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Deriving a frequentist conservative confidence bound
for probability of failure per demand for systems with

different operational and test profiles

Peter Bishop, Andrey Povyakalo

City University, London

Abstract

Reliability testing is typically used in demand-based systems (such as protection
systems) to derive a confidence bound for a specific operational profile. To be
realistic, the number of tests for each class of demand should be proportional to
the demand frequency of the class. In practice however, the actual operational
profile may differ from that used during testing. This paper provides a means for
estimating the confidence bound when the test profile differs from the profile
used in actual operation. Based on this analysis the paper examines what
bound can be claimed for different types of profile uncertainty and options for
dealing with this uncertainty. We also show that the same conservative bound
estimation equations can be applied to cases where different measures of software
test coverage and operational profile are used.

Keywords: Statistical testing, Confidence bounds, Operational profile,
Software reliability

1. Introduction

Nuclear protection systems are designed to protect against a range of safety-
related plant incidents (known as postulated initiating events or PIE). A PIE
can affect one or more plant parameters (such as temperature, pressure and
neutron flux). These plant parameters are monitored by the protection system
and the reactor is tripped if the plant parameters go outside the safe operational
envelope.
In the UK, a probabilistic safety assessment (PSA) is required to justify the
safety of nuclear plant. As part of this process, the performance of the protection
system must be quantified in terms of probability of failure on demand, pfd,
where the demand can be any of the PIE events. There are accepted means for
estimating the pfd arising from hardware failures, but we also need to include an
estimate for the pfd of the software if the protection system is computer-based.
Statistical reliability testing [1, 2] is one means of estimating the software pfd
of a demand-based system to some confidence bound, and it is recommended
in functional safety standards such as IEC 61508 [3]. For example, reliability
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testing was performed as part of the independent confidence building programme
required by the UK Office for Nuclear Regulation (ONR) for the computer-based
primary protection system (PPS) at Sizewell B nuclear power station [4]. The
PPS was subjected to 5000 simulated demands to support a pfd claim of 10−3.
Reliability testing is also planned for new nuclear power stations to be installed
in the UK [5].
The confidence bound derived from statistical reliability testing is based on a
number of modelling assumptions. The stated assumptions in IEC 61508 [3] for
the low demand rate case are:

1. The test data distribution is equal to the distribution of demands during
on-line operation.

2. Test runs are statistically independent from each other, with respect to
the cause of a failure.

3. An adequate mechanism exists to detect any failures which may occur.

4. Number of test cases N > 100.

5. No failure occurs during the N test cases.

The second assumption can be met in the protection system context as the
protection system is normally reset after a reactor trip (so the software always
starts from the same initial state).

The third assumption is requires a perfect “oracle” that determines if a
failure has occurred. The required response is relatively easy to determine for
PIE events in a nuclear plant since each simulated PIE is expected to result in
a reactor trip.

The last two assumptions will also be met in a nuclear protection context as
many thousands of tests are needed for the required pfd and the software has
to be corrected and retested from scratch if a failure is observed.

To satisfy assumption 1, the number of tests for each class of demand (i.e.
for each PIE) should be proportional to the demand frequency of that class
during operation, so the confidence bound estimate cannot be used if the test
and operational profiles differ.

This paper presents a means for estimating the confidence bound when the
test profile differs from the profile used in actual operation. Based on this
analysis, the paper examines what bound can be claimed for different types of
profile uncertainty and the options for dealing with this uncertainty.

We also show that the same conservative bound equations can be applied in
contexts where the software reliability bound and input profile are characterised
in different ways.

2. Problem Statement

If a system is subjected to N test demands without failure [1], we can follow
the approach suggested by Neyman and Pearson [6], Neyman [7], Clopper and
Pearson [8] as it is presented by Wang [9] and identify an upper confidence
bound, q, on the probability of failure on demand Q to a confidence 1 − α as
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the largest value such that the hypothesis “H0 : Q = q” is not rejected against
the alternative “H1 : Q < q” at the significance level α.

Thus, q must satisfy the following equation:

(1− q)N = α (1)

However, it is often the case that the system handles different classes of
demand, e.g. a protection system that protects against different PIE events.
These demand classes are assumed to be disjoint, i.e. only a single demand can
occur at any point in time.

Testing over a series of classes can be characterised by a test plan vector:

n = {n1, n2, . . . , nm} (2)

where m is a number of demand classes, ni is the number of tests for demand
class i, and the total number of tests is:

N =

m∑
i=1

ni (3)

The distribution of tests over the demand classes can be characterised by a test
distribution profile vector:

p̂ = {p̂1, p̂2, . . . , p̂m} (4)

where p̂i = ni/N, i = 1 . . .m
When this multiple demand class system is used in operation it will be

subject to an operational profile:

p = {p1, p2, . . . , pm} (5)

Ideally the operational and test profile distributions will match so that p = p̂.
However, in practice the operational profile p will vary if the system is used
in different environments or there is uncertainty in the likelihood of different
external events. So we need some means to determine a bound qs to some
confidence (1− α) for a different operational profile p given a prior set of tests
n.

3. Problem Formulation

For some (unknown) vector of demand class pfds

q = {q1, q2, . . . , qm} (6)

the likelihood of observing no failures with test plan n is:

P (q,n) =

m∏
i=1

(1− qi)ni , (0 ≤ qi ≤ 1) (7)
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The (1− α) confidence area for all possible pfd vectors, q′, is

D(n, α) = {q′ : P (q′,n) ≥ α} (8)

For an arbitrary vector of demand class pfds q and operational profile p, the
system pfd, QS , is simply the weighted average of the vector of q values, i.e.

QS(q,p) = q · p =

m∑
i=1

qipi (9)

The confidence area (8) constrains the set of permissable q vectors and induces
a confidence interval for QS with the upper bound:

qs = max
q∈D(n,α)

Qs(q,p) (10)

We therefore need a method for solving (10) for an arbitrary demand profile p.
It is straightforward to solve (10) numerically for any profile p and test vector

n. However a numerical analysis does not permit any general conclusions to be
drawn about the impact of changes in the operational profile p.

With an analytic derivation of the confidence bound, we can model the
impact of a mismatch between the test profile and the actual demand profile and
identify general strategies for designing test profiles that reduce the sensitivity
of the bound to uncertainties in the operational profile.

The next section describes the approach we developed to derive an analytic
solution for the confidence bound.

4. Solution Approach

In Appendix A we use Lagrangian multipliers to identify the stationary
points that represent the potential solutions to (10) but the solution space is
complex. There are 2m − 1 stationary points and the optimal point depends
on the specific values used in p and n. As a result, there is no simple analytic
solution that can be applied to all operational profiles. So we developed an al-
ternative approach for obtaining an analytic solution by deriving a conservative
approximation for (10) that makes the problem easier to solve.

In this reformulation, the likelihood (7) is approximated as:

P̃ (q,n) =

m∏
i=1

exp (−qini), 0 ≤ qi ≤ 1 (11)

It is a standard result [10] that

exp (−qini) ≥ (1− qi)ni (12)

Thus
P (q,n) ≥ α (13)
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implies,
P̃ (q,n) ≥ α (14)

Therefore, the approximated confidence area

D̃(n, α) = {q′ : P̃ (q′,n) ≥ α} (15)

is a superset of the exact confidence area, i.e.

D̃(n, α) ⊇ D(n, α) (16)

As a result, the approximate solution will always be conservative relative to the
exact solution, i.e. for a given α, n, p

q̃s ≥ qs (17)

where
q̃s = max

q∈D̃(n,α)
Qs(q,p) (18)

The log of the approximated likelihood (11) is

ln P̃ (q,n) =

m∑
i=1

−qini, 0 ≤ qi ≤ 1 (19)

So the log of constraint (14) can be rearranged to become:

m∑
i=1

q̃ini ≤ ln
1

α
, 0 ≤ q̃i ≤ 1 (20)

If we define
∆q̃i = q̃ipi

then constraint (20) can be reformulated as

m∑
i=1

∆q̃i
ni
pi
≤ ln

1

α
, 0 ≤ ∆q̃i ≤ pi (21)

and equation (9) becomes:

QS(q,p) =

m∑
i=1

∆q̃i (22)

In this reformulation, the goal is to choose a set of ∆q̃i values that maximise
(22) subject to constraint (21).

Constraint (21) is a simple linear constraint for ∆q̃i. To maximise (22) we
need to assign ∆q̃ values to the demand class that makes the smallest contri-
bution to reaching the upper limit of ln 1/α. So the procedure for maximising∑m
i=1 ∆q̃i is:
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• Order the demand classes i in terms of increasing ni/pi value.

• Assign ∆q̃i up to the limit of pi for each demand class in turn until the
confidence bound, ln(1/α), is reached.

• In general, the last class with ∆q̃i > 0 can only be “filled” partially, i.e.
∆q̃i < pi.

• The ∆q̃i values for the remaining demand classes are set to zero.

This assignment strategy is illustrated in Figure 1.

q1 

n1/p1 

n2/p2 

qs 

bin1 

ln 1/α 

 q2 p1 p2 

bin2 bin3 

 

Figure 1: Illustration of bin-filling

It is a variant of the “bin-filling” strategy used in [11] where there is a worst
case demand “bin” and this bin should be filled first.

There is an exception to this filling rule when several bins have an identical
effect i.e. when the ni/pi values for the bins are the same. For equivalent bins,
it does not matter how the ∆q̃i values are distributed amongst the bins provided
the limit pi is respected for each bin.

If we assume that only a single bin k needs to be filled where:

nk
pk

= min
i=1...m

(
ni
pi

)
(23)

then equation (22) reduces to QS(q,p) = ∆q̃k and hence constraint (21) reduces
to

QS(q,p)
nk
pk
≤ ln

1

α
(24)

So the confidence bound, q̃ is:

QS(q,p) ≤ q̃ =
pk
nk

ln
1

α
(25)

or equivalently:

q̃ = max
i=1...m

(
pi
ni

)
ln

1

α
(26)
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This upper bound still applies if more than one bin needs to be filled, but q̃
would be unattainable within the approximated confidence area (15) and hence
be too pessimistic. This is illustrated in Figure 2
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Figure 2: Conservatism of the single bin assumption

In practice however, the single bin assumption can be fulfilled when ∆q̃k = pk
implies:

∆q̃k
nk
pk

= q̃kpk
nk
pk

= q̃knk ≥ ln
1

α
(27)

Since bin k will be part-filled if equation (27) is satisfied when q̃k ≤ 1, it follows
that the single bin criterion can be met if:

nk ≥ ln
1

α
(28)

For example, for 99% confidence, ln 1/α = 4.6, so a minimum of 5 demands on
that bin would ensure that the “single bin” constraint (28) is met.

5. Approximation Accuracy

The analytic solution, q̃s, is a conservative approximation to the true confi-
dence bound q.

Appendix A.3 makes a comparison between a Lagrangian solution for the
exact non-linear programming model in equations (7 – 10) and the approximate
log-linear solution given in equation (26). The Lagrangian analysis derives a set
of stationary points that represent potential solutions. For the equivalent of the
single bin case where, for some p,n there is a worst case bin k that determines
the result, where:

qs = pk(1− α1/nk) ≈ pk
nk

ln
1

α

For other cases where the worst case Lagrange solution point is multi-dimensional,
any single-dimensional point bound under-estimates the true bound qs, so for
all p,n

qs ≥ pk(1− α1/nk) = q∗s (29)
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where bin k is the demand class with the minimum gradient value nk

pk
. So the

error relative to the exact bound qs is constrained by

q̃s − qs
qs

≤ q̃s − q∗s
q∗s

=
ln 1/α

1− α1/nk
− 1 (30)

It is clear from [30] that the approximation error could be high if the nk value is
small. However the bound estimation error need not be large if the test strategy
is designed to avoid having a worst case bin k where nk is small. The design
of test strategies is discussed in more detail in Section 7. A less conservative
bound on the approximation error can be found in Appendix A.4.

6. Modelling the Impact of a Profile Mismatch

With an analytic approximation to the confidence bound we can examine the
impact of a mismatch between the test profile and the actual demand profile.

As noted earlier, if there is an exact match between the test profile p̂ and
the demand profile p then we obtain the standard statistical test result

q̃s ≤
ln 1/α

N
(31)

For a mismatched profile p 6= p̂

q̃′s =

(
pk
p̂k

)
ln 1/α

N
(32)

where bin i = k maximises the ratio pi/p̂i. As a result, we can define a scale
factor S that represents the scale-up in the confidence limit q̃s for a mismatched
demand profile, where:

S =
q̃′s
q̃s

=

(
pk
p̂k

)
(33)

This scale factor S remains the same regardless of the choice of confidence value,
1− α.

Equation 32 can be interpreted as reducing the number of “relevant” test
demands to N ′ = N/S which are distributed over classes i = {1 . . .m} according
to the new profile, where:

n′i =
N

S
pi

For the demand class k that determines S

n′k = Npk
p̂k
pk

= nk

This means that all nk test demands for class k are included in the bound
calculation for the new profile. For other demand classes n′i < ni, so effectively
some test demands for these classes are “discarded” if they do not fit into the new
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profile, resulting in a reduced number of tests N ′ that are considered “relevant”
when deriving the revised confidence bound.
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Figure 3: “Relevant” demands for different profiles

Figure 3 provides a graphical illustration of the variation of the number of
“relevant” demands with the demand profile. The solid line shows the relevant
demands when the profile matches the distribution of test demands. The dashed
line shows the number of relevant demands when the operational profile does
not match the test distribution. In this case, all the test demands for the worst
case demand class (k = 3) are deemed relevant, but only a subset of the test
demands in the other classes are included.

7. Compensating for Profile Uncertainty

If there is an uncertainty ∆p probability of a demand class pk, then for the
worst case demand class, the worst possible scale factor would be:

S ≤= 1 +
∆p

p̂k

This is a particular concern if p̂k is very small relative to the uncertainty. For
example, if there is a rare demand scenario which is estimated to be p̂k = 10−6

but the uncertainty ∆p = 10−4 then it is possible that the bound would increase
by two orders of magnitude in actual operation if the demand class occurs at
the maximum possible rate.

Sensitivity to uncertainty in the demand probability can be reduced if extra
tests ∆nk are performed such that:

∆nk = N∆p (34)

This test strategy is illustrated in illustrated in Figure 4.
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Figure 4: “Relevant” demands for different profiles

The extra ∆nk tests would not be relevant for the expected profile, so the
bound based on N remains unchanged. But if the actual demand probability for
the class lies within p̂k and p̂k + ∆p, then some or all of the extra ∆nk tests are
included, and a corresponding number of tests on other demand classes are ex-
cluded, so the total number of relevant tests (and hence q̃s) remains unchanged.

An alternative strategy is to set a lower bound for the number of tests nmin,
so that extra tests are performed if the number of tests for a demand class (under
the expected profile) falls below the lower limit, i.e. for all classes i = {1 . . .m}:

∆ni = nmin − ni, ni < nmin

Provided the actual demand probability for all classes i

pi ≤ p̂i + ∆ni/N

the confidence bound will not increase relative to the bound derived with the
original profile p̂ and test vector n. In practice, the extra testing required
to accommodate demand profile uncertainty is likely to be fairly modest. For
example, if there are 50 very infrequent demand classes and nmin = 5, no more
than 250 extra tests would be needed compared to the 4600 tests needed for a
99% confidence in a pfd of 10−3 based on the assumption that the test demands
and the actual profile match perfectly.

If we know very little about the profile and can only specify an upper bound
pmax for every demand class, then a much greater number of tests will be needed
to assure that some target qt will be met for all possible profiles p subject to
this constraint. From equation (26)

qt ≤ max
i=1...m

(
pmax
ni

)
ln

1

α
(35)

Hence the number of tests ni required for every demand class i to have confidence
in a target bound qt is

ni =

(
pmax
qt

)
ln

1

α
(36)
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8. Numerical example

The effect of adding extra tests to compensate for profile uncertainty can be
illustrated using the simple test vector shown in Table 1.

Table 1: Example test vector

Class i Demands ni p̂i
1 234 0.078
2 540 0.180
3 6 0.002
4 720 0.240
5 1500 0.500

Total (N) 3000

The approximate and exact 95% confidence (α = 0.05) bounds are shown in
Table 2 for the case where the test and operational profiles match, i.e. p = p̂.

Table 2: Solution comparison for matching test and operational profiles

Model Eqn. Bound for p̂
Single bin approx q̃s (26) 0.9986× 10−3

Numerical solution qs (10) 0.9985× 10−3

Single bin Lagrange q∗s (29) 0.9958× 10−3

All the bound values are close to 10−3 at the 95% confidence level and the
relative over-estimation error for q̃s is around 0.05%. The “single bin” Lagrange
lower bound estimate q∗s is 0.4% less than the true bound.

If there is uncertainty in the operational profile of ∆p = 0.1, then from (34)
the scaling of the confidence bound, S, is bounded by max(p̂i + ∆p)/p̂i. The
maximum scale-up of the confidence bound occurs when ∆p is applied to the
lowest probability bin (i = 3) where the scale factor is S = (0.002+0.1)/0.002 =
51. The bound estimates for the revised profile (where p3 = p̂3 + ∆p and
p5 = p̂5 −∆p) are shown in Table 3.

Table 3: Solution comparison for non-matching operational profiles

Model Eqn. Bound for p̂3 + ∆p
Single bin approx q̃s (26) 50.9× 10−3

Numerical solution qs (10) 40.1× 10−3

Single bin Lagrange q∗s (29) 40.1× 10−3
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It can be seen that, in this case, the true bound qs is the same as the Lagrange
lower bound estimate q∗s . This is likely to occur whenever pi � p̂i as the
Lagrange equivalent to the single bin solution represents the worst case bound.
The example also shows that the single bin approximation q̃s is a conservative
upper estimate. The upper estimate is consistent with the maximum error of
27% predicted in (30). The confidence bound and its relative error can be
decreased dramatically if the test vector n

¯
is padded so that demand class i = 3

is no longer the worst case bin. If every class is padded by ∆ni = N∆p = 300,
the original confidence bound is guaranteed if the departures from p do not
exceed ∆p. Table 4 shows the bound equation results for these two scenarios.

Table 4: Worst case confidence bound under uncertainty (padded test profile)

Model n3 +N∆p ni=1...m +N∆p
Single bin approx q̃s 2.2279× 10−3 0.9986× 10−3

Numerical solution qs 2.2264× 10−3 0.9980× 10−3

Single bin Lagrange q∗s 2.2264× 10−3 0.9980× 10−3

We can see that if demand class i = 3 is padded with 300 extra tests (a 10%
increase on the original total) the worst case bound only increases by a factor
of 2.3 (rather than 40). With 300 extra tests for all classes (a 50% increase on
the original total) the original confidence bound will always be met.

9. Generalization of the Conservative Bound Method

The approach outlined above is expressed in terms of a profile of “demands”
that represent the occurrence of some event external to the system. However
the theory can be applied more broadly if different interpretations of a “profile”
are used. Some alternative profile definitions which extend the applicability of
the conservative reliability bound estimation method for an arbitrary profile are
discussed below.

As a result, the strategies used in Section 7 for reducing sensitivity to oper-
ational profile changes are equally applicable in these new contexts. In partic-
ular, it is desirable to perform extra testing on the worst element of the system
k which dominates the bound estimate.

9.1. Equivalence Class Coverage

In this definition, each “demand class” i represents a specific equivalence
class in the input space of the program. As equivalence classes are disjoint (like
demands) the same parameters p, n can be used to characterise the operational
profile and the test vector, but the bound q̃s relates the probability of failure
per program execution, where the bound q̃s at confidence level (1− α) is

q̃ = max
i=1...m

(
pi
ni

)
ln

1

α
(37)
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9.2. Structural Coverage

In this definition, each element i represents a different element within the
software structure (such as a code segment). In that case the test vector n
represents the number of executions of the segments during reliability testing.
However, we cannot use an operational profile of probabilities p that sum to
unity because the segment executions are not, in general, disjoint. For example,
a sequence of code segments connected in series would all be executed at the
same time. Furthermore, code segments can be executed inside a program loop
and hence be executed multiple times for each invocation of the overall program.
As a result, we need to define the profile as a vector of module executions x
where xi represents the number of executions of segment i for each execution
of the overall program. With multiple executions of the same segment and a
sequence of segments being executed, it is possible that several segments will
fail during the same program execution cycle and hence be merged into a single
failure at the program execution level. We make the conservative assumption
that segment failures will never merge. As a result, equation (9) can be redefined
as

QS(q,x) =

m∑
i=1

qixi (38)

As this equation is formally identical to (9), the demand-based analysis and ap-
proximations still apply, so the conservative bound on the probability of failure
per program execution, q̃s, at confidence level (1− α) is

q̃ = max
i=1...m

(
xi
ni

)
ln

1

α
(39)

9.3. Execution Time

For continuous time where a test vector t represents the test execution times
without failure for a set of components, the single-bin exponential model pro-
vides an exact bound rather than an approximation (provided the failures for
the elements i are disjoint). As a result, the analysis is formally identical the
previous analyses so the confidence bound for the system failure rate per unit
time, λs, given an operational profile p of disjoint execution probabilities per
unit time would be:

λs = max
i=1...m

(
pi
ti

)
ln

1

α
(40)

This model can be extended to a concurrently executing set of components where
the profile is expressed as a usage factor u. Note that the individual terms ui
represent the proportion of time that the component is running. The usage
factor can be greater than unity if multiple instances of the same component
run concurrently. We can construct a normalised operational profile where there
is a disjoint execution probability per unit time for component i such that
pi = ui/

∑
j=1...m uj . Substituting this into (40) and rescaling by

∑
j=1...m uj ,

we obtain:

λs = max
i=1...m

(
ui
ti

)
ln

1

α
(41)
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The scaling of the operational profile means that different components will be
executing at the same time. Since simultaneous (i.e. non-disjoint) component
failures would be merged into a single failure at the system level, this effectively
reduces the observed failure rate. So this equation remains a conservative upper
bound even if the assumption of disjoint failures does not apply.

10. Relationship to Earlier Work

There has been extensive research on the use of statistical methods for esti-
mating software reliability using realistic operational scenarios [12, 13]. Adap-
tive testing strategies have been used to estimate confidence intervals (such as
[14, 15]) but these strategies are designed to adapt the test profiles once failures
are observed, so they are not applicable to testing high integrity systems where
no failures are expected.

Musa [16] and Crespo et al. [17] have modelled the impact of different opera-
tional profiles based on reliability growth during testing, but this is not directly
applicable to high integrity systems where we do not expect to observe failures
in the final test phase.

Bishop [18] used an operational profile characterised by the execution of code
segments within the program to rescale a prior reliability bound, but in [18] the
derivation of the reliability bound required an estimate of residual faults and
was not explicitly related a confidence level.

Miller et al. [19] considered the impact of operational profile on reliability
estimation and suggested discarding test results that did not conform to the new
profile. However, there was no formal justification for discarding tests and this
was proposed in the context of preparing input data for a Bayesian reliability
analysis. Our analysis formally justifies the use of a “relevant” test subset in
the context of a frequentist confidence bound model.

Ehrenberger [20] proposed a frequentist confidence bound model for a new
operational profile which asserts that:

qs = ln 1/α
∑
i=1,m

p2i
ni

However, it can be shown that the Ehrenberger model is only valid for cases
where pi ∝ ni for a subset of the demand classes i and the remaining elements in
the profile p are zero. For other non-matching profiles, the Ehrenberger model
can produce non-conservative results. For example, if the model is applied to
the example in Section 8 we obtain qs = 2.07 × 10−3 which is significantly
less than both the true confidence bound (40.1 × 10−3) and our conservative
approximation (50.9× 10−3).

11. Summary and Conclusions

This paper has presented a conservative analytic method for estimating the
reliability bound given a specified confidence level, a set of test demands and an
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arbitrary operational profile. Based on this model we show that the “scale-up”
in failure rate can be highly sensitive to uncertainties in demand probability of
infrequent demand classes. We also show that adding some “padding” tests for
infrequent demand classes can ensure that the original confidence bound will
remain valid for a range of demand probabilities for a given class.

We have also shown that the same conservative bound estimation method
can be applied in other contexts, e.g. where testing is defined in terms of time
rather than demands and equivalence domains rather than demand classes.
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Appendix A. Lagrange Multipliers Analysis

Appendix A.1. Problem Restatement

The system pfd can be redefined as

QS(p, r) = 1−R(p, r),

where

R(p, r) = 1−
m∑
i=1

ripi,

and: p = {p1, p2, ..., pm} is a vector of input profile probabilities; r = {r1, r2, ..., rm}′
is a vector of (unknown) conditional reliabilities for the demand class.

For a test vector n, the probability of observing zero failures given r is

P̃ (n) =

m∏
i=1

(ri)
ni (A.1)

Hence, to a confidence level 1−α, the observation of n tests without failure
defines a confidence area for r where

D(n, α) =
{

r′ | P̃ (n) ≥ α
}

(A.2)

and for an operational profile p, the confidence area (A.2) induces a (1− α)×
100% confidence interval for the system pfd with an upper bound:

R̃(n,p, α) = min
r′∈D(n,α)

R(p, r′) (A.3)

Appendix A.2. Lagrange Multipliers Analysis

A solution to (A.3) can be found with Lagrange multipliers [21] µ, λi, i =
1..m. The Lagrange function is

L =

m∑
i=1

pir
′
i − µ×

(
m∏
i=1

(r′i)
ni − α

)
−

m∑
i=1

λi(ri − 1),

and its stationary point satisfies the following system of equations (Kuhn-
Tucker conditions [22]):

∂L

∂µ
=

m∏
i=1

(r′i)
ni − α = 0;

∂L

∂r′i
= pi − µ

αni
r′i
− λi = 0; i = 1..m;

λi(r
′
i − 1) = 0, i = 1..m.
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Thus, for every stationary point r′, either λi = 0 or r′i = 1, i = 1 : m
Therefore, we can identify every stationary point with a binary vector

b = {b1, b2, ..., bm}′,

where bi = 0 iff ri = 1 and denote

n(b) =

m∑
i=1

nibi,

obtaining

r′i =

(
µ
αni
pi

)bi
; i = 1..m (A.4)

m∏
i=1

(r′i)
ni = α;

R(b) = µ× α× n(b) +

m∑
i=1

pi(1− bi). (A.5)

We find µ by solving the equation

m∏
i=1

(
µ
αni
pi

)nibi

= α

or

µ =

(
α×

m∏
i=1

(
pi
αni

)nibi
)1/n(b)

=
1

α

(
α×

m∏
i=1

(
pi
ni

)nibi
)1/n(b)

R(b) = n(b)×

(
α×

m∏
i=1

(
pi
ni

)nibi
)1/n(b)

+

m∑
i=1

pi(1− bi)

If we denote p̂i = ni

n(b) , i = 1..m, then

r′j =

(
µ · α · n(b)

p̂j
pj

)bj
; j = 1..m (A.6)

µ =
1

αn(b)
α1/n(b)

m∏
i=1

(
pi
p̂i

)p̂ibi
(A.7)

r′j =

(
α1/n(b) p̂j

pj

m∏
i=1

(
pi
p̂i

)p̂ibi)bj
; j = 1..m (A.8)

R(b) = α1/n(b)
m∏
i=1

(
pi
p̂i

)p̂ibi
+

m∑
i=1

pi(1− bi); (A.9)

QS(b) =

m∑
i=1

pibi − α1/n(b)
m∏
i=1

(
pi
p̂i

)p̂ibi
(A.10)
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Equation (A.8) and the feasibility constraints ri ≤ 1, i = 1..m define the
feasibility area B for the binary vectors b identifying the stationary points:

B =

{
b : α1/n(b)

m∏
i=1

(
pi
p̂i

)p̂ibi
≤ min
i:bi=1

(
p̂i
pi

)}
(A.11)

Thus, the exact Lagrangian upper (1− α)× 100% confidence bound for the
system pfd is

Q̃S = min
b∈B

(QS(b)) (A.12)

Appendix A.3. Relationship to the Approximate Solution

When, pi = p̂i, i = 1..m, then

R(b) = α1/n(b) +

m∑
i=1

pi(1− bi),

or

QS(b) =

m∑
i=1

pibi − α1/n(b).

If b = {1, 1, . . . , 1}, then
R(b) = α1/N ,

or
QS(b) = 1− α1/N ,

where

N =

m∑
i=1

ni.

Let’s now assume that:
m∑
i=1

bi = 1;

bk = 1;

n(b) = nk;

p̂k = 1,

Then,
R(b) = 1− pk(1− α1/nk)

or
QS(b) = pk(1− α1/nk) ≈ − pk

nk
logα

Thus, the approximation to the conservative confidence bound found using
(26) is very close to one of the stationary points for the “exact” optimisation
problem.
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Appendix A.4. Upper bound on the approximation error

We can use the suboptimal Lagrangian stationary points to estimate the
error of the “bin-filling” solution.

If k is the last ”filled” in the ”bin-filling” solution, then

∆qk =
pk
nk

(
ln

1

α
−
k−1∑
i=1

pi

)
,

and

QS =

k−1∑
i=1

pi +
pk
nk

(
ln

1

α
−
k−1∑
i=1

pi

)
=

k−1∑
i=1

pi +
pk
p̂k

(
1

N
ln

1

α
− 1

N

k−1∑
i=1

pi

)

The corresponding binary vector b for this has the components

bi =

{
1, i = 1..k − 1
0, i = k..m.

with the stationary (sub-optimal) “Lagrangian” value for QS :

QS(b) =

k−1∑
i=1

pi − α1/n(b)
k−1∏
i=1

(
pi
p̂i

)p̂i
.

Thus, the absolute error from the approximation has the upper bound:

QS −QS(b) =
pk
p̂k

(
1

N
ln

1

α
− 1

N

k−1∑
i=1

pi

)
+ α1/n(b)

k−1∏
i=1

(
pi
p̂i

)p̂i
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