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Abstract

Unsupervised learning of compact and relevant state representations has been
proved very useful at solving complex reinforcement learning tasks Ha and Schmid-
huber (2018). In this paper, we propose a recurrent capsule network Hinton et al.
(2011) that learns such representations by trying to predict the future observations
in an agent’s trajectory.

1 Introduction

We study the mechanisms that could allow task-independent and self-supervised learning for embodied
agents. Specifically, we focus here on the acquisition of perceptive skills, in particular representation
for physical objects.

Recently, capsule networks were proposed as a model for representing visual objects. A capsule is a
set of artificial neurons that returns both an activation and instantiation parameters. The activation
is the estimated probability of the feature being present in the input image, and is similar to the
outputs of neurons in convolutional neural networks. The instantiation parameters are estimations of
different properties of the detected feature, such as position, orientation, lighting or color. However,
reaching configurations where each capsule models one visual entity can be tricky without using a
classification loss, here we are looking for an approach that doesn’t rely on external information.

Sensorimotor prediction is often proposed to learn representations. It has been extensively used in
reinforcement learning literature as an auxiliary task to learn both state representations and forward
models. In Ha and Schmidhuber (2018), the authors first learn a latent representation using variational
auto-encoders Kingma and Welling (2013) and then learn a forward model by trying to predict future
latent states. In Wayne et al. (2018), the authors propose a fully differentiable RL architecture trained,
specially, with a reconstruction loss of the inputs and a KL divergence between the estimated and
actual latent state distributions.

In this work, we explore the use of capsule networks for state representation learning. We reformulate
the principle of capsules in order to use them in the framework of sensorimotor prediction. This
allows us to build a state representation preserving the benefits explained in Hinton et al. (2011) while
avoiding the use of external data.

2 Model

Our predictive model is made of four functional blocks, that are repetitively used at each time step :
an encoder, a recurrent cell, a transformation cell and a decoder. We use artificial neural networks for
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Figure 1: Recurrent model used to train capsules. E encodes the observation xt into a capsule
representation ct, which is fed to a recurrent cellR that produces the state capsule representation rt.
T uses rt together with the motor commands mt to predict the next state ht+1. Finally, the decoder
D estimates the next observation ˆxt+1

each of these blocks, making the model fully differentiable. Figure 1 shows how those blocks are
organized to form the full model in charge of predicting the future observations.

2.1 Encoder

Figure 2: Architecture of the capsule network used for encoding the observations. The network is
composed of two convolutional layers, and one convolutional capsule layer.

The encoder outputs a capsule representation ct of shape (k, d+1) where k is the number of capsules,
d is the dimension of the instantiation parameter vector returned by each capsule, and the +1 stands
for the additional activation output for each capsule. Figure 2 shows the architecture of the encoder
network that we used in our experiments.

2.2 Custom recurrent cell

The recurrent cell is a custom neural network model that updates the state capsule representation ht
with the capsule representation of the observation ct. This network outputs an updated state capsule
representation rt. All three variables have the same shape (k, d+ 1). The custom recurrent cell is
making use of the structure of the capsule output (activation dimension denoted a and instantiation
parameters dimensions denoted v) and performs better than traditional recurrent cells (GRU, LSTM)
on the sensorimotor prediction task. Here is the detail of the operation performed:

rat = max(hat , c
a
t )

εt = f(hat , c
a
t ) =

1

1 +
ha
t

cat

2

rvt = (1− εt) · hvt + εt · g(hvt , cvt ;w)

Where g is a linear function of parameter w taking as input the concatenation of hvt and cvt . The main
idea here is to modulate the output with an update parameters εt depending on the activations of the
state capsule representation and the activations coming from the observation capsule representation.

2.3 Transformation cell

The transformation cell applies the transformation induced by the continuous action mt to the state
representation rt. We split the instantiation parameters in two categories : the "fixed" parameters
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denoted vf that will not be affected by the transformation, and the "variable" parameters denoted vv
that are allowed to change. The transformation cell first computes a matrix representation zt for the
action mt using a multi-layer perceptron. The action representation is a square matrix of size dv < d,
where dv is the number of variable parameters. Then the capsules received in input are transformed
by multiplying the vector of variable parameters with the action matrix representation. Here is the
detail of the operation performed :

hat+1 = rat

hvft+1 = rvft

hvvt+1 = matmul(mlp(mt), r
vv
t )

2.4 Decoder

The decoder is responsible for computing an estimation of the next observation x̂t+1 based on the
transformed state ht+1. It is composed of a deep transposed convolutional neural network shared for
each capsule, outputting an individual reconstruction for each capsule, and a custom merge layer, in
charge of computing the observation estimation based on the individual reconstructions.

3 Experiment

3.1 Environment

To validate our approach, we tested our model in a partially observable environment with first-person
observations. To be able to conduct many experiments, we chose to use the 2D simulator Flatland
Caselles-Dupré et al. (2018), where we simulate an environment similar to Eslami et al. (2018).
Having a 2D simulator produces observations in 1D, making it faster to conduct experiments. Our
environment is composed of three simple round objects of three different colors, as shown in figure 3a.
An agent equipped with vision sensor (raw RGB input) moves by random longitudinal displacement,
lateral displacement, and rotation.

3.2 Results

The model is trained with a mean squared error loss on the estimated observations. Two additional
losses are used to ensure a proper convergence : a sparsity constraint on the activations in the hidden
state, and a mean squared error between the hidden state in input of the recurrent cell and the output
of the recurrent cell.

(a) One of the simulated envi-
ronments, with the agent in light
gray and the three objects in pur-
ple, orange and green. The posi-
tion and size of the three objects
vary along episodes.

(b) Next observation prediction at the end of training. This figures shows a
sample from a trajectory of length 100 on which the model was not trained.
The five columns correspond to: 1. The real observation. 2. The predicted
observation. 3. The individual prediction of the first capsule. 4. The
individual prediction of the second capsule. 5. The individual prediction of
the third capsule.

Figure 3b shows the sensorimotor prediction at the end of training. We can see from this figure that
each capsule represents one object of the environment, which was the desired configuration. We can
also notice that the purple object is properly predicted in frame 84 even though it had left the field
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of vision of the agent since frame 77, which indicates that our model is able to properly track the
position of an object through long sequences of actions.

Figure 4: Individual capsule representation plotted according to two dimensions of the variable
parameters (left and middle), and the two dimensions of the fixed parameters (right). The color map
used correspond to the real relative X (left) and Y (middle) coordinates of the encoded object in the
agent’s relative coordinate system, and to the color of the object (right).

Moreover, when looking at the learned representations of each object (see figure 4), we observe
a high correlation between some of the capsule dimensions with the real relative position of the
corresponding object with regard to the agent. This suggests that the agent has build a notion of space
through this prediction process, without any information directly related to space in its observations
(such as depth).

4 Future work

First, we need to run more experiments on the learned representations. Early results tend to show
that this capsule representation performs well as input of a reinforcement learning algorithm in a
navigation task, compared to learning from raw images. To further verify the quality of our model for
reinforcement learning, we would need to compare it with other state representation learning methods
(like Ha and Schmidhuber (2018)) and on several environments.

In the future, we would like to extend this model, for instance by adding routing with a second layer
of capsules, and apply it to more complex environments, with more objects and more variability
between objects.
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