

City, University of London Institutional Repository

Citation: Nuseibeh, B., Finkelstein, A. ORCID: 0000-0003-2167-9844 and Kramer, J.
(1993). Fine-grain process modelling. In: Proceedings of 1993 IEEE 7th International
Workshop on Software Specification and Design. (pp. 42-46). New York, USA: IEEE
Computer Society Press. ISBN 0-8186-4360-9

This is the accepted version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/26495/

Link to published version: http://dx.doi.org/10.1109/IWSSD.1993.315516

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral
Rights remain with the author(s) and/or copyright holders. URLs from
City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or
charge. Provided that the authors, title and full bibliographic details are
credited, a hyperlink and/or URL is given for the original metadata page
and the content is not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Redondo Beach, California, USA, 6-7th December 1993, IEEE CS Press.

Fine-Grain Process Modelling

Bashar Nuseibeh Anthony Finkelstein Jeff Kramer

Department of Computing, Imperial College
180 Queen’s Gate, London, SW7 2BZ, UK

Email: {ban, acwf, jk}@doc.ic.ac.uk.

Abstract
In this paper, we propose the use of fine-grain process

modelling as an aid to software development. We suggest
the use of two levels of granularity, one at the level of the
individual developer and another at the level of the
representation scheme used by that developer. The
advantages of modelling the software development process
at these two levels, we argue, include respectively: (1) the
production of models that better reflect actual
development processes because they are oriented towards
the actors who enact them, and (2) models that are
vehicles for providing guidance because they may be
expressed in terms of the actual representation schemes
employed by those actors. We suggest that our previously
published approach of using multiple “ViewPoints” to
model software development participants, the perspectives
that they hold, the representation schemes that they
deploy and the process models that they maintain, is one
way of supporting the fine-grain modelling we advocate.
We point to some simple, tool-based experiments we have
performed that support our proposition.

Software Process Modelling
Process modelling is the construction of abstract

descriptions of the activities by which software is
developed. In the area of software development
environments, the focus is on models that are
enactable; that is, executable, interpretable or
amenable to automated reasoning. Modelling the
software development process is a means of
understanding the ways in which complex software
systems are designed, constructed, maintained and
improved [7]. A software process model may also
be used for method guidance; that is, as a vehicle
for answering questions such as “what should I do
next?” or more importantly “how do I get out of
this mess I’m now in?”.

Software process modelling is a complex activity
that can span the entire software development life
cycle, from requirements analysis and specification
to system implementation, evolution and
maintenance. From an organisational point of view,

it is desirable to model the overall development
process including the coordination and interaction
of a large number of development participants.
From the individual developer’s point of view, while
coordination and interaction are still important, the
focus is on modelling development activities that
fall within the domain of concern or responsibility
of that individual developer.

The development of large systems typically
involves dealing with at least four kinds of
knowledge:

• domain knowledge - “the world”

• representation knowledge - “the language”

• development process knowledge - “the strategy”

• specification knowledge - “the product”

These have traditionally been identified and
partitioned independently of each other, leading to
possible mismatches between the partitions (fig. 1a).
This has made the task of identifying and expressing
the relationships and inter-dependencies between
partitions of different kinds of knowledge much
more difficult. What we suggest in this paper is that
these different kinds of knowledge may be
partitioned along the same lines, and then grouped
together into multiple “objects” whose boundaries
are defined by these partitions (fig. 1b).

Figure 1b reflects the fact that software
development of complex systems involves many
development participants who hold different views
of the world and the software system they wish to
construct. Moreover, these development
participants may describe and elaborate their views
using different representation schemes and by
following different development strategies. Each
participant has his or her own agenda of activities
and goals and is only occasionally, if ever,
concerned with the overall system development
goals and objectives.

So what do we mean by fine-grain process
modelling in this setting, and where does it fit in
this view of the world?

 - 2 -

Domain Knowledge (DK)

Representation Knowledge (RK)

Development Process Knowledge (DPK)

Specification Knowledge (SK)

(a) Global view of software development knowledge

DK

RK

DPK

SK

DK

RK

DPK

SK

DK

RK

DPK

SK

DK

RK

DPK

SK

...

(b) Proposed view of software development knowledge

Figure 1: (a) Software process models have traditionally
represented the software development process globally by
identifying, partitioning and relating different kinds of
knowledge independently (b) We believe that the different
kinds of knowledge may be partitioned along the same
lines and treated as single objects.

Fine-Grain Software Process Modelling

The division of software development knowledge
into many smaller units is the first step towards
achieving a finer level of granularity of software
process modelling. This decomposition into small
units of knowledge results in many “smaller”
process models each of which is typically
associated with a single developer, representation
or both. The models may represent short-lived
processes that deal with individual activities or
participants in the development life cycle. Fine-
grain process modelling at this level of granularity
is modelling at the developer level. This is in
contrast with the more coarse-grain modelling that
is concerned with more managerial and
organisational activities such the synchronisation of
tool invocations.

“Process integration” in this setting is then more
than the usual (but non-trivial) task of producing a
single, coherent process model for the overall
development life cycle (e.g., [1], [9] and [15]). It is
also concerned with “gluing” together many
individual process models that must interact and
cooperate in a coordinated manner in order to
achieve the overall objectives of the development.
Such coordination requires more than just
synchronisation and concurrency control (e.g., [3])

or communication between agents in a cooperative
setting (e.g., [16]) which are challenging enough, but
also the reconciliation of fundamentally different
development strategies encapsulated in different
process models. This latter reconciliation may not
in fact be entirely necessary, as different individual
process models should be able to coexist, and only
those areas of overlap need to be reconciled.

An even finer level of granularity than the
developer level is representation level process
modelling; that is, modelling a development
process at the level of actions or activities that
relate to or manipulate elements of a representation
scheme. Fine-grain process modelling at this level is
concerned with providing links between
development process knowledge and representation
knowledge which may then be used to produce a
specification for a particular problem domain
(fig. 2). A process model at the representation level
is useful for the individual developer because it may
be used to provide guidance expressed in a
language the developer understands best - the
language he or she is using! Thus, guidance can take
the form of a recommendation on what to do next
in order to advance the specification process, or
advice on handling existing specification
inconsistencies. This is in contrast with processes
that are “unaware” of the representation schemes
they manipulate and therefore treat them as coarse-
grain “vanilla” objects with no internal structure or
semantics.

Development
Process

Knowledge

Representation
Knowledge

Specification
Knowledge

Domain
Knowledge

"process
meets

representation"

Figure 2: Representation level process modelling
provides a means of describing the relationship between
development process knowledge and representation
knowledge. This, together with any domain knowledge
may be used to construct a specification.

 - 3 -

Developer and representation level process
modelling are complementary activities. Creating
developer level process models results in simpler
representation schemes and process models, which
are easier to relate, making representation level
modelling easier. Conversely, representation level
process models may become easier to integrate
since the elements of overlap are mostly syntactic
and are thus easier to transform, translate and
check.

ViewPoints
In our previous work [5, 6] we have advanced the

use of multiple, overlapping “ViewPoints” to model
multiple development participants, who hold
multiple views of a problem domain - described
and developed using multiple representation
schemes and development strategies, respectively.
We defined ViewPoints as loosely-coupled, locally-
managed, distributable objects, encapsulating
representation knowledge, development process
knowledge and (domain-specific) specification
knowledge. Each ViewPoint thus captures a partial
specification, the notation in which it is described,
and the process deployed to develop it.
Communication, consistency checking and
information transfers between ViewPoints is done
via one-to-one inter-ViewPoint rules [11].

ViewPoints are related to each other by many
(simple?) mappings between representations.
Consistency checks may be described and
distributed among the various ViewPoints, so that
invoking and applying them during ViewPoint
development may then be used to drive the
development process further (e.g., to perform

inconsistency handling, information transformation
and transfer, or simply some basic development
steps such as further editing of ViewPoint
specifications).

Experimental Tool Support
Supporting the ViewPoints framework, T h e

Viewer environment and sample tools [10] illustrate
the role of fine-grain process modelling in multi-
perspective development.

The Viewer distinguishes between “method
design” and “method use”. During method design,
the development techniques that make up a method
are defined. Thus for each ViewPoint “type”, a
method designer may describe the notation and
process which ViewPoints instantiated from that
type will deploy. Since the representation and
process are defined in the same ViewPoint, one can
explicitly refer to representation level information
when defining and constructing the ViewPoint
process model. In The Viewer for example, we have
experimented with a precond i t i on ® [Action]
p o s t c o n d i t i o n notation, so that if some
preconditions hold, and an Action is performed,
further postcondit ions then apply. Figure 3 is a
screen-dump of the rudimentary “process
modeller” provided by The Viewer during method
design. Individual actions, pre- and postconditions
may also be annotated with text to provide further
context-sensitive guidance.

Note that the actual notation used to represent
process models is not central to our argument. The
above precondition/action/postcondition notation
was chosen because of its simplicity and our past
experience in using Modal Action Logic [4].

under development
in-ViewPoint check: name clashes

Figure- 3: The Viewer’s process modeller. The top three window panes (from left to right) contain the preconditions,
actions and postconditions, respectively, for a particular ViewPoint type (development technique). The bottom pane
contains textual annotations that may be added by the method designer to any particular condition or action.

The benefit of using such a process modeller for
each ViewPoint is that it allows us to describe
actions of the development process in whatever
granularity we choose. So, in fig. 3, the action
“assemble” refers to any type of basic editing
action (we don’t want to be more specific in this

case), whereas the next two actions are very specific
consistency checks whose outcome may affect the
development process in different ways.

During method use (ViewPoint development), a
ViewPoint specification developer requesting
guidance is presented with a list of possible actions

 - 4 -

that he may perform in his current ViewPoint state
(defined by the preconditions that hold at that
time). He is also presented with the text annotations
provided by the method designer to help him
decide on the actions to take next. If he is still
unable to understand the recommended actions,
then he has the option of selecting a particular
action and asking the tool to “enact” or “perform”
that action on his behalf. He may of course, wish to
ignore the guidance provided altogether (but The
Viewer records the fact that guidance was given and
not taken - a useful management and monitoring

option). A guidance window provided for the
method user by The Viewer is shown in fig. 4.

Finally, because no single process model is hard-
coded into The Viewer, a ViewPoint developer may
artificially “force” a ViewPoint into a particular
state by selecting preconditions that apply. This
may be used to the developer’s advantage by (1)
imposing stricter control over unwanted
“automatic” forward chaining when preconditions
hold, and (2) giving the developer the freedom to
explore future development states and asking “what-
if...” type of questions.

in-ViewPoint check: name clashe

Figure 4: The Viewer’s process guidance window. The left window pane lists the possible recommended actions at
this stage of development. The right window pane displays the context-sensitive guidance provided by the method
designer when the process model was defined (figure 3). The button at the bottom-left corner “enacts” or “performs”
the action selected from the list above.

The Way Ahead
The sample tools described in the previous

section demonstrate the feasibility of supporting
fine-grain process models at the representation
level. Developer level process modelling is more
problematic. We believe that within the ViewPoints
framework, inter-ViewPoint rules may be used to
express the relationships between different
ViewPoints and therefore different process models
in a software development project. In such a setting,
the invocation of such rules and their application is
a means of integrating different process models and
driving the overall development process. There are
different approaches to rule invocation and
application.

The “stupid” approach is to attempt to apply
these inter-ViewPoint rules at all times during
development, in which case the developer is
constantly reminded of inconsistencies that exist
between different specifications maintained by
different ViewPoints. This is reminiscent of the
support provided by first-generation CASE tools.

A step up from this is the more “pragmatic”
approach in which the invocation and application
of (inter-ViewPoint) consistency rules may be
controlled (switched on and off) by the developer.
With this approach, developers may elaborate their

own areas of concern freely, only worrying about
resolving conflicts at particular points during the
development.

The approach we favour, which we realistically
term the “problematic” approach, is to allow the
process model to guide the developer not only
during individual specification development, but
also during inter-developer (c.f. inter-ViewPoint)
communication. This should allow individual
developers the freedom to develop their own
domains of responsibility, and also help them
resolve conflicts if and when they occur. In many
instances however, conflicts and inconsistencies
may occur which do not require immediate
resolution, if at all. In such cases the process models
should provide a means for inconsistency handling
[8]. Thus one may have, for example, “process
rules” of the form INCONSISTENCY implies ACTION,
which specify how to act in the presence of
inconsistency. These, and other such rules, in effect
drive the software development process.

An analogous attitude towards inconsistencies in
software development was proposed by Balzer [2],
who in advocating “tolerating inconsistency”
suggested that inconsistencies may be marked
temporarily, avoided and then returned to later for
possible resolution.

Inconsistency handling, conflict resolution and
process integration are all areas that still require

 - 5 -

further work, but we believe that studying fine-grain
processes that interact with individual
representations and developers brings us a step
closer to understanding and supporting more
effectively the overall software development
process. This view is confirmed by our observation
of other work in the area which has addressed issues
of process model granularity; e.g., Perry’s work
outlined in [12], [13] and [14].

Our experiences in attempting to follow this line
of investigation, using the ViewPoints framework as
a vehicle, have, if nothing else, clarified the exact
technical problems we need to tackle in order to
progress further, and have therefore set our
research agenda. In particular, we need to
experiment within our ViewPoints framework with
inter-ViewPoint communication protocols and
investigate mechanisms for inter-ViewPoint rule
invocation and application.

Acknowledgements
This work was partly funded by the UK

Department of Trade and Industry (DTI) as part of
the Advanced Technology Programme (ATP) of the
Eureka Software Factory (ESF).

References
[1] A.W. Brown and J.A. McDermid (1992), “Learning

from IPSE’s Mistakes”, IEEE Software, 23-28, March
1992.

[2] B. Balzer (1991), “Tolerating Inconsistency”,
Proceedings of 13th International Conference on
Software Engineering (ICSE-13), 13-17th May 1991,
Austin, Texas, IEEE CS Press, 158-165.

[3] N. Barghouti (1992), “Supporting Cooperation in the
MARVEL Process-Centered Environment”, ACM
Software Engineering Notes, 17(5):21-31, December
1992.

[4] R. Cunningham, A. Finkelstein, S. Goldsack, T.
Maibaum and C Potts (1985), “Formal Requirements
Specification - The FOREST Project”, Proceedings of
3rd International Workshop on Software
Specification and Design, IEEE CS Press.

[5] A. Finkelstein, J. Kramer, and M. Goedicke (1990),
“ViewPoint Oriented Software Development”,
Proceedings of International Workshop on Software
Engineering and its Applications, Toulouse, France,
December 1990.

[6] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein
and M. Goedicke (1992), “Viewpoints: A framework
for integrating multiple perspectives in system
development”, International Journal on Software
Engineering and Knowledge Engineering, 2(1):31-57,
March 1992, World Scientific Publishing Company.

[7] A. Finkelstein, J. Kramer and M. Hales (1992),
“Process Modelling: a critical analysis”, Integrated
Software Reuse: management and techniques, P.
Walton & N. Maiden (eds.), Chapman & Hall and
UNICOM, 1992, 137-148.

[8] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer and
B. Nuseibeh (1993), “Inconsistency Handling in
Multi-Perspective Specifications”, (to appear in)
Proceedings of 4th European Software Engineering
Conference (ESEC 93), Garmisch, Germany, 13-17th
September 1993, Springer-Verlag.

[9] P. Mi and W. Scacchi (1992), “Process Integration in
CASE Environments”, IEEE Software, 45-53, March
1992.

[10] B. Nuseibeh and A. Finkelstein (1992), “ViewPoints:
A Vehicle for Method and Tool Integration”,
Proceedings of 5th International Workshop on CASE
(CASE 92), Montreal, Canada, 6-10th July 1992, IEEE
CS Press, 50-60.

[11] B. Nuseibeh, J. Kramer and A. Finkelstein (1993),
“Expressing the Relationships Between Multiple
Views in Requirements Specification”, Proceedings
of 15th International Conference on Software
Engineering (ICSE-15), Baltimore, Maryland, USA, 17-
21st May 1993, IEEE CS Press, 187-196.

[12] D.E. Perry (1990), “Policy and Product-Directed
Process Instantiation”, Proceedings of 6th
International Software Process Workshop (ISPW6),
Hakodate, Japan, October 1990, IEEE CS Press.

[13] D.E. Perry (1991), “Policy-Directed Coordination and
Cooperation”, Proceedings of 7th International
Software Process Workshop (ISPW7), Yountville,
USA, October 1991, IEEE CS Press.

[14] D.E. Perry (1992), “Humans in the Process:
Architectural Implications”, Proceedings of 8th
International Software Process Workshop (ISPW8).

[15] I. Thomas and B.A. Nejmeh (1992), “Definitions of
Tool Integration for Environments”, IEEE Software,
29-35, March 1992.

[16] L.G. Williams (1988), “Software Process Modelling: A
Behavioural Approach”, Proceedings of 10th
International Conference on Software Engineering
(ICSE-10), 11-15th April 1988, Singapore, 175-186.

