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Abstract

Understanding how listeners relate and compare pieces of music is a
fundamental challenge in music research as well as for commercial ap-
plications: Today’s large-scale applications for music recommendation
and exploration utilise various models for similarity prediction to satisfy
users’ expectations. Perceived similarity is specific to the individual and
influenced by a number of factors such as cultural background and age.
Thus, adapting a generic model to human similarity data is useful for
personalisation and can help to better understand such differences.

This thesis presents new and state-of-the-art machine learning tech-
niques for modelling music similarity and their first evaluation on re-
lative music similarity data. We expand the scope for future research
with methods for similarity data collection and a new dataset. In partic-
ular, our models are evaluated on their ability to “spot the odd song out”
of three given songs. While a few methods are readily available, others
had to be adapted for their first application to such data. We explore
the potential for learning generalisable similarity measures, presenting
algorithms for metrics and neural networks. A generic modelling work-
flow is presented and implemented.

We report the first evaluation of the methods on the MagnaTagATune
dataset showing learning is possible and pointing out particularities of
algorithms and feature types. The best results with up to 74% per-
formance on test sets were achieved with a combination of acoustic and
cultural features, but model training proved most powerful when only
acoustic information is available. To assess the generalisability of the
findings, we provide a first systematic analysis of the dataset itself. We
also identify a bias in standard sampling methods for cross-validation
with similarity data and present a new method for unbiased evaluation,
providing use cases for the different validation strategies.

Furthermore, we present an online game that collects a new similarity
dataset, including participant attributes such as age, location, language
and music background. It is based on our extensible framework which
manages storage of participant input, context information as well as se-
lection of presented samples. The collected data enables a more specific
adaptation of music similarity by including user attributes into similar-
ity models. Distinct similarity models are learnt from geographically
defined user groups in a first experiment towards the more complex
task of culture-aware similarity modelling. In order to improve training
of the specific models on small datasets, we implement the concept of
transfer learning for music similarity models.
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Style and Notation Conventions

This thesis uses the authorial “we” when referring to the contributions of its author.

Parts where the we includes other persons will be explicitly identified as such in

the text.

Self-citations of the author are indicated by prefixed publication numbers, e.g.

[pub:10], which refer to the list of publications on page 28. Chapters and sec-

tions which contain parts of previously published material are marked accordingly

by means of margin notes.

Notation

Music clips are referred to as Ci, i ∈ N. Vectors x ∈ RN , for n ∈ N are column

vectors by default, and vectors x(i) ∈ RN with a brace-enclosed index correspond

to an instance belonging to Ci. Indexing into vectors is denoted by the second

subscript level, e.g. x(i)k ∈ R refers to the scalar component of vector x(i) at

position k. Transposed matrices and vectors are denoted by xᵀ.

Where software and programming frameworks are discussed, uniformly spaced

typewriter font will be used to refer to entities in programming language that

may be found in the discussed software or framework.
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The development of the internet has more to do with human beings

becoming a reflection of their technologies. [...] After all, it is we who

adapt to the machine. The machine does not adapt to us.

(Friedrich Kittler, 2006)

1 Introduction

This thesis is devoted to models of music similarity that can be adapted to user

data. In a time of globally networked communication, facing floods of continually

produced data, we, where we operate within the digital realm, rely on automatic

processes for the retrieval of information relevant for our endeavours. With the

massive user gain of online services and the advent of the “Web 2.0”, online mu-

sic providers and integrated social networks for music became successful ventures

with millions of users1 and large music turnarounds2. Such networks and plat-

forms presented a need for automatic means of music organisation and retrieval,

similar to the sophisticated tools of web search engines. For example in music

recommendation, given a piece of music in a query, a user wants to find relevant

music in the database. Music similarity is a concept necessary for most structured

organisations of music, although it might be referring to different facets and asso-

ciations of items compared. The facets to be modelled depend on the application

of the similarity measure. They include meta-data such as musical genre for cata-

loguing, musical preference and demographics for recommendation and human

statements from surveys for analysis and modelling of the similarity assessment by

listeners.

Meanwhile, the strong involvement of the users of online music networks presents

the opportunity of substantial user feedback data to be analysed and integrated

1http://press.spotify.com/se/information/
2http://www.apple.com/pr/library/2010/02/25iTunes-Store-Tops-10-Billion-Songs-Sold.html
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1 Introduction

into the relevance estimation. Capitalising on this, commercial approaches to mu-

sic recommendation primarily use collaborative filtering, the quasi-standard ap-

proach for online recommendation: “Other customers who bought this also pur-

chased the following . . . ”. The drawback of this approach is that it relies on user

annotations. As has been pointed out by Celma [17], among other drawbacks such

as the tendency to foster artist hubs, this approach fails when there is no or only

little annotation available, for example for newly published music.

Research in Music Information Retrieval (MIR) has resulted in strong alternatives

for methods of organising digital music collections, and continues to do so. Classic

techniques for accessing music similarity compare music using fixed mathematical

measures based on acoustic features or tag data. The practical disadvantage of

such approaches is that their performance tends to hit a glass ceiling, where it

becomes difficult to raise performance although the task is solvable with better

performance by humans. Referring to the quote by Kittler heading this chapter,

it is also the rigidity of the underlying techniques and cultural assumptions in the

system’s design that are perpetuated and imprinted into its users and therefore

such systems might sustain cultural assimilation.

To address these issues, relevant information of context and user of the application

can be included in the evaluation of e.g. a music recommendation task. This

thesis presents a step towards more flexible and adaptive music retrieval systems,

whilst provisioning for further musicological analysis of models trained with our

approaches.

Using novel and state-of-the-art machine learning techniques, our models are en-

hanced by using self-reported music similarity perception as the basis for similarity

modelling: We use relative similarity data provided by participants of a game who

“spot the odd song out” of three songs. We show that this method allows for ef-

ficient data collection and modelling of similarity. Apart from predicting users’

choices, the models can be used to provide estimates for the similarity of music

clips which is necessary for recommendation.

Furthermore, the training process allows for adaptation to user groups and res-

ulting models can be analysed to reveal statistical correlations of musical features
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1.1 Aims of this Thesis

and reported similarity. Personalised recommendation of music based on previ-

ously associated user groups – determined for instance by cultural context – is

made possible by integrating user attributes into the training data. A similarity

model should learn well from annotated music data and generalise to a determ-

ined, possibly broad set of music genres.

Efforts have been increased in recent years to adapt retrieval to specific cultures,

contexts and individual users, as in the CompMusic project [82], the work of Kam-

inskas, Ricci and Schedl [41] or Park, Yoo and Cho [70]. Context-based and user-

adapted retrieval have become popular research goals, following and fostering de-

velopments in machine learning to provide algorithms applicable to accumulated

user data. A key incentive for this development is the growing amount of data

collected on user preferences and behaviour while browsing web pages. Namely,

click-through data for ranked search results, playlists and social network based

crowd wisdom is now integrated into general classification and distance measure

learning tasks. Especially within social networks, new opportunities are being ex-

plored using Games With a Purpose (GWAPs), where data is collected while the

participants are playing a game.

In this thesis we will use a GWAP to collect similarity and other data, in conjunction

with attributes of the players. We will present a framework for collecting the data

and strategies necessary for efficient design and operation of a GWAP. Especially

social networks today allow for the provision of rich information by the participant

of a game. We will use such information to create a country-annotated similarity

dataset as well as related comparative experiments on similarity models of geo-

graphical regions. In the following, the precise aims of the thesis are laid out,

framing the content of the research underlying this work.

1.1 Aims of this Thesis

The overarching goal of this thesis is to contribute and evaluate methods for learn-

ing models from relative music similarity data (see Section 1.1.3), with a user-
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and culture-centred perspective. This poses the following research questions con-

cerning the three tasks of data gathering, similarity model adaptation and model

evaluation.

1.1.1 Research Questions

rq:1 What are the best similarity models, training methods and features for pre-

dicting music similarity from relative data? Can we improve similarity mod-

elling by integrating additional user attributes?

rq:2 How can we improve or develop new methods for learning from relative data?

rq:3 How can we reproducibly evaluate similarity models and what are relevant

qualitative and quantitative differences? How to proceed where music audio

content is not freely available?

rq:4 How can we analyse and describe relative similarity data and what are rel-

evant data properties? Is there a bias in the MagnaTagATune dataset (the

largest available dataset so far)?

rq:5 How can we efficiently and sustainably acquire further similarity data or

other music annotations? Can we introduce more control into web-based

data collection?

The above research questions motivate the aims of this thesis which are now

presented and ordered according to the significance of the associated contribu-

tions.

1.1.2 Adapting Models to Relative Music Similarity Ratings

We present several new and state-of-the-art methods for learning a music similar-

ity measure from user similarity ratings. General methods for similarity modelling

and adaptation form a central prerequisite to adaptation to specific contexts. Some

general purpose algorithms are available for accomplishing the task of adapting a

distance measure to training data. The options narrow down considerably when

relative similarity input data is concerned. Still, for reasons discussed in the fol-
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lowing, this data type presents an opportunity for new and efficient methods for

the adaptation of similarity models to human ratings and perception.

To this end, we examine and evaluate existing machine learning methods for train-

ing distance metric models to relative similarity data (rq:1 ). We furthermore intro-

duce several new algorithms, derived from general regression methods as well as

based on neural networks, and compare their performance to the existing meth-

ods. The new methods allow for further learning from weighted similarity data and

a novel transfer learning method for music similarity (rq:2 ). The methods are in-

tegrated into a general methodical framework, which is also implemented as open

source programming framework.

This framework enables us to analyse the effectiveness (rq:3 ) of different training

methods in our evaluation, including new and state-of-the-art algorithms. A special

focus is put on the generalisation of learnt models to unseen data. We explore

the influence of musical information helpful for similarity learning by comparing

the performance of different isolated and combined features. Furthermore, other

aspects of the similarity data such as weights and sampling considerations are

evaluated. This allows for a better understanding of different methods, features

and the relative similarity data itself which can inform future research on the topic.

Based on the above general adaptation strategies for models of music similarity,

cultural information can be introduced into similarity modelling methods via user

attributes. The assumption is that such an adaptation will lead to better models

for the various groups, enhancing the similarity estimation performance. This can

be done by for instance combining several models previously trained for cultural

subgroups, or including cultural attributes directly into the similarity models. In

this thesis we will lay the foundations for such models by providing user-attribute

annotated data as well as a first dataset and experiment on geographical similarity

models, using the similarity and user data collected by the approach described

below.

The interdisciplinary research outputs in this thesis potentially appeal to a wide

range of researchers, commercial applications and future users. As we motivate
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above, new similarity models have applications in systems for music recommenda-

tion and indexing of media catalogues. They assist users of such systems with more

personalised and potentially more intuitive search results. Our new algorithms

for adaptation of similarity models add to the corpus of general distance learn-

ing methods in machine learning, and enable further research on the modelling

of similarity data for Music Information Retrieval (MIR) researchers. Information

contained in learnt models motivates research in musicology and music psychology

regarding influence of certain music features on similarity perception. This can be

extended to comparative research between user groups or cultures.

1.1.3 Analysis of Relative Similarity Data

Although relative similarity data is not as readily accessible as customer prefer-

ence or social network data, it provides a valuable change of focus from general

classification and recommendation success towards modelling musical similarity

and the users’ perception of it when engaged in a comparison task. Thus, instead

of targeting a general relevance criterion e.g. for music recommendation, the

optimisation tasks tackled in the following address reported perceived similarity,

which only constitutes one of the many variable aspects of relevance.

The modelling of similarity perception itself and the appropriate pre-processing

of collected similarity data has only recently been discussed in Music Information

Retrieval (MIR). Users provide information by spotting the “odd song out” of three

songs. We derive relative similarity data of the form "Song A is more similar to

Song B than to Song C", represented as relative constraints. Using models trained

with this data, we can predict the odd song out, but also evaluate the similarity of

arbitrary music clips.

Relative similarity data has rarely been used in MIR (see Section 2.4.3). To assess

the quality of the MagnaTagATune similarity dataset, we recollect the methods

available for analysis of relative similarity data. We report methods for analysing

and preparing relative similarity data (rq:4 ) using graph theory. The methods are

adapted and a first analysis of the MagnaTagATune relative music similarity data-

set, the only one available at the time of this study, is presented. In order to enable
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further research and reproduction of the experiments reported here, the code for

preparing similarity data, model training and evaluation is published online as open

source.

1.1.4 A Game Framework for Data Collection

More open similarity data is needed in order to evaluate different strategies of

adapting similarity models, particularly for machine learning methods. To our

knowledge there currently is no large music annotation dataset freely available

containing information about the providing participants.

To address this issue, we here have developed an open source framework for col-

lecting music annotations via games with a purpose (rq:5 ). High numbers of col-

lected data entries are encouraged by different gamifications of a standard odd-

one-out music similarity survey, also known as triad survey in psychology and an-

thropology (e.g. Kelly [43]). The core of this framework, originally named the

Culture-Aware Similarity Information Retriever (CASimIR), is given by a web ser-

vice providing selected sets of music clips to a front-end application and collecting

the user votes in a growing dataset. We thereby enable an easy exchange or par-

allel usage of several music similarity games and user interfaces, requiring no

recoding on the similarity collection. A series of several mini-games has been de-

veloped in cooperation with KTH Stockholm. Here, amongst other strategies, an

approach rewarding user-agreement between team members is used. As the game

is deployed on the online social network Facebook, built-in mechanisms enable

users to recommend the game to their friends.

Our framework further establishes the GWAP data collection paradigm for data-

driven research and makes implementation – and thus large scale dynamic data

collection – possible to potential researchers and users who are not specialised in

web development.
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1.1.5 A New Relative Similarity Dataset

Our new CASimIR dataset satisfies requirements (rq:5 ) discovered as necessary

when using the MagnaTagATune database (see Section 3.2): There is a minimum

required number of users which are answering the same survey - for example an

odd-one-out instance of three clips. Furthermore, the triplets presented in the

surveys should overlap in the clips they contain. The genres of the clips presented

in the surveys are also controlled in the CASimIR API, to guarantee a better quality

of the resulting dataset. This is with regard to expected training performance on

the data and to allow for an interpretation of the learnt models.

The dataset enables further research in similarity modelling for MIR and music

perception researchers, including comparison with the only similar dataset (Mag-

naTagATune, rq:4 ) and evaluation of similarity models including user attributes:

For experiments with cultural attributes, a first country-annotated similarity data-

set is presented and used for testing new methods of transfer learning.

1.1.6 Music Features For Large Datasets

When using commercial pop music for research, evaluation of similarity models for

music whose audio content is not freely available becomes difficult: For modelling

music similarity, the music itself has to be represented to the model and training

algorithm. Feature design is a classic task in Music Information Retrieval, and vari-

ous open source toolboxes exist for extraction of standard features1. We here show

how features for large datasets can be extracted based on pre-computed features

from The Echo Nest API. Given that today digital commercial music is still subject

to highly restrictive copyright, this allows researchers without direct access to the

audio to perform large-scale experiments (rq:1 ). The effectiveness of standardised

content-based features and genre tags for similarity learning is evaluated. The

evaluation and analysis of similarity models regarding the importance of features

provides insights into the correlation of extracted features with the similarity data

used for training the model.

1https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox
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1.2 Contributions

Our analysis includes feature transformations using PCA and RBM. We use the PCA

transformation for fixing feature dimensionality whilst changing the contained in-

formation. With the RBM transformation we examine a novel approach of feature

transformations that helps even simple learning methods to model complex rela-

tionships in the data.

1.2 Contributions

The following is a list of the methods and frameworks contributed by the author of

this thesis.

• Methods for deriving audio- and tag-based features from free online API’s for

large datasets

• Methods for similarity graph analysis including building and pruning of sim-

ilarity relation graphs from odd-one-out experiments

• A thorough analysis of the MagnaTagATune dataset using these methods

• A framework and game for collecting music annotations with user attributes

via the web and social networks

• The CASimIR similarity dataset, and a country-annotated dataset derived

from it

• A general and extensible framework for training and evaluation of music sim-

ilarity models on large-scale databases

• A number of new and adapted methods for learning from relative data :

– A methodical framework for relative similarity learning, allowing for in-

tegration of absolute similarity learners

– The WMLR/WDMLR method for learning from weighted relative similar-

ity data

– A new approach of using RDNN for similarity learning

– The RITML method for learning weighted relative similarity data, and

W0-RITML for transfer learning with similarity models

• The inductive sampling method for unbiased sampling of relative similarity

data for cross-validation
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• A PCA-based evaluation of influence of feature information with constant di-

mensionality

• An approach for comparative analysis of culture-based similarity models, us-

ing transfer learning with RITML

Some of the methods and figures presented here have been previously published

by the author of this thesis. Such own publications are listed on page 28. Relevant

publications furthermore appear at the start of respective sections. This includes

parts of text which, if appropriate, have been transferred into the document at

hand.

1.3 Thesis Overview

We now summarise the structure of this thesis. The following Chapter 2 intro-

duces the reader to the background of this thesis, covering music similarity and

its embedding in Musicology, Music Information Retrieval (MIR) and psychology.

We highlight the importance of similarity models within the paradigms of Music

Information Retrieval, list computational training methods and refer to their wider

usage in MIR applications. Also, different types of similarity data are distinguished

with their means of acquisition such as Games With A Purpose.

Chapter 3 presents analysis and processing techniques for relative similarity data,

as derived from odd-one-out statements and a representation through clip-pair

graphs. The usage of methods for graph analysis enables the identification and

filtering of inconsistencies between participant data entries. We then apply the

analysis on the MagnaTagATune dataset and analyse its properties for similarity

training including data point connection and musical genre.

The shortcomings of MagnaTagATune and the absence of alternative datasets en-

couraged us to start a new dataset collection and development of the CASimIR

framework for collecting media annotations with Games With A Purpose described

in Chapter 4. This enables the development and usage of several user interfaces

on the basis of an independent central data back-end, allowing for efficient and
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reusable design of data collection interfaces. We present an early overview of first

data collected, including a country-specific relative similarity dataset.

Chapter 5 introduces processing methods on acoustic, cultural and metadata fea-

tures for learning music similarity on large databases. We extend the MagnaTagA-

Tune dataset using genres annotated by the Magnatune label. Also, feature post-

processing with PCA is discussed and a new method using RBMs is introduced.

Based on these features, Chapter 6 discusses similarity models with new and state-

of-the-art adaptation methods for relative similarity data. An abstraction of facet

difference vectors to model differences in clip pairs is described before we discuss

metric and neural-net-based model architectures for learning distance measures

as dual representations the similarity models. We also integrate a framework for

enabling learning from relative data for methods designed for absolute data to our

framework of similarity learning, resulting in new and more flexible model training

methods.

Chapter 7 describes our CAMIR framework including code for all methods presen-

ted in this thesis. The experiment part of the framework manages a typical similar-

ity learning workflow, and includes third-party implementations of state-of-the-art

metric learning methods besides the new implementations of RDNN and RITML.

We present a first comprehensive evaluation of these similarity models and train-

ing methods in Chapter 8. This includes a new evaluation strategy, based on

cross-validation. We evaluate generalisation performance of algorithms, feature

influence and transformations as well as learning from weighted similarity data.

Our experiments conclude with an application of our new W0-RITML method to

culture-aware similarity modelling using four different similarity datasets divided

by country.

We allow for a final summary of contributions and results in Chapter 9 only to

point out the possibilities the methods presented here may yield for future music

research and music information retrieval.
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It is no accident that Gutenberg’s moving letters have been called

history’s first assembly line. For it was the compiling of drawings and

lettering, and of [...] instruction manuals, which first made it possible for

engineers to build further and further on the shoulders – or rather on the

books – of their predecessors, without being in any way dependent on

oral tradition.

(Friedrich Kittler, 1999)

2 Fundamentals & Related Work

This section covers the interdisciplinary background of the thesis, discussing the

concept of similarity in general. We discuss how it can be and has been applied to

music, how it is related to perception, and how it can be modelled using machine

learning techniques. This wide context of similarity and the limitations of scope for

this work require a certain focus on methodical precursors and limitations of our

approach, whereas we provide a more detailed report on the embedding into Music

Information Retrieval (MIR). Apart from the introduction above and in the following

chapters we assume the reader has a general knowledge of basic techniques of MIR

such as feature extraction and classification techniques and refer to the references

provided for further introduction.

2.1 A Perceptual Perspective on Music Similarity

We here consider similarity as a relation between entities of somehow comparable

nature. As a general term, similarity can refer to different relations depending

on the context of its usage and the entities it is applied on. In science, similarity

is often defined as the numerical closeness of two values or vectors in a vector

space where a distance measure exists. This mathematical definition of similarity is

used in Chapter 6 to define computable models of similarity and their training and

43



2 Fundamentals & Related Work

evaluation algorithms. Still, in the practical application of these models, it is the

entities which are represented by the numbers, or features, which hold a meaning

to the human user and assure the relevance of the resulting similarity models.

Thus, in psychology similarity refers to the perceptual closeness of physical or

imagined entities. Music similarity, in the fields of Psychoacoustics and Cognitive

Musicology, then refers to the perceptual closeness of music clips or songs. Within

this frame, similarity models can be thought of as modelling perceptual features of

music as well as cognitive processes involved in the assessment the common and

similar features as well as differences between two clips.

Apart from the actual acoustic content of the music there exists a multitude of

factors influencing similarity perception. These include external factors such as

context of listening and surrounding environment, factors related to cultural en-

trainment such as music education and familiarity with particular music examples

and finally personal factors including mood, attention span as well as physical cap-

abilities. For a comprehensive overview on such factors for the context of music

preference we refer to Leblanc [48] as well as more recently [11, 55].

Most computable similarity models are based on features, as proposed by Tversky

[94]. In Tversky’s approach, perception of similarity depends on the accumulated

similarity of various single (in his case binary) features in the compared objects.

In this thesis we combine acoustic measurements with cultural genre descriptions

of music and train models against human similarity ratings. In Section 4.3.1 we

even add participant attributes to the similarity data. A common mathematical ap-

proach is nowadays to view the features as dimensions of a vector space and model

dissimilarity as a distance measure, e.g. using the Euclidean or other metrics.

Distance measures normally treat the dimensions uniformly, which ignores the dif-

ferent natures of features and their relations, e.g. the aspect of systematicity as

pointed out by Gentner and Markman [29]. This can be addressed to some degree

by using a Mahalanobis distance [54] (see Section 6.2), which models correlations

between features.
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2.1.1 The Symmetry Assumption

Distances in vector spaces are normally symmetric, and metrics are symmetric

by definition. However, Tversky [94] already pointed out that similarity perception

may be asymmetric. In music perception, asymmetry can be expected, because two

comparable clips are presented sequentially and order may play a role. Gentner

and Markman [29] relate asymmetry to prototype-instance relationship of objects

to compare.

For example, the Beatles may function more like a prototype in popular music than

Oasis, as they are more popular and profit from historic precedence. Yet both

bands share similar music in their repertoire. Thus, a recording by Oasis might be

expected to sound more like The Beatles than The Beatles sound like Oasis.

Yet, most mathematical and computational similarity models so far are symmetric.

This is due to the simplification that symmetry brings to practical and theoretical

aspects of the model. Considerations of the mode of data collection and the inform-

ation available in the data also make a symmetric model a reasonable choice.

2.1.2 Similarity in Music Research

In musicology, similarity of music is explicitly or implicitly encompassed in many

different applications, including the distinction of repetition and variation or the

authenticity of a work or recording. Here, judgements are often made based on

scores, lyrics, or other representations of music which are different from the acous-

tic perception of a musical performance. This is reflected in the features, the de-

scription of music given to similarity models, which are already used in automating

musicological classification of folksongs [4]. Many methods require a close reading

by the musicology expert, which follows established paradigms of classification and

judgement, but also apply heuristics. Furthermore, music theories as presented by

Lerdahl and Jackendoff [50] and musicological classifications of works are related

to our perception, be it through a basis in psychoacoustic principles or learnt beha-

viour. The work of Lomax [52] followed an ethnographic approach by associating

song structures and singing styles to distinct cultures. Their research towards a
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“Global Jukebox”, included the annotation of features to songs and dances from

many world cultures, allowing those cultures to be compared by their musical rep-

ertoire and practices.

The methods from Music Information Retrieval reported in the following often use

a combination of music representations, rules and automatically trained classifiers.

Furthermore, especially in the context of music recommendation, the term similar-

ity is often used to refer to the relevance a piece of music has to a user. In this case,

some approaches via collaborative filtering techniques use only commonalities in

listeners for a certain piece of music to infer the similarity of music.

In this thesis, contrasting most existing works in MIR, we explicitly and solely

define and evaluate similarity based on similarity data of human listeners. The

general computational framework provided can be used to statistically model and

predict reported similarity given learnt correlations with the knowledge and mu-

sic representations fed into the model. The evaluation on purely reported listener

perception data encourages the use of diverse representations of music, including

cultural context of both music and the recipient, to predict reported music sim-

ilarity. The quote from Kittler heading this chapter now points us the practical

implications of trainable models: Being able to externalise information about (or

perception of) music similarity by storing it into similarity models allows for the

automatisation of social acts such as the recommendation of similar music.

2.2 Music Information Retrieval

The context of this study is Music Information Retrieval (MIR), where a standard

architecture for adaptive systems as sketched in Figure 2.1 has become prevalent

for information retrieval involving audio data [13, 16, 69]. In this architecture,

an audio clip is analysed with regards to a number of features (see Chapter 5)

using a diverse range of signal processing methods. The features are presented

as a single vector per audio clip, representing a range from low-level features

like loudness to higher level properties, for instance key or tempo. The audio

features can be complemented with professionally produced metadata and user
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Figure 2.1: Schematic architecture of an adaptive music information retrieval sys-

tem.

annotations. When a query is processed, a matching process takes place, that

typically involves classification or similarity.

Traditional content-based approaches model similarity with regards to information

from audio data. They have been shown to work well in some scenarios, and are

now being used on a wider scale in web services like The Echo Nest [39] or The

Freesound Project [2]. Content based music similarity models need to incorporate

the extraction of acoustic and psychoacoustic attributes derived from audio and

music theoretic information. The applicability of such extraction methods and the

models themselves is highly dependent on the context of the music, the application,

and the user. Learning models including information outside the content-domain

can help adapt the system to the users’ needs and the designers’ intentions for

music where user data are not available. Such models should generalise from

limited amounts of user data to a larger set of music.

In adaptive systems, the classification or similarity model is optimised, typically

using supervised machine learning techniques. Ground truth that is used for train-

ing and evaluation of models consists of information on actual class membership or

similarity data, against which the the adapted system is evaluated, typically with

cross-validation. From this perspective we now discuss general and music specific

work on similarity models, methods for collecting similarity data, and computa-

tional methods to learn from the data.
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2.3 Ground Truth User Data from Games With A Purpose

The type and provenance of ground truth data needed depends highly on the task

to be solved by the algorithms. For learning from and understanding human be-

haviour, data collected from humans themselves is very promising. The classical

method of obtaining such data is via surveys, as the following sections on previous

similarity experiments will show. While providing high control over the set and set-

ting of data capture and participants, the cost of traditional surveys is quite high

when comparing the cost to data points ratio. For many practical applications,

today, different trade-offs can be achieved which allow for more data to be collec-

ted, and more advanced methods of remote supervision and control of data input

have been discovered.

Potentially accessible by a larger amount of participants, web-based approaches

have become increasingly popular for collecting new music-related human input.

This includes surveys for sound quality as by Foster, Mauch and Dixon [24]1, but

also relating music to psychological values such as emotions2 3, associations of

nonmusical entities like locations4 or stories5. In this context, new interfaces are

also being explored, allowing for user interaction with and manipulation of content

such as in DarwinTunes [53], where users influence the evolution of automatically

generated music. Another example is the Songle web music interface [30], which

provides means for direct content annotation and interaction between users. The

project CURIO plans to launch a crowdsourcing service offering interfaces for dif-

ferent areas of research (including chemistry, history, biology) [46].

When such data collection interfaces become gamified – i.e. they utilise enjoyment

to motivate data entry, employ game rules or facilitate playful or competitive user

interaction – they are Game With a Purpose (GWAP). GWAP can be used to collect

many types of ground truth data, but their key difference to traditional collection

strategies lies in the participants’ motivation: In a GWAP, data are provided as

1http://webprojects.eecs.qmul.ac.uk/matthiasm/audioquality-pre/check.php
2http://www.isophonics.net/content/music-and-emotion-listening-test
3https://www.bbcarp.org.uk/m4/UserTrial/
4http://lamj.inf.unibz.it:8180/music_for_places/
5http://marg.snu.ac.kr/radio/recommender.php
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2.3 Ground Truth User Data from Games With A Purpose

a side effect of interactive game play, thus motivation is based on the player’s

enjoyment of the game. Successful GWAP facilitate the annotation of large data

quantities, carried out by the self-motivated participants. Examples of well known

GWAPs are the Google Image labeller1 and the “GWAP website”2 which includes

the ESP game, Verbosity and TagATune amongst others.

Figure 2.2: The HerdIt [5] game rewards blind input-agreement after players have

input their data. Here, emotion annotation data was collected. The player

blindly agreed to 70 percent with other players (the “herd”).

Given the indirect motivation of participants, different strategies have been em-

ployed to achieve the collection of sound data. Three forms of GWAP are distin-

guished by Von Ahn and Dabbish [98]: output agreement games, inversion-problem

games and input-agreement games. In output agreement games, participants are

given the same input media and cannot communicate with other participants. Suc-

cess is defined by the participants deciding on the same output. A popular example

of this form is the ESP game where participants are given an image and try to

1http://www.seroundtable.com/google-image-labeler-dead-14663.html
2http://www.gwap.com/gwap/
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provide a descriptive tag which agrees with the other participant. In the Spot the

Odd Song Out game, (see Section 4.2) we use this strategy to collect similarity

information for triplets of music clips. In Figure 2.2, the HerdIt [5] game uses this

strategy to collect tags and mood annotations for popular music. In input agree-

ment games, players need to guess whether or not they have been given the same

inputs. An example of this is TagATune [45] where success is determined by two

participants guessing whether they have been given the same song based on the

tags they provide. Inversion-problem games, such as Verbosity [99], allow a subtle

form of communication where a ‘describer’ provides some information which is

given to a ‘guesser’, who tries to guess the described concept.

When designing a GWAP for a specific application, as with traditional controlled

paper surveys, particular attention has to be given to the presentation of questions

and the general interface. In addition, the motivation of the player to provide the

data, be it more or less explicit, has to be carefully chosen in order to minimise

the bias for the intended interpretation of the collected data. Note that the issue

of motivation is not limited to GWAP, but future research is needed to allow for

analysis of the impact different standard GWAP practices have on data quality and

bias. This promises to improve the comparison between traditional surveys and

GWAP approaches at the design stage of a data collection.

Similarity data is just one of many data types that can be collected using GWAP, but

will be the central focus of this thesis. The following section will discuss existing

types of similarity data and how they can be learnt with machine learning methods.

2.4 MIR on Similarity Data from Surveys

Although there are many publications in MIR related to similarity, most deal with

related topics such as relevance as there is only few similarity data available. Be-

fore we discuss such potentially applicable methods, we introduce the similarity

data types we consider survey data most closely related to perceived similarity.

The following discussion of related research is organised by data type, namely

absolute similarity data, class-based similarity data, and relative similarity data.
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We then go on to discuss music preference data leading to general methods for

similarity modelling.

2.4.1 Absolute Similarity Data

Many surveys collect absolute similarity data by asking for similarity ratings of two

clips on a fixed scale, as in e.g. Ferrer and Eerola [23]. The MIREX Audio Music

Similarity and Retrieval task uses absolute similarity data collected from humans

for evaluation of submitted similarity estimation algorithms. Competing algorithms

return a ranked list of similar results to a query song, and are judged based on the

human similarity ratings given the five most similar results according to the spe-

cific method, omitting music of the query’s artist. The data is collected via the

Evalutron60001 web interface, which lets the participant enter both a rough-scale

(Not Similar / Somewhat Similar / Very Similar) and a fine-scale (0-100) similar-

ity value. The human similarity judgements can be downloaded while the audio

is restricted by copyright. The usage of absolute similarity data is a common ap-

proach in psychological and music research. It allows subjects to make statements

on their perceived similarity on potentially very fine scales. A critical aspect of ex-

periments with similarity data is the order in which clips are presented. Especially

the gradual changes of the participants’ statements can be affected by the history

of clips already listened. Such bias can be accounted for, e.g. by randomisation

of the order of presentation. An important factor in similarity data collection is

the number of total annotations as well as their distribution over the clip pairs:

Collecting a large number of annotations for the same pairs allows for more stable

results, but a large set of potential clip pairs needs to be covered as well.

2.4.2 Class-based Similarity Data

An alternative approach is to gather class-based similarity data by asking subjects

to classify clips by assigning them to one of a fixed number of unlabelled classes

(e.g. Musil, El-Nusairi and Müllensiefen [65] in their musicality test). This type of

1http://www.music-ir.org/mirex/wiki/2011:Evalutron6000_Walkthrough
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experiment typically requires choosing an appropriate number of classes before-

hand, and does not solve the problem of inter and intra class similarities. The

assumption is here that distances within classes should generally be smaller than

distances between classes. This leaves class information as a provider of usually

very rough similarity data. Also, depending on the number of classes, class-based

data often contains relatively little information. However, consistency is less prob-

lematic in class information, which is a standard part of many music datasets, e.g.

genre labels. Therefore, it is interesting to use class information to adapt similarity

models.

A considerable range of distance learning methods has been used for learning

from class information, including Linear Discriminant Analysis, nearest-neighbour-

based optimisation, and kernelised approaches such as Support Vector Machines

(SVM) [20, 56, 101, 105].

E.g. Novello et al. [68] apply this in their perceptual evaluation of music simil-

arity. They collect relative similarity judgements from 36 participants on triplets

of songs, and find a positive correlation of users’ similarity ratings with class data

using musical genres. However, this is not by design, as class data are normally

not designed to model similarity, but to represent other, often cultural, criteria.

In [4], Bade et al. use expert classifications of folk song melodies for training

localised similarity measures on folk songs. The melody type classifications can

be interpreted as relative similarity constraints: Assuming similarity to follow the

categorisation as above, songs of the same category can be expected to be more

similar than songs being assigned different categories. This information is then

applied to learn a linear weighting of similarity measures for a folk song database

containing symbolic music data and metadata.

Another approach is to require the subjects to cluster a small set of clips. Depend-

ing on the setup of the survey, several phases of re-clustering the data to more or

less narrow groups allow for the collection of absolute as well as relative similarity

data. The latter kind of data only describes the relation of different comparison

pairs to each other, instead of directly assigning a similarity score to the individual

pairs. This paradigm is known from psychology [62], and has recently been used
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in the BBC musicality test for short snippets of music [65]. Clips belonging to the

same class would then be regarded as more similar to each other than clips from

different classes.

2.4.3 Relative Similarity Data

With relative similarity data, only relative similarity information such as “Song A

is more similar to Song B than to Song C” is required. A common way to request

such information is via triad questions which are better known in anthropology

and psychology [10, 43]. Such questions do only require a qualitative decision –

one out of three songs is chosen as an “Odd Song Out” – instead of a quantitative

similarity value. All similarity data types discussed here are affected by listening

order. In our approach using relative data, the survey participant is presented

with a simple interface which has the potential to reduce skew in participants’

responses over multiple questions. On the other hand, the effects of the context of

another clip – the third song – have to be explored. The similarity data obtained

relates a greater number of clips than absolute data, which allows for a faster

coverage of all clips but also increases the set of possible clip combinations. We

find that relative similarity data with its related methods presents an effective

tool for modelling music similarity, with the potential to collect large amounts of

data in fast-paced online games and surveys. As during the last decade, relative

similarity data has only occasionally been addressed in MIR, the thesis presented

aims to present a comprehensive set of methods for the application and evaluation

of relative data in music similarity modelling.

Ellis and Whitman [22] use relative artist similarity data from a comparative sur-

vey to evaluate similarity metrics based on similar artist lists from the All Music

Guide1 to define their ERDÖS distance. Their artist similarity data covers 412 pop-

ular musicians, for whom they gathered 16385 relative comparisons. Moreover,

they compare crowd-sourced similarity measures based on listening patterns and

text analysis of web pages. The distance measures are regularised using Multidi-

mensional Scaling (MDS) to fit metric requirements of symmetry and transitivity.

1http://www.allmusic.com/
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They find that the unregularised ERDÖS distance outperforms the cultural crowd-

sourced similarity measures. Berenzweig et al. [9] continued work on this data

in a large scale comparison of different similarity data sources and models. Not-

ably they use the method of transferring features between institutions – instead

of the copyrighted audio data – to facilitate the large-scale experiments. Mcfee

and Lanckriet [57] later use semidefinite programming with multiple kernels to

learn a multi-modal distance metric from the artist similarity data discussed above.

Their results show strong improvement of the learnt metric over the baseline. They

firstly present the partial order embedding which is later used in the Metric Learn-

ing To Rank (MLR) algorithm discussed in Section 6.2.2.

Relative similarity, as the use of MLR in our experiments suggests, is closely re-

lated to ranking data: Similarity data can be inferred e.g. by assuming that items

with higher rank are more similar to the query than those with lower ranking.

Rankings have been collected for melody sequences by experts in a work by Typke

et al. [95]. Their strategy of collecting relevance rankings which is used in the

MIREX melodic similarity challenge1.

Allan et al. [3] discuss the challenges of gathering consistent relative similarity

data via surveys. Besides introducing an interface for the interactive collection

of song similarity data, they tackle the problem of subjects’ coverage of survey

examples. As already pointed out by Novello, Mckinney and Kohlrausch [68], it

is usually not feasible to present all triplet permutations for even a medium-sized

dataset to a single subject. Their approach of a balanced complete block design

guarantees a balanced number of occurrences for individual clips and also accom-

plishes a balancing of the positioning of the clips within the triplets presented to a

particular subject.

2.4.3.1 Similarity Research on MagnaTagATune

In our experiments we use data collected by the game with a purpose MagnaTagA-

Tune (see Section 3.2.1 for a detailed analysis). Similar to a survey, the game

collected relative similarity via triad questions. Motivation of the participants was

1http://www.music-ir.org/mirex/wiki/2014:Symbolic_Melodic_Similarity
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achieved by rewarding input-agreement. Concurrently to our first experiments,

Stober and Nürnberger [91] also explored the MagnaTagATune dataset, compar-

ing algorithms for linear and quadratic optimisation of a similarity measure based

on feature weighting. They apply early fusion of the feature data via musically

motivated facet differences followed by adapting a linear model. They analyse the

training methods on two different subsets of the similarity constraints in the data-

set (see Section 3). The smaller of these subsets is designed to be solvable by all of

the optimisation approaches, showing the learnability of a large subset of the data.

For the larger set, where not all constraints can be learned, an Support Vector

Machine (SVM)-based approach by Cheng and Hüllermeier [18] achieves the best

results. They find that training similarity measures from this data was possible

but the resulting measure slightly violated the constraints of being a metric. While

we concurrently used the SVM-Light library after Schultz and Joachims [81] for

similar experiments, both approaches showed similar results and behaviour when

using a larger similarity dataset from MagnaTagATune as published in [pub:5].

The early fusion approach can support better user understanding and interaction,

and the results are similar to a late fusion approach as we show in a systematic

comparison of our work to the one of Stober et al. (see [pub:5]). Using multiple

learning cycles with model selection, manually-designed tag features and facet

difference measures the quadratic optimisation method outperforms the linear re-

gression approach.

2.4.4 User Preference Data

User preference data is closely related to music similarity, in that user preference

is influenced by perceived similarity of music pieces in the listening context [55].

Although such preference data can be easily mined through playlists and playback

behaviour of online services, it is still different from essential similarity data in that

it also involves factors such as relevance. For a very recent comprehensive book on

preference and Music Recommendation we refer the reader to the thesis of Bog-

danov [11]. In particular, different information sources used for the comparison

of music, namely metadata, audio-based or combined information, are compared

55



2 Fundamentals & Related Work

for their performance in music recommendation. Bodganov concludes that audio-

based approaches currently are inferior to those utilising metadata, but that the

difference can be alleviated by adding very little and easily accessible metadata

to the audio-based approach. The reduced amount of human annotations needed

renders the latter strategy particularly attractive. Motivated through the finding

that current methods for music recommendation would not cogently address the

task, semantic features are introduced that “reduce the gap between low-level

features and human-level judgments”, also known as the semantic gap, and fur-

thermore allow for analysis of music preference in humans based on the resulting

models. Stober [89] also utilised user preference data in optimising a similar-

ity space for neighbourhood-preserving projections of multimedia collections. Al-

though their evaluation focusses on image retrieval, the system can also be applied

to music.

In the general field of machine learning, more approaches exist particularly for

the learning from class-based and absolute similarity data. In most cases, compu-

tational similarity models optimise the dual problem of a distance measure. Yang

[105] has summarised a considerable range of distance learning methods, includ-

ing Linear Discriminant Analysis, nearest-neighbour-based optimisation, and ker-

nelised approaches such as SVM.

2.5 Adapting Computational Models to Music Data

Instead of directly learning from similarity ratings, other data can be used to learn

music similarity measures. The learnt models can be used as an approximation

for similarity if the data type allows for it, or for other music classification tasks.

Crowd-sourcing, as such a data source, makes use of the large numbers of people

that can be reached through the Internet. Based on users’ playlists, ‘like’ data, mu-

sic purchase history and tag annotations, substantial datasets can be collected [12,

59]. Many models learnt from such data have been introduced in the recent years,

but their applicability depends on the relationship of the data source to the applic-

ation scenario. Unfortunately, there are very few open ground truth data sources

for such tasks and experiments are often performed on closed, individual datasets.
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The approaches discussed below use music similarity data as well as structurally

related data from crowd-sourcing to derive music similarity or relevance models

which show potential for music similarity modelling.

2.5.1 Support Vector Machines

Support Vector Machines (SVMs)-based and related techniques, constitute a prom-

ising technique for similarity and metric learning in this thesis. Apart from the rel-

evant work cited in Section 2.4.3.1 above, McFee, Barrington and Lanckriet [56]

parametrise a music similarity metric using collaborative filtering data. They use

Mahalanobis metrics to describe a parametrised linear combination of content-

based features, using Metric Learning To Rank (MLR) for training. Post-training

analysis of feature weights revealed that tags relating to genre or radio stations

were assigned greater weights than those related to music theoretical terms. In

our experiments in Chapter 8, we use MLR to adapt a metric to user-provided

music similarity data.

2.5.2 Neural Networks

When compared to distance metric learning, artificial neural networks allow for

a larger function space to be searched for an optimal modelling of the similarity

data. On the downside of the flexibility gained, precautions such as regularisation

have to be met in order not to overfit to small datasets. Weyde [104] uses a net-

work architecture able to learn from relative data for matching of symbolic note

sequence. We will use a modified approach when developing the RDNN method

for relative similarity learning in Section 6.3.7.

Sotiropoulos, Lampropoulos and Tsihrintzis [88] use Radial Basis Functions Net-

works to model music similarity perception. Their system for modelling music

similarity perception (MUSIPER) initialises multiple such neural networks using

acoustic feature information. Afterwards, a relevance feedback cycle is performed

with users to gradually adapt the neural networks to the participants perception:
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In each cycle, given a target piece, participants rank the suggestions of each net-

work according to perceived similarity. The ranking is then used for fine-tuning the

networks. Their evaluation involves 100 participants in 6 feedback cycles each,

and demonstrates successful increase of the systems predictive power. Analysis

of different feature types showed that networks fed with MFCC-related features

performed better than those with beat- or pitch-related features.

2.5.3 Other Classifiers

A feedback cycle approach similar to the one above is used in an early similarity

adaptation approach by Rolland [75] who adapts a feature weighting for a query-

by-humming system with user feedback.

Slaney et al. [85] also present a general method for learning a Mahalanobis dis-

tance metric. They adapt similarity on user preference data. Their experiments

evaluate the similarity metrics based on artist name identity of k nearest neigh-

bours (kNN). They find that the collaborative-filtering based measure outperforms

a content-based metric. The unknown variety of style given an artist is an in-

stance of a general problem associated to using vaguely defined labels as classes.

Secondly the imbalanced distribution of collaborative-filtering information in their

data is discussed, as the pre-selection of the users’ playlists influences the items

they can “like”. The variety of similarity models is later extended by Slaney, Wein-

berger and White [84], comparing six approaches of adapting content-based sim-

ilarity on the same ground truth (unmodified, whitening, LDA, NCA, LMNN and

RCA), showing significant improvement through training for all models.

Davis et al. [20] present the Information-Theoretic Metric Learning (ITML) al-

gorithm optimising a fully parametrised Mahalanobis metric, which allows for a

regularisation towards another predefined Mahalanobis metric. An online version

of the algorithm is available as well. The results of their experiments with several

standard classification datasets show a similar or slightly superior performance of

ITML when compared to other state-of-the-art approaches. In Section 6.3.6.1, we

introduce a new method for learning distance from relative constraints which is

based on ITML.
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Schedl, Hauger and Urbano [78] use methods from text retrieval to define an artist

similarity measure based on term co-ocurrence in microblogs. Their experiments

are evaluated against crowd-sourced artist similarity from Last.fm. The number of

data and results encourage the integration of this data-source with current models

in MIR, as it also contains cultural information which is not represented in standard

feature sets. To this end, Hauger et al. [34] very recently released the open Million

Musical Tweets Dataset1.

2.5.4 Feature Selection and Processing

The information used to represent music in similarity and other computational

models is usually extracted from different data sources such as audio recordings,

scores or further data. Such more (computationally) descriptive music attributes

are called features. Features, as detailed in Chapter 5 are traditionally extracted

and finalised before being input into similarity models for training or prediction

(see Figure 2.1). There is a wide variety of features available for extraction from

audio, and general overviews are available [63, 64, 72]. For initial description and

overview, features are usually assigned a loose position on a scale concerning the

closeness to being a semantic descriptor rather than a physical measurement. An-

other indicator for assigning the features term such as “high-level, medium-level

or low-level” is the complexity of their extraction.

Typical low-level features include time-domain signal analysis such as energy and

zero-crossing rates, or direct frequency domain results such as spectral centroid.

Mid-level features then comprise derivatives from low-level features. For example,

chroma features allow for representation of some harmonic context. The notion

of high-level features then points to information that corresponds to musical or

generally semantic descriptors which are often also used in human descriptions of

music such as identified chords.

Feature selection is used in information retrieval for optimising efficiency by means

of only considering relevant data streams. In this general case, Dash and Liu

[19] produced a systematic method for feature selection in generic classification

1http://www.cp.jku.at/datasets/MMTD/
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tasks. The final feature selection highly depends on the actual application’s con-

text. Factors to consider comprise the dataset size, number of classes, and robust-

ness against noise. Based on such background knowledge, their method allows

selecting an appropriate set of features. For music information retrieval, Pick-

ens [73] categorised features for retrieval and similarity modelling with symbolic

score data, separating “shallow-structure” and “deep-structure” features. In their

paper, most of the features suitable for automatic extraction belong to the shallow-

structure group.

Especially for music exploration tasks, simple similarity models can allow users to

manually weight features, adapting the similarity parameters directly while they

browse the resulting music library. Baumann and Halloran [6] present such an

approach where users can choose recommendations by sound, style and lyrics.

Vignoli and Pauws [96] provide a system using a larger set of features including

timbre, genre, mood, tempo, and year. Their user-evaluation shows that the selec-

tion of features increases complexity of the music listening interface. This motiv-

ates automatic means for parametrising similarity models as discussed above and

in this thesis.

Bello [7] compares the structural similarity of music pieces using a normalised

compression distance based on their self-similarity matrices. For creating the self-

similarity matrices, describing the repetitive structure of a recording, chroma and

Mel Frequency Cepstral Coefficient (MFCC) are used. A comparison of two pieces’

matrices using compression methods, bzip2 being the most effective, delivers the

similarity measure based on their structure. This approach of comparison is inter-

esting in that similarity matrices can be calculated from a wide variety of features

including those we use and describe in Chapter 5. The evaluation analyses the

effectiveness of the similarity measure when used for clustering a collection of

classical music audio recordings into groups of performed works. Bello extends

his approach to recurrence plots in [8], testing more feature variants including

more timbre-invariant chroma features as well as long-time chroma statistics.
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2.5.4.1 Feature Learning

Recently, several algorithms for feature learning from datasets have been developed

in different domains [35, 36, 47, 49, 76, 97]. For example, in computer vision,

state-of-the-art feature learning shows similar or better performance compared to

algorithms using only conventional feature extraction methods [47, 49, 76].

Feature learning strategies are now successfully employed in some MIR tasks. The

feature extraction is mostly performed on the basis of low-level features such as the

spectrogram or MFCCs. A methodical overview for using learnt features for MIR

tasks is presented by Nam et al. [67]. They further show the effectiveness of their

approach in tag classification with linear kernel SVM on the CAL500 dataset. Nam

et al. [66] also use Deep Belief Networks (DBNs) for automatic transcription of

piano music using a similar SVM classifier. They test both a shallow structure only

using the first hidden layer of an RBM as well as a DBN which was fine-tuned using

backpropagation. Both methods for transforming spectrogram features improved

performance over baseline approaches.

Schlüter and Osendorfer [79] model similarity regarding musical genre with RBMs.

They apply a Mean-Covariance RBM on MFCCs to learn local high-level features,

which are then aggregated for whole songs via feature histograms. The similarity

of songs is then quantified as distance between the songs’ feature histograms us-

ing five measurement methods: cosine distance, the Euclidean metric, Manhattan

distance, and symmetrized Kullback-Leibler and Jenson-Shannon divergence.

Hamel and Eck [33] use Deep Belief Networks (DBNs) for genre classification with

a Gaussian kernel Support Vector Machine (SVM) and show improvements on their

baseline approach. Dieleman, Brakel and Schrauwen [21] apply Convolutional

Deep Belief Networks to learn from audio features and metadata in the Million

Song Dataset (Million Song Dataset) for artist recognition, genre recognition, and

key detection. In all three tasks, they first train the DBN and subsequently use

it for initialising a multilayer perceptron. As reported, their approach achieves

better performance than naive Bayesian and windowed logistic regression models.
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Schmidt, Scott and Kim [80] apply DBNs to learn three types of emotion-based

acoustic features using different approaches of time-frame representation. Their

short-time features learnt by DBN outperform individual results from MFCC, chroma,

spectral shape, timbre, and spectral contrast features. The performance is further

improved by the outputs from hidden layers of DBN trained on a multi-frame fea-

tures. Best results are achieved for an universal background model trained on an

unlabelled music data set before fine tuning to the music emotion data.

2.6 Conclusion

In the above summary of this thesis’ background, we introduced different concepts

of music similarity such as its embedding in research paradigms of Musicology and

Music Information Retrieval. Earlier research and the multiplicity of usages of the

term similarity show the intricate position it plays in research and applications of

these two fields. We discussed psychological research including the feature-based

similarity model of Tversky, and how the assumption of symmetry in metric models

potentially limits their predictive performance for human-based similarity data.

For the discipline of MIR, we explained how music similarity models fit into the

typical signal flow. Here, the music clips, represented as audio signal and external

information, undergo feature extraction before the similarity model can be applied.

Some similarity models can be adapted at this stage by feature selection or weight-

ing of different features. Furthermore, feature transformations using PCA or RBMs

have been shown to improve performance in MIR applications. Traditionally, the

models are fixed after initial experiments and expert judgements, but more recent

research has established models that can be trained given the clips’ features and

additional similarity data as ground truth.

The majority of similarity model adaptation experiments have not been performed

on human statements of perceived music similarity data but on related information

such as genre or artist similarity. The systematic description of types of similarity

data that has been used as ground truth in MIR experiments allows for distinguish-

ing different types of similarity data. This thesis focusses on relative human simil-

62



2.6 Conclusion

arity data, but other forms include absolute similarity data, class-based similarity

data and user preference data.

Only one large dataset of relative similarity data has been collected in MagnaTagA-

Tune and we currently collect more data through a Game With A Purpose (GWAP)

in the CASimIR dataset (see Section 4.2.5). GWAP achieve control over and motiv-

ation of participants through different strategies of user interaction. When looking

at the wider usage of similarity models in MIR, research mostly uses proximate

information such as preference data or genre data for experiments, as this data

can be modelled easier with mainstream machine learning methods and is more

widely available. Unfortunately this leads to a very heterogeneous landscape of

experiment-specific datasets which are often not public. The MagnaTagATune da-

taset, being available for download online, allows for some of the first reproducible

similarity learning experiments on a relatively large collection of music and human

music similarity ratings. In general, relative similarity data, in combination with

GWAP promises to facilitate large-scale MIR research on similarity and user data.

The early stage of research with relative music similarity data, leaves us at a very

limited selection of models and training algorithms, mostly designed for ranking

data of websites or other non-musical applications. Still, the results for learn-

ing distance metrics from collaborative filtering and the availability of data from

GWAPs motivate the first systematic evaluation (Chapters 6 and 8) of such meth-

ods for similarity learning in music. In order to widen the scope of comparison and

increase performance of the models predictions we will here furthermore develop

and evaluate new algorithms for similarity learning. To this end, we will adapt

methods successful with absolute or class-based similarity data, such as ITML and

neural networks mentioned above, to relative data. We thereby try different model

architectures and music representations. Addressing the cultural and perceptual

contexts of similarity, we provide means for the development of culture-specific

similarity models and transfer learning, as well as to further research on asym-

metry in perception.

Like for the similarity models, there is little published on relative music similarity

data itself and its analysis. The following chapter will discuss methods for ana-
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lysing relative similarity data as well as a first analysis of the MagnaTagATune

similarity dataset with such methods.
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In language there are only differences.

(Ferdinand de Saussure, 1909)

3 Relative Similarity Data

In order to use relative similarity data for modelling, we require methods to analyse [pub:7]

[pub:9]the data itself prior to model training, as our research question rq:4 states. In

this chapter we therefore discuss properties of such data, its representation in a

graph model and methods for analysis and processing of whole similarity datasets.

Relative similarity data can be collected through an odd-one-out game, as in the

MagnaTagATune and CASimIR datasets which we use in this study. We furthermore

use the MagnaTagATune dataset as an example application case for the methods,

providing the first analysis of the contained similarity data. The CASimIR dataset,

still growing, will be discussed in detail in the following Chapter 4.

We gather relative similarity data in the form of relations between two pairs of

clips. In general, given the clips Ci, Cj , Ck and Cl, we can express a similarity

relation y using the following:

(Ci, Cj)
y
> (Ck, Cl), (3.1)

where the relation
sim
> denotes “more similar than".

In an odd-one-out game, three clips Ci, Cj and Ck are presented to the players, who

are asked to choose the one which least fits with the others. This rating indicates

a relatively higher similarity between the two remaining clips than to the selected

one: A vote for Ck as the odd-one-out can thus be interpreted modelled using the

following two relations y1 = (i, j, k), y2 = (j, i, k):

(Ci, Cj)
y1

> (Ci, Ck)

∧ (Ci, Cj)
y2

> (Cj , Ck). (3.2)
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3.1 The Similarity Graph

Relative similarity relations can be represented as edges in a directed weighted

graph of pairs of clips (McFee et al. [58], Stober et al. [90]): Given the clip

index I for all clips Ci, i ∈ I and similarity information Q̂ containing constraints in

form (3.1), our Graph G = (V,E) consists of vertices representing clip pairs

V = {(Ci, Cj) | i, j ∈ I}

and edges

E =
{(

(Ci, Cj), (Ci, Ck), α(i,j,k)

)
| (i, j, k) ∈ Q̂, α(i,j,k) ∈ N \ 0

}
representing the pairs’ similarity relations.

3.1.1 Determining Constraint Weights

The weights α(i,j,k) assigned to the edges represent the number of occurrences of a

particular constraint (i, j, k). We here follow the common representation of weights

as integer numbers as presented by Stober and Nürnberger [90]. They refer to

this graph as a multigraph where the weights count the number of identical edges

repeating a constraint. A weighted graph corresponding to Equation 3.2 is shown

in Figure 3.1, for clips Ci, Cj and Ck and weights α(i,j,k) and α(j,i,k).

(Ci, Cj)

(Ci, Ck) (Cj , Ck)

α(j,i,k)α(i,j,k)

Figure 3.1: Graph induced by a single “odd-one-out" statement, Ck is the odd-one-out

as in Equation 3.2. Vertices represent pairs of clips and edges represent

the relation more-similar-than.

An alternative representation of the weights, especially considering accumulation

across multiple user inputs, is implemented and described in Section 7.2.2.1.
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3.1.2 Cycles and Inconsistent Data

The induced graph can include inconsistent similarity information, for instance

from users directly disagreeing on the outlying clip in a triplet, or multiple votes

leading to an inconsistency when considering the transitivity of the induced sim-

ilarity metric. Inconsistencies appear as cycles in the graph as shown in Figures

3.2 and 3.3. A more complex example is given in the appendix, Figure 10.7 on

page 222. Such cycles can be found and analysed using standard methods for

extracting strongly connected components in directed graphs.

(Ci, Cj)

(Ci, Ck) (Cj , Ck)

32
1

Figure 3.2: Graph containing a length-2 cycle. Cycle highlighted in light red.

(Ci, Cj)

(Ci, Ck) (Cj , Ck)

(Cl, Cm)

(Cl, Cj) (Cm, Cj)

Figure 3.3: Graph containing a length-3 cycle. Cycle highlighted in light red. Edge

weights have been hidden.

Some of the methods for similarity modelling as discussed in Chapter 6 require

the similarity data to be consistent. For example, this is the case for the partial

order feature used by MLR (see [61]). In order to apply these methods, we use

an approach used by Stober and Nürnberger [90] for filtering inconsistent data.

In this thesis we only use filtered data for consistency, but Section 9.6 describes

perspectives to test methods with unfiltered data. The information to be discarded

is selected based on the minimal number of associated user votes: For removing

direct inconsistencies we remove cycles of length 2 by removing the edge (i, j, k)

with the smaller weight α(i,j,k) and subtracting its weight from the weight α(i,k,j)

of the edge in the opposite direction. Thus, the edge with greater weight, backed
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by the larger amount of votes, is retained. If two inconsistent edges have equal

weight, both are deleted, possibly leaving a vertex disconnected from the graph.

In that case, as similarity data is represented by edges, the corresponding clip

combination would be removed from the dataset.

Removing cycles of greater length and finding the maximal acyclic subgraph of

G is an NP-hard problem [42]. McFee et al. [58] use a randomised algorithm

by Aho, Garey and Ullman [1] to extract an acyclic subgraph for this application.

The graph is created by iteratively adding edges to a new graph and testing for

cycles. Edges that complete a cycle are omitted. Depending on the similarity data,

different means of finding an acyclic subgraph may give better or even optimal

results. The MagnaTagATune and CASimIR datasets are already cycle-free after

the first step of removing cycles of length 2. For MagnaTagATune this is due to the

missing connectivity between triplets, but the new data collected with CASimIR

suggests that longer cycles are unlikely to remain after elimination of short cycles,

maybe because for this to happen a the majority of ratings has to back every one

of the edges involved. See the Section 3.2 for a first analysis of the structure of the

MagnaTagATune similarity data.

The resulting acyclic weighted graphQ provides the similarity constraints (i, j, k) ∈

Q that we use to train the similarity measures. The analysis of the adjacent com-

ponents in this graph gives information on transitive similarity relations expressed

by the constraints, such as

(Ci, Cj)
y1

> (Ci, Ck)
y1

> (Ck, Cl) (3.3)

The role of such relations for similarity learning have yet to be more closely re-

searched, but transitivity relations and sharing of clips between clip pairs do im-

pact the evaluation of model performance, as we show in our experiments Sec-

tion 8.5. The length of cycles is limited by largest connected component in the

similarity graph, and we now discuss the usage of such analysis for similarity data.
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3.1.3 Connectedness

The average number of clip pairs which can be reached from a specific clip pair

(Ci, Cj) via edges of the graph defines the connectedness of the resulting similarity

graph. This can be measured by counting the vertices in connected components

of the undirected graph which is derived from the similarity graph by removing

directionality of the edges. To this end the DiGraph class uses Tarjan’s strongly

connected components algorithm [92].

Algorithm 1 Connectedness Analysis of Similarity Graph

Require: Similarity Graph G = (V,E)

Get undirected graph G′ := (V,E′), E′ = {(Ci, Cj), (Cj , Ci) | (Ci, Cj) ∈ E}
Calculate connected components SCC(G′)

return maximal cardinality max(|SCC(G′)|)

A completely connected similarity graph allows for a direct inference of similar-

ity relations between all clip pairs contained, given the graph is not containing

contradictory similarity information and is therefore acyclic. Given a query clip,

absolute similarity values can be assigned e.g. using Dijkstra’s shortest path al-

gorithm. This is useful for converting relative similarity data to absolute similarity

data for use with methods such as Multidimensional Scaling. Thus, connectedness

in the similarity graph is desirable both for analysing contradictions (cycles) and

experiments comparing similarity data types.

In MagnaTagATune, the connectedness of the graph is very low as explained in the

following section. The CASimIR framework, (see Section 4.1.1.2) allows to control

the connectedness of data during collection and thereby achieves a dataset with

far larger connected components (see Table 4.2).
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3.2 The MagnaTagATune Dataset

The MagnaTagATune dataset is to our knowledge the only similarity dataset that is

freely available1 with the corresponding music audio data. Therefore, the majority

of our experiments in Chapter 8 are based on this set to make our results repro-

ducible and comparable. The cycle-free similarity data used in Chapter 8 can be

downloaded2 from the web.

3.2.1 Similarity Data

In the bonus mode of the TagATune game, two participants are asked to agree

on the odd-one-out of three audio clips. This is a typical instance of an output-

agreement game with a purpose. Regardless of the agreement of the participants,

the votes of both users are saved in the history for this triplet. The MagnaTagAT-

une dataset contains 7650 such votes for a total 346 of triplets, referring to 1019

clips. No information about the providing participants is published with the data-

set. Some of the triplets have been presented as permutations, and the order of

display is in the dataset, as well, but not the order of listening. On average, each

instance of a triplet permutation counts 14 votes. In our experiments, the informa-

tion of each player’s vote, e.g. Ck being the outlier in (Ci, Cj , Ck) is used to derive

two relative similarity constraints as stated in Equation 3.2.

The induced weighted graph, derived from 2 · 7650 =
∑

(i,j,k)∈Q̂ α(i,j,k) votes and

depicted on Figure 10.3 on page 218, includes cycles of length 2, but no cycles

of greater length. Thus, through removal of cycles of length 2 which resolves all

cycles in the initial graph (see [pub:5]), the similarity graph looses 8402 weight

points. The resulting directed acyclic weighted graph consists of 337 connected

subgraphs Gisub, each containing 3 vertices, i.e. clip pairs. The 6898 weight points

α for 860 unique connections contain the remaining similarity informationQ. Equal

vote counts for inconsistent statements lead to the isolation of 27 vertices. Thereby,

1With the expiry of the tagatune web domain, the dataset has moved to

http://mi.soi.city.ac.uk/datasets/magnatagatune
2http://mi.soi.city.ac.uk/datasets/phdthesisdw
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26 songs are left without reference to any remaining similarity constraints, redu-

cing the number of referenced clips to 993. The resulting graph is depicted in

Figure 10.4 on page 219

When excluding the isolated vertices with no associated similarity information, the

combination of clips in the remaining subgraphs corresponds to a subset of the

triplets in the initial dataset, now associated with modified weights. This is due to

the fact that combinations are only possible within similarity triplets presented to

the users. Thus no information about interrelations in between the different clip

triplets can be directly extracted from the similarity data.

3.2.2 Genre Distribution over Triplets

In Chapter 2 we discussed the usage of genre data for similarity learning. Genre

annotations for this dataset are available from the catalogue of the Magnatune

label. Unfortunately, with this dataset, genre-specific similarity measures cannot

be studied, as the amount of similarity data per genre is too small for similarity

learning. To give an impression of the dataset’s structure, we present below the

frequencies of genre groups in the presented triplets for the most frequently an-

notated genres:

Table 3.1: Number of triplets with n clips sharing the same genre tag.

Genres n = 3 of 3 2 of 3 1 of 3

Electronica, New Age, Ambient 43 159 447

Classical, Baroque 8 65 257

Rock, Alt Rock, Hard Rock, Metal 6 59 251

As becomes apparent in Table 3.1, the number of genre-consistent triplets in the

MagnaTagATune dataset is very low. Only for 1 genre group (Electronica. . . ) one

can find more than 10 triplets that are genre-consistent. Thus, this dataset does

not allow for the comparison of similarity between different genres due to the

selection of triplets. Further details of the genre data used with MagnaTagATune

are presented in Section 5.2.
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3.3 Conclusion

Relative similarity datasets of the size found in MagnaTagATune or CASimIR have

only recently become available in the field of Music Information Retrieval. In this

chapter, we respond to rq:4 by providing a basis of analysis methods for relative

similarity data. After a formalisation of the contained information and representa-

tion through graphs, we presented general methods for analysis of similarity data-

sets. This includes the definition of constraint weights, with accumulation of data

from several users or trials. Furthermore, we discuss the challenge of removing

inconsistencies as they naturally occur in relative similarity data collected from hu-

man participants, and a method for generating a consistent subset of the similarity

data. For determining the maximal cycle length as well as the maximal number

of clips connected through a transitive chain in the similarity data, we describe

an analysis of connected components on the direction-insensitive version of the

similarity graph.

We have presented the first thorough analysis of the MagnaTagATune similarity

data, extending on the cycle removal statistics determined by the author of this

thesis and firstly reported in a joint publication with Stober et al. in [pub:9]. The

knowledge from this analysis was used to inform a method for unbiased cross-

validation sampling in our experiments in Section 8.1. Concerning cycles, we dis-

covered that the individual triplets of clips presented to the users for MagnaTagA-

Tune are not interconnected through common clips. The absence of genre consist-

ency within triplets motivated the development of the mechanisms we present for

explicit control of genre-homogeneous triplets in the CASimIR framework.

When compared to absolute similarity data, the collection of relative data is less

complicated and can be performed through short surveys and games enabled by

the CASimIR game framework which we describe in the following section. There,

we will also focus on the design and criteria for similarity datasets, with the general

intention to attach cultural attributes to the similarity data.
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Even the most perfect reproduction of a work of art is lacking in one

element: its presence in time and space, its unique existence at the

place where it happens to be.

(Walter Benjamin, 1936)

4 Collecting Culture-Aware Data via

Games With A Purpose

There are many tasks which are difficult to solve without human input. For ex- [pub:10]

[pub:1]

[pub:3]

ample, the meaning of an image or a piece of music are subjective information that

only humans can provide. Perceived music similarity is one of many context- and

user-dependent attributes that requires user input data both for training of models

and evaluation. One way of obtaining such input is using Games With a Purpose

(GWAPs) , a form of crowdsourcing which utilises enjoyment to engage users to

provide valid information in large numbers.

Research question rq:5 addresses the challenges and opportunities of collecting

data on the web, related to development efforts and participant control. Integ-

rating methodical solutions to these issues, we now present a generic framework

that supports data collection in the social web via GWAP and surveys with multiple

players. We will discuss an overall architecture for GWAP surveys that ensures

extensibility and light development through modularity. This includes a back-end

API and example implementation for management and selection of survey tasks.

For displaying content in web and social network games for desktop and mobile

platforms, a game front-end is presented.

The viability of the presented approach and framework is then exemplified through

the Spot the Odd Song Out1 game, which is currently used for expanding the

CASimIR dataset. An analysis of the similarity dataset collected with Spot the

1Spot the Odd Song Out was implemented with the help of Guillaume Bellec.
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4 Collecting Culture-Aware Data via Games With A Purpose

Odd Song Out to date will show the effectiveness of the presented means for real-

time collection control in a comparison to the MagnaTagATune dataset examined

in Section 3.2. As the presented framework allows for a wide range of data collec-

tion tasks, Spot the Odd Song Out furthermore collects tempo and rhythm data via

two modules developed at KTH Stockholm (see Figure 4.6) which we provide first

statistics on.

Finally, in Section 4.3 we present the first country-annotated music similarity da-

taset of its size and sketch a methodology for extending adaptive similarity models

to culture-aware models. This is enabled through the particular feature of Spot the

Odd Song Out, in that it explicitly gathers anonymous participant attribute data

which is linked to the collected music annotations. This opens up the possibility

of user- and group-based similarity models, taking into account the specifics, such

as a cultural embedding of the participants providing the similarity data or other

annotations.

4.1 A Generic Framework for GWAP

Game Server
Data Backend

Game Client

- Multiplayer platform
- Points storage

Experimental DATA:
- Storage
- Optimisation

Other Frontends

CASIMIR API

Game Frontend

Figure 4.1: The CASimIR framework consists of a back-end and possibly several

front-ends. The API can be used by different clients simultaneously to

provide annotations to the same dataset.

So far, to our knowledge all existing GWAP systems have been coded from scratch.
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4.1 A Generic Framework for GWAP

As we implemented the Spot the Odd Song Out game1 we felt the need to provide

a versatile and reusable framework, the Culture Aware Similarity Information Re-

triever (CASimIR), that makes the development and use of GWAP more effective

and efficient. Therefore, Spot the Odd Song Out will serve as an example for a

CASimIR configuration in the following text.

The CASimIR framework as well as the first data collected with Spot the Odd

Song Out are made available online2 under Open Source and Creative Commons

licenses. The source code is provided via a version control system, and we hope

that the framework will facilitate more research with and into GWAP, resulting to

further collaborations and contributions to the current framework.

The CASimIR framework consists of a back-end that manages and controls the use

of the media and annotation data and front-ends for managing the game interaction

and players. The framework was specifically designed to separate the collection

of annotations (Game Framework ) from the management of data and survey ques-

tions (CASimIR API (API)). Figure 4.1 gives an overview of the architecture. This

separation of the data back-end enables the provision of a stable environment for

data collection, which can be accessed by different front-ends, thus encouraging

collaboration and sharing of datasets. It also facilitates rapid development of al-

ternative front-ends without the need to reimplement any back-end functionality.

The interaction with the back-end API is structured on the basis of questions. A

question contains the bundle of information (media and metadata) which is neces-

sary for presenting a question to the user and retrieve an answer. Note that in

CASimIR, we address music content by songs rather than clips. As currently no

two clips of the same song are included in the CASimIR song library, the terms

can be used interchangeably. The integration of multiple clips from the same song

in CASimIR is straightforward by using different internal identifiers. Figure 4.2

shows the interaction between the API and a game front-end. The API is imple-

mented as a remote procedure service using the SOAP3 protocol in PHP5 based

1http://mi.soi.city.ac.uk/camir/game/
2http://mi.soi.city.ac.uk/datasets/aes2013casimir/
3http://www.w3.org/TR/soap/
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Game
Client

Game
Server

API
Log In

Module

startSession()

Join Match
Menu

getTriplet()

Question

sendVote()

Scores
Result

select 
Question

store
Annotati-

ons

assign 
Match

assign
Points

User 
Data

Annotations

getAIVote()

Figure 4.2: Communication of a game with the CASimIR API. Game related data such

as player scores are transferred in communication between the game cli-

ent and the game server. The game server requests or sends only the

annotation-relevant data to the API.

on the following objects: Questions are transfered via the Song and Triplet ob-

jects, and annotations are represented by Votes. Firstly the game registers one or

more participants using the startSession function. Then one or more questions

can be retrieved by the front-end using getSong, getTriplet, or newly developed

question types. getAIVote returns synthesized answers given a question.

The CASimIR game framework implements each question type as a module in the

game server, which handles the presentation of the question to the participant. It

also collects and evaluates the player’s input, creates the data for back-end storage

and the feedback for the player. The game server is providing a number of web

technologies over a web server. The server interacts with the game client that

runs in a browser on a computer or mobile device. The annotations are then sent

to the back-end using the sendVote interface where they are stored. If the specific

question type supports automatic answers, the function getAIVote can return an

answer based on ground truth or collected annotations.
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4.1 A Generic Framework for GWAP

4.1.1 CASimIR API and back-end Implementation

The CASimIR API and back-end implementation provide three functionalities which

are essential to almost any project annotating media content:

1. Organisation of the database with media examples to be shown to the parti-

cipants

2. Selection of appropriate questions (examples)

3. Storage and referencing of received annotations

It is important to keep this functionality separate from the game playing logic and

the user interface. This enables us to create a back-end that can be simultaneously

used by different applications. The back-end centrally controls the experiment

regarding the number of users and presented media. Also it is independent of

the constraints of the interface, such as hardware, programming language or user

interaction. Our back-end implementation provides a dynamic control of the exper-

iment in terms of users and data, which is a specific challenge in GWAP compared

to traditional surveys or lab experiments.

4.1.1.1 Participant Numbers and Song Subsets

The selection of the media and questions to be presented to participants is normally

determined based on a fixed number of participants, a fixed number of questions

presented to a single participant, and the intended coverage of the available ques-

tions (e.g. see Allan, Müllensiefen and Wiggins [3] for similarity triplets). Espe-

cially for paper-based studies, the layout and selection of the questions cannot be

changed during the study, and thus the number of participants is fixed as well. In

a web-based application it is possible and desirable to allow as many participants

as possible to take part. The CASimIR framework accounts for this by using an

extendable subset of media and questions, called working sets.

The Song Library in the MYSQL database contains all songs or clips available for

inclusion in the system. The audio source is linked to the content via a URL e.g.

using a preview link from the 7digital library, which is then played back by the

front-end. Each media example is assigned an internal identifier as well as genre
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description where available. Additional information can contain artist and album

names, ISRC codes, MusicBrainz and The Echo Nest ids.

The back-end manages a Song Working Set, subset of all media identifiers, which

are allowed to be included into questions. Songs are dynamically added to the

Song Working Set when there is enough user input for the existing songs.

The Song Working Set is then used to generate the questions which can be a com-

bination of media and metadata presented to the participant. This generates the

Question Working Set which is dynamically updated like the Song Working Set.

For example, for triplet questions (getTriplet), the Question Working Set contains

and increasing set of triplets of elements from the Song Working Set. Figure 4.3

shows an example configuration of song and question working sets.

4.1.1.2 Example Selection

As in our approach the total number of participants is undefined a priori, it cannot

be used to define the selection of questions. Still, statistical control has to be exer-

cised over the presented questions. During runtime, the Question Working Set is

used to pick the questions for each round in a game. CASimIR provides building

blocks for rules to select questions based on statistics and metadata such as genre.

For example, in Spot the Odd Song Out, the triplets for a game round are chosen

randomly, but the order of presentation (permutation) is selected using a circular

strategy for equal distribution and to minimise repeated presentation of the same

permutation to a participant. Also, control questions for checking participants

credibility can be issued at a regular rate. Such questions are automatically gen-

erated for triplets: Our red herring questions contain two identical clips and thus

test whether the participant chooses the remaining clip as correct answer. Fur-

thermore, additional parameters for question selection can be provided via the API

interface and easily integrated into the real-time selection process.

For large working sets, the response time of the API can be reduced by only con-

sidering a random subset of questions when selecting them from the Question

Working Set.
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Figure 4.3: Clip and Question Working Sets are dynamically expanded as subsets of

the Song Library.

4.1.1.3 Management of Player Input

A game front-end can communicate with the CASimIR API back-end via the sendVote

function once it has received a question. The annotations are represented by Vote

objects. When received by the back-end these are checked for integrity and saved

into the appropriate database depending on their associated question type.

Designed to serve a variety of annotation tasks, the generic Vote objects are built

on a flexible database-object mapping that can hold a wide range of data which

is automatically stored. Flexibility is given on a per-annotation basis, as inform-

ation may or may not be available for each participant depending on success in

completing the task, software limitations and privacy restrictions. For retrieval,

each annotation is linked to the respective participant, time and date, session and

question.

CASimIR was built to allow for linking participants’ cultural and other attributes

to the collected annotations. Therefore the API maintains anonymous datasets of

participant information. For the Spot the Odd Song Out game, this includes in-

formation about the participants approximate location and country, languages and

general as well as musical education. This optional information is extended by

information about favourite bands etc. from a social network, where such inform-

ation is available and shared by the participant with the application.
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4.1.1.4 Automatic Answers

GWAP based on agreement between participants need to provide automatic an-

swers where participants cannot be teamed up. Therefore the CASimIR API provides

the getAIVote function, which can be implemented for each question type. It re-

turns a user vote, based on either recorded or synthesized data. Currently, auto-

matic answers for Spot the Odd Song Out are based on previously recorded an-

swers where possible: A generic strategy has been implemented that randomly

chooses a recorded vote for the specified question, which is then returned by the

API. This allows for the simulation of human players to the participant. We prefer

the use of human answers as they provide answers that potentially are more con-

sistent with new participants answers, and, in case of disagreement, with their

expectations on alternative answers. For questions where no answers have yet

been recorded, a random answer is provided by the system. The random selection

or generation of answers allows for multiple AI players to cover a wider range of

answers and thus increase the chance of agreement and reward of the human par-

ticipants in the match. Furthermore, the ratio of data-based and random answers

can be configured to provide for specific experiment requirements.

4.1.2 Game Framework

The CASimIR game framework has been developed to work with the the CASimIR

API. The game framework supports the creation of new games and gamification of

existing surveys. The game framework provides functionality to run a multi-player

game logic and its player interface.

Our game framework allows for the implementation of both single- and multi-player

games. In order to support a multi-player experience, the game logic is centralised

in the Game Server, which provides the back-end to the game interface website in

PHP/MYSQL. It provides the following functionalities:

• Central game management and logic

• Grouping and synchronisation of participants in multi-player matches

• Retrieving questions from the API and storing the participants answers
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• Publishing of game-related information streams (achievements and scores)

through social networks

The Game Client provides the user interface (in HTML5 and JavaScript) in a web

browser on the participant’s machine such as mobile phone, tablet, desktop or

notebook pc. The functionalities of the game client include:

• Support for various platforms including mobile browsers or a social network

environment via an HTML iFrame embedding

• Dynamic display of the questions and results, providing the input graphical

user interface for answers via a variety of standardised animated objects.

• Display of game menu, options and collection of additional participant inform-

ation

• Social networks: Log-in of participants and retrieval of their attributes

4.1.2.1 Social Networks and Participant Login

The integration of a game into social networks opens the potential of collecting

many participant attributes, including listening habits, while providing effective

means of advertisement through social channels. The CASimIR game framework

integrates core social network building blocks for Facebook such as "Like", "Invite

Friends", and the posting of game-related stories including scores. Participants’

unique identities are used to provide a personalisation of the game experience

through avatars and genre selection.

The standard interface for the CASimIR game framework starts with an entry point

such as a game menu. The game client locally processes information from the so-

cial network or provided by the participant, only transmitting the information ne-

cessary for the task to the game server. The game server then only stores inform-

ation relevant for providing the game whilst transmitting any further participant

data such as cultural attributes, but not the social network identifier, to the API

using startSession.
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Figure 4.4: Entry and synchronous state progression of two game clients connected

to the same match.

4.1.2.2 Game State Model and Multi-Player Synchronisation

Like the Music Information Retrieval GWAP “HerdIt”, games built with our frame-

work can consist of multiple players. Spot the Odd Song Out for example joins four

players in a game, which are filled up with AI players if necessary. The number

of players was chosen as a tradeoff of multi-player experience and interface re-

strictions: More players allow for a larger number of alternative answers and thus

increase the chance of motivating agreement. On the other hand, the envisaged

devices for playing include smartphones with very limited screen size. Thus, in

contrast ot the 10 players in the desktop game HerdIt, four players were chosen

for Spot the Odd Song Out, although the number of players can be increased given

an adaptation of the user interface.

In contrast to HerdIt, CASimIR allows for real-time connection of players in addi-

tion to the playback of recorded player input via AIVote. Real-time synchronisation

over the WWW between HTML front-ends is no trivial task, and we hope our im-

plementation will help other researchers to use this game mode where needed.

As mentioned above, the gaming experience in CASimIR is structured into matches,

which consist of a series of mini-games. From the entry point, the participant can
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progress to the main game by joining a match. A match represents a predefined

sequence of mini-games implemented as Modules, which can be run for a single

participant or synchronously for all participants of a match. A single module in

the game presents a question previously retrieved from the CASimIR API. In a

multi-player module, all players are given a certain time to answer the question.

The module collects the participants’ answers and moves on to the result screen

as soon as all participants have answered or when the timeout occurs. The result

screen is shown for a predetermined amount of time, after which a new module is

started synchronously for all participants. When reaching the end of the module

sequence, the game returns to the menu or another exit screen, e.g. the feedback

form.

4.1.2.3 Reward Mechanisms

Especially for synchronised multi-player matches, the calculation of scores for par-

ticipants is nontrivial, as participants can leave at any point during the game. The

CASimIR game module architecture provides the complete management of the task

of aggregation of annotations or module results for determining rewards, as well as

the submission of annotations to the back-end API. Modules can implement their

specific logic of awarding points and achievements, including GWAP strategies

such as input- or output-agreement. Results are calculated based on the complete

available participant answers for a module before the result screen is displayed.

4.2 Case study: Spot the Odd Song Out

To exemplify the possibilities of the CASimIR framework, we present the three

annotation collection modules of Spot the Odd Song Out and conducted data col-

lection on the Internet and Facebook.
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4.2.1 Game Modules and Interfaces

In Spot the Odd Song Out we combine several different modules and annotation

tasks in the same game. In addition to the central similarity module, we add two

further tempo-related modules developed by KTH which appear in alternating or-

der. A first motivation for this strategy are the synergy effects in terms of acquiring

participants, who now can contribute to several experiments in one match. Fur-

thermore the varying tasks can provide for a more diverse game, and thus may

keep players motivated for longer and appeal to their curiosity. Here, even more

advanced strategies of creating bonus rounds1 or specific games as rewards are

possible. The alternating games also might reduce the effect of memorisation of

previously answered questions on the next instance within a specific task. On the

counter-side, less answers are collected for a specific task, and users might be

demotivated by specific tasks they do not enjoy.

The first similarity module (Figure 4.5) collects relative similarity data using an

odd-one-out question. This namesake for Spot the Odd Song Out presents a ques-

tion featuring three songs and a request to "Choose the clip which seems the most

different to the others". Points are awarded by output-agreement, i.e. by the num-

ber of players agreeing on the outlying clip.

For tempo and rhythm experiments, Bellec and Friberg at KtH Stockholm joined us

and implemented modules collecting real-time sensor information: The TapTempo

and TapRhythm modules (Figure 4.6) require the participants to tap along to a song

indicating the tempo, or a freely selected rhythm. Reward is based on comparison

with expert tempo annotations and tapping regularity, which adds a competitive

element to encourage user engagement.

This, to our knowledge, is the first GWAP including real time sensor data via a web

interface for music annotation. By using the highly cross-platform google closure

library the usage of the same code on almost all platforms is enabled. Still, the

capturing of key and touch timing is subject to some jitter, up to 30ms depending

on the platform (see Bellec et al. [pub:1] for details).

1The TagATune game collected the similarity data in a bonus round, see Section 3.2.1.
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Allowing for better accessibility, the central user interface elements are shared

amongst all modules: The playback of media can be controlled using speaker-

symbols in the centre of the screen, which are animated to visually feed back the

playing status of the represented song.

CASimIR also saves timing data and the sequence in playback for each media item.

Close to the display of current players in the match at the bottom (see e.g. Fig-

ure 4.5), an (orange) time bar on the left shows the remaining time (from 60

seconds) for the particular module. The application starts with login and main

menu. A match then consists of a synchronised (see Section 4.1.2.2) succession of

6 modules (currently: STOSO, TapTempo, STOSO, TapTempo, STOSO, TapRhythm)

followed by reward displays (Section 4.1.2.3).

Figure 4.5: Spot the Odd Song Out modules: Similarity.
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Figure 4.6: User interfaces of the TapTempo (left) and TapRhythm (right) modules.

4.2.2 Song Library

The current Song Library of the back-end in Spot the Odd Song Out contains the

1019 song excerpts from the MagnaTagATune dataset which also are referenced

by similarity data in that dataset. These excerpts have a length of 30 seconds. Fur-

thermore the 10,000 songs from the Million Song Dataset subset are included. For

the latter songs the participants are presented preview excerpts varying in length

from 30 seconds to the whole song1. The data has been enriched with ISRC codes

and preview URLs obtained from 7digital2 as well as genres provided by ROVI

through the Allmusic site3. Finally, 100 audio clips synthesised from MIDI for a

related perceptual experiment (FRI) [25] were included for use with the TapTempo

and TapRhythm modules. Those were fully annotated with tempo and further in-

formation by experts, and compared to the collected data in their later evaluation

[pub:1].

4.2.3 Lifecycle

The Spot the Odd Song Out game, initially only containing the similarity module,

was set up in three phases: After an internal evaluation of the user interface with

1Because of the 1-minute time restriction for a single similarity question, participants rarely

listen to more than 10 seconds of a song. The mean listening time per song in CASimIR is 3.5

seconds.
2http://developer.7digital.net/
3http://developer.rovicorp.com/docs
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10 participants at City University, a first field experiment was started in August

2012 by integrating the game into a study on music tags and similarity pursued

by Marily Niven at City University. Out of the 33 participants reaching the game

in the survey, only 20 were able to provide data, as this field test revealed some

incompatibilities with different browsers which could now be addressed and fixed.

The collected similarity data also allowed to bootstrap the AI players for the game

by providing answers to similarity questions.

A following phase contained a larger distribution of the game within City University

and KTH Stockholm. In this phase, the multi-player functionality was tested and

improved. Also, the TapTempo and TapRhythm modules were added to the game.

We furthermore presented a prototype of Spot the Odd Song Out at ISMIR2012 in

Porto [pub:3].

After final improvements including development and further testing of a more pro-

fessional UI design1, Spot the Odd Song Out was released on Facebook in late

February 2013, and efforts were made to distribute the game widely. As an exem-

plary measure for the effectiveness of the data collection in the different phases,

Figure 4.7 shows the amount of similarity data collected with Spot the Odd Song

Out until the date this thesis was submitted.

4.2.4 User Participation Over Time

Figure 4.7 shows the number of participating users until May 2014. The graph

shows a large participation during the first months where the game was actively

promoted. Most participants were guided to the game via Facebook, although less

than half of them used the option to link their Facebook profile to the game. As is

visible from the steep rise of the graph during February and March 2013, it was

possible to attract a large number of users within a short time using peer-to-peer

advertisement on the social network and mailing lists such as reddit2 or music-

ir3. During this time, the majority of similarity data was collected, as visible in

Figure 4.7 and denoted in Table 4.1.

1Thanks to Benjamin Szepan for providing the draft of the current look.
2http://www.reddit.com/
3now ISMIR-community
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Figure 4.7: Similarity data collected in a pre-phase, during the main run and the

further life of Spot the Odd Song Out.

The number of returning users, as plotted in Figure 4.8, is helpful in understanding

the sudden drop in engagement after the very active months in the game. As users

provided their data anonymously, and profiles were stored only on the basis of

the provided user attributes such as age etcetera, only the data regarding users

logged in via Facebook can be used to gain such insight. Note that those users are

not identified directly but through anonymised hash values. Our analysis of the

number of distinct days on which users would return to the game revealed that of

the 94 users who logged in with their accounts, 26% returned at least once, and

10% returned on two or more days.

We allowed participants to provide feedback of their experiences with Spot the Odd

Song Out at the end of each match. In total, 128 full-text responses were submitted

until June 2014. The general feedback was very positive and participants reported

they enjoyed playing the game. The Spot the Odd Song Out module was understood

by all commenting players, although some asked for more guidance regarding the

relevant features for similarity and possibly missed the multi-player agreement

basis of the reward process. Most critique concerned the TapRhythm module for

collecting rhythm. For many players this task was unclear and very complex to

involve in within the short given time.
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Figure 4.8: Logged-in users in Spot the Odd Song Out per month from February 2013

until May 2014.

4.2.5 The CASimIR dataset - Data Collected with Spot The Odd

Song Out

The Spot the Odd Song Out game is available publicly on the World Wide Web and

Facebook since March 2013. Note that the data analysed in the following text is

limited to the amount collected until May 8th 2013, when first experiments were

performed on a snapshot of the data.

As of 8th May 2013, 356 unique players played Spot the Odd Song Out, with 256

players gathering more than zero points. More than a third of those logged in

using the Facebook social network, and more than 68% provided valid age and

country information. Within this time, we have collected the number of annotations

expressed in Table 4.1:

Similarity TapTempo TapRhythm

1928 1080 492

Table 4.1: Number of annotations collected per module (8th May 2013).

The number of similarity data is the largest amongst the data types collected

through Spot the Odd Song Out due to the number of similarity modules contained
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in each game. In general, although games can be joined and left at any position,

the distribution of modules in a match (3,2,1) is very well reflected in the number

of collected data. The data as counted in Table 4.1 is shared under a Creative

Commons license and can be downloaded online1. We furthermore plan to provide

updates on the dataset.

4.2.6 Music Similarity Data

The Spot the Odd Song Out similarity module collects relative similarity data as

described in Chapter 3. Choosing a clip Ck out of three clips Ci, Cj , Ck in the sim-

ilarity module results in 2 similarity statements: Clip Ci and Cj are more similar

to each other than Ci is to Ck, and Clip Cj and Ci are more similar to each other

than Cj is to Ck (see Equation (3.2)). The Question Working Set of triplets was

designed to create a densely interconnected set of similarity data, where transit-

ivity of similarity relations can be capitalised: The Song Working Set for this task

was initialised with only 20 random songs across several genres. Data from test

studies was used to provide automatic answers (getAIVote) for the known triplets.

For the full publication of the game, the Song Working Set and triplet Question

Working Set were expanded to provide a controlled number of Questions contain-

ing songs of the same genre. The Song Working Set was further expanded when

70% of currently active songs were annotated more than 7 times, with half of the

added triplets having consistent genre. This resulted in a total of 165 referenced

clips on 8th May 2013 through the automatic Working Set expansion.

The controlled expansion of the Song Working set was effective: While the number

of clips directly or transitively related to each other via the similarity relation
sim
>

in the MagnaTagATune dataset was maximal 3 (see [pub:9]), Table 4.2 shows that

the majority of the clips in the CASimIR similarity data are related to at least 5

other clips. This also is clearly visible in the visualisations of those datasets (see

Figures 10.3 and 10.5 on pp. 218 of the appendix).

Interconnections between clip pairs come at the cost of fewer new clips: the cur-

rent CASimIR similarity dataset contains only 165 clips, while MagnaTagATune

1http://mi.soi.city.ac.uk/datasets/aes2013casimir/stosoaes2013_r1298.zip
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4.2 Case study: Spot the Odd Song Out

# Pairs ≥ 40 ≥ 20 ≥ 5 3
∑

MTT 0 0 0 1011 1011

CASimIR 155 211 421 751 751

Table 4.2: Number of connections to other clip pairs for MagnaTagATune (MTT) and

CASimIR dataset after filtering inconsistent data.

references about 500 clips with the same amount of votes. Also, control questions

with a pre-determined odd song out and two identical clips were inserted into the

game to assess the overall quality: 7% of monitor triplets containing 2 identical

clips (A,A,B) were failed by participants, still hinting at good data quality in this

task.

A later snapshot of the collected similarity data, which makes use of the participant

attributes collected with the game data, was presented at the DMRN+8 workshop

and is described in sections 4.3.1.2 and 8.7. The graphs in Figures 10.5 and 10.6 on

pages 220 and 221 show the current (01/05/2014) state of the CASimIR similarity

dataset.

4.2.7 Tempo and Rhythm Data

Our publication [pub:1] with KTH Stockholm presents the first example of a collab-

oration being built on the CASimIR framework: For research in speed and tempo

perception, two modules (see Figure 4.6) were added to the Spot the Odd Song Out

game by Bellec et al. [pub:1]. The modules were the first to employ live recording

of keyboard and mouse / finger tapping data via a HTML5-based music GWAP.

The Song Working Set for this question type was initialised with 10 songs from the

Million Song Dataset and 10 synthesised clips from the Friberg Dataset (FRI). It

was expanded if 70% of currently active songs were annotated more than 10 times.

After filtering of duplicate taps due to client problems, we report 1080 TapTempo

annotations. For the following Section 4.2.7, we only consider annotations with

a standard deviation of the inter-tap-intervals below 25%, and single timing devi-

ations below 35%. This leaves 668 annotations representing tempi between 30 and
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300 beats per minute. Analysis by Bellec et al. [pub:1] shows a good correspond-

ence of tapped tempo with the expert annotations for the FRI dataset.

The published CASimIR dataset also contains 492 rhythm tapping performances.

The interpretative freedom of the task lead to different understandings reported

by participants which also could be identified in the collected data: Some player

tapped regularly, some repeated a particular pattern, other performances changed

and added rhythmic layers during the recording. Bellec et al. [pub:1] showed that

by aggregating over annotations for each song, time signatures can be extracted.

However the rhythm data would not allow for further deductions.

#Annots ≥ 3 ≥ 10 ≥ 20 ≥ 40

Tempo 47 37 27 5

Rhythm 44 29 5 0

Table 4.3: Number of songs being annotated at least #Annots times for TapTempo

and TapRhythm.

4.3 Towards Culture-Aware Similarity Modelling

As described in Section 4.1.2.1, CASimIR enables the collection of participant at-

tributes through social networks and additional login forms. Moreover, anonymised

participant information is linked to any annotations provided by a participant dur-

ing a game or survey.

For the task of similarity learning, in addition to the similarity data itself, we gain

annotations of that data, enabling the verification, grouping and further analysis

of distinct subsets of the collected data.

As Bogdanov [11] elaborates for music preference in music recommendation sys-

tems, the context in which listeners experience music has a strong influence in

whether further song recommendations are seen as appropriate and pleasant or

not. McDermott [55] summarises influences outside the acoustic material as fol-

lows:
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“Context matters, as does experience – we like things we have heard

before. Music preferences additionally involve the interaction of per-

sonality traits and emotional content, aesthetic principles such as op-

timal complexity, and physiologically realized episodes of peak emo-

tional arousal.”

Leblanc [48] provides a model for variation in music preference, which amongst

other such factors, includes what we summarise as short-time feedback processes

within the mind during the listening experience. It becomes clear that the mat-

ter of music preference and similarity is affected by many factors not observable

through today’s web-based GWAP. Still, Leblanc [48] mentions a many static influ-

ences that can be gathered through CASimIR, such as self-reported musical ability,

musical training, sex, ethnic group, socio-economic status, and age relating to

personal maturation. Social network integration even allows for deriving general

information such as nationality and location of peer group, family, attended media,

music preference and authority figures. More advanced gamified strategies may

allow to test players’ attention, memory and auditory sensitivity in the future. Of

course, wherever large quantities of such data are combined, ethics of privacy and

data protection should become of primary interest.

Because of various reasons including personal data protection, to our knowledge,

few similarity data is publicly available containing information about the associ-

ated provider of the data and their context. We here focus on cultural impact on

similarity data, thus CASimIR aims to link annotations to cultural profiles rather

than participant data. Spot the Odd Song Out collects basic information including

a 5-year-quantised age, gender, country of location, nationality, spoken languages

and musical experience or training where participants enter this data or allow for

it to be collected from the social network. Furthermore, information such as an

estimated country-based location of data input, time of day for data entry, and de-

bugging information is associated with the similarity data. The amount and type

information available varies between participants, which lies in the nature of the

deliberate data provision by them.

We consider cultural information as it is encoded in participant attributes collected

via the Spot the Odd Song Out game. Considering the later inclusion in similarity
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models, collected attributes can be grouped as follows: Quantifiable participant

attributes such as age or length of music education allow for more or less direct

representation in numeric values, whereas categorical information such as favour-

ite genres, bands, and language identifiers require further mining.

4.3.1 A Comparative Approach for Cultural Modelling

The cultural information can be employed on a super-model level, relating multiple

similarity models for cultural subgroups: Here, several models are trained as de-

scribed in Chapter 6, but only on subsets of the similarity data which have been

determined based on the cultural attribute data. The sets can either be selected

to contain similarity votes from users sharing a certain combination of cultural at-

tributes, or picked randomly for later analysis of algorithm performance. Either

explicitly (as with cultural information based predefined data subsets) or implicitly

(when testing random subsets for model performance), the combinations them-

selves constitute the definitions of potential cultural groups. Now, models are ad-

apted specifically to the similarity data for the data subsets, and the combination of

all of the similarity measures constitutes a super-model. When applying the model

in recommendation, a (e.g. linear) combination of the sub-models’ outputs can be

used to determine the similarity of music clips given the cultural information about

the user.

Alternatively to training separate models for subsets of the data, the cultural in-

formation could be directly included at the model level. Cultural attributes would

become part of the feature space now describing both the song and the participant.

Unfortunately, the multiplicity of possible cultural attributes and their values re-

quires more data than has been collected through Spot the Odd Song Out at this

point.

4.3.1.1 Data Preparation

The creation of similarity data subsets necessitates the usage of implicit similarity

measures on the user attribute data: If we are not interested in creating as many
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subsets as we have unique profiles, clusters of user attribute data have to be de-

termined which then allow for the selection of associated similarity data subsets.

For quantifiable participant attributes, this process is quite straightforward, as it

only demands for numerical intervals to be defined or detected using the under-

lying dataset. For categorical participants attributes, similarity has to be defined

given external information about the specific annotations. The categories may be

selected manually as well, as in the following paragraphs which deals with the com-

parison of similarity models over geographical regions. In any case, the selection

and grouping of relevant attributes imposes a structure on the cultural attributes

of the participants and the music similarity constraints, and thus predetermines

the possible cultural relations to analyse in the data.

4.3.1.2 Geographic Data Subsets of CASimIR

As a first experiment towards culture-aware music similarity models, we chose to

analyse location as a specific culture indicator for further investigation. Location of

input is the most frequently annotated user attribute in the CASimIR similarity da-

taset, as it was gathered from users’ Internet Protocol (IP) addresses by matching

them to local GeoIP1 database at the time of input. We did not expect a large in-

fluence of this attribute on the similarity votings, as pop music is a macroculture2

existent and communicated on a scale exceeding our scope of single countries.

Still, local subcultures and differences in appreciation of styles exist.

From the similarity data collected via Spot the Odd Song Out until 15th November

2013, four subsets were selected, each containing similarity votes from one specific

European country. For the experiments below, we chose the countries of France

(Fr), Germany (De), Sweden (Sw) and the United Kingdom (Uk) for reasons of

available dataset size and to maximise comparability between the datasets. The

similarity data provided from participants located in these countries was used to

generate the single country data sets Q̂De, Q̂Fr, Q̂Sw and Q̂Uk.

1http://www.maxmind.com/en/geolocation_landing
2See Slobin [86] for a terminology on cultural groups.
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After collection and combining, inconsistencies were removed from these similarity

datasets as described in Section 3.1.2 resulting in the cycle-free similarity datasets

QDe, QFr, QSw, QUk.

QDe QFr QSe QUk

constraints 459 463 309 411

clips 151 152 123 151

Table 4.4: Number of unique constraints and clips contained in each of the four coun-

try datasets.

As a first experiment towards hierarchical modelling of music similarity across

cultural groups, the experiments reported in Section 8.7 analyse how well specific

models can be trained on the single-country subsets. We then go on to analyse

how the performance of the specific models compare QDe to non-specific general

models trained on the complete dataset. Furthermore, a comparative analysis is

presented comparing the individual country model to a general model for all data.

This reveals some specific musical facets important for the adaptation to the QDe

dataset.

4.4 Conclusions

The new presented framework provides support for the creation of multi-player

games and surveys on the web using modern cross-platform technologies such

as HTML5. A means for efficient collection of music annotations, CASimIR and

the presented GWAP methods represent a solution to research question rq:5 . In

particular, the open source framework delivers the following prerequisites for a

fast game development:

• An overall architecture for GWAPs

• A back-end API and example implementation for data management

• A game framework for web and social network games for desktop and mobile

platforms

• A stable game implementation, the Spot the Odd Song Out game.
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It is designed to reduce the development effort for creating a GWAP, especially for

researchers whose core interest is not web development. Collecting human data is

essential for research into the semantics and perceptual effects of music, such as

music similarity.

An important novel aspect of our GWAP architecture is the separation of data man-

agement and game front-end: The CASimIR back-end organises the media and

collected annotations, thereby providing methods for dynamically reacting to par-

ticipant numbers, making experiments scalable from the start of their design. The

clear definition of annotation collection tasks and formats through the API facilit-

ates the independent development of different user interfaces. User interfaces can

be built with the CASimIR game front-end, which also allows for multi-player syn-

chronisation and social network integration. Adding new types of data collection

questions to the game front-end is facilitated through a modular structure, en-

abling our partners at KTH Stockholm to collect 2000 annotations including tempo

and rhythm data.

The analysis in Section 4.2.5 encourages that our framework is enabling the col-

lection of music annotations via GWAP: We successfully acquired a considerable

number of over 250 unpaid participants in a short time, particularly by reaching

them via multiple platforms (different browsers, two game servers, media stream-

ing and Facebook). The quantity of more than 2000 similarity votes collected is

sufficient to enable first similarity experiments on cultural groups as described in

Section 4.3. Results of these experiments will be presented in Section 8.7, includ-

ing an analysis of regional specifics in importance of music descriptors for music

similarity. Regarding the quality of collected data, a certain control of the experi-

mental process can be exerted on the side of the participant interface, and quality

can be measured using control questions. Still the tap rhythm module showed

the difficulties in providing an intuitive user interface where no external control

or explanation can be given. The combination of different tasks within one match

proved to be well-received according to our collected feedback, and players very

consistently played through the whole match. In future work, a selection of spe-

cific games might allow players to exclude less motivating modules, reducing their

possibly negative effect on the motivation to play additional rounds.
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The decline in usage after the first very active months corresponding to the our

reduced marketing points out the importance of marketing and other measures to

keep participants interested and motivate their return. Feedback collected shows

that most users enjoyed playing the game, but few returned more than on two

days. Although Spot the Odd Song Out allows for customisation of the game with

avatars and individual genres, only few users used the provisions, pointing to a

need of further research in motivation of users over larger periods of time. Provi-

sion of marketing that finally achieves a snowball effect in participant acquisition

certainly has to be accounted for when comparing the costs of creating a GWAP to

a traditional survey with paid participants. Most users found out about the game

through friends and group posts on Facebook. It is indicative of the limitations of

zero-funding marketing that our participant locations were strongly related to the

collaborating researcher’s social networks, with strongest participation in the four

European countries mentioned in Section 4.3. Here, our framework provides new

methods for dynamically adapting the test data (questions) to unknown participant

numbers.

CASimIR supports and encourages the reuse and a sharing of data. By creating

different annotations on audio data in a coordinated way, it helps provide more

data research that integrates and relates the different annotations. Therefore, the

CASimIR system and the collected data are available as open source/data and we

hope for it to enable more data collection and more collaboration and sharing of

datasets among the research community.

The basis of any culture-aware similarity modelling though lies in the general meth-

odical ability to adapt computational models to the collected similarity data as

such. Tackling this topic, the following sections will comprise the central modelling

part of this thesis, with a general overview of adaptive models, new and existing

methods for training them, and the representation of music clips within the mod-

els. To this end, we will now discuss acoustic and cultural descriptors for audio

clips in large datasets such as MagnaTagATune and the Million Song Dataset.
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Is it high?

Is it low?

Is it in the middle?

Is it soft?

Is it loud?

Are there two?

Are there more than two?

Is it a piano?

Why isn’t it?

Was it an airplane?

Is it a noise?

Is it music?

(John Cage, 1961)

5 Features for Large Online Datasets

This chapter discusses computational representations of music clips, further re- [pub:6]

[pub:9]

[pub:7]
ferred to as features, for the application of similarity modelling. In the above

text, we discuss the representation of similarity data via graphs and similarity con-

straints, and the users providing it by means of attributes provided by them. For

measuring or predicting similarity, the computational representation of music de-

termines the facets such as physical, musical, and cultural attributes that can con-

tribute to the similarity assessment. It is therefore necessary to carefully choose

features when considering the optimal models for music similarity searched for in

rq:1 .

As depicted in Figure 5.1 our signal flow for modelling music similarity is divided

into two stages: Firstly, features are extracted from available representations of

music such as audio recordings, tag annotations and further metadata. In the

second stage, these features are then fed into models based on classifiers or re-

gression for either training or prediction of similarity.
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Audio Data

Tags and

Metadata

Feature

Extraction

Similarity Model

Training and

Evaluation

Similarity

Data

Features

Figure 5.1: Common signal flow diagram for music features and similarity data.

Unfortunately, the audio recordings themselves are not always available to the

researcher for analysis. Especially with popular and commercial music, this is be-

cause of copyright restrictions, but other limitations can be set by available means

for storage and distribution of the material. Both the MagnaTagATune and Million

Song Dataset datasets tackle this issue by providing precomputed features. This

has enabled music research on a large scale which resulted in numerous public-

ations1. The mentioned datasets utilise features available via the The Echo Nest

Analyse API. The availability of such pre-computed features allows for reproducible

and comparable experiments across large datasets. Features are often freely avail-

able, and can be shared more easily – in terms of legal restrictions and data volume

– than the audio itself. Fixed datasets with features furthermore define a standard

for further processing and provide for better comparability, as often implementa-

tions of the same feature extractors differ in small but relevant details. Still, the

types of features available via APIs or pre-computation are limited when no access

to the acoustic information is given. Furthermore, in the case of The Echo Nest,

the feature extraction process is not transparent. It would be beneficial if, instead

of sharing the feature data itself, usage of gold-standard open implementations or

even processing facilities can complement the sharing of fixed datasets of music

features in the future. Further research on more configurable extraction APIs is

pursued through the NEMA project [103], the SAWA2 framework and the ongoing

Digital Music Lab3 is aimed at tackling this with remote services for configurable

1see http://dc.ofai.at/browser/all?q=magnatagatune%20dataset and http://dc.ofai.at/

browser?y=all&q=million+song+dataset for related publications.
2http://www.isophonics.net/sawa/about
3http://dml.city.ac.uk

100

http://dc.ofai.at/browser/all?q=magnatagatune%20dataset
http://dc.ofai.at/browser?y=all&q=million+song+dataset
http://dc.ofai.at/browser?y=all&q=million+song+dataset
http://www.isophonics.net/sawa/about
http://dml.city.ac.uk
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feature extraction.

To facilitate the reproduction of our evaluation (see research question rq:3 ) on the

Million Song Dataset and MagnaTagATune datasets, we only use content-based

features derived from the The Echo Nest data as described in the following Sec-

tion 5.1. The usage of similar features for MagnaTagATune helped our collaborat-

ive work in Wolff et al. [pub:9]. For tag and metadata, we combine this information

with information available from third parties via free APIs.

Currently, holistic approaches for classification on audio including both feature

extraction and classification procedures within Deep Networks promise an altern-

ative paradigm to the two-stage signal flow displayed in Figure 5.1. As audio data

is difficult to acquire for the Million Song Dataset, for now, we provide and evaluate

a promising novel method for using RBM networks with available, derived features

in Section 5.3.2.

5.1 Processing Features from The Echo Nest API

The Echo Nest Analyse API allows for the remote extraction of many common au-

dio features1 from submitted audio as well as the retrieval of feature data and

metadata for known tracks. Both the MagnaTagATune and Million Song Dataset

datasets contain features from this API as part of the freely available data. Using

this data for experiments allows for easy reproduction of results, as the features

are available both via the fixed dataset and online API, and no access to copy-

righted content is necessary. The features can also be freely shared with experi-

ment results. In this way The Echo Nest provides a quasi-standard for features that

can be used for music analysis where audio content is not accessible, although the

range of applications is limited by the types of features available from The Echo

Nest [44].

Features are provided at the cost of the exact extraction procedure of some of

the features being held as a company secret. Largely though, the features are

commonly known in the MIR community and as such can be largely approximated,

1http://developer.echonest.com/docs/v4/_static/AnalyzeDocumentation_2.2.pdf
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or replaced by improved versions as shown by Khadkevich and Omologo [44]. The

features provided cover a large range from low-level such as energy and loudness

measures to high-level features such as mode and tempo. Here, the quality of

the higher-level features such as mode, key and particularly meter depends on

the performance of the underlying classifiers. Our initial experiments suggested

that especially the beat, meter and tempo features seem to work well only for

clips with a very steady meter and no long intros. For the music contained in

the MagnaTagATune dataset, with a large amount of world music and electronic

drone sounds, the beat-based features do not perform well and were therefore not

included into our experiments.

On the other hand, the chroma (called pitch features in the API) and timbre fea-

tures have been widely used for experiments related to music similarity [57, 100]

and alignment of different recordings [71] and were therefore chosen as the basic

audio features in our music similarity models.

5.1.1 Chroma and Timbre Audio Features

For our initial experiments ([pub:4, pub:6]), we only used the chroma and timbre

information, encompassed in the MagnaTagATune dataset. Chroma features sum-

marise a range of the spectrum into 12 coefficients corresponding to the tones of

the western chromatic scale. These features allow for representation of some har-

monic context without providing explicit analysis. Similarly, the timbre features

included in the dataset provide information that correlates to timbre in sounds.

These mid-level features have been extracted using The Echo Nest API. As many

toolboxes exist for chroma and timbre features, choosing this information as a

basis for our features allows for an easy extraction of similar acoustic features

independent of the web-based, and regularly updated API of The Echo Nest.

Both types of features are extracted on a segmentation of the clips. The segments

correspond to temporal regions with relatively steady frequency distribution. De-

tails of the segmentation algorithm are given by Jehan [39]. For each of these

segments, the MagnaTagATune dataset contains a single chroma and timbre vec-

tor, each ∈ R12.

102



5.1 Processing Features from The Echo Nest API

5.1.1.1 Aggregation via Averaging

The features noted above vary over time, and the number of feature values de-

pends on the specific time windows they have been calculated on. Other, especially

higher level features such as mode or key exist only on the time frame of a whole

song. In order to use the time-variant features to address similarity at the song

level, we aggregate their information over time using statistics such as mean and

standard deviation. This allows features based on different time window sizes to

be combined into one feature vector representing a whole music clip. We here

present two simple strategies of feature aggregation: Below, chroma and timbre

values are aggregated to average values per clip. We then present a method that

uses clustering for defining multiple typical feature constellations (e.g. chords for

chroma) per clip, thereby covering some of the variance. Although other types of

aggregators, e.g. using code vectors or temporal models exist, we here restrict

ourself to basic methods, that do not require the dataset to be fixed at the time of

model training. Besides variance as discussed in Section 5.1.1.3, simple statistics

such as median can be tested in place of the presented averaging strategy, but this

is outside the scope of this thesis.

As the timbre and chroma features are calculated on multiple segments for each

clip, they need to be aggregated to the 30 seconds time scale of a clip. As by Stober

and Nürnberger [91], a straightforward approach is to take the mean and variance

of the features over time and use these values for representing the clip. In our

experiments, the variance of chroma and timbre features has not proven helpful

for modelling clip similarity. Thus, in our experiments (see Section 8.4.1), we only

evaluate features based on the means of chroma features and timbre features re-

spectively. Earlier tests including variance statistics did not improve results. For

each clip c(i), i ∈ {1, · · · 1019}, a single timbre average t1(i) and chroma average c1
(i),

t1(i) ∈ R12 and c1
(i) ∈ R12

≥0, are extracted.

5.1.1.2 Clustered Aggregation

In Section 8.4.1 we also test using the means of 4 cluster centroids tj(i) ∈ R12, cj(i) ∈
R12
≥0, j ∈ {1, · · · 4} being extracted for timbre and chroma features on each clip
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c(i), i ∈ {1, · · · 1019}. The incentive for this approach is to preserve some of the

variety of harmony and timbre in the clips. The motivation is that multiple chords

are expected throughout a 30 second MagnaTagATune excerpt. The centroids are

extracted using a weighted k-means variant, which accounts for the differing tem-

poral lengths of the individual segments: centroids are influenced more strongly

by feature data from longer segments. The final relative temporal weights of the

cluster centroids are saved in scalars λ(cj(i)), λ(tj(i)) ∈ [0, 1]. The centroids are then

concatenated ordered by descending weight. This allows to the representation of

multiple centroids in a single feature vector.

5.1.1.3 Variance

For the above aggregation strategies, the variance from the average or cluster

centroid can be calculated and integrated into the feature vector using our imple-

mentation (see Section 7.3). As our experiments showed no or negative impact of

this additional information on model training, the variance for chroma and timbre

means is not included in the audio features used for experiments in Chapter 8 if

not stated otherwise.

5.1.1.4 Normalisation and Clipping

For later use of the feature vector with classification and regression methods cer-

tain restrictions on range and distribution of the features have to be satisfied. Too

small or large values may pose numerical problems during optimisation. Also, the

relation of ranges in feature dimensions is of importance: When modelling simil-

arity through a weighted sum of individual feature differences, a later analysis of

weights requires all feature dimensions to occupy the same value range. The pro-

cess of normalisation may refer to the equalisation of ranges, mean, and possibly

variance across feature dimensions, taking into account a set (possibly the com-

plete data set) of feature instances. We call this global normalisation. Alternatively

normalisation is also applied on single-instance basis for some features, scaling

and shifting feature dimensions by constant factors to fit the values in the single

feature vectors to a defined range (local normalisation).
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Local normalisation is used with centroids or averages of the chroma features,

which are normalised on a per-clip basis to fit the interval [0, 1] using

c̃j(i) =
cj(i)

maxk(c
j
(i)k

)
(5.1)

for clusters j ∈ {1, · · · 4}, clips c(i), i ∈ {1, · · · 1019} and chroma dimensions k. This

normalisation focusses the later comparison of features on the relative shape of the

chroma distribution, as energy levels are now scaled to the same extrema across

clips .

Global normalisation and clipping is applied to the timbre features: The timbre

data is provided in an open numerical range [−∞,∞] by The Echo Nest. This also

applies to the extracted centroids and averages. In order to adapt the timbre fea-

ture data’s range to those of the chroma and other features, the values are clipped

to a maximum threshold on a global level. The clipping threshold was chosen such

that 85% of the timbre data values for all clips relevant for the similarity dataset

are preserved. Afterwards, the timbre data is shifted and scaled to fit tj(i) ∈ [0, 1].

5.1.2 Further Energy-based and Higher-Level Audio Features

In early experiments ([pub:4, pub:6]), we restricted the set of features for simil-

arity learning to the easily extractable features mentioned above. Slaney et al.

[84] have shown a feature set complementary to those described above to also

facilitate the adaptation of music similarity measures to ground truth based on an-

notations. In their experiments, the segment-based chroma and timbre features

are not used. Instead, they use those features from the Last.fm API which are

already given on the temporal scale of the clips, as well as statistics for segment

and beat locations and their frequencies. These features are the result of differ-

ent classification, structure analysis and optimisation algorithms for music, which

have been described in detail in Tristan Jehan’s PhD thesis [39].

In the experiments presented in this paper, we extend our low-level features by re-

producing thefeatures used by Slaney et al. [84], as far as the relevant information
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is available in the MagnaTagATune and Million Song Dataset datasets. The remain-

ing features have been omitted to ensure reproducibility of the experiments. See

Table 5.1 for a list of the features incorporated in our study.

segmentDurationMean tempo

segmentDurationVariance tempoConfidence

timeLoudnessMaxMean beatVariance

loudness tatum

loudnessMaxMean tatumConfidence

loudnessMaxVariance numTatumsPerBeat

loudnessBeginMean timeSignature

loudnessBeginVariance timeSignatureStability

Table 5.1: Features from Slaney, Weinberger and White [84] used in our experiments.

Most of the features in Table 5.1 are directly taken from the features included in

the dataset. The "-Mean" and "-Variance" features represent the respective stat-

istical operation on the provided feature data, with no further processing besides

a final normalisation, as explained in the following paragraph. The beatVariance

feature represents the variance of the time between detected beats. If no beats

are detected, the variance is set to zero. The tatum feature contains the median

length of the inter-tatum intervals. Analogously, the numTatumsPerBeat feature

results from the division of the median inter-beat interval by the tatum length as

described above. As a fallback, if no tatum positions are detected, the tatum and

tatumConfidence features are set to zero, while the numTatumsPerBeat feature is

set to a default of 2.

Finally, each of these features is globally normalised over the values for the clips

in the whole similarity dataset: The values are scaled and subtracted their minimal

value, to result in a one-dimensional sji ∈ [0, 1], for clips c(i). The features are

not whitened as described by Slaney et al [84], as we are interested in keeping

the features’ original associations to properties in music theory. Note that some

of the features allocate only a limited number of actual values. For example, the

timeSignature feature uses only values out of {0
7 ,

1
7 , · · · ,

7
7}.
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5.2 Tags from Catalogue Annotations and Folksonomies

Although the above audio features capture information about the clips’ acoustic

contents, further information is needed to more adequately represent associations

and cultural context of the work. Such information includes user associations with

the clip, in form of textual annotations, internet “like” data, and metadata. We

introduce such contextual information on the clips via tag-based features. Such

culture-related metadata has been shown to complement acoustical information

present in the audio, e.g. in Novello et al. [68] and the experiments reported in

Section 8.4.1.

5.2.1 Genre Tags

Figure 5.2: Tag cloud representation of the genre data added to MagnaTagATune

from the Magnatune catalogue. The printed size of each genre corres-

ponds to its frequency of occurrence in the dataset, while the spatial ar-

rangement is not related to the genre data.

To this end we employ genre tags from the Magnatune label’s catalogue, which is

available online1.

1http://magnatune.com/info/api.html
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Genre information constitutes a special case of social tag data, as it is affected by

the interplay of musicological standards and market- as well as consumer-based

categorisations. Several theories have been proposed on the relationship of cat-

egorisation and similarity perception in psychology, underlining the strong relation

of these cognitive processes [29, 32].

The Magnatune catalogue contains descriptions of the songs which have been as-

sociated to the MagnaTagATune dataset’s clips: Each song is annotated with a

sequence of 2-4 genre descriptions. Figure 5.3 on page 109 captures the almost

hierarchical relationship of these genres in a graph: Iterating over all clips in Mag-

naTagATune, edges are drawn from genres on second or following positions to the

genre listed first. The resulting graph shows that relation suggesting that genres

are annotated starting from the most general to the most specific association. We

assign these genres to the corresponding clips, using binary vectors c(i) ∈ {0, 1}44.

Here, the positions corresponding to existing annotations of clip c(i) with genre cj(i)
are set to 1, whilst the other entries remain at 0.

The CAMIR framework generalises the representation described above to tag data

from other sources such as online folksonomies created by users of social mu-

sic networks. In particular, we have implemented and tested data gathered from

Last.fm for replacing the genre features for the CASimIR dataset, but further filter-

ing and processing of the tag data, similar to [90], is necessary for effective usage

of that data.

This concludes the acoustic and tag-based features to be used for our experiments

in similarity modelling. Although the above feature definitions include all the in-

formation available, the performance of models and model training is also affected

by the way this information is represented in the feature vector and therefore in the

model itself. The following section discusses two methods to achieve transforma-

tions of the feature representation, PCA commonly used for efficient data repres-

entation as well as Restricted Boltzmann Machines for adaptive feature transform-

ation.
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5.3 Feature Transformations

After extraction of the feature information, general transforms can be applied to

change the overall representation of the combined or single features. We now dis-

cuss PCA with the intention to reduce the dimensionality of large feature vectors

and effectively equalise the resulting complexity of metric models based on differ-

ent features. This allows us to compare the impact of the information inherent to

those features, as well as the effect of feature dimensionality in Section 8.4.2.

Furthermore, the representation of the feature information as given to the model

is crucial especially for rigid model architectures such as metric models. Although

some feature pre-selection is included in the standard weighted Euclidean and Ma-

halanobis distance models, only existing, and in the case of the Mahalanobis dis-

tance, fixed interaction terms can be used to represent the clips and approximate

the similarity data. Especially when using simple models, such as parameterised

linear models trained with gradient ascent or SVM, limitations apply to what sim-

ilarity relations can be modelled and how well complex data can be adapted to

during the training process. Here, transformations of the features before training

can be used to change the input feature space of similarity measures, thereby e.g.

including interaction terms between individual features or maximising independ-

ence across the feature dimensions. This effect is relevant for both the PCA and

RBM transformations discussed, and is primary focus in our RBM experiments in

Section 8.4.3.

In all our experiments with feature transformations, the transformations are de-

termined prior to the splitting of the data into test and training sets. This allows

for a better adaptation to the data in total, and is particularly useful for the com-

parison of different representations on the largest available basis of data points. As

discussed in Section 8.1.2 the knowledge of the whole datasets features in advance

is only representative for a specific set of applications.
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5.3.1 Principal Component Analysis

Principal Component Analysis (PCA) allows to transform the feature data from the

original vector space onto a basis which allows for decorrelation of the resulting

feature dimensions. The analysis involves the identification of the fraction of vari-

ance being explained by each component, which enables a reduction of feature

dimensions while minimising the loss of information in the data. As the num-

ber of parameters of most similarity models depends on the feature dimension,

Section 8.4.2 uses PCA for comparing model performance with reduced feature

dimensionality. The PCA is computed directly on the feature data, based on the

covariance of features across the dataset. Thus, the selection of clips and their

features to compute the PCA influences the resulting transformation. For all ex-

periments with PCA in this thesis, a fixed PCA transformation was determined upon

the whole dataset prior to cross-validation.

For each of the single and combined feature types, a PCA can be performed. After

sorting according to variance in the principal components, we reduce the dimen-

sionality of the transformed features, keeping only a fixed number of components

with greatest variance across the relevant dataset. In our experiments in Sec-

tion 8.4.1, we use 12 and 52 dimensions based on the smallest dimensionality of

the underlying single features.

After transformation into the principal component space, across the whole data-

set, the individual feature components are shifted and scaled to fit the interval

of [0, 1]. The impact of such normalising of the features was tested. We found

that normalising the features after transformation generally improved the results

of the resulting similarity model after training. In this way we gain sets of fea-

tures containing various information types but sharing a constant dimensionality,

which enables insight on the usefulness of different features independent of their

dimensionality.

5.3.2 Transforming Features with RBM

Restricted Boltzmann Machines (RBMs) are artificial networks that can be used to [pub:2]
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learn a non-linear (in contrast to the linear PCA) transformation of an input feature

space. An RBM as depicted in Figure 5.4 consists of two layers: the visible layer V

represents input features while the hidden layer H yields the transformed features

after training of the RBM. The individual nodes are connected between, but not

within the two layers through symmetric connections wij .

As described in Section 2.5.4.1, RBMs have recently been successfully applied for

learning and extracting audio features, mostly based on spectrograms of audio re-

cordings. For the datasets used in this thesis and the evaluation in Section 8.4.3,

hardly any audio material can be analysed because of legal restrictions. We there-

fore provide a concept for using the available features from The Echo Nest for

transformation with RBMs. We here report from a collaboration with Son Tran

which has been published in [pub:2]. The RBM toolbox by Tran used for our exper-

iments can be downloaded online1.

RBMs are probabilistic models. Thus, different training runs can yield different

transformations even when used with the same training data. After being fed

through the trained RBM, each feature in the transformed space captures the

weighted non-linear combination of the original features. Therefore, the trans-

formed features can represent relations between original features in the dataset,

which are not available to a linear weighting of components in a distance metric

but which can be useful for comparing the similarity between samples.

We now sketch the mathematical background of RBMs to allow for an understand-

ing of their operation. Smolensky [87] describes RBMs as two-layer connectionist

systems characterised by an energy function E

E(v, h) = −
∑
ij

viwijhj −
∑
i

aivi −
∑
j

bjhj (5.2)

to represent the joint distribution:

P (v, h) =
1

Z
exp (−E(v, h)) (5.3)

with the partition function Z =
∑

v,h exp (−E(v, h)).

1http://mi.soi.city.ac.uk/datasets/aes2013framework/
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In the above equation, v and h are notations of states of visible and hidden layers,

the matrix W contains the connection weights wi,j , and a, b represent the biases

for the visible and hidden layers respectively.

Figure 5.4: Restricted Boltzmann Machine with 4 nodes in the visible (V) and

hidNum = 3 nodes in the hidden layer (H) as well as connection weights

W.

Since all units in one layer are conditionally independent of each other, the state of

a unit in the hidden layer depends only on the states of units from the visible layer

and vice versa. The probability of a unit being activated is given by

P (hj = 1|v) = σ(
∑
i

viwij + bj) (5.4)

P (vi = 1|h) = σ(
∑
j

hjwij + ai), (5.5)

where σ(x) = 1
1+exp(−x) represents the logistic sigmoid function, which introduces

the non-linearity into the transformation represented by an RBM.

The parameters θ = {W,a, b} of an RBM are determined using an unsupervised

learning process: Training an RBM means to maximise its average log-likelihood ˆ̀

(or equivalently the product of probabilities). This can be done given a set of inde-

pendent and identically distributed samples V = {v(1), v(2), ..., v(N)} and maximising

ˆ̀=
1

N
ln(L(θ|V)) =

1

N

N∑
k=1

lnP (v(k)|θ) (5.6)

using gradient ascent. Here, the number of units in the visible layer is determ-

ined by the dimensionality of the input features, while the number of hidden units

hidNum remains a hyper-parameter.
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However, it is not easy to compute the exact gradient from the log-likelihood be-

cause of the need to compute the partition function Z. In particular, the gradient

ascent requires an expectation of data sampled from the model as

wij = wij + η(〈vip(hj |v)〉0 − 〈vihj〉∞). (5.7)

Here, 〈·〉0 is the average with regards to the data distribution and 〈·〉∞ is the aver-

age with respect to distribution from the model. An approximative approach to this

problem is to sample the states from the model using Markov Chain Monte Carlo

(MCMC). This method, however, is very slow and unstable since the model needs

to perform a long and unspecified pre-sampling process before reaching an equi-

librium state and generating valid samples. In [35], Hinton proposed an algorithm

named Contrastive Divergence (CD) showing that even with small number of pre-

sampling steps – in fact even with a single step – the learning can approximately

minimize the divergence between the data distribution and the distribution of the

model:

wij = wij + η(〈vihj〉0 − 〈vihj〉n). (5.8)

If we now input feature values in the visible layer of an RBM, the resulting hidden

layer activations represent a non-linearly transformation of those features. Here,

the number of units in the hidden layer (hidNum) determines the dimensionality

of the new feature space.

5.4 Conclusions

In this chapter we discussed methods for feature extraction and processing for sim-

ilarity learning on large datasets. After describing the role of feature extraction in

the common signal flow of Music Information Retrieval, we presented feature ex-

traction techniques based on pre-computed features by The Echo Nest. As these

features are included in major open music datasets such as MagnaTagATune and

the Million Song Dataset, the methods described above allow for reproducible ex-

periments including a variety of features without requiring access to the possibly

copyrighted audio recordings. This allows for reproducible evaluation of models

on the mentioned large datasets respective research question rq:3 .
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The different features presented here present the basis of representing clips to

similarity models. The variety in methods presented here as well as their later

evaluation contribute to the wide spectrum of approaches considered to answer

rq:1 . Features extracted include a large range of commonly used audio descriptors

as well as a new cluster-based representation of chroma and timbre information.

We extend the audio-based clip descriptions with binary-vector context features

based on genre tags associated to the clips. The genre tags being mined from

the Magnatune catalogue are a new extension to the MagnaTagATune dataset and

available online through the CAMIR framework1. They complement existing audio

features with cultural information. Normalisation is performed to match the value

range of [0,1] for all features, but other value ranges can be easily achieved via

parametrisation. The acoustic and genre-based features can be combined which

proves to be effective for learning similarity in our experiments (Section 8.4).

Transformation of features after extraction using the PCA method for decorrelation

of feature input can allow for a more efficient representation of the information. We

introduced a new method for transforming features via RBMs. In contrast to PCA,

the projection allows for a non-linear combination of features, which is parame-

trised in an unsupervised machine-learning step. Our experiments in Section 8.4.3

show that similarity modelling can be improved with the novel RBM method and

made more efficient with PCA. But transformation prohibits later musicological

analysis of information captured by the models.

As this thesis focusses on the general modelling and learning of music similarity,

some options to refine feature aggregation and representation, such as including

temporal envelope information of chroma and timbre, are left untouched in favour

of presenting a set of basic but easily reproducible features. Methods that can

be explored are mentioned in Section 9.6. All methods for feature extraction are

published as open source in the CAMIR framework as described in Section 7.3.

1http://mi.soi.city.ac.uk/datasets/camirframework/
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To understand, for example, how people organize social systems, we

have to discover the principles that we create to make some societies

intelligible

(Noam Chomsky, 1948)

6 Computational Models for Learning

Music Similarity from Relative Data

Given the features as introduced in the previous chapter, it is now possible to define [pub:7]

similarity measures on clips based on their feature representation. Simple similar-

ity measures can be pre-defined, such as the Euclidean metric on the feature space.

Our goal here is to model human similarity data as described in Chapter 3, and for

this task parametrisable models for music similarity are needed. Analogously to the

above quote, not only the parameters of the similarity models, but particularly the

model types themselves and their training algorithms influence the performance

of our learnt similarity models, determining what is salient and trainable informa-

tion. As pointed out in the literature review, many methods for modelling similarity

from absolute similarity statements exist, but comparably few have been developed

to accept the relative similarity data this thesis deals with. We will here discuss

state-of-the-art methods for learning from relative similarity data, with their first

applications on human music similarity judgements. Following research question

rq:2 , we introduce new as well as extended methods for the task. A framework ori-

ginally developed by Zheng et al. [106] for general regression will be generalised

to enable methods based on absolute data to deal with relative similarity learning.

The application of this new framework also allows us to introduce the concept of

transfer learning – reusing similarity information from previously learnt music sim-

ilarity models – during model training. In particular, we will present models based

on generalised Euclidean metrics, Mahalanobis distance measures, Neural Nets,

linear regression and regression trees. Our enhancement of modelling possibilities
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will allow for a comparative evaluation of model performance regarding research

question rq:1 .

It is common to model similarity as the inverse of the distance of two clips, espe-

cially for metric models. Thus the similarity data of one clip pair (Ci, Cj) being

more similar than (Ci, Ck) according to an implicit similarity relation y (see Equa-

tion (3.1)), corresponds to the constraint requiring the distance of clips Ci and Cj

to be greater than for Ci and Ck:

(Ci, Cj)
y
> (Ci, Ck)

⇔ dist(Ci, Cj) < dist(Ci, Ck) (6.1)

Although perceptually the two relations may be different, the duality of the con-

cepts works well for mathematical metric spaces: it allows for a straightforward

adaptation of distance and metric learning approaches to similarity estimation,

still leaving room to adapt to perceptual peculiarities during model adaptation.

The more general regression methods discussed below would indeed allow for dir-

ect implementation of the concept of similarity, but for reasons of consistency and

ease of integration we keep to modelling distance.

As summarised in Table 6.1, the representation of a clip’s feature information

changes within the signal flow according to the context it is used in. Many of

the methods discussed in this section will deal with the feature information in the

combined form of clip pairs rather than involving separate feature data for single

clips. To address this we extend on the idea of facet distances (see Stober [89]) as

a mapping of two clips’ feature vectors towards a combined representation of their

relationship.

6.1 Mapping Features to Model Input

Given the clip index I for all clips Ci, i ∈ I and similarity information Q, Clip pairs

(Ci, Cj) are represented by their Facet Distance vector d(i,j). Stober and Nürn-

berger [91] use the term facet to refer to a mapping of e.g. perceptual musical
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features such as the “timbre” facet based on physical measurements like spectral

centroid etc. In the following, the term Facet Distance will be used in a more gen-

eral way, describing the mapping or combination of feature information into more

complex sub-distances which then can be used to train the final distance measure.

A simple facet distance vector is given by the component-wise squared difference

of the involved clip pairs’ features:

dE(i,j) =
(
(x(i)1 − x(j)1)2, ..., (x(i)n − x(j)n)2

)
. (6.2)

It allows for calculating the Euclidean distance (indicated by the E in dE) of two

feature vectors by

distI(x(i), x(j)) =
√
dE(i,j)

ᵀ
dE(i,j) (6.3)

Further choices for d are the simple difference and the absolute value difference

dL(i,j) = x(i) − x(j) or (6.4)

d
|L|
(i,j) =

(
|x(i)1 − x(j)1 |, ..., |x(i)n − x(j)n |

)
. (6.5)

Although the facet distance vectors used in this thesis have a dimensionality sim-

ilar to the underlying features, this is not necessary. Stober and Nürnberger [91]

introduce facet distances that map large feature vectors to a single value, whereas

the sub-space facet distances discussed below can greatly exceed the dimension-

ality of their input features.

Clip Clip Pair Constraint

Clip notation Ci (Ci, Cj) (Ci, Cj)
y
> (Ci, Ck)

Feature rep. Features x(i) Facet Distances d(i,j) Delta Function δ(i,j,k)

Table 6.1: Representation of clips, clip pairs and similarity data in terms of feature

data.

6.1.1 Sub-space Transformations

Instead of using the direct differences of feature dimensions for the facet distance,

we group consecutive features into subspace-features which are similar to patch-
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based feature analysis in image processing [27]. By combining consecutive fea-

tures, simpler models can be enabled to represent relationships between consec-

utive feature values. This method is relevant for similarity modelling where special

relationships between consecutive features exist, as is the case with chroma fea-

tures.

The components of the sub-space facet distance vector dτ(i,j) are given by

dτ(i,j)o =
o+τ−1∑
p=o

(x(i)p − x(j)p)2 (6.6)

where i = 1, 2, .., N + τ − 1, and τ is the size of the subspace region, and o, p refer

to positions in the input and output feature vectors.

6.1.2 The Delta Function

In many learning algorithms which are based on classification or regression, the

training data of the relative similarity constraint (i, j, k) ∈ Q, referring to (Ci, Cj)
sim
>

(Ci, Ck), is represented by a single delta vector

δ(i,j,k) := d(i,k) − d(i,j), (6.7)

containing the difference of the clip pairs (Ci, Cj) and (Ci, Ck).

The function enables relative similarity constraints to be represented by a single

delta vector (see Table 6.1), e.g. for the case of SVM in Section 6.2.1. More

complex representations of multiple-clip relationships include the feature map ψ

in Section 6.2.2 defining a ranking of clips.

6.2 Metric models

A generalisation the standard Euclidean metric was introduced by Mahalanobis in

1936 [54]. It is defined as

distW (x(i), x(j)) =
√
dE(i,j)

ᵀ
WdE(i,j), (6.8)
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Here, x(i), x(j) ∈ RN are feature vectors and W ∈ RN×N represents the Mahalan-

obis matrix, parametrising the similarity space. Davis et al. [20] show how each

Mahalanobis matrix W induces a multivariate Gaussian distribution

P (x(i);W ) =
1

β
exp

(
−1

2
distW (x(i), µ)

)
. (6.9)

The standard definition [54] of the Mahalanobis distance defines W as the inverse

covariance matrix of the underlying data, β as a normalising factor and µ as the

mean of the feature data. With W depending on the feature covariance, the Ma-

halanobis distance can be used to calculate the distance of a point from the data

average or any another point in the vector space in relation to the distribution of

the data.

Instead of deriving W from the feature data itself, the distance learning methods

below use additional similarity constraints to derive the optimal values for W . This

allows for more freedom in the search for an optimal distance measure. The fol-

lowing properties of W can be useful in determining the general behaviour of a

learnt distW If W is the identity matrix, distW resolves to the Euclidean metric.

If W is diagonal, as in (Wi,j = 0 for i 6= j), the components of d are separately

weighted within the distance function. This Weighted Euclidean Metric is learnt

by the SVM, DMLR and regression algorithms introduced in Sections 6.2.1, 6.2.2.1

and 6.3.4 below. If W is positive definite, distW represents a metric, satisfying

symmetry, non-negativity and the triangle inequality. Should W be positive semi-

definite, allowing distW (x(i), x(j)) = 0 for x(i) 6= x(j), the resulting distance function

is called a pseudometric [102]. The constraints on W regarding these properties

differ amongst the algorithms below, as does the success in enforcing them, leaving

distW an arbitrary function representing distance in some cases.

6.2.1 Support Vector Machines (SVM)

In [81], Schultz and Joachims present a metric learning strategy based on their

SVM-Light framework1. As for the standard Mahalanobis distance, Clip pairs

(Ci, Cj) are represented by the clips’ feature difference: for each constraint triplet

1http://svmlight.joachims.org/

121

http://svmlight.joachims.org/


6 Computational Models for Learning Music Similarity from Relative Data

(i, j, k), we consider the component-wise squared difference of the involved clip

pairs’ features. Here, the matrix W , as introduced in Equation 6.8 is decomposed

into a kernel transformation A and a diagonal matrix W . We use the identity trans-

form as kernel (A = I). Thus, distW describes a weighted Euclidean metric.

The proposed algorithm optimises the distance measure by representing it as the

length of the normal vector to the hyperplane diag(W ), separating triplets (i, j, k)

from those representing the contrary information (i, k, j). To this end, the δ(i,j,k)

with facet distance d(i,k) := dE(i,k) are used as constraints for the following optimisa-

tion problem:

min
w,ξ

1

2
||W ||2F + c ·

∑
(i,j,k)∈Qtrain

ξ(i,j,k) (6.10)

s.t. ∀(i, j, k) ∈ Qtrain :
〈
diag(W ), δ(i,j,k)

〉
≥ 1− ξ(i,j,k)

wi,j ≥ 0, ξ(i,j,k) ≥ 0.

This minimises the loss consisting of the sum of the per-constraint slack variables

ξ(i,j,k) and the regularisation term ‖W‖2F = tr(W T ·W ) using the squared Frobenius

norm. Here, tr(·) denotes the trace of a matrix. The factor c > 0 determines the

trade-off between regularisation and slack loss.

The particular implementation1 by Schultz et al. calculates W in its dual form

consisting of the support (basis) vectors δ(i,j,k) and weights aiyi. W can be easily

reconstructed using

diag(W ) =
∑

(i,j,k)

a(i,j,k)y(i,j,k)δ(i,j,k). (6.11)

The resulting Mahalanobis matrix W usually turns out to be positive semidefinite,

but this is not guaranteed. Cases occur where some of the wi,i are slightly below

zero. This behaviour has also been reported for the LIBLINEAR framework by

Stober et al. [90], where they use the approach of Cheng and Hüllermeier [18].

In these cases, the measure does not qualify as a metric or pseudometric but may

still perform well in terms of training error and generalisation.

1http://svmlight.joachims.org/

122

http://svmlight.joachims.org/


6.2 Metric models

6.2.1.1 Weighted Learning with SVM

The weight information for individual constraints as described in Section 3.1.1

can be used to prioritise certain constraints during training. In SVM-Light, this is

implemented by weighting the individual slack variables ξ(i,j,k) in the penalty term

of Equation (6.10).

6.2.2 Metric Learning to Rank (MLR)

Mcfee and Lanckriet [60] describe the Metric Learning To Rank (MLR) algorithm

for learning a fully parametrised Mahalanobis distance based on the SVMstruct

framework of Tsochantaridis et al. [93]. A implementation of the MLR algorithm in

Matlab script language has been published by McFee1. Specifically well-suited for

use in retrieval environments, this method utilises rankings for the specification

of training data as well as for the in-training evaluation of candidates for distance

metrics. Such rankings assign a relevance position to each of the clips in our da-

taset given one of these as query item. Thereby they define a partial similarity

relation y∗q which is used as constraint in the MLR optimisation: For all constraints

y∗q = (i, j, k) ∈ Q, referring to the similarity relation (Ci, Cj)
y∗
q

> (Ci, Ck), the final

metric should rank Cj before Ck, when the query is Ci.

For a set X of training query feature vectors q ∈ X ⊂ RN and associated training

rankings y∗q , MLR minimizes

min
W,ξ

tr(W ᵀW ) + c
1

n

∑
q∈X

ξq, (6.12)

s.t.
〈
W,ψ(q, y∗q )− ψ(q, y)

〉
F
≥ ∆(y∗q , y)− ξq ∀q ∈ X, ∀y ∈ Y \ {y∗q}

Wi,j ≥ 0, ξq ≥ 0

Optimization is subject to the constraints, creating a minimal slack penalty of ξq. A

regularisation term based on the trace tr(W ) of the Mahalanobis matrix is used in

the optimisation. c determines the trade-off between regularization and the slack

penalty for the constraints. The Frobenius product 〈W,ψ(q, y)〉F in [60] assigns a

1http://cseweb.ucsd.edu/~bmcfee/code/mlr/
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score to the validity of a ranking y given the query q with regard to the Mahalan-

obis matrix W and feature map ψ which we discuss later. In the above equation,

the difference of the fit of W to the training rankings y∗q
〈
W,ψ(q, y∗q )

〉
F

and arbit-

rary rankings 〈W,ψ(q, y)〉F is enforced to be greater than a margin: ∆(y∗q , y), a

measure of the difference of the rankings themselves. Several standard informa-

tion retrieval performance measures can be used to compare the rankings y∗q and

y. We use the area under the ROC curve as measure for ∆.

In order to measure the fitness of W , analogously to δ(i,j,k) in Equation (6.10), the

feature map ψ maps the combination of query features and ranking into the same

vector space as W . To this end, McFee’s implementation of MLR uses the partial

order feature

ψ(q, y) :=
∑
i∈X+

q

∑
j∈X−

q

sigi,j
φ(q,i) − φ(q,j)

|X+
q | · |X−q |

, (6.13)

where sigi,j =

{
1 if (Ci, Cq)

y
> (Cj , Cq),

−1 otherwise.
(6.14)

Finally, φ(q,i) captures the information of the facet distance vector d(i,j), as

φ(q,i) := −dᵀ(i,j)Wd(i,j), (6.15)

with dmlr(i,j) = (x(i) − x(j)), (6.16)

yielding φ(q,i)r,v = (x(i)r − x(j)r) ∗ (x(i)v − x(j)v) (6.17)

Thus φ(q,i) captures the correlations of different entries of the facet distance vector

as defined in Equation (6.2). The feature map ψ is added the difference matrix

φ(q,i) − φ(q,j) if Ci and Cj are ordered correctly by y. Otherwise the difference is

subtracted. The squared Mahalanobis matrix directly operates on

distW (x(i), x(j))
2 = dᵀ(i,j)Wd(i,j) (6.18)

=
〈
W,d(i,j)d

ᵀ
(i,j)

〉
F

=
〈
W,−φ(q,i)

〉
F
,
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which MLR optimises. As there may be too many alternative rankings y for each

training ranking y∗q , only a few rankings y ∈ Y are selected for comparison with

the training rankings: A separation oracle is used for predicting the most violated

constraints (see [40]).

6.2.2.1 Diagonal MLR (DMLR)

A variant of the MLR algorithm (Diagonal-restricted Metric Learning To Rank

(DMLR)) restrains W to a diagonal matrix with Wi,j = 0 for i 6= j. Whilst still al-

lowing for the weighting of different feature dimensions, rotations and translations

in features space are ruled out by this restriction. For feature vectors x(i) ∈ RN ,

using the facet distance dE(i,j), this reduces the number of training parameters from

N2 to N .

6.2.2.2 Robust MLR

Recently, Lim, Mcfee and Lanckriet [51] published the RMLR (robust MLR) method

that allows to learn a more sparse Mahalanobis matrix. In our experiments we

were not able to improve the performance of music similarity models using this

method, but it may be interesting for future research in feature importance for

music similarity.

6.2.3 Weighted Learning with W(D)MLR

To our knowledge, no methods for weighted training with MLR have been pub-

lished. MLR uses a 1-slack approach, prohibiting the direct weighting of individual

constraints via their slack penalty like it can be done with SVM (Section 6.2.1).

Here we describe an adaptation of MLR for learning from weighted constraints:

The weighting is implemented by repeating individual constraints by a factor pro-

portional to their weight. Given the training data Qtrain and weights α(i,j,k)
1, a

1Weights of similarity data are related to input agreement, see Section 3.1.1.
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maximal weight s is determined on the basis performance considerations. The

α(i,j,k) are then normalised and rounded to fit the interval [1, s] ∈ N.

α∗(i,j,k) =
α(i,j,k) ∗ s

max(m,n,o)∈Qtrain
(α(m,n,o))

(6.19)

Now each of constraints in the training data is repeated α∗(i,j,k) times, resulting in

the pseudo-set.

QWtrain = {(i, j, k)1, . . . , (i, j, k)α∗
(i,j,k)

| (i, j, k) ∈ Qtrain}. (6.20)

The repeated constraints gain their respective weights during slack aggregation,

as the slack error is averaged along all (non-unique) training constraints. We call

this method WMLR, and WDMLR in the case of DMLR, respectively.

Setting s = max(m,n,o)∈Qtrain
(α(m,n,o)) allows for an accurate representation of the

weight data. This approach is obviously not efficient, but for the MagnaTagATune

similarity dataset it is feasible. In our experiments, efficiency is improved with

similar results by quantising the constraint weights. The performance of weighted

learning with WMLR and WDMLR is presented in Section 8.6.1.

6.3 Adapting Methods to Relative Data

Many algorithms exist that can be used for learning similarity from absolute ground

truth data. Such algorithms learn a distance function directly by mapping the fea-

ture vectors x(i), x(j) to a scalar output value dist(x(i), x(j)). Considering the facet

distance vectors d(i,j), this can be expressed as the choice of a function

ˆdistP : RN 7→ R≥0, (6.21)

where P describes a parametrisation of the function family fulfilling the desired

properties.

The far more conventional task of generalised regression or learning of functions

using existing input and output values holds a rich variety of methods including
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linear regression, regression trees, polynomial fitting, neural networks as well as

specific metric learning methods such as ITML (see Section 6.3.6). The goal of

this section is to render accessible these methods to scenarios where only relative

similarity data is available.

Zheng et al. [106] describe a framework to learn ranking functions from relative

relevance judgements, which they successfully apply to learning relevance data

using gradient boosting trees. Their framework is applicable to any regression

method which can approximate Equation (6.21), and the following paragraphs de-

scribe a slight adaptation of this iterative method allowing for a more flexible ap-

plication and more precise parametrisation of the resulting learning algorithm.

For adapting a regression or similarity learning method to learning from relative

constraints, our method requires the following components:

• The similarity model to be parametrised, e.g. a Mahalanobis distance

• The learning and evaluation methods for this similarity model using absolute

similarity data

• A facet distance function to derive d(i,j) from two clips’ features

• A target generator Υ determining absolute similarity constraints for learning

• An update rule Λ to accumulate the learnt information for each iteration into

the model parameters

6.3.1 General Distance Functions

Firstly, the distance mapping function ˆdistP (see Equation (6.21)) with parameter

P has to be defined by using a specific similarity model. In the case of many learn-

ing methods, such as Neural Networks or Gradient Boosting Trees, the similarity

model is implicitly determined by or contained in the training and evaluation meth-

ods themselves. Making generic regression methods such as linear regression or

lasso regression applicable to relative similarity data allows for more flexibility in

the selection of models. Zheng et al. [106] use Gradient Boosting Trees for model-

ling their ranking functions which is described in Section 6.3.5.
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6 Computational Models for Learning Music Similarity from Relative Data

We present a simple new application of the framework using standard linear re-

gression which allows to learn a weighted Euclidean distance measure. A main

factor determining the nature of the resulting distance function or similarity model

is the facet distance function d(i,j). When restricting the Mahalanobis matrix W in

Equation (6.8) to be diagonal, the distance function reduces to

ˆdistW (d(i,j)) = diag(W )ᵀ(dEi,j)
2. (6.22)

Thus, the distance function results in a linear combination (with factors Wi,i) of the

squared feature distances. In order for our pairs of clips and their feature vectors

(x(i), x(j)) to be represented, arbitrary mappings d(i,j) including music-specific facet

distance functions can be chosen to calculate the initial input to the similarity

model.

6.3.2 Generating Absolute Training Targets

Given an initial training set Qtrain =
{

(i, j, k) | (Ci, Cj)
y
> (Ci, Ck)

}
, i, j, k,∈ I, based

on ground truth similarity data y, the following iteration operates on an active

constraints set Q∗ ⊂ Qtrain, containing only those constraints which are violated

by the current model determined by the parameters P (equals W in the example

of linear regression).

Q∗ =
{

(i, j, k) ∈ Qtrain | ˆdistP (d(i,j)) + ιτ ≥ ˆdistP (d(i,k))
}

(6.23)

Here, ιτ with ι ∈ R ∩ [0, 2], τ ∈ R+ allow for enforcing a margin between the more

and less similar clip pairs. Given the active constraints set Q∗, new training target

distances are being determined on the basis of the current model output, using the

target generator.

Υ(a, b) : RN × RN 7→ R2, (6.24)

where a = ˆdistP (d(i,j)),

and b = ˆdistP (d(i,k)).
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The output of Υ represents the new training targets for the function ˆdistP (d(i,j))

and ˆdistP (d(i,j)). Different target generators are compared in Figure 6.1. A semi-

linear margin target generator is used by Zheng et al. [106]:

Υsemilin(a, b) = (b− τ, a+ τ). (6.25)

From Equation (6.23) it follows that for any clip pair in Q∗ we can assume that

distance a ≥ b. The training constraints created by this target generator then

enforces at least the distance of the last iteration m

( ˆdistPm+1(d(i,k))− ˆdistPm+1(d(i,j))) > ( ˆdistPm(d(i,j))− ˆdistPm(d(i,k))) + 2τ (6.26)

between the resulting absolute training targets after iteration m + 1. This target

generator is called semilinear because the enforced minimum margin between the

training examples is linearly growing with the difference of distance measures (b−
a), but only where the difference, and thereby the error induced by the constraint,

is positive.

Another target generator is the constant margin target generator whose resulting

training targets have a minimum margin of 2τ . Here, both target values for the

distances of clips (Ci, Cj) and (Ci, Ck) are centred around the current mean of

their distance values.

Υconst(a, b) = (µ− τ, µ+ τ), with (6.27)

µ =
a+ b

2
.

The sigmoid margin target generator assigns relatively large margins to small viol-

ations of the distance constraint, at the same time assigning relatively small mar-

gins to constraints strongly violated and thus already difficult to enforce.

Υsigmoid(a, b) = (a− τ, b+ τ), with (6.28)

τ = γ ∗ sigm(γ ∗ (b− a)) ∗ sigm′(γ ∗ (b− a))

sigm(x) =
1

1 + exp−x

sigm′(x) = sigm(x)(1− sigm(x)).
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Figure 6.1: Comparison of three target generators. The y-axis (∅Υ) refers to the

difference in calculated distance targets for a and b, while the x-axis de-

notes the current difference of a and b. Only positive values for (a-b) are

denoted as Υ is only evaluated for violated constraints (a− b > 0).

6.3.3 Updating the Model

Given the current set of training constraints Q∗ and the absolute training targets

{(t(i,j), t(i,k)) | (i, j, k) ∈ Q∗}, it is now possible to approximate ˆdistP with constraints

ˆdistP (d(i,j)) ≤ t(i,j) and (6.29)

ˆdistP (d(i,k)) ≥ t(i,k).

Note that for standard regression, we use the strict equality relation = for fitting

a function to the constraints whilst for other optimisation methods ≤ is more ad-

equate. Given the facet distance vectors D =
{

(d(i,j), d(i,k)) | ∃(i, j, k) ∈ Q∗
}

and

training targets T =
{

Υ( ˆdistP (d(i,j)), ˆdistP (d(i,k))) | (d(i,j), d(i,k)) ∈ D
}

, we will de-

note the learning of the parameters as a function

P ∗ = TRAINING(Dm, Tm). (6.30)

Once the new model parameters P ∗ ∈ P, are estimated using a regression or other

metric learning function, they are integrated into the accumulated parameters

Pm+1 ∈ P. Here, P denotes a general parameter space. Therefore we define a

parameter update function

Λ : P× P× N 7→ P. (6.31)
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The parameters denoted above only contain the essential parameters necessary for

an update function. Additional parameters may be added depending on the spe-

cifics of the function used. For the case of using standard regression as discussed

above, we use the parameter update function

Λlin(Wm,W
∗,m) =

m ∗Wm + η ∗W ∗

m+ 1
. (6.32)

Here, η ∈ R ∩ [0, 1] is a pre-set update factor determining the rate at which new

learnt information is added to the existing parameters.

This idea is inspired by the definition of the recursion used by Zheng et al. [106]

to approximate the desired function. Instead of updating the parameters directly,

a recursion is used which includes all parametrised distance functions of the M

training iterations. Let ( ˆdist)∗ be the newly learnt function for iteration m, then

( ˆdist)m(·) :=
m ∗ ( ˆdist)m−1(·) + η · ( ˆdist)∗(·)

m+ 1
. (6.33)

If we assume that the functions are linear regarding their parameters, thus if:

( ˆdist)a(·) + ( ˆdist)b(·) = ˆdistPa(·) + ˆdistPb
(·) (6.34)

= ˆdist(Pa+Pb)(·)

we find ( ˆdist)m(·) = ˆdistΛlin(Pm−1,P ∗)(·) .

The general form of our modified algorithm for using absolute data training meth-

ods with relative similarity data is sketched in Algorithm 2.

6.3.4 Regression

We compared the approach used by Zheng et al. [106] to our linear regression

approach for learning a weighted Euclidean metric ˆdistW (d(i,j)) = diag(W )ᵀ(dE(i,j))
2

for diagonal W ∈ RN×N . To this end we trained a function based on the standard

facet distance vectors dE(i,j) using as output targets such gained the semilinear

target generator Υsemilin (see Equation (6.25)). In order to allow for a constant
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Algorithm 2 Generic Relative Training via Absolute Constraints

Require: Constraints Qtrain, features x(i) ∀i ∈ I, initial P0, margin τ , enforcement

factor ι, number of cycles k

m = 0

while m ≤ k ∧Q∗ 6= ∅ do

Q∗m =
{

(i, j, k) ∈ Qtrain | distPm(x(i), x(j)) + ιτ > distPm)(x(i), x(k))
}

. update

violated constraints

Dm =
{

(d(i,j), d(i,k)) | ∃(i, j, k) ∈ Q∗m
}

. facet distance vectors

Tm =
{

Υ( ˆdistPm(d(i,j)), ˆdistPm(d(i,k))) | ∃(d(i,j), d(i,k)) ∈ Dm

}
. training targets

P ∗ = TRAINING(Dm, Tm) . get new parameter set

Pm+1 = Λ(Pm, P
∗,m) . update the model parameters

m = m+ 1

end while

return Pm

term to be used within the similarity model, we extend dE(i,j) by a constant entry of

1:

dEC(i,j)k
:=

{
1 for k = 0

dE(i,j)k−1
otherwise.

(6.35)

The linear function

ˆdistW (dEC(i,j)) =
∑(

dEC(i,j)k

)2
Wk,k (6.36)

is then parametrised using the built-in Matlab regression function regress, and the

resulting W ∗ is used to update the final model using the update function Λlin (see

Equation (6.32)).

Similar to other methods for metric learning, it is possible to include the interaction

of different features into the regression model. Instead of using dEC(i,j) as input

vector for the regression process, we define a matrix of all possible binary products

of facet distances:

dEI(i,j) = dE(i,j)

(
dE(i,j)

)ᵀ
∈ RN+1×N+1 (6.37)

Given corresponding indexes k, l into dEI(i,j), and the resulting regression coefficients

Wk,l it is possible to adapt a squared Mahalanobis distance (see Equation (6.8))

using any regression method.
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ˆdistW (dE(i,j)) =
∑
k

∑
l

(
dEI(i,j)k,l

)
Wk,l (6.38)

= dE(i,j)
ᵀ
WdE(i,j)

= distW (x(i), x(j))
2

Note that, unless explicitly enforced in the regression method, the Wk,l may be

negative and thus the resulting distance function may not be a metric.

6.3.5 Regression Trees

Originally, Zheng et al. [106] apply their framework via greedy function approxim-

ation using Gradient Boosting Trees as described by Friedman [26]. Applying their

approach to the scenario of similarity data, we choose the standard facet distance

vectors dE(i,j) as input and use the Gradient Boosting Trees (GBTs) to approximate

absolute similarity targets. In order to approximate ˆdistB(dE(i,j)), regression trees

Bm are trained in an iterative process that assigns as target the negative gradient

r(i,j)m
of iteration m (see Algorithm 3).

Regression trees y = B(x) approximate functions by hierarchical partitioning of

the input training data’s space. The data (x ∈ Xtrain) is divided into regions Rj

of minimal variance regarding the output data y ∈ Ytrain . Given a new input, x,

the corresponding leaf region Rj is determined and the representative data mean

B(x) = 1
|Rj |

∑
yi∈Rj

yi for that leaf is used as approximative output.

Using Gradient Boosting Trees for learning from relative ranking data, Zheng et al.

[106] apply the target generator Υsemilin (Equation (6.25)) and an update function

similar to Λlin (Equation (6.32)). To this end they define a recursion of a series of

functions ( ˆdistB)m over the iterations resulting in

( ˆdistB)m(dE(i,j)) =
m ∗ ( ˆdistB)m−1(dE(i,j)) + η · ˆdist

∗
B(dE(i,j))

m+ 1
, (6.39)

for ˆdist
∗
B being the new approximation of the current step’s targets using GBT.
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Algorithm 3 Gradient Boosting Trees (GBT)

Require: Facet distance vectors D = dE(i,j), targets T = {t(i,j)(e.g.Υ(· · · )) | ∃dE(i,j) ∈
D}, shrinkage factor γ, max. cycles M

Define ˆdistB0(d·) = 1
|T |
∑

t(i,j)∈T t(i,j) . first tree outputs the average target

m = 1

while m ≤M do

r(i,j)m
= t(i,j) −Bm−1(dE(i,j)) . negative gradient as new target

Bm = TreeF it(D, {r(i,j)m
| ∃dE(i,j) ∈ D}) . fit regression tree Bm to targets

ˆdistBm(dE
(i,j)) = ˆdistBm−1(dE

(i,j)) + γ ·Bm(dE
(i,j))

m = m+ 1

end while

return B = {Bm | m ∈ {0, · · · ,M}}

6.3.6 Information Theoretic Metric Learning

Davis et al. [20] describe Information-Theoretic Metric Learning (ITML) for learn-

ing a Mahalanobis distance from absolute constraints. Their approach uses Breg-

man optimisation for determining the Mahalanobis matrix.

A particularly interesting feature of ITML is that a template Mahalanobis matrix

W0 ∈ Rn×n can be provided for regularisation towards a precomputed metric or

distinct data distribution. If not specified otherwise the identity transform is used

forW0. The regularisation then exploits the interpretation of Mahalanobis matrices

as multivariate Gaussian distributions (see Equation (6.9) on page 121). The dis-

tance between two Mahalanobis distance functions parametrised by W and W0 is

measured by the relative entropy of the corresponding distributions:

KL
(
P (x(i);W0) ‖ P (x(i);W )

)
=

∫
P (x(i);W0) log

P (x(i);W0)

P (x(i);W )
dx(i) (6.40)

For feature vectors x(i) ∈ Rn. KL denotes the Kullback-Leibler divergence. In

order to apply Bregman’s method for optimisation, Davis et al. [20] describe this

relative entropy using the LogDet divergence

Dld(W,W0) = tr(WW−1
0 )− log det(WW−1

0 )− n (6.41)

= 2 ∗ KL
(
P (x(i);W0) ‖ P (x(i);W )

)
.
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For details of the transformation see [20]. Given the sets Rs of similar and Rd of

dissimilar clip indices, the optimisation problem is then posed as follows:

min
W�0,ξ

ITML(W, ξ, γ,Rs, Rd) = Dld(W,W0) + γDld(diag(ξ),diag(ξ0)) (6.42)

s.t. tr(WdL(i,j)(d
L
(i,j))

ᵀ
) ≤ ξij ∀(i, j) ∈ Rs

tr(WdL(i,j)(d
L
(i,j))

ᵀ
) ≥ ξij ∀(i, j) ∈ Rd

with dL(i,j) = (x(i) − x(j)). (6.43)

Here, ξij correspond to slack variables allowing for and controlling the violation of

individual constraints. The ξij are initialised to given upper bounds uij , if (i, j) ∈ Rs
or lower bounds lij , if (i, j) ∈ Rd. During optimisation, they are regularised by

comparison to the template slack ξ0 using diagonal matrices diag(ξ) and diag(ξ0).

6.3.6.1 Relative Learning with RITML

The method as published by Davis et al. [20] does not allow for training with rel-

ative similarity constraints. In the following we present an adaptation of the ITML

algorithm using our modified relative learning strategy based on Zheng et al. [106].

To this end, we embed ITML into the relative learning framework as described in

Algorithm 2. We call the resulting new algorithm Relative Information-Theoretic

Metric Learning (RITML).

The standard ITML parameters such as γ, as well as the relative learning para-

meters including shrinkage factor η, margin τ , enforcement factor ι and number of

cycles k are given at the beginning. It is also possible to provide an initial choice

of W0. In most cases we use the identity matrix as default. We use the euclidean

facet distance vectors dE(i,j) for representing the clip pairs.

During iteration m, the active training set of violated constraints Q∗m is calculated

as in Equation (6.23). Afterwards, absolute training targets ξm = Tm acquired via

the semilinear target generator Υsemilin are used to set the upper and lower bounds

for ITML. The training data is divided into sets of similar and dissimilar constraints
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Sm and Dm,

Rsm = {(i, j) | (i, j, k) ∈ Q∗} (6.44)

Rdm = {(i, k) | (i, j, k) ∈ Q∗} (6.45)

Now, the current W ∗ can be calculated using

W ∗ = ITML(Wm, ξm, γ, Sm, Dm). (6.46)

The final Mahalanobis matrix is then accumulated using the model update function

Λlin as defined in Equation (6.32).

Algorithm 4 Relative Training with ITML

Require: Constraints Qtrain, features x(i) ∀i ∈ I, initial W0, regularisation factor γ,

shrinkage factor η, margin τ , enforcement factor ι, number of cycles k

W = W0 . initialise variables

m = 0

while m ≤ k ∧Q∗ 6= ∅ do

Q∗m =
{

(i, j, k) ∈ Qtrain | distWm(x(i), x(j)) + ιτ > distWm(x(i), x(k))
}

. update

violated constraints

for all (i, j, k) ∈ Q∗m do

(ξij , ξik) = Υsemilin(distWm(x(i), x(j)), distWm(x(i), x(k))) . upper / lower

bounds

end for

Rsm = {(i, j) | (i, j, k) ∈ Q∗m} . similar constraints

Rdm = {(i, k) | (i, j, k) ∈ Q∗m} . dissimilar constraints

W ∗ = argmin
W

ITML(Wm, ξ, γ,Rsm , Rdm) . update W via ITML

Wm+1 = Λ(Wm,W
∗,m) . update the model parameters

m = m+1

end while

return Mahalanobis matrix W

A very nice property of RITML is that it enables transfer learning: If a specific start-

ing value or template of W0 other than the identity matrix is provided, the optimisa-

tion tends to produce results close to the provided W0. We call this “template-start

and fine-tune” method W0-RITML. The performance of RITML and W0-RITML is

evaluated in Section 8.7.
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6.3.7 Relative Learning with Neural Networks (RDNNs)

This section shows an application of Neural Networks to learning similarity from

relative data. Unlike models parametrising a Mahalanobis metric, Multi Layer

Perceptrons (MLP) are capable of approximating arbitrary functions (see Hornik,

Stinchcombe and White [38]). This means that more complex interactions of the

features can be modelled.

As for general function approximators, training algorithms for MLP require abso-

lute target data. One way of unlocking MLP for use with relative data would be to

apply the general strategy as described above. Indeed, we have adapted a similar

strategy presented by Hörnel [37] and based on earlier work by Braun, Feulner and

Ullrich [15] which translates the idea of Section 6.3 into the language of Neural

Networks.

As shown in Figure 6.2, our strategy is based on a combined network with two MLP

networks, net1 and net2 that have the same structure and share their weights.

This type of architecture is named siamese by Hadsell, Chopra and Lecun [31].

The input of each net is given by the facet distance vector d
|L|
(i,j) representing a

pair of clips. From a similarity constraint (i, j, k), net1 gets the vector d
|L|
(i,k) of

the less similar pair, and should thus output a larger distance value than net2,

getting the more similar pair d
|L|
(i,j). It is also possible to not use the absolute value

facet distance vector dL(i,k) which would allow for asymmetric similarity modelling.

But in the experiments in Chapter 8 we chose d
|L|
(i,j) for comparability, as results

did not improve when using the asymmetric model. The outputs of net1 and net2

are connected to a comparator neuron c with negative fixed weight −/ + v for

net1/net2 respectively. Thus c outputs a higher value if the correct input has not

been achieved. The activation function of c is chosen to produce non-negative

values, and the whole network can now be trained with target values of 0 for every

training example.

Hörnel used a comparator neuron with sigmoid activation function similar to Equa-

tion (6.28), and a weight fixed with a negative sign for the ‘left’ network and a pos-

itive sign for the ’right’ network. An alternative suggested by Braun [14] is the use

of a semi-linear activation function fc for the comparator neuron as indicated in
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c

net 1      

Net 2     

 - v

 +v

input 1
input 2

fc(n1,n2) = max(0, n2 – n1 + τ)weight sharing

Figure 6.2: Scheme for RDNN neural network learning from relative data as sugges-

ted by Braun.

Figure 6.2. We also introduce a margin between the higher and the lower ratings

with a variable τ .

In this work, we present our new implementation of this scheme using a single

network: Relative Data Neural Net (RDNN). This is based on the observation that

the derivatives of the sum-of-squares error (SSE(P )) on a set of inputs P with

regards to the output n
(p)
1 and n

(p)
2 of net1 and net2 for input p are

∂sse(P )

∂n
(p)
1

= v · (n(p)
2 − n

(p)
1 + τ) and

∂sse(P )

∂n
(p)
2

= v · (n(p)
1 − n

(p)
2 + τ). (6.47)

The relatedness of the output values allows us to integrate the above approach

into our relative training framework as described in Section 6.3. For this, we use

a single network with resilient backpropagation (cf. Riedmiller and Braun [74])

including a regularisation term. We also choose τ = 0.5, ι = 2 (see Equation (6.23))

and Υconst as the most successful target generator in the final implementation. The

resulting MLP calculates a distance measure between two clips Ci, Cj , given the

vector d
|L|
(i,j) of absolute differences of the two clips’ features. The procedure is

described in Algorithm 5.

6.4 Conclusions

In this chapter we presented new (RITML, RDNN, WMLR) and existing state-of-the-

art methods for modelling music similarity from relative constraints. The methods
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Algorithm 5 RDNN Training

Require: Constraints Qtrain, features x(i) ∀i ∈ I, # of cycles k

Define D :=
{

(d
|L|
(i,j), d

|L|
(i,k)) | ∃(i, j, k) ∈ Q∗

}
. training data

Define T :=
{

(t(i,j), t(i,k)) | ∃(i, j, k) ∈ Q∗
}

. training targets

MLP = initRandomMLP() . initialise MLP with random weights

m = 0

while m ≤ k ∧Q∗ 6= ∅ do

Q∗m =
{

(i, j, k) ∈ Qtrain | dMLP(x(i), x(j)) + 2τ > dMLP(x(i), x(k))
}

. update train

set

for all (i, j, k) ∈ Q∗ do

(t(i,j), t(i,k)) = Υconst(distMLP(x(i), x(j)), distMLP(x(i), x(k)))

end for

MLPm = trainRp(MLPm−1, Q
∗
m, D, T ) . Train MLP with new targets

m = m+ 1

end while

can be organised by the architecture of the underlying models. Categories include

metric-based models such as the Mahalanobis distance learnt by MLR, SVM and

RITML, neural networks (RDNN) and models based on general regression as de-

scribed in Section 6.3. A model’s structure determines constraints that can limit or

guide the learning process. For example, metric-based similarity models assume

symmetry in the similarity relation. This limits the existing value ranges of para-

meters, and improves the robustness of the resulting model. Our new methods

introduce novel properties into music similarity learning from relative data: W0-

RITML enables transfer learning using pre-trained models, and RDNN can model

asymmetric similarity relations.

We integrate and modify the general regression framework from [106] for use with

relative music similarity data. This enables the adaptation of further existing met-

ric learning algorithms – such that where previously only accessible for absolute

similarity constraints – to relative data. This formulates similarity learning from

relative data as a generic regression task. Finally, an effort is made to integrate

the methods available and relevant for modelling relative similarity into a general

conceptual framework, from facet distance vectors representing clips’ differences
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with regard to specialised metrics, along the model definition defining the para-

meters of our new model to the model training itself.

Our structured discussion of methods for similarity modelling provides an overview

of existing and newly developed solutions to research question rq:1 . This structure

is reflected by the CAMIR programming framework for reproducible experiments

with models of relative similarity data, discussed in the following Chapter 7. Using

this framework, an evaluation of the aforementioned methods will be provided in

Chapter 8.
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I was working with tape loops, sort of primitive technology. This was in

the late 50’s early 60’s. [. . . In] fact technology wasn’t very good no

matter how much money you had.

(Terry Riley, 1992)

7 A Framework for Reproducible

Training and Evaluation of Music

Similarity Models

This chapter discusses the CAMIR framework which was developed as a tool for

the analysis of music similarity datasets and training of similarity models. One

aim in developing the framework was reproducibility of research, and it won the

SoundSoftware price in 20141. The great part of code for CAMIR has been pub-

lished online 2. Licensing code as open source should be the preferred method,

particularly for public research institutions. It facilitates direct extension on and

adaptation of existing research, as well as it encourages collaborations as it has

during the research for this thesis. To this end, the Subversion source code man-

agement software for associating code state to experimental results is strongly

integrated into CAMIR.

CAMIR is primarily written in the Matlab scripting language, but it includes wrap-

pers and components written in python or included as compiled code. Functional-

ities include the playback and systematic exploration of music audio by genre or

tags from Last.fm. For audio features, it enables the visualisation and extraction

both from audio and The Echo Nest API as discussed in Chapter 5. The functions

for relative similarity data include an extensive set of graph theory functions for

1http://soundsoftware.ac.uk/rr-prize-aes53-winners
2http://mi.soi.city.ac.uk/datasets/camirframework/
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ClipDB

clips_by_genre()

clips_by_artist()

Clip

play()

genre()

fmtags()

features()

Feature

vector()

visualise()

get_global_trans-

form()

finalise()

FeatureDB

export()

import()

Similarity Data

play_triplet()

Graph

isAcyclic()

max_Degree()

connected-

Components()

.features()

.clips_by_genre() caching

.similarity()

graph constructor

Figure 7.1: The database components of the CAMIR framework.

the analysis of coverage of clips, connectedness of similarity data and visualisation

of the data structure as proposed in Chapter 3.

CAMIR currently can be used with the MagnaTagATune, Million Song Dataset Sub-

set and CASimIR data sets. For the CASimIR framework, in addition to access to a

fixed dataset snapshot, code is available to import, filter and analyse the similarity

annotations collected from the MySQL (MySQL) database.

The framework provides a unified interface to the algorithms for similarity learning

discussed in Chapter 6. This includes the wrapping of third-party implementations

such as MLR, modifications of those such as WMLR, as well as the implementations

of new algorithms such as the regression framework for similarity learning via

regression from relative constraints (Section 6.3.4)

Finally, the framework allows for running similarity modelling experiments with

the above methods using cross-validation. Results of such experiments are archived

in a unified manner and strong emphasis is given to the reproducibility of experi-

ments (see research question rq:3 ) by including parameter and context data such

as revision identifiers for the producing code.

The typical workflow for an experiment in CAMIR is as follows:

1. Create test script with parameter combinations for grid search

2. Script runs test_generic_features_parameters_crossval()

3. Results are saved in version-annotated folder
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7.1 Music Dataset Exploration

Clip Member Function Purpose

play(), skip() playback clip audio, either local or via

stream

title(), album(), artist(),

artist_id(), album_id(), isrc()

retrieve core metadata

mbtags(), fmtags(),

tags(), mbtag_ids(),

fmtag_ids(),tag_ids()

retrieve MusicBrainz, Last.fm or stand-

ard tags

features(type) calculate features

Table 7.1: Selection of core functionalities of the Clip, MTTclip, MSDClip and

CASIMIRClip classes.

4. Run test_generic_display_results() for results and graphical display

7.1 Music Dataset Exploration

With music as the primary media type for analysis, CAMIR provides specific fa-

cilities for exploring the datasets. Most of these functions can be accessed for

individual clips:

In order to select a clip, a Clip object is instantiated either using a direct identifier

with the Clip constructor or via the functions clips_by_artist_name(artist) or

clips_by_genre_name(genre) of the corresponding ClipDB database.

The direct identifiers change across datasets: For the Million Song Dataset, clip

identifiers have been copied from the original dataset, whereas the Million Song

Dataset clips are referred to by their Seven Digital (7digital) reference. The CASimIR

dataset, containing a subset of the above, identifies clips using the existing refer-

ences. To be identified across datasets, all clips are associated with an ISRC code

obtained via APIs such as the ROVI API1. The data necessary for these operations is

loaded into memory during startup by startup_music_research.m for fast access.

1http://developer.rovicorp.com/docs
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clip id 1 clip 2 clip 3 votes 1 votes 2 votes 3 · · ·

Table 7.2: Similarity as stored in the comparison data variables, clip ids are relative

to comparison_ids. Votes count the frequency of clip x being the “Odd

Song Out”. Rows can contain further vote information to the right.

Class Name Nodes Edges (Captured Relation)

ClipComparedGraph single clips clips appear in same triplet

ClipSimGraphMulti clip pairs (Ci, Cj) sim. constraints (Ci, Cj)
y
> (Ck, Cl), in-

teger weights of constraints α(i,j,k)

ClipSimGraphMD clip pairs (Ci, Cj) similarity constraints with balanced rel-

ative weights per clip pair

Table 7.3: Front-end graph subclasses in CAMIR.

7.2 Similarity Data Processing and Analysis

This section explains how relative similarity data (see Chapter 3) is represented

in CAMIR as well as methods for processing it. The similarity data contained

in the MagnaTagATune dataset, and as published with a creative commons li-

cense from the CASimIR dataset (see [pub:7] and http://mi.soi.city.ac.uk/

datasets/aes2013casimir/ for fixed data) follows the schema depicted in Table 7.2.

The identifiers used in the table are remapped to a consecutive index via the map-

ping stored in comparison_ids. For MagnaTagATune, this information is loaded

into global variables during startup, whereas a snapshot of the CASimIR data is

stored in casimirdb_15112013_public.mat.

In order to analyse the characteristics of similarity data, it is converted into a

graph structure, as this lends itself to represent similarity as a relationship of

clips. Here, different types of analysis are provided by several graph structures.

All classes are inherited from the basic Graph and DiGraph classes. This allows

to use algorithms from classical graph theory on the similarity graphs, as well as

a structured interaction and conversion between different representations of the

same similarity data. All graph classes can be constructed by either providing raw

similarity data as in Table 7.2 or graph instances derived from it.
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7.2 Similarity Data Processing and Analysis

7.2.1 Connectedness of Single Clips

The ClipComparedGraph represents clips Ci as vertices. An edge in this graph cor-

responds to the two connected clips occurring in the same similarity triplet (i, j, k)

presented to users: E(m,n) ⇔ ∃(i, j, k) ∈ Q̂ : |{i, j, k} ∩ {m,n}| = 2. Examples of

ClipComparedGraphs are given in Figures 10.1 and 10.2.

7.2.2 Similarity Graphs on Clip Pairs

The methods for analysis of relative similarity data as described in Section 3.1 are

implemented in ClipSimGraphMulti. This class implements a MultiGraph using

a weighted directed graph with integer edge weights α(i,j,k) ∈ N, counting the

number of (remaining) votes supporting the specific constraint. As described in

Section 3.1.2, ClipSimGraphMulti deals with inconsistent data by subtracting the

weights of edges with contradictory similarity information, leaving the constraint

with greater frequency in the dataset.

7.2.2.1 Alternative Edge Weightings

An alternative method for representing inconsistent similarity data is implemented

in ClipSimGraphMD. Here, the weight of an edge between (Ci, Cj) and (Ci, Ck), βi,j,k

is calculated using

βi,j,k =
max(0, α(i,j,k))−max(0, α(i,k,j))

A
∈ Q, and (7.1)

A = α(i,j,k) + α(i,k,j) + α(j,k,i)

where α(i,j,k) counts the number of votes behind the particular constraint without

removal of contradictions. The scalar A provides a measure of the total unique

votes present for the presented triplet. This alternative representation allows for

the constraints to be weighted in relation to the total votes given for this triplet.

The current implementation was only used with the MagnaTagATune dataset, but
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when replacing A by the set of all similarity constraints containing the clip pair

(Ci, Cj).

A =
1

2

∑
{(m,n,u)| |{m,n,u}∩{i,j}|=2}

α(m,n,u) (7.2)

7.2.3 General Graph Functions and Connectedness

The Graph and DiGraph classes then provide standard graph functionalities as well

as analysis functions for finding strongly connected components (SCC) and visu-

alisation via GraphViz1. Conversion between Graph and DiGraph is possible by

simply using the constructors of one class with the other class as input. This is for

example used when analysing the connected components in similarity graphs as

described in Section 3.1.3. Retrieving the connected components on the undirec-

ted graph mapping of ClipComparedGraph reveals the size of the longest transitive

chain of clips compared to each other. Note that the availability of similarity data

between the clips does not necessarily follow as inconsistent constraints might

have cancelled out themselves in ClipSimGraphMulti.

As the ClipSimGraph classes operate on pairs of clips, an intermediate class Clip-

PairGraph mapping the basic graph functions to pairs of clips.

Given the clips and similarity data, we now need to represent the musical and

cultural information about the clips in a machine-readable form via features.

7.3 Feature Extraction

The CAMIR system is currently built to extract audio features on the basis of exist-

ing features from The Echo Nest as included in the MagnaTagATune dataset and

Million Song Dataset. Both datasets provide this “raw” feature data in their own

file formats (XML / HDF5). Further tag features from third parties, such as from

last.fm can be accessed through the extractors as well.

1http://www.graphviz.org/
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7.3 Feature Extraction

A variety of different features containing audio and / or tag information has been

implemented into this framework. Both the signal flow and class structure for

feature extraction follow a hierarchical structure: Especially for the audio features,

the typical signal flow consists of a sequence of feature extractors. Where multiple

features are extracted from the same source, such as audio features, it is common

for more advanced features to share the same basic features and partial signal

paths in their extraction. Therefore, each derived feature inherits the parameter

options from the underlying feature types, calculates the underlying features and

uses them for the extraction of potentially different feature types.

The in-memory caching of features (using several instances of MTTAudioFeatureDBgen)

allows for an efficient reuse of shared basic feature types. Furthermore it is pos-

sible to save extracted features to disk, including their extraction parameters and

Subversion code revision number for later reproducibility of the research.

7.3.1 Feature Extraction Flow

Although the basic feature information concerning a clip can be gained separately

for each clip, processes such as normalisation or PCA transformations require the

involvement of information from several clips. Addressing this, a three-stage pro-

cess was implemented which enables a consistent structure for feature extraction:

1. clip.extract(): Calculate basic features separately on single clips.

2. features.define_global_transform(): Calculate transforms based on a given

set of features representing certain clips. For example, define normalisation

parameters or PCA transformation on a training set.

3. features.finalise(): Apply the global transformations on a given set of

features. The set may be different from the above.

Transformations requiring knowledge from multiple clips might be involved on sev-

eral levels of the hierarchical feature extraction process. As the define_global_-

transform() function is processed in reverse hierarchical order for all levels, but

only once per extraction, some features are de facto only computed during the

features.define_global_transform() and finalise() stages.
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Once finalised extracted features can be saved to disk for later use including their

parameters in XML format and code versioning information using features.saveto()

for single-clip feature vectors or MTTAudioFeatureDBgen.export() for all currently

extracted features.

7.3.2 Audio Features

All audio features extracted by CASimIR are based on the classes MTTAudioFeatures-

Raw and MSDAudioFeaturesRaw, which load the existing feature information from

the specific datasets’ files. These raw features from The Echo Nest are aggregated

in the mid-level feature MSDAudioFeatureBasicSM. Parameters allow to in- or ex-

clude any component, as well as the option to include multiple clusters for aggreg-

ated features such as chroma or timbre features (see Section 5.1.1.2 or [pub:6]).

Furthermore, other derived features from The Echo Nest as described in Table 5.1

(page 106) are included via MTTAudioFeatureSlaney08. The features mostly used

for experiments with MagnaTagATune in Chapter 8 are MTTAudioFeatureSlaney08,

MTTMixedFeatureSlaney08GenreBasicSm and MTTMixedFeatureSlaney08GenreBa-

sicSmPCA.

The latter MTTMixed features combine audio features with genre tag features,

which are extracted as below:

7.3.3 Tag Data

Currently, two features based on (textual) tag annotations are implemented: MTT-

TagFeatureGenreBasic with genre information from the Magnatune label and MTT-

TagFeatureLastFMBasic representing tags gathered from Last.fm. Parameters in-

clude a maximum percentile of the most common tags to include. This allows to

reduce the feature dimension by abandoning very sparsely annotated tags. CAMIR

includes basic scripts to acquire tags and metadata from Last.fm, The Echo Nest

and similar online Web APIs.
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7.3.4 Dataset Specifics

Most features with names starting with MTT can be also used with the Million Song

Dataset as the features share a common data structure and signal processing flow.

The most comparable features being avaliable for both the MagnaTagATune and

MagnaTagATune and therefore the CASimIR dataset, are the MTTMixedFeature-

Slaney08LastFMBasicSm features, as for the Million Song Dataset, no genre tags

but only Last.fm tags are available. Still, the number of Last.fm annotations varies

significantly between these datasets, as the Million Song Dataset contains partic-

ularly popular music clips, which should be associated to more annotations than

some clips from the MagnaTagATune.

7.3.5 Similarity Models and Training Algorithms

The models and training algorithms described in Chapter 6 have been integrated

into the CAMIR framework.

All model training algorithms comply to a generic input / output interface for

providing the training similarity constraints, feature data and parameter inform-

ation. This is ensured by providing a _wrapper interface to each method, which,

given constraints, features, and parameters, output the learnt similarity measure

A and an information structure diag . Third party training frameworks have been

encapsulated in these wrappers. The following training algorithms are currently

available for training similarity models:

• mlr_wrapper: Metric Learning To Rank (Section 6.2.2) and Weighted Met-

ric Learning To Rank (Section 6.2.3) (selection via parameters weighted and

diagonal)

• svmlight_wrapper: Support Vector Machines (Section 6.2.1)

• relnn_wrapper: Relative Learning with Neural Networks (Section 6.3.7)

• itml_relative_wrapper: Relative Information-Theoretic Metric Learning (Sec-

tion 6.3.6.1)

• regression_wrapper: Relative learning with standard regression (Section 6.3.4)
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Further non-adaptive similarity measures have been implemented for use as baseline

and for general testing:

• euclidean_wrapper: Unweighted Euclidean metric

• mahalmat_wrapper: Pre-defined Mahalanobis distance measure via template

matrix

• random_diag_wrapper: Random diagonal Mahalanobis matrix

The resulting similarity measure A can be of two different types. The output type

is set by the wrapper function via the output value diag.interpreter and de-

termines how the similarity model data is to be interpreted during post-training

evaluation.

The standard type is DistMeasureMahal. Here, A is provided as Mahalanobis mat-

rix and can be evaluated following Equation (6.8). In the case of using Neural

Nets or Regression Trees for modelling similarity, the type DistMeasureGeneric

indicates that the output similarity model A is an object providing the function

A.evaluate(Ci,Cj), which allows for determining the similarity of two clips (Ci, Cj)

with the provided model.

The wrapper functions for training the similarity models also choose the facet dis-

tance function d(i,j) (see Section 6.1) with respect to the parameter deltafun. The

following facet distance functions have been implemented. Facet distance func-

tions can be selected by the parameter Note that usually the training method can

only accept certain facet distance measures, as discussed in Chapter 6.

• squared_dist_delta: dE(i,j) (eq. (6.2))

• simple_minus_delta: dL(i,j) (eq. (6.4))

• abs_delta: d
|L|
(i,j) (eq. (6.4))

• abs_delta_plusconst:
∣∣∣√dEC(i,j)

∣∣∣ (eq. (6.35))

• conv_subspace_delta: Subspace facet distance values (eq. (6.6))
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7.4 Experiment Scripts and Result Management

When creating code for research purposes, provisioning for reproducibility of ex-

periments and their results is critical for comparison and validation. For research

code this can be particularly challenging as there is a great amount of change in

the code and parametrisations to be expected between experiments. Furthermore

there is a meta-level such as found in grid search where a series of parameters is

tested and results are compared across parameters with regard to the algorithm’s

performance.

In CAMIR, tracking of parameters and code is enabled through the use of experi-

ment scripts defining the complete set-up and the integration of Subversion source

code control. Results and extracted features are saved in a date and version an-

notated folder which contains all necessary information to rerun the experiment.

The experiment workflow (see Figure 7.2) is divided into three components: defin-

ition of the experiment, execution of the experiment and analysis of the results.

The test scripts allow for the definition of parameter ranges for features, the model,

training methods and evaluation via cross-validation. There is also an option of ana-

lysing series of experiments over growing subsets of training data (see Chapter 8).

Furthermore, the similarity dataset to be used will be defined here.

The test_generic_parameters_crossval() routine for running experiments is

designed for unsupervised execution over potentially long experiments runs. Even

if errors occur with specific parameter configurations, the framework will continue

with other remaining configurations. Once the feature data has been calculated

and stored in the results folder, rerunning experiments and adding training and

evaluation parameters is automatically performed upon the saved features unless

feature parameters are changed.

Several generic visualisations of experiment results are provided by the method

test_generic_display_results() which takes as argument the results folder loc-

ation. This includes bar-diagram comparison of training and test set results of dif-

ferent configurations as well as an analysis of the influence of different parameter

151



7 A Framework for Reproducible Training and Evaluation of Music Similarity

Models

Test Script

Set similarity data parameters

Define ranges:

• Feature parameters

• Model parameters

• Training parameters

• Evaluation parameters

Create results directory

Start evaluation

test_generic_para-

meters_crossval()

Training and model

evaluation for all

parameters

test_generic_dis-

play_results()

Visualise and

compare results as

saved in directory

Figure 7.2: Experiment workflow in the CAMIR framework.

types on the models’ performance. The best and worst performing parameter val-

ues are also reported for each parameter. The saved result data contains various

other diagnostic information including the model training time per parameter set,

information on training success and possible errors during training.

7.5 Conclusions

We have presented a software framework allowing for the analysis of relative sim-

ilarity data, feature extraction and reproducible experiments on music similarity

model training and evaluation. The included work flow for explicit experiment set-

up and parametrisation, together with strong integration of source code control

into both code and saved results, encourage reproducibility of any experiments

performed with the toolbox, as desired by research question rq:3 for the following

evaluation.

The framework is available as open source on the web, and includes all similarity

learning methods described in Chapter 6. It combines new methods for similarity

modelling with several third party methods for metric learning, their adaptations

and other external tools e.g. for graph visualisation. CAMIR is built around many

components that have been published as open source by other researchers and

developers. We encourage users of the CAMIR framework to make their contribu-

tions open source, and where possible integrate their additions into the existing

framework.
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7.5 Conclusions

The following section will discuss our similarity modelling experiments for evalu-

ation of the methods described in Chapter 6. Except for special methods in Sec-

tion 8.4.3, all results reported in this thesis have been produced with CAMIR.
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Unfortunately, human subjects cannot be regimented as easily as cards

of a deck, and the investigator of human behaviour faces sampling

problems which are not sufficiently allowed for by pencil and paper

statisticians.

(Alfred Kinsey, 1948)

8 Evaluation

With the similarity learning and evaluation framework introduced above, we now [pub:7]

go on to evaluate the effectiveness of similarity modelling approaches given real

user-generated similarity data. We evaluate training algorithms as introduced in

Chapter 6 in their general ability to fit the similarity data in Section 8.3, allowing

for insights and answers to our primary research question rq:1 . For most of these

algorithms, this is their first thorough evaluation for adapting to user-based simil-

arity data. Here, especially the test-set or generalisation performance, describing

how well previously learnt models generalise to unknown data will be in focus. In

particular, we measure the percentage of test-set constraints that are fulfilled by

the learnt similarity models. The trade-off between fitting training data and gen-

eralisation is observed for different algorithms, with their hyper-parameters tuned

for the best generalisation performance. As we compare different metric-based

models and our new neural net-based model, we are interested in which models

will be most suitable for this task. Also, the time needed for training models will

be compared between methods.

Second to the model structure itself, the representation of clips and their musical

content via features is a central part in modelling music similarity. If not specified

otherwise, our experiments use features derived from the The Echo Nest data con-

tained in the MagnaTagATune dataset and Million Song Dataset, as introduced in

Chapter 5. These combined features include acoustic and tag information. In Sec-

tion 8.4, they will be compared with model training tests on single feature types
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as well as on different combinations of those. We analyse the influence of both

the representation as well as the contained information regarding the modelling

success. One comparison method we introduce, using PCA for reduction to equal

dimensionality, allows for the analysis the impact of different feature information

types while keeping the feature vector dimensionality constant.

In Section 6.2.3, we introduced the WMLR method for learning from weighted sim-

ilarity data, which promises to more accurately represent similarity data during

training. A comparative analysis using weighted SVM training is performed and al-

lows for assessment of the quality of weightings derived from the MagnaTagATune

dataset and thereby respond to rq:4 .

Our new, and currently growing CASimIR dataset is the first to contain participant

attributes linked to the similarity statements. Section 8.7 introduced our novel

country-annotated similarity dataset, which we will capitalise on for first culture-

aware similarity experiments in Section 8.7. The new RITML method presented in

Section 6.3.6.1 is now evaluated on the country-specific datasets, and we present a

first application of its template-based learning facility for a first study on transfer-

learning with similarity models in Section 8.7. This will give some interesting

insights on the information that can be stored in similarity models, and how it can

be exploited for research in comparative musicology.

With the exception of the latter experiments, all following analysis is performed on

MagnaTagATune, as this was the only relative similarity dataset available through-

out the period underlying this research. Furthermore, the CASimIR dataset is still

growing and at this point not as large as MagnaTagATune.

In order to provide a fair comparison and analysis of the different model training

methods, we take a closer look on the influence of sampling strategies for relat-

ive similarity data on our evaluation of model performance in Section 8.5. For

now, Section 8.1 introduces our new generic graph-based Inductive Sampling (ID-

sampling) method for dividing similarity data into disjunct training-and test-sets to

account for unwanted effects of transfer learning in some algorithms.
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8.1 Strategies for Cross-Validation

8.1 Strategies for Cross-Validation

In our experiments, the performance of the learnt metrics regarding the similarity

data is evaluated using cross-validation. Cross-validation uses on disjunct sets of

training and test constraints. In k-fold cross-validation, the complete constraint set

is divided into k disjunct bins of approximately equal size. Afterwards, one of the

bins is left out during training and used for testing the performance. Repeating this

procedure for each of the bins, k test results are calculated. In our experiments,

we observe the average satisfaction of constraints over all k bins, as well as the

corresponding standard deviation.

In our initial experiments we noted that the division of similarity constraints into

test and training sets affected the outcome for certain algorithms. Considering

that multiple constraints refer to the same clip or clip pair (max. 2 constraints

per clip in the MagnaTagATune dataset), random sampling across the constraints

leads to clips being both referred to by constraints in the test and training sets. As

the features for the clips are part of the training data given to the model training

methods, feature information for certain test set constraints may already occur

in the training set. Algorithms may now take advantage of the knowledge of the

feature space for the otherwise unknown similarity constraints in the test set. We

refer to this situation as Transductive Training (see Gammerman, V. and Vapnik

[28] for the terminology).

In order to avoid bias trough transduction of information from training to test set,

we here present a new method for inductive training with relative similarity data,

intelligently splitting training and test set on the clip and constraint level, which

will be used for the majority of our experiments.

8.1.1 Sampling for Transductive Training

As will be assessed in Section 8.5, only separating constraints, ignoring the mul-

tiple notion of clips, as in most of the experiments on the MagnaTagATune sim-

ilarity data [pub:4, pub:6] and [91], leads to transductive training effects due to

reappearing feature values: Clips may reappear in up to three constraints, and the
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feature vectors used in the training of a metric are likely to also be included in

the constraint-disjunct test sets leading to over-estimation of the results in cross-

validation.

Especially MLR, but also SVM-based approaches can utilise such a priori know-

ledge of the test set’s feature space when determining the relevant constraints

(MLR) or choosing support vectors (SVM). This transductive sampling will be re-

ferred to as Transductive Sampling (TD-sampling). We test the effects of TD-

sampling in Section 8.5, where the similarity constraints Q are randomly sampled

into k = 10 cross-validation bins. Each of these bins is used as the test set Qktest

of 86 constraints, while the remaining 9 subsets are combined to the training set

Qktrain of 774 constraints. Using this configuration, the training sets reference 989

clips. Thus, on average, we find that 98% of the test set clips already appear in

the training set. Depending on the application of the learnt similarity measure,

e.g. for recommendation within a database with fixed known tracks, this approach

can be realistic and helpful: Although only some feature information, and no sim-

ilarity data is shared between training and test sets, the performance on unknown

similarity data is improved.

8.1.2 Sampling for Inductive Training

On the other hand, for assessing the capabilities of a model to generalise over un-

known test data, further means have to be applied. Wolff et al. in [pub:9], test a

cross-validation sampling method which separates the MagnaTagATune similarity

data on the basis of the connected similarity subgraphs. Here, the k bins used for

cross-validation are not defined on the basis of single constraints (i, j, j) ∈ Q, but

on the subgraphs Gisub. Choosing disjunct bins on the basis of these 337 connected

components of the similarity graph guarantees the bins to be disjunct with regard

to the set of clips as well. Such a sampling based on the Gisub comes with several

advantages when compared to a sampling based on clips: Due to the structure

of the underlying similarity triplets, all clips in a subgraph Gisub have to exist in

a testing bin in order to represent the distance constraints involving one of the

clips in this graph. Now, any other distance constraint existent in this subgraph
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has either to be included in the same cross-validation bin or must be omitted, as

its similarity information exclusively relates to the two remaining clips mentioned

in its subgraph. The Gisub differ in their number of edges or distance constraints

included, which results in the cross-validation bins slightly varying in their size

in constraints. With the exception of Section 8.5, in all of the following experi-

ments 337 subgraphs have been divided into k = 10 bins, each corresponding to

33 or 34 subgraphs. This results in bins containing 85 constraints on average. The

maximal training set size varies from 771 to 779 constraints referencing on aver-

age 896 clips. This sampling strategy for inductive training will be referred to as

ID-sampling.

8.2 Growing Subsets

Some of the figures in this chapter show the dynamics of model training over a

growing number of training constraints. For this, similarity constraints are extrac-

ted as described in Section 8.1. Then, subsets Qvtrain(p) of the training sets are

defined, which are used individually for training: For each cross-validation fold,

the training set size |Qvtrain(p)| is increased in a manner of cascading subsets start-

ing from only a small set of 13 constraints on average. The performance is then

tested against a logarithmically increasing test set size p until the complete test

set is reached. The successive Qvtrain(p) for growing p are selected in a manner to

assure that the smaller sets are subsets of larger training sets:

Qvtrain(p1) ⊂ Q
v
train(p2) for p1 < p2 (8.1)

Still, the selection of the constraints into the cross-validation bins and the early

selection of only a small subset introduces a bias into the test results. To control

this effect, we use four independently selected samplings (type: ID) for each data

point plotted, across which the results are averaged.
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8.3 General Performance

For the metric learning approaches, DMLR and SVM are compared in learning a

weighted Euclidean distance, whilst MLR is adapting a Mahalanobis distance with

a full matrix W . The regularisation trade-off factors c were set to c = 1012 for MLR,

c = 102 for the diagonally restricted DMLR (Section 6.2.2), and c = 3 for the SVM

algorithm (Section 6.2.1). They have been determined using a grid-based search

on training data for the optimal configuration, the algorithms’ performance being

evaluated via cross-validation. For RDNN the MLP is set up with two hidden layers,

containing 20 and 5 neurons, respectively. Training of the MLP is performed in 5

RPROP epochs, growing to 14 epochs along 4 outer cycles.
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Figure 8.1: Overall test set performance for combined features with averaged low-

level information: SVM (SVM-Light), MLR, DMLR and RDNN perform-

ance for full features, with increasing training set size. The baseline (un-

weighted Euclidean distance) is plotted as dots.

In Figure 8.1, the different algorithms are compared using the combined features

containing averages for audio and timbre features, Slaney08 features and genre

features. This combination was chosen for showing relatively good results for all

of the algorithms. Considering the training with the maximum size training sets,

both MLR and SVM achieve similar performance on the unknown test set. DMLR
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is not able to generalise well from the training set (see Figure 8.2) onto the test

set.

In this experiment the test for the largest subsets results by MLR and SVM are

approximately 2% and 1.5% above the Euclidean baseline of 66.86%. At 5% sig-

nificance level only the MLR results are significantly better than the Euclidean

metric (p = 0.0007). Both DMLR and RDNN remain below the baseline perform-

ance by 1% on the test sets. The effect of these learning algorithms will become

clearer when features whose Euclidean distance provides less competitive results

are used, and will be explored in Section 8.4.1 below.

The test set results for few training data Qvtrain(p) highly depend on the algorithm

used, and for SVM and DMLR lie considerably below the baseline. For SVM, this

is an effect of overfitting and regularisation parameters being optimised for the

larger training sets. In [pub:9], an adaptive regularisation is suggested which

could trade some of the training set results, being superior for small training sets

(Figure 8.2) for better generalisation. This may be achieved by using stronger

regularisation for smaller training sets.
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Figure 8.2: Overall training set performance: SVM, MLR, DMLR and RDNN perform-

ance for full features, with increasing training set size.

Considering the behaviour of the generalisation with regard to growing training
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sets, Figure 8.1 already shows a substantial difference between MLR and SVM:

While MLR does not significantly fall below the baseline, for the small training

sets, SVM starts with very low generalisation. MLR then almost reaches maximum

performance within the first 100 test examples, SVM only reaches the baseline per-

formance at 500 training constraints. Both DMLR and the MLP network miss the

baseline performance by 1% for the test sets, although their training performance

is considerably better.

The training set performance curves in Figure 8.2 exhibit several particular types

of learning behaviour. Note that the baseline plotted as a dotted line below 70%

slightly varies while the training subsets grow to their full size. This is because only

a subset of the data is used for training over all bins, growing with the training size.

For each of the four samplings, the baseline can vary in the scale of 10% depend-

ing on the subsets used for training. In accordance with results published earlier

([pub:5, pub:6], MLR is able to fulfil all of the training constraints provided. The

training performance of SVM shows a continuous regularisation trade-off allowing

for additional constraints to be learned whilst preserving good generalisation at

the final full training set size. The worst performance is shared by DMLR and the

MLP network, overfitting to the training examples for small training sets with a

consistently inferior performance when compared to SVM and MLR. For these al-

gorithms, little gain is achieved with regard to the baseline and even the results

of 65% on unknown test sets. Note that the MLP net results depicted here are

early ones. Improvement would be expected with larger net sizes at least for the

training performance of MLP.

8.3.1 Training Set Size

In Figure 8.1, the generalisation success of the algorithms is plotted over the num-

ber of constraints used for training the model. The training sets are a series of

increasing subsets of the full trainign set (see Equation (8.1)).

For MLR, DMLR and RDNN, the final generalisation performance is almost reached

with around 300 training constraints. Only few improvements if any are made after

this point by these algorithms. This suggest that the maximal generalisation results
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are reached with comparably few training constraints, especially for MLR, which

shows most gain within the first 100 constraints. A typical result for SVM is the

very slow and more linear increase of generalisation performance over the growing

training size. The final generalisation result is similar to the performance of MLR.

8.3.2 Relation of Training and Test Set Performance

Although the behaviour of SVM could feed the expectation of even higher general-

isation for larger training sets, this is not likely given the combined features used

for this experiment: Figure 8.2 shows the maximal training performance for the

training resulting in Figure 8.1. It is a usual case, given the optimal values for the

regularisation trade-off c, that training and generalisation performance converge

towards a close final performance. For SVM, there is some room to reach over 70%

performance, but it is unlikely that RDNN and DMLR will show great increases in

performance when trained with more constraints. MLR shows a notable exception,

as it does perfectly fit the training data, but not increase in generalisation with

increasing training set sizes. This might be related to a constant overfitting, and

different regularisation strategies as well as checks on validation sets could help

further increase the performance of MLR.

8.3.3 Training speed and efficiency

Running within different environments, the comparison of the time needed by the

algorithms for the task above does not allow for direct conclusions regarding the

algorithmic efficiency. SVM is used as its compiled windows executable, while

MLR, DMLR and the MLP net run within the Matlab interpreter. Especially for the

large feature spaces used with MLR and SVM, the RDNN as described in Algorithm

5 is still by far the slowest of the approaches described in this paper, using large

amounts of time even for the small training sets.
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SVM MLR DMLR RDNN

5 40 30 60

Table 8.1: Average training time per dataset in minutes, accumulated over all 20 sub-

set sizes

8.4 Feature Influence

8.4.1 Types of Information Contained in Features

As has been shown in our early publications (e.g Wolff and Weyde [pub:6]), both

feature type and feature dimensionality have an influence on the algorithms’ per-

formances of similarity adaptation. We now present an evaluation of these para-

meters on the complete similarity data as described above. To this end, we com-

pare the performances of SVM using

• acoustic-only features

– single chroma via average or 4 cluster centroids

– single timbre via average or 4 cluster centroids

• genre-only features,

• slaney-only features,

• combined acoustic features and

• complete combined features.

The performance of SVM has been chosen as representative algorithm for the fol-

lowing experiments, providing the most stable results regarding variations over

datasets and features. Although MLR outperforms SVM in Figure 8.1, it needs

careful parametrisation depending on the input features. The results for the fea-

tures selected below should be comparable without needing to change the training

algorithms parametrisation, but for MLR the optimal regularisation trade-off para-

meter cmlr can vary by several orders of magnitude, including local performance

maxima along the scale. Until an efficient validation-set based approach for select-

ing cmlr is developed (see Future Work, Section 9.6), SVM is selected as the most

reliable candidate for the examination of feature influence. Providing the baseline

in these experiments, the constraint satisfaction performance of an unweighted
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Euclidean distance metric has been evaluated as well for all of the feature config-

urations. The results are plotted at the left of Table 8.2.

Features Chroma(1/4) Timbre(1/4) Slaney08 Genre

Test 56.44 / 52.08 64.70 / 65.80 65.80 63.32

Training 61.60 / 59.48 68.97 / 66.27 68.06 68.91

Baseline 56.86 / 56.87 60.84 / 59.33 60.52 47.79

Features Combined Acoustic(1/4) Combined All(1/4)

Test 66.03 / 61.50 68.41 / 66.26

Training 71.53 / 76.08 77.74 / 83.92

Baseline 61.07 / 59.44 66.86 / 64.68

Table 8.2: SVM Single features test set performance. Values for single average audio

features and 4-cluster audio features are separated by slashes (average /

4-cluster).

Table 8.2 compares the test set performance of SVM compared to an unweighted

Euclidean distance, using different portions of the complete feature information

available. Here, the combined features achieve the greatest performance, followed

by the Slaney08, timbre and genre features. The Slaney08 features, including

relatively high-level summary information on the clips, are particularly successful

on the unknown test set constraints (difference to training only 2.06%), which the

Chroma features prove least effective on (training difference above 5%). Here,

even the baseline performance is not reached by the learning algorithm, pointing

to an overfitting to the training data. The good performance of the timbre features

compared to chroma resonates well with results of Sotiropoulos, Lampropoulos

and Tsihrintzis [88] as reported in Section 2.5.2.

Also notable is the low baseline of the genre features: this is partly due to the

sparsely populated feature space. Each song is assigned 2-3 genres, and only a

few different discrete distance values actually occur on the binary vectors. There-

fore many constraints are not satisfied because of equal distance (distW (Ci, Cj) =

distW (Ci, Ck)). Besides this effect on the Euclidean distance, songs being annot-

ated with the same genres results in a zero distance which prohibits training of

these constraints, and degrades performance significantly, as has been shown in

[pub:5].
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Features Chroma(1/4) Timbre(1/4) Slaney08 Genre Acoustic (1/4)

Comb. All(4) 0.000 / 0.000 0.001 / 0.000 0.000 0.000 0.000 / 0.002

Comb. All(1) 0.000 / 0.000 0.015 / 0.002 0.008 0.000 0.000 / 0.013

Acoustic(4) 0.000 / 0.008 0.002 / 0.006 0.000 0.145 0.000 / –

Acoustic(1) 0.000 / 0.000 0.753 / 0.179 0.823 0.116 – / 0.000

Genre 0.000 / 0.000 0.076 / 0.244 0.037 –

Slaney08 0.000 / 0.000 0.751 / 0.505 0.000 / 0.000 –

Timbre(4) 0.000 / 0.000 0.251 / –

Timbre(1) 0.000 / 0.000

Chroma(4) 0.000 / –

Features Comb. All (1/4)

Comb. All(4) 0.086 / –

Table 8.3: Significance of performance differences between feature types (Wilcoxon

signed rank p values). Significant values at the 5% level are set in bold

type. Values for p < 10−3 are shown as 0.000.

Table 8.3 shows that the differences between the chroma features and the oth-

ers are statistically significant at the 5% level. Most of the differences between

the Slaney08, genre and timbre are not significant. However, the combined fea-

ture sets are significantly better than any individual feature set. Clustering vs.

averaging makes a significant difference only for chroma but not for timbre or

combined features.

8.4.2 PCA processed Features and Dimensionality Reduction

We now compare similarity models using different feature types whilst fixing the

model complexity. For models based on the Mahalanobis distance measure (see

Section 6.2), the latter is determined by the dimensionality of the feature space.

We now fix the model complexity by equalising the different feature dimensionalit-

ies. For the experiments below, all features are transformed to the intended dimen-

sionality using Principal Component Analysis (PCA). Prior to training, all features

are reduced to the same dimensionality by omitting the PCA dimensions with low-

est variance across the dataset. Note that the PCA transformation is performed on
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the full set of features containing clips from the training and test sets. This pre-

processing has the potential to bias the results by boosting performance similar to

transductive learning when compared to the previous and other results based on

inductive learning, although our observations do not indicate this. Still, as our goal

is to compare performance between features, any equally distributed bias will not

affect the relative comparison.

Given the different dimensionality of the features, determining the maximal num-

ber of their principal components, we compare two sets of dimension-reduced fea-

tures: PCA12 for single chroma mean features, timbre mean features, Slaney08

features, combined audio features and combined all features, reducing the re-

spective PCA-transformed information to the 12 dimensions carrying most of the

variance. In the same manner, PCA52 features are built from 4-cluster chroma and

timbre features, genre features, combined audio features and combined all fea-

tures. In order to achieve a high dimensionality, the 4-cluster chroma and timbre

vectors were chosen for the respective tests. They are also included in the com-

bined features plotted here. The Slaney08 features do not contain enough informa-

tion to build a single high-dimensional PCA feature. Still, these are included in the

combined audio and combined all features in Figure 8.4. As above, SVM is used

for comparing the effectivity of the different feature information.

Table 8.4 shows that learning on the PCA12 chroma features did not improve gen-

eralisation results when compared to the raw features in Table 8.2. The Slaney08

and timbre features both provide significant performance increase over chroma

data. The combined features further improve the performance, with PCA12 all-

features-combined reaching better result than the original features (see Figure 8.1).

All pairwise differences in test performance between feature types are significant

at p < 5%, except timbre vs. Slaney08 and genre vs. Slaney08, indicating that the

reduced dimensionality makes learning more effective, at least with SVM.

Figure 8.3 and Figure 8.4 show training performance for increasing training test

sizes with PCA12 and PCA52 features. With increasing dimensionality, maximal

performance is reached much later, therefore needing more training data as an

effect of a less steep learning curve for all of the features. Generally, the increased
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Features Chroma Timbre Slaney08 Genre Audio Comb. Combined

Test12 55.54 64.22 62.00 60.20 66.65 69.73

Training12 59.43 66.74 63.03 62.77 69.324 71.18

Baseline12 55.81 61.40 59.42 60.12 58.37 66.86

Gain12 -0.27 2.82 2.58 0.08 8.28 2.87

Test52 51.71 57.41 / 61.46 63.73 69.50

Training52 64.41 68.03 / 65.43 71.50 75.78

Baseline52 50.70 51.28 / 58.26 53.02 55.93

Gain52 1.01 6.13 / 3.20 10.71 13.57

Table 8.4: Summary of SVM single features test and training performance. The

Slaney08 features are not available to 52-dimensional PCA features.

number of parameters allows for more specific optimisation whilst delaying the

generalisation resulting from larger training sets.

With PCA12 features, in Figure 8.3, the chroma features show only little poten-

tial for learning. The Slaney08 and timbre features both allow for a significant

increase of the metric’s performance through learning. Finally, the combined fea-

tures almost reach the performance of SVM with unreduced features in Figure 8.1.

Thus combining different feature sources, even when reducing the dimension af-

terwards, proves to represent a powerful tool in feature design for music similarity.

As above, most of the training success is achieved with small training set sizes, up

to 100 constraints. For the chroma features, test set performance even slightly

decreases towards reaching the full training set.

52-dimensional PCA features are compared in Figure 8.4. The graph, though bear-

ing results quite similar to the one above, shows generally lower performance for

the single features. The timbre features’ performance drops by 7% in comparison

to the raw and PCA12 features, and the chroma features loose further 1.7% in

performance, rendering them useless for this single-feature application. As the

performance of 4-cluster and simple average timbre features is almost the same

for the raw feature type, the number of PCA components kept remains as the de-

termining factor for the performance.

The training performance, as depicted in Figure 8.5, allows for the interpretation
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Figure 8.3: SVM Feature performance at 12 dimensions: chroma (mean), timbre

(mean), Slaney08, genre, combined features. X-axis shows increasing

training set size.

of the above results relating to bad generalisation of 52-dimensional features as a

result of overfitting: The training performance of 52-dimensional PCA features is

considerably (3-5%) higher than the performance of 12-dimensional PCA features.

Furthermore, the baseline of the 25-dimensional features is much lower (-5% for

all except genre features). Considering this, the performance gained by adapting

a distance measure via SVM is far larger (factor 2-3) than for the 12-dimensional

features. This good performance in adapting to the training constraints shows po-

tential for adapting similarity models to similarity data even with inferior features,

but this is not reflected in the test set performances.

8.4.3 RBM Features

In this experiment we evaluate how the performance of similarity models is af- [pub:2]

fected by using the RBM feature transformation described in Section 5.3.2. We

therefore train and apply RBM transformations on the combined features as a pre-

processing step before similarity modelling. The PCA transform is also evaluated

for comparison of the effects of the two pre-processing methods. As with the other
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Figure 8.4: SVM Feature performance at 52 dimensions: chroma (4 clusters), timbre

(4 clusters), combined audio, genre, combined features. Increasing train-

ing set size.

experiments in Section 8.3, we apply 10-fold crossvalidation and ID-sampling to

make experiments comparable.

This experiment is a collaboration with Son Tran et al., and the resulting publica-

tion [pub:2] was awarded wit the SoundSoftware Price for Reproducible Research1.

To allow for direct comparability, as described below, we use features already pub-

lished as open data in [pub:9]. The complete data and code, including the CAMIR

framework (see Chapter 7) and an RBM toolbox by Son Tran can be downloaded

via a creative commons license online2.

Different from the parameter-free PCA, the architecture and training method of

the RBM transformation require several hyper-parameters, as listed in Table 8.5

to be set. Here, hidNum defines the number of hidden units in the RBM network,

while the remaining parameters affect the learning rate and regularisation of the

training itself. The parameters are selected using a grid search over a predefined

range of values as displayed in Table 8.5.

1http://soundsoftware.ac.uk/rr-prize-aes53-winners
2http://mi.soi.city.ac.uk/datasets/aes2013framework/
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Figure 8.5: SVM feature training performance at 12(l) and 52 (r) dimensions: In-

creasing training set size.

Param. Values Tested

hidNum 30, 50, 100, 500, 1000

lrate1 0.02, 0.05, 0.1, 0.5, 0.7

lrate2 0.1, 0.5, 0.7

momentum 0.05, 0.1

cost 0.00002, 0.01

Table 8.5: Values used for the RBM grid search.

For training the RBM, we use the complete set of features including songs from

both the test and training sets of the cross-validation. This approach was used

for a first evaluation due to time constraints, as it reduces the number of mod-

els to train by a factor of 10. Still, the similarity data is kept separate, and only

the similarity data from the training set is used for model selection: We use the

mean training set accuracy of each tested model to fix a model and its parameters

to be used for the final evaluation. The results of those models on the test sets

of similarity data, unknown to both the RBM training and similarity learning are

then reported. Since using training accuracy for model selection is susceptible to

overfitting, we apply strong regularisation during training of the models. The final
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RBM parametrisations for each algorithm are depicted in Table 8.6.

Approach

Param. GRAD SVM

hidNum 500 1000

lrate1 0.70 0.05

lrate2 0.70 0.10

momentum 0.05 0.10

cost 2.0e− 5 2.0e− 5

Table 8.6: Parameters chosen for gradient ascent (GRAD) and SVM in the final exper-

iments.

For further comparison with the results published in [pub:9], gradient ascent is ad-

ded as a method of learning a simple weighted Euclidean model. Tran et al. [pub:2]

explain some implementation details. Being very unstable over different RBM para-

metrisations, the result of the model with best training performance within 20 runs

is reported for gradient ascent in each RBM parametrisation. Unfortunately, this

was not possible with SVM because of time constraints, and the best results within

5 runs are displayed for this approach. We here update the values published in

[pub:2] with those directly produced with the code published for reproducibility.

Features

Appr. Original PCA RBM

GRAD 70.47 / 71.68 70.54 / 70.52 73.38 / 73.50

SVM 71.20 / 83.54 70.17 / 75.29 73.93 / 81.01

Table 8.7: Comparison of original features and those with PCA and RBM pre-

processing. Test and training set results are listed as percentages of cor-

rectly predicted similarity constraints for the configurations with the best

training success. The SVM Original values are taken from [pub:9].

Table 8.7 shows the performance of different feature pre-processing strategies. We

compare original, unprocessed features with features transformed thorugh PCA

and RBMs. As we reuse features from experiments with Stober et al. [pub:9], they

differ slightly from those presented in Section 8.3: In addition to the information

contained in combined features, they also contain tag features derived from the

172



8.4 Feature Influence

tags in the MagnaTagATune dataset as described by Stober and Nürnberger [90]

to allow for direct comparison. Furthermore, the standard deviations of chroma

and timbre are added. When comparing the results for SVM with original features

in Table 8.7 to our result in Figure 8.1, a small gain of 1.2% effected by the addi-

tional tag features can be seen, but the effect almost vanishes of PCA-transformed

features. As the extraction of these features includes manual combination of tags

[90], which has been specifically performed for the limited vocabulary in Mag-

naTagATune, we continue to use our more general features in other experiments

to ensure transferability of our methods to datasets such as CASimIR.

We reran our gradient ascent (GRAD) implementation on the original features, and

when compared to [pub:9] using the same features, the results are very similar.

The SVM results are taken from this paper as the implementation and data are the

same. When using PCA, the results for SVM are slightly worse than in the original

features, while the gradient approach does improve very little.

The RBM features improve the results for all approaches, with gradient ascent

showing the greatest generalisation performance boost by 2.91% over the original

features. Still, SVM gains a significant (p = 0.0684) 2.73% through the transforma-

tion, and larger gains are to expected if more RBM models can be tested.

When finally compared with Section 8.3, SVM gains 4.88% of performance, render-

ing the RBM transformation an attractive method for improving similarity models

with relatively simple model training methods such as gradient ascent and SVM. A

drawback of the RBM technique is its stochastic nature, hindering exact reproduc-

tion of experiments. Also, the information contained in the RBM for transforming

the data cannot be analysed to a level accessible for music research yet. Continu-

ing the comparison with earlier experiments on MagnaTagATune, we now discuss

the bias introduced though transductive learning as used in the first experiments

with this similarity data.
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8.5 Sampling: Effects of Transductive Learning

As detailed in Section 8.1, sampling for cross-validation can be realised as in-

ductive (ID)-sampling, like in the experiments presented in this thesis and [pub:2,

pub:7, pub:9], or as transductive (TD)-sampling ([pub:4, pub:6] and [91]), where

pairs and individual clips (but not constraints) can appear in both training and

test set. Figure 8.6 shows the results for the SVM, MLR and DMLR algorithms.

The baseline shows the performance of an unweighted Euclidean distance meas-

ure for the test sets. During cross-validation, baseline results are averaged over

all test sets and the average performance is calculated for the whole dataset. With

TD-sampling, both MLR and SVM performance are significantly better than the

baseline (both p < 0.001).
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Figure 8.6: Transductive sampling: SVM, MLR, DMLR and RDNN test set perform-

ance for full features. The training set size increases from left to right.

The training performance of all algorithms displayed is similar to the performance

with ID-sampling as plotted in Figure 8.2. In contrast, the performance on the

test sets, as in Figure 8.6, shows a considerable increase of performance (6%) for

MLR and a slight increase for SVM. This reproduces our findings in Wolff et al.

[pub:9]. Involving almost all the feature vectors of the test set in training allows

for MLR to make better decisions when the separation oracle selects the instances

of the constraints to involve in the optimisation process (see Section 6.2.2). For the
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Support Vector Machine SVM, the set of possible support vectors is increased with

the number of feature vectors. This increase of data amounts to 10% additional (93

clips, see Section 8.1) feature vectors referenced during training via TD-sampling.

8.6 Learning with Weighted Constraints

We now focus on another aspect of the similarity data which has been neglected

in experiments with relative music similarity data so far: The weights of individual

constraints α(i,j,k) can be used to prioritise constraints where many participants

agreed with their input. One hypothesis we explore is whether prioritising con-

straints with large weights leads to a better generalisation performance of the

learnt model. To this end we use our new WMLR and the SVM-based training

method for weighted training of similarity models, and compare their effectiveness

using weighted and unweighted performance measures. The following experiment

is designed to evaluate their ability to train models according to the constraint

weights.

8.6.1 Weighted Performance

So far, performance has been analysed on an unweighted basis, each constraint

having the same importance at the start of the model training. As described in

Section 3.2, the 860 unique similarity constraints in MagnaTagATune represent∑
(i,j,k)∈Q α(i,j,k) = 6898 weights after removal of inconsistencies in the similarity

graph. The vote difference for each edge can be used as an indicator for the re-

liability of the constraints. In the following experiment each constraint (i, j, k) is

weighted in proportion to its weight α(i,j,k) > 0, using the new weighted MLR train-

ing introduced in Section 6.2.3 and weighted SVM (see Section 6.2.1).

To this end, instead of performing an unweighted evaluation considering the unique

constraints satisfied, as used above, we measure the weighted performance of a

metric as sum of the weights satisfied by the metric divided by the total sum of

weights in the respective test or training set.
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∑
(i,j,k)∈Qgood

α(i,j,k)∑
(i,j,k)∈Qbase

α(i,j,k)
, for (8.2)

Qgood = {(i, j, k) ∈ Qbase | distW (Ci, Cj) < distW (Ci, Ck)}.

The test set performance is then defined with Qbase = Qtest and the training per-

formance analogously with Qbase = Qtrain.
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Figure 8.7: Overall training set performance, weighted evaluation for training with:

SVM, weighted SVM (WSVM), MLR, DMLR, WMLR and WDMLR. The

bottom dashed curve displays the weighted baseline performance.

Figure 8.7 shows the weighted performances on the training sets of weighted train-

ing with WMLR, WDMLR, and SVM. We compare these to weighted performance

(E:W) of the unweighted training with MLR, DMLR, SVM and an Euclidean metric

as baseline. For the Euclidian metric, the weighted evaluation yields about 6%

better performance than using unweighted evaluation, indicating a correlation of

the weighted constraints with the Euclidean distance in feature space. For WMLR

and MLR, satisfying 100% of the unique training constraints, the weighting makes

no performance difference. The results of the other algorithms improve by similar

amounts as the baseline. This shows the weighted learning approach described

in Section 6.2.3 succeeds in improving results towards the weighting of the con-

straints supplied during training.
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Figure 8.8: Overall weighted (E:W, –) / unweighted (E:UW, · − ·) generalisation per-

formance for weighted training: WSVM, WMLR, WDMLR

The full lines in Figure 8.8 show the generalisation results of weighted training

with WMLR, WDMLR, and SVM on the test sets. Here, only WDMLR exceeds the

baseline performance for weighted evaluation, which is also the only significant

result on test sets in this comparison. Thus, the other algorithms fail to improve

generalisation by using the weights. Given that the DMLR training performance

was lower than for the other algorithms, this seems to indicate that the lower model

complexity of WDMLR allows more effective learning on the weighted dataset.

8.6.2 Effects on Unweighted Performance

Considering the unweighted performance of the models learnt from weighted con-

straints, drawn as dotted lines in Figure 8.8, the tested algorithms perform worse

than in Figure 8.2, but still significantly better than the baseline. According to the

Wilcoxon test, only WDMLR can reach significant improvement above the baseline,

although weighted training is effective on the training data. On overall, the use for

weighted data from MagnaTagATune seems not to improve the generalisation of

learnt models.
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However, as the distribution of weights we extract from MagnaTagATune depends

on both the number of votes and the ratio of conflicting vote (see Section 3.1.1),

there is no straightforward interpretation of these results. We now continue the

evaluation of geographically annotated similarity data as collected from the Spot

the Odd Song Out game. Note that the following experiments are again using

unweighted training and evaluation methods.

8.7 Geographically Specific Similarity Models

In this section we report from our experiments towards creating culture-aware

similarity models, using CASimIR as the first country-annotated relative similarity

dataset. We analyse how specific similarity models for cultural subsets of the simil-

arity data can be used for learning local specificities of music similarity. Therefore,

we divide similarity data collected by Spot the Odd Song Out into four single coun-

try data sets as described and analysed in Section 4.3.1.2. The subsets were selec-

ted based on the location associated to the IP address of the users providing the

similarity data: Q̂De (Germany), Q̂Fr (France), Q̂Sw (Sweden) and Q̂Uk (United King-

dom). Besides these datasets, we define complimentary datasets such as Q̂FrSwUk

combining the similarity data from all countries but one (De in this case).

Note that these are the first experiments reported from the CASimIR similarity

dataset. Unfortunately, for the CASimIR dataset, no detailed genre information

is yet readily available. Although the Million Song Dataset dataset provides tags

from Last.fm and MusicBrainz, using these tags as raw binary features did not

increase performance in earlier experiments. Therefore, the following experiments

are using the combined acoustic features as defined in Section 8.4.1.

To allow for comparative analysis of the different learnt similarity models and

transfer learning, we use the RITML algorithm (see Section 6.3.6.1) for training

the single country similarity models. For the single models, initial tests with MLR

and SVM provided similar or lower model performance than the ones reported for

RITML below. Firstly, we test RITML separately for adapting similarity models to

each single country data set using 10-fold cross-validation. RITML is chosen as
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the method for training as it performs similar to other algorithms on the single-

country datasets, but also allows for the transfer learning strategy as applied in

Section 8.7.1. The two bottom rows in Table 8.8 show the test set results of RITML

and an Euclidean metric serving as baseline. As before, results are reported in

percentage of fulfilled test set constraints. Compared to the baseline, training with

RITML clearly improves results of those datasets. On average, the generalisation

performance is increased by over 3%. Still, regarding statistical significance the

results are not significantly better: A Wilcoxon signed rank test comparing the

baseline and RITML over all four datasets results in a p-value of 14.6%. Also, we

would expect better results from earlier experiments. In Table 8.2, the acoustic

features achieve over 66% of generalisation performance. It seems like the data-

sets are to small to allow for good generalisation by themselves alone.

8.7.1 Transfer Learning

In order to improve the generalisation results, we now apply transfer learning. The

overall process is depicted in Figure 8.9. First, an experiment with 10-fold cross-

validation is performed on each of the 3-country datasets QFrSwUk, QDeSwUk, QDeFrUk

and QDeFrSw using training and test data from these sets. Then, for each of the

3-country datasets we select the Mahalanobis matrix with best generalisation (on

that dataset) as template W0 for further usage.

Now, the template Mahalanobis matrix W FrSwUk
0 can be used as starting point for

another RITML learning step on the one-country dataset QDe and so forth. We call

this learning step W0-RITML or “fine tuning”. Our hypothesis is that this can allow

us to leverage commonalities in the datasets. Also, during the fine tuning, we can

observe the deviation of W from the template matrix W0 as indicator of specifics

of the single country dataset (see Section 8.7.2).

The top row of Table 8.8 shows the results of this fine-tuning step in “W0-RITML”.

In order to evaluate our method of transfer learning, we also report the perform-

ance of the Mahalanobis distances based on W0 template matrices without fine

tuning, labelled as “W0-Direct”. Note that none of the test set constraints whose

results are reported here have been used for training of the template matrix W0
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Figure 8.9: Flow diagram for the fine tuning process, exemplified for the QDe dataset.

or during fine-tuning. As the results are based on the same test sets as the ones

reported for RITML and Euclidean baseline, they can be directly compared.

As a last means of comparison we add the performance of RITML when trained on

data from all countries. To this end we join the training data of the corresponding

three country datasets with the training data from the previously excluded one

country dataset (e.g. QFrSwUk
train ∪ QDe

train for test on QDe
test). This test corresponds to

a test where a general model is trained with training data from all countries and

tested using a specific one country test set. The results are reported as “JOINT” in

Table 8.2.

QDe QFr QSe QUk Avg.

W0-RITML 69.28 64.34 64.40 70.36 67.09

W0-Direct 67.61 65.97 64.81 69.02 66.85

JOINT 67.80 67.39 64.05 70.46 67.43

RITML 64.35 62.71 61.75 63.78 63.15

Euclidean 60.79 62.09 58.11 62.65 60.91

Table 8.8: Test set performance per country of different learning strategies. The av-

erage performance over all countries is denoted in the rightmost column.

The highest performance is highlighted per column.

The most notable result in Table 8.2 is that the three methods using additional data

outperform RITML and the Euclidean baseline. According to the Wilcoxon test,

these three top algorithms are significantly better on each single country dataset

as well as on average (p < 3.1%). This difference is highlighted by a divider in the
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table.

The results of the three best performing algorithms are not significantly different.

On average, the JOINT model shows the highest performance, showing that in this

case the separation of data based on country of input was not helpful in general.

Still, when examining the success of fine tuning (W0-RITML), we find that it out-

performs W0-Direct on average and in two out of four individual cases (De and Uk),

with the result of W0-RITML outperforming all other approaches for QDe. Thus, it

was possible to specialise the similarity model towards QDe, but not to the other

datasets. The changes applied to the template matrix W FrSwUk
0 during fine tuning

are discussed in Section 8.7.2 below. Also, both W0-RITML and W0-Direct show

lower p-values (p ≤ 0.5%) than the JOINT approach (p ≤ 3.1%) and are thus more

significant when compared to RITML and the Euclidean baseline.

The results of W0-Direct underline that similarity information can be stored and

transferred via the Mahalanobis matrix, without the need of making the underlying

clip and similarity data accessible to training. Furthermore, the success of W0-

RITML on QDe shows that further fine tuning can be effective given a suitable

dataset.

8.7.2 Analysis of Learnt Similarity Models

In the above experiment, a similarity measure distW was created by firstly calcu-

lating a template Mahalanobis matrix W0 using the three country dataset QFrSwUk

and then fine tuning it using W0-RITML with QDe. As the performance of the result-

ing matrix significantly improved during fine tuning, we now analyse the changes

made to W0:

As formulated in Equation (6.8), the Mahalanobis matrix transforms the facet dif-

ference vectors during the calculation of the Mahalanobis distance function. This

effectively results in summation of combinations of different facet differences with

weights determined by W .

Figure 8.10 on page 184 shows the relative difference of the Mahalanobis matrix

before and after fine tuning. As the fine tuning process can rescale the similarity
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measure and thereby W , the matrices have been normalised to the interval of [0, 1]

via

Ŵ =
W −mini,j∈1···N (W [i, j])

maxi,j∈1···N (W −mini,j∈1···N W [i, j]) [i, j]
. (8.3)

The operations and subtraction and division are applied to W on a point-wise man-

ner. Dark red colours indicate weights have been increased during fine tuning to-

wardsQDe given the templateW0. Blue colours show a decrease of weights towards

the original matrix. In the very centre of the matrix a dark red corresponds to a spe-

cific importance of a timbre component for the QDe dataset. Also, the heightened

correlation of tempo and tatums confidence to timbre (see mid-bottom) is specific

to this dataset. When examining where weight has been subtracted during fine

tuning, we firstly recognise that generally weights are taken from the diagonal

to more specific off-diagonal entries. Segment duration, numTatumsPerBeat and

loudness factors have lost most weight on the diagonal.

Figure 8.11 on page 185 shows the final Mahalanobis matrix after fine tuning on

QDe. Red / dark colours correspond to high values while yellow / light colours

indicate to low values. The diagonal of the Mahalanobis matrix shows most of

the features being assigned an equal weight. The centre of the matrix contains

some timbre components with particularly high weights even for close off-diagonal

combined features. Also, combinations of tempo and tatum with timbre features

show heigh weights in the lower centre of the matrix.

The homogeneous weight distribution along the diagonal, shows that the QDe sim-

ilarity data corresponds well to a Mahalanobis distance close to the euclidean met-

ric. This is interesting as Figure 8.10 shows this is less the case for the template

matrix W0 derived form the QFrSwUk dataset. Moreover, the final matrix W (Fig-

ure 8.11) contains some negative weights which, as discussed in Section 6.2, dis-

qualifies the resulting distance measure as a metric. Still, the performance of the

resulting distance measure encourages the allowance of small violations of W ’s

positive definiteness.
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These results should provide a methodical incentive for further research into re-

commendation for (cultural) user groups. In the above experiments, the QDe da-

taset is too small to make more generic or ethnomusicological assumptions from

the peculiarities of the generated distance measures. Still, we have shown that

analysis of Mahalanobis distance measures provides relevant information when

applied to music similarity datasets from selected users with specific attributes.
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8.8 Conclusions

In this chapter, to solve research question rq:1 , we presented a comprehensive

evaluation of the various facets of modelling music similarity from relative similar-

ity data.

Our comparison of metric learning methods showed that using various supervised

learning methods we are able to improve model performance over a Euclidean

metric baseline. Still, our answer to rq:1 is not singular, as the choice of algorithm

clearly depends on the scenario: Both MLR and SVM achieve statistically signific-

ant improvements over the Euclidian metric, reaching up to almost 70% of training

performance with standard combined features. Quantitatively, the approximate 2%

of improvements that we achieve point to a difficult learning problem. Our experi-

ments show performance to depend on dataset sizes, feature information, and con-

sistency of data. Apart from consistency, which might be inherent to the subjective

notion of similarity, the other factors can be addressed by further data collection

and more elaborate features. MLR results are better than the ones presented for

other methods, especially in training, but SVM, reaching similar generalisation

results, is more efficient in the implementation we used. DMLR shares the draw-

backs of the MLR approach whilst typically performing worse than SVM. Generally,

parametrisation is key to using either MLR algorithm successfully.

The experiments with RDNN show low performance in all tasks despite the poten-

tially higher flexibility of the model. However, the near perfect training perform-

ance of the MLR shows that the flexibility of the Mahalanobis matrix is already

sufficient. With the exception of gradient ascent, all algorithms showed high dif-

ferences in performance between training and test sets, even with optimised regu-

larisation. This indicates that improving the amount of data may lead to improved

results, given the level of inconsistencies in the data does not increase.

For our experiments we used the new graph-based ID-sampling method for un-

biased selection samples for cross-validation of model performance. Our experi-

ments in Section 8.5 confirm that for the MLR and SVM methods, significant per-

formance boosts of up to 5% and therefore a bias in evaluation result from the
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naïve TD-sampling used in earlier experiments, as it allows for feature informa-

tion to be shared in test-and training sets. The experiments presented here were

therefore performed using our new ID-sampling method. Still, in specific applica-

tions with known and fixed music data, transductive learning can be helpful. We

thus distinguish the two evaluation methods in respect to research question rq:3

depending on the evaluation context.

When considering the weights derived from the similarity data, we showed that

our new weighted version WDMLR as well as weighted SVM are able to learn

from the additional information. Moreover, we observe that the standard Euclidean

metric corresponds well to the vote weights, increasing performance when using

weighted evaluation. But for generalisation, apart from a weak gain by WDMLR,

the weighted data turned out to be not easily generalisable. Unfortunately, the

DMLR method WDMLR is derived from does not show high performance in any

other task.

The choice of input features has significant effects in almost all experiments in

Section 8.4.1, even if the input dimensionality is normalised as in the PCA12 and

PCA52 datasets. Chroma features generally perform poorly, timbre features show

best single performance, while genre and the music-structural features defined

by Slaney, Weinberger and White [84] add useful information. The calculation

of clusters for chroma and timbre features provides additional information to the

system, but the simpler averaging features show more stable results especially

with 52-dimensional PCA features. The single most effective way to improve the

performance is to combine different types of features, which yields significant im-

provements over all individual features, regardless of whether clustering or di-

mension reduction is applied or not. Combining the available feature information

results in more complex models, but already the Euclidean model with combined

features outperforms any single feature performance after training. When using

only acoustic features, the model training is particularly effective (5 percentage

point improvement) and most useful, as the baseline is much lower for only acous-

tic vs. all features (61% vs 67%). Thus, using trained models can be particularly

helpful when additional non-acoustic information, such as in genre features, is not

available.
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The reduction of the input dimensionality with PCA (Section 8.4.2) has no signific-

ant effect on the generalisation with either the 12- or the 52-dimensional feature

sets, although the training results improve considerably with larger feature dimen-

sionality, at the cost of generalisation for the acoustic feature types. This is likely

the result of slight overfitting due to the number of parameters increasing with the

feature dimensionality.

The generalisation results show that the SVM algorithm is robust and extracts rel-

evant information from input data in high and low dimensions. Higher dimensional

features might improve in generalisation given a greater amount of training data.

We cannot find any improvement of the combined PCA features over the raw fea-

ture equivalent, and thus no evidence of possible transductive learning effects in

feature pre-processing is detectable.

Our experiments in Section 8.4.3 show that transforming features using RBMs

does improve both training and test set results of similarity learning with gradient

ascent and support vector machines, with generalisation results improving more

than 2.7%. In fact, the SVM result of 73.9% represents the best model perform-

ance reported in this thesis, although using additional features specific for Mag-

naTagATune. Comparing to the features extracted using PCA, the features learned

from RBM show better performance and more consistent improvement in all three

approaches. The results for gradient ascent show that given RBM pre-processing,

even simple training methods can achieve competitive model performance. A likely

benefit of RBMs is that they allow to use linear regression with non-linear combin-

ations of feature types. Like the PCA features, RBM are trained on the full feature

data and gains might be related to transductive learning from the features also

included in the test sets, although this was not observed for SVM in Section 8.5.

A drawback of the RBM transformation is its black-box character which, at the

state-of-the-art, prohibits further deduction of musicological knowledge from the

models.

Section 8.7 provides a novel example of such analysis with unprocessed features:

The analysis of influence of specific features for model fine-tuned to CASimIR sim-

ilarity data collected in Germany is a first step towards culture-aware similarity
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modelling and analysis, and opens future perspectives for research in user attrib-

utes for rq:1 . Although the amount of data in CASimIR did not suffice to learn com-

petitive individual models from data of single countries, our new method for trans-

fer learning with W0-RITML allowed for country-specific models with competitive

performance of 69.28%. The models learnt from combined-country data achieve

70.46% performance which are not significantly improving results. Already without

genre tag features, which are not yet available for CASimIR, the models outperform

acoustic-only results (66.03%) from MagnaTagATune in Table 8.2. This proves the

our new RITML algorithm to be effective and competitive with methods tested be-

fore, while enabling transfer-learning with template similarity models. The culture-

specific modelling of similarity furthermore aims at generating models for cultur-

ally similar participants, ideally resulting in more homogeneous similarity datasets.

With enough similarity data available, we aim at higher performance for the spe-

cific models for data from their target group of participants.
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In this thesis, we have developed methods for analysis, computational modelling

and evaluation of music similarity, based on relative data collected from humans.

Relative similarity data are easy to collect as they only require qualitative state-

ments from participants. However, this data type has not been given much atten-

tion in the Music Information Retrieval (MIR) research field so far. We presented

the application and evaluation of new and existing methods for similarity learn-

ing from relative data on existing and new datasets. Our evaluation showed that

learning similarity models with the presented methods is effective, but limited to

small improvements. Specific properties of training algorithms, music features and

evaluation strategies were pointed out. We also introduced a method and frame-

work for collection of music annotations, including relative similarity data, on the

web and in social networks. The data collected with a game based on this frame-

work allowed us to explore culture-specific similarity modelling. Our analysis of

data quality in MagnaTagATune provides suggestions for improvements in future

collections, and the feature analysis pointed out the importance and possible po-

tential in feature development. Generally, the results presented here and in related

research indicate that predicting music similarity is a difficult task: We observe a

limitation of generalisation performance similar to the glass ceiling effect in MIR

tasks which also substantially relate to (cultural) information external to the audio,

e.g. genre recognition.

9.1 Thesis Background

We motivated our research in Chapter 2 with the embedding of music similarity in

research paradigms of musicology and MIR. Existing research and the multiplicity
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of usages of the term similarity show the strong role it plays it plays in research

and various applications of these and other fields.

This thesis focuses on the analysis of similarity data from human ratings, with the

overarching aim to relate similarity to cultural features. Most work on music simil-

arity has been done in psychological studies with relatively small quantities of data.

We have developed methods for training models on larger datasets and evaluated

them on the MagnaTagATune dataset, which is the largest available dataset with

user-based similarity data.

So far, there was no dataset available with both similarity and user information.

Games With a Purpose (GWAPs), which motivate participants through enjoyment

and user interaction, have recently become popular for collecting user data. In

order to facilitate further research, we have developed a GWAP framework and

collected the new CASimIR dataset which is the only available dataset with music

similarity and user information.

Most research on similarity models in MIR mostly uses proximate information,

such as preference data, as ground truth for learning similarity, as larger data-

sets and mainstream machine learning methods are available for such data. This

thesis presented methods enabling the collection of large sets of relative music

similarity data as well as modelling strategies for this data type, as these are cur-

rently scarce. The central parts of this thesis are now summarised in three steps:

collection and preparation, similarity models and methods for training leading to

implementation and evaluation.

9.2 Data Collection, Analysis and Preparation

In Chapter 3, answering research question rq:4 , we provided an overview of ana-

lysis and processing techniques for relative similarity data which serves as ground

truth for the training and evaluation of all models in this thesis. We showed how

similarity constraints can be extracted from odd-one-out statements, and how this

information is represented through edges in a clip-pair graph. As we represent
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multiple votes via weights in the similarity graph, a strategy for dealing with incon-

sistencies between participant data entries, which appear as cycles in the graph,

is described. We thereby found that analysing the connected components in the

similarity graph allows for prediction of the largest cycle to be expected and thus

to analyse the data quality.

Our analysis of MagnaTagATune presented in Section 3.2 is the first comprehens-

ive analysis of the dataset and presents a pioneering methodological example for

future large relative similarity datasets. The MagnaTagATune similarity dataset is

the first available dataset of its kind, containing relative similarity data for 1019

clips. With the audio, feature and similarity data freely available, it presented a

useful dataset for our experiments on similarity modelling. However, our analysis

revealed several several issues that potentially impede effective learning and in-

terpretation of results. We found that the triplets of clip pairs in the similarity data

do not overlap between presented clip configurations, which prevents the study

of learning transitivity. Furthermore, the data has an unsystematic distribution of

genres over the test triplets, leaving them very heterogeneous across genres. In

informal tests on the MagnaTagATune dataset, subjects found it difficult to make a

decision in the odd-one-out scenario, because each of the clips came from a differ-

ent genre. This concludes our main answers to rq:4 .

The shortcomings of MagnaTagATune without any alternative datasets encouraged

us to start a new dataset collection. Question rq:5 inquired how large amounts of

data can be gained efficiently and with high control even for a web-based applic-

ation. Chapter 4 introduces the CASimIR framework for collecting media annota-

tions with games as a purpose, which is the basis of the Spot the Odd Song Out

game. The framework presented is built with the maxims of open source, open

data and modularity. The presented approach of separating survey design and

media selection from participant user interface and game logic provides a new

methodology for GWAP development. This enables the development and usage

of several user interfaces on the basis of an independent central data back-end,

thereby acknowledging that different development strategies are optimal for dif-

ferent parts of a GWAP. Our interface framework is built on modern web-standards

and enables cross-platform use on any HTML5-ready browser. The resulting API at
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the back-end now defines data annotation tasks via a strong specification, provid-

ing functionality such as dynamic example choice and user input storage. This

enables a survey design that includes dynamic adaptation to a growing number

of participants. The code is released as open source and the modularity of the

implementation provides a reusable basis for new data collection projects.

Resulting in a collaboration with KTH Stockholm and several publications, the

data collected via Spot the Odd Song Out exemplifies the usability of our frame-

work: In Section 4.2.5, we presented an early overview of first data collected,

which confirmed the effectiveness of our methods for online data collection. The

new CASimIR similarity dataset, although not yet the size of MagnaTagATune,

achieved the desired requirements of strong interconnectivity between presen-

ted clip triplets and stronger genre conformity. Finally, the ability of CASimIR

to integrate with social networks and collect participant attributes allowed for our

creation of a first country-specific relative similarity dataset in Section 4.3.1.2 and

later comparative experiments. We furthermore provided tempo and rhythm data-

sets using real-time data of participants tapping to music as well as first analysis

results.

In Chapter 5 we discussed acoustic, cultural and metadata features for learning

music similarity on large databases. Following an introduction of feature extrac-

tion and its function in MIR, we showed how basing analysis on The Echo Nest

features instead of raw audio can enable research on large databases including

copyrighted recordings. For acoustic features, an aggregation approach was in-

troduced in Section 5.1.1.2, using clustering to represent different harmonic and

timbral clusters. We furthermore make use of medium- to high-level features built

on The Echo Nest data. Another source of information included in our features

consists of tag annotations, as they include contextual information about the music

clips. We introduced the genres annotated by the Magnatune label as a valuable

addition to the MagnaTagATune dataset, and derived tag features from it, which

can be extended by tags from collaborative music platforms.

A novel post-processing approach we introduced is the transformation of features

using RBMs. The unsupervised training of a probabilistic model allows for a trans-

formation of features into a new feature space, with freely parametrisable feature
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dimensionality. Our later analysis also uses PCA post-processing, which we here

introduce as a means of dimensionality reduction and decorrelation of the features.

Feature extraction is an influential component of music similarity models, as it de-

termines the representation of music. The different options elaborated allow for a

wider examination of rq:1 . Furthermore, by using features from The Echo Nest, ex-

periments can be reproduced without access to the potentially copyright-restricted

audio data, enabling a large-scale evaluation of the methods (rq:3 ).

9.3 Similarity Models: Structural Framework and

Training Methods

The central methods in this thesis, providing adaptation of models to similarity

data were introduced in Chapter 6. Here, we discuss different model architectures

for learning a distance measure as dual representation of the similarity model. We

used the abstraction of facet difference vectors to model differences in clip pairs,

which are then given as input to the distance measures. MLR and SVM-Light were

discussed as two available state-of-the-art methods for metric learning on relative

similarity data. At this occasion we contribute a new weighted variant of MLR–

WMLR – as well as weighted learning with SVM. Extending this answer of rq:2 by

further alternatives to train models with relative data, we integrated an approach

for transferring methods designed for absolute similarity data into our framework

of relative similarity learning.

Using this framework, we here present two new algorithms for similarity learn-

ing from relative data: RITML is our new algorithm based on the ITML metric

learning method, which allows for regularisation towards template Mahalanobis

matrices. For relative training data, we thereby present a first method and ap-

plication of transfer learning on the level of similarity models in W0-RITML. Our

RDNN method uses a single multilayer perceptron to learn a distance measure

from relative similarity data. This is the first model we present that is able to

model asymmetric relative similarity data. Further presented applications of the

framework enable the application of general regression methods and regression

trees to relative similarity learning.
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9.4 Implementation and Experiments

In order to evaluate the new and existing methods introduced above, we created

the CAMIR framework for culture-aware music information retrieval which was

presented in Chapter 7. Implemented in Matlab, the framework provides code for

all methods presented in this thesis. This includes analysis of music and simil-

arity datasets, with graph-based visualisation of similarity data, extraction of au-

dio and tag features as well as the definition and training of similarity models.

The experiment part of the framework manages a typical similarity learning work-

flow, including the creation of unbiased data sampling for cross-validation, grid

search for feature parameters and concise experiment definition. In addition to our

new methods, the framework includes external implementations that were gener-

ously provided by other researchers in Matlab, Python or c++. Being awarded

the SoundSoftware reproducibility price with publication [pub:2], the framework

runs on multiple platforms and consistently integrates measures for source code

version control in experiment scripts and results storage, linking created data to

the version of producing code.

Finally we presented a comprehensive evaluation of the similarity models and

training methods in Chapter 8. This is the first comprehensive evaluation of sim-

ilarity models adapted to relative data at this scale. In an introductory part, we

discussed our evaluation strategy based on cross-validation and responded to pe-

culiarities of our ground truth data (rq:3 ). We introduced a sampling method spe-

cific to relative similarity data that allows for fair comparison of training methods

by avoiding transductive learning. Furthermore, many analyses are performed on

training sets of increasing size which allowed us to determine the effect of training

data quantity and make predictions for larger datasets.

In Section 8.3 we found that all model training algorithms could improve over a Eu-

clidean baseline measure – although by only modest amounts of 2-3% –, reaching

up to 70% generalisation with standard features. The substantially higher training

set results point to issues with overfitting, in particular for MLR, as well as to sim-

ilarity learning as a tough generalisation task. The state-of-the-art metric learning

algorithms MLR and SVM provided the best, and particularly SVM the fastest and
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most stable performance due to a simpler model (see rq:1 ). Our new RDNN model

also increases performance, but needs further tuning to become competitive. A

direct comparison of the new RITML and regression methods was not possible at

the time of the general comparison, and is planned for future work.

The choice of input features has significant effects for similarity learning (see Sec-

tion 8.4). For the MagnaTagATune data, timbre and Slaney08 features had highest

performance when used alone, but the combination of many different feature types

provides best modelling results: Already the euclidean baseline of combined fea-

tures outperforms the models trained on any single feature type. The increased

performance of the combined features comes at the cost of higher model complex-

ity, as the dimensionality of the feature space grows by a factor of more than 10

times the dimension of timbre features. Although for model analysis as in Sec-

tion 8.7.2, the individual feature dimensions are needed, dimensionality reduction

can help reduce model complexity where such model analysis is not needed: Using

the PCA transform with SVM model training, we analysed the model performance

with regard to model complexity and feature information. Even with only 12 fea-

ture dimensions, and thus fairly reduced complexity of the Mahalanobis distance

models, we found that combined features can still reach competitive generalisa-

tion performance of about 70%. The comparison to 52-dimensional PCA features

showed that dimensionality of features mostly influences training results, with lar-

der dimensionality allowing for better fitting to training data. Looking at the test

results, dimensionality can be reduced by a large amount (e.g. to 12 dimensions)

without affecting generalisation. The genre features, adding a large number of fea-

ture dimensions, may be omitted in order for a better trade-off of model complexity

and performance, at a loss of performance of 2-3% which resembles the baseline

of features including genre information.

In this thesis, the best results of almost 74% were achieved with our novel high-

dimensional RBM features, providing an alternative solution for research question

rq:1 . Using high-dimensional feature spaces the RBM method allows for compet-

itive results even with primitive training using gradient ascent, but lacks potential

for analysis of musicological meaning in features. As the features were trained us-

ing the whole dataset, this gain might be partially caused by transductive learning
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and it is left to future work to distinguish the gains of feature representation and

transductive learning using high-performance computing facilities.

Comparing our new sampling method to standard sampling in Section 8.5, we

found that the latter, ignoring clip repetition during sampling of cross-validation

sets result in bias of up to 5% of increased performance for algorithms like MLR.

These algorithms are preferable for transductive learning scenarios, for instance

when working with a fixed music dataset where only similarity data is added. This

investigation of rq:3 can inform a better comparison of future experiments with

relative similarity data.

WDMLR, our new weighted adaptation of DMLR, proved successful in predicting

weighting data of MagnaTagATune on the training data, although with little gener-

alisation success. Comparing results of other methods for weighted learning (our

WMLR and existing WSVM), we concluded in Section 8.6.1 that different types of

weighted data, reflecting both number of votes and vote uncertainty, are needed

for further analysis.

We finalised our experiments with Section 8.7, presenting an application of our

new W0-RITML method to culture-aware similarity modelling: Using four different

similarity datasets divided by country, we introduced the method of transfer learn-

ing with similarity models. In this case, a generic “European Similarity” model

learnt using RITML was fine-tuned to a specific-country via a second learning step.

RITML was created using our model transfer methods with the absolute-similarity

data ITML algorithm. These experiments only recently became possible through

the new similarity data collected via the Spot the Odd Song Out game, and our

method achieved a boost in performance promising better similarity learning when

compared to earlier results achieved on MagnaTagATune.

9.5 Main Contributions

In this thesis we addressed learning music similarity measures from relative user

data. We discussed existing research relevant to relative similarity learning, presen-
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ted available data and analysis as well as new and existing methods for modelling

music similarity. The main methodical contributions are as follows:

• We derive audio- and tag-based features from the free online APIs The Echo

Nest and Last.fm for large datasets (Chapter 5)

• Similarity graph analysis including building and pruning of similarity relation

graphs from odd-one-out experiments (Section 3.1.2)

• A thorough analysis of the MagnaTagATune dataset using these methods Sec-

tion 3.2

• A framework for collecting music annotations via the web and social networks

and a game for collecting music similarity data annotated with user attributes

(Chapter 4)

• The CASimIR similarity dataset, and a country-annotated dataset derived

from it (Chapter 4)

• A general and extensible framework for training and evaluating music simil-

arity models on large scale databases (Chapter 7)

• A number of new and adapted methods for learning from relative data (Chapter 6):

– A methodical framework for relative similarity learning, allowing for in-

tegration of absolute similarity learners (Section 6.3)

– The WMLR/WDMLR method for learning from weighted relative similar-

ity data (Section 6.2.3)

– A new approach of using RDNN for similarity learning (Section 6.3.7)

– The RITML method for learning weighted relative similarity data, and

W0-RITML for transfer learning with similarity models (Section 6.3.6.1)

• The inductive sampling method for unbiased sampling of relative similarity

data for cross-validation (Section 8.1)

• A PCA-based evaluation of influence of feature information with constant di-

mensionality (Section 8.4.1)

• An approach for comparative analysis of culture-based similarity models, us-

ing transfer learning with RITML (Section 8.7)

Our evaluation of the discussed modelling strategies resulted in the following cent-

ral experimental findings:
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• Learning of metrics based on relative similarity data from users is possible

with the tested features and algorithms. The performance on unseen test

data can be significantly improved, depending on the application, the choice

of algorithm, and features used.

• Adaptive models can achieve statistically significant improvements of more

than 3% over a standard Euclidean metric, yielding a accuracy of almost 70%

on test constraints.

• Mahalanobis metrics, and often weighted Euclidean metrics, are sufficiently

flexible to model similarity relations in the given data, no gains can yet be

found through the more flexible RDNN model.

• For SVM learning on the given dataset, chroma features are least effective,

and combinations of different feature types are most effective, independent

of dimensionality reduction and clustering versus averaging of timbre and

chroma data.

• The best performance of almost 74% fulfilled constraints on MagnaTagATune

is delivered by SVM with RBM transformed features.

• Our new RDNN algorithm trains a neural net to relative constraints works

but generalisation performance is yet to be improved.

• The test performance of all algorithms leaves considerable room for improve-

ment, which we attribute mostly to the MagnaTagATune dataset used.

• The CASimIR data seems easier to learn than data from MagnaTagATune,

when considering acoustic-only features.

• Using biased transductive sampling, the results are up to 5% higher.

We conclude this thesis with an outlook on the opportunities and challenges opened

up by the presented data, methods and results.

9.6 Perspectives for Future Work

The methods presented in this thesis allow for the modelling of music similarity

models to user data. In a broader sense, we have worked towards the development

of more user-centred music retrieval systems, allowing personal or other contex-

tual information to be considered for the systems’ responses. In line with the
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MIReS roadmap for music technology [83], we here would like to emphasize the

potential of user-centred MIR research. In particular, we are interested in devel-

oping culture-aware similarity models. Opportunities exist in the combination of

research on context-aware models such as listed by Schedl, Flexer and Urbano [77]

with relative similarity or other user-reported data. Such models should not only

allow for the involvement of cultural indicators of the media and user for similarity

predictions, but moreover facilitate comparative research in similarity judgement

and perception across cultures. Rather than implicitly following cultural bias in

MIR systems, more of it could thereby made explicit and tangible for interaction

with the user.

The CASimIR framework for data collection via GWAPs delivers and enables the

collection annotations with rich context information about the data providing parti-

cipant. We have given an example of a culture-annotated dataset in Section 4.3.1.2,

and hope the further data collection via Spot the Odd Song Out will add to this da-

taset. We also encourage other researchers to contribute to this dataset with dif-

ferent annotation collection modules. In general, the development of more GWAPs

and collection of user behaviour data in games for music – within the boundaries

of research ethics – will not only help investigate the “glass ceiling” in MIR but

also facilitate interdisciplinary research with social sciences, cultural studies, psy-

chology and other disciplines. A comparison of information gained and sources of

bias in games versus traditional surveys is yet to be performed and would be very

helpful in deciding for appropriate data collections strategies.

The comparison of similarity models for geographic regions exemplifies a first com-

parative analysis of models, with conclusions relating to the participants’ regions.

We particularly are interested how our novel method of W0-RITML transfer learn-

ing could be further exploited in this scenario. Design of culture-aware models

as suggested in Section 4.3.1 will require but also feed back to the understanding

of two relationships: the relationship of user attributes to cultural spaces and the

relationship of cultures to music (similarity) perception.

For the training of similarity models, our results consistently support the inter-

pretation that the learning performance is limited by the size and the quality of

the dataset. Experiments on feature influence showed that a more diverse feature
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set promises to increase performance. Already without genre tag features, which

are not yet available for CASimIR, the models outperform acoustic-only results

from MagnaTagATune (see Table 8.2). Such features can be derived from Mu-

sicBrainz data linked to CASimIR. Future research can investigate the data quality

in CASimIR, which aims to be more balanced in terms of clip linkage than Mag-

naTagATune, and extends on presented methods of comparing different similarity

datasets.

Apart from more advanced feature design, the different similarity models and train-

ing methods presented also encourage further research at the basis of learning

similarity from relative data: The representation of clip pairs via their facet differ-

ences used in this thesis points out the opportunity of specialised facet difference

measures fitted to the underlying feature types. The feature specific measures in

Stober and Nürnberger [90] can be extended by further processing of facet differ-

ence vectors by for example convolution, the normalised compression distance by

Bello [7], or the Kullback–Leibler divergence for tag features.

For the presented training algorithms, MLR as well as RDNN would benefit from

a model-selection strategy during experiments, using a validation set to deal with

the choice of hyperparameters such as the regularisation trade-off c. This is also

an opportunity to optimise the probabilistic RBM feature transformation which

proved successful in our experiments. in Section 8.4.3 we tried several instances of

probabilistic feature learning, selecting models based on the RBM training set per-

formance. The results here can be validated and possibly improved by using only

training sets for model training and a validation set for model selection. Further-

more, using feedback of the final similarity model performance during training, for

instance by fine-tuning the RBM via backpropagation, would provide a more uni-

fied and potentially more successful training strategy. For the RDNN network, we

expect further parameter tuning, and the test of alternative network architectures

can allow for achieving competitive results. Transfer learning might also be pos-

sible using pre-training of the neural nets. Furthermore, when learning from sim-

ilarity data allowing for directional similarity evaluation, the ability of the neural

net to model asymmetric similarity perception, as suggested by Tversky [94] will

become relevant.
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Many algorithms that can be adapted to learning from relative data via the method

in Section 6.3, such as generic regression or GBRank regression trees, also allow

for learning from asymmetric similarity data. We here only evaluate the RITML

method, which is restricted to learning a pseudometric, but on the other hand al-

lows us to introduce transfer learning. There is potential in the context information

in the similarity triplet which could be exploited more explicitly. It will be interest-

ing to compare the properties and performance of similarity learning paradigms

using absolute similarity data with the methods developed here for relative data,

including data collection, analysis and user feedback on the final models.

The regression-based and RDNN methods presented in this thesis might allow for

usage of similarity data without advance filtering as performed in Section 3.1.2,

given we collect similarity data with more informative weighting information. Also,

the limitations of assuming symmetric similarity can be overcome using the re-

gression method exemplified in Section 6.3 and the RDNN approach and evaluated

using the presented evaluation strategies. Although the CASimIR dataset does con-

tain the sequence of listening in clips, we suggest to collect similarity data using a

new module controlling the order of clips for instance by means of presentation.

The application of the presented methods for model training and analysis to big da-

tasets will be pursued in the AHRC-funded project “An Integrated Audio-Symbolic

Model of Music Similarity (ASyMMuS)”. Based on an infrastructure for music re-

search on big data, currently developed by the “Digital Music Lab1” project, sim-

ilarity models combining acoustic and symbolic data will be developed. The goal

is to provide musicologists and others with tools for large-scale collection analysis

based on multi-modal concepts of music similarity.

In the 1960’s, Lomax [52] compared cultures on the basis of their songs and music

in a large music ethnographic project. Culture-aware MIR systems and models we

have today can support comparisons based on further musical attributes such as

style, preference and similarity perception, on a much larger scale. The recent ad-

vent of more powerful computing techniques requiring less human pre-processing

of observations, together with the strong impact of open sourcing of research code

1http://dml.city.ac.uk
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and data will enable the development of more user-based systems. This data-

centred approach should not lead to a decline of involvement of expert-knowledge

in research on music. On the contrary, we hope that this thesis encourages more

interdisciplinary work of MIR with disciplines such as musicology, cultural studies,

sociology, psychology and others that can help model and compare the structure

of cultural knowledge and its integration in music information systems.
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10 Appendix

Figure 10.1: ClipComparedGraph (Section 7.2.1) of the MagnaTagATune dataset. Ver-

tices represent clips, undirected edges reflect co-occurrence of the clips

in at least one triplet. Question triplets are clearly distinguishable. Only

few clips are linked/compared to more than two other clips. Colors indic-

ate the number of permutations a triplet has been presented in (blue=1,

yellow=2, red=3). The spatial arrangement minimises edge collisions.
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Figure 10.2: ClipComparedGraph (Section 7.2.1) of the current (01/05/2014)

CASimIR dataset. Vertices represent clips, undirected edges reflect co-

occurrence of the clips in at least one triplet. Less clips exist, but clips

are strongly interlinked through questions. The spatial arrangement al-

gorithm fails to unknot the many edges.
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10 Appendix

Figure 10.3: MagnaTagATune similarity graph (Sections 3.1 and 7.2.2) before re-

moval of cycles. Vertices represent clip pairs, directed edges repres-

ent the relation “more similar than”. The question triplets are already

completely separated. The triplets arranged along lines in the centre

correspond to triplets with no inconsistent data. Lighter colours corres-

pond to greater edge weights alpha. The spatial arrangement minimises

edge collisions, but is not further related to data.
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Figure 10.4: MagnaTagATune similarity graph (Sections 3.1 and 7.2.2) after removal

of cycles. Vertices represent clip pairs, directed edges represent the

relation “more similar than”. No inconsistent data is left and even

more triplets have only two of three possible connections through edges.

Lighter colours correspond to greater edge weights alpha.
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10 Appendix

Figure 10.5: CASimIR similarity graph (Sections 3.1 and 7.2.2) before removal of

cycles. Vertices represent clip pairs, directed edges represent similarity

relations. Several large groups of similarity are linked through transit-

ive relations. Lighter colours correspond to greater edge weights alpha.

The spatial arrangement minimises edge collisions.
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Figure 10.6: CASimIR similarity graph (Sections 3.1 and 7.2.2) after removal of

cycles. Vertices represent clip pairs, directed edges represent simil-

arity relations. Several large groups of similarity remain linked through

transitive relations even after cycle removal. Lighter colours correspond

to greater edge weights alpha.
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10 Appendix

Figure 10.7: Excerpt of the biggest connected component of the CaSimIR similarity

dataset before cycle removal. Inconsistent similarity data are represen-

ted by two-sided arrows. Vertices represent clip pairs and are tagged

with the clips’ (artist A vs. artist B) each, directed edges represent

the relation “more similar than”. Lighter colours correspond to greater

edge weights α. The spatial arrangement minimises edge collisions.

222



Figure 10.8: Graph with the 11th biggest connected component of the CaSimIR sim-

ilarity dataset after removal of cycles. Vertices represent clip pairs and

are tagged with the clips’ (artist A vs. artist B) each, directed edges

represent the relation “more similar than”. Lighter colours correspond

to greater edge weights α. The spatial arrangement minimises edge

collisions.
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