
              

City, University of London Institutional Repository

Citation: Marimont, S. N. & Tarroni, G. (2021). Anomaly detection through latent space 

restoration using vector-quantized variational autoencoders. 2021 IEEE 18th International 
Symposium on Biomedical Imaging (ISBI), doi: 10.1109/ISBI48211.2021.9433778 ISSN 
1945-7928 doi: 10.1109/ISBI48211.2021.9433778 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/26214/

Link to published version: https://doi.org/10.1109/ISBI48211.2021.9433778

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


ANOMALY DETECTION THROUGH LATENT SPACE RESTORATION USING VECTOR 

QUANTIZED VARIATIONAL AUTOENCODERS 

 

Sergio Naval Marimont 1, Giacomo Tarroni 1,2 

 
1 Cit-AI, Department of Computer Science, City, University of London 

2 BioMedIA, Department of Computing, Imperial College London 
 

 

ABSTRACT 

 

We propose an out-of-distribution detection method that 

combines density and restoration-based approaches using 

Vector-Quantized Variational Auto-Encoders (VQ-VAEs). 

The VQ-VAE model learns to encode images in a categorical 

latent space. The prior distribution of latent codes is then 

modelled using an Auto-Regressive (AR) model. We found 

that the prior probability estimated by the AR model can be 

useful for unsupervised anomaly detection and enables the 

estimation of both sample and pixel-wise anomaly scores. 

The sample-wise score is defined as the negative log-

likelihood of the latent variables above a threshold selecting 

highly unlikely codes. Additionally, out-of-distribution 

images are restored into in-distribution images by replacing 

unlikely latent codes with samples from the prior model and 

decoding to pixel space. The average L1 distance between 

generated restorations and original image is used as pixel-

wise anomaly score. We tested our approach on the MOOD 

challenge datasets, and report higher accuracies compared to 

a standard reconstruction-based approach with VAEs. 

 

Index Terms— Unsupervised anomaly detection, out-

of-distribution, VAE, Vector Quantized-VAE, 

 

1. INTRODUCTION 

 

A wide range of methods using deep learning has been 

recently proposed to automatically identify anomalies in 

medical images [1]. Most of them are based on supervised 

learning, and consequently have two important constraints. 

First, they require large and diverse annotated datasets for 

training. Second, they are specific to the abnormalities 

annotated in the datasets, and therefore are unable to 

generalize to other pathologies. Unsupervised anomaly 

detection methods, on the other hand, aim to overcome these 

constraints by not relying on annotated datasets [2]. Instead, 

they focus on learning the underlying distribution of normal 

images and then identifying as anomalies the images that do 

not conform to the learnt distribution. 

Recently, methods based on Variational Auto-Encoders 

(VAEs) have been proposed to identify and localize 

anomalies in medical images [2,3,4]. VAEs are generative 

models trained by minimizing a loss function composed of a 

reconstruction term (measuring the distance between original 

images and reconstructions) and a Kullback–Leibler (KL) 

divergence term (measuring the distance between the latent 

distribution and a prior, generally assumed to be Gaussian). 

The default approach consists in using the reconstruction loss 

to identify samples with anomalies, based on the assumption 

that the VAE will reconstruct their anomaly-free versions. 

However, recent results suggest that the KL divergence is 

actually a better anomaly score [3]. This can be caused by the 

high representational power of VAEs, which can reconstruct 

even (previously unseen) anomalies. In addition, in [4] 

anomalies are modelled as spatially localized deviations from 

a prior distribution of normal images.  Gradient descent in 

pixel space is used to “restore” images, effectively removing 

anomalies. Anomalies are then localized by comparing 

original images to restorations. Restoration-based approaches 

seem to overall outperform reconstruction-based ones [2].  

Under the hypothesis that abnormal images are encoded 

in different, lower density regions in the latent space, we 

propose to use an estimated latent density as anomaly score. 

Vector-Quantized VAEs (VQ-VAEs) [5] are well suited for 

this strategy because their discrete latent distribution can be 

modelled with expressive Auto-Regressive (AR) models, 

which provide state of the art performance in density 

estimation in images. Additionally, we enable anomaly 

localization relying on the generative capabilities of the AR 

model, with a method that we refer to as Latent Space 

Restoration. Results obtained in the MOOD challenge 

datasets (consisting of brain MR and abdominal CT images) 

suggest that our approach outperforms a standard 

reconstruction-based anomaly detection method using VAEs. 

  
2. METHODS 

 

2.1. Vector Quantized Variational Auto-Encoders 

 
Vector Quantized Variational Auto-Encoders (VQ-VAEs) 

[5] encode observed variables in a discrete latent space 

instead of a continuous one. The discrete latent space can be 

very expressive, allowing the generation of high quality and 

detailed reconstructions. The discrete latent space also 



enables the pairing with AR models, which can 

independently learn the prior distribution (Fig. 1). 

VQ-VAEs are built around a dictionary that maps K 

discrete keys to a D-dimensional embedding space. In other 

words, the encoder network maps observed variables to the 

embedding space, 𝑧𝑒(𝑥)  ∈  R𝐷. Differently from standard 

VAEs, for which the posterior 𝑞(𝑧|𝑥) follows a Gaussian 

distribution, the posterior in VQ-VAEs is categorical and 

deterministic, and is defined as the index of the nearest 

embedding vector. ej, to the encoder output: 

𝑞(𝑧 = 𝑘|𝑥) =  {
1, for 𝑘 = argmin𝑗‖𝑧𝑒(𝑥) − 𝑒𝑗‖

2

0, otherwise
 

Finally, the decoder network takes as input 

𝑧𝑞(𝑥)~ 𝑞(𝑧|𝑥) (i.e. the embedding in the dictionary nearest 

to the encoder output) and learns to reconstruct the observed 

variable distribution 𝑝(𝑥|z𝑞(𝑥)). 

Network parameters for both encoder and decoder 

networks and embeddings are learnt using back-propagation. 

Given that the argmin operator is non-differentiable, the 

gradient in the encoder is usually approximated using 

straight-through estimator [5]. Additional terms in the VQ-

VAE loss function are introduced to provide gradients to the 

embeddings and to incentivize the encoder to commit to 

embeddings. The complete VQ-VAE loss function is 

therefore defined as  

𝐿 = log (𝑥|𝑧𝑞(𝑥)) +  ‖sg[z𝑒(x)] − e‖2
2 + ‖sg[𝑒] − z𝑒(x)‖2

2 

where sg[.] represents the stop gradient operator. 

 

2.2. Auto-Regressive prior modelling 

 

In our method, the prior distribution of VQ-VAE is learnt 

using an Auto-Regressive model (AR). This will allow the 

estimation of the probability of samples and consequently the 

identification of anomalies (defined as samples associated to 

low probability). In addition, since AR models are generative, 

they enable the iterative sampling of one variable at a time, a 

property that we will leverage to generate multiple 

restorations. In an AR model, the joint probability is 

modelled using factorization, meaning that each variable is 

modelled as dependent from previous variables: 𝑝(𝑥) =
∏ 𝑝(𝑥𝑖|𝑥1, … , 𝑥𝑖−1)𝑁

𝑖 . In our implementation, we used the 

PixelSNAIL [6] architecture for the AR model. 

 

2.3. Sample-wise anomaly score estimation 

 

A sample-wise anomaly score is a numerical indicator of 

how likely it is for a given sample to contain an anomaly. 

Scores are generally either density-based (based on an 

estimated probability of a sample) or reconstruction-based 

(based on the assumption that models trained on normal data 

will not be able to reconstruct anomalies). 

Consistent with our previous findings using VAEs, VQ-

VAE with a large enough latent space are able to reconstruct 

abnormal regions of images and this makes the full VQ-VAE 

loss a poor anomaly score. However, we found that abnormal 

regions translate into unusual latent variables, for which the 

AR model assigns low probability. Therefore, we derived a 

sample wise anomaly score from the prior probability 

estimated by the AR model. 

A negative log-likelihood (NLL) threshold 𝜆𝑠 defines 

highly unlikely latent variables. The proposed sample-wise 

anomaly score (𝐴𝑆sample) is the sum of NLL of the latent 

variables above threshold (over a total of 𝑁 variables): 

𝐴𝑆𝑠𝑎𝑚𝑝𝑙𝑒 = ∑ 𝜉(𝑝(𝑥𝑖))
𝑁

𝑖
  

𝜉(𝑧) =  {
− log(𝑧), if −log(𝑧) > 𝜆𝑠

0,  otherwise
 

 

2.4. Pixel-wise anomaly score estimation 

 

Pixel-wise anomaly scores quantify, for each pixel in an 

image, its likelihood of containing an anomaly, consequently 

providing anomaly localization. 

The proposed pixel-wise score follows the restoration 

paradigm presented in [4]. Our restoration method consists in 

replacing high loss latent variables with samples from the 

learnt prior AR model and keeping low loss latent variable 

unaltered.  New samples are drawn only when their latent 

NLL is above a threshold λp. Fig. 2 illustrates this process 

(that we refer to as “Latent Space Restoration”). The 

restoration image is then generated with the decoder network, 

and the residual image is computed as |𝑋 − Restoration|. 
Multiple restorations (j ∈ 1,2,...,S) are generated for each 

test image to reduce variance in the anomaly estimation. The 

multiple residual images are consolidated using a weighting 

factor wj defined as: 𝑤𝑗 = softmax(𝑘 / ∑ |Y𝑖 − 𝑋𝑗
𝑖|𝑃

𝑖 ), where 

k is a softmax temperature parameter and the sum is over all 

the image pixels P. w reduces the weight of restorations 

which have lost consistency. The final consolidated pixel-

wise anomaly score (𝐴𝑆pixel) is estimated as the weighted 

mean of all residuals:  

 

Fig. 1. Diagram of the proposed approach. 

 



𝐴𝑆𝑝𝑖𝑥𝑒𝑙 = ∑ 𝑤𝑗|Y − 𝑋𝑗|
𝑆

𝑗
 

 

Finally, 𝐴𝑆pixel scores are smoothed using a 3x3 

MinPooling filter followed by a 7x7 AveragePooling filter.  

 

3. EXPERIMENTS 

 

3.1. Datasets 

 

MOOD challenge [7] datasets  have been used to train and 

evaluate the proposed method. They consist of 

• Brain MR: 800 scans obtained from the Human 

Connectome Project (HCP) dataset [8]. HCP 

incorporates only young healthy participants;  

• Abdominal CT: 550 normal scans from [9]. 

The challenge test set is kept confidential. However, images 

from 4 subjects for each dataset with added synthetic 

anomalies were provided as validation set and used for hyper-

parameter tunning. Results listed in the following section 

correspond to this validation set.  

Both datasets are pre-processed according to guidelines 

from challenge organizers. Images were resized to obtain 

axials slices of 160x160 pixels. Brain images were 

normalized to have zero mean and unit standard deviation 

subject-wise. Image augmentation used in the training set 

included elastic transforms, gaussian blur, random scale and 

rotations, random brightness, contrast adjustment and 

gaussian noise. 

 

3.2. Implementation details 

 

Our VQ-VAE includes 5 blocks, each composed of 4 residual 

blocks and a downsample/upsample operator. The latent 

space in the brain dataset was set to 20x20 with an embedding 

space with 128 keys and 256 dimensions. The latent space in 

the abdominal dataset was set to 10x10. L1 distance was used 

as reconstruction loss. Additionally, dropout with 0.1 

probability is used during training.  

PixelSNAIL network consists of 4 blocks, each with 4 

residual blocks and a self-attention module. Latent 

probability distribution was conditioned on the axial slice 

position. Consequently, in order to estimate a sample 

probability, the AR model receives as input not only the 

encoded sample but also the position of the slice within the 

volume, encoded in a variable in the range [-0.5,0.5]. Dropout 

with 0.1 probability is used during training. 

Network architectures and training procedures were 

implemented in PyTorch and made openly available in 

https://github.com/snavalm/lsr_mood_challenge_2020/.  

Adam optimizer (with parameters β1=0.9, β2=0.999, 

ε=10−8) and learning rate of 10−4 were used to train both VQ-

VAE and PixelSNAIL networks.  A batch size of 64 was used 

in both networks. Batches were created by combining 8 

random slices from 8 volumes. VQ-VAE was first trained. 

The trained encoder was then used to generate the latent 

variables fed to PixelSNAIL, which was consequently 

trained. Networks were trained on a single Nvidia GTX1070. 

Finally, λ𝑠 and λ𝑝 thresholds were adjusted using the 

validation set provided (slice-wise performance was used for 

λs). We used λ𝑠 = 7 and λ𝑝 = 5 , corresponding to 

percentiles 98 and 90 respectively in the validation set. In the 

pixel-wise score, we found that a lower threshold incentivizes 

more variance in reconstructions which improved results. 

𝑆 = 15  restorations was also heuristically determined. 

We compare our method to a standard VAE with the 

same architecture as the VQ-VAE (5 downsample/upsample 

blocks, each with 4 residual blocks). A dense layer is 

incorporated as the final layer of the encoder to define a 128 

latent space. VAE loss is used as sample-wise AS and 

reconstruction as pixel-wise AS.  

 

4. RESULTS AND DISCUSSION 

 

Since only 4 volumes are provided for each dataset, we 

approximated the sample-wise performance using slice-wise 

performance metrics. Slice and pixel-wise results for our 

method are summarized in Table 1. Area under receiver 

operating characteristics curve (AUROC) and average 

precision (AP) are reported for sample and pixel wise scores. 

In pixel-wise score we additionally evaluated the Dice 

similarity coefficient (DSC) by identifying abnormal pixels 

with an AS threshold. We include examples of the sample-

wise scores assigned by our method in Fig. 3. For pixel-wise 

scores, Fig. 4 shows one validation image, 2 of the 15 

restorations generated, residuals and final anomaly score. 

 

Fig. 2. Illustration of Latent Space Restoration process. 

https://github.com/snavalm/lsr_mood_challenge_2020/


 
 𝐴𝑆sample 𝐴𝑆pixel 

 AUROC AP DSC AUROC AP 

Brain dataset 

VQ-VAE (ours) 0.97 0.92 0.79 0.99 0.81 

VAE 0.90 0.82 0.70 0.98 0.72 

Abdominal dataset 

VQ-VAE (ours) 0.83 0.73 0.57 0.98 0.57 

VAE  0.65 0.48 0.29 0.93 0.23 

Table 1. Comparative of slice and pixel-wise performance.  

The obtained results suggest that our approach 

outperforms a standard VAE method. Pixel-wise results are 

superior in brain images compared to abdominal (probably 

due to the higher variance in the abdominal dataset). We also 

observed that the method is sensitive to the pixel intensity of 

the anomaly. Anomalies with intensities near the expected 

intensities are often missed. This can be due to the anomaly 

scored being calculated as the residual of pixel intensities. 

Alternative scores will be evaluated in the future. 
 

5. CONCLUSIONS 

 

We presented a novel unsupervised anomaly detection and 

localization method based on VQ-VAEs that improves results 

upon an existing standard VAE approach. In the MOOD 

challenge, our approach achieved 2nd and 3rd position in 

sample and pixel-wise respectively, only surpassed by non-

VAE-based methods. In the future, we intend to evaluate our 

approach in a broader range of datasets and medical 

anomalies to better assess its robustness and usefulness in a 

realistic scenario.  
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Fig. 4. Test images and corresponding sample-wise anomaly scores. Abnormal images are highlighted in red. 

 

 

 
Fig. 3. Visualization of restorations and pixel-wise score 

 


