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Abstract.  Scene reconstruction, the task of generating a 3D model of a scene given multiple 
2D photographs taken of the scene, is an old and difficult problem in computer vision. Since its 
introduction, scene reconstruction has found application in many fields, including robotics, 
virtual reality, and entertainment. Volumetric models are a natural choice for scene 
reconstruction. Three broad classes of volumetric reconstruction techniques have been 
developed based on geometric intersections, color consistency, and pair-wise matching. Some 
of these techniques have spawned a number of variations and undergone considerable 
refinement. This paper is a survey of techniques for volumetric scene reconstruction. 

1  Introduction 

We present a survey of techniques for volumetric scene reconstruction. In computer 
vision, scene reconstruction is an old and challenging problem whose aim is to create 
a 3D model of a scene, given 2D images of the scene. An important early application 
was robot navigation. Multimedia computing has generated renewed interest in the 
problem and has shifted the emphasis to generating new, “virtual” views of scenes. 
Applications include virtual reality, games, and special effects for motion pictures. In 
this paper, we focus on techniques developed primarily for reconstructing natural, 
real world scenes using off-the-shelf cameras. Therefore, we do not cover medical 
imaging or active light methods (such as those that use laser scanners) as these 
methods require specialized hardware. 

Volumetric data representations have been gaining importance since their 
introduction in the early 70’s in the context of 3D medical imaging [Greenleaf 70]. 
The exponential growth of computational storage and processing during the last three 
decades have enabled these representations to become practical alternatives to 
surface-based geometrical representations for many applications in computer 
graphics, scientific visualization [Kaufman 91], and computer vision. In particular, 
volumetric models provide a flexible and powerful representation for 3D objects 
inferred from (typically) multiple images of a scene. In this paper we restrict our 
usage of the term volumetric to imply sampled systems, i.e. those involving voxels.  

Currently, several restrictions on the scenes and the input photographs are required to 
make reconstruction tractable. All the techniques described here require calibrated 
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input images, which means we know where any 3D point in the scene projects in 
each image. ([Saito 99] and [Garcia 98] can exploit a somewhat weaker form of 
calibration.) Image calibration is itself a challenging problem with a large literature 
devoted to it [Hartley 00]. With the exception of [Szeliski 99] and [De Bonet 99], the 
techniques assume all surfaces are entirely opaque. The visual hull techniques require 
that foreground objects in the input images can be segmented from the background; 
the rest of the techniques assume that surfaces are Lambertian (they reflect light 
equally in all directions) or are nearly so.   

The rest of this paper is organized as follows. Section 2 discusses methods for 
volumetric reconstruction of visual hulls, which are based on geometric intersection. 
Section 3 considers voxel coloring methods, which rely upon the consistency of 
colors observed across images. Finally, Section 4 discusses a class of techniques 
based on pair-wise matching. We note [Dyer 01] also presents a survey of volumetric 
reconstruction methods. 

2  Volumetric Visual Hulls 

The earliest attempts at volumetric model reconstruction from photographs are those 
that approximate the visual hull of the imaged objects. This technique is also referred 
to as volume intersection in the vision literature. The visual hull of an object can be 
described as the maximal shape that gives the same silhouette as the actual object for 
all views outside the convex hull of the object [Laurentini 94]. Volume intersection 
methods use a finite set of viewpoints, and compute what we will call the inferred 
visual hull, as shown in Figure 1. Typically one starts with a set of source images that 
are simply projections of the object onto N known image planes. Each of these N 
images must then be segmented into a binary image containing foreground regions to 
which the object projects; everything else is background. If these foreground regions 
are then back-projected into 3D space and intersected, the resultant volume is the 
inferred visual hull of the object.  

The inferred visual hull has several interesting properties. First, although it is only an 
approximation to the true shape of the object, it is guaranteed to enclose the object. 
Second, in 3D the inferred visual hull of an object can be a better or worse 
approximation of the object than the convex hull depending on the geometry of the 
object and the range of the viewpoints. Third, the size of the inferred visual hull 
decreases monotonically with the number of images used. However, even when an 
infinite number of images are used, not all concavities can be modeled with a visual 
hull. For the rest of this paper we will use the term “visual hull” to mean the inferred 
visual hull computed from N images. 

The earliest work reporting a volumetric representation of the visual hull is due to 
Martin and Aggarwal [Martin 83]. They recommend simple intensity thresholding of 
each input image to perform segmentation into object foreground and background. A 
connected component analysis of the resulting binary image yields the silhouette. An 
initial parallelogram structure is then extracted by combining orthographic back-
projections from multiple images. This is further processed into a volume segment 
representation, which is a set of line segments parallel to one axis of their coordinate  



system. This representation is then further processed into a surface description when 
desirable. 

  

(a) (b) 

Figure 1. The inferred visual hull.  In (a), photographs are taken of a scene.  In (b), the 
foreground regions of these photographs are back-projected into 3D space.  Their 
intersection forms the inferred visual hull.  See text for details. 
 

Further work in Aggarwal’s lab led to explorations of octree representations for the 
visual hull [Chien 84, Chien 86]. The method starts with three binary images from 
orthogonal viewing directions. These are converted to three quadtree representations, 
which are subsequently merged into an octree representation of the visual hull. A 
disadvantage of this approach is the limitation on the number of input images and the 
strict requirement on the orthogonality of their optical axes. This limits the fidelity of 
the reconstructed volume. Additionally, the method appears limited to cameras with 
parallel projection transforms. Contemporary work by Shneier et al. [Shneier 84] also 
proposes building octrees from segmented images, however no examples were given 
since their implementation was not complete. For the special case of source images 
being available from 13 prescribed orthographic viewpoints, an octree reconstruction 
is described in [Veenstra 86].  

An early implementation on a PDP11 by [Massone 85] used actual photographic 
input from vidicon cameras to carve the visual hull from regularly sampled voxels. 
This method is flexible enough to handle both perspective and parallel projections. 

[Potmesil 87] also reconstructs an octree representation of objects from multiple 
images, now handling arbitrary viewpoints and perspective projections. He divides 
the task into three components. First he generates conic octree volumes from 
silhouettes of the objects. Second, he combines sequences of these conic octree 
volumes into a global model. Third, a 3D connected components algorithm is used to 
label individual objects. Surface normals and textures are then mapped onto the 
object with surface normals computed from the local octree topology. Textures are 
sampled from the original source images, averaging being performed when multiple 
images are available for a particular surface point. [Srivastava 90] also constructs an 
octree from arbitrary perspective images. They also propose thresholding for 
segmentation and then approximate the boundary of the silhouette polygonally. The 
polygons are then decomposed into convex components and efficient octree 
intersection tests with the back-projections are employed. Source images presented 
are computer generated, not photographic. 



[Szeliski 93] builds volumetric models directly from actual photographs. Although 
the approach is similar to the work of Potmesil, there are numerous significant 
differences. First, where Potmesil builds a separate octree per image and then 
combines them, Szeliski refines a single octree model with each successive frame. 
This allows significant increases in processing speed. Additionally Szeliski is the first 
to address many practical issues in this context, such as performing adaptive 
background subtraction and morphological operations during the segmentation stage, 
and automatic determination of turntable orientation. His work is also leveraged in 
the Lumigraph system [Gortler 96] for finding approximate geometry to improve 
image quality during scene rendering.  A variant of the octree representation for 
volume intersection is given by [Garcia 98]. He uses a projective octree 
representation, defined by selecting two images with optical axes approximately at 
right angles to each other. Projective projections of these reference images define a 
3D coordinate system on which the octree is defined. Interestingly, since only the 
fundamental matrix [Luong 96] is computed between these images by selecting 
correspondences, the actual geometrical deformation of the octree is not explicit. 
Binary segmentations from additional images can be incorporated by computing the 
trilinear tensor [Shashua 95] between such an image and the two reference images. A 
similar projective grid space is also used for voxel coloring in [Saito 99] and is 
discussed later in the paper. 

[Seitz 95] presents a novel Hough-like voting scheme that back-projects image 
features into a volumetric space. Although explicit voxels are not maintained, bins 
corresponding to regions of space containing features are allocated as needed. A 
contribution of the work is an implicit formulation that permits reconstruction of both 
point and line features within a common three-dimensional parameter space. The 
output of this method is a 3D representation of features, and an additional process 
would be needed for model reconstruction. This also applies to the work of [Collins 
96] who back-projects features onto a plane that sweeps through space. Like Seitz’s 
work, a full volume is not maintained at any point in time to save memory. 

Work by Fromherz [Fromherz 94] sculpts a volume from a voxel array that is 
uniformly spaced with voxel projections on the scale of pixels in the source images. 
Results on a mannequin are verified by comparing with computed tomography scans. 
An automatic binary segmentation is used on the source images. After computing this 
volume representing the visual hull, a further refinement is performed that uses 
luminance information in the original source images [Fromherz 95]. At each 
iteration, surface voxels are projected into sequential image pairs from a rotation 
sequence. If the luminance of those pixels differ an amount greater than a threshold, 
the voxel is removed from the model. This work is the first example of luminance-
based carving that we are aware of. 

During the later 90’s volumetric visual hulls were computed from video streams 
originating from multiple cameras for the first time. [Moezzi 96] describes a system 
of 17 cameras centered on a 1m x 1m x 2m dynamic scene. Each frame is segmented 
into a binary image employing background subtraction techniques with careful 
control of lighting. Volume intersection is employed offline to construct a visual hull 



model composed of voxels that measure 1 cubic cm. Subsequent isosurface extraction 
yields a polygonal surface where colors are assigned to each polygon from area-
weighted contributions from the source images. Improved surface coloring methods 
are introduced in [Moezzi 97].  

3  Voxel Coloring Methods 

3.1  Color Consistency 

Many reconstruction algorithms use color consistency, introduced by [Seitz 97], to 
distinguish surface points from other points in a scene. As shown in Figure 2, 
cameras with an unoccluded view of a non-surface point see surfaces beyond the 
point, and hence inconsistent (i.e., dissimilar) colors, in the direction of the point. The 
consistency of a set of colors can be defined as their standard deviation or, 
alternatively, the maximum of the L1, L2, or L∞ norm between all pairs of the colors. 
Any of these measures can be computed for the colors of the set of pixels that can see 
a voxel; the voxel is considered to be on a surface if the measure is less than some 
threshold. 

Real world scenes often include surfaces with abrupt color boundaries. Voxels that 
span such boundaries are likely to be visible from a set of pixels that are inconsistent 
in color. Hence, for such voxels, color consistency can fail as a surface test. This 
problem can be solved with an adaptive threshold that increases when voxels appear 
inconsistent from single images.  

3.2  Restricted Camera Placement 

[Fromherz 95] performed reconstructions by combining a consistency-based surface 
test, except using only luminance, with volume intersection. Seitz and Dyer [Seitz 
97] demonstrated that a sufficiently colorful scene could be reconstructed using full-
color-based consistency alone, without volume intersection. They called their 
algorithm Voxel Coloring. 

The Voxel Coloring algorithm begins with a reconstruction volume of initially 
opaque voxels that encompasses the scene to be reconstructed. As the algorithm runs, 
opaque voxels are tested for color consistency and those that are found to be 
inconsistent are carved, i.e. made transparent. The algorithm stops when all the 
remaining opaque voxels are color-consistent. When these final voxels are assigned 
the colors they project to in the input images, they form a model that closely 
resembles the scene. 

As Voxel Coloring progresses, opaque voxels occlude each other from the input 
images in a complex and constantly changing pattern. To test the color consistency of 
a voxel, its visibility (the set of input image pixels that can see it) must first be 
determined. Since this is done many times during a reconstruction, it must be 
performed efficiently. Calculating visibility is a subtle part of algorithms based on 
color consistency and several interesting variations have been developed. 
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Figure 2. Color consistency can be used to distinguish points on a surface from
points not on a surface. On the left, two cameras see consistent colors at a point on a
surface. On the right, the cameras see inconsistent colors at a point not on the surface.

To simplify the computation of voxel visibility and to allow a scene to be 
reconstructed in a single scan of the voxels, Seitz and Dyer imposed what they called 
the ordinal visibility constraint on the camera locations. It requires that the cameras 
be placed such that all the voxels are visited in a single scan in near-to-far order 
relative to every camera. Typically, this condition is met by placing all the cameras 
on one side of the scene and scanning voxels in planes that are successively further 
from the cameras. Thus, the transparency of all voxels that might occlude a given 
voxel is determined before the given voxel is checked for color consistency. This 
insures that the visibility of a voxel stops changing before it needs to be computed, 
which is important since every voxel is visited only once. An occlusion bit map, with 
one bit per input camera pixel, is used to account for occlusion. These bits are 
initially clear. When a voxel is found to be consistent, meaning it will remain opaque, 
all the occlusion bits in the voxel’s projection are set, as shown in Figure 3. The 
visibility set of a voxel is simply the pixels in the voxel’s projection whose occlusion 
bits are clear. 

The runtime for Voxel Coloring is related to the number of voxels. [Prock 98] 
achieves as much as a 40× speedup of the algorithm using multiple voxel resolutions. 
First, a rapid reconstruction is performed using coarse voxels. Some voxels will be 
mostly, but not entirely, unoccupied by scene objects. These voxels are likely to be 
carved yet, when subdivided into smaller voxels, they may contain small voxels that 
are mostly occupied. Hence, carved voxels that are adjacent to uncarved ones are 
added back into the model, i.e. are made opaque. Then the model is subdivided, 
usually by replacing each opaque voxel with eight smaller ones. This is used as the 
starting point for another pass of Voxel Coloring. These steps are repeated as long as 
warranted by the image resolutions. 

3.3  Arbitrary Camera Placement 

Voxel Coloring is elegant and efficient. However, the ordinal visibility constraint is a 
significant limitation. Since the voxels can be ordered from near to far relative to all 
the cameras, the cameras cannot surround the scene. So, some surfaces will not be 
visible in any image and hence cannot be reconstructed. Because it is often desirable 
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Figure 3. Using occlusion bitmaps.  On the left, a voxel is found to be consistent, and a bit in
the occlusion bitmap is set for each pixel in the projection of a consistent voxel into each
image.  On the right, visibility of the lowest voxel is established by examining the pixels to
which the voxel projects.  These pixels are shown in black.  If the occlusion bits have been
set for these pixels, then the voxel is occluded, as is the case for the two middle cameras.  

 

to obtain a model that resembles the scene from every direction, several variations of 
Voxel Coloring have been developed to circumvent this limitation. If we surround the 
scene with cameras, we give up the ordinal visibility constraint. Without the 
constraint, there is no order in which to scan voxels that guarantees their visibility 
will not change after we check their color consistency. Hence, algorithms that allow 
arbitrary camera placement must test voxels repeatedly for consistency until their 
visibility stabilizes.  

Figure 4 gives the general approach for Voxel Coloring algorithms that allow 
arbitrary camera placement. In the inner loop, the visibility of voxels is found, their 
consistency is checked, and they are carved if they are found to be inconsistent. If 
one voxel is carved, the visibility of other voxels potentially changes, invalidating 
any consistency tests they may have passed. Hence, there is an outer loop that repeats 
the consistency checking until no carving occurs in the inner loop. No carving occurs 
on the final iteration of the outer loop so no testing is invalidated and the final set of 
opaque voxels is guaranteed to be consistent. 

When the algorithm in Figure 4 begins to run, the model bears little resemblance to 
the scene. Yet, the algorithm computes the visibility for voxels, and carves those 
found to be inconsistent, based on this model. It is reasonable to wonder if the 
algorithm might fail due to carving voxels early on that would be color consistent in 
the final model. [Kutulakos 98] has shown that, in fact, this cannot happen if a 
suitable consistency measure is used. The measure must be monotonic: if it finds a set 
of pixels to be inconsistent, then it will find any superset of those pixels to also be 
inconsistent. Since the algorithm only changes opaque voxels to transparent and 
never vice versa, remaining opaque voxels can only become more visible as the 
algorithm runs and the pixels that can see a voxel at one point in time will be a subset 
of those that see the voxel at any later time. Thus, if the monotonic consistency 
measure ever finds a voxel to be inconsistent, the voxel will also be inconsistent in 
the final model. Therefore, the algorithm never carves a voxel it shouldn’tone that 



Figure 4. Pseudocode for Voxel Coloring algorithms with unconstrained cameras. 

1    set all voxels opaque 
2    loop { 
3        AllVoxelsConsistent = TRUE 
4        for every opaque voxel V { 
5            find the set S of input image pixels from which V is visible 
6            if S has consistent color { 
7                assign V the average color of all pixels in S 
8            } else { 
9                AllVoxelsConsistent = FALSE 
10               set V to be transparent 
11           } 
12       } 
13       if AllVoxelsConsistent = TRUE 
14           quit 
15   } 

would be consistent in the final modeland so we say carving is conservative. 
Furthermore, Kutulakos and Seitz proved that the algorithm finds the unique color 
consistent model that is a superset of any other consistent model.  They call this 
unique model the photo hull. 

3.3.1  Space Carving 

[Kutulakos 98] describes an implementation of Figure 4 called Space Carving. It 
always scans voxels for color consistency by evaluating a plane of voxels at a time, 
as is often done with Voxel Coloring. Unlike Voxel Coloring, Space Carving uses 
multiple scans, typically along the positive and negative directions of each of the 
three axes. Space Carving forces the scans to be near-to-far, relative to the cameras, 
by using only images whose cameras have already been passed by the moving plane. 
Thus, when a voxel is evaluated, the transparency is already known of other voxels 
that might occlude it from the cameras currently being used. Because carving is 
conservative, the set of uncarved voxels is a shrinking superset of the desired color-
consistent model as the algorithm runs. 

Space Carving achieves the goal of allowing arbitrary camera placement but only 
implements the pseudocode in Figure 4 approximately. Space Carving never carves 
voxels it shouldn’t but it is likely to produce a model that includes some color-
inconsistent voxels. This is because, during scanning, cameras that are ahead of the 
moving plane are not used for consistency checking, even when the voxels being 
checked are visible from those cameras. Hence, the color consistency of a voxel is, in 
general, never checked over the entire set of images from which it is visible. (A later 
paper, [Kutulakos 00b], describes additional bookkeeping that enables Space Carving 
to compute visibility exactly.) 

In a practical setting, the camera calibration is not precisely known, so the visible 
pixels to which a voxel projects in an image can contain incorrect pixels. [Kutulakos 
00a] presents a variation of space carving called “approximate space carving” that 
addresses this problem of inaccurate camera calibration. When evaluating a voxel’s 



consistency, this method considers a disk of radius r in each image, centered at the 
projection of the voxel center. If there is a pixel color that appears in all disks, then 
the voxel is said to be r-consistent, and remains in the volume. Otherwise, the voxel 
is carved. Using a larger value of r allows one to reconstruct the scene with poorly 
calibrated cameras. By reconstructing the scene with a range of decreasing values of 
r, a set of nested reconstructions are found, each of which is a tighter bound on the 
true 3D geometry being reconstructed. 

3.3.2  Generalized Voxel Coloring 

[Culbertson 99] describes a reasonably efficient and simple implementation of Figure 
4, called Generalized Voxel Coloring (GVC), that computes visibility exactly and 
hence, yields a color consistent model. They provide experimental results that show 
that exact visibility, when compared with the approximate visibility computed by 
Space Carving, can result in better looking reconstructions that are numerically more 
consistent with the input images. 

Two variants of the algorithm, called GVC-IB and GVC-LDI, have been developed. 
They use different data structures, called item buffers (IBs) [Weghorst 84] and 
layered depth images (LDIs) [Max 96] [Shade 98], to compute the visibility of 
voxels. See Figure 5. An item buffer records, for every pixel in an image, the surface 
voxel that is visible from the pixel. An LDI records, for every pixel in an image, a 
depth-sorted list of all surface voxels that project to the pixel. The information in an 
LDI is a superset of the information in an item buffer and generally consumes 
considerably more memory. As GVC-IB runs, an item buffer for each input image 
can be computed by rendering, using Z-buffering, the current set of surface voxels to 
the image viewpoint. Unique voxel identifiers are rendered to the item buffer in place 
of the colors normally rendered with Z-buffering. The rendering can be performed 
using software or a hardware graphics accelerator. LDIs are computed similarly but, 
instead of using Z-buffering to find the voxel closest to each pixel, all surface voxels 
that project to a pixel are inserted in sorted order in a list for the pixel. 

The visible pixels to which a voxel projects in an image are found as follows. First, 
the voxel is scan-converted to find the pixels in the voxel’s projection. In the GVC-
IB case, the voxel is visible from the subset of these pixels whose item buffer values 
match the voxel’s identifier. The same method can be used to find the visibility of a 
voxel in GVC-LDI since the nearest voxel in a pixel’s LDI list is the same voxel that 
would be recorded for the pixel in an item buffer. 

 

Since carving a voxel can change the visibility of other voxels, carving invalidates 
the item buffers. Hence, it may seem reasonable to compute new item buffers 
whenever a voxel is carved. This indeed produces correct results but is very slow. 
Fortunately, because carving is conservative, the item buffers can be updated less 
frequently, and the resulting out-of-date item buffers can be used for carving, without 
carving voxels that should not be carved. On the last iteration, the item buffers 
remain valid so the final set of opaque voxels is consistent. It is convenient and 
efficient to update the item buffers in the outer loop, after line 3 in Figure 4. 
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Figure 5. The two variants of GVC use different data structures, called item buffers and
layered depth images (LDIs), to compute the visibility of voxels. In (a), an item buffer
records, for every pixel in an image, the surface voxel that is visible from the pixel. In (b),
an LDI records, for every pixel in an image, a depth-sorted list of all surface voxels that
project to the pixel. 

Carving also invalidates an LDI. However, an LDI can be updated incrementally with 
minimal computation. Voxels may be added to, or deleted from, an LDI by first 
finding the pixels in the voxel’s projection and then adding or deleting the voxel from 
the LDI lists for those pixels. Hence, LDIs are updated immediately after carving 
occurs in GVC-LDI. The chief benefit of using LDIs, which compensates for their 
memory needs, is that they make it possible to tell precisely which voxels change 
visibility after a voxel is carved. When LDIs are updated, any voxel that moves into 
or out of the “nearest” position in a pixel’s LDI list has different visibility after the 
update. It is only necessary to recheck a voxel’s consistency if its visibility changes. 
Using item buffers, there is no efficient way to determine which voxels have 
increased visibility after carving occurs, so all voxels in the current model must have 
their consistency rechecked. Thus, GVC-LDI performs many fewer consistency 
checks during a reconstruction than GVC-IB, but this comes at the expense of 
increased memory use. A GVC-IB reconstruction is shown in Figure 9. 

3.3.3   Multi-Hypothesis Voxel Coloring 

[Eisert 99] has proposed a multi-hypothesis voxel coloring technique. A hypothesis is 
a possible coloring of a voxel.  Their approach begins with a hypothesis assignment 
step, which identifies a set of hypotheses for each voxel. Then their algorithm 
narrows down the hypotheses during a hypothesis removal step, which carves 
inconsistent voxels.  The surface voxels that remain constitute the volumetric 
reconstruction. 

Hypothesis assignment begins by determining the color of the pixel to which a voxel 
center projects into each image. These pixel colors are compared for all pairs of 
views. If at least two cameras see a consistent color for the voxel, a hypothesis is 
assigned to the voxel. Consistency is determined by thresholding a distance measure 
in RGB space [Eisert 99] or normalized RGB space [Steinbach 00a] of the pixels.  
This process is executed for each voxel. During hypothesis assignment, there is no 
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Figure 6.  Multi-hypothesis voxel coloring.  Hypothesis assignment for a voxel is
shown on the left, where the striped voxel is projected into each image, and hypotheses
are stored for the voxel. On the right, hypotheses that are inconsistent with the active
camera's observation are removed.  (The active camera is given a white color).
Hypothesis removal considers the visibility of the scene.  Thus, for the configuration of
the voxel space on the right, the cameras that observe yellow for the voxel will not be
considered.   

reconstructed geometry yet, so no occlusion information is available, as shown in 
Figure 6. Consequently, the hypothesis assignment step may assign hypotheses that 
do not correspond to the correct color of the surface being reconstructed. 

Hypothesis removal takes occlusion into account to remove such hypotheses. For a 
given view, the voxel space is traversed in an occlusion-compatible direction 
[Steinbach 00b]. A visible voxel is projected into the image, and the pixel to which 
the voxel center [Eisert 99] (or pixels in the footprint around the voxel center 
[Steinbach 00b]) projects is compared with the voxel's hypotheses. The hypotheses 
that are not consistent are removed, and this process is repeated for the other 
viewpoints. If all of a voxel's hypotheses are removed, then no consistent color is 
observed across the images that have visibility of the voxel, and the voxel is carved. 
Carving a voxel changes visibility of other voxels that are then processed. The 
algorithm iterates over the surface voxels and all images until no more hypotheses 
can be removed, resulting in a photo hull. 

Multi-hypothesis voxel coloring is quite similar to Voxel Coloring, Space Carving, 
and GVC. The key difference is that the decision to carve a voxel in these methods is 
made using all images simultaneously. In contrast, multi-hypothesis voxel coloring 
algorithms have an advantage in that hypothesis removal (and ultimately carving) is 
performed one image at a time. This simplifies visibility determination, since during 
hypothesis removal, the voxel space can be scanned front-to-back for one camera at a 
time. Consequently, occlusion bitmaps, the very simple and memory efficient data 
structures used in Voxel Coloring, can always be used to establish the exact visibility 
of the scene for arbitrary camera placement. However, the price to be paid for this 
convenience is some extra computation, as hypotheses are assigned to all voxels in 
the voxel space, including interior voxels, those that are inside surfaces. In GVC, for 
example, interior voxels never become visible and are therefore not processed. 



3.4  Volumetric Optimization 

3.4.1  Opaque Voxels 

The voxel coloring methods described above determine the consistency of a voxel by 
thresholding a color matching metric. This approach is intuitive and easy to 
implement. When reconstructing scenes with near Lambertian surfaces without 
abrupt color boundaries, and using accurately calibrated cameras, one can use a small 
threshold. This will produce a reconstruction that closely matches the true 3D 
geometry of scene surfaces. However, when these ideal conditions are not met, it is 
necessary to increase threshold so that scene surfaces reconstruct properly.   

In general, there is not a single threshold that is ideal for reconstructing all surfaces in 
the scene. For a given threshold, some surfaces could likely be more accurately 
reconstructed with a lower threshold. But lowering the global threshold can cause 
other surfaces to become carved that should be in the final reconstruction. 
Consequently, the reconstructed model computed by voxel coloring algorithms tends 
to be larger (fatter) than necessary. 

[Slabaugh 00b] presents a volumetric optimization method that refines a 
reconstruction to minimize reprojection error, the difference between a synthetic 
view formed by reprojecting the reconstruction to a camera and its reference image, 
summed over all views. The refinement effectively produces a spatially varying 
consistency threshold, tuned for each voxel in the scene, and results in a 
reconstruction that is typically a tighter fit to the true scene geometry. The volumetric 
optimization attempts to remove voxels, as well as add them, if it yields a more 
favorable surface reconstruction. The authors explore greedy and simulated annealing 
methods to perform the optimization. 

3.4.2  Non-Opaque Voxels 

[Szeliski 99] describes a reconstruction algorithm that uses partial opacity to address 
the problem of mixed pixels, pixels that fall on an occlusion boundary and have a 
mixture of foreground and background colors. A virtual camera viewpoint is chosen 
and used to define a discretized 3D disparity space whose coordinates are the two 
virtual image coordinates plus disparity relative to the virtual image. For each sample 
point in this space, the set of input image pixels that project to the point is found. At 
this stage, occlusion is disregarded. These sets of pixels are checked for color 
consistency and the set of sample points where there is high consistency is used as an 
initial surface. This initialization process and the use of a disparity space force the 
input cameras to be on one side of the scene. The initial surface is considered to be 
opaque. Next, occlusion is taken into account and the consistency of sample points is 
checked repeatedly, as is done in some of the variations of Voxel Coloring, until a 
color and binary opacity are assigned to every sample point. Finally, the colors and 
opacities are refined through optimization. The optimization favors smooth surfaces 
and encourages, but does not require, binary opacities. Furthermore, the optimization 
favors colors and opacities that match the input images when composited and 
projected to the camera viewpoints. 



The Roxels algorithm [De Bonet 99] also attempts to determine continuous opacity 
values. It is more general than [Szeliski 99] in that it allows arbitrary camera 
placement and reconstructs objects that are semi-transparent. Roxels assigns colors 
and opacities to a uniform voxel space. The voxels can be rendered to the input image 
viewpoints using compositing with the over operator. Roxels also attempts to 
minimize the reprojection error. De Bonet and Viola point out that direct 
optimization of the colors and opacities to minimize the reprojection error is 
impractical because of the number of parameters and the fact that the error is a 
nonlinear function of the opacities. They observe, however, that the image pixels are, 
in fact, linear combinations of the colors of the voxels along their rays. They call the 
coefficients of the linear combinations responsibilities, which can be found relatively 
efficiently. De Bonet and Viola use an iterative algorithm that solves for the 
responsibilities and then uses the responsibilities to estimate the opacities. 

3.5  Alternate Voxel Spaces 

3.5.1  Projective Grid Space 

Camera calibration can be tedious and time-consuming. To reduce the amount of 
effort it takes to calibrate the cameras, [Saito 99] proposes voxel coloring in 
projective grid space. This is a voxel space where the voxels have a non-uniform 
shape based on the epipolar geometry relating two views. In their method, voxels 
increase in size in proportion to their distance from the basis views. Once the 
projective grid space is specified, it is easy to project points in projective grid space 
into any of the remaining viewpoints. [Kimura 99] later develops a similar approach 
that uses three basis images. 

3.5.2  Volumetric Warping 

The voxel-based reconstruction methods discussed in this paper are effective at 
reconstructing objects that are relatively close to the cameras. Applying them to 
large-scale scenes that contain surfaces very far from the cameras can become 
challenging, as doing so may require an unwieldy number of voxels that becomes 
prohibitive to process. Furthermore, it may be preferable to model far away objects 
with lower resolution voxels. Thus, one might like a spatially adaptive voxel size that 
increases away from the cameras.   

[Slabaugh 00a] presents a method that warps the voxel space so that such scenes can 
be modeled without an excessive number of voxels. The method divides the voxel 
space into two regions; an interior space and an exterior space, as shown in Figure 7. 
The volumetric warp does not affect the voxels in the interior space, providing 
backward compatibility with previous voxel coloring algorithms, and allowing 
reconstruction of objects in the foreground at a fixed voxel resolution. Voxels in the 
exterior space are warped according to a warping function that changes the size of the 
voxel based on its distance from the interior space. The further a voxel in the exterior 
space is located from the interior space, the larger its size, as shown in Figure 7. 
Voxels on the outer shell of the exterior space have coordinates warped to infinity, 
and have infinite volume. Note that while the voxels in the warped space have a 



Exterior space 

Figure 7. Volumetric Warping.  Pre-warped (left) and warped (right) voxel spaces are
shown in two dimensions. The voxel space is divided into two regions; an interior space
shown with dark gray voxels, and an exterior space shown with light gray voxels. Before
the warping is applied, both regions consist of voxels of uniform size. The warping does
not affect the voxels in the interior space, while the voxels in the exterior space increase in
size further from the interior space. The outer shell of voxels in the warped voxel space
gets warped to infinity. These voxels are represented with arrows in the figure. 

Interior space 

variable size, the voxel space still has a regular 3D lattice topology. They then 
reconstruct a large outdoor scene with GVC algorithm using this warped voxel space, 
as shown in Figure 10. 

3.5.3  Two Linked Voxel Spaces 

Any of the techniques discussed in this paper can reconstruct a time-varying scene 
recorded by multiple cameras by executing the algorithm once for each instant of 
time. However, such an approach does not take advantage of temporal coherency. 
[Vedula 00] presents a voxel coloring method that links two time-consecutive 3D 
voxel spaces together, forming a 6D space. A point in this space, a 6-dimensional 
element called a hexel, is a voxel in the 3D voxel space at time t0 linked to another 
voxel in the 3D voxel space at time t1. The goal of their method is to simultaneously 
reconstruct the shape and motion of the scene for the two instants of time. To do so, 
they extend the notion of photo-consistency to this six-dimensional domain, and then 
present an approach to sweep through the 6D space to carve hexels. Their consistency 
measure can carve voxels that do not have consistent motion, producing better results 
than are possible if a separate reconstruction is performed at each time instant. The 
output of their method is two reconstructed voxel spaces, one at time t0 and another at 
time t1, as well as the motion of surfaces (scene flow) between the two voxel spaces. 

4  Volumetric Pair-wise Feature Matching 

4.1  Image Space Methods 

A common approach to 3D scene reconstruction relies upon the challenging task of 
robustly matching features between image pairs. These methods typically employ 
normalized cross-correlation along epipolar lines. Several authors have pursued 
volumetric representations to assist in this task, typically with image coordinates for 
two axes and a disparity hypothesis being the third axis. The earliest example is given 



by [Marr 76] who develops a relaxation network that enforces uniqueness and 
continuity constraints by introducing inhibitory and excitatory connections between 
voxels representing disparity hypotheses. [Yang 93] develops a multi-resolution 
method that operates in a fine-to-coarse manner to construct, then enhance, a 
disparity surface. A dynamic programming method is developed by [Intille 94] in a 
framework allowing explicit modeling of occlusions. A coarse-to-fine approach is 
presented by [Chen 99] who identifies seed voxels (those with strong evidence for a 
disparity solution) that are used to search for the global disparity surface. 

Standard pair-wise matching methods are often limited for several reasons. First, 
input views can only be separated by a limited distance, or baseline, for correlation to 
be effective. Second, the result of pair-wise reconstruction is at best a 2½D 
reconstruction.  Third, occlusion processes are difficult to model in image space. 
Rather than approach the problem in image space, many successful techniques work 
instead in object space (i.e. 3D space). With a surface in 3D space, it is much easier 
to reason about occlusion relationships, as well as identify corresponding regions for 
correlation in image space. This is one of the reasons why voxel coloring is so 
effective. In the next subsection, we discuss a multi-view stereo vision technique that 
works in object space using level set theory. 

4.2  Object Space Methods 

Level set theory was developed by Osher and Sethian [Osher 88] to model the 
evolution of propagating interfaces. For 3D surface evolution, these methods start 
with an initial surface, which then moves with speed F along its normal. The goal is 
to track the evolution of the surface over time. Level set methods were initially 
developed for modeling flame propagation, but have since been applied to an 
astonishingly diverse array of problems [Sethian 99]. 

[Faugeras 98] adapts the level set method to the scene reconstruction problem. In this 
approach, the initial surface is one that encompasses the scene. This initial surface is 
then evolved along its inwardly pointing normal, towards the objects in the scene. 
The speed of the zero level set slows as it approaches the true scene geometry, and 
attempts to lock onto it. During the evolution, the level set formulation can handle 
arbitrary topological changes, so the zero level set can break apart or merge if 
necessary. 

Driving the surface evolution is the speed function, which is based on the cross-
correlation of colors observed across pairs of views. When this cross-correlation is 
poor, the speed is high, which enables the zero level set to move through free space. 
However, as the zero level set gets near the 3D surfaces being reconstructed, the 
cross-correlation betters and the speed slows. The visibility of the zero level set is 
computed for each viewpoint, so that only the cameras that have an unoccluded view 
of a point on the zero level set contribute to the computation of the speed function of 
the point. This accurate handling of occlusion is provided by the object space 
approach. The results produced using this technique are impressive, and rival the best 
reconstructions achieved using voxel coloring methods. An example is provided in 
Figure 8. 



Figure 8.  Reconstruction (above) and new view synthesis (below) of a two-headed
object using the level set method. Images courtesy of Olivier Faugeras and Renaud
Keriven. 

This level set approach and voxel coloring approaches have many commonalities. 
First, both work on a dense voxel grid, move an initial surface to the true scene 
geometry, use the correct visibility of the scene, and can account for arbitrary 
topological changes during reconstruction. These methods differ mainly in that the 
level set method was developed in an analytic framework in which the surface 
propagation is characterized by PDEs. This framework provides an analytic 
computation of the surface, as well as its intrinsic geometric properties, such as the 
normal vector and curvature.   

5  Conclusion 

We have presented a survey of methods for volumetric scene reconstruction, a topic 
that has received considerable interest in the past few years. We have discussed 
algorithms in three broad classes.  The first class reconstructs a visual hull using 
geometric intersections, and easily reconstructs non-Lambertian scenes. The second 
class that we survey, voxel coloring, reconstructs a photo hull using color consistency 
measures. By taking advantage of the color information available in the images, 
voxel coloring methods can produce a reconstruction that is tighter fit to the true 
scene geometry than visual hull methods. Additionally, voxel coloring methods do 
not require that the images be segmentable into foreground / background regions. 
However, modeling non-Lambertian scenes becomes more difficult in this context. 
Finally, we examine methods based on pair-wise matching. We look at both image 
space and object space approaches, the latter of which has advantages in determining 
occlusion relationships and regions for correlation matching. We discuss a level set 
method based on PDEs that model surface propagation.  

Volumetric scene reconstruction has made significant progress over the last few 
decades, and many techniques have been proposed and refined. Future work in this 
field may include more sophisticated handling of non-Lambertian scenes, new 
methods for reconstruction of time-varying scenes, and more computationally 
efficient methods for real-time reconstruction. 
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Figure 9. Scene reconstruction and new view synthesis.  Reference views are shown in (a) 
and (c), new views synthesized from the reconstruction are shown in (b) and (d).  The Voxel 
Coloring algorithm was used to produce (b).  GVC-IB was used to produce (d). 

 
 
 

Figure 10. Above is one of ten panoramic photographs used in a 
reconstruction using a warped voxel space. Below is a new view 
rendered from the reconstruction.


