
Boston University

OpenBU http://open.bu.edu

Computer Science CAS: Computer Science: Technical Reports

2007

Swarming on optimized graphs for

n-way broadcast

https://hdl.handle.net/2144/1686

Downloaded from DSpace Repository, DSpace Institution's institutional repository

Computer Science department, Boston Univeristy

Tech. Rep. BUCS-TR-2007-009

Swarming on optimized graphs for n-way broadcast∗

GEORGIOS SMARAGDAKIS† NIKOLAOS LAOUTARIS‡ PIETRO MICHIARDI§

gsmaragd@cs.bu.edu nlaout@eecs.harvard.edu Pietro.Michiardi@eurecom.fr

AZER BESTAVROS† JOHN BYERS† MEMA ROUSSOPOULOS‡

best@cs.bu.edu byers@cs.bu.edu mema@eecs.harvard.edu

Abstract—In an n-way broadcast application each one of n
overlay nodes wants to push its own distinct large data file to
all other n-1 destinations as well as download their respective
data files. BitTorrent-like swarming protocols are ideal choices
for handling such massive data volume transfers. The original
BitTorrent targets one-to-many broadcasts of a single file to a
very large number of receivers and thus, by necessity, employs
an almost random overlay topology. n-way broadcast applications
on the other hand, owing to their inherent n-squared nature, are
realizable only in small to medium scale networks. In this paper,
we show that we can leverage this scale constraint to construct
optimized overlay topologies that take into consideration the
end-to-end characteristics of the network and as a consequence
deliver far superior performance compared to random and
myopic (local) approaches. We present the Max-Min and Max-
Sum peer-selection policies used by individual nodes to select
their neighbors. The first one strives to maximize the available
bandwidth to the slowest destination, while the second maximizes
the aggregate output rate. We design a swarming protocol
suitable for n-way broadcast and operate it on top of overlay
graphs formed by nodes that employ Max-Min or Max-Sum
policies. Using trace-driven simulation and measurements from
a PlanetLab prototype implementation, we demonstrate that the
performance of swarming on top of our constructed topologies is
far superior to the performance of random and myopic overlays.
Moreover, we show how to modify our swarming protocol to
allow it to accommodate selfish nodes.

I. INTRODUCTION - OUTLINE

Motivation: The BitTorrent protocol [1] has established
swarming, i.e., parallel download of a file from multiple
peers with concurrent upload to other requesting peers, as one
of the most efficient methods for multicasting bulk data. A
fundamental characteristic of the existing BitTorrent is that the
overlay graph resulting from its bootstrap and choke/unchoke
algorithms is mostly ad-hoc, in the sense that it is the

† Computer Science Dept, Boston University, Boston, Massachusetts, USA.
‡ School of Engineering and Applied Sciences, Harvard University, Cambridge,

Massachusetts, USA.
§ Networking and Security Dept, Institut Eurecom, Sophia-Antipolis, France.
∗ A. Bestavros and J. Byers are supported in part by a number of NSF awards,

including CNS Cybertrust Award #0524477, CNS NeTS Award #0520166,
CNS ITR Award #0205294, and EIA RI Award 0202067. N. Laoutaris and
M. Roussopoulos are supported in part by NSF CAREER Grant #0446522.
P. Michiardi is supported in part by the Integrated Project CASCADAS (FET
Proactive Initiative, IST-2004-2.3.4 Situated and Autonomic Communications)
within the 6th IST Framework Program.

outgrowth of random choices of neighboring peers. This is
justified given the scale of P2P file swapping networks.

P2P file swapping, is not the “be all and end all” for
swarming. In this work we consider n-way broadcasting —
another class of applications, in which each one of n overlay
nodes must push a very large chunk of data (a distinct file) to
all other n− 1 peers, as well as pull the n− 1 files pushed by
these other peers. Once completed, this push-pull cycle may
be repeated with new sets of files.

Applications using n-way broadcasting would involve
small/medium-sized networks, as they are inherently of n2

nature. Examples include: distribution of large scientific
data-sets in grid computing, distribution of large traffic log
files for network-wide distributed intrusion/anomaly detection
schemes [2], synchronization of distributed databases [3], and
several other enterprise applications. Contrary to the prevailing
assumption underlying the design of BitTorrent, the nodes
that make up such networks are basically cooperative (at an
extreme case they belong to the same administrative authority).

Even for relatively small networks, n parallel broadcasts of
distinct large files can create data volumes that are impossible
to handle via centralized solutions: uploading each file to a
centralized server and then copying it back to all destinations
in a point-to-point manner means that the same file is trans-
mitted O(n) times over the same link, i.e., imposing an O(n)
stress on the physical links.
n-way broadcast via swarming: Swarming is clearly an
attractive approach to supporting n-way broadcast applica-
tions. The obvious solution is to outsource the push-pull
functionality to BitTorrent: set-up n different torrents, each
one seeded by a different node.

In this paper, we question the effectiveness of BitTorrent for
n-way broadcasting (which is not what it is primarily designed
to support). In particular, we note that BitTorrent runs on the
topologies that result from the composition of its bootstrapping
and choke/unchoke algorithms. These topologies are mostly
unoptimized. Indeed, the only topological optimization in
BitTorrent is a local one: under the choke/unchoke algorithm,
fast peers are matched up with other fast peers from within
the same randomly bootstrapped neighborhood. By virtue
of the relatively small size of neighborhoods compared to
the entire network, the resulting topology is close to being

2

random. While randomly-bootstrapped graphs may possess
desirable theoretical properties (such as small diameters), they
are likely to be inefficient when compared to graphs that are
systematically constructed to optimize a specific application.
Notice that BitTorrent’s matching of fast nodes is mostly in the
protocol as an efficient tool against free-riding, rather than as
a conscious attempt to optimize the overall overlay topology
for applications such as n-way broadcast.

Our work — Swarming over optimized overlays: For n-way
broadcast applications (as well as for other potential classes of
applications), the overriding goal is to optimize the efficiency
of the entire overlay as opposed to creating a tit-for-tat envi-
ronment to reign in selfish, free-riding behavior of individual
nodes. Also, the scale of the applications we envision makes it
possible/practical to optimize the construction of the overlay,
especially if distributed optimization is used.

Armed with this realization, our goal will be to construct
highly efficient topologies to be used by swarming protocols
for n-way broadcast. Specifically, we construct an optimized,
common overlay network, upon which swarming is used. In
order to control the stress of the physical links supporting the
overlay, we impose an upper bound on the degree of the nodes
in the constructed overlay network.

Next we present justification for several of the salient
features of our solution – features that will be developed and
presented fully later in the paper.

Why swarming on top of an overlay? Because hop-by-hop
relay of the entire file over a shortest-path tree embedded on
the overlay topology and rooted at the seed node would take
too long. We want to harness the power of parallel downloads
as exemplified in BitTorrent.

Why use a common overlay? Because a topological optimiza-
tion requires monitoring the performance of overlay links, and
we want to amortize the cost of such monitoring — pay it
only once per link and reuse the result for the benefit of all
n transmissions (and avoid monitoring the same link up to n
times as can happen if one builds n independent overlays).

How could swarming benefit from an end-to-end optimized
overlay? Our overlays are optimized for end-to-end perfor-
mance over multi-hop paths, e.g., by maximizing the min-
imum available bandwidth to any destination over multiple
paths, or by maximizing the total available bandwidth to all
destinations over all available paths. From a single node’s
perspective, swarming involves point-to-point transfers within
the neighborhood of that node. Each node, however, has in
its neighborhood nodes that also belong to other “adjacent”
neighborhoods. Noting this, one can see that, through swarm-
ing, data chunks eventually reach their destinations through
multi-hop paths formed through single hop transfers between
neighborhoods. If these multi-hop paths are end-to-end opti-
mized, then swarming will be more effective in operating upon
them as compared to upon unoptimized paths.

Why optimize the overlay based solely on network character-
istics, without consideration of data availability? Arguably,
one could conceive of more general overlay constructions in
which neighbors are selected based on criteria involving both
the network characteristics and the availability of chunks at

each candidate connection point. In our work, we adopt a
bandwidth-centric/data-agnostic approach to the construction
of the overlay for two main reasons: (1) for large objects it is
high bandwidth that leads to small delivery completion times
and high object throughput; (2) the global state in terms of
available chunks per node changes too frequently (with each
successful chunk exchange between two nodes), resulting in
an optimized topology that changes too frequently to be of
practical use. The fact that we do not consider data availability
in the construction of the overlay does not mean that data
availability does not play a role in our approach: it does,
but not at the overlay construction time-scale. Specifically,
we advocate a “two-pronged approach” operating at two
distinct time scales: at a coarse time scale, we address issues
related to network characteristics through the construction of a
dynamic, distributively optimized overlay, and at a finer time
scale, we address issues related to data availability through
the upload/download scheduling algorithms employed in the
swarming protocol that runs on top of the overlay.

II. RELATED WORK

This work is the fusion of two very recent thrusts in network-
ing research: network creation games and swarming protocols.
Network creation games appeared in computer science with
the work of Fabrikant et al. [4] in which a set of nodes forms
a network in a distributed manner driven by self-interest —
each node pays for the creation of a number of links to other
“neighbors” so as to minimize a hybrid cost that captures
the purchase cost of these links and the delay for routing
packets to all other destinations using own and remote links.
The model targeted the creation of physical telecommunication
networks through peering agreements between ISPs (hence the
explicit modeling of the cost of buying a link). Laoutaris et
al. [5], studied the “capacitated” version of the above problem,
targeting the construction of overlay routing networks — each
node is given a bound on the number of immediate peering
relationships that it can establish (defined by the protocol
that implements such an overlay network) and selects the
best neighbors so as to minimize its sum of distances to
all destinations through shortest-path routes over the resulting
overlay topology. These works differ fundamentally from ours
in that they target routing, i.e., they assume that a packet from
v to u is of interest only to u. Intermediate nodes w that lay
on the overlay path from v to u are there just to assist in
the routing of the packet. In the current work, each node is
broadcasting a file to all destinations and thus intermediate
nodes are also receivers in addition to being relay points.
More fundamentally, in our case the delivery of information
from v to u occurs not through a single path but (potentially)
through all the available connected paths between the two
end-points (because the file is cut into chunks which travel in
parallel along different paths on the overlay). For this reason
we employ max-flows as building blocks for designing the
overlay (as opposed to shortest-paths which are used in point-
to-point routing [4], [5]). Max-flows reflect better the nature
of our application (broadcasting) as well as the nature of the
employed technique for implementing it (swarming).

The BitTorrent protocol [1] has established swarming as

3

one of the most fresh and promising ideas in contemporary
networking research and thus has kicked-started a (tidal) wave
of research articles in the area. Our fundamental difference
from this body of work, whether analytic, e.g., Qiu and
Srikant [6], Massoulie and Vojnovic [7], Kumar and Ross [8],
experimental, e.g., Bharambe [9], or measurement based, e.g.,
Izal et al. [10], Legout et al. [11], is that we have substituted
the (close to) random graph resulting from BitTorrent’s boot-
strap and choke/unchoke algorithms with a highly efficient
distributively optimized graph. As we show later on, such a
switch boosts the performance of a swarming protocol running
on top of it. We are able to obtain such highly efficient graphs
because our interest is on smaller networks. We show that at
such scales one can do much better than close to random.

Some other relevant works are the following ones. Mas-
soulie et al. [12] recently showed that a simple distributed
randomized algorithm can achieve the theoretical optimal
broadcast rate given by Edmond’s theorem [13] for a source
node in a flow network. Compared to this work, we let
each node select its neighbors and thus participate in the
construction of the flow network, as opposed to taking it
for granted. Gkantsidis and Rodriguez [14] have proposed
the use of network coding as an alternative to BitTorrent’s
chunk scheduling algorithm. The performance benefit/added
complexity ratio of employing network coding is not yet gen-
erally agreed upon [11]. Although we focus on BitTorrent-like
swarming here, our optimized topologies should also benefit
network-coding based swarming because they are oblivious to
whether network coding is used or not.

Guo et al. [15] and Tien et al. [16] look at the design of
multi-torrent systems. Their contribution is mostly on the mea-
surement and the design of inter-peer incentive mechanisms
for peers that participate in multiple torrents concurrently.
They do not look at overlay construction issues. Interestingly,
Tien et al. [16] provide justification for one of our design
choices, which is to enforce that at any time there should
be only one active torrent between any two nodes (more in
Sect. IV). They show that deviating from this choice and
allowing transferring between two nodes multiple chunks in
parallel (one for each torrent), slows down the system by over-
partitioning the upload bandwidth of nodes.

Other end-system multicast systems such as SplitStream
from Castro et al. [17] and Bullet from Costic et al. [18] could
be used to support n-way broadcasting by creating a separate
overlay for each source. The problem with this approach
is that there is no coordination across different overlays
and thus there can be performance inefficiencies as well as
significant overheads due to the redundant monitoring of the
same physical paths multiple times from different overlays.
Our approach is to construct one overlay for all sources and
thus jointly optimize as well as share the monitoring cost.

The only work we are aware of on the intersection of
overlay creation and BitTorrent is a very recent one from
Zhang et al. [19]. It looks at the formation of Nash equilibria
topologies in view of download-selfish peers that participate
in a single torrent. Our overlay formation, although distributed
and based on local utility functions is: (1) primarily targeting
the optimization of the social utility of the network, meaning

that all nodes are assumed to be under common control, and
(2) considering both upload and download performance for
multiple torrents, one at each node. We examine selfishness
issues and how these could be addressed towards the end of our
article, but this is just a supplement of our main contribution.

III. PEER-SET SELECTION

Let V = {v1, v2, . . . , vn} denote a set of nodes. Node
vi selects k other nodes to be in its peer-set si =
{vi1 , vi2 , . . . , vik

} and establishes bidirectional links to them.
Let S = {s1, s2, . . . , sn} denote the edge set of the overlay
graph G = (V, S) resulting from the superposition of the
individual peer-sets. Each link of G is annotated with a
capacity cij which captures the available bandwidth [20]
(availbw) on the the underlying IP layer path that goes from vi

to vj . Capacities can be asymmetric, meaning that cij �= cji in
the general case. Let MF (vi, vj , S) denote the resulting max-
flow from vi to vj under S. Let also Φ(vi, S) and Ψ(vi, S)
denote the minimum max-flow from vi to any other node under
S, and the sum of max-flows from vi to all other nodes under
S, respectively, i.e.:

Φ(vi, S) = min
vj∈V−i

MF (vi, vj , S), Ψ(vi, S) =
X

vj∈V−i

MF (vi, vj , S)

In the above definitions, each max-flow from vi to an
individual destination is computed independently of other
max-flows from the same node to different destinations (i.e.,
each one is computed on an empty flow network G). These
definitions should not be confused with multi-commodity flow
problems in which multiple distinct flows co-exist.

Definition 1: (Max-Min and Max-Sum peer-sets) A peer-
set si is called Max-Min if it maximizes the minimum max-
flow of node vi, i.e., Φ(vi, {si}+ S−i) ≥ Φ(vi, {si′}+ S−i),
∀si′ �= si, where S−i denotes the superposition of the peer-sets
of all nodes but vi. Similarly, a peer-set is called Max-Sum if
Ψ(vi, {si} + S−i) ≥ Ψ(vi, {si′} + S−i), ∀si′ �= si.

Lemma 1: Finding a Max-Min or Max-Sum peer-set for vi

given S−i is an NP-hard problem.
Proof: See Appendices A and B.

These peer-set selection policies optimize the connectivity
of a given node to the remaining network. One could say
that this constitutes selfish behavior. This is indeed the case
if the nodes use this connectivity to only disseminate their
own file. However, when they also indiscriminately relay the
files of others, which is the assumption for the applications
we consider, then optimizing one’s connectivity boosts the
aggregate social performance of the network. Later on, in
Sect. VI we discuss what happens when the swarming protocol
(running above the overlay) ceases to be indiscriminate with
respect to the upload quality it gives to local and remote files.

Why Max-Min and Max-Sum? Given a flow network G, the
broadcast problem asks what is the maximum (broadcast) rate
at which a source vi can deliver its stream concurrently to all
other nodes. Edmonds showed in [13] that the broadcast rate
is equal to minvj∈V−i

mincut(vi, vj), which in view of the
max-flow/min-cut theorem is equal to minvj∈V−i

MF (vi, vj).
Therefore, the Max-Min peer-set is the peer-set that maximizes
the broadcast rate of a node, or conversely the delivery rate to
the slowest receiving peers. It does so by placing the links so

4

2

1

6

5

4

3
B

1

2

3

4

5

6

A

A 6

1
A,B

A,B

A,B

2

3

4

5

6

1

2

3

4

5

2

1
B

A

A

6

5

4

3

2

1

A’,B’

A’,B’

A’,B’

6

5

4

3

Fig. 1. Mixing max-flows. Left: empty network. Middle: RF(1,5) and RF(1,6)
co-existing. Right: RF(1,2), RF(1,3), RF(1,4), RF(1,5), RF(1,6) co-existing.
Top: initial network. Bottom: Initial augmented with edges, (3,2) and (3,4).

as to boost the max-flow to these slowest peers. Of course
for this to be possible there must be available bandwidth
to be utilized at the IP level (this is reflected on the cij’s
which steers the peer-set selection, and which are obtained
through measurements as explained in Sect IV). Edmonds gave
an exponential time centralized algorithm for achieving the
broadcast rate, which was later improved to a small polynomial
time by Lovasz, Gabow and others [21]. Recently, Massoulie
et al. [12] showed that a simple randomized decentralized
algorithm can achieve a delivery rate that is arbitrarily close
to the broadcast rate.

A Max-Sum peer-set on the other hand is a peer-set that
maximizes the theoretical maximum aggregate transmission
rate from a node. Contrary to the Max-Min peer-set that
maximizes a provably attainable broadcasting rate, the Max-
Sum maximizes only an upper bound on the aggregate rate
which, in the general case, is not attainable due to contention
for link bandwidth when max-flows from the same source
to different destinations share common overlay links.1 We
elaborate with an example.

Consider the flow network of Fig. 1 (top-left) in which all
links have unit capacity and node 1 is the source. Computing
each max-flow on an empty network we get that the max-flow
from the source to nodes 2, 3, and 4 is equal to 1 whereas that
to nodes 5 and 6 is equal to 2, thereby Ψ(1) = 7. Consider
now the maximum real flows that can exist concurrently from
the source to nodes 5 and 6 (top-center). Breaking the file
into two equal parts A and B the source can transmit A at full
rate over the dotted paths (1 → 2 → 5 and 1 → 4 → 6)
and B at full rate over the dashed path (only once over
link (1,3)) and achieve concurrent real flows that match the
capacity of corresponding max-flows on an empty graph, i.e.,
RF(1,5)=MF(1,5)=2 and RF(1,6)=MF(1,6)=2. This is possible
because a single transmission of B on the edge (1,3) suffices
for contributing to both RF(1,5) and RF(1,6). Thus the two
flows don’t compete for bandwidth on the shared link and
can achieve the same capacity as the corresponding max-
flows on empty networks. This is not, however, generally
possible. On the top-right part of the figure we depict the

1 The contention between max-flows “from” different sources does not
come explicitly in these objective functions. It is captured in our framework
through the measured availbw cij : the availbw on a direct overlay link from
vi to vj depends on the capacity of the underlying physical path and the
amount of this capacity already captured by the competing max-flows from
other sources. At this level the problem is indeed a multi-commodity flow.

situation when sending from the source to all destinations
(nodes 2-6) concurrently. In this case the entire file (both
A and B) has to go over links (1,2), (1,3), and (1,4) and
thus RF(1,5)=RF(1,6)=1<MF(1,5)=MF(1,6)=2 leading to a
real aggregate rate Ψ̃(1) = 5 smaller than the bound Ψ(1) = 7.

Generally, the bound becomes less tight with increasing link
density k/n. On the bottom-left part of Fig. 1 we add to the
previous network two new links: (3,2) and (3,4). It is easy to
verify that the max-flow from the source to nodes 2, 4, 5, and
6 is now 2 and to node 3 is 1, leading to Φ(1) = 9. As before,
if we consider only the flows to 5 and 6, it is easy to see that
their max-flow values can co-exist. Considering, however, the
flows to all destinations, we see that any partition of the file
into parts will inevitably lead again to all real flows being 1,
whereas the corresponding max-flows with the exception of
MF(1,3) are now 2.2 In other words, although the new links
increased both MF(1,2) and MF(1,4) by 1 compared to the
previous network, they cannot increase any of the real flows
and thus widen the gap between the bound (Φ(1) = 9) and
the maximum attainable aggregate rate (Φ̃(1) = 5).

To sum up, we propose and study these peer selection
policies for the following reasons: (1) Max-flows are used to
capture the fact that in a swarming protocol the chunks of a
source node vi travel towards a sink node vj over (potentially)
all the available paths of the overlay graph of point-to-point
peer relationships. (2) The gap between the bound on the
aggregate rate Ψ(vi, S) given by a Max-Sum peer-set and
the actual maximum attainable aggregate rate Ψ̃(vi, S) which
factors in the sharing of overlay links from multiple max-flows
to different destinations, is reduced by the fact that swarming
protocols guarantee that any chunk is transmitted at most once
between any two peers; therefore, Ψ̃(vi, S) can use an overlay
link multiple times (for different max-flows) but would seize
bandwidth only once, thereby reducing its gap from the bound
Ψ(vi, S) that assumes that the entire flow network is available
to each individual max-flow from vi. (3) The overlay network
has to be rather sparse (small k) so as to limit the stress on the
physical links. Thus the bound Max-Sum won’t be very much
off from the actual achievable aggregate rate and it makes
sense optimizing the peer-set based on it. Regarding Max-Min,
this is provably attainable, and optimal for broadcast rate as
discussed earlier.

Since a node cares to both upload its local file to all other
nodes as well as download from them all remote files, we
combine the previous definitions in the following objective
functions:

Φ̇(vi, si) = αΦ(vi, {si} + S−i) + (1 − α) min
vj∈V−i

MF (vj , vi, {si} + S−i),

Ψ̇(vi, si) = αΨ(vi, {si} + S−i) + (1 − α)
X

vj∈V−i

MF (vj , vi, {si} + S−i)

In the above functions, the parameter α regulates the relative
importance between upload and download quality in selecting
a peer-set. If the link capacities are symmetric, then optimizing
Φ̇ or Ψ̇ reduces to optimizing Φ or Ψ, independently of α.

2 The fact that the entire file has to go over the edge (1,3), eliminates any
chance for increasing the real flows to nodes 2, 4, 5, and 6 beyond 1.

5

IV. NODE ARCHITECTURE

Nodes consist of the following components: a peer selec-
tion module implementing the peer-set selection algorithms
described in Sect. III; a downloader module, responsible for
issuing requests to neighboring nodes and downloading miss-
ing chunks; and an uploader module, responsible for sending
back local and in-transit chunks (an in-transit chunk is a chunk
that does not belong to the local source file). In this section
we describe these three modules under the assumption that
nodes are cooperative (therefore we don’t need mechanisms
like choke/unchoke). Later on, in Sect. VI we discuss the
necessary changes for dealing with selfishly behaving nodes.

A. Peer Selection Module
Every time period T , a node: (1) measures its available

bandwidth to all other nodes using pathChirp [22], (2)
executes a peer-set selection algorithm from Sect. III and
connects to the corresponding nodes (incoming links are left
untouched). Since both Max-Min and Max-Sum are NP-hard,
we use fast local-search heuristics to compute approximately
optimal peer-sets (which we verified to be always within 1%
of the exact optimal for all problem sizes on which we were
able to use integer linear programming to compute the latter).
Once links are established, the node keeps monitoring them
(including the incoming ones) and relays their capacity to all
other nodes through an overlay link-state announcement proto-
col. Remote nodes need this information to compute their own
peer-sets. Although each node measures O(n) overlay links
every re-wiring epoch T , the monitoring and announcement
overhead is only O(kn) and not O(n2) since only the O(k)
established links are monitored and announced in between the
(infrequent) rewiring epochs, where k 	 n.
B. The Downloader Module

The downloader module monitors the available chunks on
the peer-set and issues requests for downloading missing ones.
The selection is based on the well established Local Rarest
First (LRF) heuristic [11] that looks at the peer-set and issues
a request for any missing chunk that is among the least
replicated ones in the peer-set. New requests are triggered
either upon the completion of a download, or if an overlay
link is inactive, upon the detection on the other side of the
link of a missing chunk.

C. The Uploader Module
The uploader receives requests and sends back chunks. Our

baseline uploader allows for up to 1 active upload (chunk) per
overlay link (neighbor). It implements this by maintaining a
FIFO queue for each overlay connection. This choice bounds
the number of concurrent uploads by the number of neighbors
thereby avoiding excessive fragmentation (over partitioning)
of the upload bandwidth of the local (physical) access link of
a node (this choice is backed-up by results appearing in [16]).
We also experimented with an uploader that allows up to
1 active chunk per source file per connection, but this can
lead to up n − 1 parallel uploads per overlay link, which
becomes problematic as n increases. Indeed, over-partitioning
the upload bandwidth defeats the entire concept of swarming:
it takes too much time to upload an entire chunk, and during
this time the downloading node is under utilizing its upload

bandwidth as it cannot relay the chunk before it completes the
reception. We want to note, however, that our baseline design
is by no means claimed to be optimal. For an example consider
a node that can upload to its first k− 1 neighbors with rate x
and to the last one with rate larger than k ·x. Then as long as
this last neighbor can always find k missing chunks from our
node, and can also itself disseminate them further down in the
network faster than the k− 1 slow neighbors, then the system
would be better off allowing up to k parallel uploads to the fast
one at the expense of the slow ones. Such situations though
are rather peculiar and even if they arise, it is difficult to check
the necessary conditions for taking advantage of them, so we
leave their investigation to future work and stick to the simple
one-chunk-per-connection policy.

V. PERFORMANCE EVALUATION

In this section we compare the performance of Max-Min
and Max-Sum peer selection policies against three reference
selection policies: Random (node vi selects k peers at random
from the set of all nodes in V−i); k-Widest (node vi selects
node vj if cij is among the k largest ones across all nodes
in V−i); Rand k-Widest (vi performs k-Widest on a random
subset of V−i of size β · k). Rand k-Widest is included
in the evaluation to mimic the effect of combining random
bootstrapping with choke/unchoke in BitTorrent.3

We compare these policies in terms of (node,remote file)
finish times. We denote f(j, i) the time that the sink vj

completes downloading the file of source vi, assuming that
all exchanges start at time 0. In all experiments we assume
that nodes are fully cooperative (they belong to the same
authority) and thus follow exactly and truthfully the peer-
selection policies of Sect. III and the swarming protocol of
Sect. IV (i.e., no choke/unchoke mechanism is employed). We
discuss the impact of selfishly behaving nodes in Sect. VI.

Our performance evaluation is done in two settings. In the
first, we assume that the n-way broadcast is to be carried
over the Internet. We do so by evaluating the performance of
a prototype implementation of our architecture on PlanetLab.
In the second, we assume that the n-way broadcast is to be
carried on a closed (controlled/isolated) network. We do so
by evaluating the performance of a prototype implementation
of our architecture on a discrete event simulator of the closed
network.

A. Case Study 1: A PlanetLab Prototype

In this setting, we compare the performance of different
overlay topologies when the underlying physical network
is the Internet and the overlay nodes are single-homed,
i.e., all overlay links of a node go over the same physical
access link. For this purpose we selected n = 15 PlanetLab
nodes. The distribution of nodes is as follows (we tried
to use operationally stable and geographically diverse
node set) : ten in North America (planetlab4.csail.mit.edu,
planetlab2.millennium.berkeley.edu, planetlab2.utep.edu,
planetlab2.acis.ufl.edu, planetlab-8.cs.princeton.edu,
planetlab-2.cs.colostate.edu, planetlab5.cs.duke.edu,
planetlab1.cs.northwestern.edu, planetlab3.flux.utah.edu,

3 unless otherwise noted, we used β = 2.

6

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

av.bwth

C
D

F

2 4 6 8 10 12 14

2

4

6

8

10

12

14

peer id

pe
er

 id

20

40

60

80

100

120

140

160

180

Fig. 2. PlanetLab experiment, empirical CDF and scatter plots of av.bwths.

planetlab01.cs.washington.edu), one in South America
(planetlab-02.ece.uprm.edu), three in Europe (planet2.zib.de,
planet2.colbud.hu, planetlab3.xeno.cl.cam.ac.uk), and one
in Asia (planetlab1.netmedia.gist.ac.kr). Each one of the
aforementioned nodes disseminated a unique 100MBytes
file and allow it to connect to k = 2 neighbors (and accept
additional incoming links). Notice that we limited our
experiment to only 15 nodes and only 100MBytes per node
so as to keep the amount of exchanged traffic on PlanetLab
at reasonable levels, while also allowing us to monitor the
network throughout the experiment. Notice that if data were to
be transfered in a point-to-point manner, then it would amount
to over a Terabyte for each execution of the entire experiment:
5 different peer-set selection policies, each one generating
15*14*100MBytes of data at each run, and repeated 10 times
to get confidence intervals (the experiment was performed
between June 4th and June 30th). We let the re-wiring epoch
be T = 10 minutes and the measurement/announcement
epoch for existing links be 2 minutes. Also we set α = 0.5
to indicate that nodes care equally for download and upload
quality. In all our experiments we used pathChirp [22],
a light, fast and accurate tool, which fits well with the
PlanetLab-specific constraints, namely it does not impose a
high load on PlanetLab nodes, since it does not require the
transmission of long sequences of packet trains, and does not
exceed the max-burst limits of PlanetLab. pathChirp is an
end-to-end active probing tool, which requires the installation
of sender and receiver module of the aforementioned tool
in each node. The additional overhead of the tool in terms
of bandwidth consumption is negligible and does not affect
the performance of the content distribution. We limited the
maximum experiment duration to 10 seconds per peer (thus
a full estimation for the available bandwidth from any node
to all the other nodes was achieved in less than 2 minutes)
and we used as available bandwidth the average available
bandwidth (per peer) observed during the experiment. In
Fig. 2 we plot the cumulative distribution function (CDF)
of the pairwise available bandwidth as well as the scatter
plot illustrating the available bandwidth among nodes of a
typical experiment in PlanetLab. The diversity of available
bandwidth between peers that observed was moderate. We
did not observe huge variability of the available bandwidth
while performing our experiments (variability was limited to
the available bandwidth among a few nodes only).

In order to perform the experiment, we modified both the
client and the tracker part. We used the mainline 4.0.2
BitTorrent client (written in Python). We disabled the choke,
unchoke and optimistic unchoke functionality and we set no

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

RandomRnd kWkWMaxSumMaxMin

N
or

m
al

iz
ed

 ti
m

e

average finish time per topology

 0

 0.5

 1

 1.5

 2

 2.5

RandomRnd kWkWMaxSumMaxMin

N
or

m
al

iz
ed

 ti
m

e

worst finish time per topology

Fig. 3. PlanetLab experiment, performance evaluation of different wiring
strategies.

limits for both the upload and download rate as well as the
number of active peers. Although we are aware of the intrinsic
limitations of PlanetLab as well as the PlanetLab policy of fair
sharing of bandwidth among slices that use the same node,
we were able to achieve very high upload and download rates
(close to the estimated available bandwidth). To minimize the
interaction of our experiment with other bandwidth demanding
experiments, we performed the experiments after monitoring
the activity of competing slices for bandwidth in the selected
nodes.

We used the phpbttrkplus-2.2 BitTorrent tracker,
which is a php-based tracker that maintains records about
the activity of nodes (in a mysql database). We installed the
aforementioned tracker in one of our machines (egoist.bu.edu),
and we modified it in order to reply to requests initiated by
nodes, by providing the summary of the requested peer set
(ip, port, status) and not of a random peer set (as was initially
designed).

For a node vj , we compute its maximum finish time
max(j) = maxi�=j f(j, i), i.e., the time at which it has
completed downloading all n − 1 remote files, as well as
its average finish time avg(j) = 1/(n − 1)

∑
i�=j f(j, i). For

peer-set selection policy X , we let max(X) = maxj max(j)
denote its maximum finish time across all nodes, and avg(X) =
1/n

∑
j avg(j) denote its average finish time across all nodes.

On the left-hand-side of Fig. 3 we present the normalized
average finish time of each policy with respect to the average
finish time of the Max-Sum policy. On the right-hand-side,
we present the normalized maximum finish time of each
policy with respect to the maximum finish time of the Max-
Min policy. These results show that the various policies
perform quite similarly with respect to average finish time.
When looking at maximum finish times though, the picture
is completely different. Max-Min manages to complete all
downloads anywhere between 40% and 120% faster than
the heuristics and almost 30% faster than Max-Sum. This
can be very significant for Bulk Synchronous Parallel (BSP)
applications [23], in which the global progress depends on
the finish time of the slowest node. It is worth noting that
optimizing the worst case finish time is much more difficult
than optimizing the average, and thus it should come as no
surprise that the heuristics perform well on average but fail to
improve the worst case.

B. Case Study 2: A Dedicated Network Prototype

In this setting, we examine overlay networks whose links are
dedicated, meaning that they do not compete for bandwidth
on the underlying physical network. This model is plausible
for (multi-homed) networks set-up in support of an enterprise

7

through the acquisition of dedicated links to connect its various
locations. Such link acquisitions could be done through SLA
contracts with ISPs, or through virtualization technologies
such as those envisioned for GENI. In either cases, a dedicated
link could be set up between two enterprise nodes i and j for
a given price. Any such dedicated link will have a nominal
capacity cij , which may depend on any number of factors
(e.g., physical constraints of the underlying technology, the
demand at the ISP for carrying traffic between these two
locations, or the price paid for various links. Since setting
up a complete network to connect all n nodes directly to
each other may not be feasible (especially for systems of
moderate sizes), designers of such enterprise networks are
likely to construct the network so as to maximize its utility
with respect to some objective function. Independent of which
process/strategy is used to construct the optimized overlay,
the resulting network would allow all enterprise nodes to
communicate either directly or through overlay paths.

The construction we propose for optimizing the overlay for
n-way broadcast proceeds as follows. First, we order the nodes
according to their ids. Next, we proceed in rounds in which
nodes take turns in selecting their peer-sets (as discussed
in Sect. III). This process is repeated until we converge by
reaching a round that does not introduce changes in the
constructed topology.4

Towards our goal of evaluating the impact of various peer
selection policies on the performance of n-way broadcast in
this setting, we developed a discrete-event simulator that is
able to run over dedicated overlay networks. We constructed
the dedicated overlay (enterprise) network using the procedure
described above, using the publicly available trace of Sprint’s
physical topology taken from Rocketfuel [24].5 In particu-
lar, we assumed that the dedicated capacity that could be
acquired from the ISP (Sprint) would reflect an “equal-share”
partitioning, which we approximated as follows. We counted
the number of shortest-paths (for all physical node pairs) that
go over a physical link and set the available bandwidth of
that link to be its real capacity divided by this number.6

Then, for an overlay link (i, j) we set ci,j to be equal to the
available bandwidth of the tightest physical link on the induced
shortest-path over the physical topology. This produces the
amount of available bandwidth that the ISP can guarantee
for the new application if it admits it into its network and
treats it equally with pre-existing ones. In Fig. 4 we plot
the CDF of the pairwise available bandwidth as well as the
scatter plot illustrating the available bandwidth among nodes

4 It is worth noting that the convergence of the above procedure relates to a
question regarding the existence of pure Nash equilibria, and their reachability
through local improvement paths, in a strategic game with Max-Min or Max-
Sum as its payoff function. Although interesting from a theoretical standpoint,
the question is not directly relevant here as we have assumed that nodes
forward indiscriminately local and in-transit chunks. In all our experiments
we got fast convergence but could also stop prematurely after a maximum
number of iterations so as to deal with inexistence, unreachability, or slow
convergence to stable topologies.

5 The topology was inferred using the methodology described in [24]. The
link weights we used for the shortest path algorithm are those inferred in [25].
The capacities of the links were publicly available by Sprint.

6 The idea is that each pair of physical nodes represents a different
application that is assigned an equal share of the physical capacity of all
links on which it competes with other applications.

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

av.bwth(Mbps)

C
D

F

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

peer id

pe
er

 id

0

50

100

150

200

250

300

350

Fig. 4. Sprint topology, empirical CDF and scatter plots of av.bwths.

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

 0.04 0.06 0.08 0.1

tim
e

(s
ec

s)

k/n

average finish time per link density

Max-Min
Max-Sum
k-Widest

Rnd k-Widest
Random

 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400
 2600

 0.04 0.06 0.08 0.1

tim
e

(s
ec

s)

k/n

worst finish time per link density

Max-Min
Max-Sum
k-Widest

Rnd k-Widest
Random

Fig. 5. Simulation of a closed network based on Sprint’s topology.

of a typical experiment. The diversity of available bandwidth
between peers is more intense (compared to the PlanetLab
experiment), as there are nodes which are connected to other
nodes achieving very high available bandwidth and others that
are connecting achieving very low available bandwdith.

One advantage of simulations (compared to PlanetLab pro-
totyping) is that it allows us to consider a bigger network. In
particular, in the experiments that follow, we study overlays
of size n = 50 nodes, which are randomly selected7 from the
physical Sprint network — each node holding a 500Mbytes
file. As in the PlanetLab prototype, there is no notion of choke,
unchoke and optimistic unchoke. The local piece selection
follows a rarest first policy, there is no limit in the upload
and download rate and the files are cut into 256Kbytes long
chunks (that maintains blocks of 16Kbytes which is the actual
transmission unit).

In Fig. 5 we compare the average and maximum finish
times of different policies for different link densities (k/n).
Compared to the previous results from PlanetLab, we observe
a qualitatively similar behavior. The gap, however, between
Max-Min and the rest in terms of maximum finish time widens
substantially: Max-Min is able to finish 2-3 times faster in this
setting, even for relatively large k/n (∼10%). The reason is
that Max-Min has more real bandwidth to work with in this
case: When it places a link (i, j), the capacity (both upload and
download) of the two end-points increases by the capacity of
the newly-added dedicated overlay link, whereas in PlanetLab
the physical bandwidth is fixed, so when Max-Min places an
overlay link it can only benefit by whatever unused bandwidth
exists on the underlying physical network.

It is worth noticing that Max-Sum may lead to poor
performance when the ratio k/n is low.8 This is expected
as the rational behind the Max-Sum wiring strategy is to
maximize the average maximum flow from one node to all
the other nodes. Nodes that do not contribute significantly

7 the CDF of available bandwidths for the sampled set is similar with the
one when consider all the nodes of the SPRINT dataset.

8 This should not be confused with the discussion in Section III on the tight
bound of Max-Sum under low link density.

8

0 10 20 30 40 50
0

1000
2000
3000

M
ax

−
S

um

0 10 20 30 40 50
0

1000
2000
3000

worst finish time (y−axis in secs)
M

ax
−

M
in

0 10 20 30 40 50
0

1000
2000
3000

kW
id

0 10 20 30 40 50
0

1000
2000
3000

R
nd

 k
W

0 10 20 30 40 50
0

1000
2000
3000

node id

R
nd

Fig. 6. Worst finish time per node based on Sprint’s topology with link
density k/n = 0.04. The red dashed line indicates the worst finish time on
the Max-Min topology.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.04 0.06 0.08 0.1

N
or

m
al

iz
ed

 r
at

e

k/n

Normalized rate wrt Utopian Max-Sum rate

Max-Min
Max-Sum

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.04 0.06 0.08 0.1

N
or

m
al

iz
ed

 r
at

e

k/n

Normalized Max-Min rate wrt Utopian

Max-Min
Max-Sum

Fig. 7. Normalized Max-Sum and Max-Min rate with respect to the Utopian
one, in the Sprint dataset.

in increasing the maximum flow are not popular, thus not a
lot of connections are established (by other overlay nodes) to
these nodes. As more network resources (links) are allowed to
available to overlay nodes, they establish connections that do
not contribute a lot in the maximum flow, improving the worst
finish time. This is observed in Fig. 5(right); the worst finish
time of Max-Sum decreases significantly as the link density
increases. Similarly observations are observed for the average
finish time (see Fig. 5(left)), although there are no significant
differences among the performance of different wirings.

Another important observation is that under any wiring
strategy the worst finish time of the nodes is almost identical
(see Fig. 5(right)) . This is another indication that the finish
time is dominating by the slowest pieces (see also Fig. 6). It
is worth mentioning that the performance of k-Widest may be
worst than the performance of Rand k-Widest, as a globally
greedy selection of peers may penalize more the slowest peers
than a local greedy one.

In order to characterize the graphs obtained by Max-Min
and Max-Sum, we compare them with an optimal centralize
construction (which may not be feasible). Let maxout(v) be
the sum of the bandwidths of the node v’s outgoing links
(assuming that node v established k links and n− k− 1 links
are established by other nodes. In a social optimal graph, node
v’s total output rate cannot exceed

0 10 20 30 40 50
0

10
20
30

M
ax

−
S

um

0 10 20 30 40 50
0

10
20
30

M
ax

−
M

in

degree per node

0 10 20 30 40 50
0

10
20
30

kW
id

0 10 20 30 40 50
0

10
20
30

R
nd

 k
W

0 10 20 30 40 50
0

10
20
30

R
an

do
m

rank (descend based on maxout)

Fig. 8. Node degree on different topologies for k/n = 0.04.

s(v) =
∑

∀u�=v

min(maxout(v),maxout(u))

Define the
∑

∀v s(v) as the Utopian Max-Sum social rate.
Define as the Utopian Max-Min rate the value of

smin = min
∀u,v

(min(maxout(v),maxout(u))

The Max-Sum and Max-Min social rates are defined accord-
ingly for any wiring where mi (n − 1 ≥ mi ≥ k) links are
used by any node vi, on a given topology.
In Fig. 7, we illustrate the Max-Sum and Max-Min social rate
obtained by the Max-Sum and the Max-Min wiring normalized
by the Utopian Max-Sum and Utopian Max-Min social rate
respectively (left and right figure respectively), for different
values of link density. As was expected, both the Utopian
social rates increase with link density and Max-Min social
rate of the Max-Min wiring is close to the Utopian once even
for low link density.

In Fig. 8, we illustrate the node degree; in the x-axis
nodes are ranked according to each maxout, i.e. the node
with the lowest maxout is ranked last for low link density
(qualitatively similar observations are obtained for higher link
density). As was expected, on the Max-Min topology, nodes
with low maxout have high degree. It is worth noting, that
simple heuristics like link establishment between any node
with the node with the lowest maxout may be useful only in
the extreme scenario where there is only one node with low
maxout (as we will comment in the next section). In general
the distribution of the degree of the nodes is related with the
distribution of the maxout, thus it is difficult to construct
heuristics that can work well in practice.

Turning our attention on the average and worst time for
a document to be disseminated, we observed that the Max-
Min wiring strategy has the tendency to (slightly) increase
the average time that a file needs to be disseminated, but the
decrease of the worst time of any file to be disseminated is
significant. The delay is mainly due to the injection of rare

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 500 1000 1500 2000

C
D

F

time (secs)

average finish time per file

Max-Min
Max-Sum
k-Widest

Rnd k-Widest
Random

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 1500 2000

C
D

F

time (secs)

worst finish time per file

Max-Min
Max-Sum
k-Widest

Rnd k-Widest
Random

Fig. 9. CDF for the average and worst delivery time of a file to all the nodes
for link density k/n = 0.04.

 300

 400

 500

 600

 700

 800

 900

 1000

 0.04 0.06 0.08 0.1

av
er

ag
e

fin
is

h
tim

e
(s

)

k/n

average finish time per node

Max-Min wiring
Max-Sum wiring

k-Widest
Rnd k-Widest

Random

 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 0.04 0.06 0.08 0.1

m
ax

im
um

 fi
ni

sh
 ti

m
e

(s
)

k/n

maximum finish time per node

Max-Min wiring
Max-Sum wiring

k-Widest
Rnd k-Widest

Random

Fig. 10. Simulation of a closed network based on Sprint’s topology.

pieces by the slowest node or nodes. To get a feeling of
this we plot the CDF of the average and worst time needed
for a document to be delivered for low link density (see
Fig. 9). Qualitatively similar observations are obtained for
higher link density. Finally, an important observation, is that
it seems that there are always pieces to be requested (thus the
assumption of utilized parallel downloads with TCP is valid).
This is consistent with observations obtained in the PlanetLab
prototype. This is expected, as in contrast with the case of a
single torrent, pieces from different files are distributed among
the nodes.

C. Case Study 2b: A Dedicated Network Prototype with a very
slow node

We study the case where there is a very slow node (the
maxout of this node significantly deviates from the value of
maxout of the other nodes) using again the Spint dataset.
In Fig. 10, we illustrate the average and worst finish time
under different wiring strategies. In the presence of a very
slow node, the performance of Max-Min topology is superior
compared with the performance of the other wiring strategies,
for worst finish time and for the average finish time for high
link density. Max-Min is able to finish 3-6 times faster even for
relatively large k/n. Moreover, as it is illustrated in Fig. 11,
the average delay that is introduced for the dissemination of
the documents, except the one that is uploaded by the slowest
node, is negligible, and on the other hand the improvement of
the worst finish time in the Max-Min topology is significant. It
is worth mentioning that in the presence of a very slow node
the performance of the Max-Sum can be very bad. Although
we present plot for low link density, qualitatively similar
observations are obtained for higher link densities. In this
setting, the performance of a simple heuristic where each node
establishes connections with the slowest node may improve
the worst finish time (although still the Max-Min will provide
the lower worst finish time as it takes into consideration the
capability of each node).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1500 3000 4500 6000 7500 9000

C
D

F

time (secs)

average finish time per file

Max-Min
Max-Sum
k-Widest

Rnd k-Widest
Random

 0

 0.2

 0.4

 0.6

 0.8

 1

 1500 3000 4500 6000 7500 9000

C
D

F

time (secs)

worst finish time per file

Max-Min
Max-Sum
k-Widest

Rnd k-Widest
Random

Fig. 11. CDF for the average and worst delivery time of a file to all the
nodes for link density k/n = 0.04, in the presence of a very slow node.

VI. DEALING WITH SELFISH BEHAVIOR

Up to now we have assumed that nodes are fully cooperative,
which is a realistic assumption for the applications enumerated
in the introduction. In this section we will try to explore ways
to accommodate applications that involve selfish nodes. We
will focus on the following definition of selfishness:

Definition 2: (Upload-selfishness) An upload-selfish node
is a node that wants to use as much of its upload capacity as
possible for forwarding its local chunks and avoid “wasting”
it in relaying the in-transit chunks that it holds.

A. A Brief Taxonomy of Deterrence Mechanisms

The amount of extra benefit for an upload-selfish node (and
potential harm to others) depends on the mechanisms that the
network deploys for discouraging such behavior. We examine
the following cases.
Case 0 (neutral): Here the network stays neutral and does
not deploy any deterrence mechanism. In such a setting, the
upload-selfish node could simply upload its own chunks and
ignore all other requests. The harm to cooperative nodes can
easily be quantified for this case, so we don’t discuss it further;
it will be proportional to the number of upload-selfish nodes,
and cooperative nodes will be slowed down and at an extreme
case will be unable to receive some files (e.g., when all their
neighbors are upload-selfish, which is similar to the case of
an eclipse attack [26]).
Case 1 (oblivious retribution): A network can employ several
retribution mechanisms to punish a node that fails to deliver
a chunk after a request. The choke/unchoke [1] mechanism
of BitTorrent, or modified versions based on bit-level tit-for-
tat [9], [15] are two established existing proposals. Contrary to
the original BitTorrent, such mechanisms are marginally useful
here because they are oblivious to whether a node uploads
local or in-transit chunks. An upload-selfish node will appear
to be contributing by the mere fact that it is certainly uploading
its own chunks. Thus oblivious strategies fail to punish nodes
that “free-ride” by not uploading in-transit chunks.
Case 2 (non-oblivious retribution): Now, let’s assume that
there exists a non-oblivious retribution mechanism that pun-
ishes a node that fails to service requests9 for in-transit
chunks that it holds. What can a selfish node do against
such mechanism? The simplest strategy is to hide (by not
announcing) the availability of in-transit chunks it holds, and

9 We do not want to punish nodes that don’t have enough in-transit content
for whatever reason (slow local link or peer-set) but would relay if they had,
so we only punish when a request exists and is not honored.

10

thus get rid of the burden of having to service requests for
these chunks. This can be addressed with a simple two-hop
announcement strategy in which a node that uploads to another
node announces on its behalf the availability of the chunk
(using HAVE messages [1]) to downloaders belonging to the
peer-set of the receiving node. This requires obtaining upon
bootstrap (and re-wiring) second hop neighbors. Assuming that
the retribution is severe enough, the upload-selfish node will
have to honor all requests. Despite that, the upload-selfish
node still has some room to game the system by changing
the uploader and the downloader as follows.

– The upload-selfish node can substitute each FIFO queue at
its uploader with a selfish FIFO (S-FIFO) that gives priority
(preemptive or non preemptive) to requests for local chunks.

– The upload-selfish node can switch from Least Replicated
First to Most Replicated First (MRF) downloads. Highly
replicated chunks receive fewer requests and thus reduce the
“waste” of upload bandwidth for sending in-transit chunks,
is smaller (most nodes already have these chunks, and any
requests for these chunks will be divided over many peers).

Since it is difficult to detect such deviations from the
protocol, we instead quantify their impact.

B. Quantifying the Impact of S-FIFO/MRF

We quantify the advantage for a single upload-selfish node
by looking at the ratio between the time it takes to upload
its file to all other nodes when it is selfish and when it is
cooperative, granted that all other nodes are cooperative. We
examined this ratio for different overlays built on the Sprint
trace and for different choices with respect to the choice of
selfish node. We consider three cases, where the selfish node
is : (1) the slowest node, i.e., the one whose adjacent links
have the minimum aggregate upload capacity; (2) the fastest
node; or (3) a typical node (median upload capacity).

On the Max-Min overlay the selfish node reduced its
maximum upload finish time by 30% when it was the slowest
one. There is also, on average, a 15% reduction on the worst
finish time of all the other nodes. When it was a typical
(or the fastest one), then it got almost no benefit, since in
these cases the bottleneck is at the downloading nodes (so a
local selfishness behavior cannot help). In all other overlays,
the selfish node got almost no benefit, even when it was the
slowest node. Unlike the Max-Min, the other overlays are not
optimized for the slowest node, so even if this bottleneck node
tries to selfishly upload its file, it cannot really benefit because
it has very limited bandwidth.

From the above, it is clear that there exist cases in which
upload-selfishness pays substantially. Granted that upload-
selfishness is hard to detect, we also look at its impact on the
cooperative nodes. We consider again a single selfish node
(one can easily extrapolate for multiple selfish nodes). The
impact depends on the considered metric and on the identity of
the selfish node. If we care about the worst-case download time
of cooperative nodes and let the selfish node be the slowest
node, then counter-intuitively, the impact on the cooperative
nodes is positive. This is simply because by being selfish, the
slowest node helps all other nodes improve their (bottleneck)

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

file id

pe
er

 id

500

1000

1500

2000

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

file id

no
de

 id

0

200

400

600

800

1000

1200

1400

1600

1800

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

file id

pe
er

 id

0

200

400

600

800

1000

1200

1400

1600

1800

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

file id

pe
er

 id

0

200

400

600

800

1000

1200

1400

1600

1800

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

file id

pe
er

 id

200

400

600

800

1000

1200

1400

1600

1800

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

file id

no
de

 id

0

200

400

600

800

1000

1200

1400

1600

1800

Fig. 12. Maximum finish time for all nodes and all files under different
wirings (from left to right): MaxSum, Random, k-Widest, Rnd k-Widest,
MaxMin strategies with cooperative nodes and Max-Min with upload-selfish
slowest node (k

n
= 0.04).

downloads from it. To get a feeling of this we show a scatter-
plot on the first row (left plot) of Fig. 12 with the download
time for each pair (node,remote file) when the topology is
random and all the nodes are cooperative. The solid black
line that stands out corresponds to the slowest node (node
29), whose file is the last one to be downloaded by all others.
Qualitatively similar observations10 are obtained for any other
wiring strategy except the Max-Min one (see the first two
rows of Fig. 12). To contrast this, we plot in the last row the
corresponding times when the topology is Max-Min (left plot)
and when the topology is Max-Min with the slowest node is
upload-selfish (right plot). A first observation is that the Max-
Min topology does a pretty good job at smoothing out the
differences in the maximum finish times with slight increase
on the average finish time (note that some cells may be darker
on the Max-Min topology compared to the corresponding
cells on other topologies). As it can be seen, the combination
of Max-Min topology and upload-selfish scheduling on the
slowest node (see last row, right plot) does even a better job
at smoothing out the differences in maximum finish times .
If, on the other hand, the selfish node is a typical node, or
the fastest node, then its effect on the download quality of
others is rather marginal. First, its own file is not a bottleneck.
Second, the relay of in-transit chunks is largely carried by the
other n− 1 nodes. Third, S-FIFO and MRF impact primarily
first-hop neighbors and have small impact on nodes further

10 Note that the slowest node may not be the same among different
topologies.

11

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

file id

pe
er

 id

1000

2000

3000

4000

5000

6000

7000

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

file id

pe
er

 id

1000

2000

3000

4000

5000

6000

7000

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

file id

pe
er

 id

0

1000

2000

3000

4000

5000

6000

7000

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

file id

pe
er

 id

0

1000

2000

3000

4000

5000

6000

7000

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

file id

pe
er

 id

0

1000

2000

3000

4000

5000

6000

7000

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

file id

pe
er

 id

0

1000

2000

3000

4000

5000

6000

7000

Fig. 13. Maximum finish time for all nodes and all files under different
wirings (from left to right): MaxSum, Random, k-Widest, Rnd k-Widest,
MaxMin strategies with cooperative nodes and Max-Min with upload-selfish
slowest node, in the presence of a very slow node (k

n
= 0.04).

away. Although we present the scatter plot for low link density
(k/n = 0.04) qualitative similar observations are observed for
higher link densities.

Qualitatively similar observations are obtained even in the
presence of a very slow node (node 44), as it is illustrated in
Fig. 13.

Overall, upload-selfishness, unlike its name suggest, is not
necessarily bad. A socially inclining global scheduling policy,
for example, would certainly make slow nodes upload only
their own chunks so as to reduce the severity of the bottlenecks
that they cause. More generally, for social optimality, one
should split the upload bandwidth of a node between local
and in-transit chunks according to the relative speed of the
node. Nodes who are fast should contribute heavily in relaying
in-transit chunks. Nodes who are slow, should focus only
on uploading their own chunks so as to avoid becoming
bottleneck points. Stated differently, a single uploading policy
across all nodes cannot be socially optimal. We postpone the
investigation of node-dependent upload scheduling for future
work (see Sect. VI of [27] for a similar discussion based on
our previous work on selfish caching).

C. Download-Selfishness and Other

It is tempting to ask whether a notion of download-
selfishness would make sense. Our answer leans towards the
negative. First, there is no contention between local and
in-transit chunks in the incoming direction towards a node
— only in-transit chunks flow there. Second, as long as

the downloader keeps all its overlay connections busy by
immediately identifying and requesting missing chunks, its
download-finish time will be the same, so it gets no foreseeable
benefit by deviating from LRF. Finally, trying to manipulate
the system by advertising false cij’s for the established links
can be disclosed by having nodes periodically “audit” others
by measuring some remote cij’s and comparing with the
advertised values on the link-state protocol. Such methods are
quite elaborate and fall outside the scope of the current work.

VII. CONCLUSIONS AND FUTURE WORK

In this article we showed that swarming protocols for bulk data
transfers perform much better when operating over optimized
overlay topologies that take into consideration the end-to-
end performance characteristics of the underlying network.
Such topologies improve the aggregate transmission capacity
of nodes, but where they make a huge difference compared
to existing heuristic approaches, is on relieving bottleneck
points. Random and myopic heuristics used in practice lack
the required sophistication for overcoming such bottlenecks.

Our optimized topologies are oblivious to the details of
the swarming protocol that runs on top. They leverage the
available bandwidth of the underlying network and abstract
the swarming protocol by viewing it as a series of max-flows.
Thus they can benefit a variety of swarming protocols with
different upload/download scheduling characteristics. Since
our topologies are data-blind, it is the job of the swarming
protocol to make the best use of the end-to-end bandwidth
that they offer. To that end, we have shown that a commonly
parameterized swarming protocol is far from being optimal.
Designing swarming protocols tailored to the characteristics
of individual nodes is on our future research agenda.

REFERENCES

[1] B. Cohen, “Incentives build robustness in BitTorrent,” in Proc. of First
Workshop on Economics of Peer-to-Peer Systems, Berkeley, CA, 2003.

[2] X. Li, F. Bian, M. Crovella, C. Diot, R. Govindan, and G. Iannaccone,
“Detection and identification of network anomalies,” in Proc. of IMC
’06, Rio de Janeriro, Brazil, 2006.

[3] P. A. Bernstein and N. Goodman, “Concurrency control in distributed
database systems,” ACM Comput. Surv., vol. 13, no. 2, 1981.

[4] A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou, and
S. Shenker, “On a network creation game,” in Proc. of ACM PODC
’03, Boston, MA, 2003, pp. 347–351.

[5] N. Laoutaris, G. Smaragdakis, A. Bestavros, and J. Byers, “Implications
of selfish neighbor selection in overlay networks,” in Proc. of IEEE
INFOCOM ’07, Anchorage, AK, May 2007.

[6] D. Qiu and R. Srikant, “Modeling and performance analysis of
bittorrent-like peer-to-peer networks,” in Proc. of ACM SIGCOMM ’04,
2004, pp. 367–378.

[7] L. Massoulie and M. Vojnovic, “Coupon replication systems,” in Proc.
of ACM SIGMETRICS ’05, Banff, Alberta, Canada, 2005, pp. 2–13.

[8] R. Kumar and K. W. Ross, “Optimal peer-assisted file distribution:
Single and multi-class problems,” submitted, August 2006.

[9] A. R. Bharambe, C. Herley, and V. N. Padmanabhan, “Analyzing and
improving a bittorrent networks performance mechanisms,” in Proc. of
IEEE INFOCOM ’06, Barcelona, Spain, 2006.

[10] M. Izal, G. Urvoy-Keller, E. W. Biersack, P. A. Felber, A. A. Hamra,
and L. Garces-Erice, “Dissecting bittorrent: Five months in a torrent’s
lifetime,” in Proc. of PAM ’04, Antibes Juan-les-Pins, France, 2004.

[11] A. Legout, G. Urvoy-Keller, and P. Michiardi, “Rarest first and choke
algorithms are enough,” in Proc. of ACM IMC ’06, Rio de Janeriro,
Brazil, 2006, pp. 203–216.

[12] L. Massoulie, A. Twigg, C. Gkantsidis, and P. Rodriguez, “Randomized
decentralized broadcasting algorithms,” in Proc. of IEEE INFOCOM
’07, Anchorage, AK, USA, 2007.

12

[13] J. Edmonds, “Edge-disjoint branchings,” in Proc. of the 9th Courant
Computer Science Symposium on Combinatorial Algorithms, Algorith-
mics Press, 1972, pp. 91–96.

[14] C. Gkantsidis and P. Rodriguez, “Network coding for large scale content
distribution,” in Proc. of IEEE INFOCOM ’05, Miami, FL, USA, 2005.

[15] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, “Measure-
ments, analysis, and modeling of bittorrent-like systems.” in Proc. of
ACM IMC’05, Berkeley, CA, 2005.

[16] Y. Tian, D. Wu, and K.-W. Ng, “Analyzing multiple file downloading
in bittorrent,” in Proc. of ICPP ’06, Washington, DC, USA, 2006.

[17] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “SplitStream: high-bandwidth multicast in cooperative
environments,” in Proc. of ACM SOSP ’03, 2003, pp. 298–313.

[18] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: high
bandwidth data dissemination using an overlay mesh,” in Proc. of ACM
SOSP ’03, 2003, pp. 282–297.

[19] H. Zhang, G. Neglia, D. Towsley, and G. L. Presti, “On unstructured file
sharing networks,” in Proc. of IEEE INFOCOM ’07, Anchorage, AK,
May 2007.

[20] M. Jain and C. Dovrolis, “End-to-end available bandwidth: measurement
methodology, dynamics, and relation with tcp throughput,” IEEE/ACM
Trans. Netw., vol. 11, no. 4, pp. 537–549, 2003.

[21] S. M. Hedetniemi, S. T. Hedetniemi, and A. L. Liestman, “A survey
of gossiping and broadcasting in communication networks,” Networks,
vol. 18, pp. 319–349, 1988.

[22] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell,
“pathChirp: Efficient Available Bandwidth Estimation for Network
Paths,” in Proc. of PAM’03, La Jolla, CA, 2003.

[23] R. H. Bisseling, Parallel Scientific Computation: A Structured Approach
using BSP and MPI. Oxford University Press, 2004.

[24] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring ISP
topologies with rocketfuel,” IEEE/ACM Trans. Netw., vol. 12, no. 1, pp.
2–16, 2004.

[25] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “Inferring link
weights using end-to-end measurements,” in IMW ’02: Proceedings of
the 2nd ACM SIGCOMM Workshop on Internet measurment, 2002.

[26] A. Singh, M. Castro, P. Druschel, and A. Rowstron, “Defending against
eclipse attacks on overlay networks,” in Proc. of ACM SIGOPS European
Workshop, 2004, p. 21.

[27] N. Laoutaris, G. Smaragdakis, A. Bestavros, and I. Stavrakakis, “Mis-
treatment in distributed caching groups: Causes and implications,” in
Proc. of IEEE INFOCOM ’06, Barcelona, Spain, 2006.

APPENDIX A
NP-HARDNESS OF MAXIMIZING THE MINIMUM MAX-FLOW

Consider a node s that wants to select a set of neighbors
σ from a network composed of m nodes vi ∈ V , n nodes
uj ∈ U , and a single node t, so as to maximize its broadcast
bandwidth defined to be its minimum max-flow to any des-
tination, i.e., Φ(s, σ) = minx∈(V ∪U∪{t}) MF (s, x, σ), where
MF (s, x, σ) denotes the max-flow from s to x under strategy
σ. Node s can use k < m links whose bandwidth is b1 if
the other end-point belongs to V , and ε ≈ 0 in any other
case, implying that an optimal strategy σ for s must satisfy
σ ⊂ V, |σ| = k. Each node vi has directed links of bandwidth
b2 to a subset Ui of the nodes of U . Each node uj has a link
of bandwidth b3 to t. Node t has links of bandwidth b1 to
all nodes of V and U (see Fig. 14 for an illustration). Link
bandwidths obey: b1 � b2 � b3 (1)

Let φ(s,X, σ) = minx∈X MF (s, x, σ) denote s’s mini-
mum max-flow to any node in the set X . Combining k < m
and (1), we get that under any σ, at least one node of V will
get s’s flow only indirectly through t, i.e.:

φ(s, V, σ) = MF (s, t, σ) (2)
The max-flow from s to uj is equal to the max-flow from s
to t, plus b2 for each connected path s → vi → uj under σ,
minus the amount of flow that crosses the link from uj to t in
a max-flow from s to t under σ. Since this flow on the (uj , t)
link is either 0, or b3 < b2 when there’s at least one connected

t

U
i

n

1

u

u

m

i

v

v

1
v

u

s j

b
1

b
2

b
3

b

b

1

1

2

hU

js

u

v
1

v

v

i

m

u

u

1

n

i

w
w

w

1

Fig. 14. Reduction from MAX-
UNIQUES(k) to Max-Min.

Fig. 15. Reduction from MAX-
UNIQUES(k) to Max-Sum.

path s → vi → uj in σ, we get MF (s, uj , σ) ≥ MF (s, t, σ),
∀uj ∈ U , or equivalently: φ(s, U, σ) ≥ MF (s, t, σ) (3)
The max-flow to node t is:

MF (s, t) = b3 · paths(s, V, U) (4)
where paths(s, V, U) is the number of connected paths s →
vi → uj that do not share (vi, uj) edges, or equivalently the
number of nodes uj that carry a non-zero flow in a max-flow
from s to t. Equations (2), (3) suggest that the maximization
of the broadcast bandwidth calls for the maximization of
MF (s, t), which in view of (4), is achieved through the
maximization of paths(s, V, U). Maximizing paths(s, V, U)
requires choosing k subsets Vi so as to maximize the cardi-
nality of their union. A straight-forward reduction from set-
cover can be used to show that max paths(s, V, U) is an NP-
hard problem (see Appendix C). Therefore, maximizing the
broadcast bandwidth is also NP-hard as it implies a solution
to max paths(s, V, U).

APPENDIX B
NP-HARDNESS OF MAXIMIZING THE SUM OF MAX-FLOWS

Consider a node s that wants to connect to a network
composed of m nodes vi ∈ V , n nodes uj ∈ U , and h nodes
wl ∈ W , where h is a function of the out-degrees of the vi’s
as will be explained shortly, so as to maximize the sum of its
max-flows to all nodes in the union of V,U,W . Node s can
use k < m links whose bandwidth is 1 if the other end-point
belongs to V , and ε ≈ 0 in any other case, implying than an
optimal strategy σ for s must satisfy σ ⊂ V, |σ| = k. Each
node vi has directed links of unit bandwidth to a subset Ui of
the nodes of U . Each node uj has a link of unit bandwidth to
each one of the nodes of W (see Fig. 15 for an illustration).
The cardinality of W is equal to the highest out-degree of any
node in V , i.e., h = max1≤i≤m |Ui|.

Define ψ(s,X, σ) =
∑

x∈X MF (s, x, σ) where
MF (s, x, σ) denotes the max-flow from s to x under
strategy σ. Node s wants to select a strategy σ that
maximizes Ψ(s, σ) = ψ(s, V, σ) + ψ(s, U, σ) + ψ(s,W, σ)
across all possible strategies. We will show that such an
optimal strategy has to maximize the number of nodes in U
to which there exists a connected path s → vi → uj .

Notice that MF (s, vi, σ) = 1 iff vi ∈ σ and 0 otherwise,
and thus ψ(s, V, σ) = k independently of the particular strat-
egy σ chosen. Therefore, we only need to care to maximize
ψ(s, U, σ)+ψ(s,W, σ). If s chooses to connect to vi, meaning
vi ∈ σ, the contribution to ψ(s, U, σ) will be |Ui|, because
each outgoing link of vi increases by 1 every max-flow from
s to a node u ∈ Ui. The contribution to ψ(s,W, σ) will

13

be h for each node u ∈ U that is reachable from s if
vi is included in σ but becomes unreachable if it is taken
out (“connecting” u increases all max-flows from s to nodes
w ∈ W by 1). Therefore if by switching vi ∈ σ with vi′ /∈ σ
we get a strategy σ′ which has a higher number of nodes of U
reachable from s, then we should perform the switch because
Ψ(s, σ′) > Ψ(s, σ). To see that, notice that the switch can hurt
ψ(s, U, σ) by at most h− 1, if vi has the highest degree and
vi′ has degree 1 (it must have at least 1 to be increasing the
number of unique u’s reached), whereas it benefits ψ(s,W, σ)
by at least h as it increases the number of nodes of U reachable
from s. The above argument implies that an optimal σ must
maximize the number of unique nodes of U reachable from
s. Therefore, an optimal solution to maximizing the sum of
max-flows for s implies an optimal solution to the NP-hard
problem MAX-UNIQUES(k) of Appendix C. Therefore, max
sum max-flows is also an NP-hard problem.

APPENDIX C
NP-HARDNESS OF MAXIMIZING THE NUMBER OF UNIQUES

Let MAX-UNIQUES(k) be an optimization problem in
which one has to select k subsets Ui, 1 ≤ i ≤ m of a set U
with n elements so as to maximize the cardinality of the union
U(k) =

⋃
i∈choice Ui. Let UNIQUES(k) be the corresponding

decision problem in which one asks whether there is a choice
leading to |U(k)| = l. UNIQUES(k) is clearly NP-complete
because for l = n a solution to UNIQUES(k) would imply
a solution to SET-COVER. Therefore, MAX-UNIQUES(k) is
NP-hard.

