

City, University of London Institutional Repository

Citation: Slabaugh, G. G., Culbertson, B., Malzbender, T. & Schafer, R. W. (2001). A

survey of methods for volumetric scene reconstruction from photographs. Paper presented
at the 2001 Eurographics conference on Volume Graphics, 21-06-2001 - 22-06-2001, New
York, USA. doi: 10.2312/VG/VG01/081-101

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/6152/

Link to published version: https://doi.org/10.2312/VG/VG01/081-101

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

This paper appeared at the International Workshop on Volume
Graphics, 2001, held in Stony Brook, New York on June 21 – 22.

A Survey of Methods for Volumetric Scene
Reconstruction from Photographs

Greg Slabaugh1
Center for Signal and Image Processing

Georgia Institute of Technology

Bruce Culbertson2
Visual Computing Department
Hewlett-Packard Laboratories

Tom Malzbender2

Visual Computing Department
Hewlett-Packard Laboratories

Ron Schafer1

Center for Signal and Image Processing
Georgia Institute of Technology

Abstract. Scene reconstruction, the task of generating a 3D model of a scene given multiple
2D photographs taken of the scene, is an old and difficult problem in computer vision. Since its
introduction, scene reconstruction has found application in many fields, including robotics,
virtual reality, and entertainment. Volumetric models are a natural choice for scene
reconstruction. Three broad classes of volumetric reconstruction techniques have been
developed based on geometric intersections, color consistency, and pair-wise matching. Some
of these techniques have spawned a number of variations and undergone considerable
refinement. This paper is a survey of techniques for volumetric scene reconstruction.

1 Introduction

We present a survey of techniques for volumetric scene reconstruction. In computer
vision, scene reconstruction is an old and challenging problem whose aim is to create
a 3D model of a scene, given 2D images of the scene. An important early application
was robot navigation. Multimedia computing has generated renewed interest in the
problem and has shifted the emphasis to generating new, “virtual” views of scenes.
Applications include virtual reality, games, and special effects for motion pictures. In
this paper, we focus on techniques developed primarily for reconstructing natural,
real world scenes using off-the-shelf cameras. Therefore, we do not cover medical
imaging or active light methods (such as those that use laser scanners) as these
methods require specialized hardware.

Volumetric data representations have been gaining importance since their
introduction in the early 70’s in the context of 3D medical imaging [Greenleaf 70].
The exponential growth of computational storage and processing during the last three
decades have enabled these representations to become practical alternatives to
surface-based geometrical representations for many applications in computer
graphics, scientific visualization [Kaufman 91], and computer vision. In particular,
volumetric models provide a flexible and powerful representation for 3D objects
inferred from (typically) multiple images of a scene. In this paper we restrict our
usage of the term volumetric to imply sampled systems, i.e. those involving voxels.

Currently, several restrictions on the scenes and the input photographs are required to
make reconstruction tractable. All the techniques described here require calibrated

1 Atlanta, GA 30332. {slabaugh, rws}@ece.gatech.edu
2 Palo Alto, CA 94306. {bruce_culbertson, tom_malzbender}@hp.com

input images, which means we know where any 3D point in the scene projects in
each image. ([Saito 99] and [Garcia 98] can exploit a somewhat weaker form of
calibration.) Image calibration is itself a challenging problem with a large literature
devoted to it [Hartley 00]. With the exception of [Szeliski 99] and [De Bonet 99], the
techniques assume all surfaces are entirely opaque. The visual hull techniques require
that foreground objects in the input images can be segmented from the background;
the rest of the techniques assume that surfaces are Lambertian (they reflect light
equally in all directions) or are nearly so.

The rest of this paper is organized as follows. Section 2 discusses methods for
volumetric reconstruction of visual hulls, which are based on geometric intersection.
Section 3 considers voxel coloring methods, which rely upon the consistency of
colors observed across images. Finally, Section 4 discusses a class of techniques
based on pair-wise matching. We note [Dyer 01] also presents a survey of volumetric
reconstruction methods.

2 Volumetric Visual Hulls

The earliest attempts at volumetric model reconstruction from photographs are those
that approximate the visual hull of the imaged objects. This technique is also referred
to as volume intersection in the vision literature. The visual hull of an object can be
described as the maximal shape that gives the same silhouette as the actual object for
all views outside the convex hull of the object [Laurentini 94]. Volume intersection
methods use a finite set of viewpoints, and compute what we will call the inferred
visual hull, as shown in Figure 1. Typically one starts with a set of source images that
are simply projections of the object onto N known image planes. Each of these N
images must then be segmented into a binary image containing foreground regions to
which the object projects; everything else is background. If these foreground regions
are then back-projected into 3D space and intersected, the resultant volume is the
inferred visual hull of the object.

The inferred visual hull has several interesting properties. First, although it is only an
approximation to the true shape of the object, it is guaranteed to enclose the object.
Second, in 3D the inferred visual hull of an object can be a better or worse
approximation of the object than the convex hull depending on the geometry of the
object and the range of the viewpoints. Third, the size of the inferred visual hull
decreases monotonically with the number of images used. However, even when an
infinite number of images are used, not all concavities can be modeled with a visual
hull. For the rest of this paper we will use the term “visual hull” to mean the inferred
visual hull computed from N images.

The earliest work reporting a volumetric representation of the visual hull is due to
Martin and Aggarwal [Martin 83]. They recommend simple intensity thresholding of
each input image to perform segmentation into object foreground and background. A
connected component analysis of the resulting binary image yields the silhouette. An
initial parallelogram structure is then extracted by combining orthographic back-
projections from multiple images. This is further processed into a volume segment
representation, which is a set of line segments parallel to one axis of their coordinate

system. This representation is then further processed into a surface description when
desirable.

(a) (b)

Figure 1. The inferred visual hull. In (a), photographs are taken of a scene. In (b), the
foreground regions of these photographs are back-projected into 3D space. Their
intersection forms the inferred visual hull. See text for details.

Further work in Aggarwal’s lab led to explorations of octree representations for the
visual hull [Chien 84, Chien 86]. The method starts with three binary images from
orthogonal viewing directions. These are converted to three quadtree representations,
which are subsequently merged into an octree representation of the visual hull. A
disadvantage of this approach is the limitation on the number of input images and the
strict requirement on the orthogonality of their optical axes. This limits the fidelity of
the reconstructed volume. Additionally, the method appears limited to cameras with
parallel projection transforms. Contemporary work by Shneier et al. [Shneier 84] also
proposes building octrees from segmented images, however no examples were given
since their implementation was not complete. For the special case of source images
being available from 13 prescribed orthographic viewpoints, an octree reconstruction
is described in [Veenstra 86].

An early implementation on a PDP11 by [Massone 85] used actual photographic
input from vidicon cameras to carve the visual hull from regularly sampled voxels.
This method is flexible enough to handle both perspective and parallel projections.

[Potmesil 87] also reconstructs an octree representation of objects from multiple
images, now handling arbitrary viewpoints and perspective projections. He divides
the task into three components. First he generates conic octree volumes from
silhouettes of the objects. Second, he combines sequences of these conic octree
volumes into a global model. Third, a 3D connected components algorithm is used to
label individual objects. Surface normals and textures are then mapped onto the
object with surface normals computed from the local octree topology. Textures are
sampled from the original source images, averaging being performed when multiple
images are available for a particular surface point. [Srivastava 90] also constructs an
octree from arbitrary perspective images. They also propose thresholding for
segmentation and then approximate the boundary of the silhouette polygonally. The
polygons are then decomposed into convex components and efficient octree
intersection tests with the back-projections are employed. Source images presented
are computer generated, not photographic.

[Szeliski 93] builds volumetric models directly from actual photographs. Although
the approach is similar to the work of Potmesil, there are numerous significant
differences. First, where Potmesil builds a separate octree per image and then
combines them, Szeliski refines a single octree model with each successive frame.
This allows significant increases in processing speed. Additionally Szeliski is the first
to address many practical issues in this context, such as performing adaptive
background subtraction and morphological operations during the segmentation stage,
and automatic determination of turntable orientation. His work is also leveraged in
the Lumigraph system [Gortler 96] for finding approximate geometry to improve
image quality during scene rendering. A variant of the octree representation for
volume intersection is given by [Garcia 98]. He uses a projective octree
representation, defined by selecting two images with optical axes approximately at
right angles to each other. Projective projections of these reference images define a
3D coordinate system on which the octree is defined. Interestingly, since only the
fundamental matrix [Luong 96] is computed between these images by selecting
correspondences, the actual geometrical deformation of the octree is not explicit.
Binary segmentations from additional images can be incorporated by computing the
trilinear tensor [Shashua 95] between such an image and the two reference images. A
similar projective grid space is also used for voxel coloring in [Saito 99] and is
discussed later in the paper.

[Seitz 95] presents a novel Hough-like voting scheme that back-projects image
features into a volumetric space. Although explicit voxels are not maintained, bins
corresponding to regions of space containing features are allocated as needed. A
contribution of the work is an implicit formulation that permits reconstruction of both
point and line features within a common three-dimensional parameter space. The
output of this method is a 3D representation of features, and an additional process
would be needed for model reconstruction. This also applies to the work of [Collins
96] who back-projects features onto a plane that sweeps through space. Like Seitz’s
work, a full volume is not maintained at any point in time to save memory.

Work by Fromherz [Fromherz 94] sculpts a volume from a voxel array that is
uniformly spaced with voxel projections on the scale of pixels in the source images.
Results on a mannequin are verified by comparing with computed tomography scans.
An automatic binary segmentation is used on the source images. After computing this
volume representing the visual hull, a further refinement is performed that uses
luminance information in the original source images [Fromherz 95]. At each
iteration, surface voxels are projected into sequential image pairs from a rotation
sequence. If the luminance of those pixels differ an amount greater than a threshold,
the voxel is removed from the model. This work is the first example of luminance-
based carving that we are aware of.

During the later 90’s volumetric visual hulls were computed from video streams
originating from multiple cameras for the first time. [Moezzi 96] describes a system
of 17 cameras centered on a 1m x 1m x 2m dynamic scene. Each frame is segmented
into a binary image employing background subtraction techniques with careful
control of lighting. Volume intersection is employed offline to construct a visual hull

model composed of voxels that measure 1 cubic cm. Subsequent isosurface extraction
yields a polygonal surface where colors are assigned to each polygon from area-
weighted contributions from the source images. Improved surface coloring methods
are introduced in [Moezzi 97].

3 Voxel Coloring Methods

3.1 Color Consistency

Many reconstruction algorithms use color consistency, introduced by [Seitz 97], to
distinguish surface points from other points in a scene. As shown in Figure 2,
cameras with an unoccluded view of a non-surface point see surfaces beyond the
point, and hence inconsistent (i.e., dissimilar) colors, in the direction of the point. The
consistency of a set of colors can be defined as their standard deviation or,
alternatively, the maximum of the L1, L2, or L∞ norm between all pairs of the colors.
Any of these measures can be computed for the colors of the set of pixels that can see
a voxel; the voxel is considered to be on a surface if the measure is less than some
threshold.

Real world scenes often include surfaces with abrupt color boundaries. Voxels that
span such boundaries are likely to be visible from a set of pixels that are inconsistent
in color. Hence, for such voxels, color consistency can fail as a surface test. This
problem can be solved with an adaptive threshold that increases when voxels appear
inconsistent from single images.

3.2 Restricted Camera Placement

[Fromherz 95] performed reconstructions by combining a consistency-based surface
test, except using only luminance, with volume intersection. Seitz and Dyer [Seitz
97] demonstrated that a sufficiently colorful scene could be reconstructed using full-
color-based consistency alone, without volume intersection. They called their
algorithm Voxel Coloring.

The Voxel Coloring algorithm begins with a reconstruction volume of initially
opaque voxels that encompasses the scene to be reconstructed. As the algorithm runs,
opaque voxels are tested for color consistency and those that are found to be
inconsistent are carved, i.e. made transparent. The algorithm stops when all the
remaining opaque voxels are color-consistent. When these final voxels are assigned
the colors they project to in the input images, they form a model that closely
resembles the scene.

As Voxel Coloring progresses, opaque voxels occlude each other from the input
images in a complex and constantly changing pattern. To test the color consistency of
a voxel, its visibility (the set of input image pixels that can see it) must first be
determined. Since this is done many times during a reconstruction, it must be
performed efficiently. Calculating visibility is a subtle part of algorithms based on
color consistency and several interesting variations have been developed.

Camera
sees

white

Camera
sees
gray

Camera
sees

black

Camera
sees

white

Figure 2. Color consistency can be used to distinguish points on a surface from
points not on a surface. On the left, two cameras see consistent colors at a point on a
surface. On the right, the cameras see inconsistent colors at a point not on the surface.

To simplify the computation of voxel visibility and to allow a scene to be
reconstructed in a single scan of the voxels, Seitz and Dyer imposed what they called
the ordinal visibility constraint on the camera locations. It requires that the cameras
be placed such that all the voxels are visited in a single scan in near-to-far order
relative to every camera. Typically, this condition is met by placing all the cameras
on one side of the scene and scanning voxels in planes that are successively further
from the cameras. Thus, the transparency of all voxels that might occlude a given
voxel is determined before the given voxel is checked for color consistency. This
insures that the visibility of a voxel stops changing before it needs to be computed,
which is important since every voxel is visited only once. An occlusion bit map, with
one bit per input camera pixel, is used to account for occlusion. These bits are
initially clear. When a voxel is found to be consistent, meaning it will remain opaque,
all the occlusion bits in the voxel’s projection are set, as shown in Figure 3. The
visibility set of a voxel is simply the pixels in the voxel’s projection whose occlusion
bits are clear.

The runtime for Voxel Coloring is related to the number of voxels. [Prock 98]
achieves as much as a 40× speedup of the algorithm using multiple voxel resolutions.
First, a rapid reconstruction is performed using coarse voxels. Some voxels will be
mostly, but not entirely, unoccupied by scene objects. These voxels are likely to be
carved yet, when subdivided into smaller voxels, they may contain small voxels that
are mostly occupied. Hence, carved voxels that are adjacent to uncarved ones are
added back into the model, i.e. are made opaque. Then the model is subdivided,
usually by replacing each opaque voxel with eight smaller ones. This is used as the
starting point for another pass of Voxel Coloring. These steps are repeated as long as
warranted by the image resolutions.

3.3 Arbitrary Camera Placement

Voxel Coloring is elegant and efficient. However, the ordinal visibility constraint is a
significant limitation. Since the voxels can be ordered from near to far relative to all
the cameras, the cameras cannot surround the scene. So, some surfaces will not be
visible in any image and hence cannot be reconstructed. Because it is often desirable

Sweep

directionPlane
sweeping
through
scene

Occlusion
bitmaps

Figure 3. Using occlusion bitmaps. On the left, a voxel is found to be consistent, and a bit in
the occlusion bitmap is set for each pixel in the projection of a consistent voxel into each
image. On the right, visibility of the lowest voxel is established by examining the pixels to
which the voxel projects. These pixels are shown in black. If the occlusion bits have been
set for these pixels, then the voxel is occluded, as is the case for the two middle cameras.

to obtain a model that resembles the scene from every direction, several variations of
Voxel Coloring have been developed to circumvent this limitation. If we surround the
scene with cameras, we give up the ordinal visibility constraint. Without the
constraint, there is no order in which to scan voxels that guarantees their visibility
will not change after we check their color consistency. Hence, algorithms that allow
arbitrary camera placement must test voxels repeatedly for consistency until their
visibility stabilizes.

Figure 4 gives the general approach for Voxel Coloring algorithms that allow
arbitrary camera placement. In the inner loop, the visibility of voxels is found, their
consistency is checked, and they are carved if they are found to be inconsistent. If
one voxel is carved, the visibility of other voxels potentially changes, invalidating
any consistency tests they may have passed. Hence, there is an outer loop that repeats
the consistency checking until no carving occurs in the inner loop. No carving occurs
on the final iteration of the outer loop so no testing is invalidated and the final set of
opaque voxels is guaranteed to be consistent.

When the algorithm in Figure 4 begins to run, the model bears little resemblance to
the scene. Yet, the algorithm computes the visibility for voxels, and carves those
found to be inconsistent, based on this model. It is reasonable to wonder if the
algorithm might fail due to carving voxels early on that would be color consistent in
the final model. [Kutulakos 98] has shown that, in fact, this cannot happen if a
suitable consistency measure is used. The measure must be monotonic: if it finds a set
of pixels to be inconsistent, then it will find any superset of those pixels to also be
inconsistent. Since the algorithm only changes opaque voxels to transparent and
never vice versa, remaining opaque voxels can only become more visible as the
algorithm runs and the pixels that can see a voxel at one point in time will be a subset
of those that see the voxel at any later time. Thus, if the monotonic consistency
measure ever finds a voxel to be inconsistent, the voxel will also be inconsistent in
the final model. Therefore, the algorithm never carves a voxel it shouldn’tone that

Figure 4. Pseudocode for Voxel Coloring algorithms with unconstrained cameras.

1 set all voxels opaque
2 loop {
3 AllVoxelsConsistent = TRUE
4 for every opaque voxel V {
5 find the set S of input image pixels from which V is visible
6 if S has consistent color {
7 assign V the average color of all pixels in S
8 } else {
9 AllVoxelsConsistent = FALSE
10 set V to be transparent
11 }
12 }
13 if AllVoxelsConsistent = TRUE
14 quit
15 }

would be consistent in the final modeland so we say carving is conservative.
Furthermore, Kutulakos and Seitz proved that the algorithm finds the unique color
consistent model that is a superset of any other consistent model. They call this
unique model the photo hull.

3.3.1 Space Carving

[Kutulakos 98] describes an implementation of Figure 4 called Space Carving. It
always scans voxels for color consistency by evaluating a plane of voxels at a time,
as is often done with Voxel Coloring. Unlike Voxel Coloring, Space Carving uses
multiple scans, typically along the positive and negative directions of each of the
three axes. Space Carving forces the scans to be near-to-far, relative to the cameras,
by using only images whose cameras have already been passed by the moving plane.
Thus, when a voxel is evaluated, the transparency is already known of other voxels
that might occlude it from the cameras currently being used. Because carving is
conservative, the set of uncarved voxels is a shrinking superset of the desired color-
consistent model as the algorithm runs.

Space Carving achieves the goal of allowing arbitrary camera placement but only
implements the pseudocode in Figure 4 approximately. Space Carving never carves
voxels it shouldn’t but it is likely to produce a model that includes some color-
inconsistent voxels. This is because, during scanning, cameras that are ahead of the
moving plane are not used for consistency checking, even when the voxels being
checked are visible from those cameras. Hence, the color consistency of a voxel is, in
general, never checked over the entire set of images from which it is visible. (A later
paper, [Kutulakos 00b], describes additional bookkeeping that enables Space Carving
to compute visibility exactly.)

In a practical setting, the camera calibration is not precisely known, so the visible
pixels to which a voxel projects in an image can contain incorrect pixels. [Kutulakos
00a] presents a variation of space carving called “approximate space carving” that
addresses this problem of inaccurate camera calibration. When evaluating a voxel’s

consistency, this method considers a disk of radius r in each image, centered at the
projection of the voxel center. If there is a pixel color that appears in all disks, then
the voxel is said to be r-consistent, and remains in the volume. Otherwise, the voxel
is carved. Using a larger value of r allows one to reconstruct the scene with poorly
calibrated cameras. By reconstructing the scene with a range of decreasing values of
r, a set of nested reconstructions are found, each of which is a tighter bound on the
true 3D geometry being reconstructed.

3.3.2 Generalized Voxel Coloring

[Culbertson 99] describes a reasonably efficient and simple implementation of Figure
4, called Generalized Voxel Coloring (GVC), that computes visibility exactly and
hence, yields a color consistent model. They provide experimental results that show
that exact visibility, when compared with the approximate visibility computed by
Space Carving, can result in better looking reconstructions that are numerically more
consistent with the input images.

Two variants of the algorithm, called GVC-IB and GVC-LDI, have been developed.
They use different data structures, called item buffers (IBs) [Weghorst 84] and
layered depth images (LDIs) [Max 96] [Shade 98], to compute the visibility of
voxels. See Figure 5. An item buffer records, for every pixel in an image, the surface
voxel that is visible from the pixel. An LDI records, for every pixel in an image, a
depth-sorted list of all surface voxels that project to the pixel. The information in an
LDI is a superset of the information in an item buffer and generally consumes
considerably more memory. As GVC-IB runs, an item buffer for each input image
can be computed by rendering, using Z-buffering, the current set of surface voxels to
the image viewpoint. Unique voxel identifiers are rendered to the item buffer in place
of the colors normally rendered with Z-buffering. The rendering can be performed
using software or a hardware graphics accelerator. LDIs are computed similarly but,
instead of using Z-buffering to find the voxel closest to each pixel, all surface voxels
that project to a pixel are inserted in sorted order in a list for the pixel.

The visible pixels to which a voxel projects in an image are found as follows. First,
the voxel is scan-converted to find the pixels in the voxel’s projection. In the GVC-
IB case, the voxel is visible from the subset of these pixels whose item buffer values
match the voxel’s identifier. The same method can be used to find the visibility of a
voxel in GVC-LDI since the nearest voxel in a pixel’s LDI list is the same voxel that
would be recorded for the pixel in an item buffer.

Since carving a voxel can change the visibility of other voxels, carving invalidates
the item buffers. Hence, it may seem reasonable to compute new item buffers
whenever a voxel is carved. This indeed produces correct results but is very slow.
Fortunately, because carving is conservative, the item buffers can be updated less
frequently, and the resulting out-of-date item buffers can be used for carving, without
carving voxels that should not be carved. On the last iteration, the item buffers
remain valid so the final set of opaque voxels is consistent. It is convenient and
efficient to update the item buffers in the outer loop, after line 3 in Figure 4.

AB A

Item
buffer

Reconstruction
volume

(a)

AB

LDI

(b) B

Reconstruction
volume

∅ A

Figure 5. The two variants of GVC use different data structures, called item buffers and
layered depth images (LDIs), to compute the visibility of voxels. In (a), an item buffer
records, for every pixel in an image, the surface voxel that is visible from the pixel. In (b),
an LDI records, for every pixel in an image, a depth-sorted list of all surface voxels that
project to the pixel.

Carving also invalidates an LDI. However, an LDI can be updated incrementally with
minimal computation. Voxels may be added to, or deleted from, an LDI by first
finding the pixels in the voxel’s projection and then adding or deleting the voxel from
the LDI lists for those pixels. Hence, LDIs are updated immediately after carving
occurs in GVC-LDI. The chief benefit of using LDIs, which compensates for their
memory needs, is that they make it possible to tell precisely which voxels change
visibility after a voxel is carved. When LDIs are updated, any voxel that moves into
or out of the “nearest” position in a pixel’s LDI list has different visibility after the
update. It is only necessary to recheck a voxel’s consistency if its visibility changes.
Using item buffers, there is no efficient way to determine which voxels have
increased visibility after carving occurs, so all voxels in the current model must have
their consistency rechecked. Thus, GVC-LDI performs many fewer consistency
checks during a reconstruction than GVC-IB, but this comes at the expense of
increased memory use. A GVC-IB reconstruction is shown in Figure 9.

3.3.3 Multi-Hypothesis Voxel Coloring

[Eisert 99] has proposed a multi-hypothesis voxel coloring technique. A hypothesis is
a possible coloring of a voxel. Their approach begins with a hypothesis assignment
step, which identifies a set of hypotheses for each voxel. Then their algorithm
narrows down the hypotheses during a hypothesis removal step, which carves
inconsistent voxels. The surface voxels that remain constitute the volumetric
reconstruction.

Hypothesis assignment begins by determining the color of the pixel to which a voxel
center projects into each image. These pixel colors are compared for all pairs of
views. If at least two cameras see a consistent color for the voxel, a hypothesis is
assigned to the voxel. Consistency is determined by thresholding a distance measure
in RGB space [Eisert 99] or normalized RGB space [Steinbach 00a] of the pixels.
This process is executed for each voxel. During hypothesis assignment, there is no

Color hypothesis: blue

blue

blue yellow

yellow

blue

blueyellow

yellow

Color hypotheses: yellow, blue

Figure 6. Multi-hypothesis voxel coloring. Hypothesis assignment for a voxel is
shown on the left, where the striped voxel is projected into each image, and hypotheses
are stored for the voxel. On the right, hypotheses that are inconsistent with the active
camera's observation are removed. (The active camera is given a white color).
Hypothesis removal considers the visibility of the scene. Thus, for the configuration of
the voxel space on the right, the cameras that observe yellow for the voxel will not be
considered.

reconstructed geometry yet, so no occlusion information is available, as shown in
Figure 6. Consequently, the hypothesis assignment step may assign hypotheses that
do not correspond to the correct color of the surface being reconstructed.

Hypothesis removal takes occlusion into account to remove such hypotheses. For a
given view, the voxel space is traversed in an occlusion-compatible direction
[Steinbach 00b]. A visible voxel is projected into the image, and the pixel to which
the voxel center [Eisert 99] (or pixels in the footprint around the voxel center
[Steinbach 00b]) projects is compared with the voxel's hypotheses. The hypotheses
that are not consistent are removed, and this process is repeated for the other
viewpoints. If all of a voxel's hypotheses are removed, then no consistent color is
observed across the images that have visibility of the voxel, and the voxel is carved.
Carving a voxel changes visibility of other voxels that are then processed. The
algorithm iterates over the surface voxels and all images until no more hypotheses
can be removed, resulting in a photo hull.

Multi-hypothesis voxel coloring is quite similar to Voxel Coloring, Space Carving,
and GVC. The key difference is that the decision to carve a voxel in these methods is
made using all images simultaneously. In contrast, multi-hypothesis voxel coloring
algorithms have an advantage in that hypothesis removal (and ultimately carving) is
performed one image at a time. This simplifies visibility determination, since during
hypothesis removal, the voxel space can be scanned front-to-back for one camera at a
time. Consequently, occlusion bitmaps, the very simple and memory efficient data
structures used in Voxel Coloring, can always be used to establish the exact visibility
of the scene for arbitrary camera placement. However, the price to be paid for this
convenience is some extra computation, as hypotheses are assigned to all voxels in
the voxel space, including interior voxels, those that are inside surfaces. In GVC, for
example, interior voxels never become visible and are therefore not processed.

3.4 Volumetric Optimization

3.4.1 Opaque Voxels

The voxel coloring methods described above determine the consistency of a voxel by
thresholding a color matching metric. This approach is intuitive and easy to
implement. When reconstructing scenes with near Lambertian surfaces without
abrupt color boundaries, and using accurately calibrated cameras, one can use a small
threshold. This will produce a reconstruction that closely matches the true 3D
geometry of scene surfaces. However, when these ideal conditions are not met, it is
necessary to increase threshold so that scene surfaces reconstruct properly.

In general, there is not a single threshold that is ideal for reconstructing all surfaces in
the scene. For a given threshold, some surfaces could likely be more accurately
reconstructed with a lower threshold. But lowering the global threshold can cause
other surfaces to become carved that should be in the final reconstruction.
Consequently, the reconstructed model computed by voxel coloring algorithms tends
to be larger (fatter) than necessary.

[Slabaugh 00b] presents a volumetric optimization method that refines a
reconstruction to minimize reprojection error, the difference between a synthetic
view formed by reprojecting the reconstruction to a camera and its reference image,
summed over all views. The refinement effectively produces a spatially varying
consistency threshold, tuned for each voxel in the scene, and results in a
reconstruction that is typically a tighter fit to the true scene geometry. The volumetric
optimization attempts to remove voxels, as well as add them, if it yields a more
favorable surface reconstruction. The authors explore greedy and simulated annealing
methods to perform the optimization.

3.4.2 Non-Opaque Voxels

[Szeliski 99] describes a reconstruction algorithm that uses partial opacity to address
the problem of mixed pixels, pixels that fall on an occlusion boundary and have a
mixture of foreground and background colors. A virtual camera viewpoint is chosen
and used to define a discretized 3D disparity space whose coordinates are the two
virtual image coordinates plus disparity relative to the virtual image. For each sample
point in this space, the set of input image pixels that project to the point is found. At
this stage, occlusion is disregarded. These sets of pixels are checked for color
consistency and the set of sample points where there is high consistency is used as an
initial surface. This initialization process and the use of a disparity space force the
input cameras to be on one side of the scene. The initial surface is considered to be
opaque. Next, occlusion is taken into account and the consistency of sample points is
checked repeatedly, as is done in some of the variations of Voxel Coloring, until a
color and binary opacity are assigned to every sample point. Finally, the colors and
opacities are refined through optimization. The optimization favors smooth surfaces
and encourages, but does not require, binary opacities. Furthermore, the optimization
favors colors and opacities that match the input images when composited and
projected to the camera viewpoints.

The Roxels algorithm [De Bonet 99] also attempts to determine continuous opacity
values. It is more general than [Szeliski 99] in that it allows arbitrary camera
placement and reconstructs objects that are semi-transparent. Roxels assigns colors
and opacities to a uniform voxel space. The voxels can be rendered to the input image
viewpoints using compositing with the over operator. Roxels also attempts to
minimize the reprojection error. De Bonet and Viola point out that direct
optimization of the colors and opacities to minimize the reprojection error is
impractical because of the number of parameters and the fact that the error is a
nonlinear function of the opacities. They observe, however, that the image pixels are,
in fact, linear combinations of the colors of the voxels along their rays. They call the
coefficients of the linear combinations responsibilities, which can be found relatively
efficiently. De Bonet and Viola use an iterative algorithm that solves for the
responsibilities and then uses the responsibilities to estimate the opacities.

3.5 Alternate Voxel Spaces

3.5.1 Projective Grid Space

Camera calibration can be tedious and time-consuming. To reduce the amount of
effort it takes to calibrate the cameras, [Saito 99] proposes voxel coloring in
projective grid space. This is a voxel space where the voxels have a non-uniform
shape based on the epipolar geometry relating two views. In their method, voxels
increase in size in proportion to their distance from the basis views. Once the
projective grid space is specified, it is easy to project points in projective grid space
into any of the remaining viewpoints. [Kimura 99] later develops a similar approach
that uses three basis images.

3.5.2 Volumetric Warping

The voxel-based reconstruction methods discussed in this paper are effective at
reconstructing objects that are relatively close to the cameras. Applying them to
large-scale scenes that contain surfaces very far from the cameras can become
challenging, as doing so may require an unwieldy number of voxels that becomes
prohibitive to process. Furthermore, it may be preferable to model far away objects
with lower resolution voxels. Thus, one might like a spatially adaptive voxel size that
increases away from the cameras.

[Slabaugh 00a] presents a method that warps the voxel space so that such scenes can
be modeled without an excessive number of voxels. The method divides the voxel
space into two regions; an interior space and an exterior space, as shown in Figure 7.
The volumetric warp does not affect the voxels in the interior space, providing
backward compatibility with previous voxel coloring algorithms, and allowing
reconstruction of objects in the foreground at a fixed voxel resolution. Voxels in the
exterior space are warped according to a warping function that changes the size of the
voxel based on its distance from the interior space. The further a voxel in the exterior
space is located from the interior space, the larger its size, as shown in Figure 7.
Voxels on the outer shell of the exterior space have coordinates warped to infinity,
and have infinite volume. Note that while the voxels in the warped space have a

Exterior space

Figure 7. Volumetric Warping. Pre-warped (left) and warped (right) voxel spaces are
shown in two dimensions. The voxel space is divided into two regions; an interior space
shown with dark gray voxels, and an exterior space shown with light gray voxels. Before
the warping is applied, both regions consist of voxels of uniform size. The warping does
not affect the voxels in the interior space, while the voxels in the exterior space increase in
size further from the interior space. The outer shell of voxels in the warped voxel space
gets warped to infinity. These voxels are represented with arrows in the figure.

Interior space

variable size, the voxel space still has a regular 3D lattice topology. They then
reconstruct a large outdoor scene with GVC algorithm using this warped voxel space,
as shown in Figure 10.

3.5.3 Two Linked Voxel Spaces

Any of the techniques discussed in this paper can reconstruct a time-varying scene
recorded by multiple cameras by executing the algorithm once for each instant of
time. However, such an approach does not take advantage of temporal coherency.
[Vedula 00] presents a voxel coloring method that links two time-consecutive 3D
voxel spaces together, forming a 6D space. A point in this space, a 6-dimensional
element called a hexel, is a voxel in the 3D voxel space at time t0 linked to another
voxel in the 3D voxel space at time t1. The goal of their method is to simultaneously
reconstruct the shape and motion of the scene for the two instants of time. To do so,
they extend the notion of photo-consistency to this six-dimensional domain, and then
present an approach to sweep through the 6D space to carve hexels. Their consistency
measure can carve voxels that do not have consistent motion, producing better results
than are possible if a separate reconstruction is performed at each time instant. The
output of their method is two reconstructed voxel spaces, one at time t0 and another at
time t1, as well as the motion of surfaces (scene flow) between the two voxel spaces.

4 Volumetric Pair-wise Feature Matching

4.1 Image Space Methods

A common approach to 3D scene reconstruction relies upon the challenging task of
robustly matching features between image pairs. These methods typically employ
normalized cross-correlation along epipolar lines. Several authors have pursued
volumetric representations to assist in this task, typically with image coordinates for
two axes and a disparity hypothesis being the third axis. The earliest example is given

by [Marr 76] who develops a relaxation network that enforces uniqueness and
continuity constraints by introducing inhibitory and excitatory connections between
voxels representing disparity hypotheses. [Yang 93] develops a multi-resolution
method that operates in a fine-to-coarse manner to construct, then enhance, a
disparity surface. A dynamic programming method is developed by [Intille 94] in a
framework allowing explicit modeling of occlusions. A coarse-to-fine approach is
presented by [Chen 99] who identifies seed voxels (those with strong evidence for a
disparity solution) that are used to search for the global disparity surface.

Standard pair-wise matching methods are often limited for several reasons. First,
input views can only be separated by a limited distance, or baseline, for correlation to
be effective. Second, the result of pair-wise reconstruction is at best a 2½D
reconstruction. Third, occlusion processes are difficult to model in image space.
Rather than approach the problem in image space, many successful techniques work
instead in object space (i.e. 3D space). With a surface in 3D space, it is much easier
to reason about occlusion relationships, as well as identify corresponding regions for
correlation in image space. This is one of the reasons why voxel coloring is so
effective. In the next subsection, we discuss a multi-view stereo vision technique that
works in object space using level set theory.

4.2 Object Space Methods

Level set theory was developed by Osher and Sethian [Osher 88] to model the
evolution of propagating interfaces. For 3D surface evolution, these methods start
with an initial surface, which then moves with speed F along its normal. The goal is
to track the evolution of the surface over time. Level set methods were initially
developed for modeling flame propagation, but have since been applied to an
astonishingly diverse array of problems [Sethian 99].

[Faugeras 98] adapts the level set method to the scene reconstruction problem. In this
approach, the initial surface is one that encompasses the scene. This initial surface is
then evolved along its inwardly pointing normal, towards the objects in the scene.
The speed of the zero level set slows as it approaches the true scene geometry, and
attempts to lock onto it. During the evolution, the level set formulation can handle
arbitrary topological changes, so the zero level set can break apart or merge if
necessary.

Driving the surface evolution is the speed function, which is based on the cross-
correlation of colors observed across pairs of views. When this cross-correlation is
poor, the speed is high, which enables the zero level set to move through free space.
However, as the zero level set gets near the 3D surfaces being reconstructed, the
cross-correlation betters and the speed slows. The visibility of the zero level set is
computed for each viewpoint, so that only the cameras that have an unoccluded view
of a point on the zero level set contribute to the computation of the speed function of
the point. This accurate handling of occlusion is provided by the object space
approach. The results produced using this technique are impressive, and rival the best
reconstructions achieved using voxel coloring methods. An example is provided in
Figure 8.

Figure 8. Reconstruction (above) and new view synthesis (below) of a two-headed
object using the level set method. Images courtesy of Olivier Faugeras and Renaud
Keriven.

This level set approach and voxel coloring approaches have many commonalities.
First, both work on a dense voxel grid, move an initial surface to the true scene
geometry, use the correct visibility of the scene, and can account for arbitrary
topological changes during reconstruction. These methods differ mainly in that the
level set method was developed in an analytic framework in which the surface
propagation is characterized by PDEs. This framework provides an analytic
computation of the surface, as well as its intrinsic geometric properties, such as the
normal vector and curvature.

5 Conclusion

We have presented a survey of methods for volumetric scene reconstruction, a topic
that has received considerable interest in the past few years. We have discussed
algorithms in three broad classes. The first class reconstructs a visual hull using
geometric intersections, and easily reconstructs non-Lambertian scenes. The second
class that we survey, voxel coloring, reconstructs a photo hull using color consistency
measures. By taking advantage of the color information available in the images,
voxel coloring methods can produce a reconstruction that is tighter fit to the true
scene geometry than visual hull methods. Additionally, voxel coloring methods do
not require that the images be segmentable into foreground / background regions.
However, modeling non-Lambertian scenes becomes more difficult in this context.
Finally, we examine methods based on pair-wise matching. We look at both image
space and object space approaches, the latter of which has advantages in determining
occlusion relationships and regions for correlation matching. We discuss a level set
method based on PDEs that model surface propagation.

Volumetric scene reconstruction has made significant progress over the last few
decades, and many techniques have been proposed and refined. Future work in this
field may include more sophisticated handling of non-Lambertian scenes, new
methods for reconstruction of time-varying scenes, and more computationally
efficient methods for real-time reconstruction.

6 References

[Chen 99] Q. Chen and G. Medioni, “A Volumetric Stereo Matching Method: Application to
Image-Based Modeling,” Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, June 1999, pp. 29-34.

[Chien 84] C. H. Chien and J. K. Aggarwal, “A Volume/Surface Representation,” Proceedings
of the International Conference on Pattern Recognition, Montreal, Canada, July 30 – Aug. 2,
1984, pp. 817-820.

[Chien 86] C. H. Chien and J. K. Aggarwal, “Volume / Surface Octrees for the Representation
of Three-Dimensional Objects,” Computer Vision, Graphics, and Image Processing, Vol. 36,
No. 1, Oct. 1986, pp. 100-113.

[Collins 96] R. Collins, “A Space-Sweep Approach to True Multi-Image Matching,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 18-
20, 1996, pp. 358-363.

[Culbertson 99] W. B. Culbertson, T. Malzbender, and G. Slabaugh, “Generalized Voxel
Coloring,” Proceedings of the ICCV Workshop, Vision Algorithms Theory and Practice,
Springer-Verlag Lecture Notes in Computer Science 1883, September 1999, pp. 100-115.

[De Bonet 99] J. De Bonet and P. Viola, “Roxels: Responsibility Weighted 3D Volume
Reconstruction,” Proceedings of the IEEE International Conference on Computer Vision,
1999, Vol. 1, pp. 415-425.

[Dyer 01] C. Dyer, “Volumetric Scene Reconstruction from Multiple Views,” Foundations of
Image Understanding, L. S. Davis, ed., Kluwer, Boston, 2001, pp. 469-489.

[Eisert 99] P. Eisert, E. Steinbach, and B. Girod, “Multi-Hypothesis, Volumetric
Reconstruction of 3-D Objects From Multiple Calibrated Camera Views,” Proceedings of the
International Conference on Acoustics, Speech, and Signal Processing, 1999, pp. 3509-3512.

[Faugeras 96] O. Faugeras, Three-Dimensional Computer Vision, A Geometrical Viewpoint,
MIT Press, 1996.

[Faugeras 98] O. Faugeras and R. Keriven, “Variational Principles, Surface Evolution, PDE's,
Level Set Methods, and the Stereo Problem,” IEEE Transactions on Image Processing, Vol. 7,
No. 3, March 1998, pp. 336-344.

[Fromherz 94] T. Fromherz and M. Bichsel, “Shape from Contours as Initial Step in Shape
from Multiple Cues,” ISPRS Commission III Symposium on Spatial Information from Digital
Photogrammetry and Computer Vision, Munich, Germany, 1994, pp. 240-256.

[Fromherz 95] T. Fromherz and M. Bichsel, “Shape from Multiple Cues: Integrating Local
Brightness Information,” Fourth International Conference for Young Computer Scientist,
ICYCS 95, Beijing, P. R. China, 1995, pp. 855-862.

[Garcia 98] B. Garcia and P. Brunet, “3D reconstruction with Projective Octrees and Epipolar
Geometry,” Proceedings of the IEEE International Conference on Computer Vision, Jan. 4-7,
1998, pp. 1067-1072.

[Gortler 96] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen, “The Lumigraph,”
Proceedings of A.C.M. SIGGRAPH, 1996, pp. 43-54.

[Greenleaf 70] J. F. Greenleaf, T. S. Tu, and E. H. Wood, “Computer Generated 3-D
Oscilloscopic Images and Associated Techniques for Display and Study of the Spatial
Distribution of Pulmonary Blood Flow,” IEEE Transactions on Nuclear Science, Vol. 17, No.
3, June 1970, pp. 353-359.

[Hartley 00] R. Hartley and A. Zisserman, Multiple View Geometry, Cambridge University
Press, 2000.

[Kaufman 91] A. Kaufman, Volume Visualization, IEEE Computer Society Press, Los
Alamitos, California, 1991.

[Kimura 99] M. Kimura, H. Saito, and T. Kanade, “3D Voxel Construction Based on Epipolar
Geometry,” Proceedings of the International Conference on Image Processing, 1999, pp. 135-
139.

[Kutulakos 00a] K. N. Kutulakos, “Approximate N-View Stereo,” Proceedings of the
European Conference on Computer Vision, Springer Lecture Notes in Computer Science 1842,
June/July 2000, Vol. 1, pp. 67-83.

[Kutulakos 00b] K. N. Kutulakos and S. M. Seitz, “A Theory of Shape by Space Carving,”
International Journal of Computer Vision, Vol. 38, No. 3, July 2000, pp. 199-218.

[Kutulakos 98] K. N. Kutulakos and S. M. Seitz, “What Do N Photographs Tell Us about 3D
Shape?” TR680, Computer Science Dept. U. Rochester, January 1998.

[Laurentini 94] A. Laurentini, “The Visual Hull Concept for Silhouette-Based Image
Understanding,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 16,
No. 2, Feb. 1994.

[Lorenson 87] W. Lorenson and H. Cline, “Marching Cubes: A High Resolution 3D Surface
Construction Algorithm,” Proceedings of A.C.M. SIGGRAPH, 1987, pp. 163-170.

[Luong 96] Q. Luong and O. Faugeras, “The Fundamental Matrix: Theory, Algorithms and
Stability Analysis,” International Journal on Computer Vision, Vol. 17, No. 1, Jan. 1996, pp.
43-75.

[Marr 76] D. Marr and T. Poggio, “Cooperative Computation of Stereo Disparity,” Science,
Vol. 194, No. 4262, Oct. 1976, pp. 283-287.

[Martin 83] W. Martin and J. K. Aggarwal, “Volumetric Descriptions of Objects from Multiple
Views”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 5, No. 2,
March 1983, pp. 150-158.

[Massone 85] L. Massone, P. Morasso, and R. Zaccaria, “Shape from Occluding Contours,”
Proceedings of the SPIE Conference on Intelligent Robots and Computer Vision, SPIE Vol.
521, Nov. 1985, pp. 114-120.

[Max 96] N. Max, X. Pueyo, and P. Schroder, “Hierarchical Rendering of Trees from
Precomputed Multi-Layer Z-Buffers,” Proceedings of the Eurographics Rendering Workshop,
1996, pp. 165-174.

[Moezzi 96] S. Moezzi, A. Katkere, D. Kuramura, and R. Jain, “Reality Modeling and
Visualization from Multiple Video Sequences,” IEEE Computer Graphics and Applications,
Vol. 16, No. 6, Nov. 1996, pp. 58-63.

[Moezzi 97] S. Moezzi, L. Tai, and P. Gerard, “Virtual View Generation for 3D Digital
Video,” IEEE Multimedia, Vol. 4, No. 1, Jan. - Mar. 1997, pp. 18-26.

[Osher 88] S. Osher and J. Sethian, “Fronts Propagating with Curvature Dependent Speed:
Algorithms Based on Hamilton-Jacobi Formulations,” Journal of Computational Physics, 79,
1988, pp. 12-49.

[Potmesil 87] M. Potmesil, “Generating Octree Models of 3D Objects from Their Silhouettes
in a Sequence of Images,” Computer Vision, Graphics and Image Processing, Vol. 40, No. 1,
Oct. 1987, pp. 1-29.

[Prock 98] A. Prock and C. Dyer, “Towards Real-Time Voxel Coloring,” Proceedings of the
DARPA Image Understanding Workshop, 1998, pp. 315-321.

[Saito 99] H. Saito and T. Kanade, “Shape Reconstruction in Projective Grid Space from Large
Number of Images”, Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, June 23-25, 1999, Vol. 2, pp. 49-54.

[Seitz 95] S. Seitz and C. Dyer, “Complete Scene Structure from Four Point
Correspondences,” Proceedings of the IEEE International Conference on Computer Vision,
June 1995, pp. 330-337.

[Seitz 97] S. Seitz and C. Dyer, “Photorealistic Scene Reconstruction by Voxel Coloring,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 1997,
pp. 1067-1073.

[Seitz 99] S. Seitz and C. Dyer, “Photorealistic Scene Reconstruction by Voxel Coloring,”
International Journal of Computer Vision, Vol. 35, No. 2, 1999, pp. 151-173.

[Sethian 99] J. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University
Press, Second Edition, 1999.

[Shade 98] J. Shade, S. Gortler, L. He, and R. Szeliski, “Layered Depth Images,” Proceedings
of A.C.M. SIGGRAPH, 1998, pp. 231-242.

[Shashua 95] A. Shashua and M. Werman, “On the Trilinear Tensor of Three Perspective
Views and its Underlying Geometry,” Proceedings of the IEEE International Conference on
Computer Vision, 1995, pp. 920-925.

[Shneier 84] M. Shneier, E. Kent, and P. Mansbach, “Representing Workspace and Model
Knowledge for a Robot with Mobile Sensors,” Proceedings of the International Conference on
Pattern Recognition, Montreal, Canada, July 1984, pp. 199-202.

[Slabaugh 00a] G. Slabaugh, T. Malzbender, and W. B. Culbertson, “Volumetric Warping for
Voxel Coloring on an Infinite Domain,'' Proceedings of the Workshop on 3D Structure from
Multiple Images for Large-scale Environments (SMILE), July 2000, pp. 41-50.

[Slabaugh 00b] G. Slabaugh, W. B. Culbertson, T. Malzbender, and R. Schafer, “Improved
Voxel Coloring Via Volumetric Optimization,” Center for Signal and Image Processing
Technical Report TR3, Georgia Institute of Technology, 2000.

[Srivastava 90] S. Srivastava and N. Ahuja, “Octree Generation from Object Silhouettes in
Perspective Views,” Computer Vision, Graphics and Image Processing, Vol. 49, No. 1, Jan.
1990, pp. 68-84.

[Steinbach 00a] E. Steinbach, B. Girod, P. Eisert, and A. Betz, “3-D Object Reconstruction
Using Spatially Extended Voxels and Multi-Hypothesis Voxel Coloring,” Proceedings of the
International Conference on Pattern Recognition, 2000, Vol. 1, pp. 774-777.

[Steinbach 00b] E. Steinbach, B. Girod, P. Eisert, and A. Betz, “3-D Reconstruction of Real-
World Objects Using Extended Voxels,” Proceedings of the International Conference on
Image Processing, 2000, Vol. III, pp. 138-141.

[Szeliski 93] R. Szeliski, “Rapid Octree Construction from Image Sequences,” Computer
Vision, Graphics and Image Processing: Image Understanding, Vol. 58, No. 1, July 1993, pp.
23-32.

[Szeliski 99] R. Szeliski and P. Golland, “Stereo Matching with Transparency and Matting,”
International Journal of Computer Vision, Vol. 32, No. 1, 1999, pp. 45-62.

[Tsai 87] R. Tsai, “A Versatile Camera Calibration Technique for High-Accuracy 3D Machine
Vision Metrology Using Off-the-Shelf TV Cameras and Lenses,” IEEE Transactions on
Robotics and Automation, Vol. 3, No. 4, Aug. 1987, pp. 323-344.

[Vedula 00] S. Vedula, S. Baker, S. Seitz, and T. Kanade, “Shape and Motion Carving in 6D,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2000, Vol.
2, pp. 592-598.

[Veenstra 86] J. Veenstra and N. Ahuja, “Efficient Octree Generation from Silhouettes,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami
Beach, Florida, June 1986, pp. 537-542.

[Weghorst 84] H. Weghorst, G. Hooper, D. P. Greenberg, “Improving Computational Methods
for Ray Tracing”, ACM Transactions on Graphics, Vol. 3, No. 1, January 1984, pp. 52-69.

[Yang 93] Y. Yang, A. Yuille, and J. Lu, “Local, Global, and Multilevel Stereo Matching,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1993, pp.
274-279.

(a) (b)

(c) (d)
Figure 9. Scene reconstruction and new view synthesis. Reference views are shown in (a)
and (c), new views synthesized from the reconstruction are shown in (b) and (d). The Voxel
Coloring algorithm was used to produce (b). GVC-IB was used to produce (d).

Figure 10. Above is one of ten panoramic photographs used in a
reconstruction using a warped voxel space. Below is a new view
rendered from the reconstruction.

