Monte Carlo simulation indicates that the critical
missed deadline would be difficult to find during traditional testing.

2 Real-Time Maude

Real-Time Maude [20, 21] is a language and tool extending Maude [5, 6] to support the formal
specification and analysis of real-time and hybrid systems. The specification formalism is based on
real-time rewrite theories [19]—an extension of rewriting logic [3, 12]—and emphasizes ease and
generality of specification. It is particularly suitable to specify distributed real-time systems in an
object-oriented style.

Real-Time Maude specifications are executable under reasonable assumptions, so that a first form
of formal analysis consists in simulating the system’s progress in time by timed rewriting. This can
be very useful for debugging the specification; but of course, any such execution gives us only one
behavior among the many possible concurrent behaviors of the systems. To gain further assurance
about a system design one can use model checking techniques that explore many different behaviors
from a given initial state of the system. Timed search and time-bounded linear temporal logic model
checking can analyze all behaviors (possibly relative to a chosen time sampling strategy, in case we
have a dense time domain) from a given initial state up to a certain duration. By restricting search
and model checking to behaviors up to a given duration, the set of reachable states can often be
restricted to a finite set, which can then be subjected to model checking.

Real-Time Maude offers an alternative to informal specifications and their testing on simulation
tools and testbeds by:

e providing a precise formal specification of the system which, being executable, can be simu-
lated and tested directly;



e allowing the specification to be analyzed in many different ways, not just by simulating a few
behaviors of the system, but by exhaustively exploring a wide range of different scenarios;
and

e allowing the user to define the appropriate forms of communication at a high level of abstrac-
tion, instead of having to use a fixed set of communication primitives.

On the other side of the spectrum, Real-Time Maude complements formal tools such as the
timed /hybrid automaton-based tools Kronos [26], UPPAAL [1], and HyTech [8] by providing a more
general specification formalism which supports well the specification and analysis of “infinite-state”
systems with different communication and interaction models and with advanced object-oriented
and modularity features. Such systems usually fall outside the decidable fragments supported by
the aforementioned tools. Finally, some tools geared toward modeling and analyzing larger real-
time systems, such as, e.g., IF [2], extend timed automaton techniques with explicit UML-inspired
constructions for modeling objects, communication, and some notion of data types. Real-Time
Maude complements such tools not only by the full generality of the specification language, but,
most importantly, by its simplicity and clarity: A simple and intuitive formalism is used to specify
both the data types (by equations) and dynamic and real-time behavior of the system (by rewrite
rules). Furthermore, the operational semantics of a Real-Time Maude specification is clear and
easy to understand.

Real-Time Maude is implemented in Maude as an extension of Full Maude [6, Part II]. The tool
achieves high performance by exploiting as much as possible the underlying Maude engine.

2.1 Preliminaries: Object-Oriented Specification in Maude

Since Real-Time Maude specifications extend Maude specifications, we first recall object-oriented
specification in Maude. A Maude module specifies a rewrite theory of the form (X, E U A, ¢, R),
where (X, E U A) is a membership equational logic [13] theory with ¥ a signature, E a set of
conditional equations and memberships, and A a set of equational axioms such as associativity,
commutativity, and identity, so that equational deduction is performed modulo the axioms A. The
theory (3, EU A) specifies the system’s state space as an algebraic data type. ¢ is a function which
associates to each function symbol f € ¥ its frozen! argument positions [6], and R is a collection
of labeled conditional rewrite rules specifying the system’s local transitions, each of which has the
form?

n m

[M:t—t if /\ui—w)i/\ /\wj = wj,

i=1 j=1
where [ is a label. Intuitively, such a rule specifies a one-step transition from a substitution in-
stance of ¢ to the corresponding substitution instance of ¢, provided the condition holds; that is,
corresponding substitution instances of the u; can be rewritten (possibly in several steps) to those
of the v;, and the substitution instances of the equalities w; = w;- follow from E'U A. The rules are

'Rewrites cannot take place in a frozen argument position of a function symbol, so that a term f(t1,...,t:,...,tn)
will not rewrite to f(¢1,...,us,...,tn) when t; rewrites to u; if ¢ € ¢(f).

2In general, the condition of such rules may not only contain rewrites u; — v; and equations w; = wj, but also
memberships ty : si; however, the specifications in this paper do not use this extra generality.



implicitly universally quantified by the variables appearing in the ¥-terms ¢, ', u;, v;, w;, and w}.
The rewrite rules are applied modulo the equations E U A.3

We briefly summarize the syntax of Maude. Functional modules and system modules are, respec-
tively, equational theories and rewrite theories, and are declared with respective syntax fmod ...

endfm and mod ... endm. Object-oriented modules provide special syntax to specify concurrent
object-oriented systems, but are entirely reducible to system modules; they are declared with the
syntax (omod ... endom).? Immediately after the module’s keyword, the name of the module

is given. After this, a list of imported submodules can be added. One can also declare sorts
and subsorts and operators. Operators are introduced with the op keyword. They can have user-
definable syntax, with underbars ‘_’ marking the argument positions, and are declared with the
sorts of their arguments and the sort of their result. Some operators can have equational attributes,
such as assoc, comm, and id, stating, for example, that the operator is associative and commu-
tative and has a certain identity element. Such attributes are then used by the Maude engine to
match terms modulo the declared axioms. There are three kinds of logical statements, namely,
equations—introduced with the keywords eq, or, for conditional equations, ceq—memberships—
declaring that a term has a certain sort and introduced with the keywords mb and cmb—and rewrite
rules—introduced with the keywords rl and crl. The mathematical variables in such statements
are either explicitly declared with the keywords var and vars, or can be introduced on the fly in a
statement without being declared previously, in which case they must be have the form wvar: sort.
Finally, a comment is preceded by ‘x**’ or ‘-—-" and lasts till the end of the line.

In object-oriented Maude modules one can declare classes and subclasses. A class declaration
class C' | atty : s1, ... , att, : s,

declares an object class C with attributes att; to att, of sorts s; to s,. An object of class C in a
given state is represented as a term

<O :C|atty :valy, ..., atty, : val, >

of the built-in sort Object, where O is the object’s name or identifier, and where val; to val, are
the current values of the attributes att; to att,, and have sorts s; to s,.> Objects can interact with
each other in a variety of ways, including the sending of messages. A message is a term of the
built-in sort Msg, where the declaration

msg m : pi ... pp —> Msg

defines the syntax of the message (m) and the sorts (p; ... py) of its parameters. In a concurrent
object-oriented system, the state, which is usually called a configuration, is a term of the built-in

3Operationally, a term is reduced to its E-normal form modulo A before any rewrite rule is applied in Maude.
Under the coherence assumption [25] this is a complete strategy to achieve the effect of rewriting in E'U A-equivalence
classes.

“In Real-Time Maude, being an extension of Full Maude, module declarations and execution commands must be
enclosed by a pair of parentheses.

SIf one or more of an object’s attributes are of sort Object or Configuration, an object may contain other objects,
or even entire configurations, as parts of its state, giving rise to “Russian dolls” distributed object architectures [14].



sort Configuration. It has typically the structure of a multiset made up of objects and messages.
Multiset union for configurations is denoted by a juxtaposition operator (empty syntax) that is
declared associative and commutative and having the none multiset as its identity element, so that
order and parentheses do not matter, and so that rewriting is multiset rewriting supported directly
in Maude. The dynamic behavior of concurrent object systems is axiomatized by specifying each
of its concurrent transition patterns by a rewrite rule. For example, the configuration fragment on
the left-hand side of the rule

rl [1] : <0:C | al : x, a2 :y, a3 : z >
<0:Clal:w,a2:0, a3 : v >

=>
<0:Clal:x+w,a2:y, a3 : z >
<0 :Cla :w, a2 : x, a3 : v >.

contains tow objects 0 and 0’ of class C. The above rule defines a parameterized family of transi-
tions (one for each substitution instance) where two objects of class C synchronize to update their
attributes when the a2 attribute of one of the objects has value 0. The transitions have the effect
of altering the attribute al of the object 0 and the attribute a2 of the object 0°. By convention,
attributes, such as a3 in our example, whose values do not change and do not affect the next state
of other attributes need not be mentioned in a rule. Attributes, like a1 of 0, whose values influence
the next state of other attributes but are themselves unchanged, may be omitted from right-hand
sides of rules. Thus the above rule could also be written

rl [1] : <0 :C | a1l : x>
<0”:Clal:w, a2 : 0>
=>
<0:Clal:x+w>
<0 :C |l a2 :x>.

A subclass inherits all the attributes and rules of its superclasses®, and multiple inheritance is
allowed.

2.2 Object-Oriented Specification in Real-Time Maude

A Real-Time Maude timed module (syntax (tmod ... endtm)) specifies a real-time rewrite the-
ory [19, 21], that is, a rewrite theory R = (X, E U A, ¢, R), such that:

TIME axioms in [19], which specifies a sort Time as the time domain (which may be discrete
or dense). Although a timed module is parametric on the time domain, Real-Time Maude
provides some predefined modules specifying useful time domains. For example, the modules
NAT-TIME-DOMAIN-WITH-INF and POSRAT-TIME-DOMAIN-WITH-INF define the time domain to
be, respectively, the natural numbers and the nonnegative rational numbers, and contain the

1. (3,E U A) contains an equational subtheory (X77vE, Errive) C (2, E U A), satisfying the

5The attributes and rules of a class cannot be redefined by its subclasses, but subclasses may introduce additional
attributes and rules.



subsort declarations Nat < Time and PosRat < Time. These modules also add a supersort
TimeInf, which extends the sort Time with an “infinity” value INF.

2. The sort of the “states” of the system has the designated sort System.
3. The rules in R are decomposed into:

e “ordinary” rewrite rules that model instantaneous change and are assumed to take zero
time, and

e tick (rewrite) rules that model the elapse of time in a system. Such tick rules must be
of the form [ : {t} — {t'} if cond, where t and ¢’ are of sort System, { _} is a built-in
constructor of a new sort GlobalSystem which takes a term of sort System as argument,
and where we have associated to such a rule a term u of sort Time intuitively denoting the
duration of the rewrite. In Real-Time Maude, tick rules, together with their durations,
are specified with the syntax

crl [I1 : {t} => {t'} in time u if cond .

The initial state of a real-time system so specified must have the form {¢o} (for tp a ground term of
sort System).” The form of the tick rules ensures uniform time elapse in all parts of a system. We
can then describe any finite computation from the initial state {tp} as a sequence of one-step R-
rewrites {to} — {t1} — -+ — {t,} with the rules in R, some of which may be instantaneous,
and some tick rules. Furthermore, we assume that all the ¢; are ground terms. The duration of such
a computation is by definition the sum Efaij (ui;) corresponding to all the substitution instances
of the terms w;; in all rewrite steps {t;,} — {ti,,,} involving a tick rule with duration term w;,
and a substitution o;; [19].

Timed object-oriented modules (syntax (tomod ... endtom)) extend both object-oriented and
timed modules to provide support for object-oriented specification of real-time systems. The sort
Configuration is declared to be a subsort of the sort System in such modules.

2.3 Rapid Prototyping and Formal Analysis in Real-Time Maude

We summarize below the Real-Time Maude analysis commands used in our case study. All Real-
Time Maude analysis commands are described in [16], and their mathematical semantics is given
in [21]. Note that all analyses are performed with respect to the chosen time sampling strategy
treatment of the tick rule(s) [20, 21].

2.3.1 Rapid Prototyping: Timed Rewriting

Real-Time Maude’s timed “fair” rewrite command simulates one behavior of the system up to a
certain duration. It is written with syntax

"For the purpose of conveniently defining initial states, Real-Time Maude allows the user to introduce operators
of sort GlobalSystem, such as init2 in Section 5. Each ground term of sort GlobalSystem must reduce to a term of
the form {t} using the equations in the specification.



(tfrew t in time <= limit .)

where ¢ is the term to be rewritten (“the initial state”), and limit is a ground term of sort Time.
Our tool also provides facilities for tracing the rewrite steps performed in a simulation (see [16]).

2.3.2 Search and Model Checking

Real-Time Maude provides a variety of search and model checking commands for further analyzing
timed modules by exploring all possible behaviors—up to a given number of rewrite steps, duration,
or satisfaction of other conditions—that can be nondeterministically reached from the initial state.

Real-Time Maude extends Maude’s search command—which uses a breadth-first strategy to search
for states that are reachable from the initial state which match the search pattern and satisfy the
search condition—to search for “bad” states which can be reached within a given time interval from
the initial state. The search command has syntax

(tsearch t =>* pattern such that cond < r .)

where t is the initial state (of sort GlobalSystem), pattern is the search pattern, cond is a semantic
condition on the variables in the search pattern, and r is a ground term of sort Time. The command
then returns all the states that are solutions of the search, but can be restricted to search only for
at most n solutions by writing (tsearch [n] ...) The such that-condition may be omitted.

Real-Time Maude also extends Maude’s linear temporal logic model checker [7, 6] to check whether
each behavior “up to a certain time,” as explained in [21], satisfies a temporal logic formula.
Restricting the computations to their time-bounded prefixes means that properties can be model
checked in specifications that do not allow Zeno behavior, since (assuming a certain criterion for
advancing time) only a finite set of states can then be reached from an initial state.Because of
the time-boundedness, liveness properties which hold in a specification may not hold for the time-
bounded computations, and safety properties that do not hold for all computations may hold for
all computations within the given time bound.

Temporal logic model checking must be done in a module which includes the module TIMED-MODEL-CHECKER
and the module to be analyzed. State propositions, possibly parameterized, should be declared as
operators of sort Prop, and their semantics should be given by (possibly conditional) equations of

the form

{statePattern} |= prop = b

for b a term of sort Bool, which defines the state proposition prop to hold in all states {t} such
that {t} |= prop evaluates to true. It is not necessary to define explicitly the states in which prop
does not hold. We may also define clocked propositions, which take the elapsed time into account,
and which are defined by (possibly conditional) equations of the form

{statePattern} in time r |= prop = b



A temporal logic formula is constructed by state and clocked propositions and temporal logic oper-
ators such as True, False, ~ (negation), /\, \/, => (implication), [] (“always”), <> (“eventually”),
U (“until”), and W (“weak until”). The command

(mc t |=t formula in time <= timeLimit .)

is the timed model checking command which checks whether the temporal logic formula formula
holds in all behaviors up to duration timeLimit starting from the initial state ¢.

2.3.3 System and Property Specification and Verification in Real-Time Maude

We conclude this section by pointing out that the formal specification and verification methodology
involves two levels: a system-level specification, in which a real-time system is formally specified
in an executable way as a real-time rewrite theory, and a property-level specification, in which
important properties of the system are specified as invariants or, more generally, as LTL formulas,
and are formally verified up to a chosen time bound. In the discrete time case, if all time instants
up to the specified time bound are visited, the tsearch command provides a decision procedure
for failures of invariants (expressed by their negation in the search’s condition). The mc command
does likewise provide a decision procedure for satisfaction of LTL properties within the time bound
in the discrete time case.

3 Overview of the CASH Scheduling Algorithm

In most real-time systems schedulability of critical application tasks is guaranteed off-line by consid-
ering the tasks’ worst-case execution times (WCETSs). If the average-case execution times (ACETSs)
are significantly shorter than the WCETSs, then a scheduling based on WCETs will negatively af-
fect system performance large amounts of processor time may remain unused. Such a waste of
resources can be justified for very critical applications in which a single missed deadline may cause
catastrophic consequences. However, it is not a good solution for those applications (the major-
ity) in which several deadline misses can be tolerated by the system, as long as average rates are
quaranteed off-line.

Of course, guaranteeing only average-case execution times to finish before their deadlines requires
the system to handle overruns (i.e., when a task instance needs longer than its ACET to com-
plete the job) efficiently, so that an overrun does not lead to the deadline being postponed for
unreasonably long time. The second author, in joint work with Giorgio Buttazzo and Lui Sha, has
developed the CASH scheduling algorithm which tries to achieve high processor utilization while
guaranteeing average task rates and minimizing deadline misses caused by overruns. The CASH
algorithm is motivated and described in detail in [4]. We give below a very brief overview of the
CASH algorithm.

Tasks may be periodic or aperiodic (instances of aperiodic tasks arrive at “arbitrary” times). Each
task 7; is served by a constant bandwidth server S; that is characterized by its mazimum budget

8This requirement could also accomodate a hybrid collection of critical and non-critical tasks, because we can just
let the average execution time of a critical task equal its WCET.



Q; (i.e., its allocated execution time) and its period T;. The idea behing the CASH algorithm
is to handle overruns efficiently and increase processor utilization by reclaiming unused allocated
execution times. For example, if a task has average execution time 5, and one of its instances
only needs to execute for time 3, then the unused budget (2) could be reused by another server,
which could lead to that server not having to postpone its deadline if its current task instance
needs more than its average execution time. To achieve this kind of capacity sharing (CASH),
the system maintains a queue of unused budgets. When a task instance 7; ; finishes before its
capacity generated by the scheduling (i.e., its “borrowed” spare capacity plus its own maximum
budget @;) is exhausted, this unused capacity, together with the deadline of 7; ;, is added to the
CASH queue. When a job executes, it uses execution time from spare capacities from the CASH
queue with deadlines no later than its own deadline. Only when such unused execution time is not
available does it use its own allocated budget @);. When the system is idle, the spare capacity with
the earliest deadline must be discharged according to the idling time to handle spare capacities
correctly.

The CASH protocol is defined as follows in [4]:

1. Each server S; is characterized by a budget ¢; and by an ordered pair (Q;,7;), where Q; is
the maximum budget and 7; is the period of the server. At each instant, a fixed deadline d; ;,
is associated with the server. At the beginning Vi, d; o = 0.

2. Each task instance 7;; handled by server S; is assigned a dynamic deadline equal to the
current server deadline d; j.

3. A server 5; is said to be active at time ¢ if there are pending instances. A server is said to be
idle at time ¢ if it is not active.

4. When a task instance 7; ; arrives and the server is idle, the server generates a new deadline’
d; ), = max(r;;,d; x—1) + T; and ¢; is recharged at the maximum value Q;.

5. When a task instance 7; ; arrives and the server is active the request is enqueued in the queue
of pending jobs jobs according to a given (arbitrary) discipline.

6. Whenever instance 7;; is scheduled for execution, the server S; uses the capacity ¢, in the
CASH queue (if there is one) with the earliest deadline dg, such that dy < d, j, otherwise its
own capacity ¢; is used.

7. Whenever job 7; ; executes, the used budget c, or ¢; is decreased by the same amount. When
cq becomes equal to zero, it is extracted from the CASH queue and the next capacity in the
queue with deadline less than or equal to d; ; can be used.

8. When the server is active and ¢; becomes equal to zero, the server budget is recharged at the
maximum value @); and a new server deadline is generated as d; , = d; x—1 + T;.

9. When a task instance finishes, the next pending instance, if any, is served using the current
budget and deadline. If there are no pending jobs, the server becomes idle, the residual
capacity ¢; > 0 (if any) is inserted in the CASH queue with deadline equal to the server
deadline, and ¢; is set equal to zero.

gri,j denotes the release time of 7; ;.



10. Whenever the processor becomes idle for an interval of time A, the capacity ¢, (if exists) with
the earliest deadline in the CASH queue is decreased by the same amount of time until the
CASH queue becomes empty.

It is worth noting that a new job may start executing earlier than the previous deadline. That is,
a server that has exhausted its budget in its current period does not have to wait until the end of
the period to start executing a new job.

The servers are scheduled according to the usual earliest deadline first (EDF) policy: the arrival
of a new job with earlier deadline than the currently executing server, will preempt that server
and will start executing. When an executing server finishes its job, the preempted server with the
earliest deadline must resume its execution.

The following crucial result about off-line guarantees of schedulability is proved in [4, Lemma 1]:
Each capacity generated during the scheduling is exhausted before its deadline if and only if

n
Z%SL
— T;

=1

The CASH algorithm has been implemented in the HARTIK kernel [10] to measure the performance
gain and to verify the results predicted by the theory.

3.1 A Proposed Modification of the CASH Algorithm

The CASH algorithm uses “execution time” from the spare capacity with the earliest deadline when
the system is idling. The second author was interested in investigating whether it would not be
even better if the system used budgets from the spare capacity with the latest deadline when idling,
so as not to exhaust spare budgets with earlier deadlines? This question was the starting point
for our Real-Time Maude analysis: could we experiment with the modified version of the CASH
algorithm to decide whether the crucial schedulability result also holds for this modified algorithm,
before embarking on the laborious tasks of proving the algorithm correct and implementing it on a
real-time kernel?

4 The Real-Time Maude Specification of the CASH Algorithms

We present in this section the Real-Time Maude specification of both the original CASH algorithm
and its proposed optimization for all possible task sets. The entire executable specification can be
found in Appendix A as well as at http://www.ifi.uio.no/RealTimeMaude/CASH. We cover all
possible task sets by allowing a job to arrive at any time and to execute for any non-zero amount
of time. The tasks are not modeled explicitly; instead, the arrival of a new task instance is modeled
by a server becoming active, and the end of its execution time is modeled by the server becoming
idle.

The original and the modified CASH algorithms only differ in their behavior when the system
is idling. To allow maximal reuse of the specification, we specify the common behavior of the

10



two algorithms in a module CASH-COMMON, which is imported by the two modules that specify the
different behaviors when the system is idling.

Given that a system may have any number of task servers, we specify the CASH protocols in
an object-oriented style, following the specification techniques outlined in [22]. In particular, we
use a function mte to define the maximum amount of time that may elapse in a state before an
instantaneous transition must be taken, and a function delta to define the effect of time elapse on
a system.

A state of our system is a multiset, i.e., a term of sort Configuration, consisting of

e a number of task server objects,
e the CASH queue of available spare capacities; and

e a constant AVAILABLE-PROCESSOR of sort Configuration, which is present in the state when
no server is executing.

4.1 Modeling the Queue of Spare Capacities

We represent a spare capacity as a term deadline: d budget: b, where d is its relative dead-
line'® and b its remaining budget. The cash queue of spare capacities is represented by a term
[CASH: ¢ ... ¢, 1, where ¢1 ... ¢, is a list of spare capacities. The Real-Time Maude sorts and
operators for this data type are given as follows:

sorts Capacity CapacityQueue .
subsort Capacity < CapacityQueue .

op deadline:_budget:_ : Time Time -> Capacity [ctor]
op emptyQueue : -> CapacityQueue [ctor]
op __ : CapacityQueue CapacityQueue -> CapacityQueue
[ctor assoc id: emptyQueue]

sort Cash .
subsort Cash < Configuration .

op ‘[CASH:_‘] : CapacityQueue -> Cash [ctor]

A capacity whose relative deadline or remaining budget is 0 is removed from a queue by the following
equations:

var T : Time .
eq deadline: T budget: O = emptyQueue .
eq deadline: O budget: T = emptyQueue .

We define the following functions on CASH queues:

10The relative deadline is the time remaining until the deadline.
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op addCapacity : Capacity Cash -> Cash .
op firstDeadline : Cash -> TimeInf
op firstBudget : Cash -> Time .

The function addCapacity is defined so that it assumes, and maintains, that the cash queue is
ordered according to increasing deadlines. The definitions of these functions are straight-forward;
for example, the function firstDeadline is defined as follows:

var CQ : CapacityQueue . vars NZT NZT’ : NzTime .

eq firstDeadline([CASH: (deadline: NZT budget: NZT’) CQ]) = NZT .
eq firstDeadline([CASH: emptyQueue]) = INF .

4.2 The Server Class

Each server S; is characterized by its maximum budget Q; (i.e., its allocated execution time in a
period) @; and by its period T;. In addition, the “current state” of a server is given by: whether
the server is idle, executing a task instance, or waiting to execute; its current deadline d; ;; and by
its remaining budget ¢; in the current period.

We model each server as an object of the following object class Server:

class Server |

maxBudget : NzTime, --- maximum budget, constant
period : NzTime, —--— period, constant

state : ServerState, --- state of the server/task
used0fBudget : Time, --- how long time has this server

--- executed OF ITS OWN budget
--- in this period?
timeToDeadline : Time, —-—- time left until "current" deadline
--— can remain 0 while idling
--— (no "current" deadline)
timeExecuted : Time . -—— how long has the current job
--- been executed?

sort ServerState .

ops idle --— no task instance to execute yet
waiting --- ready to execute but blocked/preempted/...
executing : --- this server is executing

-> ServerState [ctor]

The class attributes maxBudget and period denote, respectively, the server’s maximum budget
(Qi) and its period (7;). The attribute used0fBudget gives the current value of Q; — ¢;, and the
attribute timeToDeadline gives the current relative deadline, i.e., the time remaining until time
d; . It is implicit in the informal specification that each task instance must be executed for a
non-zero amount of time. Therefore, we use the extra attribute timeExecuted, which denotes how
long the current job has been executed in the current period, to be able to ensure that each job
executes for a non-zero amount of time.
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4.3 The Instantaneous Transitions of the System

The instananeous state changes in the (two versions of the) CASH algorithm, which extend earliest
deadline first preemptive scheduling, can be described as follows:

1. An idle server becomes active when a new task instance arrives. The server goes into state
waiting if another server with an earlier deadline is executing, and goes into state executing
if the processor is available or if it can preempt the executing server.

2. An executing server can finish executing a job at any time after it has executed for a non-
zero amount of time. It must also deposit any unused allocated execution budget into the
CASH queue. The waiting server, if any, with the earliest deadline should start/resume its
execution.

A task instance that arrives before the server is idle can be regarded as either a continuation of the
previous job, or as a new job that arrives when the server has been idle for zero time.

The following variables are used in the rules and equations below:

vars 0 0’ : 0id .

vars C C’ REST-OF-SYSTEM : Configuration .
var STATE : ServerState .

var CASH : Cash .

vars T T’ T’’ T’’’ REMAINING-BUDGET : Time .
vars NZT NZT’ NZT’’ : NzTime .

var BUDGET-LEFT : Bool .

var CQ : CapacityQueue .

The following two instantaneous rewrite rules model case 1 above (a server becoming active).
In the informal specification, this case is described as follows (case 4 in [4, Sec. 3.1]'Y): When
a task instance 7;; arrives and the server is idle, the server generates a new deadline d;j =
max(r;j,di k—1) + 1; and ¢; is recharged at the mazimum value Q;. The first rule treats the case
when the constant AVAILABLE-PROCESSOR is present in the state. The server can then update its
deadline and start executing:'?

rl [idleToExecutingl]
< 0 : Server | period : NZT, state : idle, timeToDeadline : T >
AVATLABLE-PROCESSOR
=>
< 0 : Server | state : executing, timeToDeadline : T + NZT,
timeExecuted : 0, used0fBudget : 0 > .

The next rule treats the case where server 0 becomes active while another server 0’ is executing.
In this case, 0 either preempts 0’ and starts executing, or 0 goes into state waiting, depending on
whether or not 0’s new deadline (T + NZT) comes before 0°’s current deadline (T?):

1See also case 2 in the informal protocol.
12The “current” time is the release time 74,5, so this part will not contribute to the updated relative deadline.
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rl [idleToActivel
< 0 : Server | period : NZT, state : idle, timeToDeadline : T >
< 0’ : Server | state : executing, timeToDeadline : T’ >
=>
if (T + NZT) < T’ then --- start to execute and preempt 0’
(< 0 : Server | state : executing, timeToDeadline : T + NZT,
timeExecuted : 0, usedOfBudget : 0 >
< 0’ : Server | state : waiting >)
else
(< 0 : Server | state : waiting, timeToDeadline : T + NZT,
timeExecuted : 0, used0fBudget : 0 >
< 0’ : Server | >)
fi .

The next two rules specify the behavior of the system when the execution of a job finishes, which
can happen at any time during the job’s execution as long as the job has executed for time greater
than zero'®. This case is defined as follows in the original protocol specification (case 9 in [4,
Sec. 3.1)): When a task instance finishes, the next pending instance, if any, is served using the
current budget and deadline. If there are mo pending jobs, the server becomes idle, the residual
capacity ¢; > 0 (if any) is inserted in the CASH queue with deadline equal to the server deadline,
and c; is set equal to zero.

Again, we have two cases: The following rule models the case where at least one server is in state
waiting. When the server O finishes executing it must allow the waiting server with the earliest
deadline (T’ ) to resume/start its execution. To find the server with the earliest deadline, the rule
must grab the entire state of the system, which is achieved by the use of the operator {_}. The
rule adds the residual budget (if any) to the CASH queue. We make sure that the application of
this rule does not lead us to miss a potential missed deadline, by adding a condition that the server
is not in a state where the remaining allocated budget is greater than the deadline:

crl [stopExecutingl]
{< 0 : Server | state : executing, used0fBudget : T,
maxBudget : NZT, timeToDeadline : T’,
timeExecuted : NZT’, period : NZT’’ >

< 0’ : Server | state : waiting, timeToDeadline : T’’ >
REST-0F-SYSTEM
CASH}
=>
{< 0 : Server | state : idle, usedOfBudget : NZT >
< 0’ : Server | state : executing >

REST-0F-SYSTEM

(if BUDGET-LEFT

then addCapacity((deadline: T’ budget: REMAINING-BUDGET), CASH)
else CASH fi)}

if REMAINING-BUDGET := NZT monus T /\
BUDGET-LEFT := REMAINING-BUDGET > O /\
REMAINING-BUDGET <= T’ /\ --- deadline check

13Recall that the variable NZT’ has sort the NzTime of non-zero time values, so these rule will only match subcon-
figurations where the execution time is non-zero.
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T’’ == nextDeadlineWaiting(< 0’ : Server | > REST-0F-SYSTEM)

The function nextDeadlineWaiting finds the earliest relative deadline of the servers in state wait-
ing. This function is defined as follows:

op nextDeadlineWaiting : Configuration -> TimeInf [frozen (1)]
eq nextDeadlineWaiting(none) = INF .
ceq nextDeadlineWaiting(C C’) =
min(nextDeadlineWaiting(C), nextDeadlineWaiting(C’))
if C =/= none /\ C’ =/= none .
eq nextDeadlineWaiting(< 0 : Server | state : STATE, timeToDeadline : T >) =
if STATE == waiting then T else INF fi .
eq nextDeadlineWaiting (DEADLINE-MISS) = INF .

The next rule specifies the end of an execution when no other server is in state waiting, in which
case the rule makes the processor available by adding the constant AVAILABLE-PROCESSOR to the
resulting state:

crl [stopExecuting2]

{< 0 : Server | state : executing, used0fBudget : T,
timeToDeadline : T’, maxBudget : NZT,
timeExecuted : NZT’, period : NZT’’ >

REST-0F-SYSTEM

CASH}

=>

{< 0 : Server | state : idle, used0fBudget : NZT >
AVAILABLE-PROCESSOR

REST-0F-SYSTEM

(if BUDGET-LEFT
then addCapacity((deadline: T’ budget: REMAINING-BUDGET), CASH)
else CASH fi)}

if REMAINING-BUDGET := NZT monus T /\
BUDGET-LEFT := REMAINING-BUDGET > 0 /\
REMAINING-BUDGET <= T’ /\ -—- deadline check

nooneWaiting (REST-0F-SYSTEM)

The function nooneWaiting, whose definition can be found in Appendix A, returns true when
none of the servers in its argument is in state waiting.

The next two rules model the case where a job is too long to be executed in one period. This case is
described in the original protocol as follows: When the server is active and c; becomes equal to zero,
the server budget is recharged at the mazximum value Q; and a new server deadline is generated as
di,, = d; ,—1 + T;. The specification must take into account the possibility that the new deadline

may lead to preemption by a waiting server with a shorter deadline:'*

4 Notice that these rules will only apply to servers whose the maxBudget and used0fBudget attributes have the
same value.
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crl [continueExInNextRound]

{< 0 : Server | state : executing, maxBudget : NZT,
used0fBudget : NZT, period : NZT’,
timeToDeadline : T >

REST-0F-SYSTEM CASH}
=>

{< 0 : Server | usedOfBudget : O, timeToDeadline : T + NZT’,
timeExecuted : 0 >

REST-0F-SYSTEM CASH}
if nooneWaiting(REST-OF-SYSTEM)
crl [continueActInNextRound]

{< 0 : Server | state : executing, maxBudget : NZT,
used0fBudget : NZT, period : NZT’,
timeToDeadline : T >

< 0’ : Server | state : waiting, timeToDeadline : T’ >
REST-0F-SYSTEM CASH}
=>
if T> < T + NZT’ then --— 0 gets preempted
{< 0 : Server | state : waiting, usedOfBudget : O,
timeExecuted : O, timeToDeadline : T + NZT’ >
< 0’ : Server | state : executing >
REST-0F-SYSTEM CASH}
else --— can continue executing
{< 0 : Server | used0fBudget : O, timeExecuted : O,
timeToDeadline : T + NZT’ >
< 0’ : Server | >
REST-0F-SYSTEM CASH}
fi
if T’ == nextDeadlineWaiting(< 0’ : Server | > REST-OF-SYSTEM)

Finally, to make our analysis more convenient, we add a constant DEADLINE-MISS and a rule which
rewrites an object whose remaining budget is larger than its relative deadline to DEADLINE-MISS:

op DEADLINE-MISS : -> Configuration [ctor]
crl [deadlineMiss]
< 0 : Server | state : STATE, used0fBudget :

maxBudget : NZT >

T, timeToDeadline : T’,

=>
DEADLINE-MISS
if (NZT monus T) > T’ /\ STATE == waiting or STATE == executing .

4.4 Modeling Time and Time Elapse

Real-Time Maude supports both discrete and dense time domains. For scheduling algorithms we
usually assume discrete time. Our specification therefore imports the built-in Real-Time Maude
module NAT-TIME-DOMAIN-WITH-INF which defines the time domain to be the natural numbers and
adds a constant INF (denoting co) of a supersort TimeInf.
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We differentiate between three cases of time elapse:

1. Time is advancing while some server is executing its own budget.
2. Time is advancing while some server is executing a spare capacity from the CASH queue.

3. Time is advancing while the system is idle, that is, when no server is executing.

The first two cases are treated below. The third case must be treated in two different ways,
depending on whether we model the original specification or its proposed modification. In our
model, time cannot advance when a missed deadline is detected to ensure that it will be treated at
that time.

The elapse of time in the first two cases is described as follows in [4]: Whenever job 7; j executes,
the used budget cq or c; is decreased by the same amount. When c, becomes equal to zero, it is
extracted from the CASH queue and the next capacity in the queue with deadline less than or equal
to d; i, can be used. The following “tick” rewrite rule specifies time elapse when a server is executing
using its own budget:

crl [tickExecutingOwnBudget]
{< 0 : Server | state : executing, timeExecuted : T’,
usedOfBudget : T’’, timeToDeadline : T’’’ >
REST-0F-SYSTEM
CASH}
=>
{< 0 : Server | used0OfBudget : T’’ + T, timeExecuted : T’ + T,
timeToDeadline : T’’’ monus T >
delta(REST-0F-SYSTEM, T)
delta(CASH, TO}
in time T
if T <= mte(< 0 : Server | > REST-0F-SYSTEM)
/\ T’’’ < firstDeadline(CASH) [nonexec]

This tick rule is time-nondeterministic, as time may advance by any amount T less than or equal
tomin(...), and, because of its nondeterminism, is nonezecutable ([nonexec]) until we define a
time sampling strategy. We will in Section 5 analyze the system using a time sampling strategy
that advances time by 1 time unit in each tick rule application.

The following function delta defines the effect of time elapse on server objects that are not in state
executing, and on the CASH queue, by decreasing the relative deadlines according to the elapsed
time:

op delta : Configuration Time -> Configuration [frozen (1)]
eq delta(none, T) = none .
ceq delta(C C’, T) = delta(C, T) delta(C’, T) if C =/= none /\ C’ =/= none .
ceq delta(< 0 : Server | state : STATE, timeToDeadline : T >, T’) =
< 0 : Server | state : STATE, timeToDeadline : T monus T’ >
if STATE =/= executing .
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eq delta([CASH: CQ], T) = [CASH: delta(CQ, T)]

op delta : CapacityQueue Time -> CapacityQueue .
eq delta(emptyQueue, T) = emptyQueue .
eq delta((deadline: NZT budget: NZT’) CQ, T) =
((deadline: (NZT monus T) budget: NZT’) delta(CQ, T))

The function mte defines the maximum amount by which time can progress before some instanta-
neous rewrite rule must be taken. It is defined as follows:

op mte : Configuration -> TimeInf [frozen (1)]
eq mte(none) = INF .
ceq mte(C C’) = min(mte(C), mte(C’)) if C =/= none /\ C’ =/= none .
eq mte(< 0 : Server | state : idle >) = INF .
eq mte(< 0 : Server | state : waiting, used0fBudget : T, maxBudget : NZT,
timeToDeadline : T’ >) =
if (NZT monus T) > T’ --- missed deadline!
then O else T’ fi .
eq mte(< 0 : Server | state : executing, used0fBudget : T, maxBudget : NZT,
timeToDeadline : T’ >) =
if (NZT monus T) > T’ --- missed deadline!
then O else (NZT monus T) fi .

eq mte (DEADLINE-MISS) = O .

The function mte does not allow time to progress for longer than what an executing server has left
of its budget. However, when the server is executing a spare capacity, time can possibly progress
further. In that case, the maximum time elapse of a server is given by the function mteCashUse:

op mteCashUse : Object -> Time .
eq mteCashUse(< 0 : Server | state : executing, used0fBudget : T,
maxBudget : NZT, timeToDeadline : T’ >) =
if (NZT monus T) > T’ --- missed deadline!
then O else T’ fi .

The following “tick” rewrite rule models time elapse when the deadline of the first budget in the
CASH queue comes no later than the server deadline, in which case the server uses the budget
from the CASH queue. The function mte on the CASH queue ensures that time does not progress
beyond the expiration of the first budget:

crl [tickExecutingSpareCapacity]
{< 0 : Server | state : executing, timeExecuted : T’,
timeToDeadline : T’’ >

REST-0F-SYSTEM
CASH?}

=>

{< 0 : Server | timeExecuted : T’ + T, timeToDeadline : T’’ monus T >
delta(REST-0OF-SYSTEM, T)
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delta(useSpareCapacity(CASH, T), T)}

in time T

if T <= min(mte(CASH REST-0F-SYSTEM), mteCashUse(< 0 : Server | >))
/\ firstDeadline(CASH) <= T’’ [nonexec]

eq mte([CASH: CQ]) = if CQ == emptyQueue then INF
else min(firstBudget ([CASH: CQl),
firstDeadline ([CASH: CQ])) fi .

The function useSpareCapacity decreases the budget of the spare capacities, in order of their
increasing deadlines, according to the elapsed time. It is slightly complex because it must take
the advanced time into account; if it has already used 4 time units worth of spare capacity in the
current application of useSpareCapacity, then it cannot use 2 time units from a capacity with
budget 2 and deadline 5:1°

op useSpareCapacity : Cash Time -> Cash .
op useSpareCapacity : Cash Time Time -> Cash .
eq useSpareCapacity(CASH, T) = useSpareCapacity(CASH, T, 0)
eq useSpareCapacity ([CASH: emptyQueue], T, T’) = [CASH: emptyQueue]
eq useSpareCapacity([CASH: (deadline: NZT budget: NZT’) CQl, T, T’) =
if T <= min(NZT monus T’, NZT’) then --— enough time in budget
[CASH: (deadline: NZT budget: NZT’ monus T) CQ]
else useSpareCapacity([CASH: CQ], T monus min(NZT monus T’, NZT’),
T’ + min(NZT monus T’, NZT’)) fi .

This completes the module CASH-COMMON that models the parts that are common in the two versions
of the CASH algorithm.

4.5 Specifying the Two Versions of the CASH Algorithm

The CASH algorithm and its suggested modification can be defined by different modules that
import the module CASH-COMMON and specify the tick rewrite rule for time elapse when no server
is executing. For the original CASH algorithm such time elapse is described as follows in [4]:
Whenever the processor becomes idle for an interval of time A, the capacity cq (if exists) with the
earliest deadline in the CASH queue is decreased by the same amount of time until the CASH queue
becomes empty. The following object-oriented timed module defines time advance in idle systems
and completes the Real-Time Maude specification of the original version of the CASH algorithm:!6

(tomod CASH-USE-EARLIEST-BUDGET-WHEN-IDLING is including CASH-COMMON .
var SERVERS : Configuration .
var CASH : Cash . var T : Time .

crl [tickIdle]

'5These cases should not be reachable, but the function useSpareCapacity is now correct for all possible ordered
CASH queues.

16Remember that useSpareCapacity uses the spare capacities in order of increasing deadlines.
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{SERVERS AVAILABLE-PROCESSOR CASH}

=>

{delta(SERVERS, T)
AVATILABLE-PROCESSOR
delta(useSpareCapacity(CASH, T), T)}
in time T

if T <= mte(SERVERS) [nonexec]

endtom)

The following module specifies the modified CASH algorithm. The only difference from the original
algorithm is that the system uses budgets from the spare capacities (if any) with the latest deadlines
when idling:

(tomod CASH-USE-LATEST-BUDGET-WHEN-IDLING is protecting CASH-COMMON .
var SERVERS : Configuration . var CASH : Cash .
vars T : Time . vars NZT NZT’ : NzTime . var CQ : CapacityQueue .

crl [tickIdle]

{SERVERS AVAILABLE-PROCESSOR CASH}

=>

{delta(SERVERS, T)
AVAILABLE-PROCESSOR
delta(useLatestSpareCapacity(CASH, T), T)}
in time T

if T <= mte(SERVERS) [nonexec]

op uselatestSpareCapacity : Cash Time -> Cash .
eq useLatestSpareCapacity([CASH: emptyQueue], T) = [CASH: emptyQueuel
eq uselatestSpareCapacity([CASH: CQ (deadline: NZT budget: NZT’)], T) =
if T <= NZT’ then —-—— enough time in LAST budget ...
[CASH: CQ (deadline: NZT budget: NZT’ monus T)]
else
uselLatestSpareCapacity([CASH: CQ], T monus NZT’)
fi .
endtom)

5 Formal Analysis of the CASH Algorithms in Real-Time Maude

This section describes how both versions of the CASH algorithm have been analyzed using the
Real-Time Maude tool.

Recall from Section 77 that for the original CASH algorithm it has been proved that each capacity
generated during the scheduling can be exhausted before its deadline if and only if

n
Z@ﬁl
— T;
=1

for the bandwidths % of the servers S1,...,S,. The main purpose of our analysis is to investigate
whether this schedulability result holds also for the modified version of the algorithm. That is, is
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it possible to miss a deadline, in the sense of being able to reach a state where the execution of the
remaining budget cannot be done within the current deadline?

We first used timed rewriting to quickly prototype the specification. This prototyping indicated
that states with arbitarily large number of spare capacities in the CASH queue, and with arbitrarily
large relative deadlines, can be reached from initial states with just two or three servers. Since the
reachable state space is infinite, model checking cannot be used to analyze the entire reachable
state space and reachability analysis of the entire reachable state space may not terminate. We
can use Real-Time Maude’s untimed search command, which provides a semi-decision procedure
for the reachability problem since the desired state will eventually be found if it is reachable, and
Real-Time Maude’s time-bounded search (and LTL model checking) to explore all states that can
be reached within a given time from the initial state. Such time-bounded analyses provide decision
procedures when the specification is non-Zeno, which is the case for the CASH algorithm when the
length of each job is greater than zero.'”

Before presenting our analysis in detail, we summarize its main results. We defined some initial
states with two and three servers, and selected the time sampling strategy which increments time
by one time unit in each aplication of a tick rewrite rule, so that all possible task sets can explored.
Both time-bounded and untimed search were able to find states which could lead to missed deadlines
in the modified CASH algorithm. In addition, we could exhibit the sequence of rewrite steps leading
to such states, to ensure that they represent valid behaviors in the modified CASH algorithm. It is
worth remarking that no special ingenuity was needed to define the initial states from which missed
deadlines could be reached.

The specification has a high degree of nondeterminism, and, consequently, a large number of states
can be reached in a short time. For example, we found that almost 15,000 “time-stamped” states
can be reached within time 7 from an initial state with two servers, and, extrapolating from further
such analysis, roughly estimated that more than 2 million distinct states can be reached within time
14. Untimed search ignores the “time stamps” (see [22]), but still has to search through more than
151,000 distinct states to find the missed deadline. It took Real-Time Maude 50 seconds (untimed
search) and 140 seconds (time-bounded search) on a 3 GHz Pentium Xeon processor to find the
missed deadlines in the two-server system, and 160 seconds and 360 seconds, respectively, for the
three-server system.

We have also subjected the original CASH algorithm to a similar analysis. We used timed search
to show that no missed deadline can be reached within time 14 in the two-server system'®. Finally,
we let the untimed search command execute for several hours from our initial states without finding
a missed deadline in the original algorithm.

The rest of this section presents our analysis efforts in detail.

5.1 Defining Initial States

The following defines a state init2 with two servers and a state init5 with three servers. Since
the the sum of the bandwidths of the servers in each state is less than or equal to 1, it should not

"The advantage of untimed search over time-bounded search is that the former is in some cases more efficient,
since it ignores the “time stamps” of the states [22].
8For the same initial state, a missed deadline is reachable in time 12 in the modified algorithm.
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be possible to reach a missed deadline from any of these states if the algorithm is correct:

op init2 : -> GlobalSystem .
eq init2 =
{< s1 : Server | maxBudget : 2, period : 5, state : idle,
timeExecuted : 0, used0fBudget : O, timeToDeadline : 0 >
< s2 : Server | maxBudget : 4, period : 7, state : idle,
timeExecuted : 0, used0fBudget : O, timeToDeadline : 0 >
[CASH: emptyQueue]
AVAILABLE-PROCESSOR} .

op initd : -> GlobalSystem .
eq initd =
{< s1 : Server | maxBudget : 1, period : 3, state : idle,
timeExecuted : O, usedOfBudget : O, timeToDeadline : 0 >
< 82 : Server | maxBudget : 4, period : 8, state : idle,
timeExecuted : 0, used0fBudget : O, timeToDeadline : 0 >
< 83 : Server | maxBudget : 4, period : 24, state : idle,
timeExecuted : O, used0fBudget : O, timeToDeadline : 0 >
[CASH: emptyQueue]
AVAILABLE-PROCESSOR} .

5.2 Defining a Time Sampling Strategy

We must select a time sampling strategy to guide the aplication of the time-nondeterministic tick
rewrite rules before any analysis can be undertaken. To explore all possible task sets, we use the
strategy that advances time by one time unit in each application of a tick rewrite rule. We declare
this time sampling strategy using the Real-Time Maude command

Maude> (set tick def 1 .)

5.3 Prototyping the CASH Algorithms

Real-Time Maude’s timed fair rewrite command can be used to simulate one behavior of the
modified CASH algorithm up to, for example, time 100 as follows:'?

Maude> (tfrew init2 in time <= 100 .)

Result ClockedSystem :
{[CASH: (deadline: 6 budget: 2) (deadline: 10 budget: 2)
(deadline: 13 budget: 4) (deadline: 15 budget: 2)
(deadline: 20 budget: 2) (deadline: 20 budget: 4)

(deadline: 145 budget: 2) (deadline: 146 budget: 4)
(deadline: 150 budget: 2) deadline: 153 budget: 4]

19The output of Real-Time Maude executions will be manually tabulated for readability purposes, and parts of the

output omitted in the exposition will be replaced by ’...".
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< sl : Server | maxBudget : 2, period : 5, state : executing,

timeExecuted : O, timeToDeadline : 155, usedOfBudget : 0 >
< s2 : Server | maxBudget : 4, period : 7, state : waiting,

timeExecuted : O, timeToDeadline : 160, used0fBudget : 0 >}
in time 100

The large number of capacities in the CASH queue is worth noticing, as well as the fact that the
system did not miss a deadline. We got similar results from other simulations of both versions of
the protocol, where the number of spare capacities in the CASH queue grew with the amount of
time elapsed.

5.4 Reachability Analysis of the Modified CASH Algorithm

In the following we formally analyze the modified CASH algorithm. Before searching for missed
deadlines, we show that it is possible for a server (s1) to execute a job for longer than its maximum
budget (2) in the same period:

Maude> (utsearch [1]
init2
=>%
{C:Configuration
< s1 : Server | timeExecuted : T:Time, ATTS:AttributeSet >}
such that T:Time > 2 .)

Solution 1
ATTS:AttributeSet <- maxBudget : 2, period : 5, state : executing,
T:Time <- 3 ;

To get an impression of the reachable state space, we used the following command which gives all
states reachable within time 5 from state init2:

Maude> (tsearch init2 =>x {C:Configuration} in time <=5 .)

This search returned 2786 states. Similar searches up to time 6 and 7 yielded 6690 and 14599
states.?V

We turn to our main task, and use time-bounded search to check whether a missed deadline can
be reached from state init2 within time 9:

Maude> (tsearch [1] init2 =>+ {DEADLINE-MISS C:Configuration} in time <= 9 .)

The search pattern {DEADLINE-MISS C:Configuration} is matched by any state which contains
the constant DEADLINE-MISS, since the variable C:Configuration will match all the other elements

20Timed search does not identify the same states that are reached in a different amount of time, so the number of
different states reachable in an untimed search—which discards such time information—would be lower.
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in the configuration. The above search took about 60 seconds to execute on a 3 GHz Pentium
Xeon, and returned ‘No soution’. The same timed search for states reachable within time 10 and
11 both returned ‘No solution’ and executed for 112 and 256 seconds, respectively. The search
among states reachable within time 12 found a missed deadline (in 140 seconds):

Maude> (tsearch [1] init2 =>* {DEADLINE-MISS C:Configuration} in time <= 12 .)

Solution 1
C:Configuration <- ... ;
TIME_ELAPSED:Time <- 12

The corresponding untimed search took 50 seconds to find a missed deadline.

The upcoming version 2.2 of Real-Time Maude will be able to give also the sequence of rewrite steps
leading from the initial state to the state found in the search. In the meantime, a trace exhibiting
a behavior leading to a missed deadline can be obtained in either of the following ways:

1. Real-Time Maude’s (show all .) command can be used to obtain the core Maude module
corresponding to our timed module. The corresponding search can then be performed in core
Maude to provide the trace.

2. Real-Time Maude’s time-bounded LTL model checker can be used to model check the property
that no missed deadline will be detected within time 12. The counter-example provided by
the model checker gives a scenario leading to the missed deadline.

In [15] we describe in detail how one can easily perform the corresponding (core) Maude search to
get the following path to the missed deadline:

state 0, GlobalSystem: {AVAILABLE-PROCESSOR [CASH: emptyQueue ]
< sl : Server | maxBudget : 2, period : 5, state : idle, timeExecuted : O,
timeToDeadline : O, used0fBudget : 0 >
< 82 : Server | maxBudget : 4, period : 7, state : idle,
timeExecuted : O,timeToDeadline : O,used0OfBudget : 0 >}

===[ ... [label idleToExecutingl] . ]===>
state 1, GlobalSystem: {[CASH: emptyQueue ]
< sl : Server | maxBudget : 2, period : 5, state : executing,
timeExecuted : O, timeToDeadline : 5, used0OfBudget : 0 >
< s2 : Server | maxBudget : 4, period : 7, state : idle,

timeExecuted : O,timeToDeadline : O,used0fBudget : 0 >}

===[ ... [label tickExecutingOwnBudget] . ]===>

===[ ... [label tickExecutingSpareCapacity] . ]===>

state 108705, GlobalSystem: {[CASH: emptyQueue ]
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< sl : Server | maxBudget : 2, period : 5, state : idle, timeExecuted : 1,
timeToDeadline : 8, used0fBudget : 2 >

< 82 : Server | maxBudget : 4, period : 7, state : executing,
timeExecuted : 4, timeToDeadline : 3, used0fBudget : 0 >}

===[ ... [label deadlineMiss] . ]===>

state 151780, GlobalSystem: {DEADLINE-MISS [CASH: emptyQueue ]
< sl : Server | maxBudget : 2, period : 5, state : idle,
timeExecuted : 1, timeToDeadline : 8, used0OfBudget : 2 >}

The whole sequence of rewrites consists of 23 rewrite steps and is given in [15]. In the first
rewrite step, rule idleToExecutingl is applied and server sl starts executing. The next step
is a tick rewrite. Finally, we reach a state where, after having using a spare capacity (rule
tickExecutingSpareCapacity), the server s2 is executing and has 4 time units left of allocated
budget (maxBudget - used0fBudget), but has only 3 time units left until its deadline.

The entire behavior can be summarized as follows: s1 starts to execute at time 0. At time 1,
server s2 gets a job but must start waiting since s1 with earlier deadline is executing. At time 2,
server s1, which executes a job longer than 2 goes to waiting state, while s2 starts its execution.
At time 3, server s2 stops executing and s1 resumes its long job. (Server s2 has budget 4, but has
only executed for 1 time unit, so it leaves a spare capacity with budget 3 and deadline 5 in the
CASH queue.) At time 4, server s1 stops executing. Since s1 executed from the spare capacity, the
previous spare capacity now has budget 2 and deadline 4. In addition, since s1 did not have to use
its own budget, it adds a new spare capacity with budget 2 and deadline 6 to the CASH queue. At
the same time, i.e., still at time 4, a new job arrives at s1 which starts executing again. The same
thing happens at time 5: s1 has finished executing its job, and then, still at time 5, another arrives
and s1 starts executing again. At time 6, s1 finishes its execution. Then, the system idles for 2
time units, using budgets from the spare capacity with the latest deadline (which is the capacity
with budget 2 and relative deadline 14 at time 6). At time 8, s2 starts executing again, with
the new job having deadline 8 + 7, and it executes for 4 time units. The CASH queue contains
capacities with deadlines such that s2 can execute using the spare capacities throughout these 4
time units. Thus at time 12, the deadline of the current job is 3, while it has used nothing of its
own allocated budget of 4 time units, so we discover the potential of missing the deadline were s2
to use all of its allocated budget. The reader can fill in the details.

To obtain a path to the missed deadline directly from Real-Time Maude, we use the knowledge
that a missed deadline can be found in time 12 and use Real-Time Maude’s time-bounded LTL
model checker to whether the property

“starting from init2, it is invariant that no missed deadline is detected”

holds for all behaviors up to time 12. The time-bounded model checking will terminate since the
system is non-Zeno, and therefore only a finite set of states are reachable from init2 within time
12. Furthermore, by now we know that the property does not hold, and that the model checker will
return a counter-example. The following module defines an atomic proposition deadlineMissed to
hold for exactly those states that contain the constant DEADLINE-MISS (and, hence, are matched
by the pattern {DEADLINE-MISS REST-OF-SYSTEM:Configuration}:
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(tomod MODEL-CHECK-LATEST is including TIMED-MODEL-CHECKER .
protecting TEST-CASH-USE-LATEST-BUDGET-WHEN-IDLING .

op deadlineMissed : -> Prop [ctor]
eq {DEADLINE-MISS REST-OF-SYSTEM:Configuration} |= deadlineMissed = true .
endtom)

The following time-bounded model checking command checks whether it is invariant that the nega-
tion of deadlineMissed holds for each state reachable within time 12 from state init2:

Maude> (mc init2 |=t [] ~ deadlineMissed in time <= 12 .)
This command produces the following path in 384 seconds:

Result ModelCheckResult :
counterexample (
{{AVAILABLE-PROCESSOR  [CASH: emptyQueuel]
< sl : Server | maxBudget : 2, period : 5, state : idle,
timeExecuted : 0, timeToDeadline : O, used0OfBudget : 0 >
< 82 : Server | maxBudget : 4, period : 7, state : idle,
timeExecuted : O, timeToDeadline : O, usedOfBudget : 0 >}
in time O,
’idleToExecutingl}

{{[CASH: emptyQueue]
< sl : Server | maxBudget : 2, period : 5, state : executing,
timeExecuted : O, timeToDeadline : 5, usedOfBudget : 0 >
< s2 : Server | maxBudget : 4, period : 7, state : idle,
timeExecuted : O,timeToDeadline : O,usedOfBudget : O >}
in time O,
’tickExecutingOwnBudgetl}

{{[CASH: emptyQueue]
< sl : Server | maxBudget : 2, period : 5, state : waiting,
timeExecuted : O, timeToDeadline : 13, usedOfBudget : 0 >
< s2 : Server | maxBudget : 4, period : 7, state : executing,
timeExecuted : 4, timeToDeadline : 3, used0OfBudget : O >}
in time 12,
’deadlineMiss},

{{DEADLINE-MISS  [CASH: emptyQueue ]
< sl : Server | maxBudget : 2, period : 5, state : waiting,
timeExecuted : O, timeToDeadline : 13, usedOfBudget : 0 >}
in time 12, deadlock})

This counter-example again starts with s1 starting executing at time 0, and ends with s2 having
all 4 of its allocated budget left to execute while having deadline 3. In contrast to the path given by
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Maude search, a counter-example from LTL model checking is not guaranteed to give the shortest
path which violates the property. The above counter-example, which is given in its entirety in [15],
consists of 25 rewrite steps, and represents a “valid” sequence leading to a missed deadline.

The reason for using untimed and timed search for reachability analysis instead of just relying on
time-bounded LTL model checking is that search is more efficient, since it uses breadth-first search
and stops exploring new states once the desired state is found, while LTL model checking must
usually analyze all reachable states.

An important question to address is whether we were just “lucky” with our choice of initial state
to find a missed deadline? The state init2 was not tailor-made to expose difficulties in the CASH
algorithm.?! We performed the same analysis on the three-server system init5, and used time-
bounded search to find a missed deadline could occur within time 9 (the search itself took almost
360 seconds; the successful untimed search took only 160 seconds), and no earlier than that. On
the other hand, even after hours of time-bounded and untimed search, we have not found a missed
deadline from a state with two servers with respective bandwidths % and % Our only result for
this system is that no missed deadline can occur within time 12.

5.5 Analysis of the Original CASH Algorithm

We have performed similar a reachability analysis on the original CASH algorithm. We let the
untimed search command run for many hours on the same initial states init1, init2, and init5
without reaching a missed deadline. In addition, we have showed that such a state cannot be
reached from init2 within time 14 (recall that a deadline miss can be reached in time 12 from
the same state in the modified algorithm). Searching for a missed deadline from a state with total
bandwidth larger than 1 (bandwidths % and %), it took us four seconds to find a missed deadline.
Our search in itself does not prove the that the original CASH algorithm will not allow missed
deadlines, since we do not know whether such a missed deadline could have been reached from

other initial states or if we let the search go on for longer.

5.6 Experimenting with Other Modifications of the CASH Algorithms

When a server has exhausted its allocated budget or finished a job in a round, it does not have to
wait to the end of its period before becoming active again. For example, the server s1 in the system
init2 can start executing a job (with deadline 5) at time 0. At time 2, its budget is exhausted, but
s1 does not have to wait until the end of its “period” at time 5 to start executing again. Instead,
it can start executing at time 2, but now with deadline 10.

One possible restriction that could be placed on the CASH algorithm is to require a server to stay
idle until the end of its period (e.g., the server s1 must wait until time 5 in the above example
before it can start executing a second time). Will this restriction avoid missed deadlines when using
budgets from the spare capacity with the latest deadline while idling?

Having our high-level Real-Time Maude specification, we were able to modify it with very little
effort to experiment with this additional restriction of the CASH algorithms. It turned out that the

2Indeed, the first author already used the same values for a completely different scheduling problem in [18].
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state space reachable from any initial state was finite in this setting (as long as we used relative time
values for deadlines). Furthermore, even in this restricted setting, Real-Time Maude reachability
analysis revealed that a missed deadline could still be reached from state init5 (but not from state
init2) when idling uses budgets from the capacity with the largest deadline. In addition, such
analysis also proved the obvious fact that no missed deadline could be reached from any of our
initial states in this restriction of the original CASH algorithm.

6 Monte Carlo Simulations of the CASH Algorithms

The specification in Section 4 specified all possible task sets, allowing us to analyze all possible
behaviors of the system. The rewriting execution was also very useful in making us aware that the
CASH queues could grow beyond any bound. But Real-Time Maude’s default rewriting strategy
gave us a very particular “choice” of jobs executed, in which each job was executed for one time
unit. For more “realistic” testing and simulation, we show in this section how we can easily
modify our specification to generate new jobs pseudo-randomly to allow “random” simulation of
the specification through timed rewriting. In addition to provide a more realistic testing and
simulation setting than our previous specification, such Monte Carlo simulation should give us
many different “behaviors” as diffeent jobs are generated.

We generate pseudo-random jobs by having two additional attributes in the class Server: an
attribute timeToJob gives the time until the next instance of a task is released; and an attribute
left0fJob denotes the length of the next job if it has not started, and denotes its remaining
execution time otherwise.??

The instantaneous rules are modified in the following way:

e The rules modeling a server becoming active can only take place when timeToJob is 0.

e The rules modeling the end of an execution can only take place when the value of the
left0fJob attribute is 0. In addition, at this time, we generate a new job with pseudo-
random timeToJob and left0fJob values.

The function mte must be redefined to halt time progress when an idle server’s timeToJob value
or an executing’s server left0fJob value would reach 0.

To generate pseudo-random arrival and execution times, we use the following function, which
satisfies Knuth’s criteria for “good” pseudo-random function [9]:

op random : Nat -> Nat . --- random(x) generates the next random number
eq random(N:Nat) = ((104 * N:Nat) + 7921) rem 10609 .

The state must also contain the ever-changing “seed” to this function. We use a term [Seed: n]
to denote the current value (n) of the seed.

22The attribute timeExecuted is no longer needed since only jobs with non-zero lengths are generated.

28



The specification for Monte Carlo simulation is given in [15]. Below we present the modified versions
of the rules idleToExecutingl and stopExecutingl. The first rule can only take place when the
time remaining until the release of the next job has reached 0:23

rl [idleToExecutingl]
< 0 : Server | period : NZT, state : idle, timeToDeadline : T,
timeToJob : 0 >
AVATLABLE-PROCESSOR
=>
< 0 : Server | state : executing, timeToDeadline : T + NZT,
used0fBudget : 0 > .

An executing server can only stop executing when its left0fJob value becomes 0. The server
must also generate the next job at this time. In the following rule, the time until the next job is
released is pseudo-randomly chosen to a value between 0 and twice the period of the server, and the
execution time of the next job is a value between 1 and twice the length of the server’s maximum
budget:

crl [stopExecutingl]
{< 0 : Server | state : executing, used0fBudget : T,
maxBudget : NZT, timeToDeadline : T’,
period : NZT’’, leftOfJob : 0 >

< 0’ : Server | state : waiting, timeToDeadline : T’’ >
[Seed: NJ
REST-0F-SYSTEM
CASH}
=>

{< 0 : Server | state : idle, usedOfBudget : NZT,
timeToJob : random(N) rem (2 * NZT’’ + 1),
leftOfJjob :

1 + random(random(N)) rem (2 * NZT) >
< 0’ : Server | state : executing >
[Seed: random(random(N))]
REST-0F-SYSTEM
(if BUDGET-LEFT
then addCapacity((deadline: T’ budget: REMAINING-BUDGET), CASH)
else CASH fi)}
if ... --— as before

The rules idleToActive and stopExecuting2 must be modified accordingly, as should the func-
tions delta and mte. We also have to add the seed to the initial state. In our specification, the
initial seed is a parameter to the operators defining the initial states.

The following command simulates the system init2 (with initial seed 1) up to time 25000:

Maude> (tfrew init2(1) in time <= 25000 .)

23The new parts of the rules are given in italicized fonts.
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Result ClockedSystem :
{AVAILABLE-PROCESSOR [CASH: deadline: 7 budget: 3 ] [Seed: 5931]
< sl : Server | leftOfJob : 3, maxBudget : 2, period : 5, state : idle,
timeToDeadline : 1, timeToJob : 8, used0fBudget : 2 >
< s2 : Server | leftOfJob : 4, maxBudget : 4, period : 7, state : idle,
timeToDeadline : 7, timeToJob : 14, usedOfBudget : 4 >}
in time 24998

The result looks more “normal” than the rewrite simulations in the previous specification.

We have simulated different states, with different initial seeds, up to time 1000000. We thought
that sufficiently many combinations of jobs would have been created during this time to contain
a scenario leading to a missed deadline. However, none of our Monte Carlo simulations reached
a missed deadline. This fact seems to indicate that the missed deadline would be hard to detect
during traditional testing and simulation of the CASH algorithm, and underscores the usefulness
of reachability analysis to discover subtle but critical errors.

7 Concluding Remarks

The Real-Time Maude tool has proved effective in analyzing different design alternatives of a sophis-
ticated state-of-the-art scheduling algorithm like CASH, whose modeling is beyond the capabilities
of automaton-based formalisms. The specifications were subjected to the following spectrum of
analysis methods:

1. Fair timed rewriting executions.
Monte Carlo simulation.

Untimed and time-bounded search reachability analysis.

Ll

Time-bounded LTL model checking.

Using methods (3) and (4) we easily discovered that the modified algorithm could not guarantee
that deadlines were not missed. However, the scenarios leading to the missed deadlines were subtle
and were not discovered during use of methods (1) and (2). We could experiment with different
designs with much less effort than required by implementing them on real-time kernels or performing
traditional testing. Moreover, our extensive Monte Carlo simulations suggested that it is highly
unlikely that traditional testing methods would have found the critical error. The analysis reported
in this paper has focused on evaluating the correctness of the designs. We should in the future also
develop techniques to evaluate the performance of scheduling algorithms.
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The Real-Time Maude Specification of the CASH Algorithms

We present the executable Real-Time Maude specification of the original CASH protocol and its

mo

(tm

dification which uses budgets with the latest deadline when idling.

We select the natural numbers to be the time domain:

od TIME-DOMAIN is
including NAT-TIME-DOMAIN-WITH-INF .

endtm)

A datatype for the CASH queue of spare capacities.
This queue is modeled as a list of <deadline, budget>-pairs
ordered by deadline.

(tomod CASH is
protecting TIME-DOMAIN .

S

orts Capacity CapacityQueue .

subsort Capacity < CapacityQueue .

op deadline:_budget:_ : Time Time -> Capacity [ctor] .
op emptyQueue : -> CapacityQueue [ctor] .
op __ : CapacityQueue CapacityQueue -> CapacityQueue

S

[ctor assoc id: emptyQueue] .

ort Cash .

subsort Cash < Configuration .
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op ‘[CASH:_‘] : CapacityQueue -> Cash [format (sssg b o sg o) ctor]

var T : Time

var C : Capacity .

var CQ : CapacityQueue

var CASH : Cash .

vars NZT NZT’ NZT’’ NZT’’’ : NzTime

--- Crucial equation: a spare "capacity" is expired/exhausted and
—--- should be removed when its budget or deadline is O:

eq deadline: T budget: 0 = emptyQueue .

eq deadline: O budget: T = emptyQueue .

--- Add a spare capacity to the cash in sorted order:

op addCapacity : Capacity Cash -> Cash .

op addCapacity : CapacityQueue Cash -> Cash . --- for expired capacities
op addCapacity : Capacity CapacityQueue -> CapacityQueue

eq addCapacity((deadline: NZT budget: NZT’), [CASH: CQ]) =
[CASH: addCapacity((deadline: NZT budget: NZT’), CQ)]
eq addCapacity(emptyQueue, CASH) = CASH . --- for useless capacities

eq addCapacity((deadline: NZT budget: NZT’), emptyQueue) =
(deadline: NZT budget: NZT’)

eq addCapacity((deadline: NZT budget: NZT’),
(deadline: NZT’’ budget: NZT’’’) CQ) =

if NZT <= NZT’’ then

((deadline: NZT budget: NZT’) (deadline: NZT’’ budget: NZT’’’) CQ)
else

((deadline: NZT’’ budget: NZT’’’)

addCapacity((deadline: NZT budget: NZT’), CQ))
fi .

--- find deadline of first fragment:

op firstDeadline : Cash -> TimeInf

eq firstDeadline([CASH: (deadline: NZT budget: NZT’) CQ]) = NZT .
eq firstDeadline([CASH: emptyQueue]) = INF .

--— Get first budget:

op firstBudget : Cash -> Time .

eq firstBudget ([CASH: (deadline: NZT budget: NZT’) CQI)
eq firstBudget ([CASH: emptyQueue]) = 0 .

NZT’

--- removeFirst removes the first pair:
op removeFirst : Cash -> Cash .
eq removeFirst ([CASH: (deadline: NZT budget: NZT’) CQ]) = [CASH: CQ]
eq removeFirst ([CASH: emptyQueue]) = [CASH: emptyQueue]
endtom)

--- The class modeling server objects:

(tomod SERVER is
protecting TIME-DOMAIN .
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class Server |

maxBudget : NzTime, --- maximum budget Q_i, constant
period : NzTime, --- period, constant

state : ServerState, --- state of the server/task
used0fBudget : Time, --- how long time has this server

--- executed OF ITS OWN budget
--— in this period?
timeToDeadline : Time, —--— time left until "current" deadline
--- can remain O while idling
--- (no "current" deadline)
timeExecuted : Time . --- how long has the current job
--- been executed?

sort ServerState

ops idle --- No task "ready" yet
waiting --- ready to run but blocked/preempted/...
executing : --- this server is executing

-> ServerState [ctor]

op AVAILABLE-PROCESSOR : -> Configuration [ctor]
--- Denotes an available processor.
endtom)

--- Now, we define the common rules of both protocols, where
-—= every task is generated ... without generating the tasks!!

(tomod CASH-COMMON is
protecting CASH .
protecting SERVER .

--- As usual, we need rules for the following events:

--- 1. An "idle" server may suddenly become not idle,

-—= that is, it will suddenly "get a task"/"be activated"
-—= and will either go to "waiting" or "executing" mode
--= Oct 1, 2005, change: the new deadline will be as given in
-—= the Caccamo paper.

--- 2. An "executing" server finishes its execution. This can happen
- at any time, up to its use of all its budget. If it has some
-—= budget remaining, this must be donated to the CASH.

--— Notice that as usual, the "preemption" is modeled by the rule
-—= modeling case 1, and the "resumption" from waiting to
-—= executing is taken care of by the other process in step 2.

—--- Case 1. The server is in state "idle", which means that there

-—= is no task to perform. Then two things can happen:

-—= la. The server stays idle since there is a possibility

-—= that it remains idle. This should be reflected in the
- tick rule.

-—= 1b. The server gets a task instance and should go

-—= to "waiting" or "executing" mode. This case is treated
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- next.

vars 0 0’ : 0id .

vars C C’ REST-OF-SYSTEM : Configuration .
var STATE : ServerState .

var CASH : Cash .

vars T T’ T’’ T’’’ REMAINING-BUDGET : Time .
vars NZT NZT’ NZT’’ : NzTime .

var BUDGET-LEFT : Bool .

var CQ : CapacityQueue

--- Idle to executing when the processor is available:

rl [idleToExecutingl]
< 0 : Server | period : NZT, state : idle, timeToDeadline : T >
AVATILABLE-PROCESSOR
=>
< 0 : Server | state : executing, timeToDeadline : T + NZT,
timeExecuted : O, usedOfBudget : 0 > .

--- A server becomes active and another server is executing.
--- This server will either preempt or not according to usual EDF:

rl [idleToActive]
< 0 : Server | period : NZT, state : idle, timeToDeadline : T >
< 0’ : Server | state : executing, timeToDeadline : T’ >
=>
if (T + NZT) < T’ then --- start to execute and preempt 0’
(< 0 : Server | state : executing, timeToDeadline : T + NZT,
timeExecuted : O, usedOfBudget : 0 >
< 0’ : Server | state : waiting >)
else
(< 0 : Server | state : waiting, timeToDeadline : T + NZT,
timeExecuted : 0, used0fBudget : 0 >
< 0’ : Server | >)
fi .

--— Finish executing. If more budget, add to CASH.

—--— There are two main cases: wake up the first waiting server, or nobody
--- is waiting. First case: someone else is waiting:

--- We have also added an additional check that the current job

--- has actually executed more than zero time.

crl [stopExecutingi]
{< 0 : Server | state : executing, usedOfBudget : T,
maxBudget : NZT, timeToDeadline : T’,
timeExecuted : NZT’, period : NZT’’ >

< 0’ : Server | state : waiting, timeToDeadline : T’’ >
REST-0F-SYSTEM
CASH}
=>
{< 0 : Server | state : idle, usedOfBudget : NZT >
< 0’ : Server | state : executing >
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REST-0F-SYSTEM

(if BUDGET-LEFT

then addCapacity((deadline: T’ budget: REMAINING-BUDGET), CASH)
else CASH fi)}

if REMAINING-BUDGET := NZT monus T /\
BUDGET-LEFT := REMAINING-BUDGET > 0  /\
REMAINING-BUDGET <= T’ /\ --- overflow check
T’’ == nextDeadlineWaiting(< 0’ : Server | > REST-OF-SYSTEM)

--- Finish executing when no other server is waiting. Just release the
—-—— processor:

crl [stopExecuting2]

{< 0 : Server | state : executing, usedOfBudget : T,
timeToDeadline : T’, maxBudget : NZT,
timeExecuted : NZT’, period : NZT’’ >

REST-0F-SYSTEM

CASH}

=>

{< 0 : Server | state : idle, usedOfBudget : NZT >
AVAILABLE-PROCESSOR

REST-0F-SYSTEM

(if BUDGET-LEFT
then addCapacity((deadline: T’ budget: REMAINING-BUDGET), CASH)
else CASH fi)}

if REMAINING-BUDGET := NZT monus T /\
BUDGET-LEFT := REMAINING-BUDGET > 0O /\
REMAINING-BUDGET <= T’ /\ -—- overflow check

nooneWaiting (REST-OF-SYSTEM)

op nextDeadlineWaiting : Configuration -> TimeInf [frozen (1)]
eq nextDeadlineWaiting(none) = INF .
ceq nextDeadlineWaiting(C C’) =
min(nextDeadlineWaiting(C), nextDeadlineWaiting(C’))
if C =/= none /\ C’ =/= none .
eq nextDeadlineWaiting(< 0 : Server | state : STATE, timeToDeadline : T >) =
if STATE == waiting then T else INF fi
eq nextDeadlineWaiting (DEADLINE-MISS) = INF .

op nooneWaiting : Configuration -> Bool [frozen (1)]
eq nooneWaiting(none) = true .
ceq nooneWaiting(C C’) = nooneWaiting(C) and nooneWaiting(C’)
if C =/= none /\ C’ =/= none .
eq nooneWaiting(< 0 : Server | state : STATE >) = STATE =/= waiting .
eq nooneWaiting(DEADLINE-MISS) = true .

--- Finally, we make an overflow explicit:
op DEADLINE-MISS : -> Configuration [ctor format (r o)]

--— The following rule can be applied when we have reached an overflow
--- situation:

crl [deadlineMiss]

< 0 : Server | state : STATE, used0fBudget : T, timeToDeadline : T’,
maxBudget : NZT >
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=>
DEADLINE-MISS
if (NZT monus T) > T’ /\ STATE == waiting or STATE == executing .

--- We add the following rules for modeling a job which

--— is longer than the execution time in one round of the server.
--— A server has executed all it can in the current round,

--- but wish to continue executing in the "next" round. Corresponds
--- to case 8. Since its deadline is increased, it cannot

--- just continue executing, but must check if some waiting

--- server suddenly gets a shorter deadline.

--- Case 1: no other server is waiting:
crl [continueExInNextRound]

{< 0 : Server | state : executing, maxBudget : NZT,
used0fBudget : NZT, period : NZT’,
timeToDeadline : T >

REST-0F-SYSTEM CASH}
=>

{< 0 : Server | used0fBudget : O, timeToDeadline : T + NZT’,
timeExecuted : 0 >

REST-0F-SYSTEM CASH}
if nooneWaiting(REST-OF-SYSTEM)

--— Case 2: someone else is waiting, so maybe our server becomes preempted:
crl [continueActInNextRound]
{< 0 : Server | state : executing, maxBudget : NZT,
usedOfBudget : NZT, period : NZT’,
timeToDeadline : T >

< 0’ : Server | state : waiting, timeToDeadline : T’ >
REST-OF-SYSTEM CASH}

=>
if T> < T + NZT’ then --- we become preempted

{< 0 : Server | state : waiting, usedOfBudget : O,
timeExecuted : 0, timeToDeadline : T + NZT’ >

< 0’ : Server | state : executing >
REST-0F-SYSTEM CASH}
else --- can continue executing

{< 0 : Server | used0fBudget : O, timeExecuted : O,
timeToDeadline : T + NZT’ >

< 0’ : Server | >
REST-0F-SYSTEM CASH}
fi
if T’ == nextDeadlineWaiting(< 0’ : Server | > REST-OF-SYSTEM)

—--- Timed behavior.

—--- There are three cases:

-—= 1. Time elapses when a server is executing a spare capacity.

-—= 2. Time elapses when a server is executing its own budget.

--— 3. Time elapses when no server is executing; i.e., when the system is
- idle.

--— The first two cases are treated below. The third case must be treated
--- in two different ways, depending on whether we model the original
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--— protocol or its suggested modification. Therefore, that case
--- will be modeled in two separate ways in later modules.

—-— Notice that time cannot advance when we have detected an overflow,
—-- which must therefore be treated at the same time it is discovered.

--- Case 1: tick when a server is executing a spare capacity:

crl [tickExecutingSpareCapacity]
{< 0 : Server | state : executing, timeExecuted : T’,
timeToDeadline : T’’ >
REST-0F-SYSTEM
CASH}
=>

{< 0 : Server | timeExecuted : T’ + T, timeToDeadline : T’’ monus T >

delta(REST-0F-SYSTEM, T)
delta(useSpareCapacity(CASH, T), T)}

in time T

if T <= min(mte(CASH REST-0F-SYSTEM), mteCashUse(< 0 : Server |
/\ firstDeadline(CASH) <= T’’ [nonexec]

--- Case 2: tick when a server is executing its own budget:

crl [tickExecutingOwnBudget]
{< 0 : Server | state : executing, timeExecuted : T’,
used0fBudget : T’’, timeToDeadline : T’’’ >
REST-0F-SYSTEM
CASH}
=>
{< 0 : Server | usedOfBudget : T’’ + T, timeExecuted : T’ + T,
timeToDeadline : T’’’ monus T >
delta(REST-0F-SYSTEM, T)
delta(CASH, T)}
in time T
if T <= mte(< 0 : Server | > REST-OF-SYSTEM)
/\ T’’’ < firstDeadline(CASH) [nonexec]

--- Mte should be O when an overflow is detected:
op mte : Configuration -> TimeInf [frozen (1)]
eq mte(none) = INF .
ceq mte(C C’) = min(mte(C), mte(C’)) if C =/= none /\ C’ =/= none
eq mte(< 0 : Server | state : idle >) = INF .
eq mte(< 0 : Server | state : waiting, used0fBudget : T, maxBudget
timeToDeadline : T’ >) =
if (NZT monus T) > T’ --- overflow!!!
then 0 else T’ fi .
eq mte(< 0 : Server | state : executing, used0fBudget : T, maxBudget
timeToDeadline : T’ >) =
if (NZT monus T) > T’ --- overflow!
then 0 else (NZT monus T) fi .

eq mte([CASH: CQ]) = if CQ == emptyQueue then INF
else min(firstBudget ([CASH: CQ]),
firstDeadline ([CASH: CQ])) fi .

eq mte (DEADLINE-MISS) = 0 .
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--— The mte differs slightly in the cases where a node is executing on
--- whether it executes its own budget or a spare capacity:
op mteCashUse : Object -> Time
eq mteCashUse(< 0 : Server | state : executing, usedOfBudget : T,
maxBudget : NZT, timeToDeadline : T’ >) =
if (NZT monus T) > T’ --- overflow!
then 0 else T’ fi .

op delta : Configuration Time -> Configuration [frozen (1)]

eq delta(none, T) = none .

ceq delta(C C’, T) = delta(C, T) delta(C’, T) if C =/= none /\ C’

ceq delta(< 0 : Server | state : STATE, timeToDeadline : T >, T’)
< 0 : Server | state : STATE, timeToDeadline : T monus T’ >

if STATE =/= executing .
--- Note that the effect of time elapse on an executing node is given
--- directly in the tick rules.

Il
S~
1]

none

eq delta([CASH: CQ], T) = [CASH: delta(CQ, T)]

op delta : CapacityQueue Time -> CapacityQueue
eq delta(emptyQueue, T) = emptyQueue .
eq delta((deadline: NZT budget: NZT’) CQ, T) =
((deadline: (NZT monus T) budget: NZT’) delta(CQ, T))

op useSpareCapacity : Cash Time -> Cash .
eq useSpareCapacity([CASH: emptyQueue], T) = [CASH: emptyQueue]
eq useSpareCapacity([CASH: (deadline: NZT budget: NZT’) CQl, T) =

if T <= NZT’ then --- enough time in first budget
[CASH: (deadline: NZT budget: NZT’ monus T) CQ]
else
useSpareCapacity([CASH: CQ], T monus NZT’)
fi

endtom)

--- The following module completes the specification of the original algorithm:

(tomod CASH-USE-EARLIEST-BUDGET-WHEN-IDLING is
including CASH-COMMON .

var REST-OF-SYSTEM : Configuration .
var CASH : Cash .
var T : Time

crl [tickIdle]
{REST-0F-SYSTEM
AVAILABLE-PROCESSOR
CASH}
=>
{delta(REST-0F-SYSTEM, T)
AVATLABLE-PROCESSOR
delta(useSpareCapacity(CASH, T), T)}

in time T
if T <= mte(REST-0F-SYSTEM) [nonexec]
endtom)
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--- First modification: when idling, steal time from "backwards"
--- instead of from the front ... only change that useSpareCapacity
--- is replaced by uselLatestSpareCapacity:

(tomod CASH-USE-LATEST-BUDGET-WHEN-IDLING is
protecting CASH-COMMON .

var REST-OF-SYSTEM : Configuration .
var CASH : Cash .

vars T : Time .

vars NZT NZT’ : NzTime

var CQ : CapacityQueue

crl [tickIdlel

{REST-0F-SYSTEM
AVAILABLE-PROCESSOR
CASH}

=>

{delta(REST-OF-SYSTEM, T)
AVAILABLE-PROCESSOR
delta(uselatestSpareCapacity(CASH, T), T)}
in time T

if T <= mte(REST-OF-SYSTEM) [nonexec]

op uselLatestSpareCapacity : Cash Time -> Cash .
eq uselatestSpareCapacity([CASH: emptyQueuel, T) = [CASH: emptyQueue]
eq uselatestSpareCapacity([CASH: CQ (deadline: NZT budget: NZT’)], T)
if T <= NZT’ then —--— enough time in LAST budget
[CASH: CQ (deadline: NZT budget: NZT’ monus T)]
else
uselLatestSpareCapacity([CASH: CQ], T monus NZT’)
fi

endtom)

--- Some suitable initial states:

(tomod TEST-STATES is
including CASH .
including SERVER .

ops sl s2 s3 s4 : -> 0id .

--- A simple 2/5 3/5 system:
op initl : -> GlobalSystem .
eq initl =
{< s1 : Server | maxBudget : 2, period : 5, state : idle,

timeExecuted : 0, used0OfBudget : O, timeToDeadline :

< s2 : Server | maxBudget : 3, period : 5, state : idle,

timeExecuted : 0, used0OfBudget : O, timeToDeadline :
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[CASH: emptyQueue]
AVATILABLE-PROCESSOR}

--— A slightly more complex 2/5 4/7 system (34/35 total bandwidth used):

op init2 : -> GlobalSystem .
eq init2 =
{< s1 : Server | maxBudget : 2, period : 5, state : idle,
timeExecuted : 0, used0OfBudget : O, timeToDeadline :
< s2 : Server | maxBudget : 4, period : 7, state : idle,
timeExecuted : 0, used0OfBudget : O, timeToDeadline :

[CASH: emptyQueue]
AVAILABLE-PROCESSOR}

--— A bad state where bandwidth usage is more than 1:

op initBad : -> GlobalSystem .
eq initBad =
{< s1 : Server | maxBudget : 2, period : 5, state : idle,
timeExecuted : 0, usedOfBudget : O, timeToDeadline :
< s2 : Server | maxBudget : 5, period : 7, state : idle,
timeExecuted : 0, used0OfBudget : O, timeToDeadline :
[CASH: emptyQueue]
AVAILABLE-PROCESSOR}
op init3 : -> GlobalSystem .
eq init3 =
{< s1 : Server | maxBudget : 2, period : 7, state : idle,
timeExecuted : 0, used0OfBudget : O, timeToDeadline :
< s2 : Server | maxBudget : 2, period : 8, state : idle,
timeExecuted : O, usedOfBudget : O, timeToDeadline :
< 83 : Server | maxBudget : 2, period : 9, state : idle,
timeExecuted : 0, used0OfBudget : O, timeToDeadline :
< s4 : Server | maxBudget : 1, period : 5, state : idle,
timeExecuted : 0, used0OfBudget : O, timeToDeadline :

[CASH: emptyQueue]
AVAILABLE-PROCESSOR}

op init5 : -> GlobalSystem .
eq inith =
{< s1 : Server | maxBudget : 1, period : 3, state : idle,
timeExecuted : O, used0OfBudget : O, timeToDeadline :
< s2 : Server | maxBudget : 4, period : 8, state : idle,
timeExecuted : 0, used0OfBudget : O, timeToDeadline :
< s3 : Server | maxBudget : 4, period : 24, state : idle,
timeExecuted : O, usedOfBudget : O, timeToDeadline :

[CASH: emptyQueuel
AVATILABLE-PROCESSOR}
endtom)

--- Original CASH algorithm with initial states:

(tomod TEST-CASH-USE-EARLIEST-BUDGET-WHEN-IDLING is
including CASH-USE-EARLIEST-BUDGET-WHEN-IDLING .
including TEST-STATES .

endtom)
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--- Modified CASH algorithm with initial states:

(tomod TEST-CASH-USE-LATEST-BUDGET-WHEN-IDLING is
including CASH-USE-LATEST-BUDGET-WHEN-IDLING .
including TEST-STATES .

endtom)

B The CASH Specification for Monte Carlo Simulation Purposes

The following presents our modified specifications of the CASH aldorithm for simulation purposes.

--- A slight modification for Monte Carlo simulation purposes
--- of our CASH specifications.

--— Modifications:

--- -- whenever an old job is finished a new job is created,

- characterized by the time til the next job arrives, which
- could be zero, and by the length of the job, i.e., how long
-—= does it need to be executed.

--- -- rules idleToExecuting and idleToActive only used when

- timeToJob equals zero.

--- -- rules stopExecutingl/2 only applied when left0fJob equals O.
--- -- no need to use timeExecuted because a job length is nonzero
-—= to start with

--- Version of Oct 14, 2005.
--- Start Real-Time Maude:
load real-time-maude

--—- Preemptive earliest deadline first-based scheduling with reuse
--- of unused budgets.

—--- Simulation version.

(tmod TIME-DOMAIN is
including NAT-TIME-DOMAIN-WITH-INF .
endtm)

(tomod CASH is
ce --- as before
endtom)

(tomod SERVER is
protecting TIME-DOMAIN .
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class Server |

maxBudget : NzTime, --- maximum budget Q_i, constant
period : NzTime, --- period, constant

state : ServerState, --- state of the server/task
used0fBudget : Time, --- how long time has this server

--- executed OF ITS OWN budget
--— in this period?
timeToDeadline : Time, —--— time left until "current" deadline
--- can remain O while idling
--- (no "current" deadline)

timeToJob : Time, --- NEW! time to start of next job
left0fJob : Time . --- NEW! Left to execute of current/next
--- job

sort ServerState .

ops idle --- No task "ready" yet
waiting --- ready to run but blocked/preempted/...
executing : --- this server is executing

-> ServerState [ctor]

op AVAILABLE-PROCESSOR : -> Configuration [ctor]
--- Denotes an available processor.
endtom)

—--- SIMULATION. Need a module for generating pseudo-random

--- time values, which are asumed to be natuiral numbers ...

—--— Since we do not need more than one random number generator, we don’t
--- need a full object!

(tomod RANDOM is
including NAT .

sort Seed .

subsort Seed < NEConfiguration .

op ‘[Seed:_‘] : Nat -> Seed [ctor] . --- seed "object"

op random : Nat -> Nat . --- random(x) generates the next random number

vars N N’ : Nat .

eq random(N) = ((104 * N) + 7921) rem 10609 .
—--— Obeys Knuths criteria for a "good" random function

--- The seed may be modified by applying the random function many times:
op repeatRandom : Nat Nat -> Nat . --- repeatRandom(seed, noOfReps)
eq repeatRandom(N, s N’) = repeatRandom(random(N), N’)
eq repeatRandom(N, 0) = N .

endtom)

--- Now, we define the common rules of both protocols, where
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- every task is generated ... without generating the tasks!!

(tomod CASH-COMMON is
protecting CASH .
protecting SERVER .
protecting RANDOM .

vars 0 0’ : 0id .

vars C C’ REST-OF-SYSTEM : Configuration .
var STATE : ServerState .

var CASH : Cash .

vars T T> T’’ T’’’ REMAINING-BUDGET : Time .
vars NZT NZT’ NZT’’ : NzTime .

var BUDGET-LEFT : Bool .

var CQ : CapacityQueue

var N : Nat

--- Idle to executing when the processor is available:
—--— SIMULATION: only happens when timeToJob is O:

rl [idleToExecutingl]
< 0 : Server | period : NZT, state : idle, timeToDeadline : T,
timeToJob : 0 >
AVAILABLE-PROCESSOR
=>
< 0 : Server | state : executing, timeToDeadline : T + NZT,
used0fBudget : 0 > .

--- A server becomes active and another server is executing.
--- This server will either preempt or not according to usual EDF:
—--- SIMUATION: only applicable when timeToJob is O.

rl [idleToActive]
< 0 : Server | period : NZT, state : idle, timeToDeadline : T,
timeToJob : 0 >

< 0’ : Server | state : executing, timeToDeadline : T’ >
=>
if (T + NZT) < T’ then --- start to execute and preempt 0’
(< 0 : Server | state : executing, timeToDeadline : T + NZT,
used0fBudget : 0 >
< 0’ : Server | state : waiting >)
else

(< 0 : Server | state : waiting, timeToDeadline : T + NZT,
used0fBudget : 0 >
< 0’ : Server | >)
fi .

--- Finish executing. If more budget, add to CASH.

--- There are two main cases: wake up the first waiting server, or nobody
--- is waiting. First case: someone else is waiting:

--— We have also added an additional check that the current job

--- has actually executed more than zero time.

—--- SIMULATION: only happens when leftOfJob is O:
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—--- SIMULATION: must also generate new job!

crl [stopExecutingi]

{< 0 : Server | state : executing, usedOfBudget : T,
maxBudget : NZT, timeToDeadline : T’,
period : NZT’’, leftOfJob : 0 >

< 0’ : Server | state : waiting, timeToDeadline : T’’ >
[Seed: N]
REST-0F-SYSTEM
CASH}
=>

{< 0 : Server | state : idle, wusedOfBudget : NZT,
timeToJob : random(N) rem (2 * NZT’’ + 1),
left0fJob :

1 + random(random(N)) rem (2 * NZT) >
< 0’ : Server | state : executing >
[Seed: random(random(N))]
REST-0F-SYSTEM
(if BUDGET-LEFT
then addCapacity((deadline: T’ budget: REMAINING-BUDGET), CASH)
else CASH fi)}

if REMAINING-BUDGET := NZT monus T /\
BUDGET-LEFT := REMAINING-BUDGET > 0 /\
REMAINING-BUDGET <= T’ /\ --- overflow check
T’’ == nextDeadlineWaiting(< 0’ : Server | > REST-0F-SYSTEM)

--- Finish executing when no other server is waiting. Just release the
—-—— processor:
—--— SIMULATION: same as above!

crl [stopExecuting2]
{< 0 : Server | state : executing, usedOfBudget : T,
timeToDeadline : T’, maxBudget : NZT,
period : NZT’’, leftOfJob : 0 >

[Seed: NI
REST-0F-SYSTEM
CASH}

=>

{< 0 : Server | state : idle, usedOfBudget : NZT,
timeToJob : random(N) rem (2 * NZT’’ + 1),
left0fJob :
1 + random(random(N)) rem (2 * NZT) >
[Seed: random(random(N))]
AVAILABLE-PROCESSOR
REST-0F-SYSTEM
(if BUDGET-LEFT
then addCapacity((deadline: T’ budget: REMAINING-BUDGET), CASH)
else CASH fi)}

if REMAINING-BUDGET := NZT monus T /\
BUDGET-LEFT := REMAINING-BUDGET > 0 /\
REMAINING-BUDGET <= T’ /\ -—- overflow check

nooneWaiting (REST-0F-SYSTEM)
op nextDeadlineWaiting : Configuration -> TimeInf [frozen (1)]

eq nextDeadlineWaiting(none) = INF .
ceq nextDeadlineWaiting(C C’) =

45



min(nextDeadlineWaiting(C), nextDeadlineWaiting(C’))
if C =/= none /\ C’ =/= none .
eq nextDeadlineWaiting(< O : Server | state : STATE, timeToDeadline : T >) =
if STATE == waiting then T else INF fi
eq nextDeadlineWaiting(DEADLINE-MISS) = INF .

op nooneWaiting : Configuration -> Bool [frozen (1)]
eq nooneWaiting(none) = true .
ceq nooneWaiting(C C’) = nooneWaiting(C) and nooneWaiting(C’)
if C =/= none /\ C’ =/= none .
eq nooneWaiting(< O : Server | state : STATE >) = STATE =/= waiting .
eq nooneWaiting(DEADLINE-MISS) = true .

—--— SIMULATION: add

var SEED : Seed .

eq nextDeadlineWaiting(SEED) = INF .
eq nooneWaiting(SEED) = true .

--- Finally, we make an overflow explicit:
op DEADLINE-MISS : -> Configuration [ctor format (r o)]

--- The following rule can be applied when we have reached an overflow
--- situation:

crl [deadlineMiss]
< 0 : Server | state : STATE, usedOfBudget : T, timeToDeadline : T’,
maxBudget : NZT >
=>
DEADLINE-MISS
if (NZT monus T) > T’ /\ STATE == waiting or STATE == executing .

——- SIMULATION: add a conditioon that there is still time left
-—= of job!

--— Case 1: no other server is waiting:
crl [continueExInNextRound]

{< 0 : Server | state : executing, maxBudget : NZT,
used0fBudget : NZT, period : NZT’,
timeToDeadline : T, left0OfJob : NZT’’ >

REST-0F-SYSTEM CASH}

=>

{< 0 : Server | usedOfBudget : O, timeToDeadline : T + NZT’ >
REST-0F-SYSTEM CASH}

if nooneWaiting(REST-OF-SYSTEM)

--— Case 2: someone else is waiting, so maybe our server becomes preempted:
crl [continueActInNextRound]
{< 0 : Server | state : executing, maxBudget : NZT,
used0fBudget : NZT, period : NZT’,
timeToDeadline : T, left0OfJob : NZT’’ >
< 0’ : Server | state : waiting, timeToDeadline : T’ >
REST-OF-SYSTEM CASH}
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=>
if T> < T + NZT’ then --- we become preempted
{< 0 : Server | state : waiting, usedOfBudget : O,
timeToDeadline : T + NZT’ >

< 0’ : Server | state : executing >
REST-0F-SYSTEM CASH}
else --- can continue executing
{< 0 : Server | usedOfBudget : O, timeToDeadline : T + NZT’ >
< 0’ : Server | >
REST-OF-SYSTEM CASH}
fi
if T’ == nextDeadlineWaiting(< 0’ : Server | > REST-OF-SYSTEM)

---— Tick rules, except for idling:

—--— SIMULATION: must not execute past leftOfJob, and update leftOfJob!

crl [tickExecutingSpareCapacity]
{< 0 : Server | state : executing,
timeToDeadline : T’’, left0OfJob : NZT >
REST-0F-SYSTEM
CASH}
=>
{< 0 : Server | timeToDeadline : T’’ monus T,
left0fJob : NZT monus T >
delta(REST-0F-SYSTEM, T)
delta(useSpareCapacity(CASH, T), T)}
in time T
if T <= min(mte(CASH REST-0F-SYSTEM), mteCashUse(< 0 : Server | >))
/\ firstDeadline(CASH) <= T’’ [nonexec]

--— Case 2: tick when a server is executing its own budget:
—--- SIMULATION: do not execute past left0fJob, and update left0fJob

crl [tickExecutingOwnBudget]
{< 0 : Server | state : executing, wused0fBudget : T’’,
timeToDeadline : T’’’, leftO0fJob : NZT >
REST-0F-SYSTEM
CASH}
=>
{< 0 : Server | usedOfBudget : T’’ + T, timeToDeadline : T’’’ monus T,
left0fJob : NZT monus T >
delta(REST-0F-SYSTEM, T)
delta(CASH, T)}
in time T
if T <= mte(< 0 : Server | > REST-0F-SYSTEM)
/\ T’’’ < firstDeadline(CASH) [nonexec]

--— Mte should be O when an overflow is detected:

op mte : Configuration -> TimeInf [frozen (1)]

eq mte(none) = INF .

ceq mte(C C’) = min(mte(C), mte(C’)) if C =/= none /\ C’ =/= none
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——- SIMULATON: must take timeToJob into account:
eq mte(< 0 : Server | state : idle, timeToJob : T >) =T .

eq mte(< 0 : Server | state : waiting, used0fBudget : T, maxBudget : NZT,
timeToDeadline : T’ >) =
if (NZT monus T) > T’ --- overflow!!!
then 0 else T’ fi .

—--— SIMULATION: leftOfJob new parameter below!
eq mte(< 0 : Server | state : executing, usedOfBudget : T, maxBudget : NZT,
timeToDeadline : T’, leftOfJob : T’’ >) =
if (NZT monus T) > T’ --- overflow!
then 0 else min(T’’, NZT monus T) fi .

eq mte([CASH: CQ]) = if CQ == emptyQueue then INF
else min(firstBudget ([CASH: CQl),
firstDeadline ([CASH: CQ])) fi .

eq mte (DEADLINE-MISS) = 0 .

--— The mte differs slightly in the cases where a node is executing on
--- whether it executes its own budget or a spare capacity:
—--— SIMULATION: must also take into account left0OfJob!

op mteCashUse : Object -> Time
eq mteCashUse(< 0 : Server | state : executing, used0fBudget : T,
maxBudget : NZT, timeToDeadline : T’,
left0fJob : T’’ >) =
if (NZT monus T) > T’ --- overflow!
then O else min(T’’, T’) fi

—-- SIMULATION, must also take leftOfJob and timeToJob into account:
op delta : Configuration Time -> Configuration [frozen (1)]
eq delta(none, T) = none .
ceq delta(C C’, T) = delta(C, T) delta(C’, T) if C =/= none /\ C’ =/= none
eq delta(< 0 : Server | state : idle, timeToDeadline : T,
timeToJob : T’’ >, T’) =
< 0 : Server | timeToDeadline : T monus T’,
timeToJob : T’’ monus T’ > .
eq delta(< 0 : Server | state : waiting, timeToDeadline : T >, T’) =
< 0 : Server | timeToDeadline : T monus T’ > .
--— Note that the effect of time elapse on an executing node is given
--- directly in the tick rules.

eq delta([CASH: CQ], T) = [CASH: delta(CQ, T)]
op delta : CapacityQueue Time -> CapacityQueue
eq delta(emptyQueue, T) = emptyQueue .
eq delta((deadline: NZT budget: NZT’) CQ, T) =
((deadline: (NZT monus T) budget: NZT’) delta(CQ, T))
—--- SIMULATION: new:
eq mte(SEED) = INF .
eq delta(SEED, T) = SEED .

---( This is as submitted to FASE in previous version.
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To make it correct, it should be changed.
op useSpareCapacity : Cash Time -> Cash .
eq useSpareCapacity([CASH: emptyQueue], T) = [CASH: emptyQueue]
eq useSpareCapacity([CASH: (deadline: NZT budget: NZT’) CQl, T) =

if T <= NZT’ then --- enough time in first budget
[CASH: (deadline: NZT budget: NZT’ monus T) CQ]
else
useSpareCapacity([CASH: CQ], T monus NZT’)
fi

--- The new version also takes adds a third parameter denoting

--- how much time has been spent in this round. Think of a setting

--- where we have capacities (6,5) and (7,5) and (10,3), and

--- useSpareCapacity needs to use 10 time units. We must ensure

--- that ALL available spare budgets are exhausted in the above example:
op useSpareCapacity : Cash Time -> Cash .
op useSpareCapacity : Cash Time Time -> Cash .
--- usage: useSpareCapacity(cash,LeftToComsume, UsedSoFarInTick)
eq useSpareCapacity(CASH, T) = useSpareCapacity(CASH, T, 0)
eq useSpareCapacity([CASH: emptyQueue], T, T’) = [CASH: emptyQueue]
eq useSpareCapacity([CASH: (deadline: NZT budget: NZT’) CQl, T, T’) =

if T <= min(NZT monus T’, NZT’) then --- enough time in first budget
[CASH: (deadline: NZT budget: NZT’ monus T) CQ]
else

useSpareCapacity([CASH: CQ], T monus min(NZT monus T’, NZT’),
T’ + min(NZT monus T’, NZT’))
fi
endtom)

(tomod CASH-USE-EARLIEST-BUDGET-WHEN-IDLING is
including CASH-COMMON .

var REST-OF-SYSTEM : Configuration .
var CASH : Cash .
var T : Time

crl [tickIdle]
{REST-0F-SYSTEM
AVAILABLE-PROCESSOR
CASH}
=>
{delta(REST-0F-SYSTEM, T)
AVAILABLE-PROCESSOR
delta(useSpareCapacity(CASH, T), T)}

in time T
if T <= mte(REST-0F-SYSTEM) [nonexec]
endtom)

--- First modification: when idling, steal time from "backwards"
--- instead of from the front ... only change that useSpareCapacity
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--- is replaced by uselLatestSpareCapacity:

(tomod CASH-USE-LATEST-BUDGET-WHEN-IDLING is
protecting CASH-COMMON .

var REST-OF-SYSTEM : Configuration .
var CASH : Cash .

vars T : Time .

vars NZT NZT’ : NzTime

var CQ : CapacityQueue

crl [tickIdlel

{REST-0F-SYSTEM
AVAILABLE-PROCESSOR
CASH}

=>
{delta(REST-0F-SYSTEM, T)
AVAILABLE-PROCESSOR
delta(uselatestSpareCapacity(CASH, T), T)}
in time T

if T <= mte(REST-OF-SYSTEM) [nonexec]

op uselLatestSpareCapacity : Cash Time -> Cash .

eq uselatestSpareCapacity([CASH: emptyQueuel, T) = [CASH: emptyQueuel
eq uselatestSpareCapacity([CASH: CQ (deadline: NZT budget: NZT’)], T) =
if T <= NZT’ then --- enough time in LAST budget
[CASH: CQ (deadline: NZT budget: NZT’ monus T)]
else

useLatestSpareCapacity([CASH: CQ], T monus NZT’)
fi

endtom)

—--- SIMULATION: Add first job for these guys!

(tomod TEST-STATES-FOR-SIMULATION is
including CASH .
including SERVER .
including RANDOM .

ops sl s2 s3 s4 : -> 0id .

var N : Nat . -—- Initial seed.

—--- SIMULATION: add a parameter for seed:
—--- SIMULATION: generate first jobs!
--- A simple 2/56 3/5 system:

op
eq

initl : Nat -> GlobalSystem .

init1(N) =

{< s1 : Server | maxBudget : 2, period : 5, state : idle,
used0fBudget : O, timeToDeadline : O,
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timeToJob : random(N) rem 7,
left0fJob : 1 + (random(random(N)) rem 3) >
< s2 : Server | maxBudget : 3, period : 5, state : idle,
used0fBudget : 0, timeToDeadline : O,
timeToJob : repeatRandom(N, 3) rem 7,
left0fJob : 1 + (repeatRandom(N, 4) rem 4) >
[Seed: repeatRandom(N, 4)]
[CASH: emptyQueue]
AVAILABLE-PROCESSOR}

--- A slightly more complex 2/5 4/7 system (34/35 total bandwidth used):
op init2 : Nat -> GlobalSystem .
eq init2(N) =
{< s1 : Server | maxBudget : 2, period : 5, state : idle,
used0fBudget : O, timeToDeadline : O,
timeToJob : random(N) rem 7,
left0fJob : 1 + (random(random(N)) rem 3) >
< s2 : Server | maxBudget : 4, period : 7, state : idle,
used0fBudget : 0, timeToDeadline : O,
timeToJob : repeatRandom(N, 3) rem 9,
left0fJob : 1 + (repeatRandom(N, 4) rem 5) >
[Seed: repeatRandom(N, 4)]
[CASH: emptyQueue]
AVAILABLE-PROCESSOR}

op init2b : Nat -> GlobalSystem .
eq init2b(N) =
{< s1 : Server | maxBudget : 5, period : 12, state : idle,
used0fBudget : O, timeToDeadline : O,
timeToJob : random(N) rem 14,
left0fJob : 1 + (random(random(N)) rem 6) >
< s2 : Server | maxBudget : 7, period : 13, state : idle,
used0fBudget : O, timeToDeadline : O,
timeToJob : repeatRandom(N, 3) rem 15,
left0fJob : 1 + (repeatRandom(N, 4) rem 8) >
[Seed: repeatRandom(N, 4)]
[CASH: emptyQueue]
AVAILABLE-PROCESSOR}

--- A bad state where bandwidth usage is more than 1:
op initBad : Nat -> GlobalSystem .
eq initBad(N) =
{< s1 : Server | maxBudget : 2, period : 5, state : idle,
used0fBudget : O, timeToDeadline : O,
timeToJob : random(N) rem 7,
left0fJob : 1 + (random(random(N)) rem 3) >
< s2 : Server | maxBudget : 5, period : 7, state : idle,
used0fBudget : O, timeToDeadline : O,
timeToJob : repeatRandom(N, 3) rem 9,
left0fJob : 1 + (repeatRandom(N, 4) rem 6) >
[Seed: repeatRandom(N, 4)]
[CASH: emptyQueuel
AVAILABLE-PROCESSOR}

op init3 : Nat -> GlobalSystem .
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eq init3(N) =

{< s1 : Server | maxBudget : 2, period : 7, state : idle,
used0fBudget : O, timeToDeadline : O,
timeToJob : random(N) rem 9,
left0fJob : 1 + (random(random(N)) rem 3) >

< s2 : Server | maxBudget : 2, period : 8, state : idle,
used0fBudget : O, timeToDeadline : O,
timeToJob : repeatRandom(N, 3) rem 10,
left0fJob : 1 + (repeatRandom(N, 4) rem 3) >

< 83 : Server | maxBudget : 2, period : 9, state : idle,
used0fBudget : O, timeToDeadline : O,
timeToJob : repeatRandom(N, 5) rem 11,
left0fJob : 1 + (repeatRandom(N, 6) rem 3) >

< s4 : Server | maxBudget : 1, period : 5, state : idle,
used0fBudget : O, timeToDeadline : O,
timeToJob : repeatRandom(N, 7) rem 7,
left0fJob : 1 + (repeatRandom(N, 8) rem 2) >

[Seed: repeatRandom(N, 8)]

[CASH: emptyQueue]

AVAILABLE-PROCESSOR}

op init5 : Nat -> GlobalSystem .
eq init5(N) =
{< s1 : Server | maxBudget : 1, period : 3, state : idle,
used0fBudget : O, timeToDeadline : O,
timeToJob : random(N) rem 5,
left0fJob : 1 + (random(random(N)) rem 2) >
< s2 : Server | maxBudget : 4, period : 8, state : idle,
used0fBudget : O, timeToDeadline : O,
timeToJob : repeatRandom(N, 3) rem 10,
left0fJob : 1 + (repeatRandom(N, 4) rem 5) >
< s3 : Server | maxBudget : 4, period : 24, state : idle,
used0fBudget : O, timeToDeadline : O,
timeToJob : repeatRandom(N, 5) rem 26,
left0fJob : 1 + (repeatRandom(N, 6) rem 5) >
[Seed: repeatRandom(N, 6)]
[CASH: emptyQueue]
AVAILABLE-PROCESSOR}

op init6 : Nat -> GlobalSystem .
eq init6(N) =
{< s1 : Server | maxBudget : 100, period : 1000, state : idle,
used0fBudget : O, timeToDeadline : O,
timeToJob : random(N) rem 100,
left0fJob : 1 + (random(random(N)) rem 102) >
< s2 : Server | maxBudget : 5, period : 10, state : idle,
used0fBudget : O, timeToDeadline : O,
timeToJob : repeatRandom(N, 3) rem 10,
left0fJob : 1 + (repeatRandom(N, 4) rem 5) >
< s3 : Server | maxBudget : 1, period : 3, state : idle,
used0fBudget : O, timeToDeadline : O,
timeToJob : repeatRandom(N, 5) rem 5,
left0fJob : 1 + (repeatRandom(N, 6) rem 2) >
[Seed: repeatRandom(N, 6)]
[CASH: emptyQueuel
AVAILABLE-PROCESSOR}
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endtom)

(tomod SIMULATE-CASH-USE-EARLIEST-BUDGET-WHEN-IDLING is
including CASH-USE-EARLIEST-BUDGET-WHEN-IDLING .
including TEST-STATES-FOR-SIMULATION .

endtom)

(tomod SIMULATE-CASH-USE-LATEST-BUDGET-WHEN-IDLING is
including CASH-USE-LATEST-BUDGET-WHEN-IDLING .
including TEST-STATES-FOR-SIMULATION .

endtom)

--- ANALYSIS:

(set tick max .)

(tfrew init1(1757) in time <= 20000 .)
(tfrew initBad(17) in time <= 1000 .)
(tfrew init2(19979537) in time <= 20000 .)
(tfrew init2b(195327) in time <= 20000 .)
(tfrew init3(192337) in time <= 20000 .)
(tfrew init5(9537) in time <= 20000 .)
(tfrew init6(9537) in time <= 20000 .)

--- Analysis of ORIGINAL protocol, which is supposed to be OK:

—--- (select SIMULATE-CASH-USE-EARLIEST-BUDGET-WHEN-IDLING .)

--- Results of simulations up to time 1000000:

Maude> (tfrew init5(133) in time <= 1000000 .)
rewrites: 155423876 in 331890ms cpu (334850ms real) (468299 rewrites/second)

Timed fair rewrite init5(133)in SIMULATE-CASH-USE-LATEST-BUDGET-WHEN-IDLING
with mode maximal time increase in time <= 1000000

Result ClockedSystem :
{ [CASH: emptyQueue ][Seed: 8491]< s1 : Server | leftOfJob : 2,maxBudget :
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1,period : 3,state : idle,timeToDeadline : 2,timeToJob : 5,used0fBudget : 1
> < s2 : Server | leftOfJob : 4,maxBudget : 4,period : 8,state : idle,
timeToDeadline : 1,timeToJob : 4,used0fBudget : 4 > < s3 : Server |
leftOfJob : 8,maxBudget : 4,period : 24,state : executing,timeToDeadline
23,timeToJob : 0,used0fBudget : O >} in time 999998

Maude> (tfrew init2(133) in time <= 1000000 .)
rewrites: 72296988 in 160490ms cpu (162940ms real) (450476 rewrites/second)

Timed fair rewrite init2(133)in SIMULATE-CASH-USE-LATEST-BUDGET-WHEN-IDLING
with mode maximal time increase in time <= 1000000

Result ClockedSystem :
{ [CASH: emptyQueue ][Seed: 3457]< s1 : Server | leftOfJob : 2,maxBudget
2,period : 5,state : waiting,timeToDeadline : 9,timeToJob : O,used0fBudget
: 0 > < s2 : Server | leftOfJob : 5,maxBudget : 4,period : 7,state :
executing,timeToDeadline : 4,timeToJob : O,used0fBudget : 3 >} in time
1000000
 p—

C The Paths Leading to a Missed Deadline

The following presents the path from state init2 to a missed deadline, as it was obtained using
Maude’s underlying search path capabilities.

state 0, GlobalSystem: {AVAILABLE-PROCESSOR [CASH: emptyQueue]
< s1 : Server | maxBudget : 2, period : 5, state : idle, timeExecuted : O,
timeToDeadline : O, usedOfBudget : 0 >
< s2 : Server | maxBudget : 4, period : 7, state : idle, timeExecuted : O,
timeToDeadline : O, usedOfBudget : 0 >}

1]

Il

]
—

[label idleToExecutingl] . ]===>

state 1, GlobalSystem: {[CASH: emptyQueue]
< s1 : Server | maxBudget : 2, period : 5, state : executing,
timeExecuted : O, timeToDeadline : 5, used0OfBudget : 0 >
< s2 : Server | maxBudget : 4, period : 7, state : idle,
timeExecuted : O, timeToDeadline : O, used0fBudget : O >}

=== [label tickExecutingOwnBudget] . ]===
state 3, GlobalSystem: {[CASH: emptyQueue]
< sl : Server | maxBudget : 2, period : 5, state : executing,
timeExecuted : 1, timeToDeadline : 4, usedOfBudget : 1 >
< s2 : Server | maxBudget : 4, period : 7, state : idle,
timeExecuted : O, timeToDeadline : O, used0fBudget : O >}
===[ ... [label idleToActive] . ]===
state 8, GlobalSystem: {[CASH: emptyQueuel

< sl : Server | maxBudget : 2, period : 5, state : executing,
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timeExecuted : 1, timeToDeadline : 4, usedOfBudget : 1 >
< s2 : Server | maxBudget : 4, period : 7, state : waiting,
timeExecuted : O, timeToDeadline : 7, used0fBudget : 0 >}

===[ ... [label tickExecutingOwnBudget] . ]===>

state 19, GlobalSystem: {[CASH: emptyQueue]
< sl : Server | maxBudget : 2, period : 5, state : executing,
timeExecuted : 2, timeToDeadline : 3, usedOfBudget : 2 >
< s2 : Server | maxBudget : 4, period : 7, state : waiting,
timeExecuted : 0O, timeToDeadline : 6, used0fBudget : 0 >}

===[ ... [label continueActInNextRound] . ]===

state 38, GlobalSystem: {[CASH: emptyQueue]
< sl : Server | maxBudget : 2, period : 5, state : waiting,
timeExecuted : O, timeToDeadline : 8, usedOfBudget : 0 >
< s2 : Server | maxBudget : 4, period : 7, state : executing,
timeExecuted : O, timeToDeadline : 6, used0fBudget : O >}

===[ ... [label tickExecutingOwnBudget] . ]===

state 75, GlobalSystem: {[CASH: emptyQueue]
< sl : Server | maxBudget : 2, period : 5, state : waiting,
timeExecuted : O, timeToDeadline : 7, usedOfBudget : 0 >
< s2 : Server | maxBudget : 4, period : 7, state : executing,
timeExecuted : 1, timeToDeadline : 5, used0fBudget : 1 >}

===[ ... [label stopExecutingl] . ]===

state 145, GlobalSystem: {[CASH: deadline: 5 budget: 3]
< sl : Server | maxBudget : 2, period : 5, state : executing,
timeExecuted : 0, timeToDeadline : 7, usedOfBudget : 0 >
< s2 : Server | maxBudget : 4, period : 7, state : idle, timeExecuted : 1,
timeToDeadline : 5, usedOfBudget : 4 >}

===[ ... [label tickExecutingSpareCapacity] . ]===>

state 263, GlobalSystem: {[CASH: deadline: 4 budget: 2]
< sl : Server | maxBudget : 2, period : 5, state : executing,
timeExecuted : 1, timeToDeadline : 6, usedOfBudget : 0 >
< s2 : Server | maxBudget : 4, period : 7, state : idle,
timeExecuted : 1, timeToDeadline : 4, used0fBudget : 4 >}

===[ ... [label stopExecuting2] . ]===
state 464, GlobalSystem: {AVAILABLE-PROCESSOR
[CASH: (deadline: 4 budget: 2) deadline: 6 budget: 2]
< sl : Server | maxBudget : 2, period : 5, state : idle, timeExecuted : 1,
timeToDeadline : 6, usedOfBudget : 2 >
< s2 : Server | maxBudget : 4, period : 7, state : idle, timeExecuted : 1,
timeToDeadline : 4, usedOfBudget : 4 >}
===[ ... [label idleToExecutingl] . J===

state 811, GlobalSystem: {[CASH: (deadline: 4 budget: 2) deadline: 6 budget: 2 ]
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< sl : Server | maxBudget : 2,
timeExecuted :
< s2 : Server | maxBudget : 4,
timeToDeadline :
=== [label tickExecutingSpar
state 1373, GlobalSystem: {[CASH:
< sl : Server | maxBudget : 2,
timeExecuted :
< s2 : Server | maxBudget : 4,
timeToDeadline :
=== [label stopExecuting2] .
state 2275, GlobalSystem: {AVAILA

period : 5, state :
0, timeToDeadline :
period : 7, state :

4, usedO0fBudget

eCapacity] . ]
(deadline: 3 budget:
period : 5, state :
1, timeToDeadline :
period : 7, state :
3, usedOfBudget

1===

BLE-PROCESSOR

[CASH: (deadline: 3 budget: 1) (deadline: 5 budget:

< sl : Server | maxBudget : 2,
timeToDeadline :

< s2 : Server | maxBudget : 4,

timeExecuted :

=== [label idleToExecutingl]

state 3679, GlobalSystem: {[CASH:

< sl : Server | maxBudget : 2,

timeExecuted :

< s2 : Server | maxBudget : 4,
timeToDeadline :

[label tickExecutingSpare

period : 5, state :
10, usedOfBudget
period : 7, state :

1, timeToDeadline :
. ]===

(deadline: 3 budget:
deadline: 10 budget:

period : 5, state :
0, timeToDeadline :
period : 7, state :

3, usedOfBudget

Capacity] . ]
(deadline: 4 budget:
period : 5, state :
1, timeToDeadline :
period : 7, state :

2, used0fBudget

. ]===>

BLE-PROCESSOR

executing,
11, usedOfBudget : 0 >
idle, timeExecuted : 1,

: 4 >}

1) deadline: 5 budget: 2 ]
executing,

10, usedOfBudget
idle, timeExecuted :

: 0>
1,

: 4 >}

2) deadline: 10 budget: 2 ]
idle, timeExecuted : 1,
12>
idle,

3, usedOfBudget : 4 >}
1) (deadline: 5 budget: 2)

2]

executing,

15, usedOfBudget
idle, timeExecuted :

: 0>
1,

: 4 >}

2) deadline: 9 budget: 2 ]
executing,

14, usedOfBudget : O
idle, timeExecuted :

>
1,

: 4 >}

[CASH: (deadline: 4 budget: 2) (deadline: 9 budget: 2) deadline: 14 budget: 2 ]

state 5729, GlobalSystem: {[CASH:
< sl : Server | maxBudget : 2,
timeExecuted :
< s2 : Server | maxBudget : 4,
timeToDeadline :
===[ ... [label stopExecuting?2]
state 8677, GlobalSystem: {AVAILA
< sl : Server | maxBudget : 2,
timeToDeadline :
< s2 : Server | maxBudget : 4,
timeExecuted :
===[ ... [label tickIdle] . ]===>

state 12971,

GlobalSystem: {AVAIL

period : 5, state : idle, timeExecuted : 1,
14, usedOfBudget : 2 >

period : 7, state : idle,

1, timeToDeadline : 2, used0fBudget : 4 >}

ABLE-PROCESSOR

[CASH: (deadline: 3 budget: 2) (deadline: 8 budget: 2) deadline: 13 budget: 1 ]

< s1

< s2 :

: Server | maxBudget : 2,
timeToDeadline :

Server | maxBudget : 4,

timeExecuted :

period : 5, state :
13, usedOfBudget
period : 7, state :

1, timeToDeadline :
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!

[label tickIdle] . ]===>

state 18943, GlobalSystem: {AVAILABLE-PROCESSOR

[CASH: (deadline: 2 budget: 2) deadline: 7 budget: 2 ]

< s1 : Server | maxBudget : 2, period : 5, state : idle, timeExecuted : 1,
timeToDeadline : 12, usedOfBudget : 2 >

< s2 : Server | maxBudget : 4, period : 7, state : idle, timeExecuted : 1,
timeToDeadline : O, usedOfBudget : 4 >}

[label idleToExecutingl] . ]===

state 27272,

< sl : Server | maxBudget : 2, period : 5, state :
timeExecuted : 1, timeToDeadline :
< s2 : Server | maxBudget : 4, period : 7, state :
timeExecuted : 0, timeToDeadline :

[label tickExecutingSpareCapacity] . ]===

state 38859,

GlobalSystem: {[CASH: (deadline: 2 budget: 2) deadline: 7 budget:

idle,
12, used0fBudget : 2 >
executing,

7, used0fBudget : 0 >}

GlobalSystem: {[CASH: (deadline: 1 budget: 1) deadline: 6 budget:

< sl : Server | maxBudget : 2, period : 5, state : idle, timeExecuted : 1,
timeToDeadline : 11, usedOfBudget : 2 >
< s2 : Server | maxBudget : 4, period : 7, state : executing,
timeExecuted : 1, timeToDeadline : 6, used0fBudget : 0 >}
=== [label tickExecutingSpareCapacity] . ]===
state 54948, GlobalSystem: {[CASH: deadline: 5 budget: 2 ]
< sl : Server | maxBudget : 2, period : 5, state : idle, timeExecuted : 1,
timeToDeadline : 10, usedOfBudget : 2 >
< s2 : Server | maxBudget : 4, period : 7, state : executing,
timeExecuted : 2, timeToDeadline : 5, used0fBudget : 0 >}
=== [label tickExecutingSpareCapacity] . ]===
state 77427, GlobalSystem: {[CASH: deadline: 4 budget: 1 ]
< sl : Server | maxBudget : 2, period : 5, state : idle, timeExecuted : 1,
timeToDeadline : 9, used0fBudget : 2 >
< s2 : Server | maxBudget : 4, period : 7, state : executing,
timeExecuted : 3, timeToDeadline : 4, used0fBudget : 0 >}
=== [label tickExecutingSpareCapacity] . ]===>
state 108705, GlobalSystem: {[CASH: emptyQueue]
< sl : Server | maxBudget : 2, period : 5, state : idle, timeExecuted : 1,
timeToDeadline : 8, used0fBudget : 2 >
< s2 : Server | maxBudget : 4, period : 7, state : executing,
timeExecuted : 4, timeToDeadline : 3, used0fBudget : O >}
=== [label deadlineMiss] . ]J===
state 151780, GlobalSystem: {OVERFLOW [CASH: emptyQueue]
< sl : Server | maxBudget : 2, period : 5, state : idle, timeExecuted : 1,
timeToDeadline : 8, usedOfBudget : 2 >}
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