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In this supplementary document, we provide the frame-
work of the semantic branch in IntrinsicNeRF (Sec. A), and
more experimental results (Sec. B) such as qualitative and
quantitative results on the Blender Object dataset (Sec. B.1)
and the Replica Scene dataset (Sec. B.2), and ablation stud-
ies (Sec. B.3). We also present the applicability of our
method on both synthetic and real-world data (Sec. B.4).

A. Semantic Branch in IntrinsicNeRF
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Figure A1: IntrinsicNeRF Network. IntrinsicNeRF
takes 3D position x=(x, y, z) as input, and outputs view-
independent volume density σ, semantic logits sl, re-
flectance r, and shading s. While the residual term re
additionally depends on the viewing direction r=(θ, ϕ).
Distance-aware point sampling, unsupervised prior, and re-
flectance clustering methods are used to train the network.

Inspired by [8], we extend IntrinsicNeRF to jointly en-
code appearance, geometry, and semantics by appending a
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†Corresponding author.

segmentation renderer to the original IntrinsicNeRF, shown
in Fig. A1. Following Semantic-NeRF [8], semantic seg-
mentation is formalized as a view-independent function that
recognized each pixel x as a semantic label distribution with
softmax semantic logits sl(x):

sl = FΘ(x), (A1)

where FΘ is the MLP function. The predicted semantic log-
its ŜL(r) of each pixels can be written as:

ŜL(r) =

K∑
k=1

T̂k αk slk and T̂ (tk) = exp

(
−

k−1∑
k′=1

σkδk

)
,

(A2)

where αk = 1 − exp(−σkδk), and δk is the distance be-
tween two adjacent sampled points along the view direction
r. Following Semantic-NeRF [8], we present semantic log-
its as multi-class probabilities with the cross-entropy loss:

Lsem = −
∑
r∈R

[p log p̂c + p log p̂f ] , (A3)

where p is the multi-class semantic probabilities of the
ground truth semantic map, while p̂c and p̂f are the proba-
bilities of coarse and fine predictions, respectively.

B. More Experimental Results
B.1. Comparison on the Blender Object Dataset

We present the detailed quantitative results on Tab. B1
and Tab. B2, compared with intrinsic decomposition meth-
ods and neural rendering methods. Our full model is supe-
rior to existing traditional intrinsic decomposition methods
such as USI3D [3], IIW [1], CGIntrinsic [2] and reaches
comparable results with Invrender [7] in intrinsic decompo-
sition on Invrender dataset, shown in Fig. B2. Furthermore,
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Figure B2: Qualitative Comparison Results of Reflectance and Rendering with Previous Work on the Blender Object
Dataset. The top 4 rows represent the sample of our dataset and the bottom 4 rows represent the sample of the Invrender
dataset. Our method can perform reflectance estimation and novel view synthesis on both datasets well, while Invrender [7]
fails to do that on our dataset. N/A means failure.

our intrinsic neural radiance field scene representation en-
hances reconstructing objects with complex shapes and tex-
tures on our dataset, while Invrender fails to make it. The
qualitative results of IntrinsicNeRF on the Blender Object
dataset are shown in Fig. B3. However, our method also
falls into some local optima in Lego tracks (see Fig. B5),
due to the inherent property of the intrinsic decomposi-
tion, failing to handle the black regions. Meanwhile, when
the scenario does not conform to unsupervised prior, it
will struggle to obtain the correct decomposition results, as
shown in Fig. B2 (Hotdog, Chair in Ours column).

B.2. Comparison on the Replica Scene Dataset

Tab. B3 shows the complete quantitative results on the
Replica Scene dataset for novel view synthesis and se-

mantic segmentation. We achieve comparable results with
Semantic-NeRF [8] while giving the ability to model the un-
derlying properties of scenes. Fig. B4 shows the qualitative
results of IntrinsicNeRF on the Replica Scene dataset.

B.3. Ablation Studies

We show more ablation study results in Fig. B5 on the
Blender Object dataset and in Fig. B7 on the Replica Scene
dataset. The reflectance estimated by the baseline method
is more stochastic and unstable. While adding the intrin-
sic prior, the network output is plausible. The adaptive
reflectance iterative clustering method can make the re-
flectance regions of the same material cluster together but
may lose some distinguishable boundaries in the Replica
Scene dataset. We also show the quantitative comparison



Reflectance (Lego) View Synthesis (Lego) Reflectance (Ficus) View Synthesis (Ficus)

Method PSNR ↑ SSIM ↑ LPIPS ↓ MSE ↓ LMSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ MSE ↓ LMSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓

IIW [1] 21.3080 0.8840 0.1255 0.0075 0.0355 - - - 19.4159 0.9145 0.0803 0.0110 0.1330 - - -
CGIntrinsic [2] 18.6028 0.8683 0.1454 0.0123 0.0363 - - - 22.0665 0.9408 0.0513 0.0052 0.1298 - - -

USI3D [3] 18.2291 0.8822 0.1282 0.0146 0.0332 - - - 16.2838 0.9253 0.0746 0.0230 0.0995 - - -

NeRFactor [6] 22.5591 0.9250 0.0875 0.0034 0.0262 17.6665 0.8263 0.1504 19.6809 0.9107 0.0488 0.0104 0.0874 21.3010 0.9053 0.0678
PhySG [5] - - - - - - - - - - - - - - - -

Invrender [7] - - - - - - - - - - - - - - - -
NeRF [4] - - - - - 29.5691 0.9331 0.0268 - - - - - 29.4080 0.9609 0.0155

baseline 11.9473 0.7669 0.2399 0.0522 0.2398 29.4163 0.9326 0.0280 23.0957 0.9229 0.0420 0.0045 0.1158 29.3302 0.9597 0.0158
baseline+w/prior 18.3652 0.8832 0.1515 0.0136 0.0615 29.1918 0.9300 0.0313 19.3838 0.9232 0.0606 0.0112 0.0933 29.0722 0.9588 0.0170

Ours 19.0001 0.9046 0.1288 0.0116 0.0647 29.1526 0.9283 0.0308 23.3383 0.9402 0.0325 0.0042 0.0676 28.9046 0.9576 0.0175

Reflectance (Chair2) View Synthesis (Chair2) Reflectance (Drums) View Synthesis (Drums)

Method PSNR ↑ SSIM ↑ LPIPS ↓ MSE ↓ LMSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ MSE ↓ LMSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓

IIW [1] 24.2352 0.9410 0.0913 0.0035 0.0133 - - - 17.1604 0.8918 0.1553 0.0188 0.1091 - - -
CGIntrinsic [2] 15.9210 0.9070 0.1363 0.0259 0.0265 - - - 17.1604 0.8918 0.1553 0.0188 0.1091 - - -

USI3D [3] 23.0661 0.9303 0.1092 0.0045 0.0108 - - - 16.8267 0.8835 0.1588 0.0188 0.0711 - - -

NeRFactor [6] 21.5867 0.9266 0.1680 0.0056 0.0203 25.5135 0.8919 0.1285 21.9491 0.9059 0.1176 0.0059 0.0438 20.6880 0.8733 0.1185
PhySG [5] - - - - - - - - - - - - - - - -

Invrender [7] - - - - - - - - - - - - - - - -
NeRF [4] - - - - - 30.1428 0.9448 0.0301 - - - - - 24.4357 0.9205 0.0590

baseline 11.0799 0.8387 0.2025 0.0810 0.1802 30.0731 0.9436 0.0304 13.3059 0.8301 0.2110 0.0426 0.2036 24.2220 0.9172 0.0614
baseline+w/prior 27.1114 0.9406 0.0897 0.0015 0.0067 29.7973 0.9406 0.0368 18.9980 0.9089 0.1845 0.0117 0.0537 24.1918 0.9188 0.0625

Ours 28.0020 0.9486 0.0731 0.0011 0.0054 29.6453 0.9388 0.0383 19.9305 0.9133 0.1555 0.0093 0.0518 24.0949 0.9182 0.0620

Table B1: Quantitative Evaluations on Our dataset. Bold indicates best and underline indicates second best. - means
failure.

Reflectance (Jugs) View Synthesis (Jugs) Reflectance (Chair) View Synthesis (Chair)

Method PSNR ↑ SSIM ↑ LPIPS ↓ MSE ↓ LMSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ MSE ↓ LMSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓

IIW [1] 15.2941 0.9105 0.1188 0.0320 0.0238 - - - 25.8220 0.9337 0.0620 0.0019 0.0091 - - -
CGIntrinsic [2] 19.2596 0.9313 0.1066 0.0086 0.0220 - - - 21.1657 0.9140 0.0855 0.0070 0.0098 - - -

USI3D [3] 18.4617 0.9242 0.0780 0.0147 0.0249 - - - 24.5503 0.9290 0.0744 0.0020 0.0070 - - -

NeRFactor [6] 19.1639 0.9275 0.0911 0.0116 0.0215 26.0967 0.9492 0.0430 22.0620 0.9208 0.1287 0.0014 0.0089 22.1625 0.9294 0.0876
PhySG [5] 24.6498 0.9427 0.0790 0.0034 0.0860 24.6221 0.9544 0.0609 24.9832 0.9168 0.0877 0.0024 0.0262 25.7197 0.9320 0.0710

Invrender [7] 24.8413 0.9508 0.0361 0.0033 0.0427 29.5990 0.9654 0.0266 29.4776 0.9285 0.0574 0.0010 0.0089 31.3660 0.9444 0.0464
NeRF [4] - - - - - 35.4846 0.9796 0.0165 - - - - - 32.5685 0.9436 0.0427

baseline 21.6691 0.8750 0.0773 0.0065 0.4158 35.2488 0.9800 0.0155 14.8468 0.8679 0.1271 0.0277 0.1151 34.1195 0.9522 0.0312
baseline+w/prior 19.1960 0.9249 0.1136 0.0117 0.0331 35.0930 0.9769 0.0212 22.5096 0.9232 0.0875 0.0042 0.0156 32.7608 0.9445 0.0424

Ours 25.7546 0.9471 0.0661 0.0025 0.0308 35.0342 0.9769 0.0213 23.7306 0.9278 0.0854 0.0027 0.0110 32.6955 0.9441 0.0415

Reflectance (Air balloons) View Synthesis (Air balloons) Reflectance (Hotdog) View Synthesis (Hotdog)

Method PSNR ↑ SSIM ↑ LPIPS ↓ MSE ↓ LMSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ MSE ↓ LMSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓

IIW [1] 22.4801 0.9276 0.0571 0.0040 0.0087 - - - 24.5176 0.9512 0.1009 0.0014 0.0062 - - -
CGIntrinsic [2] 20.6844 0.9083 0.0888 0.0066 0.0192 - - - 19.5237 0.9299 0.1176 0.0294 0.0054 - - -

USI3D [3] 19.2599 0.9119 0.0725 0.0088 0.0185 - - - 20.7564 0.9418 0.1297 0.0061 0.0084 - - -

NeRFactor [6] 17.5734 0.8770 0.1701 0.0063 0.0416 20.7204 0.9018 0.1096 20.8677 0.9372 0.1517 0.0044 0.0121 23.0737 0.9305 0.0885
PhySG [5] 22.7754 0.9080 0.0974 0.0035 0.0328 26.1276 0.9475 0.0781 21.0910 0.9248 0.1729 0.0042 0.0134 25.2207 0.9213 0.1115

Invrender [7] 25.2053 0.9155 0.0716 0.0026 0.0263 27.6636 0.9493 0.0779 25.7069 0.9570 0.0637 0.0020 0.0123 28.9192 0.9497 0.0513
NeRF [4] - - - - - 32.8084 0.9676 0.0224 - - - - - 34.2531 0.9697 0.0287

baseline 15.2960 0.8601 0.1399 0.0241 0.1820 32.5626 0.9666 0.0251 13.4718 0.8517 0.1762 0.0432 0.0690 34.0833 0.9693 0.0292
baseline+w/prior 21.2049 0.9049 0.1148 0.0036 0.0214 32.3400 0.9661 0.0254 24.0375 0.9581 0.1184 0.0024 0.0042 33.7700 0.9678 0.0325

Ours 21.9558 0.9116 0.1036 0.0023 0.0235 32.2197 0.9648 0.0269 25.6160 0.9620 0.0967 0.0008 0.0038 34.0375 0.9662 0.0325

Table B2: Quantitative Evaluations on Invrender dataset. Bold indicates best and underline indicates second best. - means
failure.

results of the Blender Object dataset in Tab. B1 and Tab. B2.
The comparison results demonstrate that unsupervised prior
and clustering can help to improve the intrinsic decomposi-
tion, but may decrease the performance of view synthesis
slightly. Fig. B7 shows hierarchical clustering method can
retain the boundaries and still yields more plausible results.

B.4. Applications

We show the applicability of IntrinsicNeRF on real-time
scene recoloring, illumination variation, and editable novel
view synthesis. We have also developed a convenient edit-
ing software, to facilitate the user to perform object or scene
editing, shown in Fig. B6.
Real-Time Scene Recoloring. The reflectance predicted by
the IntrinsicNeRF network is saved as [Semantic category,
reflectance category], and the last iteration of the hierarchi-

cal iterative clustering method will save the reflectance cate-
gories in all semantic categories of the whole scene. There-
fore, the [Semantic category, reflectance category] label can
be used to quickly find the reflectance value of each pixel
point. Based on this representation, we can perform scene
recoloring in real-time, just by simply modifying the color
of a certain reflectance category, the reflectance values of all
pixels in the multi-view images belonging to that category
can be modified at the same time, and then the recolored
images can be reconstructed using the modified reflectance
with the original shading and residual through Eq. 2 in the
main paper. Fig. B8 shows the scene recoloring samples on
the Blender Object dataset and the Replica Scene dataset.
Our method can support semantic recoloring with a simple
user click and selected modified color. We also perform
scene recoloring on the real-world data to show the gener-



Office 0 Office 1 Office 2 Office 3

Method PSNR ↑ SSIM ↑ LPIPS ↓ mIoU↑ PSNR ↑ SSIM ↑ LPIPS ↓ mIoU↑ PSNR ↑ SSIM ↑ LPIPS ↓ mIoU↑ PSNR ↑ SSIM ↑ LPIPS ↓ mIoU↑

Semantic-NeRF [8] 33.9807 0.9294 0.0631 0.9802 35.6869 0.9516 0.0689 0.9816 30.8175 0.9296 0.0755 0.9777 30.2418 0.9238 0.0694 0.9678
Ours 33.9734 0.9292 0.0666 0.9793 35.4500 0.9532 0.0680 0.9809 30.2827 0.9231 0.0843 0.9753 29.9553 0.9179 0.0741 0.9619

Office 3 Room 0 Room 1 Room 2

Method PSNR ↑ SSIM ↑ LPIPS ↓ mIoU↑ PSNR ↑ SSIM ↑ LPIPS ↓ mIoU↑ PSNR ↑ SSIM ↑ LPIPS ↓ mIoU↑ PSNR ↑ SSIM ↑ LPIPS ↓ mIoU↑

Semantic-NeRF [8] 31.4142 0.9154 0.1039 0.9531 27.2094 0.8108 0.1669 0.9712 28.5790 0.8215 0.1719 0.9802 29.8863 0.8814 0.1331 0.9681
Ours 30.9201 0.9106 0.1098 0.9537 27.0812 0.8063 0.1698 0.9680 28.1852 0.8048 0.2056 0.9769 29.7873 0.8809 0.1343 0.9651

Table B3: Quantitative Evaluations on the Replica Scene Dataset. We achieve comparable results with Semantic-NeRF
in novel view synthesis and semantic segmentation.

Rendering GTReflectance Shading Residual

Lego

Ficus

Chair2

Drums

Jugs

Chair

Air balloons

Hotdog

Figure B3: Qualitative Results of IntrinsicNeRF on the
Blender Object Dataset. From left to right are reflectance,
shading, residual term, rendering result, and original image.
In addition to the Lambertian assumption, our method can
also simulate glossy reflections or metallic materials.

alization ability of our method, shown in Fig. B11.
Illumination Variation. Since our IntrinsicNeRF can de-
compose residual terms besides Lambertian assumptions,
which may be properties such as specular illumination, we
can adjust its overall brightness directly by a multiplicative
factor. Specifically, users only need to adjust the sliding
buttons of the video editing software and the overall bright-
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Figure B4: Qualitative Results of IntrinsicNeRF on the
Replica Scene Dataset. From left to right are reflectance,
shading, residual term, rendering result, and original image.
In addition to the Lambertian assumption, our method can
also simulate glossy reflections or metallic materials.

ness will be modified. We can enhance the light or diminish
it, to see the effect of different light intensities, as shown in
Fig. B9. We also perform illumination variation on the real-
world data to show the generalization ability of our method,
shown in Fig. B12.
Editable Novel View Synthesis. Our IntrinsicNeRF gives
the NeRF [4] the ability to model additional fundamental
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Figure B5: Ablation study of Reflectance Estimation on the Blender Object Dataset. Left: our dataset, right: Invrender
dataset. The reflectance estimation of the baseline method is stochastic and unstable, while the intrinsic prior makes the
optimization of the network traceable. Our final model achieves more plausible reflectance results.

Figure B6: Video Editing Software. The software includes
a palette for reflectance, a sliding bar for shading, residual
layers, as well as buttons for playing or recording view syn-
thesis, reset, etc.

properties of the scene, and the original novel view syn-
thesis functionality is retained. As shown in Fig. B10, the
effects of our video editing application above such as scene
recoloring can be applied to the editable novel view synthe-
sis, maintaining consistency. We also perform editable view
synthesis on the real-world data to show the generalization
ability of our method, shown in Fig. B13. Please refer to

the supplementary video for more details.
Video Editing Software. As shown in Fig. B6, we visual-
ize the interface of our video editing software, which con-
tains controls for the color palette for the reflectance layer,
two sliding bars for shading and residual layers, as well as
buttons for playing or recording view synthesis and reset,
etc. Due to IntrinsicNeRF with hierarchical clustering and
indexing representation, our software can support real-time
augmented video editing.
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Figure B8: Real-Time Scene Recoloring on Synthetic Data. Our approach allows for real-time region-level scene recolor-
ing on synthetic data with a simple user click and selected modified color.
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Figure B9: Illumination Variation on Synthetic Data. Left: Blender Object dataset, Right: Replica Scene dataset. We can
adjust the brightness of the illumination, which can be applied to the ceiling, sofa, walls, and doors (such as Room 0). Please
refer to the supplementary video.
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Figure B10: Editable Novel View Synthesis on Synthetic Data. Our method can support real-time augmented editing
applications with editable novel view synthesis. Here, we show the view synthesis results with scene recoloring. For more
details, please refer to the supplementary video.
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Figure B11: Real-Time Scene Recoloring on Real-World Data. Our approach allows for real-time region-level scene
recoloring on real-world data with a simple user click and selected modified color.
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Figure B12: Illumination Variation on Real-World Data. We can adjust the brightness of the illumination on real-world
data. Please refer to the supplementary video.
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Figure B13: Editable Novel View Synthesis on Real-World Data. Our method can support real-time augmented editing
applications with editable novel view synthesis.


