Salvato in:
Dettagli Bibliografici
Titolo:CLASSIFIERS BASED ON A NEW APPROACH TO ESTIMATE THE FISHER SUBSPACE AND THEIR APPLICATIONS
Pubblicazione:: Università degli Studi di Milano, 2011-03-24
Abstract: In this thesis we propose a novel classifier, and its extensions, based on a novel estimation of the Fisher Subspace. The proposed classifiers have been developed to deal with high dimensional and highly unbalanced datasets whose cardinality is low. ...Fisher Subspace. The proposed classifiers have been developed to deal with high dimensional and highly unbalanced datasets whose cardinality is low. The efficacy of the proposed techniques has been proved by the results achieved on real and synthetic datasets, and by the comparison with state of the art predictors.
Read more
Note:diritti: info:eu-repo/semantics/openAccess
Autori secondari:relatore: Paola Campadelli ; correlatore: Danilo Bruschi ; coordinatore: Ernesto Damiani
CAMPADELLI, PAOLA
DAMIANI, ERNESTO
Classe MIUR:Settore INF/01 - - Informatica
Risorsa digitale:Copia depositata in BNCF Repository di Ateneo
LEADER 01540nam a2200313 n 4500
001 TD16000430
005 20200923012345.0
049 |a TDMAGDIG 
100 |a 20190501d2011 --k--ita-50----ba  
101 1 |a eng 
200 1 |a CLASSIFIERS BASED ON A NEW APPROACH TO ESTIMATE THE FISHER SUBSPACE AND THEIR APPLICATIONS  |b Tesi di dottorato 
210 1 |c Università degli Studi di Milano  |d 2011-03-24 
300 |a diritti: info:eu-repo/semantics/openAccess 
328 0 |b tesi di dottorato  |c Settore INF/01 - Informatica  |e Università degli Studi di Milano 
330 |a In this thesis we propose a novel classifier, and its extensions, based on a novel estimation of the Fisher Subspace. The proposed classifiers have been developed to deal with high dimensional and highly unbalanced datasets whose cardinality is low. The efficacy of the proposed techniques has been proved by the results achieved on real and synthetic datasets, and by the comparison with state of the art predictors. 
610 0 |a Fisher subspace 
610 0 |a classification 
610 0 |a kernel method 
610 0 |a online method 
610 0 |a bioinformatics 
689 0 |a Settore INF/01  |b - Informatica  |c TDR 
702 0 |a relatore: Paola Campadelli ; correlatore: Danilo Bruschi ; coordinatore: Ernesto Damiani 
702 0 |a CAMPADELLI, PAOLA 
702 0 |a DAMIANI, ERNESTO 
801 3 |a IT  |b IT-FI0098 
856 4 |u http://memoria.depositolegale.it/*/http://hdl.handle.net/2434/158358  |2 http://hdl.handle.net/2434/158358 
977 |a  CR 
FMT |a TD 
FOR |a TD 
Tesi di dottorato | Lingua: Inglese | Paese: | BID: TD16000430
Biblioteca Inventario Volume Collocazione Fruizione status