

City, University of London Institutional Repository

Citation: Comuzzi, M., Kotsokalis, C., Spanoudakis, G. & Yahyapour, R. (2009).

Establishing and Monitoring SLAs in complex Service Based Systems. In: Damiani, E.,
Zhang, J. & Chang, R. (Eds.), 2009 IEEE International Conference on Web Services. Los
Alamitos, California, I & II. (pp. 783-790). IEEE. ISBN 9780769537092 doi:
10.1109/ICWS.2009.47

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/12617/

Link to published version: https://doi.org/10.1109/ICWS.2009.47

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Establishing and Monitoring SLAs in complex Service Based Systems

Marco Comuzzia, Constantinos Kotsokalisb, George Spanoudakisa, and Ramin Yahyapourb
aCity University London, bDortmund University of Technology

{sbbd286, G.Spanoudakis}@soi.city.ac.uk
{constantinos.kotsokalis, ramin.yahyapour}@udo.edu

Abstract

In modern service economies, service provisioning needs
to be regulated by complex SLA hierarchies among
providers of heterogeneous services, defined at the
business, software, and infrastructure layers. Starting
from the SLA Management framework defined in the
SLA@SOI EU FP7 Integrated Project, we focus on the
relationship between establishment and monitoring of
such SLAs, showing how the two processes become tightly
interleaved in order to provide meaningful mechanisms
for SLA management. We first describe the process for
SLA establishment adopted within the framework; then,
we propose an architecture for monitoring established
SLAs, which satisfies the two main requirements
introduced by SLA establishment: the availability of
historical data for evaluating SLA offers and the
assessment of the capability to monitor the terms in a SLA
offer.

1. Introduction
IT−supported service provisioning has become

relevant in most industries and domains, including, for
instance B2B and B2C commerce, banking,
telecommunications. Organizations often package their
offers as consumable services encapsulating discrete
functionalities along the whole typical business/IT service
stack [1], what has been named Software as a Service. In
recent years, virtualization and autonomic computing
have also allowed the provisioning of infrastructure
resources as well-defined discrete services. Virtualization,
in particular, allows an infrastructure provider to package
a set of resources, e.g. computing, memory, storage, in an
isolated virtual machine, which can be allocated for the
execution of higher-level services to accommodate
business customers’ requirements. Such offerings are
referred to as Infrastructure as a Service or, more
typically, Cloud Computing [2].

Therefore, we see the emergence of a vivid service
economy, where business customers can purchase high-
level business service bundles, relying on software
services and on virtual infrastructure services. The
establishment of the business relationships and the
business/software/infrastructure service chains required to
support the expanding service-based economy, however,
makes it necessary to provide service consumers of all
layers with certainty regarding the quality offered by each

service, be it business, software or infrastructure. Such
certainty traditionally comes in the form of contracts, and
Service Level Agreements (SLAs) are the instruments to
model such contracts in the digital world. SLAs specify
the conditions under which a certain service is provided
by a provider to a customer. Provisioning of service
hierarchies therefore implies similar dynamic and
complex SLA hierarchies, established within and across
the boundaries of organizations.

A service provisioning infrastructure should allow the
establishment of SLA hierarchies through coordinated
negotiations among the potential stakeholders. However,
SLA establishment can only partially serve the needs of
SLA management if not linked to SLA monitoring. This
paper explicates the link between SLA negotiation and
SBS monitoring in the context of the SLA Management
framework developed by the SLA@SOI Project. SLA
negotiation and monitoring involve both the service
consumer and providers, the latter of which develop
models for crafting and evaluating SLA offers and
produce monitoring data during the provisioning of
SLAs. In this paper, we focus specifically on the service
provider side, while the perspective of the service
consumer is part of our future work. In particular, we
show how, during negotiation, service providers require
historical data from monitoring to evaluate SLA offers
made by service customers. We also argue that before an
SLA is established, the capability to monitor terms at
runtime must be confirmed. We then introduce a
monitoring framework which satisfies these requirements.

The rest of the paper is organized as follows. Section 2
introduces the SLA@SOI management framework and a
motivating example for the work presented in the paper.
Section 3 and Section 4 discuss the architecture
developed for SLA Establishment and Monitoring. In
Section 5 we discuss evaluation issues, whereas related
work is revised in Section 6. Finally, conclusions are
drawn in Section 7 along with an outlook on future work.

2. Background
We are researching the issues discussed in this paper

as part of the EU FP7 Integrated Project (IP) SLA@SOI

(http://sla-at-soi.eu/), one of the 6 strategic projects of the
Networked European Software and Services Initiative
(NESSI, http://www.nessi-europe.com/). NESSI is the
cornerstone effort of the European Union to design and
implement a coherent and consistent open service

framework, leveraging research in the area of service-
based systems to consolidate and trigger innovation in
service-oriented economies.

Composite
Service (CS)

Infrastructure
Service (IS1)

Atomic
Service (AS1)

Atomic
Service (AS2)

Infrastructure
Service (IS2)

SLA
Establishment

SLA
Monitoring

SLA Management Framework

SLA
Management
Framework

SLA
Management
Framework

SLA
Management
Framework

SLA
Management
Framework

deployed on
composed by

SLA IS1

SLA AS1

SLA AS2

SLA IS2.1

SLA IS2.2

Business
Consumer

SLA CS

Figure 1: The SLA@SOI SLA management scenario

A general scenario for the SLA management
framework is shown in Figure 1. As shown in the figure,
a generic Composite Service (CS) is provided to one or
more Business Customers. CS is implemented as a
composition of several atomic Services (AS), namely AS1
and AS2. Both CS and ASs are deployed on Infrastructure
Services (ISs), provided using virtualization techniques.
The provisioning of CS to a customer is regulated by an
SLA. From a CS provider perspective, the provisioning of
this SLA is based on a complex hierarchy of SLAs,
established with atomic and infrastructure services. Thus,
the service hierarchy established to implement the
composite service, is reflected on an equally complex
SLA hierarchy, which governs top-level service
consumption and propagates down to the fabric. The
proposed framework is generic in order to accommodate
different real-world scenarios, including both intra- and
inter-domain SLAs.

Independent of the exact use case, the entire set of
SLAs that needs to be enforced guarantees the quality of
the top-level customer experience, just like service
composition enables offering the service to this user in
the first place.

3. Dynamic SLAs
When referring to dynamic SLAs, we stress the fact

that these are not static, predefined contracts. Instead,
they can be a) customized before signing, b) negotiated
on their content, and c) renegotiated if the customer and
the provider wish to do so. Customization of a SLA refers
to the modification of the SLA template which is defined
and offered by the service provider, as an indication of
the acceptable guarantees that may be included in the
contract content. We refer to these guarantees as
agreement terms, adopting the terminology of the Open
Grid Forum’s Web Services Agreement (WS-Agreement)
specification [3]. Negotiation and renegotiation is the
phase when the consumer and the provider try to actually

reach an agreement on the values for these guarantees and
the SLA as a whole, through structured message
exchange. During these phases, the two parties are
applying their knowledge, assumptions and business
axioms, with the purpose of optimizing some utility
function that quantifies the value of the contract for them.

3.1. Agreement Terms
As an instrument for showing the explicit relationship

between negotiating and monitoring service guarantees,
below we outline some formal definitions of Quality of
Service (QoS) properties that are commonly adopted in
literature for software services, e.g. [4, 5, 6].

Availability: Assuming service S; time T1 as the
beginning of monitoring time; time T2 as the time of
evaluating availability; monitoring duration T = T2-T1; bi
as a time when S could not be invoked any more, by all of
its (established or potential) customers, due to reasons
other than network connectivity, where T1 ≤ bi ≤ T2; ei as
the moment when S became usable again following bi,
where T1 ≤ ei ≤ T2; di = ei-bi; d = ∑di; we then define
availability for service S as A=(T-d)/T.

Accessibility: Assuming operation O of service S; time
T1 as the beginning of monitoring time; time T2 as the
time of evaluating accessibility; monitoring duration T =
T2-T1; Ra as the number of all invocations to O during
time T; Rd as the number of invocations that were not
served (i.e. were dropped) during time T; we then define
accessibility for operation O as CO=(Ra-Rd)/Ra.

Throughput: Assuming operation O of service S; time
unit t; request arrival rate R = N/t, N=number of requests
per time unit t, N ∈ ; accessibility C=1 for R = R1;
accessibility C<1 for R = R2, R2 > R1; we then define
throughput for operation O as HO = R1/t.

Completion Time and Average Completion Time: Let
us assume operation O of service S; request message MQ
of a client to the service S for the invocation of operation
O; response message MR; MQ received in full on the
service end at time tI; MR put on the wire in full at time tO;
we then define Completion Time of operation O as TCO =
tO-tI. Assuming a series of Completion Time
measurements by the monitoring infrastructure, TCO1, …,
TCOn, we define Average Completion Time as TAO=
(∑TCOi)/n.

Mean Time To Repair: Assuming service S; a moment
in time, tb, that the service becomes unavailable; the
respective moment in time, te, that it becomes available
again; the period (duration) of unavailability, t = te-tb; a
series of such periods, T = (t1, t2, …, tn) as captured by
monitoring infrastructure; the total unavailability time u =
∑ti; we then define MTTR=u/n.

Mean Time To Failure: Assuming service S; a
restoration after failure for this service, taking place at
time tb; the consecutive failure of the service, starting at
time te; the respective period of availability t = te-tb; a

series of such periods, T = (t1, t2, …, tn) as captured by
monitoring infrastructure; the total duration of service
availability, u = ∑ti; we then define MTTF=u/n.

The above list is not meant to be exhaustive, but serves
as a proof of the strong link between the terms under
negotiation and the monitoring infrastructure, using QoS
terms common in scientific and technical literature. In
fact, it shows that it is not possible to define the terms at
all, without using monitoring artifacts, such as the time at
which monitoring starts, or events captured during service
provisioning including, for instance, Web service
invocations and responses. Therefore, it is not reasonable
to assume that we can calculate negotiable values for
these terms without having historical monitoring data to
rely on, or otherwise, some software design which defines
deterministically the performance of a service for every
possible input. As will be discussed later in this paper,
this argument is further extended in our monitoring
framework: It is not reasonable to negotiate on a term at
all, without confirming with the monitoring subsystem
that the term can be monitored.

As an example for the SLA hierarchy, let us use the
scenario of Figure 1 and assume that AS2 follows the
execution of AS1, as a sequential workflow,
implementing CS1. The latter represents a business
process that produces revenue of M financial units for the
customer, every time it is executed. Suppose that the
guarantee offered by the provider CS to the end-customer
is that there will not be a revenue loss of more than N
financial units, due to CS malfunction. Such malfunction
may be interpreted as reduced service availability /
accessibility, or increased completion time (which results
in long queues and departing customers). The SLAs
between the service provider of CS and those of AS1 and
AS2 will then use these software terms, appropriately
calculated and negotiated, to ensure proper execution of
CS according to the top-level SLA. Additionally, the
SLAs between the service providers of CS, AS1 and AS2
with their corresponding infrastructure providers (i.e.,
those of IS1 and IS2) will typically include guarantees on
the number of virtual machines allocated to these
services, the memory provided, etc. Additionally, they
may include guarantees on the reaction time for scaling
the provided infrastructure, when its load increases over a
predefined threshold. This last term is, again, impossible
to negotiate if the infrastructure provider cannot monitor
virtual machine utilization load, while the reaction time
may be indicated by the provider’s SLA history.

3.2. Negotiation and Renegotiation
The lifecycle of a single SLA starts with its

negotiation. In this phase, the service provider and the
customer exchange messages in order to agree on a well-
defined set of guarantees governing service consumption
by the specific customer. Guarantees may refer to

interdependent obligations of both parties. This may
include, for instance, the minimum performance of the
service (provider side) as long as the invocation rate
remains under a certain threshold (customer side). The
multi-round negotiation process for establishing an SLA
is illustrated in Figure 2 [7].

Figure 2: Negotiation process

As already mentioned, during the negotiation phase,
both parties are using their knowledge and assumptions
for maximizing their profit and the value of the SLA at
hand. The exact utility function to be optimized may be
different for each party in the negotiation, for each
business domain that SLA negotiation may be applied to,
or even perhaps for different entities of the same kind in
the same domain (e.g., two different cloud-computing
providers). Therefore, trying to find a universal solution
to the problem of optimal contracting is not possible.

Additionally, assuming an SLA hierarchy as the one
shown in Figure 1, it becomes clear that it is not possible
to define uniquely and universally an algorithm for the
hierarchy’s construction and decomposition for any
possible agreement term (although, there have been
efforts to decompose performance terms in a uniform
way, e.g. [8]). To address the issue of optimal SLA
hierarchy construction, SLA@SOI has employed a large
number of different industrial use cases, and will apply
the produced framework on them. Through simulation
and real-life testing, it is expected to see how different
negotiation strategies affect the final contracts in different
domains.

One source of existing knowledge, however, that
providers should use, is monitoring information from
previous consumption of the same service. Overall, we
always assume that the provider prefers establishing
SLAs with reasonable certainty regarding the offered QoS
as a function of the agreement terms, than paying back
penalties (as they are defined in the SLA) when
deviations occur. Therefore, the provider is expected to
utilize historical monitoring information for estimating
which terms can indeed be guaranteed with reasonable
certainty. Figure 3 illustrates the aforementioned reliance
on the monitoring framework from a provider’s point of
view, showing only one round of these repeated

negotiation steps. The grayed boxes show this
relationship explicitly. It should also be noted that Figure
3 assumes that the agreement initiator (as defined in WS-
Agreement) is the customer, and the agreement responder
is the provider.

At the same time, service-based systems are highly
dynamic. As such, conditions constantly change.
Infrastructure that was available at the time of
negotiation, for example, may become unavailable during
the SLA runtime. Furthermore, concurrent use of
hardware or virtual resources results in dependencies
between the different SLAs of the provider. Thus, it is
often necessary to adjust, re-provision, or eventually,
renegotiate SLAs. This process is triggered by
monitoring, using events indicating the violation of SLA
guarantee terms to which the service provider subscribes,
as discussed in the following section.

4. SLA Monitoring
As shown in Figure 3, SLA negotiation introduces two
requirements for SLA monitoring:
1. Monitoring should allow the collection of SLA

violations during the provisioning of a service under
the terms of an SLA. On the Provider side, such
violations should be made available as historical data
to SLA negotiation, for optimization and planning
while deciding whether to accept or not a SLA offer
made by the customer;

2. Monitoring should be able to assess the monitorability
of the guarantee terms specified in a SLA offer made
by an agreement initiator to an agreement responder.
This is necessary since auditing and enforcing an SLA
that has non-monitorable guarantee terms would not
be feasible.

The first of these requirements is a typical functional
requirement for any generic software system monitoring
component [9]. However, in loosely coupled and
heterogeneous SLA management scenarios, as the one
introduced in Section 2, the realization of the requirement
requires advanced monitoring mechanisms. The latter
should support the clear specification of the monitoring
capabilities for the different components of the service
based system and their infrastructures, and protocols for
monitoring delegation, availability of primitive
monitoring information and dissemination of monitoring
results. These issues are discussed in more detail later.

The second requirement, regarding the assessment of
the monitorability of SLA terms before SLA
establishment, is even more challenging and it has not
been addressed by previous work on SBS/SLA
monitoring. Thus, it represents one of the main
contributions of our approach to SLA monitoring.

The architecture of the SLA monitoring framework of
SLA@SOI is shown in Figure 4. As shown in the figure,
the architecture consists of four main modules, namely an

Event Bus, a Monitoring Terms Derivation module, a
Terms Verification module, and Monitor Engine.

Figure 3: Negotiation from the provider's side

4.1 Components of the monitoring framework

The role and function of the components of the
SLA@SOI monitoring framework are as follows:
Event Bus. The architecture of the SLA@SOI monitoring
framework is event-based [10], i.e., it relies on capturing
runtime information during SLA provisioning at the
different services of the managed SBS by suitable event
captors and making it available to different components
of the monitoring framework as events. The exchange of
events between the monitor and the event captors
(internal to a node or from external nodes) is managed
through an Event Bus that realizes a publish/subscribe
architecture. In this architecture, event captors are event
publishers and monitors are event subscribers and
consumers. More specifically, event captors publish their
events to the bus with appropriate tags enabling it to
distribute them to monitors that have subscribed to them.
Based on these events the monitors can detect violations
of the terms of SLAs. Note, however, that monitors can
also act as event publishers themselves notifying their
results as events as well (events of this type will be
referred as “monitoring result events” in the following).
Thus, it is possible to use the framework to coordinate
different monitors in various formations (hierarchical,
peer-to-peer etc) as required for the particular SLAs that

need to be monitored and/or other constraints of the
overall SBS infrastructure.

Event
Receiver

SLA Violations
DB

SLA Violations
DB

Monitor
Engine

SLA Monitoring

Terns Verification

Monitoring Terms
Derivation

Verification
Engine

Capability
Manager

Event Bus

SLA Negotiation

Event
Captors

Push
events

Register
Capabilities

Capability
Manager

Other services of the SLA Management framework

SLA

Event
Captors

Monitor
Engine

Push Monitoring
Result events

Figure 4: SLA monitoring architecture

Monitoring Terms Derivation Module. The role of this
module is to translate the agreed guarantee terms of an
SLA into specifications of patterns of events and
computations over their features that can be checked at
runtime. In the prototype implementation of the
framework the language that is used to express the
monitorable event patterns is EC-Assertion, i.e., an XML
language based on Event-Calculus [10]. This is because
the default monitor of the SLA@SOI monitoring
framework is the EVEnt REaSoning Toolkit (EVEREST)
[11] that supports this language. Note, however, that the
architecture of the monitoring framework allows the
integration of other Monitoring Terms Derivation
Modules to support different languages for expressing
guarantee terms and monitors.
Monitor Engine. Monitoring service based systems has
been an area of focus lately and several systems have
been proposed for monitoring composite or atomic
services, e.g. [12], and service infrastructures, e.g.
Ganglia (http://ganglia.info). In our approach, SLA
monitoring in each node may adopt a different Monitor
Engine. The logic implemented by the Monitoring Terms
Derivation module will then change according to the kind
of properties/rules required by the adopted Monitor
Engine. Detected SLA violations are stored in the SLA
Violations DB, which is queried by SLA Negotiation
when historical data are required for accepting/refusing a
SLA offer.
Terms Verification Module. This module implements
the main functionality required for assessing terms'
monitorability. It receives as input the Monitoring terms,
as obtained from the translation made by the Monitoring
Terms Derivation, and assesses whether the terms can be

monitored through a call to the Capability Manager.
Monitoring capabilities and the Capability Manager
functionality are described in Section 4.2.

As discussed previously, the provision of runtime
events to the SLA Monitoring framework is based on
Event Captors. Event Captors are able to capture events
generated by the SLA provisioning environment, and may
be implemented differently depending on the entity that
they need to provide information for.

Event captors may, for example, be realized as
instrumented BPEL processes in the case of composite
software services implemented by BPEL service
coordination workflows, which during execution can emit
the required events [12] and state of the executing
workflow. Service invocations and matching responses
are typical examples of events that can be captured at the
BPEL process execution level. Such events are required,
for instance, for monitoring the Completion Time
agreement term as defined in Section 3.1. In other cases
they may be realized as service container/proxies that
capture service calls and responses [9]. At the
infrastructure layer, specialized event captors may also be
deployed. Virtual machines may, for instance, have their
own mechanisms for monitoring Availability, MTBF, or
MTTR. Alternatively, they may be able to capture events
informing the monitor engine when a service becomes
unavailable, and when it becomes available again. We
therefore implicitly extend the SLA hierarchy to a
hierarchy of rules for constructing events, based on which
we can monitor higher-layer SLAs using in a
straightforward manner the SLAs that constitute them.

Note that, regardless of their implementation, event
captors need to timestamp the events that they generate
and, depending on the consumer of these events, even
synchronize their clocks with the clock of a reference
monitor [13]. Time stamping is critical for monitoring
SLAs as most of the terms in them need to be expressed
in relation to time (see the Completion Time, Throughput,
and Accessibility agreement terms defined in Section 3,
for example).

4.2 Monitoring capabilities and monitorability
assessment

The assessment of the monitorability of SLA terms
relies on the definition of the monitoring capabilities of
each service involved in the SLA Management
Framework. The Monitoring Capabilities of a service are
defined as the collection of (i) the Events that can be
produced by its local Event Captors and (ii) the
Monitoring Result Events that can be produced by its
Monitor Engine, that is, the kind of agreement terms a
service may locally monitor if requested to do so. The
exchange of monitoring capabilities between two services
in the SLA management framework is implemented as the
exchange of (XML-based) monitoring capabilities

documents among the Capability Managers of the two
services.

Because of SLA hierarchies, we envisage the process
of exchanging capabilities to be hierarchical.

As an example, based on the scenario of Figure 1, we
show how CS can assess the monitorability of the terms
in an offer for SLA_CS submitted by the customer. In
order to assess the monitorability of the terms in this
offer, CS must be made aware of the monitoring
capabilities of other services in the SLA hierarchy, i.e.
IS1, IS2, AS1, and AS2. However, a service in the SLA
management framework can be aware only of its peers,
that is, the other services with which it is negotiating an
SLA. In our example, IS1, AS1, and AS2 are the peers of
CS, whereas IS2 is a peer for both AS1 and AS2.
Therefore, CS first requests the monitoring capability
documents to its peers, i.e. IS1, AS1, and AS2. While IS1
can immediately reply with its monitoring capabilities,
since it has no peers down the SLA hierarchy, AS1 and
AS2 first issue a request for the monitoring capabilities
document to their peer, i.e. IS2. The capability document
sent back by AS1 and AS2 to CS includes also the
monitoring capabilities of IS2. In this way, after
monitoring capabilities documents have been exchanged,
CS is aware of the monitoring capabilities of its peers. It
should be noted that the exchange of monitoring
capabilities triggered by the top-level SLA (i.e. SLA_CS
in our example), which is negotiated with the consumer,
enables also all the other services to assess the
monitorability of terms in other SLAs down the
hierarchy. Therefore, each service is able to assess the
monitorability of terms in an SLA offer. For instance,
AS1 can now assess the monitorability of SLA_AS1
offers, since it is aware of IS1’s monitoring capabilities.

When a service receives an SLA offer, the generated
Monitoring Terms are submitted to the Terms
Verification module. The Terms Verification module will
retrieve the (hierarchically defined) monitoring
capabilities from its Capability Manager. Then, for each
term, the Terms Verification module verify whether (i)
events required for monitoring the term are available or
(ii) the monitoring of the term can be delegated to another
service in the hierarchy.

In case (i), the term will be monitored locally by the
service, consuming the required events that will be
published on the bus by Event Captors (local and from
other peer services). In case (ii), the monitoring of the
term can be delegated to another service down the
hierarchy. If the monitoring of a term can not be
performed locally, i.e. required events are not available
according to the exchanged monitoring capability
documents, or delegated to other services, the SLA
monitoring will notify the SLA negotiation that the term
can not be monitored. Therefore, the agreement offer will
be rejected (or modified for further negotiation steps).

SLA Negotiation SLA Monitoring

Receive
SLA Offer

Submit Terms
to Monitoring

Receive
Monitorability Assessment

Query SLA
Violations DB

Assess Terms
Monitorability

Modify Offer
(e.g. drop terms)

Accept
Offer

Receive
Historical data

Retrieve
historical data

Start
Monitoring

Figure 5: Interactions between SLA negotiation and
monitoring

At runtime, when the SLA is provisioned, the Event
Bus of the service will subscribe to the events required
for monitoring or to the correspondent Monitoring Result
event registered by other services, to which the
monitoring of some terms has been delegated. A service’s
Monitor Engine, e.g. CS’s in our example, will then start
receiving the events to which it has subscribed. Generic
events are processed by the Monitor Engine to assess
SLA violations, whereas Monitoring Result events are
directly stored by the Event Receiver in the SLA
Violations DB.

As a conclusion, Figure 5 explicates the negotiation-
time offer evaluation flow described in Figure 3, showing
how SLA Negotiation acts as a client of SLA Monitoring,
which exposes three atomic functionalities, i.e. Verify
Monitorability, Retrieve Historical Data, and Start
Monitoring. On the one hand, Verify Monitorability
fulfills the requirement (2) identified in Section 4, i.e. the
need for assessing the monitorability of agreement terms
in an SLA offer, according to the exchange of monitoring
capabilities previously described. On the other hand,
Retrieve Historical Data and Start Monitoring
functionalities jointly fulfill requirement (1), i.e. making
monitoring data available for the evaluation of SLA
offers. The former functionality, in particular, is
implemented by a set of queries that SLA negotiation may
run on the SLA Violations DB.

5. Evaluation of Design Choices
An initial, rapid prototype of the SLA Management

framework and, in particular, SLA Negotiation and
Monitoring, is available to support a reference scenario of
a retail solution, for which the service and SLA hierarchy
is structured as in Figure 1. A second iteration on the
software stack is prepared and the framework will be

evaluated in real world business use cases, such as e-
government, service aggregator, and financial grids.

For what concerns monitoring, the prototype exploits
the core monitor engine described in [11], while, the
Event Bus is based on a public implementation of the
XMPP-PubSub. The choice to rely on publicly available
specifications of the bus has been made to guarantee
future interoperability with other external event captors.
In the current implementation, the translation of rules is
statically made, In particular, EC rule templates, based on
a set of pre-specified set of events, have been defined for
each type of agreement term defined in Section 3.1.
Templates are instantiated in concrete rules by adding
information on service endpoint references and negotiated
values of agreement terms contained in the SLA. Services
monitoring capabilities are defined by the signatures of
events used in monitoring rules templates. In this way, the
assessment of monitorability is reduced to the problem of
matching the concrete monitoring rules with the
signatures of events reported in monitoring capabilities
documents of services involved in SLA provisioning. The
second iteration of the software stack should remove the
coupling between rule templates and event signatures,
adopting higher-level definitions of event signatures that
could be matched against several formalisms adopted to
express concrete monitoring rules/properties.

With regard to negotiation, the current prototype takes
advantage of monitoring as explained above, to verify
that specific terms can actually be monitored. At the same
time, monitoring information from previous SLAs
provides simple averages that indicate whether a SLA
offer should be accepted or not, based on the service
performance logged in the past. What is currently missing
from this prototype is the capability for multi-round
negotiation, which is necessary in environments such as
the one under discussion. For the time being, a WS-
Agreement implementation has been adopted, providing
single-round interactions with the offers followed by
responses declaring only acceptance or rejection. The
project is actively participating in the Open Grid Forum
and seeks to affect WS-Agreement with regard to full
negotiation capabilities, which will eventually be
implemented as part of the framework.

6. Related Work
SLA negotiation and SLA monitoring have been

heavily researched in the past, but the two research
streams have usually been kept separated. In some cases,
they have been brought together in more unified
architectures, but never viewed in such a way where
negotiation relies on monitoring and vice versa, in a fully
dynamic context taking into account multi-layered SLA
hierarchies.

For what concerns runtime monitoring of SBS,
intrusive monitoring relies on alternating the execution of

the service and monitoring activities at runtime. This can
be done directly in the BPEL engine, interleaving
monitoring code with the process executable code [9].
System properties’ monitorability can not be achieved
with intrusive monitoring, since the properties to be
monitored and the actions required for monitoring must
be interleaved with service execution code and, therefore,
known a priori by the system designer. Non-intrusive
monitoring [10, 15, 12, 16] requires the establishment of
mechanisms for capturing runtime information on service
execution, e.g. service operation calls and responses. In
this way, the business logic of the SBS process and the
monitoring logic remain separate. The cited approaches to
non-intrusive monitoring take for granted the availability
of events required for monitoring and do not consider the
issue of monitorability of rules/properties submitted to a
generic monitor engine. The concept of local monitors
attached to services has been introduced in [27].
However, the proposed approach considers the static
allocation of properties monitoring based on a predefined
service network topology.

A multitude of research papers discuss the topic of
SLA negotiation with some reference to monitoring, but
without exploring it explicitly in the context of a
complete, multi-layer service economy. [17] is using a
“Situation Assessment Module” to evaluate the feasibility
of a SLA based on monitoring info, but only looking at
isolated SLAs. Conversely, [18] and [19] are looking into
SLA hierarchies and negotiation in this context, without
any reference to consultation with monitoring though. In
[20] the authors refer to using events for evaluating the
validity of offers, but without further discussion on using
monitoring for provider-side optimization of the
negotiation process. In [21] a negotiation framework is
presented and decision strategies are mentioned, but
without any explicit links to monitoring information.

Several projects have also focused on SLA definition,
establishment, and provisioning both in the context of
Web and Grid services. Project NextGRID is probably
the one closest to what SLA@SOI is also discussing.
NextGRID foresaw the need for SLA hierarchies [22],
however the monitoring and profiling infrastructure does
not take it into account [23]. Adaptive Services Grid
(ASG) designed an architecture where negotiation uses
profiling data, but not monitoring data from previous
violations. Also, the monitoring rules and parameters are
static and pre-defined [24]. Finally, inter-dependencies of
SLAs are not discussed at all. The TrustCOM project
looked deeply into the subject of SLA negotiation and
monitoring, and also produced a reference
implementation. However, SLA hierarchies and
dependencies are not taken into account, and the problem
is solved for isolated agreements only [25]. The same
holds for AssessGrid, which concentrated on SLAs and
risk management [26]. Also, AssessGrid has a focus on

Grid computing, therefore assuming certain system
organization and architecture, while our approach has a
wider view on autonomic service providers and the
respective service economies.

7. Conclusions and future work
After illustrating and analyzing the explicit link

between SLA negotiation and SLA monitoring, we
presented a novel architecture for establishing and
monitoring SLA hierarchies spanning through multiple
domains and layers of a service economy: Business,
software and infrastructure services. We showed why this
relationship cannot be disregarded, especially in such
complex hierarchies, and how a SLA hierarchy reflects on
the monitoring hierarchy.

Besides applying the framework to industrial use cases
and addressing the open design issues discussed in
Section 5, we also plan to broaden our SLA management
scenario by considering requirements for SLA negotiation
and monitoring on the service consumer side, i.e.
focusing on mechanisms for SLA offer negotiation on the
consumer side and on how consumer-generated
monitoring data may be integrated in the service provider
SLA monitoring framework presented in this paper.
Acknowledgments
The research has been supported by the EU Commission
under the SLA@SOI Project (grant agreement n.
216556).

References
[1] Papazoglou, M.P., Service-Oriented Computing: Concepts,
Characteristics and Directions. Proc. 4th Conference on Web
Information Systems Engineering, 2003.
[2] L. Wang, G. von Laszewski, M. Kunze, J. Tao. Cloud
computing: A Perspective study. Proc. Grid Computing
Environments (GCE) workshop, 2008.
[3] A. Andrieux et al.; Web Services Agreement Specification
(WS-Agreement). The Open Grid Forum, March 2007.
http://www.ogf.org/documents/GFD.107.pdf
[4] Dobson, G. and Sanchez-Macian, A.; Towards Unified
QoS/SLA Ontologies. Services Computing Workshops, SCW
'06, Sept. 2006
[5] Maximilien, E.M. and Singh, M.P.; A framework and
ontology for dynamic Web services selection. IEEE Internet
Computing, 8(5), Sept.-Oct. 2004, pp. 84 – 93.
[6] D. Colling, T. Ferrari, Y. Hassoun, C. Huang, C. Kotsokalis,
A.S. McGough, E. Ronchieri, Y. Patel and P. Tsanakas. On
Quality of Service Support for Grid Computing. Grid Enabled
Remote Instrumentation, Springer US, 2009.
[7] D. Somefun, E. Gerding, S. Bohte, J. La Poutré. Automated
Negotiation and Bundling of Information Goods. Agent-
Mediated Electronic Commerce V, pp.1-17, 2004
[8] Y. Chen, S. Iyer, X. Liu, D. Milojicic, A. Sahai. SLA
Decomposition: Translating Service Level Objectives to System
Level Thresholds. Int. Conf. on Autonomic Computing, 2008.
[9] L. Baresi and S. Guinea. Towards Dynamic Monitoring of
WS-BPEL Processes, Proc. ICSOC 2005.

[10] Spanoudakis G., Mahbub K.: Non Intrusive Monitoring of
Service Based Systems, International Journal of Cooperative
Information Systems, 15 (3), pp. 325-358, 2006.
[11] Spanoudakis G, Kloukinas C. Mahbub K.: The SERENITY
Runtime Monitoring Framework, In Security and Dependability
for Ambient Intelligence, Information Security Series, Springer,
pp. 213-238 (to appear)
[12] F. Barbon, P. Traverso, M. Pistore, M. Trainotti, Run-Time
Monitoring of Instances and Classes of Web Service
Compositions, Proc. IEEE ICWS 2006.
[13] Kloukinas, C., Spanoudakis, G., and Mahbub, K.
Estimating Event Lifetimes for Distributed Runtime
Verification, Proc. SEKE 2008.
[14] Keller, A. and Ludwig, H. 2004. The WSLA Framework:
Specifying and Monitoring Service Level Agreements for Web
Services. J. of Network and Systems Management, 11(1), 57-81.
[15] W.M.P. Van der Aalst, M. Dumas, C. Ouyang, A. Rozinat,
and E. Verbeek, Conformance checking of Service Behavior,
ACM TOIT, 8 (3), May 2008.
[16] O. Moser, F. Rosenberg, and S. Dustdar, Non-intrusive
monitoring and service adaptation for WS-BPEL, WWW 2008.
[17] N. R. Jennings, T. J. Norman, P. Faratin, P. O'Brien, B.
Odgers. Autonomous Agents For Business Process
Management. Applied Artificial Intelligence, 2000, 14, 145-189.
[18] M.B. Chhetri, J. Lin, S. Goh, J.Y. Zhang, R. Kowalczyk, J.
Yan. A Coordinated Architecture for the Agent-based Service
Level Agreement Negotiation of Web Service Composition.
Proc. Australian Software Engineering Conference, 2006.
[19] J. Brzostowski, M.B. Chhetri, R. Kowalczyk. Three
Decision-making Mechanisms to facilitate Negotiation of
Service Level Agreements for Web Service Compositions. Proc.
Joint Conference of the INFORMS Section on Group Decision
and Negotiation, 2007, pp. 37-44.
[20] M.R. Ayatollahzadeh Shirazi, A.A. Barfouroush. A
Conceptual Framework for Modeling Automated Negotiations
in Multiagent Systems. Negotiation Journal, 2008, 24(1), pp. 45-
70.
[21] E. Di Nitto, M. Di Penta, A. Gambi, G. Ripa, M. Villani.
Negotiation of Service Level Agreements: An Architecture and
a Search-Based Approach. Proc. ICSOC 2007, pp. 295-306.
[22] D. Snelling, A. Anjomshoaa, F. Wray, A. Basermann, M.
Fisher, M. Surridge, P. Wieder. NextGRID Architectural
Concepts. Towards Next Generation Grids: Proc. CoreGRID
Symposium, 2007.
[23] K. Tserpes, D. Kyriazis, A. Menychtas, T. Varvarigou, F.
Silvestri, D. Laforenza. An Open Architecture for QoS
Information in Business Grids. Towards Next Generation Grids:
Proc. CoreGRID Symposium, 2007.
[24] K. Jank, Reference Architecture. Adaptive Services Grid
Deliverable D6.V-1, 2005.
[25] The TrustCOM project. Deliverable 64: Final TrustCoM
Reference implementation and associated tools and user manual.
June 2007 (v3.0).
[26] J. Padgett, I. Gourlay, K. Djemame (eds). AssessGrid D1.3:
System Architecture Specification and Developed Scenarios
(v0.30). December 2006.
[27] Machiraju, V., Sahai, A., and van Moorsel, A. Web
Services Management Network: An Overlay Network for
Federated Service Management, Proc. IFIP/IEEE 8th Int.
Symposium on Integrated Management, 2003.

