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ABSTRACT 

The probability of perfection becomes of interest as the realization of its role in the reliability 

assessment of software-based systems. It is not only important on its own, but also in the 

reliability assessment of 1-out-of-2 diverse systems. By “perfection”, it means that the 

software will never fail in a specific operating environment. If we assume that failures of a 

software system can occur if and only if it contains faults, then it means that the system is 

“fault-free”. Such perfection is possible for sufficiently simple software. While the perfection 

can never be certain, so the interest lies in claims for the probability of perfection.  

 

In this thesis, firstly two different probabilities of perfection – an objective parameter 

characterizing a population property and a subjective confidence in the perfection of the 

specific software of interest – are distinguished and discussed. Then a conservative Bayesian 

method is used to claim about probability of perfection from various types of evidence, i.e. 

failure-free testing evidence, process evidence and formal proof evidence. Also, a “quasi-

perfection” notion is realized as a potentially useful approach to cover some shortages of 

perfection models. A possible framework to incorporate the various models is discussed at 

the end. There are generally two themes in this thesis: tackling the failure dependence issue in 

the reliability assessment of 1-out-of-2 diverse systems at both aleatory and epistemic levels; 

and degrading the well-known difficulty of specifying complete Bayesian priors into 

reasoning with only partial priors. Both of them are solved at the price of conservatism. 

 

In summary, this thesis provides 3 parallel sets of (quasi-)perfection models which could be 

used individually as a conservative end-to-end argument that reasoning from various types of 

evidence to the reliability of a software-based system. Although in some cases models here 

are providing very conservative results, some ways are proposed of dealing with the 

excessive conservatism. In other cases, the very conservative results could serve as 

warnings/support to safety engineers/regulators in the face of claims based on reasoning that 

is less rigorous than the reasoning in this thesis. 

 

Keywords: probability of perfection, Bayesian, 1-out-of-2 systems, conservative reasoning, 

software diversity, fault-tolerant, quasi-perfection, fault-free, software reliability.
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1. INTRODUCTION 

This chapter firstly reports the motivation of this thesis, i.e. why the probability of perfection 

is of interest. Then research objectives and research questions are discussed. 

1.1. Rationale for the research  

1.1.1. Requirement and assessment of ultra-high dependability 
It is a commonplace that our current human societies highly depend on software-based 

systems which are widely used in an increasing number of applications. This is particular true 

in the safety critical areas, where the failures may bring serious monetary loss and/or human 

suffering. Examples include the control of aircraft, industrial plants, railway and air traffic, 

weapons and military units, banking and commercial transactions. As a result, the 

dependability requirements for such systems are often very high. One frequently quoted 

example is the flight-critical avionics systems in civil transport airplanes; the requirement is 

less than 10-9 probability of failure per hour of operation (FAA 1988). For demand-based 

systems, there are similarly stringent requirements: e.g. the claimed probability of failure on 

demand (pfd) for the combined control and instrumentation safety systems on the UK 

European Pressurised Reactor (UK EPR) is 10-9 (HSE 2011).  

 

In the first example, the high reliability requirement is due to the massive exposure 

worldwide for a particular aircraft fleet, and thus for a particular critical flight-control system. 
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For instance, (Boeing 2015) shows that the Airbus A320 and its siblings had experienced 

some 80m flight departures by 2013. As world-wide flights increase in frequency, there is 

pressure to improve aircraft safety so that accident frequencies also do not increase. In the 

nuclear example, even though exposure measured in operating hours will be much more 

modest, the worst case accidents may lead to catastrophically greater consequences and thus 

need to be extremely unlikely (HSE 1992). 

 

To achieve this kind of ultra-high dependability is not only a difficult task of design and 

implementation, but also poses even harder problems of assessment. In the assessment, we 

need a credible argument that would convince a regulator that the software-based system of 

interest is reliable enough to use in a safety-critical context before it is deployed in actual 

operation. However, (Littlewood and Strigini 1993; Butler and Finelli 1993) tells the fact of 

the difficulties to propose those credible arguments, e.g. direct black-box operational testing 

would require an infeasible time on test, prior to deployment, to support claims for the failure 

rates, or pfds, needed in practice.  

 

In this thesis, to deal with the difficult problem of assessment, a new approach was proposed. 

The idea is that, instead of reasoning about reliability – failure rates, pfds – we claim 

something about perfection. In the following sections, readers will find the definition of 

perfection and why we should believe such perfection is possible. Then, with two examples, 

the advantages of claiming perfection in the reliability assessment task are explained. 

1.1.2. Definition of perfection of software-based systems 
In this thesis, perfection of a software-based system means that a “perfect” system will never 

fail no matter how much operational exposure (associated with a specific operational 

environment/profile) it receives. If we assume that failures of a software system can occur if 

and only if it contains faults, then it means that the system is “fault-free”. Of course, no one 

can be certain that a system is perfect in the sense of the definition. But they may be prepared 

to accept that such perfection is possible. To capture this uncertainty, we shall use 

“probability of perfection” as a measure. 
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1.1.3. Why perfection is possible?  
In fact, as John  Rushby pointed out in (Rushby 2009; Littlewood and Rushby 2012), the 

traditional processes of software assurance, such as those performed in support of DO-178B 

(the guidelines for the certification of safety-critical aircraft software), can be best understood 

as developing evidence of possible perfection, rather than ultra-high reliability. Indeed, 

claims for the perfection of some systems may be more intuitively plausible than claims for 

very high reliability, since the two would be based upon different types of evidence and 

reasoning. A claim for 10-9 probability of failure per hour seems to acknowledge that the 

system in question is unlikely to be perfect – for example because of the complexity of its 

functionality – and resulting assessment of an extremely small number may not be 

believable1. On the other hand, a claim for perfection may be based upon evidence that the 

design is simple enough that the designers had a chance of “getting it right”.  In (Bertolino 

and Strigini 1998), the authors illustrated the scenarios may occur that make claims of 

perfection very plausible. For instance, the program performs a very simple function (e.g., 

comparing a sensor reading against a threshold and producing a single-bit output). Then via a 

simple design, it could be extremely simple in its implementation, resulting in few lines of 

code with very few branches. Additionally with much effort in checking the program, the 

developer would have a good chance of making the program perfect. 

1.1.4. What is the benefit of claiming perfection? 
As stated earlier, claim something about perfection is believed to be able to facilitate the 

reliability assessment task of software-based system. There are at least two ways in which the 

new notion of possible perfection will be benefit.  

 

Firstly, similar as the point in (Bertolino and Strigini 1998; Strigini and Povyakalo 2013), 

perfection can be seen as a lifetime claim which concerns the need to assess the chance of 

being free from failures during the whole lifetime of the system. An artificial example could 

be considered here to explain the point. Imaging we have a critical on-demand2 system (e.g. 

emergency shut-down system for a nuclear reactor) for which we expect 100 demands in its 
                                                
1 For example, in an exceedingly long operational testing, doubts about the correctness of the testing oracle and 

testing profile may come to dominate. 
2 The point is also applicable to continuously operating systems. 
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lifetime. If we would like to be 99% confident that it will survive all the demands without any 

failure, we need its pfd to be no worse than 10-4. When the number of expected demands 

increased to 1000, we would need a pfd smaller than 10-5 to reach the 99% confident of being 

free from failures. For 10,000 demands, a pfd of 10-6 is needed, and so on. As can be seen, the 

required pfd could be very demanding when the expected number of demands in the lifetime 

is getting big. However, we could be 99% confident of seeing no failures in any number of 

demands if we were 99% confident in perfection. If we could support such perfection claim 

somehow (which is the major research objective of this thesis), the difficulty of assessing an 

ultra-high reliability is avoided.  

 

The second advantage concerns the assessment of the reliability of diverse channel software-

based systems. Such fault tolerance architecture is widely used in safety-critical application, 

and some evidence from industrial applications shows that this kind of design diversity has 

been successful (Littlewood, Popov et al. 2002). For example, the safety-critical flight control 

systems of Airbus fleets have experienced massive operational exposure (Boeing 2015) with 

apparently no critical failure. The intuitive explanation is “two heads are better than one”, i.e. 

if we force two or more systems to be built differently, their resulting failures may also be 

different. So if, in a 1-out-of-2 system (1oo2 system), channel A fails on a particular demand, 

there may be a good chance that channel B will succeed.  

 

But such industrial evidence is only available after the fact. While in the licensing of a safety-

critical system, we need an assessment tells that such a design-diverse system is reliable 

enough before it is deployed. The key problem in assessing the reliability of diverse software 

fault-tolerant systems lies in estimating the level of dependence between the failure processes 

of the two (or more) channels. Both experimental work (Knight and Leveson 1986) and 

theoretical modelling (Eckhardt and Lee 1985, Littlewood and Miller 1989) have showed that 

we cannot naively assume independence between the diverse channels which are 

independently developed. This is due to the inherent variation of difficulty of the problem 

being solved. Such as, for a 1oo2 system, if channel A fails on a randomly selected demand, 

this may increase the likelihood that the demand is a “difficult” one and so increase the 

likelihood that channel B also will fail. Therefore, we cannot simply multiply the marginal 

pfds of the two channels (say pfdA and pfdB respectively) to get a system pfd, i.e. (1.1). 

௦௬௦݂݀  ≠ ݂݀ ×   (1.1)݂݀
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In recent work (Littlewood and Rushby 2012), the authors proposed a new way to reason 

about the reliability of a special kind of 1oo2 systems. Here the channel A is conventionally 

engineered and presumed to contain faults, and thus supporting only a pfd claim (say pfdA).  

On the other hand, the channel B is extremely simple and extensively analysed, and thus is 

“possibly perfect”; the claim about this channel B is a probability of non-perfection (say 

pnpB
3). Then the Littlewood-Rushby model (LR model) tells: 

௦௬௦݂݀  ≤ ݂݀ ×   (1.2)݊

 

The result depends on the fact that there is conditional independence between the events “A 

fails on a randomly selected demand” and “B is not perfect”, given that the probabilities of 

these events, respectively pfdA and pnpB, are known. In reality, of course, an assessor would 

not know pfdA and pnpB with certainty: there is epistemic uncertainty about their numerical 

values. This imposes upon the assessor the need to express bivariate beliefs about these 

unknowns jointly: this is known to be a difficult task. In later work (Littlewood and 

Povyakalo 2013a) addressed this problem. Their results require only an assessor’s (partial) 

marginal beliefs about the parameters. There is a large literature on the assessment of pfd 

from statistical analysis of operational tests (Littlewood and Wright 1997; Musa and 

Ackerman 1989; Miller, Morell et al. 1992), so the first of the parameters could be relatively 

easier assessed, e.g. in terms of a Bayesian posterior distribution. That leaves pnpB as a 

research interest. 

 

To sum up, the probability of perfection is not only of interest on its own as a lifetime claim, 

but also plays an important role in the reliability assessment of diverse-channel systems, 

which motives the research in this thesis. 

1.2. Research questions and objectives 

From the previous section, we know probability of perfection plays an important role in the 

reliability assessment, especially in dealing with the dependence issue of 1oo2 diverse 

                                                
3 In this thesis, “probability of perfection” is the research subject, which is of course simply 1-pnp. 
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systems. To improve our understanding of probability of perfection and apply it in reality,   

there are two overall research questions need to be answered: 

1. Since the parameter pnpB in the original LR and LP models is a population property 

(see explanations in the literature reviews), LR and LP models are essentially 

describing what happens on average in terms of a population of 1oo2 diverse systems. 

However, in most cases, assessors are interested in the reliability of the specific 

software on hand. So how to tackle the issue of dependence of a single 1oo2 diverse 

system in line with the original LR and LP models? Similarly, can we find out more 

ways to extend the LR and LP models to broaden the use of probability of perfection?   

2. To use the models requiring beliefs on perfection, we need to know how we can claim 

perfection in a probabilistic form from the various types of V&V evidence. Ideally, is 

there any possible way to combine the various types of evidence to support a stronger 

perfection-related claim? 

 

To answer the two overall questions, specific research objectives are listed below and form 

the overall structure of this thesis. 

1. Research question 1 requires a comprehensive understanding of the dependence 

problem of diverse channel software systems. So literatures are reviewed in Chapter 

2 on the topic of software diversity: is diversity helpful; how to achieve diversity; and 

most importantly how to assess the diverse systems? All these questions lead to the 

problem of dependency and motivate the use of probability of perfection.  

2. Essentially there are two types of probability of perfection, i.e. a subjective 

confidence (probability) in the perfection of the single program of interest (e.g. the 

first example in section 1.1.4) and an objective parameter of a population of programs 

(e.g. the second example in section 1.1.4). Via the population parameter pnpB, the 

original LR and LP models are essentially describing what happens on average in 

terms of a population of 1oo2 diverse systems. Chapter 3 discusses the relations and 

differences between the two different probabilities of perfection and extends the LR 

and LP models to tackle the issue of dependence of a single 1oo2 diverse system. 

3. Failure free testing evidence seems the most common evidence for a possible perfect 

system in reality. To what extend can this type of evidence help us to increase our 

confidence in perfection? Topics on conservative claims for perfection via failure free 

runs evidence are discussed in Chapter 4. 
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4. One important source of evidence for the good quality of software-based systems is 

the “process evidence” which means the perfect behaviours of previous similar 

products in this thesis. Modelling via good process evidence (i.e. failure-free runs of a 

population of similar products) to learn about the probability of perfection is 

investigated in Chapter 5. 

5. The evidence of formal verification seems a strong support to perfection claims. 

However, due to the uncertainties in a formal verification process, there are 

limitations of formal proof evidence to support perfection claims. In Chapter 6, how 

various sources of uncertainty affects the probability of perfect after seeing formal 

proof evidence is analysed. And what need to be elicited from assessors to get a 

quantitative posterior belief on perfection is discussed. 

6. It has been noticed as a fact that “perfection” and “extremely small pfd” are 

effectively indistinguishable in practice as explanations for extensive failure-free 

working. The notion of “quasi-perfection” is introduced in Chapter 7 to help 

modelling on the pfd of a 1oo2 diverse system. The advantages and limitations of 

“quasi-perfection” are discussed. 

7. In Chapter 8, the work in previous chapters are summarised into 3 parallel sets of 

models spanning over 4 levels (aleatory, epistemic, learning and evidence levels). A 

possible framework to incorporate different kinds of evidence is proposed. Finally, 

contributions and limitations of each chapter and the whole thesis are discussed, as 

well as future work. 
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2. LITERATURE REVIEW 

Since the diversity idea was first introduced as a fault tolerance means, four decades have 

passed. Research on software diversity has expanded in multiple directions: goals (fault 

tolerance, security, software engineering), means (managed or automated diversity), and 

analytical studies (quantification of diversity and its impact) (Baudry and Monperrus 2015). 

However, most of the recent achievement is essentially based on the classical techniques, 

experiments and modelling. In this chapter, literatures on the classical use of diversity for 

software are reviewed and summarised to answer questions like: what are the popular 

techniques based on the diversity idea? Is diversity useful? How to build diverse systems? 

Most importantly, how to assess diverse systems? 

2.1. Techniques based on diversity 

2.1.1. Design diversity 
Design diversity is specifically used to tolerate design faults in programs arising out of wrong 

specifications and incorrect coding. Multiple versions of the software are independently 

developed by different development processes (e.g. different teams, different languages etc.)   

These variants are then used in a redundant manner to achieve fault tolerance. Popular 

techniques based on the design diversity idea for fault tolerance mainly include: 

 N-version programming: Similar to the N-modular programming approach in 

hardware fault tolerance-version programming, N-version programming was first 
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proposed (Avizienis and Chen 1977) in 1977. In this technique, two or more 

functionally equivalent programs are named versions which are independently 

developed. Then these N versions will be executed in a parallel manner, with an 

adjudication logic (e.g. majority voting) being used to compare the results produced 

by all the versions and provide a single adjusted output. Despite of the high cost of 

generating different versions and implementing the voting logic, this technique has 

been applied to a number of real-life systems such as railroad traffic control and flight 

control. 

 Recovery blocks: This technique is analogous to the cold standby scheme for 

hardware fault tolerance, which was first introduced in (Horning, Lauer et al.1974). 

Similarly as N-version programing, multiple variants of software which are 

functionally equivalent are independently developed, but deployed in a time 

redundant fashion. An acceptance test is used to test the validity of the result 

produced by the primary version. Passing the test means the acceptance and use of the 

results from primary version. On the other hand, when the results from the primary 

version were rejected by the acceptance test, another version among the diverse 

versions would be invoked and executed to generate new results which would be 

tested by the acceptance testing again. This procedure would not stop until the 

acceptance testing is satisfied by one of the diverse versions or until the worst case 

that all the versions have been exhausted. 

 

There are two significant differences between recovery blocks and N-version programming. 

First, only one version is executed at a time in recovery blocks approach; second, the validity 

of results is decided by an acceptance testing rather than by adjudication among the N outputs. 

The recovery block technique is the important basis for the distributed recovery block 

structure which has been applied to real-life command and control applications (Randell and 

Xu 1995).  

 

There are other forms of techniques which are essentially the mixtures of these two basic 

ones, such as recoverable N-version blocks and N-self checking programming. The common 

feature of all these approaches is the independent generation of functionally identical 

program versions. Then the versions may be executed in parallel or sequentially, or mix of 

the two cases (Voges 1994). 
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2.1.2. Data diversity 
Data diversity was first introduced by Amman and Knight (Amman and Knight 1987), and 

relies on the observation that a software sometime fails for certain values in the input space 

and this failure could be avoided if the minor perturbation in input data is acceptable to the 

software. There are two original data diverse software fault tolerance techniques developed 

by Amman and Knight (Amman and Knight 1988): 

 N-copy programming: N-copy programing is the data diverse complement of the N-

version programming in design diversity. Being different from N-version programing 

which provides fault tolerance capability via multiple diverse versions of the software 

written against the same specification, N-copy programing technique has N copies of 

a single program. The diverse-data system produces a related set of points in the data 

space, and then each copy runs on a different input set. An enhanced voting scheme 

(normally with more complex and precise algorithms than majority voting mechanism) 

is used to select the system outputs.  

 Retry blocks: It is the data diverse complement of the recovery block technique. A 

watchdog timer is used and triggers the execution of a backup version if the original 

algorithm does not produce an acceptable result within a specified period of time. The 

primary version is executed using the original system input and then the results are 

tested by acceptance testing. If the results are not accepted, the input data will be “re-

expressed” (by some built in re-expression algorithms). The primary version will be 

run using the re-expressed input data and tested again. By that analogy, the execution 

will end when a result passes the acceptance testing or the time period violates the 

watchdog timer. In the case of the time deadline expires, a backup version may be 

invoked to execute on the original input data. 

 

In most of the real time control programs, since sensor values are usually noisy and 

inaccurate, data diversity techniques may be able to prevent a failure. However, data diversity 

based techniques have their own limitations; due to that equivalent input data re-expression 

might not be acceptable by all requirement specifications for some engineering tasks. 

2.1.3. Environment diversity 
Environment diversity is also an approach to tolerance fault in software (Trivedi and 

Vaidyanathan 2002).  A dramatic instance of applying the environment diversity idea is 
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restarting, as pointed by (Adams 1984) that restarting the software-based systems is the 

simplest and best approach to masking software faults. The environment diversity related 

techniques are based on the observation that most of the software failures are transient in 

nature. Transient failures are mostly due to the design faults in software which result in 

unacceptable and erroneous states in the operating system environment (Jalote, Huang et al. 

1995). Thus environment diversity techniques attempt to provide a new or modified operating 

environment for the running software. Once seeing failures, the software will be executed in a 

different operating environment (e.g. a new OS environment state which is achieved by some 

clean-up operations). 

 

Even though there seems no empirical experiment showing the benefits of environment 

diversity (like the ones for design diversity that you will see in later section), some theoretical 

analysis shows the potential usefulness of environment diversity in terms of certain type of 

faults (Trivedi and Vaidyanathan 2002).  

 

Retry operation, restart application and rebooting (can be done on the same node or on 

another spare cold/warm/hot node) are all examples of environment diversity techniques. The 

new research area – software rejuvenation (Huang, Kintala et al. 1995;Cotroneo, Natella et al. 

2014) is also a specific technique of environment diversity (Trivedi and Vaidyanathan 2002).  

2.2. Is diversity design useful? 

Diversity design (e.g. N-version programming) is the most classical and extensive application 

of software diversity. There had been some controversy about the benefits that the approach 

brings since it was first introduced. In earlier years, research work was mainly focusing on 

the effectiveness of software diverse design; or to be exact, whether the diversity design 

could bring us the benefit of allowing us to simply use the result assuming versions fail 

independently. To understand that, both empirical experiments and theoretical modelling 

work was conducted. 
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2.2.1. Experiments on software diversity design 

Fault diversity 

Clearly any common faults would limit the degree of reliability improvement, and certainly it 

would be unreasonable to expect failure independence in such cases. If diverse design results 

in diverse faults, then we should have higher confidence (than the case with common faults) 

in the fault tolerance capability of diverse systems. 

 

Some of the earliest experiments (Dahll and Lahti 1979; Gmeiner and Voges 1980; Kelly and 

Avizienis 1983; Dunham 1986) centre on analysing the software faults diversity. One 

important common conclusion from all these experiments is that most of the faults are similar 

due to the low quality (incompleteness and ambiguity) of specifications. As the faults caused 

by design and coding tend to be discovered in the verification and validation stage, a high 

proportion of specification related faults were presented in the final program versions. For 

example in the experiment (Gmeiner and Voges 1980), 12 specification faults were found out 

of a total of 104. Then after acceptance testing, there are 10 specification-related faults out of 

a total of 18. Another extreme example is the Project on Diverse Software (PODS) (Bishop 

1986), in which three diverse teams (in England, Finland and Norway) implemented a 

nuclear protection system under very good quality control. It turns out that all the faults were 

caused by omissions and ambiguities in the requirements specification, i.e. no design and 

implementation related faults after testing. Of course such specification related common 

faults will undermine the assumption of expected independence of failure. 

 

In the experiments (Kelly and Avizienis 1983; Bishop 1986), diverse specifications from 

common requirements were introduced. In general, diverse specifications can potentially 

reduce specification related common faults, but the performance is uncertain and there is a 

risk that the specifications will not be equivalent. So the value of using diverse specifications 

in reality is still unclear. 

 

In some of the experiments mentioned above, the impact of programming language had been 

checked. Programming language has impact on coding related faults which tend to be fixed 

before the final program. For specification and design related faults, the use of diverse 

programming languages has little effect on them.  
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Later, to deal with the specification related common faults, the “design paradigm” (which is a 

set of rigorous guidelines for the implementation of N-version programming) was proposed 

in (Avizienis, Lyu et al. 1988; Lyu and He 1993). In (Avizienis, Lyu et al. 1988) which is the 

very first experiment using this paradigm, only two specification-related common faults out 

of a total of 93 was found. In the experiment (Lyu and He 1993), no specification related 

faults were found after acceptance testing. More importantly, there was a big improvement of 

residual faults comparing to previous experiments and significant reduction in identical or 

very similar faults.  

 

For “off-the-self” (OTS) products, Gashi conducted a study on the fault diversity of four OTS 

SQL servers in (Gashi, Popov et al. 2004). They found that very few bugs affected two of the 

four servers, and none caused failures in more than two servers. So it seems the diverse OTS 

servers (with diverse faults) have a good chance to deliver high reliability comparing with 

individual servers or any replicated configuration. 

 

But there is still a gap between faults and failures. Even though the faults are diverse, the 

channels still could fail at the same time, which had been observed in (Bishop and Pullen 

1987). So the reliability improvement could only be determined by the degree of failure 

dependency between the diverse channels. Experiments on observing the failure behaviours 

of diverse design systems are discussed in following.  

Failure diversity 

To directly evaluate the failure dependency, the highly referenced experiments (Eckhardt, 

Caglayan et al. 1991; Knight and Leveson 1986) had shown us that the independence of 

failures cannot be supported. For example, in Knight and Leveson’s experiment, 27 versions 

of a program were implemented independently based on a common Missile Launch 

Interceptor specification at two universities, and then subjected to one million tests. The 

specification was claimed not to affect the outcome, based on the fact that the specification 

was built on the experience of earlier experiments and carefully independently reviewed. The 

major conclusions are the assumption of failure independency cannot be held, but the benefits 

may still be considerable on average. Even though disputes arose over the conclusions of the 

experiment, (e.g. the realism that it used students rather than professional software 

developers), later some theoretical analysis (see next section) supported the points of the 

experiments.  



On the Probability of Perfection of Software-based Systems 

26 

 

Rather than testing for the failure independence assumption, another experimental evaluation 

of the degree of failure dependency was made in a follow-up work to the PODS project, 

named STEM project (Bishop and Pullen 1987). The special part of this experiment is that all 

the known faults (containing both the specification-related and the implementation-related 

faults in PODS) could be switched on and off, so it is possible to measure the individual and 

coincident failure rates of all possible fault pairs, and then make comparisons with the 

independence assumption. For example, set one fault for channel A and test the failure rate 

say PA, and set another fault for channel B and test the failure rate say PB. Then assemble 

these two channels into a 2-version system and test the failure rate say PAB. By comparing the 

PA×PB and PAB, we could know the dependency of failures and how it was affected by the 

dependency of faults. The result was that random selected fault pairs were giving a 

distribution of the degree of failure dependency ranged from strong positive correlation to 

strong negative correlation. Therefore the simple independent assumption of failures between 

diverse channels was disproved again.  

 

By looking into the details of the fault pairs (non-identical) in the STEM experiment, 

analyses (Bishop and Pullen 1991) have been carried out to explain the observation of both 

strong positive correlation and strong negative correlation. Specifically in the analysis of 

positively high dependency fault pairs, besides the well-known factor of common mode faults 

(e.g. in the requirements specification), there were some strange clusters of high dependency 

fault pairs observed which were of little or no commonality. Later by more examination, the 

“error mask” was discovered as a source of high dependency. The error masking is an 

inherent feature of the program functions. Any output whose computation relies on masking 

functions (e.g. AND gates, OR gates, MAX and MIN functions) is likely to exhibit dependent 

failures in diverse versions.  

 

Error masking is not the only inherent feature of software that could result in two dissimilar 

faults leading to high levels of coincident failures. In a NASA experiment (Kelly, Eckhardt 

and el at. 1988), there is one function called the Fault Detection and Isolation (FDI) module. 

Faulty sensors would be detected by this module, then other subsequent modules can 

compute the input data which is from the remaining good sensors. Faults in FDI module will 

cause either too few or too many sensors to be used. In either circumstance, there would be 

“noise” in the collected data and thus cause a failure. So basically, any fault in FDI module 
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(the reasons for the sensor diagnosis errors may differ) will change the status of the sensors 

which will finally cause a failure of the whole system.  

 

All in all, the main lesson we learned here is that we cannot simply claim failure 

independence of diverse channels, due to both the common mode faults and dissimilar faults. 

The sources of common mode faults are mostly ambiguities and omissions in the 

specification and common implementation mistakes. Even though efforts are made (e.g. the 

diverse programming paradigm) to minimise the risk of containing common mode faults, the 

dissimilar faults would as well cause a burst of coincident failures due to some inherent 

features of software (e.g. error masking). However generally speaking, even if there is 

dependency of failures, the diverse approach used in the experiments can benefit us on 

average. 

2.2.2. Theoretical models on software diversity design 
The gap between laboratory and specific real-world projects can never be excluded. All the 

laboratory experiments mentioned above have their own limitations. Therefore theoretical 

modelling work had been proposed to support and extend the points of the experimental 

work. 

The Eckhardt and Lee model (EL model) 

Intuitively, it is possible that some programing tasks are intrinsically harder than others, so all 

programmers tend to make mistakes with greater probability in such circumstances. Based on 

that difficulty variation idea (which initially named as “intensity function” but later refined by 

Littlewood and Miller in (Littlewood and Miller 1989) as “difficulty function”), Eckhardt and 

Lee (Eckhardt and Lee 1985) proposed the first probabilistic model that tried to capture the 

nature of failure dependency. 

 

First in the EL model, implementing a version of program is represented by randomly 

selecting a version from a population of programs. Then the key variable is the difficulty 

function θ(x), defined to be the probability that a program chosen at random will fail on a 

particular demand x. If we did a thought experiment that infinite programs have been selected 

(via the probability distribution over all possible programs) and tested, the proportion of those 

failed is the value of θ(x) for the demand x. This seems a natural definition of the intuitive 

notion of difficulty: the more difficult a demand, the greater we would believe the chance that 
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an unknown program will fail. Difficulty should vary across the demand space, i.e. for two 

different demands x1 and x2, θ(x1) ≠ θ(x2).  

 

If v1 is a random selected version, then we have: 

(demand	random	a	on	fails	ଵݒ)ܲ  =  ൯ (2.1)(ܺ)ߠ൫ܧ

where X is the random variable representing demands.  

 

For any given demand x, and two independent randomly selected versions v1 and v2, we have: 

,fails	ଵݒ)ܲ  (ݔ	demand	|	fails	ଶݒ

= (ݔ	|demand	fails	ଵݒ)ܲ	 × (ݔ	|demand	fails	ଶݒ)ܲ

=  ଶ[(ݔ)ߠ]

 

(2.2) 

 

Then the probability that a randomly selected pair of programs (i.e. a diverse system) both 

fail on a randomly selected demand: 

  ܲ(ܺ = ,ଵݒ)ܲ(ݔ (ݔ	݀݊ܽ݉݁݀	|	݈݂݅ܽ	ℎݐܾ	ଶݒ


= (ଶ[(ܺ)ߠ])ܧ

= ൯൧(ܺ)ߠ൫ܧൣ
ଶ
+  [(ܺ)ߠ]ݎܸܽ

 

(2.3) 

 

In the right hand of expression (2.3), the first term is simply the naive result using the 

independence assumption, i.e. multiply the two probabilities that randomly selected program 

fails on randomly selected input. And the second term ܸܽݎ[ߠ(ܺ)] is always positive (or 0), 

so the real probability of failure of the diverse system is always bigger (or equal when 

[(ܺ)ߠ]ݎܸܽ = 0) than the one under the independence assumption. To be more exact, the 

more the difficulty varies (i.e. a bigger ܸܽݎ[ߠ(ܺ)]) between demands, the greater the failure 

dependence between the two channels. When there is no variation in difficulty of different 

demands, we indeed could claim independence of failures by this model, but this seems 

unlikely in practice. Instead, it is fair to claim that there will always be positive variance, and 

thus system reliability can always be expected to be lower than it would be if there was 

independence. 

 

This EL model is important, as it is the first one trying to formally model the meaning of 

independent development of software versions and the nature of failure dependency. Here, as 

the programs are randomly selected from a population, so “independence” here seems to be 
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essentially about process: the teams simply did not communicate with each other while 

developing their own versions. But in practice, this independent development is not realistic. 

Actually, another more plausible approach is to force diversity in the development processes 

of the different versions, e.g. deliberately use different teams, different programing languages 

and so on. Based on this point, the EL model later was refined by Littlewood and Miller, 

which will be introduced in next subsection. 

The Littlewood and Miller model (LM model) 

The LM model (Littlewood and Miller 1989) generalized the EL model by taking into 

account of the forced diversity approach in development process. So the difficulty functions 

for the two different develop methodologies4 should not be the same. Use the similar 

notations in the EL model, say θA(x) and θB(x) as the difficulty function for a particular 

demand x in the methodology A and B respectively. Then the probability of a random 

selected version (say vA) from the population A (i.e. developing a version via methodology A) 

fails on a random demand is ܧ൫ߠ(ܺ)൯. And similarly, we have ܧ൫ߠ(ܺ)൯ for the vB. 

 

For any particular demand x, the two randomly selected programs vA and vB (from their own 

population respectively) will fail independently: 

,ݒ)ܲ  (ݔ	demand	|	fail	both	ݒ

= (ݔ	demand	|	fails	ݒ)ܲ × P(ݒ	fails	|	demand	ݔ)

=  (ݔ)ߠ(ݔ)ߠ

 

(2.4) 

 

Then the probability that a randomly selected pair of versions (i.e. a diverse system) both fail 

on a randomly selected demand: 

  ܲ(ܺ = ,ݒ)ܲ(ݔ (ݔ	demand	|	fail	both	ݒ


= ൯(ݔ)ߠ(ݔ)ߠ൫ܧ

= ൯(ݔ)ߠ൫ܧ൯(ݔ)ߠ൫ܧ + ,(ݔ)ߠ൫ݒܥ  ൯(ݔ)ߠ

 

(2.5) 

 

It is easy to tell that the EL model is just the special case of the LM model when θA(x) = θB(x) 

= θ(x). Again, the first term in the right hand side of formula (2.5) is just the naive 

                                                
4 The set of constraints imposed on the development of a version is called methodology in the original LM 

model paper. 
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independent failure result, i.e. it is merely the product of the probabilities of failure of 

programs vA and vB. The innovative part is the second term in (2.5). Since a covariance could 

be either positive or negative, it is no longer certain that the probability of failure of both 

randomly selected versions (i.e. the result (2.5)) will be greater than in the independence case 

(i.e. ܧ൫ߠ(ݔ)൯ܧ൫ߠ(ݔ)൯). If the difficulty functions were negatively correlated, the 

reliability of a 1-out-of-2 system could be even better than the one under the independence 

failure assumption. The informal explanation is that what is difficult for A is coincidently 

easy for B, and vice versa. 

 

Although negative correlation exists theoretically, it is very hard to justify it in practical 

applications. If we could assume negative correlation in some cases, then we would be able to 

claim the independence-based result as a conservative bound on the real system reliability. In 

(Littlewood and Povyakalo 2013b), the authors proposed some conservative bounds for the 

pfd of a 1-out-of-2 software systems, based on an assessor’s subjective probability of “not 

worse than independence” which, only in special cases, we could know from assessors. 

 

It is also worth mentioning that, if keeping the version reliabilities fixed in the EL and LM 

models, the LM model will always give a better result (a greater expected reliability of a 

diverse system) than the EL model. In this sense, the EL model can be seen as a worst case 

within the more general LM model, and it is reasonable to think that the EL result is 

unattainable. 

 

The main lesson from the LM model to be learnt is that, though it is theoretically possible (by 

forced diversity in development process) to obtain a diverse channel system which exhibits a 

better than independent failure behaviour, we could not simply assume the better-than-

independence case of channels in a diverse system. In fact there are possibilities of diverse 

channel failures from positive correlation and to negative correlation, and independence is 

just one very special case. There is no reason to expect failure independence is more likely 

than other cases without extra evidence.   

2.2.3. Diverse versions or high reliability in a single version 
From what we have learned above, even though independence between channel failures is 

unrealistic, it is reasonable to believe that diversity would contribute to reliability in an 
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average sense. However, from the engineering point of view, we cannot ignore the cost 

diversity design idea brings, as the common sense that developing software is very expensive 

and time consuming. Is the diversity design method cost-effective? What if the same effort 

were applied on a single version system, will diversity still result in a more reliable system?  

 

The cost of diversity has been discussed for example, in (Laprie, Arlat et al. 1990) and 

(Voges 1994). Basically, if we look at the cost of software diversity we need to distinguish 

which kind of diversity is applied. Taking the software life cycle to comprise Specification, 

Design, Coding, Testing and Use, the monetary costs for diversity are not the same for each 

stage in any particular circumstance. For example, if three teams independently construct a 

code from a common design, the cost of specification (ignoring the need to avoid ambiguities 

leading to discrepancies between the versions) and design are not affected, and the coding 

cost is simply triplicated, but the effect on the testing phase must be looked at in more detail: 

the possibility of testing the multiple versions back to back may reduce the cost of 

verification (compared to verifying N-versions separately). Last, the development of multiple 

versions has greater organizational costs than that of one version, in terms of coordination 

effort, cost of delays, and so on. 

 

Hatton (Hatton 1997) in 1997 published a strongly argued paper in favour of the cost-

effectiveness of design diversity basing on two empirical observations: 

 On average, 2-out-of-3 systems are 45 times more reliable than the individual version. 

 The “state of the art” development processes is costing much more than “ordinary” 

ones. And it delivers a 10 factor improvement in reliability over the ordinary 

processes. 

 

Hatton's analysis crucially depends on the assumption that the gain of fault-tolerance will 

increase when the reliability of individual channels increase. It concluded design diversity is 

always more cost effective than improving the reliability single version software. 

 

But later, this “10-vs-45” figure pair was questioned. First in the modelling work (Popov, 

Strigini et al. 2000), the authors refuted the ratios by showing that an increase in version 

reliability is not necessarily going to increase the gain from fault-tolerance. This refutation is 

based on both the experimental results (in section 2.2.1) and theoretical models (the EL and 
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LM models).  And then more experimental examples (Littlewood, Popov et al. 2000a) were 

proposed to support the conclusion that we cannot simply assume the fault tolerant approach 

will be better. Actually, both trends could win and it depends on the constraints on the 

development process. 

2.3. Achieve diversity 

Even though we cannot claim failure independence, diversity is still a good thing to improve 

the reliability of software-based system in some average sense. Besides the very classical and 

basic use of diversity in section 2.1, diversity idea could be applied in any phase of the 

lifecycle in the software engineering process, for instance, the diverse organizations of 

development teams, diverse development environments, different tools and languages used at 

every level of specifications and coding, different algorithms for the implementation of 

functions, diverse V&V methods etc. As project engineers, we have to make decisions on 

seeking diversity within an acceptable cost. In this section, previous work on giving 

suggestions on achieving diversity in real projects is reviewed. 

2.3.1. Diversity–Seeking Decision (DSD) 
The term “diversity-seeking decisions” (DSD for brevity) was first proposed in (Popov, 

Strigini et al. 1999) to represent all the subtle decisions to achieve diversity in a software 

development process. Before that, there was no scientific guidance on how to achieve 

effective diversity for a given project and project managers were making decisions on rather 

“common-sense” advices, e.g. (Lyu and He 1993). The difficulties in DSDs were raised by 

questions like: 

 How many DSDs are there? And what are they? 

 How effective is a single DSD? And how effective is any particular combination of 

DSDs? 

 What is the cost of each DSD? What is a cost-effective set of DSDs? 

 

In (Popov, Strigini et al. 1999), the authors posed similar questions and first attempting 

answers by looking into the causal links from DSDs to failure diversity, as the cited Figure 1. 

DSDs firstly produce “process diversity”. Visible differences in the structures and internal 

operations of versions were presumably caused by this “process diversity”.  And these 

different versions are “diverse products”. One may hope that the “diverse products” were 
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containing fewer numbers of identical faults than if the DSDs were not employed in the first 

place. This observation was termed as “fault diversity”. Finally, if successful, the actual goal 

of “failure diversity” would be achieved.  

 

 
Figure 1 the causal links from DSDs to failure diversity 

Knowing the mechanism how DSDs cause failure diversity, a complete list of DSDs was first 

introduced in (Littlewood and Strigini 2000) as below: 

 Data diversity 

o Using random perturbations of inputs. 

o Using algorithm specific re-expression of inputs. 

 Design diversity 

o Separate development (independent development) 

o Diverse development teams (forced diversity) 

o Diversity in description/programming languages and notations 

o Diverse requirements or specifications 

 Different expressions of substantially identical requirements 

 Different required properties implying the same behaviour 

 Requiring different behaviours from the diverse versions 

o Diverse development methods 

o Diverse verification, validation, testing 

o Automatic code transformation 

o Diverse development platforms:  

 Diverse tools. 
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 Diverse compilers (also applicable to replicas of a single version). 

o  Diverse support platforms: run-time platform 

 Separation and loose coupling. Diverse timing 

 Diverse hardware 

 Diverse operating systems or run-time executives 

 “Partial” diversity, limited to subsystems 

 Functional diversity 

 

For each item on the list, detailed analysis was carried out on: 

 Mechanism of action, problems tolerated: this is relevant for matching DSDs to 

perceived threats, and checking that all threats against which diversity is the preferred 

defence are actually “covered”. 

 Considerations on cost, efficacy, and practical experience: Having identified some 

cost factors, predictions of detailed costs should then reflect the cost structures of the 

specific organisations involved. 

 

Although the report (Littlewood and Strigini 2000) did not state any strong recommendations, 

it is useful to give indications for designers, project managers and dependability assessors in 

expecting on how effective these decisions will actually improve the delivered multi-version 

products. 

2.3.2. Single DSD 
Research work had been done on checking the efficiency of some items on the list. Even 

though the scope here does not cover the whole list, literatures on some representative DSDs 

are reviewed. 

DSD – diverse programing languages 

Meulen and Revilla in (van der Meulen and Revilla 2008) initiated a big range of empirical 

studies (covers 89,402 programs written to 60 specifications, on average 1,466 per 

specification) and reported some initial results about the effect of a single DSD, the 

diversification of programming language. They confirmed that programmers would make 

different kinds of faults with different languages. Therefore the diversity of programming 

language has positive effect on system reliability. And because of the size of their dataset, the 

authors stressed the statistical validity of their conclusions. 



On the Probability of Perfection of Software-based Systems 

35 

DSD – diverse development teams 

For the DSD “Diverse development team (forced diversity)”, Salako and Strigini showed that 

N-version programming may bring benefits even if the strict separation of development team 

is not achieved, and furthermore some communications between teams could bring us the 

benefit of “forced diversity” (Salako and Strigini 2013). Their work also gave three 

preference criteria between alternative ways of organising the development teams, using the 

expected system pfd as a suitable basis for decision-making. 

DSD – diverse fault remove techniques 

Another related work involving modelling the effects of diverse techniques used in software 

development to detect and remove software faults in the development of a single version of a 

program (Littlewood, Popov et al. 2000c), was inspired by the EL and LM model. With 

similar mathematical model as the EL and LM, the new model for diverse fault removal 

showed us some conclusions: 

 When we keep repeating the application of a particular fault finding procedure, the 

effect of each iteration upon system reliability cannot be simply assumed statistically 

independent. And such an incorrect independence assumption will always lead to too 

optimistic results. 

 Similar as one of the conclusions of the LM model, there is an intriguing possibility of 

better than independent behaviour of the diverse fault finding procedures. That 

requires a negative covariance between the targeted types of faults of the different 

fault removal procedures, i.e. whenever the ‘difficult’ faults for one procedure are the 

‘easy’ ones for the other, and vice versa. 

 If we could assume indifference among all fault finding procedures, then diversity 

should be applied as widely as possible. For example, AABCC is better than AAABC. 

 As the parameters in the model seem practically attainable, a systematic investigation 

of these parameters for different fault-finding procedures - and different classes of 

software application domains - in industrially realistic situations was suggested. 

DSD – functional diversity 

From the sections above, on average, we know diversity is a useful way to improve reliability, 

even though we could not simply claim independence between failures of versions. Analysis 

implied the reason was that difficult demands tend to fail most the versions no matter how 

diverse they are. But what if we make the problem different, i.e. diversify the input? For 
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instance, a diverse 1-out-of-2 system as a nuclear emergency shutdown protection system, the 

channel A makes its trip decision based on temperature inputs, and the channel B on pressure 

inputs. As there is no obvious source of common mode failures, it seems this higher level 

diversity could let us claim something no worse than independence of the channel failures.  

 

The intuitive answer seems appealing and promising to the achievement of reliability in 

diverse system. Detailed work (Littlewood, Popov et al. 1999) was proposed to strictly 

answer how reliable could be claimed for the use of functional diversity.  And specifically, 

could independence of channel failures be claimed? 

 

The model used in (Littlewood, Popov et al. 1999) was a generalization of the earlier EL and 

LM model, which basing on the notion of variation of difficulty. The result turned out to be 

that failure independence between functionally diverse systems is rather unrealistic. Instead, 

just like the normal N-versions programming, functionally diverse systems will tend to 

exhibit positively correlated failures. The explanation of the result was similar to the ones 

executing the same inputs, showing that the difficulty functions for the developers of the two 

functional different versions must be considered. 

 

The general conclusion here is that functional diversity, as a way of tolerating design faults 

and achieving high reliability, must be seen as a special kind of forced design diversity, 

requiring positive evidence for any claim of low correlation between failures. 

2.3.3. Combination of DSDs 
Extensive experiments about diversity were conducted (as mentioned in section 2.2.1), but 

few addressed alternative DSDs and only on small samples. Experimental evidence of the 

effectiveness of DSDs meant to force diversity among different versions, and in particular 

combinations of such DSDs, is rather rare. Meulen and Revilla in (van der Meulen and 

Revilla 2008) initiated a big range of empirical studies (covers 89,402 programs written to 60 

specifications, on average 1,466 per specification) and reported some initial results about the 

effect of a single DSD, the diversification of programming language. Later in (Popov, 

Stankovic et al. 2012), the authors reused and extended Meulen’s work into the consideration 

of two DSDs, diverse programing languages and diverse implementation algorithms. The 

general conclusions of these experiments are: first, some single DSD or combination of DSDs 
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produces higher reliability than naive diversity maximization on average; second, the 

improvement varies significantly between the DSDs and the problems.  So there are no 

simple universal rules, e.g. the more diverse the better, meaning the relationship between 

DSDs and the system reliability is complex and needs analysis under the specific 

circumstance. 

2.3.4. Diverse arguments 
A totally different new research line started about 10 years ago, looking into the efficiency of 

using diverse arguments to support dependability claims in a safety case. 

 

The use of diversity in arguments, the so-called multi-legged arguments, is specifically used 

to reduce the doubt in the claims about the dependability of a system (e.g. a pfd claim). 

Examples are: 

 A two-legged argument was used in (Hunns and Wainwright 1991) for the Sizewell B 

computer-based primary protection system, based on the UK’s Safety Assessment 

Principles for Nuclear Power Plants (HSE 1992). One leg is about the product itself, 

basing on the V&V results and the other leg is about the quality of the development 

process. 

 There are some standards and codes of practice (MoD 1997; CAA 2001) that 

suggesting the use of diverse arguments. For instance, the UK Def Stan 00-55 (MoD 

1997) suggested that one leg be based upon logical proof of correctness, and the other 

upon statistical testing.  

 

The examples shown above reflect the need of better understanding of the use of diversity in 

arguments. But before the paper (Bloomfield and Littlewood 2003), there was only informal 

justification for the use of multi-legged arguments for software. In (Bloomfield and 

Littlewood 2003), to model the diverse arguments, the authors introduced the notion of 

“confidence in claims” later refined in (Bloomfield, Littlewood et al. 2007). Then the efficacy 

of the multi-legged approach lies in how much confidence in a claim is increased by the 

multiple diverse arguments. With a primary model and some simple examples, the conclusion 

is that the efficacy depends crucially (as for design diversity) on the notions of dependence 

between arguments, e.g. between their assumptions. 
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The latest work (Littlewood and Wright 2007) looked in detail at a simplified and idealized 

2-legged argument (comprising a verification leg and a testing leg) which centres upon a 

claim about the system pfd, represented by a parametrised Bayesian Belief Net (BBN). Via 

manipulating the parameters that defined its node probability tables, the authors showed that, 

in most cases, adding a diverse second argument leg will increase the confidence in a 

dependability claim. However, there are two counter-intuitive and unexpected subtleties: 

 First, for a single leg, seeing definitely supportive evidence (i.e. correctly verified for 

the verification leg and no or very few failures for the testing leg) will not always 

increase our confidence in the dependability claim. 

 Second, an entirely supportive second leg (i.e. a leg that increases the confidence in a 

dependability claim on its own) can sometimes undermine an original argument, 

resulting overall in less confidence than came from this original argument.  

 

Even though there needs more work to look into the circumstance in which this counter-

intuitive result will happen, the paper emphasised the importance of having this kind of 

formal reasoning about arguments and confidence. 

2.4. Assess diverse software 

The reliability assessment of software system is always a difficult problem, especially when 

we trying to claim high reliability and quantify it. Simply treating the fault-tolerant system as 

a black box and observe its failure behaviour on test is not feasible in the case that very high 

reliability required to be claimed (Littlewood and Strigini 1993; Butler and Finelli 1993). 

And this approach ignored the diversity feature which intuitively ought to be useful in the 

assessment activity. So, will the assessment task be easier for a software system with the 

diversity knowledge presented. Or could we design a diverse software system for which the 

purpose of better assessment is considered at the beginning. In this section, literatures on the 

assessment of the reliability of diverse software system are viewed. 

2.4.1. The Popov and Strigini model 
Even though the EL and LM models (section 2.2.2) provided useful insights into the 

reliability of diverse systems, they have obvious limitations. The difficulty function of each 

demand could never be known in practice, so they essentially described what happened on 

average reliability of versions and pair of versions. Their goal is to help our understanding of 



On the Probability of Perfection of Software-based Systems 

39 

the problems instead of evaluating the reliability of a specific diverse system. But, in practice, 

we wish to know the distribution (or a bound with confidence) of the pfd of the particular 

system of interest. Popov and Strigini therefore extended the EL and LM models with some 

extra assumptions (Popov and Strigini 1998). 

 

At the early stage of this Popov and Strigini model (PS model), the unrealistic assumption is 

that for each demand x, we know whether it would cause failure or not for both channel A 

and B, being described by two binary function wA(x) and wB(x). For example, wA(x)=1 means 

that the demand x will certainly cause channel A fails. If we denoted Q(x) is the probability 

that demand x will be the next one (depends on operation profile), then the probabilities of 

failure of versions A and B on a randomly selected demand X are: 

 
ܲ = ܲ(ܺ = (ݔ	demand	fails|	A)ܲ(ݔ

௫∈
= (ݔ)ݓ(ݔ)ܳ

௫∈
 (2.6) 

 
ܲ = ܲ(ܺ = (ݔ	demand	fails|	B)ܲ(ݔ

௫∈
= (ݔ)ݓ(ݔ)ܳ

௫∈
 (2.7) 

 

For a specific demand x, the probability of both A and B fail is either 0 or 1(i.e. wA(x)×wB(x)), 

then: 

 
ܲ = ܲ(ܺ = (ݔ	demand	|	fail	both	B	and	A)ܲ(ݔ

௫∈

= (ݔ)ݓ(ݔ)ݓ(ݔ)ܳ
௫∈

= ܲ ܲ + ,ߗ)ݒܿ  (ߗ

 

 

(2.8) 

where the random variables ΩA and ΩB are defined as the values taken by wA and wB on a 

randomly chosen demand. 

 

The result (2.8) is similar to the result (2.5) of the LM model. The fundamental of LM model 

is the difficulty functions for two different development methodologies, which can take any 

value between 0 and 1 (representing the probability that a randomly chosen version, 

developed with that methodology, would fail on a given demand). However here, as the PS 

model is describing two known versions, the functions wA(x) and wB(x) can only take either 0 

or 1, and the only uncertainty concerns the choice of the next demand x, described by the 

probability distribution Q(x). 
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Of course, it is unrealistic to know the score functions wA(x) and wB(x) for any specific 

demand x and versions A and B. But some interesting properties of a particular diverse 

software system could be concluded: 

 Diversity design would reduce the “tail” of the pfd distribution. That is, essentially, 

reducing the risk of unacceptably unreliable system. 

 The efficacy of diversity varied greatly with the probabilities of individual faults –

more than with their severities. 

 

As very detailed knowledge about each demand for each version is required, it would be very 

hard to be attained the two functions wA(x) and wB(x) in reality. However, subdividing 

demands into classes (normally named as subdomains) is common practice for software 

engineers. This could be done in terms of modes of operation of a system or parts of the code 

being executed etc. 

 

With this more practical innovation idea, Popov and Strigini divided the demand space into 

subdomains and extended the earlier PS model in (Popov, Strigini et al. 2003). Given the 

knowledge on subdomains, the new PS model were able to give some results on the upper and 

lower bounds of the system pfd. The practical use of the upper and lower bounds was also 

discussed. Their bounds are only useful if they are substantially “narrower” than the ones 

obtained by other means.  

 

Even though the extended PS model did improve the ability of assessors and regulators to 

assess a particular diverse-channel system using information specific to that system, two 

main questions were still remained: first, useful knowledge on subdomains seems still 

difficult to get due to the fact that we usually deal with ultra-reliable versions. And the 

second is the gap of the differences between the demand – profiles under which the previous 

statistics data were collected and the one in the intended operational environment. 

2.4.2. Bayesian inference for the reliability of diverse software 
In (Littlewood, Popov et al. 2000b), Bayesian interference was first used to estimate the 

reliability of fault-tolerant software systems, and in particular, treating the system as a “white 

box”.  The intuitive idea here is that knowing the system is fault-tolerant will give us more 
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confidence about its reliability than simply treat it as a “black” box. Thus, we could break 

through the limitation of the assessment approach of direct testing. 

 

In the model, observation of not only the number of common failures but also the number of 

failures of each channel needs to be recorded. Use these 3 numbers of different failures as 

evidence, the prior– a joint distribution of pfdA, pfdB and pfdsys – would be learned into a 

posterior 3 dimensional distribution. 

 

Just like any Bayesian inference, the problem remains is giving a justifiable prior distribution. 

And in this particular case, this problem turns out to be surprisingly difficult. As this is a 

multivariate inference, which makes the difficulty of justifying the prior becomes even harder 

(Strigini 1994).  

 

While in some circumstance, there is large amount of evidence from previous use that strong 

prior distributions could be justified, such as off-the-shelf software (OTS) and legacy 

software, the Bayesian approach to reliability assessment is practically applicable and thus 

valuable. A number of papers advocated a model of software of complex structure built with 

off-the-shelf software were proposed, e.g. (Kuball, May et al. 1999) which is under the 

assumption that the OTS components will fail independently, and Kuball asserted that under 

that assumption the predictions about system reliability are guaranteed to be pessimistic. 

Popov scrutinised their results and contrary to the assertion by demonstrating a 

counterexample of priors which leads to optimistic predications (Popov 2002). Later a new 

way of applying Bayesian assessment to legacy safety-critical systems upgraded with fault-

tolerant off-the-shelf software was presented in (Popov 2013). A mechanism of “recalibration 

of coarse models” was used to deal with the problem of justifying the multivariate prior 

distribution. 

2.4.3. Reliability of 1oo2 systems in which one channel is possibly perfect 
In recent years, a new research line started on reasoning the reliability of divierse1oo2 

systems in which one channel is “possibly perfect”. The big advantage of the new theory is 

that the need to estimate the dependence between diverse channels is avoided, with the 

assumption that probability of perfection and probability of failure are independent. Even 

though there is no empirical evidence or theory to justify the assumption to be universally 
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true, we believe it is very plausible with some aid of random selection models (see later for 

detailed explanation). Here two fundamental papers (Littlewood and Rushby 2012; 

Littlewood and Povyakalo 2013a) are viewed. 

The Littlewood and Rushby Model (LR model) 

In practice, there is one kind of 1oo2 diverse channel systems that one channel is simple 

enough to have some chance to be perfect. As the general idea showed in (Littlewood and 

Rushby 2012), extensive and desirable functionality is provided by the primary channel A 

which is conventionally engineered and presumed to contain faults; while the channel B has 

very restricted functionality, and thus is much simpler. Because of this simplicity, it might 

have been possible to claim that the channel B is perfect. 

 

The perfection of a software-based system means that a “perfect” system will never fail no 

matter how much operational exposure it receives. If we assume that failures of a software 

system can occur if and only if it contains faults, then it means that the system is “fault-free”. 

Of course, no one can be certain that a system is perfect in the sense of the definition. But 

they may be prepared to accept that such perfection is possible. 

 

There are two kinds of uncertainty involved in reasoning about the reliability of a 1oo2 

diverse system. The first is aleatory uncertainty, or “uncertainty in the world,” the second is 

epistemic uncertainty, or “uncertainty about the world”. For more information about these 

two uncertainties, see (Oberkampf and Helton 2004). The LR model is that, at the aleatory 

level, it can be shown that there is conditional independence between the events “A fails on a 

randomly selected demand” and “B is not perfect,” given that the probabilities of these events, 

respectively pfdA and pnpB, are known. With that conditional independence, the LR model 

told us: 

 P(system	fails	on	randomly	selected	demand|݂݀ = ܲ, ݊ = ܲ)

≤ ܲ × ܲ 

(2.9) 

 

So with this LR result, when pfdA and pnpB are known, they are sufficient for computing an 

upper bound on the value of pfdsys. It is believed to be a significant and useful result, because: 

 We do not need to know about the dependence between the channel failures here, i.e. 

it avoided the long-standing problem (1.1) when assessing the reliability of software-

based systems. 
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 It is useful because it provides a conservative numerical upper bound for the system 

pfd which is simply the product of two hopefully small numbers, which thus could be 

a very small number. In the case that pnpB is not small (i.e. close to 1), the result is not 

practically useful due to close to the marginal reliability pfdA. So it is worth 

mentioning that this new approach is not applicable to systems where perfection is 

less likely. 

The Littlewood and Povyakalo Model (LP model) 

In line with the LR model, the Littlewood and Povyakalo (LP) model (Littlewood and 

Povyakalo 2013a) was proposed to address the epistemic uncertainty of the two parameters – 

pfdA and pnpB.  In reality, none of the values of pfdA and pnpB will be known with certainty, 

as a result of the imperfect knowledge of the assessors. This is where epistemic uncertainty 

comes in. Ideally, we plug in a two dimensional joint distribution of pfdA and pnpB into the 

LR model, but it is impractical that an assessor could express his whole joint belief about 

them. Rather, assessors are more likely to express partial information (e.g. a percentile) about 

the marginal distribution on pfdA and pnpB (such as the (2.10) and (2.11)). Therefore the aim 

of the LP model is to avoid the need to estimate the epistemic dependence between two 

parameters and requires only partial beliefs on the marginal distributions. 

 

There are several theorems in the LP model, and each of them allows us to get a conservative 

expectation or confidence bound on the system pfd. For instance the theorem 1 in the LP 

model, if we know, 

݂݀)ܲ  < ܲ) = 1 −   (2.10)ߙ

݊)ܲ  < ܲ) = 1 −   (2.11)ߙ

then we could know the mean system pfd is: 

௦௬௦൯݂݀൫ܧ  = ܲ × ܲ × (1 − (ߙ + ܲ × ߙ + (1 − ܲ) ×   (2.12)ߙ

 

As you can see from (2.12), the  LP  result  solely  relies  upon  assessors’ marginal  beliefs  

about  the  individual channel parameters – pfdA and pnpB – and do not require epistemic 

dependence between them to  be  estimated. There is a price paid, not surprisingly, for this 

simplification: further conservatism is introduced into the claims that can be made about the 

system pfd.  
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By now, the LR and LP models have reduced the problem of assessing the pfd of this kind of 

special 1oo2 system to one concerning simply marginal beliefs about the parameters pfdA and 

pnpB. There is a large literature on the assessment of pfd from statistical analysis of 

operational tests (Littlewood and Wright 1997; Musa and Ackerman 1989; Miller, Morell et 

al. 1992), so the first of these parameters could be relatively easier assessed, e.g. in terms of a 

Bayesian posterior distribution. That leaves pnpB, which initially became the subject of my 

PhD research. 
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3. TWO DIFFERENT 

PROBABILITIES OF 

PERFECTION 

It has been realised in the literature review that there are essentially two different 

probabilities of perfection, i.e. a subjective confidence in the perfection of a single program 

of interest (e.g. the first example in section 1.1.4) and an objective parameter of a population 

of programs (e.g. the second example in section 1.1.4). Firstly in this chapter, detailed 

explanation of these two different probabilities of perfection is presented. Then to 

complement the use of the subjective probability of perfection in reasoning the reliability of 

diverse 1oo2 systems, the original LR and LP models (Littlewood and Rushby 2012; 

Littlewood and Povyakalo 2013a) are modified. Finally the advantages and disadvantages of 

them are discussed and recommendations are given on the practical ways to use them. 

3.1. The two different probabilities of perfection 

In section 1.1.4, the first example of using probability of perfection is about the confidence in 

perfection of a software system, i.e. a probability of an objective event that whether the 

software is perfect. While in the second example, probability of (not) perfection becomes an 
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objective parameter of a population of programs – pnpB (i.e. something existing in the world), 

and therefore assessors may have epistemic uncertainties about it. Essentially they are two 

different probabilities of perfection, which have not been explicitly distinguished and 

analysed in previous publications.  

 

Note that this distinction does not concern the philosophical discussions on subjective 

probability vs objective probability. Rather, it is believed that they represent two paralleled 

sets of models which are built upon different fundamental setups. From the perspective of 

practical use and future research, it is necessary to explicitly distinguish them. 

3.1.1. Probability of perfection as an objective parameter 
The probability of (not) perfect as an objective parameter characterising a population 

property was first used in the LR and LP serial models (Littlewood and Rushby 2012; 

Littlewood and Povyakalo 2013a) to reason conservatively about the reliability of diverse 

1oo2 systems.  

 

The useful classical interpretation of probability of perfection as an objective parameter can 

be obtained from the notion of software development as the random selection of a program 

from a population of programs, as first introduced in (Eckhardt and Lee 1985). The idea here 

is that, for a particular problem that a program is to solve, and a particular development 

process, there is a hypothetical population of all programs that could be written to solve the 

problem using the process, and a distribution over this population that determines the 

probability of selection for each member of the population. In this rather abstract conceptual 

model of software development, pnp is a property of a hypothetical population of programs: 

each program in this population will be either perfect, or not, for the problem being solved. 

The act of selecting a single program from the population – i.e. developing a program to 

solve the problem – results in a program that is either perfect or not. The parameter pnp is 

just the probability that a randomly selected program is not perfect. As the smaller pnp is, the 

better the developing process is, this objective parameter pnp is essentially an indicator of 

how good the development process is for the given problem. 

 

Even though it is a property of a hypothetical population, such pnp parameter is believed to 

objectively exist “in the world” for each development process and problem. And of course no 
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one would certainly know its value, so any confidence or doubt (expressed in probabilistic 

form) on its value is rational (i.e. captures the epistemic uncertainty). For instance, the 

confidence bound on pnpB in the formula (2.11), which is mathematically a “probability of 

the probability of perfection”. Note that this “probability of the probability of perfection” 

does not make sense in the case of probability of perfection as a subjective confidence, which 

will be discussed in next section. 

3.1.2. Probability of perfection as a subjective confidence 
Clearly, a single program is either perfect or not. There will be uncertainty about whether it is 

perfect. This aleatory uncertainty of the perfection of the single software could be captured in 

a single indicator parameter, isimperfect.  

 

When isimperfect = 1, it means the software is imperfect, otherwise isimperfect = 0 means the 

software is perfect. If we expressed our confidence (i.e. the epistemic uncertainty) of the 

value of this indicator parameter in a probabilistic form, then Prob(isimperfect = 0) is the 

subjective probability of perfection.  

 

Same as the objective probability of perfection concerning a population of programs, this 

subjective probability of perfection is also of interest in practical software dependability 

assessment activities. In section 1.1.4, it has been illustrated that the subjective probability of 

perfection of a specific piece of software could be used as its lifetime reliability claim, thus 

avoiding the difficulty of assessing ultra-high reliability. Besides, the subjective probability 

of perfection could also be practically useful in the reliability reasoning of a particular 

software system. Such as in (Strigini and Povyakalo 2013; Bishop, Bloomfield et al. 2011), 

Bayesian frameworks combining evidence of failure-free runs were proposed to claim the 

reliability of the software of interest. In (Rushby, Littlewood et al. 2014), a new theory of 

software certification was introduced that proceeds from the assessment of confidence in 

perfection to conservative prediction of reliability. 

 

However, there is a fundamental difference from the objective probability of perfection case 

concerning a population of programs. It now does not make sense to talk about “confidence” 

in the probability of perfection which itself is simply a number representing the subjective 
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belief of an assessor about an event, because we believe there should not be “confidence in 

confidence in an event”. 

 

In the next section, the original LR and LP models are rewritten as new theories (named as 

LR-LP-single models) to reason about the reliability of diverse 1oo2 systems dealing with the 

case concerning the perfection of a specific B channel. This extension from LR-LP model to 

LR-LP-single model is similar to the extension from LM model (Littlewood and Miller 1989) 

to PS model (Popov and Strigini 1998), which is shifting the interest from an “average case” 

to a specific system. 

3.2. Reasoning about the reliability of a specific 1oo2 system  

3.2.1. New version of the LR model5 at aleatory level 
There are two objective parameters “in the world”: 

 pfdA for the channel A, and its range is [0,1]. 

 isimperfectB for the channel B. It could be either 0 or 1. ݅ݐ݂ܿ݁ݎ݁݉݅ݏ = 1 means the 

channel B is not perfect, otherwise is perfect. 

As for the original LR mode, the interest here centres upon the system reliability expressed as 

a pfd of the system, then: 

 

Theorem 0 

݂݀|demand]	random	a	[on	fails	sys)ݎܲ  = ܲ, ݐ݂ܿ݁ݎ݁݉݅ݏ݅ = (ܫ

≤ ܲ ×  ܫ
(3.1) 

where IB is an indicator variable. 

Proof: 

                                                
5 Since it is for the single program of interest, “LR-single model” will be used as the abbreviation of this model 

later in the thesis. 
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݂݀|demand]	random	a	[on	fails	sys)ݎܲ  = ܲ, ݐ݂ܿ݁ݎ݁݉݅ݏ݅ = (ܫ

= ,fails	ܣ|fails	sys)ݎܲ B	imperfect, ݂݀ = ܲ, ݐ݂ܿ݁ݎ݁݉݅ݏ݅ = (ܫ

× ,fails	ܣ)ݎܲ B	imperfect|݂݀ = ܲ, ݐ݂ܿ݁ݎ݁݉݅ݏ݅ = (ܫ

+ ,succeeds	ܣ|fails	sys)ݎܲ B	imperfect, ݂݀ = ܲ, ݐ݂ܿ݁ݎ݁݉݅ݏ݅ = (ܫ

× ,succeeds	ܣ)ݎܲ B	imperfect|݂݀ = ܲ, ݐ݂ܿ݁ݎ݁݉݅ݏ݅ = (ܫ

+ ,fails	ܣ|fails	sys)ݎܲ B	perfect, ݂݀ = ܲ, ݐ݂ܿ݁ݎ݁݉݅ݏ݅ = (ܫ

× ,fails	ܣ)ݎܲ B	perfect|݂݀ = ܲ, ݐ݂ܿ݁ݎ݁݉݅ݏ݅ = (ܫ

+ ,succeeds	ܣ|succeeds	sys)ݎܲ B	perfect, ݂݀ = ܲ, ݐ݂ܿ݁ݎ݁݉݅ݏ݅ = (ܫ

× ,succeeds	ܣ)ݎܲ B	perfect|݂݀ = ܲ, ݐ݂ܿ݁ݎ݁݉݅ݏ݅ =  (ܫ

(3.2) 

 

The last three terms of the right hand side of (3.2) are 0, as the system does not fail if either A 

succeeds or B is perfect. While in the first term, the first factor could be conservatively 

replaced by 1, assuming if B is not perfect then it will fail with certainty whenever A fails. 

That is B brings no benefit when it is not perfect. Then: 

݂݀|demand]	random	a	[on	fails	sys)ݎܲ  = ܲ, ݐ݂ܿ݁ݎ݁݉݅ݏ݅ =  (ܫ

≤ ,fails	A)ݎܲ B	imperfect	|	݂݀ = ܲ, ݐ݂ܿ݁ݎ݁݉݅ݏ݅ =  (ܫ

= ,imperfect	B	fails|	A)ݎܲ ݂݀ = ܲ, ݐ݂ܿ݁ݎ݁݉݅ݏ݅ =  (ܫ

× ݂݀	|imperfect	B)ݎܲ = ܲ, ݐ݂ܿ݁ݎ݁݉݅ݏ݅ =  (ܫ

= ܲ ×  ܫ

 

 

 

(3.3) 

 

Here, a similar assumption as that in the original LR model is needed, i.e. the two events “A 

fails” and “B is imperfect” are conditionally independent, given the certain value ܲ for  

 . The intuitive justification of the assumption is that whetherݐ݂ܿ݁ݎ݁݉݅ݏ݅  forܫ  and݂݀

or not B is imperfect tells us nothing about whether or not A will fail on a random demand.  

QED 

 

Result (3.3) is nicely paralleled to the original LR result (2.9). Essentially the aleatory 

uncertainty pnpB of a population of programs in the original LR model collapsed into the 

aleatory uncertainty isimperfectB of either perfect or not of a single program (i.e. assuming 

there was only one version in the population). So the work here is not simply a different 

interpretation of probabilities, rather a fundamentally different model built upon different 

objective parameters (capturing different aleatory uncertainties).  
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Ideally, an assessor would describe his epistemic uncertainty about these unknowns – pfdA 

and isimperfectB – in terms of a complete bivariate distribution: 

)ௗಲ,௦௧ಳܨ  ܲ, (ܫ = ݂݀)ݎܲ ≤ ܲ, ݐ݂ܿ݁ݎ݁݉݅ݏ݅ =  ) (3.4)ܫ

The unconditional probability of system failure is then: 

6(demand]	selected	randomly	a	[on	fails	sys)ݎܲ 

= ௗಲܧ ,௦௧ಳ൫ܲݎ(sys	fails	|݂݀ = ܲ, ݐ݂ܿ݁ݎ݁݉݅ݏ݅ = )൯ܫ

≤ ௗಲܧ ,௦௧ಳ(݂݀ × (ݐ݂ܿ݁ݎ݁݉݅ݏ݅

= ඵ( ܲ × )ௗಲ,௦௧ಳܨ݀(ܫ ܲ,  (ܫ

(3.5) 

 

In reality, it is unlikely that a real-world assessor would be willing or able to offer such a 

complete bivariate distribution to represent his beliefs about the unknowns of the model. In 

particular, it is known that people find it hard to express the dependence between their 

beliefs. In next section, some results based on only partial and marginal beliefs are obtained, 

and they parallel the earlier results in the original LP model.  

3.2.2. New version of the LP model7 at epistemic level 
Conservative bounds on system pfd can be obtained. 

Theorem 1 

If the assessor could tell us: 

݂݀)ݎܲ  < ܲ) = 1 −   (3.6)ߙ

ݐ݂ܿ݁ݎ݁݉݅ݏ݅)ݎܲ  = 1) = 1 −  (3.7) ߠ

then: 

(fails	sys)ݎܲ  ≤ (1 − (ߠ ܲ + (1 − ܲ) × ,ߙ}	݊݅݉ 1 −  (3.8) {ߠ

See Appendix A for proof. 

 

Example 1 

If the assessor is 95% confident that pfdA  is smaller than 10-5, and 99% confident in the 

perfection of channel B, (i.e. ܲ = 10ିହ,	ߙ = ߠ , 0.05 = 0.99) , then via (3.8): 

                                                
6 For simplicity, the notation ܲݎ(sys	fails) is used to represent this probability later in the thesis. 
7 Since it is for a single program of interest, “LP-single model” will be used as abbreviation later in the thesis. 
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(fails	sys)ݎܲ ≤ (1 − (ߠ ܲ + (1 − ܲ)݉݅݊{ߙ, 1 − {ߠ = 0.01 × 10ିହ + (1 − 10ିହ) × 0.01

= 0.01 

which is a very conservative result.  

 

It is not hard to see that the result is dominated by the smaller one between two doubts – i.e. 

the doubt on PA as pfdA and the doubt on the perfection of channel B. However, human 

cannot express very small doubt which is considerably smaller than desired “reliability claims” 

(e.g. a 10-5 pfd). For instance, an assessor would not say he has a 10-5 doubt in something. So 

this theorem 1 is not practically helpful in this sense, but it does inspire us to think about 

what the minimum helpful partial and marginal beliefs are. 

 

Theorem 2 

Additionally to (3.6) and (3.7), if the assessor were able to tell a certain upper bound on the 

pfdA: 

݂݀)ݎܲ  < ܲ
) = 1 (3.9) 

then: 

(fails	sys)ݎܲ  ≤ (1 − (ߠ ܲ + ( ܲ
 − ܲ)݉݅݊	{ߙ, 1 −  (3.10) {ߠ

See Appendix A for proof. 

 

Example 2 

Same as the informal scenario of Example 1, but additionally with ܲ
 = 10ିଷ, meaning the 

assessor is certain the pfd of channel A will be better than 10-3, then via (3.10): 

(fails	sys)ݎܲ ≤ (1 − (ߠ ܲ + ( ܲ
 − ܲ) × min{ߙ, 1 − {ߠ

= 0.01 × 10ିହ + (10ିଷ − 10ିହ) × 0.01 = 10ିହ 

which is a much better result than the one in Example 1. 

 

If drop the probability of perfection (i.e. ߠ) to 90%, we would have: 

(fails	sys)ݎܲ ≤ (1 − (ߠ ܲ + ( ܲ
 − ܲ) ×min{ߙ, 1 − {ߠ

= 0.1 × 10ିହ + (10ିଷ − 10ିହ) × 0.05 = 5.05 × 10ିହ 

which is still a useful result and it seems that ߠ is a crucial parameter. 

 

Actually the result is dominated by the product of ܲ
 ×min{ߙ, 1 −  Result (3.10) is .{ߠ

potentially useful as it is basically a product of two smaller numbers in which one is a 
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“reliability claims” (i.e. the ܲ
 which is essentially small and close to the desired reliability 

claims), and the other is a doubt (i.e. ߙ or 1 −  which could be afterwards learned (i.e. be (ߠ

further decreased) due to the subjective nature. For instance, do a Bayesian inference to 

update the doubt ߙ when seeing some V&V evidence of channel A; and as well for the 

confidence ߠ of the channel B when seeing V&V evidence of it. 

As the objective parameter isimperfectB is either 0 or 1, its marginal distribution is a 2-point 

one. It seems the assessor cannot vary his partial beliefs on this 2-point distribution, but 

simply give a probability, i.e. the (3.7). However, for the marginal distribution of pfdA, the 

assessor may express his partial beliefs in various forms. Now, if he knew the first two 

moments of his marginal distributions of pfdA, i.e. the mean and variance. 

 

Theorem 3 

(fails	sys)ݎܲ  ≤ ݂݀)ܧ × (ݐ݂ܿ݁ݎ݁݉݅ݏ݅

≤ ට(1 − ଶ(݂݀)ܧ൫(ߠ +  ൯(݂݀)	ݎܸܽ
(3.11) 

See Appendix A for proof. 

 

Example 3 

If the assessor is 99% confident in the perfection of channel B (i.e. ߠ = 0.99), and the 

expectation of pfdA is 10-4. Besides, he also knows:	ܸܽݎ	(݂݀) ≤  ଶ, then via(݂݀)ܧ3

(3.11): 

(fails	sys)ݎܲ < ට(1 − ଶ(݂݀)ܧ൫(ߠ + ൯(݂݀)	ݎܸܽ ≤ ඥ(1 − 0.99)(10ି଼ + 3 × 10ି଼)

= 0.2 × 10ିସ 

 

Again, this seems a useful result which is a product of two small numbers. One is associated 

with the doubt (i.e. ඥ(1 −  which could be afterwards updated when seeing more good ((ߠ

evidence about channel B. The other one is associated with reliability claim i.e. 

ඥܧ(݂݀)ଶ +  The first term is the expected value of pfdA which could be .(݂݀)	ݎܸܽ

learned when seeing more evidence of channel A. While the second term is a about how 

spread out of the subjective distribution of pfdA around the mean, which seems not easy to be 

elicited from the assessors. 
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However, if the assessor was able to tell a certain upper bound on pfdA (as the example 2), we 

do not need to elicit the second moment (i.e. the variance) of pfdA, as we can calculate a 

conservative variance from the mean and the certain upper bound: 

 

Theorem 4 

For channel A, if the assessor could tell us a certain upper bound ܲ
 of pfdA, i.e. (3.9) and a 

mean, say ܧ(݂݀) =  :; for channel B, a θ confidence in its perfection, i.e. (3.7), thenܯ

 
(fails	sys)ݎܲ ≤ ݂݀)ܧ × (ݐ݂ܿ݁ݎ݁݉݅ݏ݅ ≤ ට(1 − (ߠ × ܯ × ܲ

 (3.12) 

See Appendix A for proof. 

 

Example 4 

Same as the figures used in example 2 and 3, assume the assessor gives a certain upper bound 

ܲ
 = 10ିଷ and mean of pfdA ܯ = 10ିସ for channel A; and still 99% confident in the 

perfection of channel B (i.e. ߠ = 0.99), then via theorem 4: 

(fails	sys)ݎܲ ≤ ට(1 − (ߠ × ܯ × ܲ
 = ඥ10ିଶ × 10ିଷ × 10ିସ ≈ 0.316 × 10ିସ 

This seems a useful result. First, it is relatively easier to elicit numbers from the assessor, 

comparing to a variance in theorem 3. Second, the result (3.12) is essentially dominated by a 

product of 3 small numbers (one doubt and two reliability claims), in which ߠ and ܯ could 

be individually updated when seeing good evidence from the two channels. And both of the 

individual afterwards learning of the two channels will make a contribution to the final 1oo2 

system reliability. 

3.2.3. Comparing with the “black-box” treatment 
When we assess the reliability of a specific diverse software-based system, a more straight 

forward method is to treat it as a “black-box” and then collect the system V&V evidence to 

assess its reliability. So what benefit does the “clear-box knowledge” (i.e. knowing the 

system is a diverse 1oo2 one in which one channel is possibly perfect) bring us? And does 

this LR-LP-single approach use the “clear-box knowledge” in an effective way? 

 

For the first question, if without the “clear-box” knowledge, it seems the assessor would only 

be able to express very modest partial prior beliefs. For instance, if without the knowledge 

that channel B is very simple, the assessor would never claim the possible perfection of a 
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complex “black-box” system. Thus the reliability inference of the “black-box” system from 

available evidence will be conducted on very modest partial priors (e.g. only some percentiles 

of pfd), which leads to much worse results than the case with an additional prior belief in 

perfection (readers may find detailed numerical examples of the two cases in (Bishop, 

Bloomfield et al. 2011)). Similar observations could be generalised to other types of partial 

beliefs, e.g. expected system pfd. So at least, the “clear-box knowledge” does bring us benefit 

in terms of eliciting better partial priors. 

 

However, the LR-LP-single models are clearly not the only approach to use the “clear-box 

knowledge”. In Figure 2, the RHS route – a so called “whole-system-view” approach – is an 

alternative way to reason the reliability of a particular system based on its “clear-box 

knowledge”. Its basic idea is to firstly get some partial beliefs about the system pfd from the 

partial and marginal beliefs about the two individual channels and then do the reliability 

assessment starting via partial beliefs about the whole system. For example, we could reason 

as follows: 

 I have ߠ confidence in the perfection of channel B, therefore I should have at least ߠ 

confidence that the whole system reliability ݂݀௦௬௦ = 0. 

 If I believe in a certain pfd upper bound (i.e. ݂ܲ݀)ݎ < ܲ
) = 1) on channel A, then 

I should believe there is a same certain upper bound on the system pfd, i.e. 

௦௬௦݂݀൫ݎܲ < ܲ
൯ = 1. 

 Then by the two pieces of priors above, we can easily know that (1 − (ߠ ܲ
 is an 

upper bound on the pfd of the whole 1oo2 system. 

 

The first two statements are very simple and self-evident, by applying the principle of “the 

whole system’s reliability should be better than any individual channel’s reliability”. Then 

the third one tells that, by the two partial beliefs about the whole system pfd, we can get a 

naive result of (1 − (ߠ ܲ
 as an upper bound on the reliability of the particular 1oo2 system. 

Generally, the third step should be done by some models on a single system, e.g. the ones in 

(Bishop, Bloomfield et al. 2011; Strigini and Wright 2014). It seems this “whole-system-view” 

approach is giving very similar results to LR-LP-single approach, which reduces the 

significant of LR-LP-single models. 
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This disappointing observation seems true for the current theorem 1, 2 and 4 (section 3.2.2) 

in the LR-LP-single models. But for theorem 3, which involves a variance of the pfd of 

channel A, the alternative “whole-system-view” approach does not work. Because, we cannot 

say something like “as I know the variance of the reliability of channel A, so I should know 

… about the whole system”. In other words, we cannot do the reasoning to get partial beliefs 

about the whole system from marginal and partial beliefs of individual channels in this case, 

where the LR-LP-single model therefore brings benefit. 

 

Even though there is only one theorem (i.e. the 3rd) showing the advantages of LR-LP-single 

models, we believe more theorems could be built to show the advantage when we looked into 

more various (and less minimal) partial and marginal beliefs of the two channels, where the 

steps of the alternative “whole-system-view” approach are hard and not self-evident. 

Partial and 
marginal beliefs on 

PA and IB

LP-single 
theorems

Partial beliefs on 
pfdsys 

Some models on 
single systems

Reliability of a 
specific 1oo2 system

LR-single

V&V evidence

 
Figure 2 two different approaches to use the “clear-box knowledge” 
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3.3. LR-LP models or LR-LR-single models? 

Till now, two nicely paralleled sets of models – the original LR-LP models (in section 2.4.3) 

and the extended LR-LP-single models (in section 3.2) – are obtained and both of them are 

aiming to reason the reliability of diverse 1oo2 systems. Is one of them always superior to the 

other? Or more possibly, there might be no universal answer and it has to depend on the 

specific circumstances. If so, when should the assessor choose one over the other? This 

section is to answer questions above. 

3.3.1. Model different aleatory uncertainties 
At the aleatory level, the uncertainty being modelled for the channel A is pfdA in both of the 

two cases. 

 pfdA is a true unknown property of the channel A, i.e. an objective parameter in the 

world about channel A. As a thought experiment, we could imagine executing a large 

number of demands, n, selected in a way that accurately represents the operational use 

of channel A, and allowing n to approach infinity: the proportion of failed demands 

would converge to the true (but unknown) pfdA. In practice, assessors of course cannot 

be certain about the value of pfdA via that infinite testing approach, hence the 

epistemic uncertainty. 

 

While, for the possibly perfect channel B, two fundamentally different aleatory uncertainties 

are modelled in the two sets of models. 

 In the original LR model, pnpB is used as an objective property of a hypothetical 

population from which the B channel is selected. As the thought experiment described 

in section 3.1.1, the population is composed of all programs that could be written to 

solve the particular problem using the same development process of channel B. The 

pnpB is the probability that a randomly selected program from that B population is not 

perfect. We can have a limiting relative frequency interpretation for it. Image we 

randomly select one program from the population, then do a “perfection test” (e.g. 

infinite testing) and mark it as perfect or imperfect based on the result. If we repeat 

that trial for idealized infinity times, then the pnpB would equal to the “imperfect 

proportion” of the population. As the smaller pnpB is, the better the developing 

process B is, this objective parameter pnpB is essentially one of the important 

indicators of how good the development process is for the given problem. Please note 
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that processes with lower pnpB could not universally being deemed better than the 

ones with higher pnpB. Other properties must be taken into account in that case. 

 In the modified LR-single model, the aleatory uncertainty now is about whether 

perfect or not of the specific channel B, being captured by an indicator parameter 

isimperfectB. Rather than an objective property of a population, isimperfectB is about 

the objective event of B’s perfection. The limiting relative frequency interpretation for 

it is that if we do an infinite times test on channel B, then seeing any failure in the 

long sequence of tests would result in isimperfectB =1, otherwise 0. Even though this 

uncertainty containing only two possible states which is much simpler, it is still 

impossible to know it for certain in practice. 

 

All the parameters mentioned above cannot be known for sure in reality, i.e. assessors have 

epistemic uncertainties about them. Normally, the epistemic uncertainties should not be 

independent for an assessor. Therefore, to use any two of the parameters, the assessor needs 

to express a subjective joint distribution of them. Via the original LP and extended LP-single 

models, assessors avoid the difficulty of expressing joint beliefs over the parameters of the 

two channels, rather something marginally and partially about the parameters pnpB and 

isimperfectB are sufficient enough. Each model set addresses two aspects of dependence: at 

the aleatory level, and at the epistemic level, not surprisingly at the price of conservatism. It 

remains only to address the issues of expressing marginal and partial epistemic uncertainties. 

3.3.2. Reduce different epistemic uncertainties 
Aleatory uncertainty is “natural” uncertainty that is irreducible (Oberkampf and Helton 2004). 

For example, we would never be able to certainly predicate the result of tossing a coin. Even 

when we know the coin is “fair”, prediction of tosses of the coin can only be expressed as 

probabilities, say Phead and Ptail, meaning this uncertainty of outcomes can never be 

eliminated. In the case of a “fair” coin, Phead=Ptail=0.5. However real coins cannot be fair, so 

we can never know the values of Phead and Ptail for sure, which is the epistemic uncertainty. 

The significant feature of epistemic uncertainty is that it is reducible. In that coin example, 

we could toss the real (thus unfair) coin very many times, and estimate Phead with the 

frequency of heads in the long sequence of tosses. And Phead will converge to the true 

unknown Phead when more tosses are done, i.e. reducing the epistemic uncertainty about the 

parameter Phead. Above is an example of frequentist’s way to reduce epistemic uncertainty. 
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Similarly for a Bayesian, via the Bayes theorem, epistemic uncertainty could be reduced 

when collecting more evidence. 

 

Similarly in the case of reasoning about the reliability of a diverse 1oo2 system, models have 

been built upon requiring only marginal and partial epidemic uncertainties about parameters 

pfdA, pnpB and isimperfectB. These epistemic uncertainties of the 3 parameters could be 

estimated and then reduced via the various V&V evidence generated in software engineering.  

 

However, the likelihood functions of the 3 parameters for a particular type of V&V evidence 

will be quite different, due to the nature that they are capturing different aleatory 

uncertainties. In this sense, some V&V evidence will be more “powerful” for one parameter 

than the others. As human beliefs could be incoherent, so when seeking proper evidence to 

reduce the epistemic uncertainty for a parameter, questions needs to be considered: 

 Can a likelihood function be explicitly written down? 

 What are the assumptions behind that likelihood function? Are they rational? 

 Does the evidence sufficiently exist in practice?  

 

For pfdA which is an objective parameter for the single channel A, essentially any sufficiently 

presented V&V evidence of it could be used to reduce the epistemic uncertainty. But, as a 

reliability claim, a likelihood function could be easily and rationally written for testing 

evidence. Therefore, many existing models for pfd claims are built on statistical testing 

evidence, e.g. (Littlewood and Wright 1997).  And it turns out the required amount of testing 

evidence is practical for modest pfd claims.  

 

For perfection related parameters isimperfectB and pnpB, as shown in the literature review 

chapter, many models built upon them could be found (Bertolino and Strigini 1998; Strigini 

and Povyakalo 2013; Bishop, Bloomfield et al. 2011; Littlewood and Rushby 2012; 

Littlewood and Povyakalo 2013a), while no models is about how to estimate them. In other 

words, there is extensive literature about using perfection related claims in reasoning 

reliability rather than claiming perfection from available evidence, which initially motivates 

the work in later this thesis. 

 

Despite the lack of existing work on claiming perfection, one could speculate that: 
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 For isimperfectB, as it is a parameter of a single program, appealing evidence should 

include most of the “clear box” V&V evidence of the software of interest, e.g. static 

analysis, formal proof. Additionally as testing is an important and common evidence 

in reality, to what extend the failure-free testing evidence could help us to reduce the 

epistemic uncertainty of isimperfectB is also worth checking. In later chapters of this 

thesis, how these various kinds of evidence affect the claims on perfection will be 

modelled. 

 For pnpB: it is essentially a property of a population. Therefore it seems only 

“population evidence” would effectively reduce the epistemic uncertainty of it. Such 

“population evidence” could come from observing behaviour of some versions in the 

population. But the key to the efficiency would be the “coverage rate” of the 

population evidence over the population. In other words, it seems likely that seeing 

many versions of modest behaviour will be more supportive than seeing few versions 

with very good behaviour. However, this kind of population evidence is usually 

luxury in safety-critical area to reach a considerable “coverage rate” over the 

population. Same as the isimperfectB, there is no actual work on modelling claims for 

pnpB, which motivates a later chapter in this thesis to initially use the evidence of 

failure-free runs of similar products to reduce the epistemic uncertainty on pnpB.  

 

It seems the suggestions here are implying “using population evidence for population 

parameters” and “specific evidence for single software parameters”. But population evidence 

is an important source to form priors for single software parameters. For example, via some 

population evidence, we could have a subjective distribution of the parameter pnpB, and then 

the mean value of this distribution could be rationally treated as a good estimation of 

isimperfectB. These ideas will be further discussed in later chapters. 

3.3.3. Choosing between the two sets of models 
By explicitly analysed what aleatory uncertainties have been modelled, and then what kinds 

of evidence could be useful to reduce the epistemic uncertainties, the decision on choosing 

between the two paralleled sets of models should rely on the specific contexts we are in (e.g. 

available evidence, the analysis object). Some recommendations can be concluded: 

 In the sense of the “amount” of available evidence in practice, it seems the new 

modified LR-LP models are superior to the original LR-LP model, because clearly 
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there is more considerable amount of evidence on single software than a population of 

software in reality. And this is especially true for safety-critical software systems. The 

marginal beliefs (epistemic uncertainty) on isimperfectB could be continuously 

updated (reduced) when more and more evidence is collected, which is the major 

advantage over the original LR-LP models. 

 However, in some special cases, there could be more available population evidence 

than specific evidence. For example, in the very earlier development stage of a 

program, the reliability prediction of this diverse channel system can only rely on the 

evidence from similar previous products. And thus the original LR-LP models are 

preferred. 

 The choice may also depend on the potential users of the models. For instance, the 

policy makers would use the original LR-LP models and regulators would prefer the 

modified LR-LP models. 

o Policy makers normally work from a population view. When making new 

policies, one principle is to show new systems will no worse than currently 

existing systems. So there are essentially two populations – the population of 

existing systems and the population of “future” systems. Via the original LR-

LP models, the average reliability of current existing systems could be 

calculated. Then based on that result, new policy of reliability requirements on 

future systems could be made, and even degraded to specific requirements on 

each channel via reversely use the original LR-LP model. 

o While, for a regulator, he/she usually concerns the specific software on hand, 

therefore the modified LR-LP models are more suitable. In this case, the 

regulator should pay attention to the marginal beliefs on pfdA and isimperfectB, 

i.e. the required inputs of the modified LR-LP models. The regulation task 

then becomes to justify the asserted confidence level of pfdA and isimperfectB 

from various presented evidence. For pfdA, much work has been done to 

facilitate the task. While for isimperfectB, non-existence work could be found, 

which motivates the work in this thesis. The final goal is to help the regulator 

understand how various types of evidence of the software of interest are used 

to build up the asserted level of confidence on isimperfectB. 
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3.4. Chapter summary 

The probability of perfection of software-based systems is found more and more useful in the 

dependability assessment activities in recent year. Although sharing the same English term, 

there are essentially two different probabilities of perfection out there. One is an objective 

parameter about a population property, and the other is a subjective confidence in the 

perfection of a single program (i.e. confidence in an objective event). 

 

Both of them are of practical interest due to the fact that various models have been built on 

them to facilitate the dependability assessment activities. For example, via the original LR-LP 

models, the objective probability of perfection is used to reason the reliability of diverse 1oo2 

systems. And here in section 3.2, the original LR-LP models are modified (in a nicely 

paralleled manner) in terms of subjective probability of perfection.  

 

By the rewritten work in section 3.2, assessors now need to express his epistemic 

uncertainties on the truth of perfection of a particular software, rather than originally on an 

objective property of a population. In some cases, the former task seems of more interest and 

easier (due to the fact that there is more available evidence of a single program than a 

population of programs) for an assessor. Despite the limitation in terms of comparing with a 

simple “black-box” treatment (see section 3.2.3), the LR-LP-single models here is believed as 

a contribution to the existing reliability assessment methods of diverse 1oo2 systems.  

 

However, there is no universal answer to the question on which set of models is better. 

Recommendations are given in section 3.3.3; basically showing it depends on what evidence 

you have and how you plan to use the result. More desirably, we would like to see a 

framework in which both of the two probabilities of perfection could be combined to enhance 

the reasoning of diverse system reliability.  

 

A potentially feasible way is proposed here. That is to use the population evidence as a 

source to form priors for properties of any individual programs in the population, which 

seems a common sense solution of eliciting priors. In this instance, a subjective distribution 

of the parameter pnpB can be obtained via some population evidence; and then the mean 

value of this distribution could be rationally treated as a good estimation of the confidence in 
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isimperfectB. This potentially feasible way to “stitch up” these two different probabilities of 

perfection will be further discussed later chapters in this thesis. 
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4. CLAIMS ON PROBABILITY OF 

PERFECTION VIA FAILURE-

FREE TESTING EVIDENCE 

In this chapter, the question on what can be claimed about probability of perfection from 

seeing many failure-free tests of the single software of interest is investigated. A probability 

model for this problem is built and illustrated with some numerical examples. The approach 

is Bayesian: the aim is to model the changes to this probability of perfection as seeing 

evidence of failure-free working. As the long-standing problem of any Bayesian model is to 

elicit a justified prior distribution, much of the chapter addresses some difficult issues of prior 

beliefs in the Bayesian framework: the approach is to support conservative claims for 

probability of perfection based on limited prior belief, but these should be no more 

conservative than is necessary. 

4.1. An informal introduction to the approach 

The approach to the problem is similar to that introduced in (Bishop, Bloomfield et al. 2011). 

However, in that work the interest centred upon the problem of obtaining conservative claims 

for system pfd; here the aim is to obtain conservative claims for probability of perfection 
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which could be used as a lifetime claim on its own or in the reliability assessment for 1oo2 

diverse system (as stated in section 1.1.4).  

4.1.1. The objective parameter – pfd 
The fundamental assumption in this work is that for every software-based system (or 

channel), there is a true unknown pfd, i.e. an objective parameter in the world. As a thought 

experiment, we could imagine executing a large number of demands, n, selected in a way that 

accurately represents operational use, and allowing n to approach infinity: the proportion of 

failed demands would converge to the true (but unknown) pfd. In practice, of course, there 

will only be a finite amount of evidence available, so the assessor will still be uncertain about 

the magnitude of the pfd after seeing this evidence. In the usual Bayesian terminology, this 

evidence will be used to update an assessor’s prior beliefs about the unknown pfd to obtain 

his posterior beliefs: Bayes’ Theorem modifies his uncertainty about the unknown pfd in the 

light of the evidence, but he does not arrive at certainty. 

4.1.2. The difficulty of priors in Bayesian 
If an assessor were able to specify a complete distribution to represent his prior beliefs about 

the pfd, it is a simple matter to use Bayes’ Theorem to obtain his exact posterior distribution 

after he has seen the evidence. From this he could express his modified beliefs about 

quantities of interest such as the expected value of pfd (best “point” estimate), percentiles 

(confidence bounds for pfd), and so on.  

 

A major – and often expressed – difficulty with the Bayesian approach is that assessors find it 

difficult, if not impossible, to express their prior uncertainty in terms of a complete 

probability distribution. This observation seems particularly pertinent for the kinds of 

software systems that are the subject of the present thesis. In contrast to some other 

applications of Bayesian statistics (e.g. some medical scenarios), where there is extensive 

previous empirical evidence that can be used to inform an assessor’s prior judgments about 

this system, such evidence is often lacking, or very meagre, in software engineering 

applications. This is particularly true of safety critical applications. 

 

Here the main purpose, then, is to show some ways that this problem of priors can be 

addressed when the interest centres on an assessor’s confidence in the perfection of a 
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software system. As stated earlier, the assessor cannot realistically be certain that the system 

is perfect; instead, he will have a prior probability of perfection, say θ. If use a variable P to 

represent the pfd, then Pr(P=0)=θ. Since perfection is not certain, the assessor must in 

addition specify his prior beliefs about the possible non-zero values of the pfd. Ideally, then, 

he would be able to express his beliefs about the system pfd in terms of a complete 

distribution (say f(p))over the interval [0,1] that has probability mass at the origin: see Figure 

3 for an idealized depiction of such a distribution. In the absence of such a complete prior 

distribution for the assessor’s prior beliefs, what can be said? The approach to the problem is 

two-pronged. 

pfd10

θ 

f(p)

 
Figure 3 an idealized example of a pfd distribution 

4.1.3. Conservative Bayesian inference with partial priors 
Firstly, the reality is that an assessor may only be able to express extremely limited beliefs 

about the likelihood of the pfd taking particular values in the interval. Specifically, in a very 

simple case, it is plausible for the assessors to tell us a single percentile of the distribution of 

pfd, in addition to his expressed confidence in perfection. That is, he is only willing and/or 

able to express the following two precise beliefs: 

ܲ)ݎܲ  = 0) =  (4.1) ߠ

ܲ)ݎܲ  > (ݕ =  (4.2) ݔ

where he states the values 0< , x , y <1. 

 

Of course, the limited constraints represented by (4.1) and (4.2) are far from sufficient to 

specify a single complete distribution. In fact there will be an infinite number of distributions 

satisfying these constraints (assessor expressed beliefs) for any particular vector of numbers 

< x, y, θ >. By only expressing such limited prior belief, the assessor is implicitly accepting 

that none of these distributions has been ruled out as candidates to be his prior distribution for 

the pfd. The “implicitly” here means, of course, he cannot examine all these distributions to 



On the Probability of Perfection of Software-based Systems 

66 

see whether some of them have characteristics that would result in his finding them 

unacceptable representatives of his prior beliefs. 

 

The second part of the approach is now to choose the most conservative of these candidate 

distributions, that is the one (or many) that gives the most conservative (i.e. smallest) value 

for the quantity of interest, the posterior probability of perfection, following the observation 

of n failure-free demands. Denote this most conservative posterior probability as θ*. 

 

The interpretation of this θ* probability is that it represents the lowest posterior confidence in 

perfection that the assessor could have, consistent with his only expressing prior beliefs, 

(4.1) and (4.2), and having seen n failure-free demands. This result is an attainable one, in the 

mathematical sense that there exists at least one prior distribution, in the assessor’s infinite 

set of distributions that he has not ruled out via his expressed prior beliefs, that results in a 

posterior distribution (after seeing n failure-free demands) with mass θ* at the origin. 

4.1.4. Solutions to the problem of being too conservative 
Sometimes, the conservative Bayesian approach gives a result is that extremely conservative 

– so much so as to be of little practical interest. Therefore it might be asked whether it is too 

conservative for a “reasonable person” who holds beliefs (4.1) and (4.2). In other words, 

whether any prior distribution that gives this most conservative result would in fact be ruled 

out by him as representative of his beliefs if he were to examine it in detail. 

 

The intuition behind this discussion is that an assessor may often hold unexpressed beliefs, in 

addition to the ones that are represented by his limited but precise expressions such as (4.1) 

and (4.2). One thing needs to be clear is that the reasoning here does not ask the assessor to 

change his prior beliefs in the face of embarrassingly conservative posterior consequences; 

that is, of course, unacceptable in the Bayesian framework. Rather, it is inviting the assessor 

to examine the infinite set of distributions initially allowed by (4.1) and (4.2), to see whether 

there are subsets of these distributions that he regards as unallowable (unbelievable) – and to 

do this before he sees the evidence from testing the n demands. 

 

In this way, the new set of allowable distributions will be a subset of the original set of 

distributions. The assessor would then proceed as before: seeking the most conservative 



On the Probability of Perfection of Software-based Systems 

67 

result from this more restricted (but still infinite) set of priors. The new conservative posterior 

probability of perfection obtained in this way would be expected to be less conservative than 

the one above obtained from the original, larger, set of allowable priors. 

 

In some cases it may be possible to repeat this procedure by identifying other characteristics 

of priors that are not allowed by the assessor, thus further restricting the set of priors from 

which the most conservative will be selected. Indeed, given the weakness of the restrictions 

(4.1) and (4.2) imposed by the assessor’s limited prior beliefs, it is unlikely the remaining set 

of distributions will all truly be allowable by the assessor. Informally, the aim here is to prune 

the set of allowable prior distributions to the extent that the assessor’s extra expressed beliefs 

allow, so as to make the resulting conservative posterior beliefs less conservative. The 

expectation is that in this way the results will be useful, while at the same time still 

guaranteed to be conservative. 

 

Of course this new conservative Bayesian approach here is not the way to tackle the problem 

of priors in Bayesian method. There are other alternative solutions, such as empirical Bayes, 

non-informative priors and etc. depends on the specific cases. We believe the new 

conservative Bayesian approach here is superior in the case of dealing with safety-critical 

systems, due to the fact that conservativeness is more desirable to some degree.  

4.2. The probability model 

Figure 4 shows an example of a potential prior distribution satisfying the assessor’s 

conditions (4.1) and (4.2): it has point mass θ at the origin, and the remainder of the 

probability in (0,1], with probability x in the interval (y,1]. Note that the shape of the 

distribution in (0,1] in Figure 4 is an idealization for purposes of illustration only. 

pfd1y0

θ 

f(p)

area 1-x-θ 

area x

 
Figure 4 an idealized example of a distribution satisfying the assessor’s expressed prior beliefs (4.1) and (4.2) 
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After seeing n failure-free demands, for any particular complete prior distribution f(p) we 

could calculate the resulting posterior distribution. Our interest centres on how the 

observation of failure-free working changes the assessor’s belief in perfection. This posterior 

belief is: 

 
ܲ)ݎܲ = 0|n	failure	free	tests) =

ܲ)ݎܲ = 0	and	n	failure	free	tests)
(tests	free	failure	n)ݎܲ

=
ߠ

ߠ + ∫ (1 − ଵ݀()݂(
ା

 
(4.3) 

 

The problem now, as outlined in section 4.1.3, is to find the most conservative f(p), i.e. the 

one that minimizes (4.3) subject to the constraints (4.1) and (4.2). The value of (4.3) at the 

minimum called θ*: this is the most pessimistic posterior belief in perfection consistent with 

the assessor’s expressed minimal prior beliefs. 

 

It turns out that the most pessimistic f(p) is a 3-point distribution (see the Appendix B for 

proof). As shown in the Figure 5, the distribution has probability mass at three points: at the 

origin with mass θ; at the P1 point which is infinitesimally distant8 from the origin with mass 

1‒x‒θ; and at the P2 point, at y, with mass x. With this worst case prior f(p), the lower bound 

of θ, i.e. θ*, is obtained: see the result (4.4) below. This is the most conservative belief of the 

assessor about the probability of perfection of this system, after seeing n failure free tests, 

given his professed prior beliefs (4.1) and (4.2). 

∗ߠ  = ܲ)ݎܲ = 0|n	failure	free	tests) =
ߠ

ߠ + ∫ (1 − ଵ݀()݂(
ା

=
ߠ

1 − ݔ + (1 −  ݔ	(ݕ

(4.4) 

                                                
8 To explain more carefully, the worst case posterior belief (4.4) is, under these constraints, approached as a 

limit, without being attained exactly by any individual prior pfd distribution. So to argue with full mathematical 

rigour entails an infinite set of distinct prior pfd distributions, each with its own P1>0; with this set so 

constructed that zero is the infimum of all its member distributions’ positive P1s. Figure 5 is intended to depict 

this infimum property of this set of distributions. The infimum of the resulting set of Bayesian posterior 

perfection probabilities – each computed from one member of this set of priors – is easily show to be the RHS of 

equation (4.4). 
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pfd1y(P2)0(P1)

θ 

1-x-θ  

x

f(p)

 
Figure 5 the most conservative prior distribution satisfying the assessor’s expressed prior beliefs. 

4.3. Illustrative numerical examples 

Table I shows some numerical examples, where θ is the priori belief about perfection, x and y 

satisfy the assessor’s prior belief (4.2), n is the number of failure-free tests that have been 

observed, θ* is the posterior belief in perfection. 

 

The final column of the Table I shows the factor by which the posterior beliefs improve on 

the prior ones. The proportional reduction in the doubt about perfection is chosen, since this 

seems better to reflect intuition here for the values of θ close 1 that engineers would 

anticipate in the critical applications that are our concern. So the ratio (1‒θ)/(1‒θ*) is the 

“doubt reduction factor”. Clearly large values of this factor are preferred. 

 

In each case there is some increase in the assessor’s confidence in perfection as the number of 

failure free tests increases. However, this increase in confidence is very modest in all cases: 

the evidence from failure-free testing seems to be generally very weak in supporting claims 

about probability of perfection in this worst case. 

 

Notice that the best results in support of perfection in Table I arise when θ and x are larger, 

i.e. 1‒x‒ θ is small. Now this is the probability mass arbitrarily close to 0 for the most 

conservative prior distribution satisfying the assessor’s stated prior beliefs. The role this 

probability mass plays is best understood by seeing what happens when the number of 

failure-free demands, n, approaches infinity. The conservative bound on probability of 

perfection is then: 

 
lim
୬→ାஶ

ߠ
1 − ݔ + (1 − ݔ	(ݕ =

ߠ
1 − ݔ =

ߠ
ߠ + (1 − ݔ −  (ߠ

(4.5) 
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Table I Numerical examples of the 3-point prior distribution 

θ x y n θ* (1‒θ)/(1‒θ*) 

0.5 0.01 0.001 1000 0.503181641 1.006404032 

0.5 0.01 0.001 10000 0.505050275 1.010203611 

0.5 0.01 0.001 100000 0.505050505 1.010204082 

0.5 0.05 0.001 1000 0.516323692 1.033749207 

0.5 0.05 0.001 10000 0.526314538 1.055552767 

0.5 0.05 0.001 100000 0.526315789 1.055555556 

0.9 0.01 0.001 1000 0.905726953 1.060748572 

0.9 0.01 0.001 10000 0.909090494 1.099994981 

0.9 0.01 0.001 100000 0.909090909 1.10 

0.9 0.05 0.001 1000 0.929382645 1.41608249 

0.9 0.05 0.001 10000 0.947366169 1.899918692 

0.9 0.05 0.001 100000 0.947368421 1.90 

 

So even for an infinite number of failure-free demands, the assessor does not become certain 

of perfection. Informally, when we see an infinite number of failure-free demands, we should 

become certain that pfd cannot be greater than or equal to y; so the only possibilities 

remaining are perfection and 0<pfd <y. In the case of the second of these, an infinite number 

of failure-free demands suggest that the probability mass in this interval will be concentrated 

at the extreme left of the interval. So, the infinite numbers of demands are failure-free 

because either (a) the program is perfect, or (b) it is not perfect but has an infinitesimally 

small failure rate. The probability that what has been seen is due to (a), rather than (b), is just 

the ratio of Pr(a) to Pr(a or b), i.e. (4.5) above. 

 

Informally, there is a limit to how much confidence in perfection can be obtained from 

failure-free demands, as we cannot tell whether this happened because of perfection or very 

high reliability. 

 

If assessors were able to rule out the very high reliability a priori, this picture would change. 

Table II shows what happens if 1‒ x‒ θ=0, i.e. the expert is certain that the pfd is either 0 or 

greater than or equal to y. Here, relatively modest numbers of failure-free demands result in 

high confidence in perfection. These results are intuitively obvious because, for any value of 
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y, the more failure-free working, the more confident we shall be that the system is “perfect” 

rather than “has a pfd worse than y”. However, obtaining these stronger claims for perfection 

requires the assessor to rule out completely the possibility of the pfd lying anywhere between 

0 and y. Such beliefs do not seem reasonable. 

 
Table II Numerical examples of the case 1‒ x‒ θ=0 of the 3-points prior distribution 

θ x y n θ*  (1‒θ)/(1‒θ*) 

0.5 0.5 0.001 1000 0.7311569 1.85982084 

0.5 0.5 0.001 10000 0.9999548 1106194.69 

0.9 0.1 0.001 1000 0.9607485 2.547673337 

0.9 0.1 0.001 10000 0.9999949 19607.84314 

 

In the next section, what reasonable further restrictions can be placed on an assessor’s prior 

beliefs and how these affect his posterior belief in perfection will be considered. 

4.4. Refining the set of allowable prior beliefs 

The results above arise from a situation in which an assessor has expressed some precise, but 

very limited prior beliefs, represented by (4.1) and (4.2). Because these beliefs are so very 

limited, they are satisfied by a large set of possible prior distributions. However, some of 

these distributions would be ruled out as possible priors by all “reasonable” assessors. The 

effect of this would be to “prune” the set of allowable priors (still satisfying (4.1) and (4.2), 

of course). An assessor would then proceed as above, but with this pruned – i.e. smaller – set 

of allowable distributions. That is, he would choose the most conservative of these to find a 

new posterior probability of perfection. But how should such pruning be carried out? Are 

there obviously unreasonable distributions in the set of priors that are allowable above? 

4.4.1. How to prune? A Beta example 
 

The conservative results represented by Table I and the limiting result (4.5) arise essentially 

because they are based on the most extreme priors that have probability mass at 0+ and y, as 

well as at 0 (the perfection point). The problem here – what is unreasonable “extremeness” of 

these priors – lies in their having positive support at points in (0,1]. 
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For instance, a frequent situation is that the support for such prior beliefs comes from generic 

experience of the reliabilities achieved by similar development processes, in products that are 

comparable to the present one, e.g. in terms of application area, complexity and software 

engineering culture. Then, while it would seem reasonable for an assessor possibly to believe 

a non-zero probability of perfection – i.e. mass at 0 for his prior distribution for pfd – it does 

not seem reasonable for him to believe there is positive mass associated with any non-zero 

value of pfd. That is, statements like: “I think there is a 50% probability that the pfd is zero, 

i.e. that this program is perfect” seem reasonable; but statements like “In the event that this 

program is not perfect, I believe that there is a 20% chance that its pfd is exactly 0.1234” 

would generally not seem reasonable9 . More precisely, it seems that assessors would usually 

think that the only beliefs they could reasonably hold would correspond to distributions that 

satisfy these conditions: 

 There is no non-zero probability concentrated at points in (0,1], i.e. the only mass-at-

a-point on the complete prior for pfd is that at 0, corresponding to perfection; 

 There is no point in (0,1] for which the probability density is zero, i.e. no value is 

impossible. 

 

These conditions suggest that the only distributions that assessors should normally consider 

as candidates to represent their prior beliefs should have probability mass only at 0, and have 

continuous density in (0,1]. Whilst imposing these conditions will eliminate many 

distributions from the set that simply satisfies (4.1) and (4.2), there will still remain a large 

set of candidate distributions: essentially any suitably renormalized continuous distribution 

on (0,1], together with a mass at 0. 

 

To then analyse the implication of beliefs like those in (4.1) and (4.2), the next stage after this 

pruning would be to explore the implications of prior distributions in this restricted set; 

                                                
9 The word “generally” is used here, because of course there are exceptions. For example, it may be that there is 

a particular type of event that is associated with a known-to-be difficult (i.e. possibly fallible) operation, and 

these events occur at a known frequency. So-called “leap seconds”, for example, have been known to cause 

system failures because of synchronization issues. The point here is that detailed and specific knowledge is 

needed for an assessor to hold such point-mass beliefs. 
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possibly eliciting more detailed approximate representations for, or bounds on, the 

distributions. Question of which representation would be most convenient in a specific case is 

not aimed to be addressed here. Instead, purely for illustration, an example in which the 

assessor is prepared to restrict the expression of his prior beliefs to a (suitably renormalized) 

Beta distribution, on (0,1], with parameters (a,b) is developed here. Later the reasonableness 

of such a restriction to this Beta parametric family will be discussed. 

 

Table III shows the results of numerical optimization to find the most conservative prior 

within the new restricted set of allowable distributions. Once again, confidence in perfection 

increases slowly even for very large n. However, it is notable that in all cases in Table III 

both a and b are fractional, i.e. the most conservative priors in this refined set of allowable 

distributions are all “U-shaped” as shown in the Figure 6. In each case the probability density 

is infinite at both 0 and 1. 

pfd1y0

θ 

f(p)

area 1-x-θ 

area x

 
Figure 6 the most conservative prior re-normalized beta distribution 

It seems that this kind of U-shaped distribution would not represent the beliefs of reasonable 

assessors. So it could further prune the set of allowable distributions by ruling out such U-

shaped beta distributions: if a and b are not allowed to be fractional (i.e. a≥1, b≥1) that is an 

unimodal beta distributions10.  

                                                
10 By “unimodal” here it includes those cases where the maximum of the density is at the end of the interval, and 

is not a turning point: this turns out to be the case for a=1 in Table V. 
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Table III Numerical examples for the Beta prior distribution with mass at origin, (a, b) unconstrained 

θ x y n a b θ* (1-θ)/(1-θ*) 

0.5 0.01 0.001 1000 0.00019256 0.010154142 0.505055848 1.010214987 

0.5 0.01 0.001 10000 0.000174069 0.009065462 0.505179928 1.010468306 

0.5 0.01 0.001 100000 0.000226364 0.012069137 0.50532834 1.010771468 

0.5 0.05 0.001 1000 0.001997401 0.0208142 0.526603047 1.056196068 

0.5 0.05 0.001 10000 0.00058413 0.00547856 0.526730227 1.056479895 

0.5 0.05 0.001 100000 0.000942005 0.009070504 0.527517591 1.058240457 

0.9 0.01 0.001 1000 0.001371121 0.013629679 0.909150688 1.100723798 

0.9 0.01 0.001 10000 0.000873768 0.008366982 0.909298034 1.102511938 

0.9 0.01 0.001 100000 0.000771203 0.007326781 0.909423631 1.10404073 

0.9 0.05 0.001 1000 0.007752825 0.008651361 0.94759435 1.908191213 

0.9 0.05 0.001 10000 0.001784232 0.001829209 0.947621395 1.909176459 

0.9 0.05 0.001 100000 0.002078817 0.002139551 0.947905689 1.91959541 

 

 
Table IV Numerical examples for the Beta prior distribution (a≥1, b≥1) with mass at origin 

θ x y n a b θ* (1-θ)/(1-θ*) 

0.5 0.01 0.001 1000 1.002865687 3919.454939 0.556728757 1.127977526 

0.5 0.01 0.001 10000 1.000348556 3913.798799 0.780539772 2.278317141 

0.5 0.01 0.001 100000 1.000219221 3914.753876 0.963720105 13.78173798 

0.5 0.05 0.001 1000 1.001096111 2304.159264 0.589248898 1.217282187 

0.5 0.05 0.001 10000 1.000879434 2302.601846 0.842539329 3.175396105 

0.5 0.05 0.001 100000 1.001000815 2302.579322 0.978069486 22.79928354 

0.9 0.01 0.001 1000 1.000493405 2302.371071 0.928116048 1.39113109 

0.9 0.01 0.001 10000 1.000013517 2300.871174 0.97964033 4.911670911 

0.9 0.01 0.001 100000 1.001562038 2304.529699 0.997518052 40.29093267 

0.9 0.05 0.001 1000 1.002947755 695.838612 0.956506003 2.299167843 

0.9 0.05 0.001 10000 1.000263576 693.2090557 0.992853625 13.99310937 

0.9 0.05 0.001 100000 1.001273649 694.1325914 0.999239476 131.4883667 
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Table V Numerical examples for the Beta prior distribution (a=1) with mass at origin 

θ x y n a b θ* (1-θ)/(1-θ*) 

0.5 0.01 0.001 1000 1 3910.066668 0.556688485 1.127875058 

0.5 0.01 0.001 10000 1 3910.066668 0.780581515 2.278750575 

0.5 0.01 0.001 100000 1 3910.066668 0.963735283 13.78750575 

0.5 0.05 0.001 1000 1 2301.433608 0.589240023 1.217255887 

0.5 0.05 0.001 10000 1 2301.433608 0.842398512 3.17255887 

0.5 0.05 0.001 100000 1 2301.433608 0.97799837 22.7255887 

0.9 0.01 0.001 1000 1 2301.433608 0.928112406 1.391060597 

0.9 0.01 0.001 10000 1 2301.433608 0.979635914 4.910605966 

0.9 0.01 0.001 100000 1 2301.433608 0.997506611 40.10605966 

0.9 0.05 0.001 1000 1 692.8005492 0.95650425 2.299075183 

0.9 0.05 0.001 10000 1 692.8005492 0.992852421 13.99075183 

0.9 0.05 0.001 100000 1 692.8005492 0.999236102 130.9075183 

 

Optimizing (numerically) over this further refined set of allowable distributions, results in 

Table IV are obtained. The worst case conservative results here give large increases in the 

posterior probability of perfection as n increases; this contrasts with the results we obtained 

for the less constrained sets of allowable priors, shown in Table I and Table III. 

 

The shape of the worst case distributions in Figure 7 are similar to the idealized case of 

Figure 1: because a is close to 1 and b is large, in each case, they have a mode at (a‒1)/(a+b‒

2), far to the left and very close to the origin, but in all cases there is zero probability density 

at 0 and at 1 (because both a and b are not less than 1).  

 

In fact, the “worst case” results of Table IV are only worst within the accuracy of the 

numerical optimisation we used. Even though it has so far not been able to prove, the 

asymptotic optimum – i.e. the true worst case – seems to occur when a=1, and to satisfy the 

percentile constraint ܾ = ଵି௬݈݃ 1)/ݔ −  .Results for this case are shown in Table V .(ߠ
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Figure 7 the most conservative prior re-normalized unimodal beta distribution after “pruning”. This is an idealised 

representation: in reality the “spike” would be very large and close to the origin. 

Within the “probability mass at 0 plus re-normalised Beta distribution” framework, these 

results are the most conservative with respect to the assessor’s expressed prior beliefs, and 

(subject to our “prunings” of the original large class of priors satisfying only (4.1) and (4.2)) 

they can be thought of as “no more conservative than they need be”. 

 

The numerical values obtained above for the posterior probability of perfection seem 

potentially useful. But there is no claim for the practical plausibility of the vector of numbers 

<x, y, θ> that have been used for illustration. Note that in this case, as n goes to infinity, the 

assessor approaches certainty that the system is perfect. 

4.4.2. Discussions on the use of a Beta  
Given our interest in probability of perfection, readers may reasonably ask whether the 

“better” results have been obtained here are special to the Beta distribution assumption, or are 

more widely applicable. In particular, can it be expected to gain increasing confidence in 

perfection of software by observing large numbers of failure-free demands, under different 

assumptions? There is no definitive answer to this question. But it seems the Beta family 

assumption here is a rather weak one.  

 

Using any particular parametric family of priors, as in our example using the Beta here, may 

be regarded as a “strong” assertion for an assessor. For example, in some safety-critical 

industries, a regulator with responsibility for oversight might reasonably respond: “You may 

represent your prior beliefs by this Beta family, but this seems unreasonably restrictive to me, 
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so I cannot accept as reasonable the resulting claims you make for the probability of 

perfection.” Is it possible to impose weaker constraints on the form of the prior distribution – 

i.e. more “generally believable” ones – than the choice of a parametric family of distributions? 

One might, for example, try to state optimization constraints on only the general form of 

prior distribution, such as perhaps just its uni-modality on (0,1]. The Table IV and Table V 

show some results attained by unimodal priors which are constrained to be beta: what would 

be found if without the Beta family constraint but still with that of uni-modality? No clear 

answer currently. One can easily imagine other general classes of simple constraint for which 

similar questions can be asked: an upper or lower density bound, perhaps, or constraints 

involving distribution moments. These questions suggest possible avenues for further 

investigation into constrained worst cases priors which might help us to understand better the 

implications of what have been observed here with a Beta example. 

4.5. Chapter summary 

The work reported here was, of course, specifically addressing the problem of assessing 

confidence in perfection of software. However, to do this within the Bayesian framework, 

some general difficult problems concerning prior distributions have been considered. So the 

approach here may have wider applicability.  

 

The Bayesian approach seems the most appropriate formalism for the assessment of the 

dependability of critical systems, but its use poses some difficulties for an assessor. The most 

obvious difficulties concern the need for the assessor to express his prior beliefs about his 

problem’s unknowns, formally and quantitatively, in order to feed into the formalism of 

Bayes’ theorem. It is well-known that this can be difficult, and has been used by some to 

argue that the Bayesian approach is impractical. Assessors are rarely able to provide a 

complete account of their uncertainty about the unknowns – in terms of the problem 

addressed in this work; they are unable to express their prior beliefs in a complete distribution 

for the unknown pfd of the system under study. 

 

In the earlier work (Bishop, Bloomfield et al. 2011), a similar problem was considered. There 

the interest was in a system’s probability of failure on demand (rather than, as here, its 

probability of perfection, or non-perfection). It had been showed that useful results, 

guaranteed to be conservative, could be obtained even from very limited prior beliefs in that 
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paper. The hope here is that something similar could be obtained in the case where interest 

centred on claims for perfection. However, an important result here – and a disappointing one 

– is that this seems not to be possible: see section 4.2. Even after observing large numbers of 

failure-free demands, confidence in perfection increases only modestly over an assessor’s 

original prior belief. In fact he would not be certain of perfection even if he were able to see 

an infinite number of failure-free demands. The informal explanation for these disappointing 

results is that failure-free operation over many demands may be due to perfection or to a very 

small pfd. In section 4.4 ways in which it may sometimes be possible to rule out the second of 

these explanations were discussed. 

 

The general approach here is in three stages. Firstly, although the assessor cannot provide a 

full probabilistic description of his uncertainty, he can express some partial but precise beliefs 

about the unknowns. Secondly, in the inevitable presence of such incompleteness, the 

Bayesian analysis needs to provide results that are guaranteed to be conservative (because the 

analyses is assumed to relate to critical systems). Finally, the assessor might seek to prune the 

set of prior distributions that he finds acceptable in order that the conservatism of the results 

is no greater than it has to be. 

 

On the first point, the assessor’s prior beliefs about system pfd are expressed in terms of just a 

prior probability that this pfd is zero (i.e. the system is perfect), together with a single 

percentile (because, in the event that the system is not perfect, its pfd may lie anywhere in the 

interval (0,1]): the assessor’s prior beliefs are summarized in the numbers in (4.1) and (4.2). 

Of course, these are very “weak” beliefs. They fall far short of a complete distribution for the 

unknown pfd. The next step is to find the most conservative of the many possible complete 

prior distributions, i.e. the one that gives the most pessimistic value for the posterior 

probability of perfection. It turns out that this is very conservative – probably too much so to 

be of practical use. 

 

Therefore the second stage is needed to “prune” the infinite set of initially allowable prior 

distributions, discarding those that  it is argued all reasonable assessors would find 

unacceptable, and find the most conservative member of this new set of allowable priors. The 

corresponding most conservative posterior probability of perfection will be less conservative 

than the previous one.  

 



On the Probability of Perfection of Software-based Systems 

79 

There is a sense in which this pruning process makes the assessor’s expressed prior beliefs 

more extensive than they were: it adds further assessor belief to those previously expressed. 

But note that, in contrast to the specific and positive assertions of a (hypothetical) real 

assessor represented by (4.1) and (4.2), this pruning process involves general and negative 

assertions about prior distributions: i.e. identifying properties that no prior distribution, for 

any reasonable assessor, should possess. So the pruning idea is an innovative method to elicit 

priors from assessors. 

 

This is an important point that the pruning process described here does not mean that an 

assessor retrospectively changes his prior beliefs after he has seen evidence that produces 

embarrassingly inconvenient posterior consequences. That would be a perversion of a correct 

assessment process (and, of course, would be considered unacceptable within the Bayesian 

framework). Rather the claim is that some distributions can be discarded because they are 

unreasonable in general (for a broad class of situations, as discussed earlier in section 4.4), 

and are thus so in particular for this assessor. 

 

The third stage was to analyze specific representations of the “pruned” set of prior 

distributions. Here an example was developed using a Beta distribution family for this 

continuous part of the prior for pfd. This choice can most certainly be questioned, but it was 

used for no more than a pure illustrative purpose11.  

 

Of course, failure-free working is not the only evidence that can be used to support claims 

about the reliability, or perfection, of software. Other software engineering measures and 

metrics have been proposed in the past to aid quantitative prediction of software reliability: 

see, e.g. (Li and Smidts 2000; Smidts and Li 2000). Whilst such evidence is generally not 

sufficient on its own to obtain accurate predictions of reliability (Cukic, Gunal et al. 2003), it 

seems that it may help assessors to provide the partial prior beliefs needed in the conservative 

Bayesian inference here, and perhaps to justify specific prunings. In particular, evidence from 

formal verification seems, on intuitive grounds, to be especially attractive (Littlewood and 

Wright 2007) as a means to support claims about perfection. Whilst this kind of evidence 

                                                
11 It might be argued that a Beta family is sufficiently flexible to represent most continuous beliefs over the unit 

interval, so that some member of the family may be a good approximation to an assessor’s prior beliefs.  
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does not currently fit readily into the kind of Bayesian analysis here, an assessor might use it 

informally to support his (limited) subjective prior beliefs. More formal support for this kind 

of reasoning is clearly needed.  
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5. CLAIMS ON PROBABILITY OF 

PERFECTION VIA PROCESS 

EVIDENCE 

Chapter 4 addresses the problem of assessing the subjective probability of perfection using 

extensive failure-free working of the single software in question, which could be used not 

only on its own (e.g. the first example in section 1.1.4) but also as the input of the theorems 

in the modified LP-single models in section 3.2.2. The difference in the two probabilities of 

perfection hints at the different ways we might learn about them. For subjective probability of 

perfection concerning a particular program, we would like to see the outcome (success or 

failure) of many randomly selected demands executed by that program. But for a pnp (i.e. an 

objective parameter) concerning a development process (population of programs), we would 

like to know, for each of many randomly selected programs, which of them are not perfect. 

Thus in this chapter, the evidence of extensive failure-free working of previous similar 

products (built using the same process) will be considered to address the problem of how to 

assess pnpB which is the required input of the original LP model, i.e. beliefs on the objective 

probability of perfection. This is intuitively the right way forward, i.e. using the process 

evidence of a population of similar products to learn about a property (i.e. pnp) of that 
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population. The learning approach here is Bayesian, as in previous chapters. An important 

feature, again, is that it takes account of the fact that experts can only provide limited prior 

beliefs about model parameters. It will be shown how to obtain useful but guaranteed-

conservative results from such restricted prior belief. 

5.1. A general model of “process quality” evidence 

The model in this chapter is an extension of (Littlewood and Wright 1995), shifting the 

interest from centring upon reliability to claims about perfection. So we begin by describing 

the general model in (Littlewood and Wright 1995) for learning about the dependability of a 

system using evidence about the efficacy of the process used to build it, obtained from 

observing failure-free operation of previous “similar” systems, then later specialise this 

general model in order to support claims about perfection. 

 

The informal scenario in mind is the following. We have built a new system. We want to 

predict its reliability (including its possibility of perfection). We have some information 

about this system, e.g. it has survived a number of tests without failure. We also have similar 

evidence from previous similar products. We wish to use all this evidence to predict the 

reliability of our current system. The informal idea here is that there is a common 

development process for all systems that are addressing “similar” problems. The process thus 

can be thought of as generating a possible population of systems, of which the current one – 

the one that interests us – is a typical example. Knowledge of the population thus informs our 

judgment of this system. 

 

Slightly more formally, the “evidence” for each system is just the record of outcomes 

(success or failure) for the demands that it has experienced during its lifetime: see Figure 8 

from (Littlewood and Wright 1995). This evidence thus supports the kind of informal claim 

that we have seen used by builders of safety-critical systems: “trust us to have built this 

system right because we have built similar ones in the past, and here’s the evidence of their 

success, i.e. evidence of the success of our design-and-build process that was used to build 

your system.” The aim is to formalize such reasoning, and to do so it shall begin by assuming 

the following doubly stochastic model. 
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Figure 8 evidence from previous “similar” systems’ behaviour to support a claim about the novel (but “similar”) 

system of interest 

At the first level of the general model, for each system, Ai, the successes/failures on demands 

will form a Bernoulli process. That is, successive demands of system Ai fail independently, 

with probability Pi, say. Thus, if system Ai has executed a known number ni of test demands, 

and given Pi=pi, the (random variable) number of failures would trivially have a binomial 

distribution. 
 

The process generates different systems, Ai, and these different systems will have different 

true and unknown pfds, pi. In this second level of the doubly stochastic model, it is assumed 

that these system failure probabilities are sampled independently from a distribution, fp. That 

is, the Pi are independent, identically distributed random variables: ܲ|߬	~	 ݂(|߬) given 

some parametric family of distributions ݂(|߬) characterized by ߬ (possibly a vector). 

 

The distribution fp can be thought of as characterizing the development process, as far as its 

ability to produce reliable systems is concerned. More precisely, it characterizes the 

reliability variation between systems that come from the same development process. Thus if 

it were a highly concentrated distribution (i.e. has a very small variance), the process could be 

regarded as consistent, inasmuch its products would have reliabilities that differed little from 

one another. If most of the probability mass of fp were near the origin, the system 

probabilities of failure would all tend to be small – i.e. the process would be “a good one”, 

producing mainly reliable products. 
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In this reliability model, building a system can be thought of as randomly selecting a pfd from 

a population with distribution fp. We shall be interested here in the case where there is a 

possibility of a chosen system being perfect – i.e. its pfd is zero. In fact the interest will centre 

on the probability of this event, which is just the probability mass of fp concentrated at the 

origin. 

 

The inter-product variation in this model is represented by an objective parameter ߬. We can 

have a relative frequency interpretation of ߬, by considering the following thought 

experiment. First, for each particular system Ai let ݊ → +∞, it is easy to see that the ratio 

 ./݊ converges to the true (but unknown, unobservable) probability of failure on demand, piݎ

Now imagine generating k systems – i.e. randomly and independently selecting k 

probabilities of failure on demand, {pi}, from fp – and let ݇ → +∞. This generates an infinite 

number of systems, and thus an infinite random sample of pfds, pi. A histogram of these pis 

will converge to the true (but unknown) distribution ݂(|߬), and we shall therefore know the 

value of ߬ with certainty. 

 

The objective (i.e. true but unknown) parameter ߬ fully describes the shape of the population 

pfd distribution ݂(|߬). Therefore, knowing ߬ with certainty will tell us our interest – the 

probability mass of fp concentrated at the origin, i.e. the probability of perfection of the 

population. However, we could never know ߬ for certain in real life, rather learn about it in a 

Bayesian manner via collecting more and more evidence.  

Process level

Product level

Behavior level

1...k

1...n

τ~ 
g(τ) 

Pi~  
fp(p|τ)

Fail or 
Pass

How good 
is the 

process

i.i.d. pfd 
dist.

Testing 
evidence

 
Figure 9 schema for the different levels of the general model 
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The Figure 9 is a overall schema of the different layers of this general model that need to be 

populated to enable its use.  

 

At the bottom is the “behaviour level” that describes the aleatory uncertainty about failures 

or successes on demand of a system. Each system has a pfd that determines whether a 

randomly selected demand will result in failure (or not), and successive demands are assumed 

to fail independently. This pfd of a (randomly chosen) system is determined at the middle 

“product level” of Figure 9: for different products, these pfds are independent and identically 

distributed random variables from a distribution ݂(|߬), characterized by a vector of 

parameters, ߬. This parameter, ߬, is unknown. The statistical inference here– based upon 

evidence from the testing of several products – concerns this parameter at what has been 

called the “process level” of the Figure 9 schema. This statistical inference will proceed 

automatically, via Bayes Theorem, starting from the expert’s prior distribution, ݃(߬). 

 

Rather than continue this account with the full general model, a simple example to show the 

basic idea will be illustrated in next section. 

5.2. A simple example using two-point distribution as fp 

In this section, we consider a simple case of a two point distribution of ݂(|߬) with θPP mass 

at origin (representing the probability of perfection of the population) and 1 −  , mass at πߠ

as in Figure 10. 

pfd1π 0

θPP 

1−θPP   

f(p|τ  )

 
Figure 10 a simplified two-point fp distribution 

Here, for simplicity, π is assumed to be known. This is, of course, unrealistic, but will suffice 

for this simple illustration. It follows that the parameter θPP, representing probability of 

perfection of the population, on its own completely characterises the distribution fp. That is, 
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θPP alone is the parameter ߬ in the previous section, at the process level of Figure 9, that 

determines the development process quality.  

 

The interest is in the subjective posterior distribution of probability of perfection, say ߠ∗ , 

having seen evidence from the successful operation of several similar products. If an expert 

were able to provide a complete prior distribution, say ݃(ߠ), he can simply use Bayes 

theorem to obtain this posterior distribution. If, for simplicity, the k systems have each 

executed n demands without failure, we have: 

∗ߠ  (evidence	|processߠ)݃~	 =
;ߠ)ܮ process	evidnce)݃(ߠ)

∫ ;ߠ)ܮ process	evidnce)݃(ߠ)݀ߠ
ଵ


 (5.1) 

where the likelihood function is: 

;ߠ)ܮ  process	evidnce) = ߠ] + (1 − (1(ߨ −  )] (5.2)ߠ

 

As argued elsewhere in this thesis, it is generally unreasonable to expect an expert to be able 

to provide a complete ݃(ߠ) as prior. But it is often feasible to express some precise but 

partial beliefs about the unknown θPP. Now examine an example of the very simple case of 

knowing only one percentile of θPP. 

5.2.1. One percentile of θPP as partial prior belief 
In this case, the assessor can only tell us one percentile of θPP as his prior belief, i.e. the 

confidence bound (ݕ,  :(ఏߙ

ߠ)ݎܲ  < (ݕ = ఏߙ  (5.3) 

 

To use some of the results of original LR and LP models (Littlewood and Rushby 2012; 

Littlewood and Povyakalo 2013a) – we need a posterior confidence bound. If the assessor 

would express a complete prior distribution, this would be: 

 

ߠ)ݎܲ < (evidence	process|ݕ = ∗ఏߙ

=
∫ ;ߠ)ܮ process	evidnce)݃(ߠ)݀ߠ
௬ି


∫ ;ߠ)ܮ process	evidnce)݃(ߠ)݀ߠ
ଵ


 
(5.4) 

where ݃(ߠ) is the prior distribution as before, and L is the likelihood function as (5.2).  
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Now in general there will be an infinite number of prior distributions satisfying (5.3). The 

question is which of these gives us the most conservative (i.e. maximum12) ߙఏ∗ . 

 

It could be shown that Figure 11 is the most conservative prior of ߠ (see Appendix C for 

proof), in which all the mass of ݃(ߠ) collapses to the point y. Therefore, starting with only 

one percentile prior (5.3), we cannot learn about ߠ from process evidence, i.e. ߙఏ =  .∗ఏߙ

1y0

αθ 
1− αθ

g(θPP  )

θPP  
Figure 11 the most conservative prior of θPP 

This case is, of course, unhelpful. The extremely minimal prior belief here is too minimal to 

provide useful learning from the multiple product evidence. Therefore the case in which the 

expert can provide two percentiles of θPP as prior belief will be considered next. 

5.2.2. Two percentiles of θPP as partial prior belief 
Consider the case where we have two percentiles of ݃(ߠ), i.e. the confidence bounds 

ߠ)ݎܲ < (ଵݕ = ଵݕ)ݎܲ ఏଵ andߙ ≤ ߠ < (ଶݕ =   .ఏଶ, as in Figure 12ߙ

The corresponding posterior confidence bounds in terms of a complete prior distribution 

 :are (ߠ)݃

 

ߠ)ݎܲ < (evidence	ଵ|processݕ = ∗ఏଵߙ

=
∫ ;ߠ)ܮ process	evidnce)݃(ߠ)݀ߠ
௬భି


∫ ;ߠ)ܮ process	evidnce)݃(ߠ)݀ߠ
ଵ


 
(5.5) 

                                                
12 Pr(θPP<y)=αθ equals to Pr(1‒ θPP<1‒y)=1‒αθ, so αθ is essentially the doubt that pnp (probability of non-

perfection) is smaller than a certain bound. We want this doubt to be small, so here conservatism means to 

maximize it. 
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ߠ)ݎܲ < (evidence	ଶ|processݕ = ∗ఏଵ∩ఏଶߙ

=
∫ ;ߠ)ܮ process	evidnce)݃(ߠ)݀ߠ
௬మି


∫ ;ߠ)ܮ process	evidnce)݃(ߠ)݀ߠ
ଵ


 
(5.6) 

where ݃(ߠ) is the prior distribution as before, and L is the likelihood function as (5.2). 

1y20 y1

g(θPP  )

θPP 

αθ1 αθ2 

 
Figure 12 two percentile constraints of θPP as priori belief 

1y20 y1

g(θPP  )

θPP 

αθ1 
αθ2 

1− αθ1− αθ2 

1y20 y1

g(θPP  )

θPP 

αθ1 

αθ2 1− αθ1− αθ2 

 
Figure 13 the most conservative prior distributions giving result (5.5) and (5.6) respectively 

Appendix C proves that the most conservative prior distributions satisfying the two expert 

belief constraints are the point-mass distributions in Figure 13. The corresponding most 

conservative posterior confidence results, ߙఏଵ∗  and ߙఏଵ∩ఏଶ∗  (keeping the same bounds, y1 and 

y2) are: 

∗ఏଵߙ  =
ఏଵߙ

ఏଵߙ + ఏଶߙ +
1)(ଶݕ)ܮ − ఏଵߙ − (ఏଶߙ

(ଵݕ)ܮ

 (5.7) 

∗ఏଵ∩ఏଶߙ  =
ఏଵߙ(ଵݕ)ܮ + ఏଶߙ(ଶݕ)ܮ

ఏଵߙ(ଵݕ)ܮ + 1)(ଶݕ)ܮ − (ఏଶߙ
 (5.8) 

 

Table VI are numerical results based on different values of the various model parameters. 
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Table VI Numerical examples of the case with prior beliefs expressed in terms of two percentiles 

case # ࢟ ࣂࢻ ࢟ ࣂࢻ∩ࣂ ࣂࢻ   ࣊∗ ∗ࣂ∩ࣂࢻ   

1 0.9 0.05 0.99 0.1 0.001 10000 10 0.020540109 0.071473861 

2 0.9 0.05 0.99 0.1 0.001 10000 50 0.000472913 0.053056233 

3 0.9 0.05 0.99 0.1 0.001 1000000 10 0.02053921 0.071473018 

4 0.9 0.05 0.99 0.1 0.01 10000 10 0.02053921 0.071473018 

5 0.5 0.05 0.7 0.1 0.001 10000 10 0.001913788 0.054352684 

6 0.9 0.05 0.99 0.1 0.000001 10000 10 0.04959824 0.099598419 

7 0.9 0.05 0.99 0.1 0.000001 10000 50 0.048019803 0.098024151 

8 0.9 0.05 0.99 0.1 0.000001 1000000 50 0.002897123 0.055239721 

9 0.9 0.05 0.99 0.1 0.000001 1000000 10 0.029020956 0.079498839 

 

Consider case #1, with some arbitrary but not unreasonable numbers for the parameters. Here 

we do learn something from the process evidence (10 similar products that each passed 10000 

tests). However, even though the results are better than the “learn-nothing” results in section 

3.1, the two posterior confidence bounds on ߠ are still very unhelpful: the decrease of 

doubts from priors to posteriors (i.e. comparing the columns ߙఏଵ with ߙఏଵ∗  and ߙఏଵ∩ఏଶ with 

∗ఏଵ∩ఏଶߙ ) is quite limited. 

 

Cases #2 and #3 consider the impact of increases in k and n, respectively. The benefit of 

increasing k (from 10 to 50) is much greater – two orders of magnitude – than increasing n 

(from 104 to 106), even though the total number of tests (i.e. the number ݇ × ݊) for case #2 is 

500000 which is much less than the 107 tests in case #3. The latter observation should not be 

taken as a guide to the relative “cost” of the two scenarios, however, since the number of test 

cases is a poor guide to the “cost” of gaining the evidence in these two cases: developing 

many systems is far more onerous than generating many test cases. 

 

The importance of k here is not surprising. It seems intuitively obvious that “all things being 

equal” we learn more about the efficacy of the process by having evidence of good working 

from many products, than we do from massive exposure of only a few products. In practice, 

of course, it seems unlikely there will be available very many previous products to provide 

this kind of evidence. 
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Another observation that confirms intuition is that the weaker the claims are, the greater the 

confidence we could obtain from process evidence. Consider case #5: the claim ߠ < 0.5 is 

weaker than it is for the previous cases ߠ < 0.9, so seeing the same evidence (n=10000, k 

=10), more could be learnt in this case. Notice also that for each case the improvement for 

∗ఏଵߙ  is better than ߙఏଵ∩ఏଶ∗ . Again, this is because the claims (i.e. ܲߠ)ݎ < ∗ఏଵߙ ଵ)) forݕ  are 

weaker than the ones for ߙఏଵ∩ఏଶ∗  (i.e. ܲߠ)ݎ <   .((ଶݕ

 

We shall not pursue analysis of Table VI any further here, since this set-up with the two-point 

fp distribution is unlikely to be a realistic representation of reality; it was meant only to be an 

illustrative aid to understanding.  

 

However, the reader will note that, even for this unrealistically simple example, there are 

differences between the results of section 5.2.1 and 5.2.2. The very restricted prior beliefs of 

section 5.2.1 do not allow any useful learning from the evidence of failure-free working of 

multiple systems; the slightly more informative prior beliefs of section 5.2.2, in contrast, 

provide some modest learning. An important issue in this kind of study is identifying exactly 

how minimal prior beliefs can be – to aid the task of the assessor – without being too minimal 

to give useful results. In the following section, a more plausible model to investigate such 

issues will be introduced. 

5.3. More practical assumption of an arbitrary fp with mass at 

the origin 

In the previous section, to illustrate the general approach, an analysis based on an unrealistic 

two-point-mass distribution fp at the middle level of the schema Figure 9 was proposed; in 

this section, a more practical way to treat this middle layer of the model will be introduced.  

 

Readers will note, however, that even with the unrealistic “product level” simplification of 

section 5.2.1 – where the only unknown quantity is pp – there arise quite difficult problems 

concerning prior beliefs. What would be a reasonable assumption about fp? 

 

Clearly, this must have mass at the origin, ߠ, since this is the centre of our interest. But 

what happens in (0,1]? An obvious “classical” approach then would be to assume a 
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parametric family for this density. E.g. we could assume that p had a (conditional, given 

 > 0) Beta distribution with parameters (ߙ,  In that case the unknown model parameter at(ߚ

the top level of the Figure 9 schema would be ߬ =< ,ߠ ,ߙ ߚ >, i.e. a vector of parameters. 

 

However there are problems with such an approach. Most importantly, it is hard to justify the 

choice of a Beta (or any other) parametric family. Additionally, experts would find it hard to 

express their prior beliefs about the vector < ,ߠ ,ߙ ߚ >. In what follows, therefore, a 

different way forward will be proposed that does not rely on such a parametric assumption; in 

fact no assumptions are made about the shape of the distribution fp for its non-zero part. 

5.3.1. The introduction of R 
Now consider an unknown arbitrary distribution fp with some mass (ߠ) at the origin. The 

objective function is: 

 

ߠ)ݎܲ < (evidence	process|ݕ =
ߠ)ݎܲ < (evidence	process	݀݊ܽ	ݕ

(evidence	process)ݎܲ

=
ܧ ቀܫఏುುழ௬൫ ݂൯ × evidenceห	൫processݎܲ ݂൯ቁ

ܧ ቀܲݎ൫process	evidenceห ݂൯ቁ
	

(5.9) 

where ܫఏುುழ௬൫ ݂൯ is an indicator function using all possible ݂  as inputs. When the mass at 

the origin of a ݂  is less than y,	ܫఏುುழ௬൫ ݂൯ = 1, otherwise 0. ܧ  is the expectation over all 

possible ݂ . The use of the indicator function ܫఏುುழ௬൫ ݂൯ ensures the mean value in the 

numerator only involves those possible ݂  having a mass at the origin less than y. 

 

And we could know: 

evidenceห	൫processݎܲ  ݂൯ = ቈߠ + න (1 − (߬|)݂(
ଵ

ା
݀



 (5.10) 

So if we denote13:  

 ܴ = න (1 − (߬|)݂(
ଵ

ା
 (5.11) ݀

                                                
13 Strictly, since it is a function of n, it would be more precise to talk of R(n) here and in what follows. R is used 

here instead just for notational simplicity. 
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then: 

evidenceห	൫processݎܲ  ݂൯ = ߠ] + ܴ] (5.12) 

which is a function only of the pair	< ߠ , ܴ >.	And in principle the joint distribution of 

ߠ 	and ܴ, say ݃ழఏುು,ோவ, could be calculated from the ݃(߬) (i.e. the distribution of all 

possible ݂). 

 

Then the objective function (5.9) turns into: 

 

ߠ)ݎܲ < (evidence	process	|ݕ =

=
ܧ ቀܫఏುುழ௬൫ ݂൯ × evidenceห	൫processݎܲ ݂൯ቁ

ܧ ቀܲݎ൫process	evidenceห ݂൯ቁ

=
ழఏುುܧ ,ோவ൫ܫఏುುழ௬(ߠ) × ߠ] + ܴ]൯

ழఏುುܧ ,ோவ([ߠ + ܴ])  

(5.13) 

which depends only on the joint distribution of ߠ 	and ܴ, say ݃ழఏುು,ோவ. 

 

This result is important for the following reasons. The problem of how to deal with ݂  at the 

“product level” of Figure 9 has been transformed into a problem at the “process level”. Most 

importantly, no assumptions about the shape of ݂  for non-zero p have been made. Instead an 

expert “only” has to express joint prior beliefs about the pair of parameters ߠ and R. 

Mathematically, R is sufficient to represent the non-zero part of ݂  in terms of Bayesian 

learning about the probability of perfection14. 

 

Quotes for “only” in the previous paragraph are used because this remaining problem 

concerning prior beliefs is not a simple one. Certainly, it would be unreasonable to expect an 

expert to have a complete bi-variate distribution ݃ழఏುು ,ோவ for his prior beliefs. As discussed 

elsewhere, experts have great difficulty expressing beliefs about dependence, and even 

providing complete marginal prior distributions. 

 

In what follows are some results that require only marginal prior beliefs about the unknown 

model parameters, and these marginal beliefs will themselves be only partial – typically only 
                                                
14 Note the similarity of this observation to the concept of sufficient statistic in classical statistics. See, for 

example, https://en.wikipedia.org/wiki/Sufficient_statistic. 
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one or two percentiles. Of course, reducing the burden on experts in these ways introduces 

further conservatism in the results. 

5.3.2. Bayesian learning with one marginal percentile of θPP and R 

respectively 
As in section 5.2, firstly the case where an expert assessor is able to provide only very 

minimal prior beliefs about the unknown parameters is considered. Specifically he/she is only 

prepared to provide the four numbers that constitute a single marginal percentile for each: 

ߠ)ݎܲ  < (ݕ = ఏߛ  (5.14) 

ܴ)ݎܲ  < (ݎ =   (5.15)ߛ

 

To illustrate the approach, only the case most likely to occur in practice will be considered 

here, in which ݕ + ݎ ≤ 1. The reasoning in other cases is similar, but with some tedious 

differences of detail. 

 

As the discussion in (Bishop, Bloomfield et al. 2011) and chapter 4 about the “conservative 

Bayesian inference”, although a standard Bayesian analysis would here require an expression 

of full prior beliefs about a pair, now, of parameters ߠ and R, we continue instead to pursue 

a less ambitious “conservative” treatment. This involves working from only the partial 

elicitation of this bivariate prior represented by constraints (5.14) and (5.15). Although not 

fully elicited, our approach nevertheless reasons with the concept of the potential bi-variate 

prior distribution. We shall denote such a hypothetical bi-variate joint distribution, of ߠ and 

R, by ݃ழఏುು,ோவ illustrated in Figure 14. Because of the constraint ߠ + ܴ ≤ 1, this 

distribution would have non-zero density only beneath the broken line connecting (0, 1) and 

(1, 0). In this triangle, the probability masses associated with the four regions in the figure are 

label as M1, M2, M3, M4. Then we have ܲߠ)ݎ < (ݕ = ఏߛ = ଵܯ ܴ)ݎܲ ଷ andܯ+ < (ݎ =

ߛ = ଵܯ  .ଶܯ+

 

The interest lies in the posterior confidence bound for ߠ: 

 

ߠ)ݎܲ < (evidence	process	|ݕ

=
∫ ∫ ൫ܫఏುುழ௬(ߠ) × ߠ] + ܴ]൯݃ழఏುು,ோவ(ߠ , ܴ݀ߠ݀(ܴ

ଵ


ଵ


∫ ∫ ߠ] + ܴ]݃ழఏುು ,ோவ(ߠ , ܴ݀ߠ݀(ܴ
ଵ


ଵ


 
(5.16) 
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Figure 14 the prior constraints (5.14) and (5.15) on the joint distribution of θPP and R 
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Figure 15 the most conservative joint prior distribution satisfying the prior constraints (5.14) and (5.15) 

The most conservative joint prior, ݃ழఏುು ,ோவ, satisfying the expert’s constraints (5.14) and 

(5.15) is the 4-point-mass distribution shown in Figure 15 (see Appendix C for proof). The 

dots, P1, P2, P3, P4, are representing the probability masses of the related value ranges. The 

corresponding most conservative posterior confidence bound for ߠ is: 

ߠ)ݎܲ  < (evidence	process	|ݕ ≤
1

1 + ߛݕ + ݕ] + (1[ݎ − ఏߛ − (ߛ
ఏߛ

= ∗ఏߛ  (5.17) 

 

So ߛఏ∗ is the guaranteed-conservative posterior bound for the probability of perfection among 

the infinite number of prior distributions satisfying the expert’s prior constraints (5.14) and 

(5.15), i.e. none results in a value for ܲߠ)ݎ < ∗ఏߛ evidence) smaller than	process	|ݕ . 

 

Table VII shows some numerical examples of the ߛఏ∗ . 
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Table VII numerical examples of the “counter-intuitive” results of the very limited priors 

case # y ࣂࢽ r ࢘ࢽ k ࣂࢽ∗  

1 0.9 0.05 0.09 0.05 10 0.056729362 

2 0.9 0.05 0.099 0.05 10 0.052166239 

3 0.99 0.05 0.009 0.05 10 0.050696597 

4 0.99 0.05 0.0099 0.05 10 0.050285647 

 

In fact, Table VII shows some very counter-intuitive results: in all cases we find that ߛఏ∗ >

γఏ . That is, observing “good news” process evidence (failure-free working of k products) 

results in the posterior belief in perfection being worse than the prior belief. In the next 

section, the reasons for this result will be discussed in detail – essentially the reason is that 

the prior beliefs here are too minimal to be useful. This analysis suggests that priors be made 

sufficiently “partial” to make the expert’s task feasible, but at the same time sufficiently 

informative to produce useful results. 

5.3.3. The “counter-intuitive” results 
The results above are “counter-intuitive” because seeing good evidence did not enhance our 

confidence in the positive claim about probability of perfection that interests us, on the 

contrary it increased our doubt. This result is not due to the choice of numbers in the 

examples of Table VII: for any valid numbers of the model parameters the “counter-intuitive” 

result (i.e. ߛఏ∗ > γఏ) will apply. 

 

To understand this result, consider the most pessimistic prior distribution (satisfying the 

percentile constraints (5.14) and (5.15)) in Figure 15, which is a bi-variate distribution with 

probability mass concentrated on four points: P1 at (r-, y-)15, P2 at (0, y), P3 at (1 − y, y-) and 

P4 at (r, y). The corresponding masses at these points are M1, M2, M3, M4 respectively. The 

effect of seeing more and more process evidence is that in the posterior distribution the 

masses at P2, P1 and P4 all gradually move to P3. Since P3 (1 − y, y-) is below the line  

ߠ = ߠ)ݎܲ it follows that ,ݕ < (evidence	process	|ݕ > ߠ)ݎܲ <   .will always hold (ݕ

                                                
15 Note the difference with (r, y): (r-, y-) is the coordinate infinitesimally close to (r, y) but smaller than r and y 

in both directions. The minus signs used here and later means smaller but infinitesimally close to the number. 
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What does this mean practically? The four points of probability mass in Figure 15 can be 

thought of as representing 4 different development processes: 

 The points P1 and P4 represent very similar processes that produce some (100y%) 

perfect, some (100r%) reliable (but not perfect) and some (100(1 − ݕ −  (%(ݎ

unreliable versions. 

 The P2 process produces some (100y%) perfect, no (0%) reliable (but not perfect) and 

many (100(1 −  .unreliable versions (%(ݕ

 The P3 process produces some (100y%) perfect, many (100(1 −  reliable (but not (%(ݕ

perfect) and no (0%) unreliable versions. 

 

As we accumulate evidence of only good working, we tend to believe more strongly that our 

development process is P3, i.e. the one with no unreliable versions. That is, seeing good 

process evidence we tend to rule out processes producing unreliable versions. And in our 

worst case, the only process producing no unreliable versions is P3. But P3’s ability to 

produce perfect versions is lower than what we want to claim (as the ordinate is y- which is 

smaller than y). Therefore, believing more strongly in the process P3 means having increasing 

doubt that the probability that randomly selected software from the process is not perfect is 

lower than a claimed bound. 

 

But why are there only these 4 development processes as candidates here? Ideally, for 

example, there could be a development process producing many perfect versions, based on 

the very best practices and design principles of utmost simplicity. If we had a prior belief that 

there exists this kind of process (even with very small probability), we would expect helpful 

support from the evidence to increase our confidence about the probability of perfection. 

Unfortunately, prior belief in the possibility of this kind of “perfection favoured” 

development process is ruled out due to the conservative nature of the method. That is, 

starting with the very minimal prior belief of only one marginal percentile of θPP and R 

respectively (i.e. constraints (5.14) and (5.15)), the most conservative joint prior distribution 

does not allow the possibility of “perfection favoured” process.  

 

The counter-intuitive results, then, arise because in the pursuit of simplicity to aid the 

expert’s task, we have allowed an expert to express partial prior beliefs that are too minimal. 
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In what follows we suggest to relax this minimalism slightly: the cost, of course, is a heavier 

burden on the expert in expressing prior beliefs. 

5.3.4. Using less minimal prior knowledge to get useful results 
As discussed above, the most conservative prior distribution in Figure 15 did not include the 

possibility of a development process producing many perfect software versions. 

Mathematically, this is due to the possibility for the marginal distribution of ߠ to have zero 

variance (since only one prior percentile of ߠ has been specified). Thus in the worst case, 

the marginal distribution of ߠ will conservatively collapse onto one point (the y point of the 

vertical axis in Figure 15). Informally this collapsing means all our candidate development 

processes have the similar capability to produce perfect versions. Therefore the assessor will 

believe that the good process evidence is only due to high reliability property of the process. 

Unfortunately, in the worst case (i.e. Figure 15), the one having the highest reliability 

property is a one having slightly less capability of producing perfect versions than our 

interest. 

 

By extending assessors’ priors about ߠ to at least two percentiles, he could rule out the 

possibility of a prior having zero variance and so stop the collapsing onto a single point of the 

marginal distribution of ߠ. So, he would have candidate processes with different 

capabilities of producing perfect versions. Now perfection property might be thought to be 

the reason for seeing good process evidence. However, due to the conservative nature of the 

method, the “perfection favoured” process in the priors also tends to produce unreliable 

versions, and the “high reliability (but not perfect) favoured” process will never produce 

unreliable versions. So the “high reliability (but not perfect) favoured” process will always be 

preferred in the Bayesian learning. But this is obviously unrealistic, as no process will never 

produce unreliable versions. So there must be an upper bound on R to make room for the 

possibility of unreliable versions produced in all possible candidate processes. 

 

Therefore, a new (less) minimal partial prior belief about the model parameters in terms of 

two percentiles for ߠ and one percentile and a certain upper bound for R is proposed: 

ߠ)ݎܲ  < (ଵݕ =  ఏଵ (5.18)ߛ

ଵݕ)ݎܲ  ≤ ߠ < (ଶݕ =  ఏଶ (5.19)ߛ

ܴ)ݎܲ  < (ݎ =   (5.20)ߛ
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ܴ)ݎܲ  < (ݎ = 1 (5.21) 

 

The intention is that this set of prior beliefs may be sufficiently rich to produce useful results 

whilst still imposing upon an expert a manageable task in their expression. Figure 16 shows 

these prior beliefs, where the regions M1, M2,…M6 contain non-zero probability mass. (Note 

that the position of the vertical line at ݎ in Figure 16 is just for illustration; its precise 

location will be discussed in more detail later) 
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Figure 16 the minimum useful priori constraints on the joint distribution of θPP and R 

From the definition of R, there is the constraint ߠ + ܴ ≤ 1 which derives the other two 

inexplicit constraints ݕଵ + ݎ < 1 and ݕଶ + ݎ < 1. The possible range of values of the certain 

upper bound ݎ are: 1 − yଵ ≤ r < 1, 1 − yଶ ≤ r < 1− ଵ and rݕ ≤ r < 1 −  .ଶݕ

 

As Appendix C, it can be shown that useful results can be obtained only when the objective 

function is ܲߠ)ݎ < evidence)16 and r lies in the range 1	process	ଵ|ݕ − ଶݕ ≤ ݎ < 1 −  ଵݕ

or in the range ݎ ≤ ݎ < 1 −  ଶ. The corresponding most pessimistic joint prior distributionsݕ

are in Figure 17 and Figure 18 respectively. As before these are distributions with only a 

number of point masses.  

 

The two most conservative prior distributions in Figure 17 and Figure 18 result in the same 

objective function as below: 

                                                
16 As there are two prior confidence bounds on θPP, i.e. (5.18) and (5.19), both of them could be updated and 

potentially used as the input required by the LP model. But by proof, only the former could be useful. 
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ߠ)ݎܲ < (evidence	process	ଵ|ݕ

=
∫ ∫ ൫ܫఏುುழ௬ଵ(ߠ) × ߠ] + ܴ]൯݃ழఏುು,ோவ(ߠ , ܴ݀ߠ݀(ܴ

ଵ


ଵ


∫ ∫ ߠ] + ܴ]݃ழఏುು,ோவ(ߠ , ܴ݀ߠ݀(ܴ
ଵ


ଵ


≤
ଵݕ] + ఏଵߛ]ݎ

ଵݕ] + ఏଵߛ]ݎ + ଵݕ] + ఏଶߛ[ݎ + ߛଶݕ + ଶݕ] + (1[ݎ − ߛ − ఏଶߛ − (ఏଵߛ

= ∗ఏଵߛ  

(5.22) 

where ߛఏଵ∗  is the most conservative posterior belief of interest. 
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Figure 17 the most conservative prior satisfying the minimum useful priori constraints with 1-y2≤rU<1-y1 
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Figure 18 the most conservative prior satisfying the minimum useful priori constraints with r≤rU<1-y2 

Thus, for example, the pair (1 − ∗ఏଵߛ ,ଵݕ ) could be used as the input pair ( ,  ) of theߙ

original LP model, see (2.11) in section 2.4.3 for detail.  

 

Table VIII shows some numerical examples. The first 4 cases are illustrating the results with 

constraint 1 − ଶݕ ≤ ݎ < 1 −  ଵ and the rest of them are about the ones with constraintݕ

ݎ ≤ ݎ < 1 − ∗ఏଵߛ ଶ. Theݕ  column contains results that are both bigger and smaller than the 



On the Probability of Perfection of Software-based Systems 

100 

prior value, ߛఏଵ = 0.05. It seems the “less minimal” prior constraints are indeed helpful in 

some cases compared with the counter-intuitive results in the 5.3.3, but not universally.  
Table VIII Numerical examples using the “less minimal” prior knowledge 

case # ࢟ ࣂࢽ ࢟ ࣂࢽ ࢁ࢘ ࢘ࢽ ࢘ k ࣂࢽ∗  

1 0.9 0.05 0.99 0.05 0.009 0.05 0.0600 10 0.035391421 

2 0.9 0.05 0.99 0.05 0.009 0.05 0.0999 10 0.052250881 

3 0.9 0.05 0.99 0.05 0.009 0.05 0.0110 10 0.021265865 

4 0.9 0.05 0.99 0.05 0.009 0.05 0.0600 50 0.007679250 

5 0.9 0.05 0.99 0.05 0.009 0.05 0.0095 10 0.020925570 

6 0.9 0.05 0.92 0.05 0.009 0.05 0.0790 10 0.082798474 

7 0.9 0.05 0.99 0.05 0.009 0.05 0.0091 10 0.020835634 

8 0.9 0.05 0.99 0.05 0.009 0.05 0.0095 50 0.000518818 

 

The two counter-intuitive results happen in cases #2 and #6 in which the certain upper bound 

  is high. Mathematically, there is a competition between the points P3 and P6 in Figure 17ݎ

and Figure 18, in which the result depends on the specific choices of the parameters. The 

higher the certain upper bound ݎ, the more likely P3 will be the result. The informal 

interpretation in that case is that we believe more in the P3 process which is producing many 

“ultra-reliable but not perfect” versions.  

 

In contrast, when the result is the P6 process, we have our “perfection favoured” process. 

Cases #4 and #8 get practically useful results which are one and two orders of magnitude 

better that prior belief, respectively. Comparing with case #1 and #5 respectively where only 

the numbers of k vary, there is evidence that, for a certain set of prior numbers, collecting 

more versions in the process evidence is very helpful. This is consistent with the conclusion 

in the section 5.2.2, and is in accord with intuition. But comments about the feasibility of 

observing many previous products still apply. 

 

Notice that, in contrast to k, we cannot say how the parameter n affects the result, since n is 

now hidden in the subjective beliefs about R. That said, from the definition of R, it is obvious 

that larger n means smaller R.  
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Comparing case #3 to case #1 and case #7 to case #5, the smaller values of ݎ here indeed 

give better results; but its impact does not seem as great as that of k. 

5.3.5. How to use the result? A possible negotiation model 
Let’s imagine a situation where there is to be negotiation between a regulator and the licensee 

of a system – say a nuclear plant – that contains a critical software-based subsystem. As part 

of the safety case for the plant, the licensee needs to make a claim for “probable perfection” 

of this subsystem. That is, he needs to convince the regulator to accept as reasonable his 

declared confidence that ߠ is no smaller than some declared number y1. 

 

Clearly this cannot be done by mere assertion about the licensee’s top-level claim here. It is 

agreed between the regulator and the licensee that their negotiation will take place within the 

framework of the approach outlined above. The model then allows the discussion between 

them to be a negotiation about the elements of the argument that underpin the regulator’s 

claim: i.e. about numbers for the 7 parameters < ,ଵݕ ,ఏଵߛ ,ଶݕ ,ఏଶߛ ,ݎ ߛ , ݎ > 17 needed to 

obtain the conservative posterior bounding confidence (5.22). 

 

Rather than say simply “trust me when I declare my confidence in perfection”, the licensee 

says “here are the numbers I used to arrive at my confidence in perfection”. These numbers, 

then, rather than simply the top-level claim, become the subject of discussion and negotiation 

with the regulator. Certainly these numbers are still difficult to reach an agreement in reality, 

but the negotiation framework proposed here eases the task to some degree. Below how such 

negotiation might be conducted is briefly sketched.  

 

Begin with a simple monotonicity analysis of the impact of the seven parameters on ߛఏଵ∗ . It is 

easy to see (by partial differentiation w.r.t. each parameter) that: 

∗ఏଵߛ .1  is an increasing function in terms of ߛఏଵ.  
∗ఏଵߛ .2  is a decreasing function in terms of ݕଶ.  
∗ఏଵߛ .3  is an increasing function in terms of ߛఏଶ.  
∗ఏଵߛ .4  is a decreasing function in terms of ݎ.  
∗ఏଵߛ .5  is an increasing function in terms of ߛ.  

                                                
17 Recall that there are some constraints on the numerical values that these numbers need to satisfy. 
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∗ఏଵߛ .6  is an increasing function in terms of ݎ.  
7. The monotonicity of ݕଵ depends on specific choices of other parameters 

The monotonicity analysis shows how changes to these parameters make claims about 

probability of perfection stronger or weaker: increasing parameters in 1, 3, 5, 6 make the 

posterior bound more conservative. 

 

Note that 7 parameters are either “bounds” (ݕଵ, ,ଶݕ ,ݎ  ”) or their corresponding “confidencesݎ

,ఏଵߛ) ,ఏଶߛ  ) which represent the licensee beliefs. It seems likely that agreement on theߛ

bounds will be easier, and negotiation will then concentrate on the related confidences. The 

bound ݕଵ is a special bound which is essentially the licensee’s claim, his confidence in which 

he is trying to persuade the regulator is acceptable.  

 

The negotiation could proceed in the following steps： 

 They begin by agreeing on the “claim”, ݕଵ: this comes from higher-level system 

requirements. Then the licensee and regulator state their prior beliefs about this claim, 

i.e. values for ߛఏଵ. 

 Second, licensee and regulator agree on ݕଶ and	ݎ. Then they state their beliefs about 

  .ߛ ఏଶ andߛ values for :ݎ	ଶ andݕ

 Finally, they negotiate on the ݎ. 

 

The following is a simple example of how this might proceed (the numbers are merely 

illustrative and not meant to be representative of those that would occur in a real negotiation 

about a critical system): 

1. The claim concerning probability of perfection is pnp<0.1 (obtained from higher level 

requirements), so the y1=0.9. For ߛఏଵ, the licensee’s doubt that the probability of 

perfection is bigger than 0.9 is 0.05, and the regulator’s doubt about it is 0.1. Then 

0.05 ≤ ఏଵߛ ≤ 0.1. 

2. Then the two parties fix the ݕଶ = 0.99 and ݎ = 0.009 

a. For ߛఏଶ, the licensee’s doubt that the ߠ is bigger than 0.99 is 0.1, and the 

regulator’s doubt about it is 0.2. Then 0.05 ≤ ఏଶߛ ≤ 0.1. 

b. For ߛ, the licensee’s doubt that the R is bigger than 0.009 is 0.05, and the 

regulator’s doubt about it is 0.1. Then 0.05 ≤ ߛ ≤ 0.1. 
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3. The licensee does not believe that the R will be bigger than 0.0098, and the regulator 

does not believe that R will be bigger than 0.0095. Then 0.0095 ≤ ௨ݎ ≤ 0.0098.  

 

For each confidence/doubt here we have assumed that the regulator will be more conservative 

in his beliefs than the licensee. If the process evidence to form posterior beliefs is based on 

݇ = 50 versions, we have the following Table IX: 

 
Table IX An illustrative numerical example of the negotiation model 

 k ࢁ࢘ ࢘ࢽ ࢘ ࣂࢽ ࢟ ࣂࢽ ࢟
best	

∗ࣂࢽ  

worst	

∗ࣂࢽ  

0.9 
[0.05, 

0.1] 
0.99 

[0.05, 

0.1] 
0.009 

[0.05, 

0.1] 

[0.0095, 

0.0098] 
50 0.00052 0.0012 

 

The improvement/reduction in confidence/doubt about probability of perfection bound (i.e. 

from prior to posterior) is about the same for licensee and licensor in this example: around 

two orders of magnitude in each case. In the next example, Table X, there is significant 

variation (about an order of magnitude) between the two parties on parameter ݎ, keeping the 

other parameters the same as before. 

 
Table X A numerical example of the negotiation model with big variance on rU. 

 k ࢁ࢘ ࢘ࢽ ࢘ ࣂࢽ ࢟ ࣂࢽ ࢟
best	

∗ࣂࢽ  

worst	

∗ࣂࢽ  

0.9 
[0.05, 

0.1] 
0.99 

[0.05, 

0.1] 
0.009 

[0.05, 

0.1] 

[0.0091, 

0.098] 
50 0.00051 0.110 

 

Introducing this significant difference in the parties’ views about ݎ results in the best and the 

worst result being very different (the worst result even shows the “counter-intuitive” result). 

This suggests that the value of r is critical in negotiation. 

 

Table XI shows some more results with different parameter values for each party. From this 

limited analysis it seems that prior belief in γఏଵ also has a high impact on the final result. In 

contrast, wide variation in γ and γఏଶ seems to have less impact. 
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From the limited evidence of these examples, it seems negotiation might centre upon ߛఏଵ and 

∗ఏଵߛ , since these seem to have the greatest effect on the resultݎ . 
Table XI Numerical examples of the negotiation model with different variance on the parameters 

 k ࢁ࢘ ࢘ࢽ ࢘ ࣂࢽ ࢟ ࣂࢽ ࢟
best	

∗ࣂࢽ  

worst	

∗ࣂࢽ  

0.9 
[0.05, 

0.1] 
0.99 

[0.05, 

0.1] 
0.009 

[0.05, 

0.1] 

[0.0095, 

0.0098] 
50 0.00052 0.0012 

0.9 
[0.05, 

0.1] 
0.99 

[0.05, 

0.1] 
0.009 

[0.05, 

0.5] 

[0.0095, 

0.0098] 
50 0.00052 0.0015 

0.9 
[0.05, 

0.1] 
0.99 

[0.05, 

0.5] 
0.009 

[0.05, 

0.1] 

[0.0095, 

0.0098] 
50 0.00052 0.0024 

0.9 
[0.05, 

0.5] 
0.99 

[0.05, 

0.1] 
0.009 

[0.05, 

0.1] 

[0.0095, 

0.0098] 
50 0.00052 0.011 

 

The examples here are meant to be only illustrative, so it would be wrong to draw strong 

conclusions from the particular numerical results above – there is no attempt to make these 

numbers typical of real systems. Rather the intention is to show how the modelling might 

provide a framework for negotiation. It does this by allowing the discussion to take place 

about the components of the parties’ arguments that support their different claims about 

perfection. It seems that, of the 7 parameters in total in the model, it is likely that the parties’ 

differences will centre upon 4 of these parameters: the 3 parameters representing confidence, 

i.e. γఏଵ, γఏଶ, γ, together with ru. 

5.4. Chapter summary 

The model have been presented here allows evidence of the efficacy of development 

process(es) to be taken into account when assessing the possibility of perfection of a 

software-based system. Informal arguments in support of system dependability have long 

used this kind of evidence: “we have in place a wealth of experience and good processes, as 

evidenced by the many similar systems we have built in the past that have experienced lots of 

operational exposure without failure – this makes us confident that this system will operate 

with high dependability.” Such claims about track records are, of course, generally attractive: 

e.g. we are confident flying in a new aircraft type built by Boeing or Airbus, because we have 

seen the excellent safety record of previous types. The work reported here is an attempt to put 
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this kind of argument onto a formal basis. In particular, it allows quantitative claims to be 

made – in this case, about possible perfection – and it does this in ways that are guaranteed to 

be conservative. 

 

The modelling here depends upon the reasonableness of notions of “similarity” between 

different products, and the way that these are represented mathematically. The claim of a 

“common development process” could be supported by seeing that the methods, tools or 

principles used in key activities (i.e. design, V&V and etc.) are similar, that the same 

prescriptive standards are used, and so on. Justification of such assumptions of similarity in 

particular cases is, of course, outside the direct scope of this study, and will need to be made 

on rather informal grounds by the assessor of the system in question. There is no intention to 

claim “complete similarity” in all aspects of process and problem: we recognize that 

differences will be present, and these will result in differences in the resulting products. They 

will not have identical dependability, for example. In particular, they will not all be perfect 

(or not perfect). The model takes account of this residual variation between products, indeed 

this is what drives the uncertainty about the top level claim about perfection.  

 

In this section, some of the issues that arise in using the model to make claims about 

perfection of real systems will be discussed. There are, as the attentive reader will have 

noticed, some difficult problems that an expert assessor will face in using the model. They 

will be discussed, and ways forward to address the issues are proposed. 

5.4.1. What is R, and how could experts express beliefs about it? 
The general model is complex, and at its heart lies a distribution for pfd which has been 

called fp: see the middle level of Figure 9. Specifying this distribution is difficult. As argued 

earlier, adopting some parametric family for fp and then incorporating its unknown parameter 

values into the Bayesian analysis does not seem a plausible way forward. It would be hard to 

justify a particular choice of family; given such a family, it would be unreasonable to expect 

an expert to be able to express even partial beliefs about its parameters. 

 

The result of section 5.3.1 is a way round these difficulties. The key result here shows that 

knowledge of the complete (non-zero) shape of fp does not need to be specified, because 

knowledge of R is “sufficient” (with pp), in a precise mathematical sense, for statistical 
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inference about perfection. This notion of sufficiency is similar to the idea of “sufficient 

statistic” in classical statistics. 

 

Whilst the use of R is a considerable simplification, compared with the need to specify a 

complete distribution fp, it requires an expert to express (at least partial) prior belies about R. 

How could he do this? 

 

From section 5.3.1, ܴ = ∫ (1 − ଵ(߬|)݂(
ା  is the distribution of the pfd of a (߬|)݂ Here .݀

randomly selected software system from the population produced by the common 

development process for this and similar problems. Note the range of p excludes the perfect 

versions, so R means the probability that a randomly selected version from the population 

produced by the development process is not perfect but passes n tests. 

 

As a shorthand, we shall say that R means “reliable and not perfect”; where by “reliable” we 

mean “passes n tests without failure”. Note the presence of n in this: in fact in this treatment 

of the model here, n only appears in the Bayesian analysis via an expert’s belief(s) about R. 

 

Note also that R, like the probability of perfection ߠ, is an objective property of the 

population software systems: it is an unknown “in-the-world” parameter. There will therefore 

be epistemic uncertainty for assessors about these two parameters – in fact this is the only 

epistemic uncertainty in the model now. The task of the assessor is to express his (limited, 

partial) beliefs, for example in constraints like (5.15). How should he go about this? – this 

task seems harder for R than the similar task he faces concerning ߠ. 

 

In the shorthand terminology we have: 

 ܴ = (reliable	and	imperfect)ݎܲ =  (5.23) (	reliable|imperfect)ݎܲ(imperfect)ݎܲ

here is just 1 (imperfect)ݎܲ −  ; The assessor is assumed to be able to express beliefsߠ

about ߠ. More difficult is the second factor on the right hand side of (5.23), which is a 

conditional probability. It is well-known people find it hard to assess a conditional probability 

– in fact it is essentially the same, and thus as difficult, as assessing bivariate uncertainty.  

 

Some help may come here from noting that ܲݎ(reliable|imperfect	) ≤  from (reliable)ݎܲ

which it follows that ܴ ≤ (1 −  and the problem reduces to expressing (reliable)ݎܲ(ߠ
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beliefs about a product of unconditional probabilities, with all the difficulties related to 

epistemic dependence between them. 

 

Clearly this remains a difficult problem, though, and is an obvious candidate for further 

thought. 

5.4.2. Extent of process evidence: what values of n and k are feasible? 
It is trivially true that the more versions and the more failure-free tests, the better. However, 

the numerical results here, whilst only intended to be illustrative rather than realistic, suggest 

– not surprisingly – that k seems more important than n. Massive operational exposure from 

only a very few previous products tells us less about the population of products than modest 

exposure of many products. 

 

Unfortunately, the value of k is unlikely to be controllable. It is infeasible to build multiple 

versions just to evaluate the efficacy of a development process. Instead, users of a model like 

this must rely upon the evidence that is available. So, for example, within a company that has 

built several generations of safety protection systems, there may be evidence of their 

reliability in operational use that could be used for our model. Values of k in such cases are 

likely to be modest, however: they are unlikely to be as large as the value k= 50 in our earlier 

tables, which gave the most useful results. 

 

One possible way out of this difficulty may be that the model is applicable to a wider class of 

problems. It has been described everything here in terms of multiple similar products 

developed using the same process (to tackle similar problems). In fact it seems the same 

model can be applied to the case where a single product is used in multiple similar (but 

different) environments. For example, some safety protection systems used in the nuclear 

industry for reactor shut-down have also been used extensively for emergency shut-down in 

dangerous process industries. If claims for “similarity” here can be supported – and this may 

be so in the case of a rather simple shut-down function – then k may be quite large. Thus the 

model here may be able to be used to support claims for perfection of a software-based 

system in a nuclear application by using evidence from the use of that system in other 

industries. However, a limitation needs to be noted here. As argued in chapter 1, there are two 

reasons for the interest in possible perfection: firstly that it is of value in its own right for 
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making claims about lifetime reliability; secondly that it overcomes a basic hurdle in making 

reliability claims for fault-tolerant 1-out-of-2 systems via the result from original LR and LP 

models. This new interpretation of similarity fits well for the first use of probability of 

perfection, while whether it fits into the latter scenario or not needs to be double checked. 

Because some preliminary work has shown the original LR and LP models is invalid for the 

new interpretation. 

 

There is a practical restriction on the allowable values of n: all the results assume that n takes 

the same value over all k systems observed. Clearly, this is a serious issue because it is 

unlikely to be true in practice. It arises because the parameter R involves a particular n. It 

would be infeasible to elicit beliefs about k different Ri corresponding to the different values 

of ni for the k different products. A work-around is to conservatively choose the minimum ni 

to be the n in our equations. Of course, this solution may be very conservative if the 

minimum ni is much smaller than other ni. In this case, we could simply ignore the evidence 

from this version, and carry out the model calculations using the next smallest ni. The price, 

of course, is a reduction of k to ݇ − 1. 

5.4.3. Why conservative Bayesian reasoning? 
In this and other recent work on systems dependability we have adopted a Bayesian approach 

to the treatment of uncertainty. There is a growing consensus that this is the right way 

forward, but it presents some problems for potential users. Most notable is the difficulty of 

eliciting prior beliefs from experts who “own the problem” – in the terminology of this thesis, 

regulators and licensees – in the kinds of complex situations we are dealing with. 

 

In the Bayesian literature, various approaches have been proposed to address this problem: 

e.g. empirical Bayes, non-informative priors. For many application domains, it is possible to 

obtain very extensive data, and the differences between such approaches and “proper” Bayes, 

involving informative priors, disappear. Unfortunately this is a luxury we do not have for the 

kinds of safety-critical applications we are considering. Indeed, in software engineering 

generally, large sample sizes are rare: e.g. random samples of programs are unknown, except 

in specialized small-scale experiments such as those described in (Knight and Leveson 1986; 

Eckhardt, Caglayan et al. 1991). 
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The method adopted in the face of these problems is novel. It allows the expert to populate 

the model with minimal partial prior beliefs. The procedure then is to obtain results for the 

claims of interest – in this case, confidence bounds for probability of perfection – that are 

guaranteed to be conservative. The trick here is to allow the user’s prior beliefs to be as 

minimal as possible to aid his task, whilst not being too minimal to preclude useful results. 

Examples of prior beliefs that are too minimal to be useful have been shown, and also the 

prior beliefs that were only slightly more informative (i.e. that impose upon the assessor a 

task that is only slightly more onerous) could give useful results. 

 

Whilst the model here is a complex one, here presented an example of how it might be used 

to inform the negotiation between a regulator and a licensee about a claim in part of a safety 

case. It tentatively shows the potential usefulness of the model here. 

5.4.4. The counter-intuitive results 
Here is a brief comment on the counter-intuitive results. It could be treated as a warning 

against placing too much trust in informal reasoning when dealing with these quite complex 

models for dependability. It has been observed here that “obviously good news” from 

operational testing of systems could – counter-intuitively – decrease probability of perfection. 

 

In (Littlewood, Popov et al. 2000b), a similar counter-intuitive result was reported which 

obtained for the probability of system failure of a 2-channel system for which the channel 

pfds are assumed known with certainty. That paper started with distributions with mass 

concentrated in a few points, thus reducing the degree of freedom for the inference. These 

restricted priors may have unexpected consequences. 

 

Another similar counter-intuitive result was found in (Littlewood and Wright 2007). There, a 

two-legged argument was used to support claims for the pfd of a system. The two legs used 

were, respectively, evidence of failure-free working on test (involving a possible fallible test 

oracle), and evidence of proof of correctness against a (possibly incorrect) formal 

specification. The counter-intuitive result there was that more failure-free working could, in 

certain circumstances; result in lower confidence in a small pfd. 
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In all these cases, of course, further analysis showed that the interpretation from the formal 

modelling was correct – i.e. eventually, the counter-intuitive results are reasonably explained 

in both formal and informal ways. Such examples are warnings against the use of unaided 

informal engineering judgment. 
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6. CLAIMS ON PROBABILITY OF 

PERFECTION VIA FORMAL 

VERIFICATION EVIDENCE 

In previous chapters, testing evidence of the software of interest and its similar products (as 

process evidence) is modelled to support claims on probability of perfection, and it turns out 

that what can be claimed is quite modest if without any further information (e.g. less minimal 

partial priors and the “pruning idea” in Chapter 4).  This is due to the nature of statistical 

testing evidence which can only show the presence of desired features, not the absence of 

bugs. Therefore, when based on some prior beliefs in perfection, the confidence in perfection 

could only be built very slowly when collecting more and more failure-free running 

behaviour evidence. It is appealing to think that formal verification provides a mathematical 

proof that a given system satisfies its specification, i.e. it exhibits all the desired properties, 

thus providing straight forward evidence to support perfection claims. But in reality, can we 

fully specify all the properties in terms of the “perfection” we would like to claim? Can we 

fully trust the prover? Due to the inevitable uncertainties hidden in a formal verification 

process, it seems we cannot naively believe our proved program is certainly perfect, rather 

than have some posterior confidence in its perfection. 
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In this chapter, the sources of uncertainties are analysed and undesired events that could ever 

happen in formal verification process are modelled to check how a successful formal proof 

can support the claims on probability of perfection.    

6.1. An overview of formal verification 

In the context of software-based systems, formal verification is used to prove the correctness 

of intended programs with respect to a certain formal specification, using formal methods of 

mathematics. Although in principle it can be carried out entirely by a human, in today’s 

practice formal verification is usually conducted via mechanised automatic or semi-automatic 

techniques. Despite of the heated debate on the role of formal proof in earlier days (Fetzer 

1988; De Millo, Lipton et al. 1979), it is increasingly used in real life projects nowadays. For 

instance, the control software for deep space probes was formally verified by NASA 

(Havelund, Lowry et al. 2001); and the verifying of protocols for medical procedures in 

(Hommersom, Groot et al. 2007). 

 

Generally when we say formal verification, it can be approached from two extremes (Amjad 

2004): 

 The state-based approach – model checking, which is to exhaustively examine all 

possible states the system can ever be in. In each possible state, the desired properties 

(expressed in some assertion language, e.g. temporal logics) of the system should hold 

to pass the verification.  

 The proof-based approach – theorem proving, in which the desired properties are 

derived as theorems in some formal mathematical logic. Then theorem provers are 

used to prove or reject the theorems. 

 

The well-known drawback of model checking approach is the inability to deal with very large 

number of possible states, i.e. the “state explosion problem”. While for the theorem proving, 

the required properties are expressively represented by formal logic as theorems, so there is 

no need to check each and every possible state. Even though the subtle difference between 

these two approaches is out of the scope of this thesis, the source of uncertainties may differ 

in terms of the modelling on claiming perfection. For instance, at least but not last, the 

“coverage rate” of the entire state space is an important source of aleatory uncertainty when 

applying model checking, while it does not exist (or certainly equals to 1) for the theorem 
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proving approach. In this chapter, the modelling on formal verification mainly refers to the 

theorem proving approach, leaving model checking as future work.  

 

Normally, in practice we wish to (or can only) prove a subset of the behaviour (i.e. some 

properties). So we would claim “freedom from critical defects” not “all defects”, and put 

effort into defining “critical”. Whilst in this chapter, the claim is about perfection which is 

defined in terms of failure free behaviours (in line with the one used in LR-LP models). So 

strictly speaking the claim here is “freedom from the defects causing any failure”, and a 

failure is defined by the relations between the spaces of inputs and of outputs: i.e. any 

mapping outside the “correct-subset” of their Cartesian product which you will see detailed 

explanation later.   

6.2. Source of uncertainty in formal verification 

6.2.1. Proof cannot certainly prove perfection 
Seeing a program passed formal verification, can we assert the software is certainly perfect 

for the specified use?18  

 

The proofs of clock synchronisation and other properties of fault tolerant algorithms were 

originally done in (Melliar-Smith and Schwartz 1982) and subsequently found to contain 

errors, even though it had been peer reviewed before publication. This reminded us that 

human reasoning is quite flawed. Sometimes even the most carefully-crafted mathematical 

proofs are erroneous. That’s why we would like to have computers to do the heavy 

mathematical task for us. And the use of machine in proofs indeed can increase the accuracy, 

e.g. in the example above (Melliar-Smith and Schwartz 1982), the errors in the proofs were 

found by automated theorem prover PVS when reformulated and machine checked. But note 

that any automated prover is merely another piece of software, i.e. another piece of artificial 

                                                
18 The answer is obviously no to any software engineers at first glance. Because if operating systems or 

compilers were used, the correctness of them would also have to be verified. But the scope of this thesis is about 

the perfection of “source code”, so the uncertainties from compilers and operating systems etc. would not be 

discussed here. 
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design. The proof by machines could not be claimed certainly correct due to the reliability of 

the prover which is an important source of doubt in formal verification. 

 

Besides, the outcome of a formal proof is really a statement that the formal specification and 

the program are equivalent or not. As the nature of formal proof, we can't prove more than 

the conformance of a program to a formal specification, and we have no guarantee that the 

formal specification is what it should be19. In the Darts diversity experiment (Smith, Wall et 

al. 1991), one channel was specified formally. An error – a sign inversion in one of the 

equations – persisted into test phase despite careful review. Even though engineers could do 

intensive reviews and/or testing on formal specification (Kemmerer 1985), there is still an 

uncertainty about the correctness of the formal specification. Again, this is due to the essence 

that any formal specification is a piece of artificial design (via some specification languages).  

 

Here is not intended to exhaustively review of problems with formal proof in software 

assurance, rather to show the importance to consider the probability that the formal proof 

results might be misleading in claiming perfection of software. If we are to have high 

confidence in formal proof then the sources of doubt, and how we have addressed them, must 

form part of the assurance case.  

 

To sum up, there are two inevitable sources of uncertainty (“out in the world”, i.e. aleatory 

ones) in a formal proof: 

 The proof process itself might be inaccurate. In the cases of using machine provers, 

this uncertainty lies in the reliability of the proof tools. 

 The formal specification might not be what it should be. Developing a formal 

specification could be treated as writing another program using some specification 

language, therefore whether it is valid or not is uncertain. 

 

                                                
19 As the engineering specification could be incorrect, this does not mean the conformance to any particular 

engineering specification. In this chapter, the correctness of the engineering specification would not be 

discussed, so here assumes that the formal specification is built on some perfect specification in the engineers’ 

“mind”, i.e. what it should be rather than any specific engineering specification. 
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Then the next step is to find proper parameters to capture them. Without any loss of 

generality, an illustrative example using Frama-C (Cuoq, Kirchner et al. 2012) will be used to 

facilitate the justification of the parameters capturing the two sources of uncertainty, which is 

shown in Figure 19.  
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C codes

Pre- and post-
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loop invariants 
and variants, 

additional 
assertions 
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By human

List of VCs 
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e.g. Linear and non-linear arithmetic,
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reject for 
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Frama-C

Input to frama-C Output of frama-C

 
Figure 19 a schematic view of theorem proving via Frama-C 

6.2.2. Capture the uncertainty in provers 
As shown in Figure 19, Frama-C as a platform integrates several plug-ins to perform a formal 

proof. It takes annotated C codes (source code and formal specification) as input, and then 

translated it into verification conditions (VCs) by plug-ins e.g. Jessie and WP. The underlying 

theory is Hoare logic and weakest precondition calculus, which is a set of rigorous logical 

rules to translate annotated source codes to some statements of predicate logic, i.e. VCs. Then 

by theorem provers (e.g. Alt-Ergo), the truth of the VCs would be proved or rejected.  

 

The serval plug-ins in Frama-C could  fail in various ways, due to the inherent limitations of 

their fundamental theories or merely a bug in them. But if we treat Frama-C as a “black box”, 

it could only fail in two ways due to its nature as a verifier – fail to prove true VCs (i.e. false 

alarm) and prove false VCs (i.e. fail to alarm).  

 

We normally use pfd (e.g. for nuclear protection system) or probability of failure per hour 

(e.g. for flight-control avionics systems) as an “indicator” of reliability. The choice of 

“indicators” of reliability is normally based their feature, e.g. the pfd for demand-based 
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systems which is working in the background, but not doing anything until a safety limitation 

is exceeded. 

 

While in the case of the software is a verifier, two failures rates – the false alarm rate, say Rt1 

and fail to alarm rate, say Rt2– are believed to be sufficient to capture its reliability, therefore 

captures the aleatory uncertainty in the proof process itself of a prover. 

6.2.3. Capture the uncertainty in formal specification 
Developing a formal specification – writing function contracts with pre- and post-conditions, 

loop invariants and variants, and additional assertions using some specification language (e.g. 

ACSL in the Frama-C case) – could be as tedious as developing a program. So we could treat 

the formal specification as a “special” piece of program that aiming at rejecting imperfect 

software and passing the perfect software.  

 

Geometry definition of perfect software 

Essentially both programs and (formal/informal) specifications describe relations between 

the spaces of inputs and of outputs: i.e. a subset of their /..> (Popov and Strigini 2010). This 

relation could be shown in a “geometry” manner, citing the same example in (Popov and 

Strigini 2010) as Figure 20. It is an engineering specification that requires a program to 

calculate y=sin(x), for x in the interval [0, 2], with a maximum error of 5% and satisfying the 

condition sin(x)≤1, i.e. the “correct-area” in Figure 20. 

 
Figure 20 specification of a single-input, memoryless program as a subset of the Cartesian plane 
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Then essentially any program calculating an output y for an input x could also be represented 

by a “SW-area” in the figure. Then we can define the perfect programs for this particular 

engineering problem as the ones with a “SW-area” within the “correct-area”, meaning the 

software {input, output} pairs is a sub-set of “correct” {input, output} pairs. 

 

For the purpose of better illustration, more abstract visualized examples could be used to 

show the various possible programs to a particular engineering specification, as Figure 21. 

 
Figure 21 4 possible programs to a particular engineering problem. The green circle is the “correct-area” 

representing the engineering problem to solve, the blue triangle is the “SW-area” representing a program. 

 

The first case in Figure 21 is a perfect program, as all “SW-area” is within the “correct-area”. 

While, both of the second and third cases have some parts of the “SW-area” outside the 

“correct-area”, meaning for some input, the {input, output} pair violates the relation defined 

by the engineering specification, thus they are imperfect programs. The fourth case represents 

totally irrelevant software which would not exist in reality (as any single test will refuse it), 

so this case would not be considered here. 

 

Definition of the completeness and correctness of formal specifications 

In the similar way above, we can check the logical completeness of a formal specification 

with respect to the engineering problem. That is if we were using a “FS-area” to represent a 

formal specification, then the ones with a “FS-area” within the “correct-area” are logically 

complete, thus defined as complete formal specification. Otherwise it is a partial formal 

specification.  

 

Being complete is a necessary condition of being correct. We cannot simply define the 

correctness of a formal specification only in terms of its completeness. The aim of a formal 

specification is not to solve an engineering problem, rather to verify a program. A complete 
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formal specification could reject a perfect program (due to being too restrictive), and such a 

complete formal specification is clearly not acceptable. So a correct formal specification 

should (3 criteria): 

 never reject a perfect software;  

 never pass an imperfect software; and 

 complete to the engineering problem.  

Different types of faulty formal specifications 

With the certain definition of the correctness of a formal specification, we can find a possible 

type of a formal specification on the spectrum in Figure 22. Basically there are 3 “changeable 

factors”: whether the software is perfect or not, whether the formal specification is complete 

or not and should (i.e. with a perfect prover) the software be proved by the formal 

specification or not. Each branch on that spectrum is explained with more illustrative 

examples in following figures. 

The spectrum of a 
formal specification

Software is 
perfect

Software is 
imperfect

Formal specification 
is complete

Formal specification 
is incomplete

Formal specification 
is complete

Formal specification 
is incomplete

Formal specification
should passes the SW

Formal specification
should reject the SW

Correct

Complete but too 
restrictive

Functional but 
partial

Partial and too 
restrictive

impossible

Correct

Common cause 
fault

Functional but 
partial

Formal specification
should passes the SW

Formal specification
should reject the SW

Formal specification
should passes the SW

Formal specification
should reject the SW

Formal specification
should passes the SW

Formal specification
should reject the SW

 
Figure 22 the 5 cases on the spectrum of a formal specification 

The 3 cases in Figure 2320 are “complete but too restrictive” formal specifications that only 

violate the 1st criteria of correctness. As the name, this kind of faulty formal specifications is 

complete but too restrictive for a correct program. More specifically, “too restrictive” might 

                                                
20 The meaning of the colours and shapes used in this figure and the ones later in this chapter are same. 



On the Probability of Perfection of Software-based Systems 

119 

due to too strong post-conditions and assertions, or too week pre-conditions.  For instance, a 

formal speciation specifying a maximum 1% error (as a post-condition) in the example of 

Figure 20 is obviously too restrictive to pass a program with a maximum 3% error. Or when 

the formal specification is requiring an input interval [0, 4] (which is wider than the original 

[0, 2]) as a precondition, the correct program dealing input interval [0, 2] will be rejected due 

to failing to fulfil the task in (2, 4].  

 
Figure 23 “complete but too restrictive” formal specifications that only violate the 1st criteria. The green circle is the 

“correct-area” representing the engineering problem, the blue triangle is the “SW-area” representing a program and 

the red square is the “FS-area” representing a formal specification. 

Figure 24 shows “partial and too restrictive” formal specifications that violate the 1st and 3rd 

criteria of correctness. The name of this type of faulty formal specifications sounds 

contradictory at first glance, but it exists due to the fact that a specification normally has 

serval properties. Use the example of Figure 20 again, if the formal specification missed the 

constraint sin(x)≤1, and at the same time specifying a maximum 3% error of the output, then 

it is “partial and too restrictive” to any correct program of the problem. 

 
Figure 24 “partial and too restrictive” formal specifications that violate the 1st and 3rd criteria 

When the software is perfect, there is a kind of partial formal specification would pass it, as 

shown in Figure 25. Even though the formal specification is functional (in the sense of 

passing a perfect program), it is faulty due to the incompleteness.  
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Figure 25 “functional but partial” formal specifications that only violate the 3rd criteria 

By now, the 3 types of faulty specifications above are all associated with perfect programs to 

a particular problem. In Figure 26, the formal specifications are proving imperfect software. 

The key feature of this type of faulty formal specification is that the “incorrect part” in the 

“SW-area” is all within the “FS-area”. Informally, this means the software and the formal 

specification is having same faults, and passed the imperfect software. For instance, both the 

program and formal specification missed the constraint sin(x)≤1 somehow in the example of 

Figure 20. This undesirable situation happens due to some “common cause” reasons, e.g. 

lacking of understanding of the problem, ambiguity in project’s documents.  

 
Figure 26 “common cause fault” formal specifications that violate the 2st and 3rd criteria 

There is another type of “functional but partial” formal specification in the sense of rejecting 

an imperfect program, as shown in Figure 27.  

 
Figure 27 “functional but partial” formal specification that only violate the 3rd criteria 
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Till now, we exhaustively enumerate all the possible branches in Figure 22, which is a 

spectrum of all possible associations21 between a program and a formal specification for a 

particular engineering problem. There are 3 binary variables, so theoretically there should be 

2ଷ = 8 branches. After excluding the impossible and overlapping cases, 5 cases are left in 

Figure 22. From the perspective of the formal specification, the real-life case would fall into 

one of the 5 categories on the spectrum of formal specifications: 

 Complete but too restrictive; 

 Partial and too restrictive; 

 Common cause fault; 

 Functional but partial; 

 Correct; 

 

To capture all the 5 cases on that spectrum, we need three objective parameters (aleatory in 

the world): 

 isperfectSW: For the particular software we are verifying, it is objectively perfect (to 

the particular engineering problem) or not. Same as section 3.1.2, this aleatory 

uncertainty about the program’s perfection is captured by a single indicator parameter. 

isperfectSW =1 means the software is perfect, otherwise imperfect. 

 iscompleteFS: Similar, for the particular formal specification we are to use, it is 

objectively complete or not (to the particular engineering problem by the definition 

earlier in this section). A single indicator parameter is used to capture this aleatory 

uncertainty on the completeness. iscompleteFS =1 means the formal specification is 

complete, otherwise partial. 

 iscompliantAC: When assembling the program and formal specification into a piece of 

annotated codes, it is objectively compliant or not. Compliance means, in principle 

(or with a perfect prover), the program should be proved by the formal specification.  

For example in Figure 26, the “SW-area” is all within the “FS-area”, meaning the set 

of software {input, output} pairs is a sub-set of the formal specification {input, output} 

pairs set, therefore the piece of annotated codes of them is compliant and would be 

certainly proved by a perfect prover. This uncertainty of compliance is objectively in 
                                                
21 Theoretically, there are some cases missed which are believed to be unrealistic in practice, e.g. totally 

irrelevant relationships among formal specification, program and the engineering problem. 



On the Probability of Perfection of Software-based Systems 

122 

the world once we assembled a program and a formal specification, thus a single 

indicator parameter is used to capture it. iscompliantAC =1 means the piece of 

annotated codes is compliant, otherwise incompliant. 

 

It might be useful to explain more about why we are interested in the parameter iscompliantAC 

and how it works in terms of facilitating the modelling here. To do a Bayesian inference, 

basically we need to divide several sub-conditions and find out the likelihood function in 

each sub-condition. The more detailed of the sub-conditions, the harder to elicit the priors of 

them, but it is easier to write down the likelihood functions. So there seems always the 

tension between “many parameters used so that easy to write the likelihood functions” and 

“few parameters used so that easy to elicit priors”. In the case of this chapter, using only two 

parameters isperfectSW and iscompleteFS is impossible to write down the likelihood function. 

Thus we introduce one more, i.e. iscompliantAC, which facilitates the writing of the likelihood 

function and still makes the elicitation task feasible. However, it would be interesting to 

explore more other parameters in future to see how various factors affect our claims. 

 

By using the three objective indicator parameters isperfectSW, iscompleteFS and iscompliantAC, 

all of the 5 possible cases on that spectrum could be represented. For instance, the event that 

we are having a “common cause fault” specification is simply a collection of sub-events that 

isperfectSW=0, iscompleteFS =0 and iscompliantAC =1.  

 

Together with the two objective parameters capturing the uncertainties in the prover, i.e. the 

false alarm rate Rt1 and fail to alarm rate Rt2, we have 5 objective parameters now to capture 

the sources of uncertainty in a formal verification.  

6.3. A preliminary model 

By identifying the 5 parameters capturing uncertainties, some events of interest in a formal 

verification could be modelled. While in this section, the interest is upon how much 

confidence can be claimed on the perfection of the particular software when seeing it passed 

the formal proof using a formal specification, i.e. the posterior subjective probability of 

perfection of a single program when seeing good formal proof evidence. 
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6.3.1. The basic set-up 
First recap the meaning of defined parameters, and denote their expectations due to the 

epistemic uncertainties of them.  

 For a prover tool (i.e. Frama-C), Rt1 is an objective parameter represents its false 

alarm rate. It ranges [0,1] and the assessor cannot know its value for certain, while 

may have a subjective expectation of its value (e.g. from some benchmark testing of 

the tools (Shiraishi, Mohan et al. 2015)), say ܧ(ܴ௧ଵ) =  .ଵݐ

 Similarly, Rt2 is an objective parameter represents the fail to alarm rate of the prover. 

It ranges [0,1] and the assessor cannot know its value for certain, rather have a 

subjective expectation of its value, say ܧ(ܴ௧ଶ) =  .ଶݐ

 The parameter ݅ݐ݂ܿ݁ݎ݁ݏௌௐ = 1 represents the event that the software of interest is 

perfect to the particular engineering problem. The assessor cannot know its perfection 

for sure, rather have a subjective expectation (i.e. prior belief when no evidence), say 

(ௌௐݐ݂ܿ݁ݎ݁ݏ݅)ܧ =  .ߠ

 For the particular formal specification being used, ݅݁ݐ݈݁݉ܿݏிௌ = 1 represents the 

event that the formal specification is complete to the particular engineering problem. 

Again, assessors cannot know it for certain due to the epistemic uncertainty. While he 

may have subjective beliefs on it, say ܧ(݅݁ݐ݈݁݉ܿݏிௌ) =  .ߣ

 iscompliantAC is about the compliance of a piece of annotated codes. Despite of the 

practicality of eliciting subjective belief on this parameter (which will be discussed 

later), assume the assessor had an expectation, say ܧ(݅ݐ݈݊ܽ݅݉ܿݏ) = ߮. 

6.3.2. The events of interest 
Our interest is the posterior subjective probability of perfection of the single program when 

seeing good formal proof evidence, via Bayesian theorem (denoting the event “formal proved 

evidence” as e=1 for better illustration.): 

ௌௐݐ݂ܿ݁ݎ݁ݏ݅)ݎܲ  = 1|formal	proved	evidence)

=
ௌௐݐ݂ܿ݁ݎ݁ݏ݅)ݎܲ = 1, formal	proved	evidence)

(evidence	proved	formal)ݎܲ

=
ௌௐݐ݂ܿ݁ݎ݁ݏ݅)ݎܲ = 1, ݁ = 1)

݁)ݎܲ = 1)  

(6.1) 
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So basically we are interested in two events, i.e. the ones in the denominator and numerator 

of the right-hand in (6.1) respectively.  

 

The conditional event in the denominator, given the random variables ( ଵܶ, ଶܶ) and indicator 

variables (ܫఝ, ,ௌௐܫ  :ிௌ) to represent the actual value of the 5 objective parametersܫ

൫݁ݎܲ  = 1หܴ௧ଵ = ଵܶ, ܴ௧ଶ = ଶܶ, ݐ݈݊ܽ݅݉ܿݏ݅ = ,ఝܫ ௌௐݐ݂ܿ݁ݎ݁ݏ݅ = ௌௐܫ , ிௌ݁ݐ݈݁݉ܿݏ݅ =  ிௌ൯ܫ

= ቊ
1 − ଵܶ, ఝܫ	ℎ݁݊ݓ = 1	

ଶܶ, ఝܫ	ℎ݁݊ݓ = 0 = (1 − ଵܶ)ܫఝ + ଶܶ൫1 − ఝ൯ܫ = (1 − ଵܶ − ଶܶ)ܫఝ + ଶܶ 
(6.2) 

The result means that if the input of the formal verifier (i.e. annotated codes) is objectively 

compliance (i.e. ܫఝ=1), then the probability of the prover passed the input is 1 − ଵܶ (i.e. the 

probability that it did not make the false alarm mistake). Otherwise when the input is not 

compliance (i.e. ܫఝ=0), then the probability of the prover passed the input is ଶܶ (i.e. the 

probability that it make the fail to alarm mistake). 

 

The result (6.2) is based on the fact that given ܴ௧ଵ = ଵܶ, ܴ௧ଶ = ଶܶ, ݐ݈݊ܽ݅݉ܿݏ݅ =  ఝ, theܫ

proof result will be independent with the events of the perfection of the program and 

completeness of the formal specification: 	

൫݁ݎܲ = 1หܴ௧ଵ = ଵܶ, ܴ௧ଶ = ଶܶ, ݐ݈݊ܽ݅݉ܿݏ݅ = ,ఝܫ ௌௐݐ݂ܿ݁ݎ݁ݏ݅ = ,ௌௐܫ ிௌ݁ݐ݈݁݉ܿݏ݅ = ிௌ൯ܫ

= ൫݁ݎܲ = 1หܴ௧ଵ = ଵܶ, ܴ௧ଶ = ଶܶ, ݐ݈݊ܽ݅݉ܿݏ݅ = ఝ൯ܫ = (1 − ଵܶ − ଶܶ)ܫఝ + ଶܶ 

 

Of course, the objective parameters in the real world will not be known with certainty. 

Ideally, if an assessor would describe his epistemic uncertainty about these unknowns in a 

joint 3 dimensional distribution, say ݂൫ ଵܶ, ଶܶ,  ఝ൯, then the unconditional event of seeingܫ

formal proved evidence is: 

 
݁)ݎܲ = 1) =මܲݎ൫݁ = 1ห ଵܶ, ଶܶ, ఝ൯ܫ

ଵ



݂൫ ଵܶ, ଶܶ, ఝ൯݀ܫ ଵܶ݀ ଶܶ݀ܫఝ

= ܧ భ், మ்,ூക ቀ(1 − ଵܶ − ଶܶ)ܫఝ + ଶܶቁ 

(6.3) 

 

By imposing an assumption that the assessor’s subjective belief in the two types of failure 

rates of the prover should be independent with the compliance of the annotated codes (i.e. the 

two types of failure rates of the prover have nothing to do with the type of a particular input), 

we get a simplified result (see Appendix D for proof): 
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݁)ݎܲ   = 1) = (1 − ଵݐ − (ଶݐ × ߮ +  ଶ (6.4)ݐ

 

It is worth to elaborate the two independent assumptions used above. 

 At the aleatory level, i.e. (6.2). Given the two types of failure rate of the prover (i.e. 

ଵܶ, ଶܶ) and whether the annotated code is compliance or not (ܫఝ), the proof result will 

be independent with the events of the perfection of the program and completeness of 

the formal specification. For example, the behaviour of an security alarm system will 

only depends on its own quality (the two failure rates ଵܶ, ଶܶ) and whether the 

passenger is taking a gun or not (ܫఝ). For the factors determine the behaviour of the 

passenger are no longer relevant when given the 3 direct factors listed above.  

 At the epistemic level, i.e. (6.4). ܫఝ is the random variable represents a property of a 

particular input. We are not sure about its value, therefore having a subjective 

expectation of it as ߮. Similarly ݐଵ and ݐଶ represent the subjective beliefs of the 

assessors in the two types of failure rates of the prover. My subjective belief about 

the property of the next input should have nothing to do with my expectation of the 

quality of the prover. Of course we my say that the more we believe in this particular 

input (i.e. the annotated code) is compliant, the more I believe the prover will give a 

false alarm on it, which represents the dependence of the event that the input is 

compliant and the event that there is a false alarm. While the independence 

assumption used in (6.4) are not about those two events, rather about the event of 

compliance and the unknown false alarm rate (which represents the quality of the 

prover). Therefore, I believe that ଵܶ and ଶܶ are independent with ܫఝ. By the security 

alarm system again, my belief in the next passenger is not a terrorist should not be 

affected by my subjective belief in the quality of the alarm system. 

 

Similarly, the conditional event in the numerator, given some random variables to represent 

the actual value of the 5 objective parameters: 

ௌௐݐ݂ܿ݁ݎ݁ݏ൫݅ݎܲ  = 1, ݁ = 1หܴ௧ଵ = ଵܶ, ܴ௧ଶ = ଶܶ , ݐ݈݊ܽ݅݉ܿݏ݅ = ఝܫ , ௌௐݐ݂ܿ݁ݎ݁ݏ݅ = ௌௐܫ , ிௌ݁ݐ݈݁݉ܿݏ݅ =  ிௌ൯ܫ

= ቐ
ܹܵܫ	ℎ݁݊ݓ													,0 = 0

1 − ଵܶ, ఝܫ	ℎ݁݊ݓ = 1, ܹܵܫ = 1	
ଶܶ, ఝܫ	ℎ݁݊ݓ = 0, ܹܵܫ = 1

= ܹܵܫ ቀ(1 − ଵܶ)ܫఝ + ଶܶ൫1 − ఝ൯ቁܫ = (1 − ଵܶ − ଶܶ)ܫఝܹܵܫ + ଶܹܶܵܫ 
(6.5) 

 

Again, the 5 objective parameters in the real world will not be known with certainty. If an 

assessor would describe his epistemic uncertainty about these unknowns in a joint 5 
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dimensional distribution, then the unconditional events of seeing formal proved evidence and 

the software is perfect is: 

ܹܵݐ݂ܿ݁ݎ݁ݏ൫݅ݎܲ  = 1, ݁ = 1൯ = ܧ భ், మ்,ூക,ூೄೈ,ூಷೄ ቀ(1 − ܶ1 − ܹܵܫ߮ܫ(2ܶ + ቁܹܵܫ2ܶ

= (1 − ଵݐ − (ଶݐ × ቀߠ × ߮ + ,ௌௐܫ൫ݒܥ ఝ൯ቁܫ + ଶݐ ×  ߠ
(6.6) 

See Appendix D for proof (based on the same independent assumption for (6.4)). 

6.3.3. Conclusions with the preliminary model 
Assemble the numerator (6.6) and the denominator (6.4), we can have our interest – the 

posterior belief in perfection seeing formal proof evidence: 

ௌௐݐ݂ܿ݁ݎ݁ݏ݅)ݎܲ  = 1|݁ = 1)

=
(1 − ଵݐ − (ଶݐ × ቀߠ × ߮ + ,ௌௐܫ൫ݒܥ ఝ൯ቁܫ + ଶݐ × ߠ

(1 − ଵݐ − (ଶݐ × ߮ + ଶݐ
 

(6.7) 

which is a function of the expectations ݐଵ, ݐଶ,	ߠ, ߮ and a covariance ݒܥ൫ܫௌௐ ,   .ఝ൯ܫ

 When ߠ = 0, then ܫௌௐ = 0 (as ܧ(ܫௌௐ) =  ,then the covariance is 0. So (6.7) = 0 ,(ߠ

meaning if I have no prior belief in perfection, then after seeing evidence, I still have 

0 confidence in perfection. 

 When ߠ = 1, similar as above reasoning, (6.7) = 1, meaning when the software is 

certainly perfect, then it is still certainly perfect when passed formal proof. 

 When ߮ = 1, then ܫఝ = 1 (as ܧ൫ܫఝ൯ = ߮), then the covariance is 0. So (6.7) =	ߠ, 

meaning if the annotated code is certainly compliance, then the formal proof is totally 

irrelevant in building confidence of perfection. 

 

Based on the result (6.7), some conclusions could be drawn as follows. 

The completeness of the formal specification is not directly relevant 

The result (6.7) is not a function of ߣ, i.e. ܧ(݅݁ݐ݈݁݉ܿݏிௌ) – the subjective expectation of 

the completeness of the formal specification, which is because the use of the assumption that 

given the property of compliance, the completeness of formal specification has nothing to do 

with the proof result. This conforms to the common argument that verifiers may build 

confidence via using a partial formal specification which is the most likely to be encountered 

for real-life examples (Prevosto 2013). In other words, the confidence in the completeness of 

the formal specification should not be the determining factor for the posterior confidence in 

perfection seeing formal proof evidence. 
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Complete formal specification seems a “double-edged sword”. It can reject imperfect 

software, but also reject more perfect software at the same time (due to being too restrictive). 

So for the software of interest, we cannot draw a simple line to state how the completeness of 

the formal specification affects our confidence in perfection, e.g. the more completeness the 

better. Rather it works in a more mysterious way that affecting the property of compliance of 

the annotated input in formal proof, and then indirectly affects claiming perfection.   

Formal proof will not always build confidence in perfection 

To make the good formal proof evidence helpful in increasing our confidence in the 

perfection of software, i.e. ܲݐ݂ܿ݁ݎ݁ݏ݅)ݎௌௐ = 1|݁ = 1) >  via trivial exercises, we need ,ߠ

satisfy: 

ௌௐܫ൫ݒܥ  , ఝ൯(1ܫ − ଵݐ − (ଶݐ > 0 (6.8) 

in which (1 − ଵݐ − ,ௌௐܫ൫ݒܥ ଶ) is positive22. So we need the covarianceݐ  ఝ൯ to be positive toܫ

make the formal proof helpful in building confidence in perfection. ݒܥ൫ܫௌௐ ,  ఝ൯ isܫ

essentially about the correlation between the perfection of the program and the compliance of 

the annotated codes. It seems very hard for the assessors to justify the desirable positive 

correlation. 

,ௌௐܫ൫ݒܥ  ఝ൯ܫ > 0 (6.9) 

 

This constraint on the value of the random variables ܫௌௐ and ܫఝ could be mapped to the cases 

on the spectrum of the uncertain formal specification defined in section 6.2.3, which is that 

the assessor has to believe more in the inexistence of the events: 

 ܫௌௐ = 0 and ܫఝ = 1: this is the event that we are having a “common cause fault” 

specification which might raise from a same faulty document or the inherent difficulty 

of the engineering problem..  

 ܫௌௐ = 1 and ܫఝ = 0: this is an union of the two events: 

                                                
22 This is a quite practical assumption. Only reliable provers (i.e. the sum of the two types of error rates is 

smaller than 1) would be used in real-life projects. The case 1 − ଵݐ − ଶݐ < 0 might of interest in some particular 

circumstances, but will not be discussed here. 
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o ܫௌௐ = ఝܫ ,1 = 0 and ܫிௌ = 1 means we are having a “complete but too 

restrictive” specification. For instance, we have considered all the properties 

which could be covered, but make some of them unnecessarily restrictive.  

o ܫௌௐ = ఝܫ ,1 = 0 and ܫிௌ = 0 means we are having a “partial and too 

restrictive” specification. In this case, we not only missed some properties, but 

also make some of the current ones unnecessarily restrictive. 

 

However, it is still too difficult for the assessor to give a deterministic answer (i.e. either yes 

or no) to questions like “do we have a ‘common cause fault’ formal specification?” More 

likely, the assessor may express some confidence in the undesirable events associated with 

formal specifications. For instance, the assessor may say “I have 20% confidence that we are 

having a ‘common cause fault’ formal specification”. In next section, a new result will be 

proposed based on this kind of elicitation from assessors.   

 

The punchline here is that the efficiency of formal verification evidence in claiming 

perfection of software highly depends on the correlation of the perfection of the software and 

the compliance of the annotated codes. The confidence in perfection would only increase 

when they are positively correlated, which essentially means some constraints on the possible 

associations among the problem, software and formal specification. However, it is really hard 

for assessors to directly justify the expected positive correlation, so additional elicitations 

from assessors are needed which will be discussed in next section. 

High compliance of annotated codes makes formal verification irrelevant 

By somehow, if the assessor justified the ݒܥ൫ܫௌௐ,  ఝ൯ is positive, then (6.7) – the posteriorܫ

belief in perfection after seeing good formal proof evidence – is 

 a decrease function of ݐଵ and ݐଶ respectively. This is intuitively right, i.e. the more 

reliable the prover, gaining more confidence in perfection. 

 an increase function of θ, which is obviously right. 

 a decrease function of ߮, meaning the higher confidence in the compliance of the 

annotated codes would reduce our posterior confidence in perfection. Informally, this 

is due to the essence of the formal proof is a conformance checker of the software and 

formal specification, so high confidence in the compliance at beginning will make the 

formal proof results meaningless, i.e. it is a matter of course to see good formal proof 

evidence. For better understanding, we could imaging an extreme example that we 
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build a “universal” formal specification and thus any program will be compliant to it, 

then our confidence in the compliance of the annotated codes is ߮ = 1. In this case, 

the formal proof result would not have any effect on our confidence in perfection. In 

reality, we do can find some techniques being used on the annotated codes to increase 

the verifiers’ confidence in its compliance at the very earlier stage of developing a 

formal specification, e.g. the STADY plug-in of Frama-C (Petiot, Kosmatov et al. 

2014). As later argued in (Petiot, Kosmatov et al. 2015), this kind of compliance 

checking technique is certainly helpful in finding the reason why the formal proof 

fails. But when the formal proof succeeds, by the monotonicity result here, the use of 

compliance checking techniques would weaken the posterior confidence in perfection 

built from the formal proof evidence. So based on this observation, it gives some 

enlightenment on how to properly construct a safety case of perfection from both 

formal proof evidence and compliance checking evidence, e.g. should they be used as 

two legs of arguments or in a sequential one-leg way. 

6.4. A model with more elicitations from assessors 

As argued in earlier section, it is unrealistic for the assessor to justify a positive ݒܥ൫ܫௌௐ ,  ,ఝ൯ܫ

therefore more information needs to be elicited. In this section, it is assumed that assessors 

could say something about spectrum of formal specifications defined in section 6.2.3. 

6.4.1. Confidence in possible faulty formal specifications 
Since it is unlikely to get a deterministic answer of the question “do we have a ‘common 

cause fault’ formal specification?” from the assessor, the assessor may express some 

confidence in the answer. For instance, the assessor may answer “I cannot tell you for certain, 

but I have 20% confidence that we are using a ‘common cause fault’ formal specification”. In 

line with that kind of answer, we could define the confidence elicited from assessors on each 

possible faulty formal specification. 

ܥܣݐ݈݊ܽ݅݉ܿݏ൫݅ݎܲ  = 0, ܹܵݐ݂ܿ݁ݎ݁ݏ݅ = 1, ܵܨ݁ݐ݈݁݉ܿݏ݅ = 1൯ = ଵ݂ (6.10) 

ܥܣݐ݈݊ܽ݅݉ܿݏ൫݅ݎܲ  = 0, ܹܵݐ݂ܿ݁ݎ݁ݏ݅ = 1, ܵܨ݁ݐ݈݁݉ܿݏ݅ = 0൯ = ଶ݂ (6.11) 

ܥܣݐ݈݊ܽ݅݉ܿݏ൫݅ݎܲ  = 1, ܹܵݐ݂ܿ݁ݎ݁ݏ݅ = 0, ܵܨ݁ݐ݈݁݉ܿݏ݅ = 0൯ = ଷ݂ (6.12) 
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ܥܣݐ݈݊ܽ݅݉ܿݏ൫݅ݎܲ   = 0, ܹܵݐ݂ܿ݁ݎ݁ݏ݅ = 0, ܵܨ݁ݐ݈݁݉ܿݏ݅ = 0൯

+ ܥܣݐ݈݊ܽ݅݉ܿݏ൫݅ݎܲ = 1, ܹܵݐ݂ܿ݁ݎ݁ݏ݅ = 1, ܵܨ݁ݐ݈݁݉ܿݏ݅ = 0൯

= ସ݂ 

(6.13) 

where: 

 ଵ݂ is the confidence in a “complete but too restrictive” formal specification 

 ଶ݂ is the confidence in a “partial and too restrictive” formal specification 

 ଷ݂ is the confidence in a “common cause fault” formal specification 

 ସ݂ is the confidence in the two types of “partial but functional” formal specifications 

The only one left on the spectrum of formal specifications is the “correct” formal 

specification and its associated confidence is (1 − ଵ݂ − ଶ݂ − ଷ݂ − ସ݂). 

6.4.2. Conclusion with the new objective function 
With the new elicited information from the assessor, the preliminary result (6.7) could be 

rewritten into: 

 
ௌௐݐ݂ܿ݁ݎ݁ݏ݅)ݎܲ = 1|݁ = 1) =

(1 − ଵݐ − (ଶݐ × ߠ) − ଵ݂ − ଶ݂) + ଶݐ × ߠ
(1 − ଵݐ − (ଶݐ × ߠ) − ଵ݂ − ଶ݂ + ଷ݂) + ଶݐ

 (6.14) 

See Appendix D for proof. Some new conclusions could be drawn. 

When will formal proof certainly increase our confidence in perfection? 

To answer this question, we need to solve the inequality ܲݐ݂ܿ݁ݎ݁ݏ݅)ݎௌௐ = 1|݁ = 1) >  .ߠ

Via trivial exercise, we get the result: 

 
൝

1 − ଵݐ − ଶݐ > 0

ଷ݂ <
(1 − ߠ)(ߠ − ଵ݂ − ଶ݂)

ߠ
 (6.15) 

 

The result (6.15) essentially tells us two constraints to guarantee the usefulness of formal 

proof in claiming perfection. The first one is about the reliability of the prover, which could 

be easily satisfied in practice. The second constraint seems a confidence upper bound on the 

possible faulty formal specifications. In other words, assessors should have limited doubt in 

different types of faulty formal specifications when use formal proof evidence to claim 

perfection of software. 
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6.5. Chapter summary 

Intuitively, formal verification is a strong evidence to support perfection claim of software. 

However in practice, due to the inevitable uncertainties hidden in a formal verification 

process, it we cannot naively believe our proved program is certainly perfect. In this chapter, 

probabilistic models are built to check how good formal proof evidence will affect assessor’s 

posterior confidence in the perfection of the software of interest.  

 

Firstly, two sources of aleatory uncertainties (from the prover and formal specification) are 

identified as non- negligible for claiming the perfection of software. Then by analysing the 

features of these two uncertainties, we use 5 objective parameters to capture them. It is worth 

mentioning that a spectrum of formal specifications was proposed, representing all possible 

associations between a program and a formal specification for a particular engineering 

problem.  

Our interest – the posterior belief in perfection of the program when seeing good formal 

proof evidence – is then expressed in terms of the marginal expectation of some parameters 

and a covariance term, i.e. the result (6.7).  

Basically we can conclude 3 points from (6.7): 

 The confidence of the completeness of formal specification is not directly relevant to 

our interest. This justifies the fact that verifiers usually do not care too much about the 

completeness of formal specification in practice and normally will end up with a 

partial one.   

 Rather, the correlation between the perfection of the program and the compliance of 

the annotated codes is a key factor. This correlation should be explicitly argued in 

support of the perfection claim if using the formal proof evidence in a safety case. 

However this seems a very hard task currently, assessors cannot justify the positive or 

negative correlation without extra information.  

 Another observation is from the monotonicity analysis of (6.7), which is the high 

confidence in the compliance of the annotated codes would weaken the efficiency of 

formal proof evidence in building confidence in perfection. This justifies the fact that 

formal proof is nothing more than a conformance checker of the software and formal 

specification, so high confidence in the compliance at beginning will make the formal 

proof results meaningless, i.e. it is a matter of course to see good formal proof 

evidence.  In recent years, we do can see some new techniques, e.g. the STADY plug-
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in of Frama-C (Petiot, Kosmatov et al. 2014), could increase our confidence in the 

compliance of the annotated codes. Based on this observation, it gives some 

enlightenment on how to properly construct a safety case of perfection from both 

formal proof evidence and compliance checking evidence, e.g. should they be used as 

two legs of arguments or in a sequential one-leg way. 

 

Finally, by assuming we could get more elicitations from the assessor, a refined model (6.14) 

was proposed based on the beliefs in the different cases on the spectrum of formal 

specifications. To guarantee that formal proof will certainly build our confidence in 

perfection, we need constraints on the prover’s reliability which is intuitively right and 

limited doubts in different types of faulty formal specifications which should be well argued 

in a safety case. 

 

Taking a step back, it is still too difficult for an assessor to express beliefs in the cases on the 

spectrum of formal specifications, i.e. (6.10), (6.11) and (6.12). Future work is needed to help 

assessors to elicit confidence in them.  

 

All in all, even though this is very speculative and preliminary work, it shows how this kind 

of analysis and mathematical modelling can be applied in claiming the perfection of software. 

Difficulties and questions are discovered as: 

 It is hard to write down the likelihood function of the formal proved evidence in terms 

of simple and straight forward factors such as the perfection of software and the 

completeness of formal specification. More subtle factors have to be taken into 

account. But, more factors means more difficult to elicit prior beliefs. There seems a 

tension between these two sides. How to find a better boundary is of interest in future. 

 Another possible way to calculate the confidence in a claim is to simply and 

conservatively sum all the doubts in the arguments and use it as an overall doubt in 

the top claim. It might provide more insight to compare this result with the result of 

the sum of doubt approach. 

 This work also provides ideas on conducting some empirical experiments. 
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7. MODELLING 1OO2 SYSTEM 

RELIABILITY VIA “QUASI-

PERFECTION” CLAIMS 

The original LR and LP models (Littlewood and Rushby 2012; Littlewood and Povyakalo 

2013a) proposed ways of overcoming the difficulties of lack of independence (at aleatory and 

epistemic level respectively) in reliability modelling of 1-out-of-2 software-based systems by 

introducing the notion of probability of perfection (of a population). Chapter 3 in this thesis 

further extended the original LR and LP models in terms of a subjective probability of 

perfection of a single program. Here these two paralleled sets of models are generalised. 

Instead of “perfection”, a new notion of “quasi-perfection” is introduced: a small pfd is 

practically equivalent to perfection (e.g. yielding very small chance of failure in the entire life 

of a fleet of systems). It is believed that the quasi-perfection idea has an analogue of the most 

“pure” perfection related models in previous chapters, and it might have advantages over the 

“pure” perfection models in some circumstances. The scope of this chapter is not to 

exhaustively extend all the models in previous chapters in terms of quasi-perfection, rather to 

show the possible advantage of it. So only the subjective probability of quasi-perfection of a 
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single program will be investigated, and a conservative end-to-end example arguing system 

pfd via failure-free tests evidence of the software of interest will be presented. 

7.1. The introduce of “quasi-perfection” 

It has been well argued that the notion of probability of perfection is useful not only on its 

own (e.g. as a life-time claim), but also plays an important role in the reliability assessment of 

diverse 1oo2 systems. In the original LR and LP models (Littlewood and Rushby 2012; 

Littlewood and Povyakalo 2013a), the use of objective probability of perfection (as a 

population property) overcomes the difficulties of lack of independence (at aleatory and 

epistemic level respectively) in reliability modelling of 1oo2 software-based systems. 

However, they require claims on that population property (i.e. the objective probability of 

perfection) which only population evidence would sufficiently support it. To incorporate the 

evidence of the single software of interest, Chapter 3 extended the original LR and LP models 

in terms of the subjective probability of perfection of a single program. Since then, argument 

and evidence for the perfection claim of the single channel of interest could be used in the 

reasoning on the reliability of a diverse 1oo2 system. 

 

Chapter 4 (published as (Zhao, Littlewood et al. 2015)) concentrates on the question what can 

be claimed about probability of perfection from seeing many failure-free tests. A probability 

model for this problem was developed, and illustrated with some numerical examples. The 

approach started from the premise that real assessors can generally only provide limited prior 

belief, rather than a complete distribution; for example, a probability mass at the origin 

(representing prior confidence in perfection, which is also required in later sections of this 

chapter), and one percentile for the rest of the distribution. In the face of this difficulty, the 

approach was conservative: from the many (generally an infinite number of) distributions that 

satisfy the limited prior constraints, the one(s) that gives the most conservative results for the 

system’s posterior pfd was chosen. Unfortunately, such results were often very conservative – 

too conservative to be useful. In fact, in the worst case, confidence in perfection did not 

increase much even after observing an infinite number of successful tests. It was observed 

that this was because, whilst extensive failure-free working may be a result of a program’s 

perfection, it could also be because the program – although not perfect – has a very small pfd. 

So some ways around this problem was proposed, essentially by pruning the large class of 

allowable prior distributions by excluding ones that seem “unreasonable” in general ways. 
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This “pruning” solution requires further constraints on the assessor’s prior beliefs. The 

reasonableness of these further constraints of course has to be discussed and agreed by the 

regulator and licensee in a real application.  

 

In the work to be described in the remainder of this chapter, a different way around this 

difficulty is proposed. The idea is to exploit the fact that “perfection” and “extremely small 

pfd” are effectively indistinguishable as explanations for extensive failure-free working, 

which was firstly observed in (Strigini and Povyakalo 2013) and named as “quasi-fault-

freeness”. Similarly here the “quasi-perfection” notion is introduced, and it means the pfd of 

the channel is smaller than some small given number, say ε (which is associated with the 

operational profile). For example, ε could be chosen so that over the entire lifetime of the 

system (or fleet of systems) there would be only a small chance of failure, i.e. the lifetime 

behaviour of the system would be likely to be identical to that of a perfect system. 

 

The value of ε could be chosen from higher level system requirements. For instance, consider 

the example of a single channel of a nuclear reactor protection system. We might anticipate 

something like 2 demands on the protection system on average per year, with an anticipated 

lifetime of 50 years. For 99% confidence of seeing no failures in the expected 100 demands, 

ε should be about 10-4. More rigorous approach to elicit the ε – the pfd bound that defines 

“quasi perfection” – is an important future work, while in this chapter we shall assume the ε 

is given. 

7.2. A new bound for the reliability of a 1oo2 system based on 

the possible “quasi-perfection” of one channel 

The interest centres on the probability of failure on a random demand of a 1-out-of-2 system 

with channels A and B. There are two objective parameters “in the world”: 

 pfdA for the channel A, and its range is [0,1]. 

 isnqpB for the channel B. It could be either 0 or 1. ݅ݍ݊ݏ = 1 means the channel B is 

not quasi-perfect (i.e. its pfd is bigger than the given ε), otherwise ݅ݍ݊ݏ = 0 means 

the channel B is quasi-perfect (i.e. its pfd is smaller than the given ε). 

Then via the theorem below, we could have a new bound on the system reliability given 

values for the two objective parameters. 
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Theorem 0 

݂݀|demand]	random	a	[on	fails	sys)ݎܲ  = ܲ, ݍ݊ݏ݅ = (ܫ

≤ 1)ߝ − (ܫ + ܲ ×  ܫ
(7.1) 

 

Proof 

݂݀|demand]	random	a	[on	fails	sys)ݎܲ  = ܲ, ݍ݊ݏ݅ =  (ܫ

= ,fails	ܣ|fails	sys)ݎܲ B	not	quasi − perfect, ݂݀ = ܲ, ݍ݊ݏ݅ =  (ܫ

× ,fails	ܣ)ݎܲ B	not	quasi − perfect|݂݀ = ܲ, ݍ݊ݏ݅ =  (ܫ

,fails	ܣ|fails	sys)ݎܲ+ B	quasi − perfect, ݂݀ = ܲ, ݍ݊ݏ݅ =  (ܫ

× ,fails	ܣ)ݎܲ B	quasi − perfect|݂݀ = ܲ, ݍ݊ݏ݅ =  (ܫ

,succeeds	ܣ|fails	sys)ݎܲ+ B	not	quasi − perfect, ݂݀ = ܲ, ݍ݊ݏ݅ =  (ܫ

× ,succeeds	ܣ)ݎܲ B	not	quasi − perfect|݂݀ = ܲ, ݍ݊ݏ݅ =  (ܫ

,succeeds	ܣ|succeeds	sys)ݎܲ+ B	quasi − perfect, ݂݀ = ܲ, ݍ݊ݏ݅ =  (ܫ

× ,succeeds	ܣ)ݎܲ B	quasi − perfect|݂݀ = ܲ, ݍ݊ݏ݅ =  (ܫ

(7.2) 

The last two terms on the right hand side of the expansion (7.2) are zero trivially, since if A 

succeeds the 1-out-of-2 system cannot fail. 

 

Now, if B is not quasi-perfect, it is conservative to assume that it fails whenever A does, so 

the first term on the right hand side of the expansion (7.2) is: 

,fails	ܣ|fails	sys)ݎܲ  B	not	quasi − perfect, ݂݀ = ܲ, ݍ݊ݏ݅ = (ܫ

× ,fails	ܣ)ݎܲ B	not	quasi − perfect|݂݀ = ܲ, ݍ݊ݏ݅ = (ܫ

≤ 1 × ,fails	ܣ)ݎܲ B	not	quasi − perfect|݂݀ = ܲ, ݍ݊ݏ݅ = (ܫ

= ݂݀|fails	ܣ)ݎܲ = ܲ, ݍ݊ݏ݅ = (ܫ

× quasi	not	B)ݎܲ − perfect|݂݀ = ܲ, ݍ݊ݏ݅ = (ܫ = ܲ ×  ܫ

(7.3) 

 

Here, a similar assumption as that in the original LR model is needed, i.e. the two events “A 

fails” and “B is not quasi-perfect” are conditionally independent, given the certain value ܲ 

for  ݂݀ and ܫ for ݅ݍ݊ݏ. The intuitive justification of the assumption is that whether or 

not B is not quasi-perfect tells us nothing about whether or not A will fail on a random 

demand.  

 



On the Probability of Perfection of Software-based Systems 

137 

Note that the events “channel A fails on a random demand” and “program B is not quasi-

perfect” are not unconditionally independent in general. Informally, seeing A fails on a 

demand may suggest that the problem being solved by both programs is a “difficult” one, and 

thus it is less likely that B will be quasi-perfect. That is, learning something about A’s 

probability of failure on demand (e.g. by seeing an A failure), may tell us something about 

B’s probability of being not quasi-perfect: this is an issue of epistemic dependence between 

the model parameters, pfdA and isnqpB, which will be addressed later. 

 

The second term in the expansion (7.2) is: 

,fails	ܣ|fails	sys)ݎܲ  B	quasi − perfect, ݂݀ = ܲ, ݍ݊ݏ݅ =  (ܫ

× ,fails	ܣ)ݎܲ B	quasi − perfect|݂݀ = ܲ, ݍ݊ݏ݅ =  (ܫ

= ,fails	A)ݎܲ B	fails|ܣ	fails, B	quasi − perfect, ݂݀ = ܲ, ݍ݊ݏ݅ =  (ܫ

× ܲ × (1 −  (ܫ

(7.4) 

where we relabel the event “System fails” as “A fails and B fails” without change of meaning 

and reuse the conditional independence assumption of the two events “A fails” and “B is not 

quasi-perfect” given the certain value ܲ for  ݂݀ and ܫ for ݅ݍ݊ݏ. 

 

Now making explicit the conditioning on event “A fails” of the expression (7.4): 

 
=
,fails	A)ݎܲ B	fails|B	quasi − perfect, ݂݀ = ܲ, ݍ݊ݏ݅ = (ܫ × ܲ(1 − (ܫ

quasi	fails|B	A)ݎܲ − perfect, ݂݀ = ܲ, ݍ݊ݏ݅ = (ܫ
 (7.5) 

and considering in the numerator that “A fails and B fails” is a subset of “B fails”: 

 
≤
quasi	fails|B	B	)ݎܲ − perfect, ݂݀ = ܲ, ݍ݊ݏ݅ = (ܫ × ܲ × (1 − (ܫ

quasi	fails|B	A)ݎܲ − perfect, ݂݀ = ܲ, ݍ݊ݏ݅ = (ܫ
 

=
quasi	fails|B	B	)ݎܲ − perfect, ݂݀ = ܲ, ݍ݊ݏ݅ = (ܫ × ܲ × (1 − (ܫ

ܲ
 

≤
ߝ × ܲ × (1 − (ܫ

ܲ
= 1)ߝ −  (ܫ

(7.6) 

where reuse the conditional independence assumption of the two events “A fails” and “B is 

quasi-perfect” given ݂݀ = ܲ and ݅ݍ݊ݏ =  . And seeing that B is quasi-perfect, itsܫ

probability of failure is smaller than  for any (PA, IB). 

 

So finally by substituting (7.3) and (7.6) into (7.2), we got the result (7.1). 

QED 
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Note that this result (7.1) is a generalization of the result (3.1) in chapter 3. We could obtain 

that earlier result by putting ߝ = 0. 

 

Now we have a counterpart of the modified LR model (i.e. (3.1)) for the quasi-perfection 

notion, which is about the quasi-perfection of the single software of interest. Similar work 

could be done for the original LR model as well (which has been written up for a publication 

and is under review). In that case, the objective probability of quasi-perfection as a property 

of a population should be used. It is believed that most of the “pure” perfection models could 

be correspondingly extended into quasi-perfection models which might have advantages over 

the “pure” perfection models in some circumstances. The scope of this chapter is not to 

exhaustively extend all the models in previous chapters in terms of quasi-perfection, rather to 

show the possible advantage of it. So here only the subjective probability of quasi-perfection 

of a single program will be investigated, and a conservative end-to-end example arguing 

system pfd via failure-free tests evidence of the software of interest will be presented. 

7.3. Conservative reasoning about the epistemic uncertainty 

The result above concerns what happens at the aleatory level. In practice, of course, the two 

objective parameters will not be known with certainty. Ideally, an assessor would describe his 

epistemic uncertainty about these unknowns – pfdA and isnqpB – in terms of a complete 

bivariate distribution: 

)ௗಲ,௦ಳܨ  ܲ, (ܫ = ݂݀)ݎܲ ≤ ܲ, ݍ݊ݏ݅ =  ) (7.7)ܫ

The unconditional probability of system failure is then: 

(demand]	selected	randomly	a	[on	fails	sys)ݎܲ 

= ௗಲܧ ,௦ಳ൫ܲݎ(sys	fails	|݂݀ = ܲ, ݍ݊ݏ݅ = )൯ܫ

≤ ௗಲܧ ,௦ಳ(1)ߝ − (ݍ݊ݏ݅ + ݂݀ × (ݍ݊ݏ݅

= ඵ(1)ߝ − (ܫ + ܲ × ௗಲܨ݀(ܫ ,௦ಳ( ܲ,  (ܫ

(7.8) 

 

In reality, it is unlikely that a real-world assessor would be willing or able to offer such a 

complete bivariate distribution to represent his beliefs about the unknowns of the model. In 

particular, it is known that people find it hard to express the dependence between their beliefs. 

In this section, some results based on only partial and marginal beliefs are obtained, and they 

parallel the earlier results of the modified LP model in section 3.2.2. Similar work has been 
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done for the original LR model (Littlewood and Povyakalo 2013a) as well (which has been 

written up for a publication and is under review), but out of the scope of this chapter. 

 

Conservative bounds on system pfd can be obtained: 

Theorem 1 

If the assessor could tell us: 

݂݀)ݎܲ  < ܲ) = 1 −   (7.9)ߙ

ݍ݊ݏ݅)ݎܲ  = 1) = 1 − ߱ (7.10) 

i.e. ߱ confidence in B is quasi-perfect and ߙ doubt in ݂݀ < ܲ, then: 

(fails	sys)ݎܲ  ≤ ߝ × ߱ + (1 − ߱) ܲ + (1 − ܲ) × ,ߙ}	݊݅݉ 1 − ߱} (7.11) 

See Appendix E for proof. 

 

Example 1 

The assessor has chosen =10-7 to define quasi-perfection, i.e. if pfdB is smaller than this, he 

will regard channel B to be quasi-perfect. If the assessor is 95% confident that pfdA is smaller 

than 10-5 (i.e. ܲ = 10ିହ and ߙ = 0.05), and 99% confident that B is quasi-perfect (i.e. 

߱ = 0.99), we have: 

(fails	sys)ݎܲ ≤ ߝ × ߱ + (1 − ߱) ܲ + (1 − ܲ) × ݉݅ ,ߙ}݊ 1 − ߱}

= 0.99 × 10ି + (1 − 0.99) × 10ିହ + (1 − 10ିହ) × 0.01 = 0.0100001 

which is a very conservative result.  

 

It is not hard to see that the result is dominated by the smaller of the two doubts – i.e. the 

doubt ߙ and the doubt 1 − ߱ on the quasi-perfection of channel B. However, an assessor 

will not be able to express very small doubts, i.e. ones considerably smaller than desired 

“reliability claims” (e.g. a 10-5 pfd). For example, an assessor would not say he has a 10-5 

doubt in something. So this theorem 1 is not practically helpful in this sense. 

 

Theorem 2 

Additionally to (7.9) and (7.10), if the assessor were able to tell a certain upper bound on the 

pfdA: 

݂݀)ݎܲ  < ܲ
) = 1 (7.12) 

 then by the proof in Appendix E: 

(fails	sys)ݎܲ  ≤ ߝ × ߱ + (1 − ߱) ܲ + ( ܲ
 − ܲ) × ,ߙ}	݊݅݉ 1 − ߱} (7.13) 
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Example 2 

Same as the scenario of the Example 1, but additionally with ܲ
 = 10ିଷ, meaning the 

assessor is certain that the pfd of channel A will be better than 10-3, then: 

(fails	sys)ݎܲ ≤ ߝ × ߱ + (1 − ߱) ܲ + ( ܲ
 − ܲ) × ݉݅ ,ߙ}݊ 1 − ߱}

= 0.99 × 10ି + (1 − 0.99) × 10ିହ + (10ିଷ − 10ିହ) × 0.01 ≈ 10ିହ 

which is a much better result than the one in Example 1. 

 

This is obviously a more useful result which is dominated by the product of ܲ
 ×

min{ߙ, 1 − ߱}. Result (7.13) is potentially useful because it is essentially a product of two 

smaller numbers in which one is a “reliability claim” (i.e. the ܲ
 which is essentially small 

and close to the desired reliability claims), and the other is a doubt (i.e. ߙ or 1 − ߱) which 

could be afterwards learned (i.e. be further decreased) due to the reducible nature of 

epistemic uncertainty. For instance, Bayesian inference can update the doubt ߙ when seeing 

some V&V evidence of channel A; and similar for the quasi-perfection confidence ߱ of the 

channel B when seeing V&V evidence of it. 

 

The objective parameter isnqpB is either 0 or 1, so its marginal distribution is a 2-point one. It 

seems the assessor cannot vary his partial beliefs on this 2-point distribution, but simply give 

a probability, i.e. the (7.10). However, for the marginal distribution of pfdA, the assessor may 

express his partial beliefs in various forms. For example, if he knew the first two moments of 

his marginal distributions of pfdA, i.e. the mean and variance, then: 

 

Theorem 3 

 
(fails	sys)ݎܲ ≤ ߝ × ߱ +ට(1 − ߱)൫ܧ(݂݀)ଶ + ൯(݂݀)	ݎܸܽ

< ߝ × ߱ + ඥ(1 − ߱)൫ܧ(݂݀) +  ൯(݂݀)	ܦܵ	
(7.14) 

See Appendix E for proof 

 

Example 3 

If the assessor is 99% confident in the quasi-perfection of channel B (i.e. ߱ = 0.99), and the 

expectation of pfdA is 10-4. Besides, he also knows:	ܵܦ	(݂݀) ≤  :then via (7.14) ,(݂݀)ܧ	4

(fails	sys)ݎܲ < ߝ × ߱ + ඥ(1 − ߱)൫ܧ(݂݀) + ൯(݂݀)	ܦܵ	

≤ 0.99 × 10ି + ඥ(1 − 0.99)൫5 × ൯(݂݀)ܧ ≈ 0.5 × 10ିସ 
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Again, this seems a useful result which is a product of two small numbers. One is associated 

with the doubt (i.e. ඥ(1 − ߱)) which could be afterwards updated when seeing more good 

evidence about channel B. The other one is associated with reliability claim i.e. ܧ(݂݀) +

 The first term is the expected value of pfdA which could be learned when seeing .(݂݀)	ܦܵ	

more evidence of channel A. While the second term is a about how spread out of the 

subjective distribution of pfdA around the mean, which seems not easy to be elicited from the 

assessors. 

 

However, if the assessor was able to tell a certain upper bound on pfdA (as he/she did in the 

example 2), we do not need to elicit the second moment (i.e. the variance) of pfdA, as a 

conservative variance could be calculated from the mean and the certain upper bound. See the 

theorem below: 

 

Theorem 4 

For channel A, if the assessor could tell us a certain upper bound ܲ
 of pfdA, i.e. (7.12) and a 

mean, say ܧ(݂݀) =  ,; for channel B, a ߱ confidence in its quasi-perfection, i.e. (7.10)ܯ

then: 

 
(fails	sys)ݎܲ ≤ ߝ × ߱ +ට(1 − ߱) × ܯ × ܲ

 (7.15) 

Seep Appendix E for proof. 

 

Same as the figures used in example 2 and 3, assume the assessor gives a certain upper bound 

ܲ
 = 10ିଷ and mean of pfdA as ܯ = 10ିସ for channel A; and still 99% confident in the 

quasi-perfection of channel B (i.e. ߱ = 0.99), then via (7.15): 

(fails	sys)ݎܲ ≤ ߝ × ߱ +ට(1 − ߱) × ܯ × ܲ
 = 0.99 × 10ି +ඥ10ିଶ × 10ିଷ × 10ିସ

≈ 0.3172× 10ିସ 

 

This seems an even more useful result than the theorems before in two senses. First, it is 

relatively easier for the assessor to elicit numbers, comparing to theorem 3 in which requires 

a variance. Second, the result (7.15) is essentially dominated by the root of a product of 3 

small numbers (one doubt and two reliability claims), in which ߱ and ܯ could be 

individually updated when seeing good evidence from the two channels. And both of the 
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individual afterwards learning of the two channels will make a contribution to the final 1oo2 

system reliability. 

 

By now, the 4 theorems above addressed the dependency problem at the epistemic level, at 

the price of conservatism. Only marginal and partial beliefs expressed in terms of (some of) 

percentiles (confidence bounds), means or variances of the parameters pfdA and isnqpB are 

required. It is well-known how to do this for pfdA, for example based on evidence from 

operationally representative statistical testing: see, e.g. (Littlewood and Wright 1997). In next 

section, isnqpB will be considered, i.e. how to reason the confidence ߱ in the quasi-perfection 

of channel B. 

7.4. Conservative claims about quasi-perfection via failure-free 

testing evidence 

The approach here is an extension of the work the chapter 4, changing the interest from the 

posterior probability of perfection to the posterior probability of quasi-perfection. An 

analogous informal description will be introduced first, and then the probability model.   

 

The fundamental assumption in this section is that for the channel B, there is a true unknown 

pfdB, i.e. an objective parameter in the world. The assessor cannot know its value for certain, 

therefore has a subjective distribution over it, say fB(p). If the assessor were able to specify a 

complete distribution to represent his prior beliefs about the pfdB, it is a simple matter to use 

Bayes’ Theorem to obtain his exact posterior distribution after he has seen the evidence. Then 

he could express his posterior beliefs about quantities of interest such as the expected value 

of pfdB (best “point” estimate), percentiles (confidence bounds for pfdB), and so on. In this 

case, the interest is the posterior confidence in the quasi-perfection of channel B, i.e. the 

posterior confidence bound of the pfdB smaller than the given ε. 

 

However, as argued in other chapters of this thesis, it is impossible for assessors to express a 

complete probability distribution. This observation seems particularly pertinent for software-

based systems. Rather, assessors may express something partially about the distribution, for 

example: 

݂݀)ݎܲ  = 0) =  (7.16) ߠ
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0)ݎܲ  < ݂݀ ≤ (ߝ =  (7.17) ߚ

݂݀)ݎܲ  > (ݕ =  (7.18) ߙ

i.e. essentially three percentiles on the distribution, see Figure 28. Note the prior belief in the 

quasi-perfection ω is then ߠ +   .ߚ

pfdB10

θ 

fB(p)

ε y

β mass 

α mass 

 
Figure 28 an idealized example of a distribution satisfying the assessor’s expressed prior beliefs (7.16) (7.17) and (7.18) 

Of course, by making only very restricted assumptions like these we do not completely 

characterize a distribution for the pfd of the channel B: there will be an infinite number of 

distributions that satisfy (7.16), (7.17) and (7.18). The approach in what follows will be to 

choose the worst case distribution – i.e. the one that gives the most conservative results. In 

this case it is the posterior probability of quasi-perfection, following the observation of n 

failure-free demands, i.e. the formula below: 

0)ݎܲ  < ݂݀ ≤ (tests	free	failure	n|ߝ

=
ߠ + ∫ (1 − ( ݂()݀

ఌ
ା

ߠ + ∫ (1 − ( ݂()݀
ఌ
ା + ∫ (1 − ( ݂()݀

௬
ఌା + ∫ (1 − ( ݂()݀

ଵ
௬ା

 
(7.19) 

 

The problem now is to find the most conservative fB(p), i.e. the one that minimizes (7.19) 

subject to the constraints (7.16), (7.17) and (7.18). The value of (7.19) at the minimum called 

߱∗ is the most pessimistic posterior belief in quasi-perfection consistent with the assessor’s 

expressed prior beliefs. It turns out that the most pessimistic fB(p) is a 4-point distribution 

(see Appendix E for proof), as shown in Figure 2923.  

Using this most conservative distribution, we could obtain the most conservative – i.e. a 

lower bound on – probability of quasi-perfection: 

                                                
23 Strictly speaking, there may be other distributions that satisfy the constraints and give the same probability of 

quasi-perfection; but there are none that give a smaller value. 
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0)ݎܲ  < ݂݀ ≤ (tests	free	failure	n|ߝ

≥
ߠ + (1 − ߚ(ߝ

ߠ + (1 − ߚ(ߝ + (1 − (1(ߝ − ߠ − ߙ − (ߚ + (1 − ߙ(ݕ

=
ߠ + (1 − ߚ(ߝ

ߠ + (1 − (1(ߝ − ߠ − (ߙ + (1 −  ߙ(ݕ

(7.20) 

 ≥
ߠ

ߠ + (1 − (1(ߝ − ߠ − (ߙ + (1 − ߙ(ݕ = ߱∗ (7.21) 

where the last line is obtained by conservatively putting ߚ = 0. 

pfdB10

θ 

fB(p)

ε y

β  

α 
1-θ-α-β  

 
Figure 29 this four-point distribution gives the smallest probability of quasi-perfection, subject to the prior 

constraints (7.16), (7.17) and (7.18). There are four points of support here, but note that the mass β and the mass 1-θ-

α-β are coincident at ε. 

Putting ߚ = 0 in (7.20) introduces the opportunity to simplify the assessor’s task, albeit at the 

price of further conservatism: using (7.21) in this way reduces the problem to eliciting just 

two parameters, i.e. ߠ and ߙ. Of all the values in (7.20) that ߚ might take (i.e. the assessor 

might believe), ߚ = 0 is the most conservative: it gives the smallest posterior probability of 

quasi-perfection. In what follows, (7.21) will be used rather than (7.20). 

 

The Table XII shows some numerical examples of ߱∗after seeing n failure-free testing 

evidence. Note, ε=10-7 is used as the definition of quasi-perfection. The last column ߠ∗ is the 

most conservative posterior belief in “pure” perfection using the result (4.4) in chapter 4. The 

purpose to illustrate ߠ∗ here is to compare it with the gain of confidence in the quasi-

perfection, since each entry in the table is based on the same prior beliefs (i.e. ݕ ,ߙ ,ߠ) and 

amount of evidence (i.e. n). 

 



On the Probability of Perfection of Software-based Systems 

145 

Table XII numerical examples of the posterior belief in quasi-perfection using the 4 points distribution of Figure 29, 

given ε=10-7 

θ α y n ω* θ* 

0.5 0.01 0.001 10^4 0.505300248 0.505050275 

0.5 0.01 0.001 10^6 0.530014548 0.505050505 

0.5 0.01 0.001 10^8 0.99995551 0.505050505 

0.5 0.05 0.001 10^4 0.526563838 0.526314538 

0.5 0.05 0.001 10^6 0.551160457 0.526315789 

0.5 0.05 0.001 10^8 0.999959142 0.526315789 

0.9 0.01 0.001 10^4 0.909173105 0.909090494 

0.9 0.01 0.001 10^6 0.917024218 0.909090909 

0.9 0.01 0.001 10^8 0.99999546 0.909090909 

0.9 0.05 0.001 10^4 0.947416008 0.947366169 

0.9 0.05 0.001 10^6 0.952137255 0.947368421 

0.9 0.05 0.001 10^8 0.999997478 0.947368421 

 

In each case of the Table XII, there are some increases in the assessor’s confidence in both 

perfection and quasi-perfection when seeing some number of failure-free tests. However, as 

the observation in section 4.3, the evidence of failure-free testing is generally very weak in 

supporting claims about probability of perfection. When the number n increases from 106 to 

108, there is no actual gain in confidence in perfection in each case (see section 4.3 for 

detailed explanation). While for quasi-perfection, there is very significant improvement when 

n= 108.  Examining more numerical examples, we can observe that: 

 When ݊ < ଵ
ఌ
, there is no actual difference in the confidence gain between quasi-

perfection and perfection. For instance, in the first two rows in Table XII seeing 104 

and 106 tests (which are smaller than ଵ
ఌ
, i.e. 107), the worst case posterior beliefs in 

quasi-perfection (߱∗) and perfection (ߠ∗) are nearly same. 

 When ݊ > ଵ
ఌ
, there is obvious advantages of the quasi-perfection notion. For instance 

the third case in Table XII shows a nearly 99.996% confidence in quasi-perfection 

comparing to only 50.505% confidence in perfection, after seeing the same amount 

of testing evidence. 
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So the first conclusion is that, when ݊ > ଵ
ఌ
, claiming quasi-perfection has its advantage over 

claiming perfection in terms of the efficiency of the failure-free testing evidence. The 

theoretical explanation of this advantage is that the limit when n approaches infinity of the 

result (7.21) is 1, while for perfection claims the limit is not 1 as (4.5) shows. 

 

Readers may ask why we still need the parameter ߠ, representing prior confidence in 

perfection, here in this quasi-perfection model. It has been shown that evidence from failure-

free operation does not support an increase in confidence of perfection that would be useful 

for assessing system reliability. However, this evidence, given the same prior beliefs, 

improves probability of quasi-perfection. Note that it is not hard to prove that just having a 

prior confidence in quasi-perfection (together with the other confidence bound (7.18)) would 

also not support this kind of reasoning: the evidence would not help to improve confidence in 

quasi-perfection.  

 

So the advantage of the quasi-perfection notion is not to avoid the elicitation of a belief in 

perfection, rather to use the finite number of tests more effectively. To recap: a “pruning” 

idea was used in section 4.4 to solve the problem that many (even an infinite number of) fail-

free tests evidence cannot increase our confidence in perfection much. Here the quasi-

perfection idea as an alternative solution is proposed (note, this does not mean the quasi-

perfection idea is contradict to the “pruning” idea. Actually, assessor can “prune” in this 

quasi-perfection model which will give even better results). It works because we are claiming 

something weaker and still with the same priors and evidence, thus having more confidence 

in that weaker claim. 

7.5. End-to-end numerical examples for 1oo2 system pfd 

So far, a relatively24 complete argument chain for reasoning about the reliability of a 1oo2 

system in which the channel B is quasi-perfection is presented, and each “link” is guaranteed 

to be conservative. In this section, some end-to-end numerical examples for the pfd of the 

1oo2 system of interest will be shown, using the theorems in previous section 7.3 and models 

                                                
24 Of course you may add more “links” on the argument chain, e.g. models on using other types of evidence in 

reasoning quasi-perfection of the channel B and models on reasoning the reliability of the channel A. 
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in 7.4 with some amount of testing evidence from channel B. For the purpose of comparison, 

the counter-part end-to-end examples using the corresponding “pure” perfection models (in 

chapter 3 and 4) are also calculated and listed. 

 

In Table XIII, the marginal and partial beliefs (i.e. a certain upper bound and a percentile) for 

channel A are given. Varying the parameters for channel B, some observations could be 

summarised: 

 Similar as the observation in Table XII, when ݊ > ଵ
ఌ
 the quasi-perfection models can 

emerge its advantage over “pure” perfection models. Actually when n is big, the “pure” 

perfection models are unbearably bad, due to the fact that the system reliability 

remains being regardless of the significant increase of n.  

 There seems a trade-off problem between the choice of ε and the available amount of 

evidence n. For example, both the expected system pfd in the third and fourth row 

seem good results in terms of the definition of quasi-perfection in each case. In the 

case ߝ = 10ିହ, n = 10 is sufficient to conservatively claim the 1oo2 system is 

quasi-perfect. While for the case ߝ = 10ି, n needs to be around 10଼ to claim the 

system is quasi-perfect. 

 
Table XIII numerical examples for the 1oo2 system pfd using theorem 2. For the channel A, given PA=10-5 હA=0.05 

and PA
U=10-3. 

θ α y n ε ω* θ* 

expected 

system pfd via 

quasi-

perfection 

(7.13) 

expected 

system pfd 

via 

perfection 

(3.10) 

0.5 0.01 0.001 0 10^-7 0.5 0.5 5.455E-05 5.45E-05 

0.5 0.01 0.001 10^6 10^-7 0.530014548 0.505050505 5.42529E-05 5.44495E-05 

0.5 0.01 0.001 10^8 10^-7 0.99995551 0.505050505 1.44485E-07 5.44495E-05 

0.5 0.01 0.001 10^6 10^-5 0.999955512 0.505050505 1.0044E-05 5.44495E-05 

0.9 0.05 0.001 0 10^-7 0.9 0.9 5.059E-05 5.05E-05 

0.9 0.05 0.001 10^6 10^-7 0.952137255 0.947368421 4.7958E-05 5.00263E-05 

0.9 0.05 0.001 10^8 10^-7 0.999997478 0.947368421 1.02522E-07 5.00263E-05 

0.9 0.05 0.001 10^6 10^-5 0.999997478 0.947368421 1.00025E-05 5.00263E-05 
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To confirm the observations above, numerical examples of the system reliability using the 

theorem 4 are also listed as Table XIV. Again, the marginal and partial beliefs required (i.e. a 

certain upper bound and a mean) for channel A are given. And the conclusions above are still 

true. 

 
Table XIV numerical examples for the 1oo2 system pfd using theorem 4. For the channel A, given MA= 10-4 and 

PA
U=10-3. 

θ α y n ε ω* θ* 

expected 

system pfd via 

quasi-

perfection 

(7.15) 

expected 

system pfd 

via 

perfection 

(3.12) 

0.5 0.01 0.001 0 10^-7 0.5 0.5 0.000223657 0.000223607 

0.5 0.01 0.001 10^6 10^-7 0.530014548 0.505050505 0.000216844 0.000222475 

0.5 0.01 0.001 10^8 10^-7 0.99995551 0.505050505 2.20926E-06 0.000222475 

0.5 0.01 0.001 10^6 10^-5 0.999955512 0.505050505 1.21088E-05 0.000222475 

0.9 0.05 0.001 0 10^-7 0.9 0.9 0.000100009 0.0001 

0.9 0.05 0.001 10^6 10^-7 0.952137255 0.947368421 6.92781E-05 7.25476E-05 

0.9 0.05 0.001 10^8 10^-7 0.999997478 0.947368421 6.02216E-07 7.25476E-05 

0.9 0.05 0.001 10^6 10^-5 0.999997478 0.947368421 1.05022E-05 7.25476E-05 

 

It is clear that the quasi-perfection notion is superior to “pure” perfection in reasoning about 

the reliability of diverse 1oo2 systems when having large number of failure-free tests 

evidence. The required amount of evidence needs to be ݊ > ଵ
ఌ
. This seems still a very large 

number, so is this quasi-perfection practically useful? 

 

First, it is obviously useful for some systems requiring modest reliability, for which the 

definition of quasi-perfection is also modest (e.g. ߝ = 10ିହ). Second, you can always reduce 

the required amount of tests by imposing more other types of evidence, or “pruning” the 

worst case prior distribution used as Figure 29. The quasi-perfection argument chain shows 

here is a very simple and illustrative 3-steps one (i.e. reasoning the partial and marginal 

beliefs, then get rid of the epistemic dependency and finally the aleatory dependency), and in 

real projects, various helpful “links” (e.g. conservative models on combining other types 



On the Probability of Perfection of Software-based Systems 

149 

evidence) could be added in and improve the practicality. Finally, it is necessary to emphasise 

that all results are guaranteed to be conservative. 

 

Someone may still criticise the model here because of the very large amount of failure-free 

testing required in terms of comparing with other more “traditional and straightforward” 

models like (Littlewood and Strigini 1993; Miller, Morell et al. 1992; Littlewood and Wright 

1997).  For instance, it is easy to apply a simple model that 1 − (1 − ε) to calculate the 

confidence of claiming quasi-perfection of the system when seeing n failure-free testing. 

Consider the case of the last row in Table XIII, we could claim 1 − (1 − 10ିହ)ଵల =

0.9999546023 confidence that the system is quasi-perfect via the simple model. It seems we 

cannot natively compare the expected system pfd of 1.05022E-05 with a confidence bound of 

99.99546023% the system pfd is better than 10-5, they are two different ways in which the 

reliability requirement are expressed. There are discussions on the limitations of various ways 

of expressing reliability requirements (Littlewood and Wright 1997), so naively comparing 

the two results here may lead to unprecise conclusions. Take a step back, if we really tend to 

believe the two claims are describing a very similar reliability level of the system, then I 

would like to argue that the quasi-perfection model is still better in terms of it is a very 

conservative model and we could always reduce the conservativeness by combining other 

means (e.g. stop at any stages of the argument chains. See next chapter for detailed 

discussion). While, it seems that you cannot do much to improve the results in the simple 

model.  

7.6. Chapter summary 

The work here firstly extended the models in chapter 3 (which is also an extension of the 

original LR and LP models (Littlewood and Rushby 2012; Littlewood and Povyakalo 2013a)) 

in terms of the newly introduced quasi-perfection notion to reason about the reliability of a 

diverse 1oo2 system. The dependency problems at aleatory and epistemic level are addressed 

respectively at the price of conservatism. Only marginal and partial beliefs on the two 

parameters pfdA and isnqpB are required. Since there is a large literature about claiming pfdA, 

it leaves the question as how to reasonably claim something about isnqpB. Specifically, that is 

the confidence in the quasi-perfection of the channel B. Then the type of failure-free testing 

evidence was investigated on claiming quasi-perfection. This again is an extension of the 
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work in chapter 4 and again is guaranteed to be conservative. Finally some end-to-end 

numerical examples for the reliability of the 1oo2 system of interest are shown. 

 

A complete 3-steps argument chain for the reliability of the system is presented now: 

 Step 1: address the aleatory dependency between the objective parameters. 

 Step 2: address the epistemic dependency so that only marginal and partial beliefs on 

the parameters are needed. 

 Step 3: Learn the required marginal and partial beliefs from evidence. 

An important point is that, over the several steps of the end-to-end assurance argument, 

conservatism is guaranteed, which is an advantage – indeed one could say a necessity – for 

safety-critical systems. 

 

It has been clearly showed that the quasi-perfection notion is superior to “pure” perfection in 

that 3-steps argument chain when having large (bigger than ଵ
ఌ
) number of failure-free tests 

evidence. And in principle, the required amount of testing evidence could be reduced by 

“pruning” on the worst case prior distribution (as shown in section 4.4) and/or combining 

more other types of evidence.  

 

One important foundation is that the ε here is given. There is more than one feasible approach 

to select the value of ε, the pfd bound that defines quasi-perfection. One may select a value 

such that the target probability of failure free behaviour over the lifetime of the system is 

satisfied. Alternatively, considering that there are always trade-offs between confidence 

bounds and confidence levels, one can instead, with some additional numerical or algebraic 

calculations, choose ε such as to get the most favourable claim feasible, within the constraint 

of required conservatism. The choice of ε is an important future work for the quasi-perfection 

models. 
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8. CONCLUSIONS AND FUTURE 

WORK 

In this final chapter, a summary of this thesis is firstly discussed. Then based on a better 

perceiving of the whole picture of the overall research, a potential framework is proposed to 

combine the various relating models. Contributions of each chapter are summarised, while 

some unresolved issues are still apparent, so limitations are summarised as well as 

contributions, which leads to the discussion of possible future work.  

8.1. Summary of the thesis 

In chapter 1, we discussed why we are interested in the probability of perfection and why the 

perfection of software is possible in reality.  Examples are illustrated to show that it is not 

only of interest on its own, but also plays an important role in the assessment of diverse 

software systems to deal with the inherent problem of dependency. 

 

To better understand what the dependency problem of diverse software is and how 

probability of perfection solves it, the literature review focuses on the topic of using diversity 

in software systems. A serial of questions has been looked into: What are software diverse 

techniques? Is software diversity useful? How to achieve diversity in practice? Finally, how 

to assess the reliability of a diverse software-based system?  
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At the end of chapter 2, the original LR and LP models (Littlewood and Rushby 2012; 

Littlewood and Povyakalo 2013a) was elaborated. As shown at the top left corner in Figure 

30, LR and LP models proposed ways of overcoming the difficulties of lack of independence  

at aleatory and epistemic level respectively in reliability modelling of 1-out-of-2 software-

based systems by introducing the notion of probability of perfection. 

Aleatory Level

Epistemic Level

Learning Level

LR model

LP model

LR-single 
model

LP-single 
model

LR-single-
qp model

LP-single-
qp model

The model 
in chapter 5

The model 
in chapter 4

The model 
in chapter 6

Claiming quasi-
perfection model

Evidence Level Failure-free 
testing 

evidence

Process 
evidence

Formal proof 
evidence

Chapter 3

Chapter 7

Partial beliefs
in pnpB

Confidence in 
perfection

Confidence in 
quasi-perfection

 
Figure 30 an overview of the thesis – 3 paralleled sets of models. Rectangles represent the various models. Ellipses 

represent observable evidence. Parallelograms represent subjective beliefs. 

 

The probability of perfection used in original LR and LP models is actually an objective 

parameter of a population, which is a property of the population charactering the 

development process being used. While for the single software of interest, which is 

objectively either perfect or not, the probability of the perfection of the single software is a 

subjective confidence. In chapter 3, the original LR and LP models are modified in terms of 

subjective probability of perfection, named as LR-single and LP-single models in Figure 30. 
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Same as the original LR and LP, they work at aleatory and epistemic level respectively to 

deal with the dependency problem. Instead of requiring some marginal and partial beliefs on 

the parameter of a population (i.e. pnpB), only the confidence in perfection of the single 

software is needed in this case (i.e. confidence in the parameter isimperfectB), assuming that 

we can know pfdA from somewhere else. 

 

To help assessors elicit the required confidence in perfection in the LR-single and LP-single 

models, a conservative Bayesian model was proposed in chapter 4. Via that model, 

conservative confidence of perfection could be learned when seeing failure-free testing 

evidence of the single software of interest, therefore being placed at the “learning level” in 

Figure 30 and demanding the testing evidence from “evidence level”. 

 

Intuitively, formal verification result is an important type of evidence for supporting 

perfection related claims. In chapter 6, a model was built to see how the confidence in 

perfection of a single program changes when seeing it passes a formal proof.  

 

For the inputs of the original LR and LP models, i.e. marginal and partial beliefs on the 

objective parameter of a population parameter pnpB, the model in chapter 5 allows some 

conservative claims on it via the process evidence. The process evidence is some previous 

similar products built by the same development process for the same/similar problem have 

exhibited failure-free working during extensive operational exposure. 

 

Finally in chapter 7, a new notion of “quasi-perfection” is introduced: a small pfd is 

practically equivalent to perfection. Most of the “pure” perfection models could be 

correspondingly extended into quasi-perfection models which might have advantages over 

the “pure” perfection models in some circumstances. To show the possible advantage, an 

end-to-end argument chain was presented in chapter 7, i.e. from new extended LR-single-qp 

model and LP-single-qp model to claiming quasi-perfection via failure-free runs, and it is 

guaranteed to be conservative.  

 

To sum up, the work of this thesis describes three parallel sets of models (as Figure 30) which 

could be used to reason on the reliability of diverse software-based systems. The choice of a 

lane of models depends on the specific circumstance in practice. 
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8.2. An overall framework of combining various models 

The work shown in Figure 30 is 3 separated lanes of models. It would be appealing if the 

models at the “learning level” could be combined in some way to reason a required belief 

(which depends on the chosen models at the aleatory and epistemic levels). In other words, 

can we seek a method to combine various types of evidence to reason either the confidence in 

perfection, quasi-perfection or beliefs about pnpB (i.e. one of the 3 “ports” between the 

epistemic level and learning level in Figure 30)? 

Learning Level The model in 
chapter 5 The model in 

chapter 4
The model in 

chapter 6

Claiming quasi-
perfection model

Evidence Level Failure-free 
testing 

evidence

Process 
evidence

Formal proof 
evidence

Partial beliefs
in pnpB

Confidence in 
perfection

Confidence in  
quasi-perfection

Epistemic Level

Prior confidence
in perfection

2

2

 
Figure 31 a feasible way to “stitch up” various models at the learning level with 3 type red “strings” 

A feasible way to “stitch up” various models at the learning with 3 red “strings” is shown in 

Figure 31: 

 The No.1 red string: the model in chapter 5 is about claiming a posterior confidence 

bound on the parameter pnpB, which could be used as input of the LP model. If we 

change the objective function of this model to a posterior mean value of the pnpB 

when seeing process evidence, then this posterior mean could be used as an estimate 

of the prior confidence of perfection in the single software of interest which is the 

input of the models in chapter 4, 6 and 7. 

 The No.2 red string: it represents the relation between the two models on claiming 

perfection of the single software of interest via formal proof evidence and failure-free 

testing evidence. Essentially the two models are both requiring prior confidence in 

perfection (which is explicitly plotted in Figure 31) and output a posterior confidence 
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in perfection. The No.2 red strings means the output of one model could be the input 

of the other, i.e. the required input of prior confidence in perfection of a model could 

come from the posterior confidence in perfection from the other. 

 The No.3 red string: The perfection related models (used solely or combined) could 

result in a posterior confidence of perfection which could be used as the required prior 

confidence in perfection in the quasi-perfection model in chapter 7. 

 

All in all, although there might be other ways to combine the various models, the important 

insight at the “learning level” is that the priors required by one model could come from the 

output posteriors of the other models. Then the various types of evidence are combined to 

reason the reliability of diverse software systems via a chosen set of models at the aleatory 

and epistemic levels. Depends on the specific way and context of the combining, there is 

more loose end work to be done, (e.g. shifting the objective function from minimising a 

confidence bound of pnpB to minimising the mean of pnpB). So at this stage, it is a suggestion 

for feasible future work. 

8.3. Evaluation 

The contributions and limitations will be discussed chapter by chapter firstly, and then the 

overall contribution will discussed at the end of this section.  

8.3.1. Contributions and limitations of each chapter 

 Chapter 3: 

o Contribution 1: explicitly discussed and distinguished two different 

probabilities of perfection that could be found in current literature, which 

seems missing in previous work. 

o Contribution 2: rewrite the original LR and LP models in terms of subjective 

probability of perfection for a single particular system, which is more useful 

for an assessor working on that specific software. 

o Contribution 3: the discussion on the comparison between the original and 

modified LR-LP models provides a better understanding of how to use them 

in different circumstances, which improves the practicality of the two sets of 

models. 
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o Limitation 1: The LR-single model seems quite conservative, due to the 

assumption that if channel B is not perfect then it will fail with certainty 

whenever channel A fails. In some cases, the current theorems in LP-single 

model are quite modest too. 

o Limitation 2: With some partial prior beliefs, the LR-LP-single models do not 

show explicit advantages of using the “clear-box” knowledge comparing with 

the “whole-system-view” approach (section 3.2.3).  

 Chapter 4: 

o Contribution 1: The “conservative Bayesian inference for reasoning about 

system pfd” was first proposed in (Bishop, Bloomfield et al. 2011). Section 

4.2 applied the similar idea in reasoning the probability of perfection, which 

confirmed the assertion that the “conservative Bayesian inference” method 

may have wider applicability. 

o Contribution 2: Together with the “conservative Bayesian inference”, the 

“pruning idea” proposed in section 4.4 seems a new way to elicit priors from 

the assessor. 

o Limitation 1: If without more information from the assessor, the model is too 

conservative to be useful. The reason seems to be that testing evidence is 

weak in supporting perfection (the observation of this limitation could be 

treated as a contribution in rebutting arguments for perfection with intensive 

testing evidence). 

o Limitation 2: There is no strong recommendation of how to apply the 

“pruning idea”, rather a pure illustrative example to show the basic principles 

when eliciting priors in this way. 

 Chapter 5: 

o Contribution 1: Informal arguments have long used the process evidence to 

support system dependability claims. The model here is an attempt to put the 

argument onto a formal basis via the “conservative Bayesian inference” 

method again. 

o Contribution 2: to compensate the difficulty of applying the models, a 

negotiation model was proposed to facilitate the consensus building. 

o Contribution 3: the counter-intuitive result – good news from operational 

testing of similar products could counter-intuitively decrease the beliefs in 



On the Probability of Perfection of Software-based Systems 

157 

perfection – is providing a warning against the use of unaided informal 

engineering judgment. 

o Limitation 1: Since we cannot elicit a complete pfd distribution, the notion of 

R (an objective parameter of a random selected program is reliable and 

imperfect) was imposed as a considerable simplification. However, aiding 

assessors to elicit R remains not easy. 

o Limitation 2: The key to the efficacy of the model lies in the number k (i.e. 

the number of versions in the population). In practice, it is unlikely to have a 

very large k. 

o Limitation 3: For brevity, all the results assume that n (i.e. the number of 

testing cases) takes the same value over all k systems observed. Clearly, this 

is unlikely to be true in practice. Ways to overcome this problem are 

discussed, but they involve ignoring some of the available evidence. 

 Chapter 6: 

o Contribution 1: The analysis of the uncertainties (i.e. the two types of faults of 

provers and the spectrum of formal specifications) lies in a formal proof could 

be a useful foundation for future modelling work on claiming perfection via 

formal proof evidence. 

o Contribution 2: the modelling results are justifying some common practice in 

a formal proof and revealing some pitfalls could be in a safety case. 

o Limitation 1: The current model seems still impractical to give the 

quantitative posterior confidence in perfection when seeing formal proof 

evidence (due to requiring some beliefs on the spectrum of formal 

specification which are not easy to elicit). 

 Chapter 7: 

o Contribution 1: it forms a new lane of quasi-perfection related models, which 

parallels to the perfection related models, see Figure 30. In line with the LR 

and LP models, the quasi-perfection models enrich the solutions of the 

dependency issues in the reliability assessment of a 1oo2 diverse system. 

o Contribution 2: an end-to-end argument chain was proposed to show that the 

quasi-perfection notion is superior to perfection when the amount of testing 

evidence is large enough. 
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o Limitation 1: the new LR-single-qp and LP-single-qp models are still giving 

very conservative results, similar to those in chapter 3. 

o Limitation 2: the model on claiming quasi-perfection via failure-free testing 

evidence is requiring a very large amount of testing evidence when the 

definition of quasi-perfection is strict (e.g. pfd smaller than 10-7).  

 

Even though there are limitations in each chapter and some of them seem hard to overcome,, 

research directions are discussed in each chapter against the corresponding limitations. 

8.3.2. Overall evaluation 
From an overall perspective of the thesis, there are firstly two main contributions 

corresponding to the two research questions in section 1.2: 

 The LR-single, LP-single, LR-single-qp and LP-single-qp models in the thesis are 

broadening the application of the probability of perfection of software-based systems. 

Each of them has its own advantages over the existing LR and LP models in some 

circumstances. Depending on the specific context, potential users now have 

alternative solutions to dependence issue in the reliability assessments of diverse 1oo2 

software systems. 

 Before this thesis, although much work could be found on applying the probability of 

perfection of software, there seems no literature on how to formally claim the 

probability of perfection via various kinds of available evidence. In this sense, the 

thesis is a first attempt to reason the probability of perfection of software-based 

system in rigorous quantitative ways. In addition, the models are compatible in the 

sense of being able to be combined together in a framework to support (quasi-) 

perfection claims.  

 

It is important to note that throughout the thesis an important principle of guaranteed 

conservatism has been applied to deal with the two substantial difficulties lying in the two 

research questions: 

 Tackling the issues of dependence in the reliability assessment of 1-out-of-2 diverse 

systems at both aleatory and epistemic levels by requiring only marginal and partial 

beliefs of each channel. 
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 Overcoming the well-known difficulty of specifying complete Bayesian priors into 

reasoning with only partial prior beliefs.  

 

Both of them are solved at the price of conservatism. Thus the end-to-end results are 

guaranteed to be conservative, which is obviously desirable and important for safety-critical 

systems. This “end-to-end conservatism” approach in the presence of all kinds of uncertainty 

is novel. 

 

This end-to-end conservatism also raises the main limitation that sometimes the results might 

be too conservative to be useful or quite modest. There are two ways of looking at this 

problem of possibly excessive conservatism: 

 There’s a “tension” between being “too partial” in the beliefs expressed, resulting in 

very conservative results, on the one hand; and requiring too much from the assessor, 

so that he cannot populate the models with numbers (or the numbers are not 

believable) on the other hand. The question is how to be “as conservative as 

necessary, but not more so”. So one possible way of looking at the contribution of this 

thesis is that it is precisely exploring where the acceptable boundary lies between the 

two sides of the “tension”. 

 In fact, requiring guaranteed end-to-end conservatism is a strong condition – stronger 

than is usual in some real practical safety cases (where for example “best guess” 

values for key parameters and/or unjustified assumptions are used). It has been seen 

as a classical argument that “Our claims for the pfds of the two channels are 

themselves very conservative: we know that each system is much better than the 

numbers pfdA and pfdB that we are claiming. So, when we use the product pfdA×pfdB 

for the system pfd in our safety case, we can be sure that this is conservative”, which 

is a rather informal and dangerously optimistic reasoning. Actually we do not need a 

full end-to-end treatment in order to get useful results that are an improvement on that 

classical pfdA×pfdB approach. Some of the conservatism could be relaxed if we 

stopped at some stages of a 4 levels end-to-end arguments chain (see Figure 30). 

Consider, for example, a very crude simplification of the first end-to-end arguments 

chain in Figure 30. If we have point estimates of pfdA and pnpB, we could treat each of 

these as “true” and use a simple product of them as a bound on system pfd. Although 

ignoring epistemic uncertainty about the parameters in this way is clearly “wrong”, 
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we believe it is nevertheless superior in some ways to the naive product of pfdA and 

pfdB. Specifically, it ignores only epistemic uncertainty; the classical approach ignores 

epistemic uncertainty and failure dependence. That is, if we had correct values for 

pfdA and pnpB our result would be a bound on system pfd. The same is not true of the 

classical approach: even with true values for pfdA and pfdB, their product is not a 

guaranteed bound on system pfd. We would have similar observations for stopping at 

different stages of different chains of arguments in Figure 30. Curtailing the full end-

to-end treatment of uncertainty in ways like this would make the task of the assessor 

very much easier, but at the price of not ending up with a guaranteed conservative 

claim for the system pfd – because some uncertainty will not be accounted for25. 

Nevertheless such reasoning is still superior to the classical pfdA×pfdB approach. Even 

though we are not advocates for such a curtailing approach, it is available to the user 

from a practicality point of view. 

 

Take a step back, if you really need guaranteed end-to-end conservatism and are only 

prepared to express rather minimal partial prior beliefs, then the models of this thesis could 

serve as warnings/support to safety engineers/regulators in the face of claims based on 

reasoning that is less rigorous than the reasoning in this thesis: 

 There is a common conservative view of nuclear regulators for the licensing of safety 

critical software for nuclear reactors (ONR 2015) that claims of low pfd for a 

computer based system are required to be treated with caution. Generally, the work in 

this thesis is supportive of this kind of conservative view. It actually provides some 

formal arguments of this kind of informal scepticism. The results show rigorously 

what can be claimed in circumstances that are themselves spelled out rigorously. 

8.4. Future work 

Despite the possible future work of the scattered points in each chapter, four possible 

directions to expand the work presented in this thesis are as below: 

                                                
25 Or, putting it another way, it places on the assessor a requirement to be certain of the values of certain 

parameters. If with such certainty, there would be guaranteed conservatism in the conclusions. 
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 Reduce the conservativeness: as argued above, the main limitation is the 

conservatism lies in each model of the thesis. Generally speaking, the 

conservativeness could be classified into 3 categories:  

o Conservativeness at aleatory level: i.e. the conservative assumptions used in 

LR, LR-single and LR-single-qp models. The very conservative assumption is 

if channel B is not perfect then it will fail with certainty whenever channel A 

fails. One possible solution to this conservatism seems to capture the aleatory 

uncertainty that B fails when A fails and B is imperfect. Some preliminary 

work is ongoing in this direction.  

o Conservativeness at epistemic level: More theorems are needed at this level, 

which might be degraded into pure mathematical problems, e.g. to obtain a 

tighter bound. Of course, knowing more prior beliefs could improve the 

usefulness of the results, but it will place harder task on assessors to elicit and 

learn those beliefs.  

o Conservativeness at learning level: All the models at the learning level are 

essentially applying the “conservative Bayesian inference” principle. It seems 

to reduce the inherent conservatism in this approach needs more theorems in 

the fundamental mathematics, i.e. tighter bound on the objective functions. 

Otherwise, any solution is essentially switching the difficulties from this level 

to some other ones. 

 Incorporate more types of evidence: at the evidence level in Figure 30, there are 

only 3 types of evidence being considered. However, many other available evidence 

could be found in a real project seems highly associated with perfection related claims, 

e.g. symbolic testing evidence. So how to combine more other types of evidence into 

the perfection related framework of reliability assessment is important. 

 How to elicit conditional or joint priors: the price of conservatism was paid in the 

models at learning level to at best facilitate the assessors’ task of expressing priors. 

Assessors may able to express some very partial (e.g. a confidence bound or a mean) 

and marginal beliefs. However, it is well-known people find it hard to express a 

conditional probability and/or bivariate uncertainty. In some models of this thesis, 

such joint priors are needed, e.g. the R in chapter 5 and beliefs of the items on the 

spectrum of formal specifications in chapter 6. How to rationally elicit them or find 

ways to around it (maybe at the price of conservatism again) is of future interest.  
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 Extend the quasi-perfection idea: It is believed that the quasi-perfection idea could 

be furthered extended. When more other types of evidence being incorporated, it 

might have more advantages over the “pure” perfection models in some cases. 

8.5. Final conclusions 

This thesis provided 3 parallel sets of (quasi-)perfection related models which could be used 

individually as a conservative end-to-end argument that from various types of evidence to the 

reliability of a software-based system. It is not only extending the applications of the 

probability of perfection of software, but also improving our understanding of it which allows 

us to claim the probability of perfection of software from various types of evidence.  
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APPENDIX A 

Proof for the Theorem 1 in section 3.2.2: 

Denote the probability mass (red bar) at the corresponding area as M1, M2, M3 and M4 (and 

also use them as marks of the areas) in the Figure 32, then ݂ܲ݀)ݎ ≥ ܲ, ݐ݂ܿ݁ݎ݁݉݅ݏ݅ =

1) = ସܯ ,ସ. By (3.6) and (3.7)ܯ ଷܯ+ = 1 − ସܯ and ߠ ଶܯ+ = . Therefore 0ߙ ≤ ସܯ ≤

min	{ߙ, 1 −  :Then .{ߠ

Isimperfect_B

pfd_A

M1

M2

M3

M4

P_A

0 1

1

 
Figure 32 the joint distribution over two objective parameters pfdA and isimperfectB 

(fails	sys)ݎܲ  ≤ ݂݀)ܧ ×  (ݐ݂ܿ݁ݎ݁݉݅ݏ݅

= න ݂݀ × ݂݀0݀
ಲ


+ න ݂݀ × ݂݀0݀

ଵ

ಲା
+ න ݂݀ × ݂݀1݀

ಲ



+න ݂݀ × ݂݀1݀
ଵ

ಲା
 

 

(A.1) 
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≤ ܲ × 0 ଵܯ× + 1 × 0 ଶܯ× + ܲ × 1 ଷܯ× + 1 × 1  ସܯ×

 = ܲ × (1 − ߠ (ସܯ−  ସܯ+

= ܲ × (1 − (ߠ + (1 − ܲ)ܯସ 

≤ (1 − (ߠ ܲ + (1 − ܲ)݉݅݊	{ߙ, 1 −  {ߠ

 

 

(A.2)  

 

The result (A.2) can be seen as follows. The first line of (A.1) is an expression of the full 

probability over the 4 cells in Figure 32. Then the inequality is derived by replacing the 4 

probabilities with upper bounds. Or an informal explanation could be that the product 

݂݀ × ݂݀)ܧ  is 0 within the areas M1 and M2. Thus the contribution toݐ݂ܿ݁ݎ݁݉݅ݏ݅ ×

 ) associated with the two areas is 0. Hence the first two terms in (A.1). In theݐ݂ܿ݁ݎ݁݉݅ݏ݅

area M3, the product ݂݀ ×   is a random variable which is everywhereݐ݂ܿ݁ݎ݁݉݅ݏ݅

smaller than PA×1 and the probability mass is M3. Thus the contribution to ݂݀)ܧ ×

 ) associated with that area is bounded by PA×1×M3. Hence the third term inݐ݂ܿ݁ݎ݁݉݅ݏ݅

(A.1). Similarly, the area M4 gives the fourth term in (A.1). 

QED 

 

Proof for the Theorem 2 in section 3.2.2: 

With the newly added certain upper bound, the distribution in Figure 32 changed to Figure 33: 

Isimperfect_B

pfd_A

M1

M2

M3

M4

P_A

0 1

PUA

 
Figure 33 the joint distribution over two objective parameters pfdA and isimperfectB with a certain upper bound on 

pfdA 

Again, denote the probability mass (red bar) at the corresponding area as M1, M2, M3 and M4 

(and also use them as the marks of the areas) in the Figure 33, then ܲ( ܲ
 > ݂݀ ≥ ܲ,

ݐ݂ܿ݁ݎ݁݉݅ݏ݅ = 1) = ସܯ ,ସ. Also by (3.6) and (3.7)ܯ ଷܯ+ = 1 − ସܯ and ߠ ଶܯ+ =  ,ߙ

therefore 0 ≤ ସܯ ≤ min	{ߙ, 1 −  .Then, similar as the proof for theorem 1 .{ߠ

(fails	sys)ݎܲ  ≤ ݂݀)ܧ ×   (ݐ݂ܿ݁ݎ݁݉݅ݏ݅
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≤ ܲ × 0 ଵܯ× + ܲ
 × 0 ଶܯ× + ܲ × 1 ଷܯ× + ܲ

 × 1  ସܯ×

= ܲ × (1 − ߠ (ସܯ− + ܲ
  ସܯ×

= ܲ × (1 − (ߠ + ( ܲ
 − ܲ)ܯସ 

≤ (1 − (ߠ ܲ + ( ܲ
 − ܲ)݉݅݊	{ߙ, 1 −  {ߠ

 

 

 

(A.3)  

 

QED 

 

Proof for the Theorem 3 in section 3.2.2: 

By the Cauchy-Schwarz inequality, 

 ൫݂݀)ܧ × )൯ݐ݂ܿ݁ݎ݁݉݅ݏ݅
ଶ
≤ ݂݀൫ܧ

ଶ൯ × ݐ݂ܿ݁ݎ݁݉݅ݏ൫݅ܧ
ଶ൯ (A.4)  

 

As ܧ൫݅ݐ݂ܿ݁ݎ݁݉݅ݏ
ଶ൯ = (ݐ݂ܿ݁ݎ݁݉݅ݏ݅)ܧ = 1 −  :then ,ߠ

(fails	sys)ݎܲ  ≤ ݂݀)ܧ × (ݐ݂ܿ݁ݎ݁݉݅ݏ݅

≤ ටܧ൫݂݀
ଶ൯ × ݐ݂ܿ݁ݎ݁݉݅ݏ൫݅ܧ

ଶ൯ = ටܧ൫݂݀
ଶ൯ × (1 − (ߠ

= ට(1 − ଶ(݂݀)ܧ൫(ߠ +  ൯(݂݀)	ݎܸܽ

(A.5)  

 

Also because: ܧ(݂݀)ଶ + (݂݀)	ݎܸܽ < ൫ܧ(݂݀) + ൯(݂݀)	ܦܵ	
ଶ
, then (A.5) turns into: 

(fails	sys)ݎܲ  ≤ ݂݀)ܧ × (ݐ݂ܿ݁ݎ݁݉݅ݏ݅

≤ ට(1 − ଶ(݂݀)ܧ൫(ߠ + ൯(݂݀)	ݎܸܽ

< ඥ(1 − (ߠ ቀܧ(݂݀) +  ൯ቁ݂݀൫	ܦܵ	

(A.6)  

QED 

 

Proof for the Theorem 4 in section 3.2.2 

It is trivial to know the most conservative distribution of pfdA, satisfying the mean (i.e. 

(݂݀)ܧ =  ) and a certain upper bound constraints (i.e. (3.9)), is a two point one asܯ

Figure 34. Here the conservatism means to maximize the variance of pfdA, i.e. makes the 

distribution as spread out as possible. Then the variance is 

 
(݂݀)ݎܸܽ = ܯ) − ܲ

)ଶ
ܯ

ܲ
 + ܯ) − 0)ଶ ቆ1 −

ܯ

ܲ
ቇ = ܯ ܲ

 ܯ−
ଶ (A.7)  
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And by the result in Theorem 3: 

(fails	sys)ݎܲ  ≤ ݂݀)ܧ × (ݐ݂ܿ݁ݎ݁݉݅ݏ݅

≤ ට(1 − ଶ(݂݀)ܧ൫(ߠ + ൯(݂݀)	ݎܸܽ = ට(1 − ܯ)(ߠ ܲ
) 

(A.8)  

pfd_A1PA
U0

1−MA/PA
U MA/PA

U

f(p)

 
Figure 34 the most conservative (i.e. to maximise the variance) 2-point distribution of pfdA satisfying a mean and a 

certain upper bound constraints. 

QED 
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APPENDIX B 

The problem is to find the most conservative prior distribution f(p), still satisfying (4.1) and 

(4.2), which minimizes (4.3), then calculate the corresponding posterior probability mass at 

the origin, i.e. θ*. 

 

By the mean value theorem for integrals, we could find two values, say P1 and P2, satisfying 

the equations below: 

 
(1 − ଵܲ) න݂()݀

௬

ା

= න(1 − ݀()݂(

௬

ା

 (B.1) 

 
(1 − ଶܲ) න݂()݀

ଵ

௬ା

= න(1 − ݀()݂(
ଵ

௬ା

 (B.2) 

, where 0 < ଵܲ ≤ ,ݕ ݕ < ଶܲ ≤ 1.  

 

From the prior constraints (4.1) and (4.2), we know: 

 
න݂()݀

௬

ା

= 1− ݔ −  (B.3) ߠ

 
න݂()݀
ଵ

௬ା

=  (B.4) ݔ
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So put (B.3), (B.4) into (B.1), (B.2): 

 
(1 − ଵܲ)(1 − ݔ − (ߠ = න(1 − ݀()݂(

௬

ା

 (B.5) 

 
(1 − ଶܲ)	ݔ = න(1 − ݀()݂(

ଵ

௬ା

 (B.6) 

 

Then put (B.5) and (B.6) into (4.3), we can get: 

∗ߠ  =
ߠ

ߠ + ∫ (1 − ଵ݀()݂(
ା

=
ߠ

ߠ + (1 − ଵܲ)(1 − ݔ − (ߠ + (1 − ଶܲ)	ݔ
 (B.7) 

 

To minimise (B.7), we can easily see that when both P1 and P2 reach their lower bound, θ* 

reaches its lower bound. That is, when P1 =0 and P2 =y. 

∗ߠ  =
ߠ

ߠ + (1 − ଵܲ)(1 − ݔ − (ߠ + (1 − ଶܲ)	ݔ
≥

ߠ
1 − ݔ + (1 −  (B.8) ݔ(ݕ

 

Here, strictly, P1 cannot reach the 0 point but infinitely close to it, so this most conservative 

prior f(p) is a “special” 3 points distribution, as shown in Figure 5, i.e. the 0 point with 

mass θ, the P1 point which is infinitely close to the original point with mass 1‒x‒θ, and the P2 

point at y with mass x. There is no such distribution in reality, please see footnote 8 for 

detailed clarification. 
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APPENDIX C 

Proof for the most conservative prior distribution in Figure 11: 

By the mean value theorem for integrals, we could find two values, say P1 and P2, satisfying 

the equations below: 

)ܮ ଵܲ)න ߠ݀(ߠ)݃
௬ି


= න ߠ݀(ߠ)݃(ߠ)ܮ

௬ି


 

)ܮ ଶܲ)න ߠ݀(ߠ)݃
ଵ

௬
= න ߠ݀(ߠ)݃(ߠ)ܮ

ଵ

௬
 

where the ܮ is the likelihood function as the expression (5.2) and	0 ≤ ଵܲ < ,ݕ ݕ ≤ ଶܲ ≤ 1.  

	

As the one percentile prior knowledge ܲߠ)ݎ < (ݕ = ఏߙ , we know: 

න ߠ݀(ߠ)݃
௬ି


=  ఏߙ

න ߠ݀(ߠ)݃
ଵ

௬
= 1−  ఏߙ

Therefore the objective function: 

∗ఏߙ =
∫ ߠ݀(ߠ)݃(ߠ)ܮ
௬ି


∫ (ߠ)݃(ߠ)ܮ
ଵ
 ߠ݀

=
)ܮ ଵܲ) ∗ ఏߙ

)ܮ ଵܲ) ∗ ఏߙ + )ܮ ଶܲ) ∗ (1 − (ఏߙ
=

1

1 + )ܮ ଶܲ) ∗ (1 − (ఏߙ
)ܮ ଵܲ) ∗ ఏߙ

 

As the likelihood function L is an increase function, so: 

∗ఏߙ =
1

1 + )ܮ ଶܲ) ∗ (1 − (ఏߙ
)ܮ ଵܲ) ∗ ఏߙ

≤
1

1 + (ݕ)ܮ ∗ (1 − (ఏߙ
(ݕ)ܮ ∗ ఏߙ

= ఏߙ  



On the Probability of Perfection of Software-based Systems 

178 

The inequality step is showing the most conservative case is the one when both P1 and P2 are 

at the y point (actually P1 is infinitely close to y point, please see the very similar point in 

footnote 8 for clarification), i.e. the most conservative prior ݃(ߠ) showed in Figure 11. 

 

Then, with the most conservative prior ݃(ߠ) showed in Figure 11, we cannot learn 

anything about the probability of perfection, i.e. ߠ from the process evidence. 

QED 

 

Proof for the most conservative prior distribution in Figure 13: 

By the mean value theorem for integrals, we could find 3 values, say P1, P2 and P3 satisfying 

the equations below: 

)ܮ ଵܲ)න ߠ݀(ߠ)݃
௬భି


= න ߠ݀(ߠ)݃(ߠ)ܮ

௬భି


 

)ܮ ଶܲ)න ߠ݀(ߠ)݃
௬మି

௬భ
= න ߠ݀(ߠ)݃(ߠ)ܮ

௬మି

௬భ
 

)ܮ ଷܲ)න ߠ݀(ߠ)݃
ଵ

௬మ
= න ߠ݀(ߠ)݃(ߠ)ܮ

ଵ

௬మ
 

 

where the ܮ is the likelihood function as the formula (5.2). And 

0 ≤ ଵܲ < ,ଵݕ ଵݕ ≤ ଶܲ < ,ଶݕ ଶݕ ≤ ଷܲ ≤ 1	

As the two percentile prior knowledge – ܲߠ)ݎ < (ଵݕ = ଵݕ)ݎܲ ఏଵ andߙ ≤ ߠ < (ଶݕ =

 :ఏଶ. we knowߙ

න ߠ݀(ߠ)݃
௬భି


=  ఏଵߙ

න ߠ݀(ߠ)݃
௬మି

௬భ
=  ఏଶߙ

න ߠ݀(ߠ)݃
ଵ

௬మ
= 1 − ఏଵߙ −  ఏଶߙ

Therefore our two objective functions: 

∗ఏଵߙ =
∫ ߠ݀(ߠ)݃(ߠ)ܮ
௬భି


∫ (ߠ)݃(ߠ)ܮ
ଵ
 ߠ݀

=
)ܮ ଵܲ) ∗ ఏଵߙ

)ܮ ଵܲ) ∗ ఏଵߙ + )ܮ ଶܲ) ∗ ఏଶߙ + )ܮ ଷܲ) ∗ (1 − ఏଵߙ − (ఏଶߙ

=
1

1 + )ܮ ଶܲ) ∗ ఏଶߙ + )ܮ ଷܲ) ∗ (1 − ఏଵߙ − (ఏଶߙ
)ܮ ଵܲ) ∗ ఏଵߙ
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∗ఏଵ∩ఏଶߙ =
∫ ߠ݀(ߠ)݃(ߠ)ܮ
௬మି


∫ (ߠ)݃(ߠ)ܮ
ଵ
 ߠ݀

=
)ܮ ଵܲ) ∗ ఏଵߙ + )ܮ ଶܲ) ∗ ఏଶߙ

)ܮ ଵܲ) ∗ ఏଵߙ + )ܮ ଶܲ) ∗ ఏଶߙ + )ܮ ଷܲ) ∗ (1 − ఏଵߙ − (ఏଶߙ

=
1

1 + )ܮ ଷܲ) ∗ (1 − ఏଵߙ − (ఏଶߙ
)ܮ ଵܲ) ∗ ఏଵߙ + )ܮ ଶܲ) ∗ ఏଶߙ

 

As the likelihood function L is an increase function, for ߙఏଵ∗ : 

∗ఏଵߙ =
1

1 + )ܮ ଶܲ) ∗ ఏଶߙ + )ܮ ଷܲ) ∗ (1 − ఏଵߙ − (ఏଶߙ
)ܮ ଵܲ) ∗ ఏଵߙ

≤
1

1 + (ଵݕ)ܮ ∗ ఏଶߙ + (ଶݕ)ܮ ∗ (1 − ఏଵߙ − (ఏଶߙ
(ଵݕ)ܮ ∗ ఏଵߙ

 

It reaches the upper bound when  

ଵܲ = ,ଵିݕ ଶܲ = ,ଵݕ ଷܲ =  ଶݕ

So we got the most conservative prior distribution in the Figure 13 (left-hand side) and the 

corresponding ߙఏଵ∗  as (5.7). 

 

Similarly for ߙఏଵ∩ఏଶ∗ : 

∗ఏଵ∩ఏଶߙ =
1

1 + )ܮ ଷܲ) ∗ (1 − ఏଵߙ − (ఏଶߙ
)ܮ ଵܲ) ∗ ఏଵߙ + )ܮ ଶܲ) ∗ ఏଶߙ

≤
1

1 + (ଶݕ)ܮ ∗ (1 − ఏଵߙ − (ఏଶߙ
(ଵݕ)ܮ ∗ ఏଵߙ + (ଶݕ)ܮ ∗ ఏଶߙ

 

It reaches the upper bound when  

ଵܲ = ,ଵିݕ ଶܲ = ,ଶିݕ ଷܲ =  ଶݕ

So we got the most conservative prior distribution in the figure 6 (right-hand side) and the 

corresponding ߙఏଵ∩ఏଶ∗  as (5.8). 

QED 

 

Proof for the most conservative prior distribution in Figure 15: 

If we introduce 8 variables with their ranges,  

൞

0 ≤ ଵߠ < ,ݕ 0 ≤ ܴଵ < 	ݎ
ݕ ≤ ଶߠ ≤ 1,0 ≤ ܴଶ < ݎ
0 ≤ ଷߠ < ,ݕ ݎ ≤ ܴଷ ≤ 1
ݕ ≤ ସߠ ≤ 1, ݎ ≤ ܴସ ≤ 1

 

by the mean value theorem for integrals, we would have (as the Figure 14, the probability 

masses associated with the four regions are label as M1, M2, M3, M4): 
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ߠ)ݎܲ < (݁ܿ݊݁݀݅ݒ݁	ݏݏ݁ܿݎ	|ݕ

=
∫ ∫ (ߠ)ఏುುழ௬ܫ) × ߠ] + ܴ])݃ழఏುು ,ோவ(ߠ , ܴ݀ߠ݀(ܴ

ଵ


ଵ


∫ ∫ ߠ] + ܴ]݃ழఏುು ,ோவ(ߠ , ܴ݀ߠ݀(ܴ
ଵ


ଵ


=
ଵߠ] + ܴଵ]ܯଵ + ଷߠ] + ܴଷ]ܯଷ

ଵߠ] + ܴଵ]ܯଵ + ଷߠ] + ܴଷ]ܯଷ + ଶߠ] + ܴଶ]ܯଶ + ସߠ] + ܴସ]ܯସ

=
1

1 + ଶߠ] + ܴଶ]ܯଶ + ସߠ] + ܴସ]ܯସ
ଵߠ] + ܴଵ]ܯଵ+[ߠଷ + ܴଷ]ܯଷ

≤
1

1 + ଶܯݕ + ݕ] + ସܯ[ݎ
ݕ] + ଵܯ[ݎ ଷܯ+

=
1

1 + ߛ)ݕ (ଵܯ− + ݕ] + (1[ݎ − ఏߛ − ߛ (ଵܯ+
ݕ] + ଵܯ[ݎ + ఏߛ) (ଵܯ−

 

The inequality step above indicates  ߠଵ = ,ିݕ ܴଵ = ,ିݎ ଶߠ = ,ݕ ܴଶ = 0, ସߠ = ,ݕ ܴସ =  ݎ

and ߠଷ + ܴଷ = 1, which is the Figure 15. 

 

And it is not hard to see the last formula is a decreasing function of M1. And the range of M1 

is 0 ≤ ଵܯ ≤ ݉݅݊	(γఏ , γ), so, when ܯଵ = 0, we reach the upper bound ߛఏ∗ . 

ߠ)ݎܲ < (evidence	process	|ݕ ≤
1

1 + ߛݕ + ݕ] + (1[ݎ − ఏߛ − (ߛ
ఏߛ

= ∗ఏߛ  

QED 

 

Proof for the most conservative prior distributions in Figure 17 and Figure 18: 

First set the	ܲߠ)ݎ < 		.as the objective function	evidence)	process	ଵ|ݕ

	

Introduce 12 variables with their ranges,  

⎩
⎪
⎨

⎪
⎧
0 ≤ ଵߠ < ,ଵݕ 0 ≤ ܴଵ < 	ݎ
ଵݕ ≤ ଶߠ < ,ଶݕ 0 ≤ ܴଶ < ݎ
ଶݕ ≤ ହߠ ≤ 1, 0 ≤ ܴହ < ݎ
0 ≤ ଷߠ < ,ଵݕ ݎ ≤ ܴଷ < ݎ
ଵݕ ≤ ସߠ < ,ଶݕ ݎ ≤ ܴସ < ݎ
ଶݕ ≤ ߠ ≤ 1, ݎ ≤ ܴ < ݎ

 

By the mean value theorem for integrals and similar reasoning above (as in Figure 16, the 

probability masses associated with the 6 regions are tagged as Mi): 
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ߠ)ݎܲ < (evidence	process	ଵ|ݕ =
∫ ∫ (ߠ)ఏುುழ௬ଵܫ) × ߠ] +ܴ])݃ழఏುು,ோவ(ߠ , ܴ݀ߠ݀(ܴ

ଵ


ଵ


∫ ∫ ߠ] + ܴ]݃ழఏುು ,ோவ(ߠ , ܴ݀ߠ݀(ܴ
ଵ


ଵ


=
ଵߠ] +ܴଵ]ܯଵ+ ଷߠ] +ܴଷ]ܯଷ

ଵߠ] +ܴଵ]ܯଵ + ଷߠ] +ܴଷ]ܯଷ + ଶߠ] +ܴଶ]ܯଶ+ ସߠ] +ܴସ]ܯସ+ ହߠ] +ܴହ]ܯହ+ ߠ] +ܴ]ܯ

≤
ଵݕ] + ଵܯ[ݎ + ଵݕ] + ଷܯ]ݎ

ଵݕ] + ଵܯ[ݎ + ଵݕ] + ଷܯ]ݎ + ଶܯଵݕ + ଵݕ] + ସܯ[ݎ + ହܯଶݕ + ଶݕ] + ܯ[ݎ

=
ଵݕ] + ଵܯ[ݎ + ଵݕ] + ఏଵߛ)]ݎ (ଵܯ−

ଵݕ] + ଵܯ[ݎ + ଵݕ] + ఏଵߛ)]ݎ (ଵܯ− + ଶܯଵݕ + ଵݕ] + ఏଶߛ)[ݎ (ଶܯ− + ߛ)ଶݕ ଵܯ− (ଶܯ− + ଶݕ] + (1[ݎ − ߛ − ఏଶߛ − ఏଵߛ ଵܯ+ (ଶܯ+
 

The inequality step above indicates the location of a probability mass point within each area. 

 

The last formula above is a decreasing function in terms of M1 and M2 respectively. So, when 

M1=M2=0, we reached the upper bound ߛఏଵ∗ :	

∗ఏଵߛ =
ଵݕ] + ఏଵߛ]ݎ

ଵݕ] + ఏଵߛ]ݎ + ଵݕ] + ఏଶߛ[ݎ + ߛଶݕ + ଶݕ] + (1[ݎ − ߛ − ఏଶߛ − (ఏଵߛ
 

The corresponding most conservative prior distribution is shown in Figure 17 and Figure 18, 

depends on the specific values assigned on the parameters. 

 

Note that, when 1 − ଵݕ ≤ ݎ < 1, by the reasoning above, we got the most conservative prior 

distribution as the figure below: 

0

<θPP, R>
θPP

M1

M2

M3

M4

y1

r

1

1 R

M5

M6

y2

rU

P3

 
Figure 35 a most conservative prior distribution giving the counter-intuitive results 

In this case, the P3 will always win out. As the P3 point is below y1, we will always have 

ߠ)ݎܲ < (݁ܿ݊݁݀݅ݒ݁	ݏݏ݁ܿݎ	|ଵݕ > ߠ)ݎܲ <  ଵ), which is the “counter-intuitive” resultݕ

again. 

 

Similarly as the reasoning above, it is not hard to get the most conservative prior distribution 

for the objective function	ܲߠ)ݎ <  :as below	evidence)	process	ଶ|ݕ
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0

<θPP, R>
θPP

M1

M2

M3

M4
y1

r

1

1 R

M5

M6

y2

rU

P6

P4

 
Figure 36 a most conservative prior distribution giving the counter-intuitive results 

When seeing good process evidence, the P4 point will always win out of the other points on 

the joint distribution, no matter how the ru varies in its range. In other words, the mass at 

other points will always move to the P4 point. As the P4 point is below y2, we will have 

ߠ)ݎܲ < (݁ܿ݊݁݀݅ݒ݁	ݏݏ݁ܿݎ	|ଶݕ > ߠ)ݎܲ <  ଶ), which is the “counter-intuitive” resultݕ

again. 

 

QED 
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APPENDIX D 

The simplification for (6.4): 

ܲ(݁ = 1) = ܧ భ், మ்,ூക ቀ(1 − ଵܶ − ଶܶ)ܫఝ + ଶܶቁ 

= ܧ భ், మ்,ூക ቀ(1 − ଵܶ − ଶܶ)ܫఝቁ + ܧ భ், మ்,ூക( ଶܶ) 

= ூകܧ ൬ܧ భ், మ்|ூക ቀ(1 − ଵܶ − ଶܶ)ܫఝቚܫఝቁ൰ + ூകܧ ൬ܧ భ், మ்|ூക൫ ଶܶหܫఝ൯൰ 

= ூകܧ ൬ܫఝ ܧ	 భ், మ்|ூക ቀ(1 − ଵܶ − ଶܶ)ቚܫఝቁ൰ + ூകܧ ൬ܧ భ், మ்|ூക൫ ଶܶหܫఝ൯൰ 

= (1 − ଵݐ − (ଶݐ × ߮ +  ଶݐ

Here the independent assumption is that ଵܶ and ଶܶ are independent with ܫఝ. 

QED 

 

The simplification for (6.6): 

P(݁ = 1, ௌௐݐ݂ܿ݁ݎ݁ݏ݅ = 1) = ܧ భ், మ்,ூക,ூೄೈ,ூಷೄ ቀ(1 − ܶ1 − ܹܵܫ߮ܫ(2ܶ +  ቁܹܵܫ2ܶ

= ܧ భ், మ்,ூക,ூೄೈ ቀ(1 − ଵܶ − ଶܶ)ܫఝܫௌௐቁ + ܧ మ்,ூೄೈ(ܫௌௐ ଶܶ)    	

= ܧ భ், మ்(1 − ଵܶ − ଶܶ) ×  ௌௐ൯ܫఝܫூക,ூೄೈ൫ܧ

ܧ+ మ்
( ଶܶ) ×   (ௌௐܫ)ூೄೈܧ

= (1 − ଵݐ − (ଶݐ × ቀߠ × ߮ + ,ௌௐܫ൫ݒܥ ఝ൯ቁܫ + ଶݐ ×  ߠ

The result is based on the same independent assumption for the simplification of (6.4). 

QED 
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The simplification for (6.14): 

By (6.7), 

ௌௐݐ݂ܿ݁ݎ݁ݏ݅)ݎܲ = 1|݁ = 1) =
(1 − ଵݐ − (ଶݐ × ቀߠ × ߮ + ௌௐܫ൫ݒܥ , ఝ൯ቁܫ + ଶݐ × ߠ

(1 − ଵݐ − (ଶݐ × ߮ + ଶݐ
 

In the numerator, 

ߠ × ߮ + ,ௌௐܫ൫ݒܥ ఝ൯ܫ = ௌௐ൯ܫఝܫ൫ܧ = Pr(݅ݐ݈݊ܽ݅݉ܿݏ = 1, ௌௐݐ݂ܿ݁ݎ݁ݏ݅ = 1)

= Pr(݅ݐ݈݊ܽ݅݉ܿݏ = 1, ௌௐݐ݂ܿ݁ݎ݁ݏ݅ = 1, ிௌ݁ݐ݈݁݉ܿݏ݅ = 1)

+ Pr(݅ݐ݈݊ܽ݅݉ܿݏ = 1, ௌௐݐ݂ܿ݁ݎ݁ݏ݅ = 1, ிௌ݁ݐ݈݁݉ܿݏ݅ = 0)

= Pr(݅ݐ݂ܿ݁ݎ݁ݏௌௐ = 1, ிௌ݁ݐ݈݁݉ܿݏ݅ = 1) − ଵ݂

+ Pr(݅ݐ݂ܿ݁ݎ݁ݏௌௐ = 1, ிௌ݁ݐ݈݁݉ܿݏ݅ = 0) − ଶ݂ = ߠ − ଵ݂ − ଶ݂ 

In the denominator, 

߮ = ఝ൯ܫ൫ܧ = Pr(݅ݐ݈݊ܽ݅݉ܿݏ = 1)

= Pr(݅ݐ݈݊ܽ݅݉ܿݏ = 1, ௌௐݐ݂ܿ݁ݎ݁ݏ݅ = 1, ிௌ݁ݐ݈݁݉ܿݏ݅ = 1)

+ Pr(݅ݐ݈݊ܽ݅݉ܿݏ = 1, ௌௐݐ݂ܿ݁ݎ݁ݏ݅ = 1, ிௌ݁ݐ݈݁݉ܿݏ݅ = 0)

+ Pr(݅ݐ݈݊ܽ݅݉ܿݏ = 1, ௌௐݐ݂ܿ݁ݎ݁ݏ݅ = 0, ிௌ݁ݐ݈݁݉ܿݏ݅ = 1)

+ Pr(݅ݐ݈݊ܽ݅݉ܿݏ = 1, ௌௐݐ݂ܿ݁ݎ݁ݏ݅ = 0, ிௌ݁ݐ݈݁݉ܿݏ݅ = 0)

= Pr൫݅ݐ݂ܿ݁ݎ݁ݏௌௐ = 1, ிௌ݁ݐ݈݁݉ܿݏ݅ = 1൯ − ଵ݂

+ Pr(݅ݐ݂ܿ݁ݎ݁ݏௌௐ = 1, ிௌ݁ݐ݈݁݉ܿݏ݅ = 0) − ଶ݂ + 0 + ଷ݂

= ߠ − ଵ݂ − ଶ݂ + ଷ݂ 

Replace and assemble the new denominator and numerator, we get result (6.14) 

QED 
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APPENDIX E 

Proof for the Theorem 1 in section 7.3: 

Via (7.8): 

(fails	sys)ݎܲ  ≤ ௗಲܧ ,௦ಳ(1)ߝ − (ݍ݊ݏ݅ + ݂݀ × (ݍ݊ݏ݅

= ௗಲܧ ,௦ಳ൫1)ߝ − )൯ݍ݊ݏ݅

+ ௗಲܧ ,௦ಳ(݂݀ × (ݍ݊ݏ݅ 	

= ߝ × ߱ + ௗಲܧ ,௦ಳ(݂݀ ×  (ݍ݊ݏ݅

(E.1) 

 

The second term in the right-hand expression (E.1) could be expanded using the proof for the 

theorem 1 in section 3.2.2 (see Appendix A, and simply replace ݅ݐ݂ܿ݁ݎ݁݉݅ݏ by ݅ݍ݊ݏ) 

ௗಲܧ  ,௦ಳ(݂݀ × (ݍ݊ݏ݅ ≤ (1 − ߱) ܲ + (1 − ܲ)݉݅݊	{ߙ, 1 − ߱} (E.2) 

 

Assemble (E.1) and (E.2) gives the result (7.11). 

QED 

 

Proof for the Theorem 2 in section 7.3: 

Now, the second term in the right-hand expression of (E.1) could be expanded using the 

proof for the theorem 2 in section 3.2.2 (see Appendix A, and simply replace ݅ݐ݂ܿ݁ݎ݁݉݅ݏ 

by ݅ݍ݊ݏ): 

ௗಲܧ  ,௦ಳ(݂݀ × (ݍ݊ݏ݅ ≤ (1 − ߱) ܲ + ( ܲ
 − ܲ)݉݅݊	{ߙ, 1 − ߱} (E.3) 
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Assemble (E.1) and (E.3) gives the result (7.13). 

QED 

 

Proof for the Theorem 3 in section 7.3 

Same as the theorem 3 in section 3.2.2 (proved in Appendix A), simply replace 

 :ݍ݊ݏ݅  byݐ݂ܿ݁ݎ݁݉݅ݏ݅

 
ௗಲܧ ,௦ಳ(݂݀ × (ݍ݊ݏ݅ ≤ ට(1 − ߱)൫ܧ(݂݀)ଶ + ൯(݂݀)	ݎܸܽ

< ඥ(1 − ߱)൫ܧ(݂݀) +  ൯(݂݀)	ܦܵ	
(E.4) 

 

Assemble (E.1) and (E.4) gives the result (7.14). 

QED 

 

Proof for the Theorem 4 in section 7.3 

Same as the theorem 4 in section 3.2.2 (proved in Appendix A), simply replace 

 :ݍ݊ݏ݅  byݐ݂ܿ݁ݎ݁݉݅ݏ݅

 
݂݀)ܧ × (ݍ݊ݏ݅ ≤ ට(1 − ߱)൫ܧ(݂݀)ଶ + ൯(݂݀)	ݎܸܽ

= ට(1 − ܯ)(߱ × ܲ
) 

(E.5) 

 

Assemble (E.1) and (E.5) gives the result (7.15). 

QED 

 

Proof for the most conservative distribution of Figure 29: 

The problem now is to find the most conservative fB(p), i.e. the one that minimizes (7.19) 

subject to the constraints (7.16), (7.17) and (7.18). 

 

By the mean value theorem for integrals, we could find three values, say P1, P2 and P3 

satisfying the equations below: 

 (1 − ଵܲ)න ݀()ܤ݂
ఌ

ା
= න (1 − ݀()ܤ݂(

ఌ

ା
 (E.6) 

 (1 − ଶܲ)න ݀()ܤ݂
௬

ఌା
= න (1 − ݀()ܤ݂(

௬

ఌା
 (E.7) 
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(1 − ଷܲ)න ݀()ܤ݂

ଵ

௬ା
= න (1 − ݀()ܤ݂(

ଵ

௬ା
 (E.8) 

, where 0 < ଵܲ ≤ ,ߝ ߝ < ଶܲ ≤ ݕ  and ݕ < ଷܲ ≤ 1. 

 

From the prior constraints (7.16), (7.17) and (7.18), we know: 

 
න ݀()ܤ݂
ఌ

ା
=  (E.9) ߚ

 
න ݀()ܤ݂
௬

ఌା
= 1 − ߠ − ߚ −  (E.10) ߙ

 
න ݀()ܤ݂
ଵ

௬ା
=  (E.11) ߙ

 

Then our objective function (7.19) turns to: 

0)ݎܲ  < ݂݀ ≤ (tests	free	failure	n|ߝ

=
ߠ + ∫ (1 − ( ݂()݀

ఌ
ା

ߠ + ∫ (1 − ( ݂()݀
ఌ
ା + ∫ (1 − ( ݂()݀

௬
ఌା + ∫ (1 − ( ݂()݀

ଵ
௬ା

=
ߠ + (1 − ଵܲ)ߚ

ߠ + (1 − ଵܲ)ߚ + (1 − ଶܲ)(1 − ߠ − ߙ − (ߚ + (1 − ଷܲ)ߙ

=
1

1 + (1 − ଶܲ)(1 − ߠ − ߙ − (ߚ + (1 − ଷܲ)ߙ
ߠ + (1 − ଵܲ)ߚ

 

(E.12) 

 

To minimize (E.12) is to maximize P1 and minimize P2 and P3. That is let P1=ε, P2=ε+ and 

P3=y+, which is in response to the prior distribution in Figure 29.  

 

QED 


