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Abstract

Recent studies have shown that the performance of

single-image super-resolution methods can be significantly

boosted by using deep convolutional neural networks. In

this study, we present a novel single-image super-resolution

method by introducing dense skip connections in a very

deep network. In the proposed network, the feature maps of

each layer are propagated into all subsequent layers, pro-

viding an effective way to combine the low-level features

and high-level features to boost the reconstruction perfor-

mance. In addition, the dense skip connections in the net-

work enable short paths to be built directly from the out-

put to each layer, alleviating the vanishing-gradient prob-

lem of very deep networks. Moreover, deconvolution layers

are integrated into the network to learn the upsampling fil-

ters and to speedup the reconstruction process. Further, the

proposed method substantially reduces the number of pa-

rameters, enhancing the computational efficiency. We eval-

uate the proposed method using images from four bench-

mark datasets and set a new state of the art.

1. Introduction

The recovery of a high resolution (HR) image from a low

resolution (LR) version is a highly ill-posed problem since

the mapping from LR to HR space can have multiple solu-

tions. When the upscaling factor is large, it becomes very

challenging to recover the high-frequency details in image

super-resolution (SR). Many SR techniques assume that the

high-frequency information is redundant and can be accu-

rately predicted from the low-frequency data. Therefore,

it is important to collect useful contextual information in

large regions from LR images so that sufficient knowledge

can be captured for recovering the high-frequency details in

HR images.

Recent works [11, 12] have successfully used very deep

convolutional neural networks (CNN) to perform single im-

age super-resolution (SISR), and significant improvements

over shallow CNN structures [2] have been observed. One

benefit from using deeper networks is that larger receptive

field takes more contextual information from LR images

to predict data in HR images. However, it is challenging

to effectively train a very deep CNN due to the vanishing-

gradient problem. One good solution to this problem is the

use of skip connections, which create short paths from top

layers to bottom layers. This helps the flow of information

and gradient through the network, making it easy to train. In

addition, in previous works [2, 11], only high-level features

at top layers were used in the reconstruction of HR images.

The features at low levels can potentially provide additional

information to reconstruct the high-frequency details in HR

images. Image SR may benefit from the collective knowl-

edge of features at different levels. Moreover, previous

studies [8, 7] have shown that redundant feature maps are

learnt in different layers of deep networks. The reuse of fea-

ture maps from bottom layers is helpful for reducing feature

redundancy, thus learning more compact CNN models.

In this work, we propose a novel super-resolution

method termed SRDenseNet in which the dense connected

convolutional networks were employed. The introduc-

tion of dense connections improves the flow of informa-

tion through the network, alleviating the gradient vanishing

problem. In addition, it allows the reuse of feature maps

from preceding layers, avoiding the re-learning of redun-

dant features. Different from previous works, we utilized

the dense skip connections to combine the low-level fea-

tures and high-level features in order to provide rich infor-

mation for the SR reconstruction. Further, deconvolution

layers were integrated to recover the image details and to

speedup the reconstruction process. The proposed method

has been evaluated on four publicly available benchmark

datasets and outperforms the current state-of-the-art ap-

proaches.

2. Related work

2.1. Single image super­resolution

Many SISR methods have been developed in computer

vision community. A detailed review of these methods can
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be found in [26]. Among them, interpolation methods are

easy to implement and widely adopted. However, these lin-

ear models have very limited representation power and of-

ten generate blurry high resolution outputs. Sparsity-based

techniques [28, 24] have recently developed to enhance lin-

ear models with rich image priors. These techniques assume

that any natural image patch can be sparsely represented by

a dictionary of atoms. The dictionary can be formed by a

database of patches or learnt from the database [27]. Such

dictionary-based methods [25] have achieved comparable

state-of-the-art results. One drawback of these methods is

that it is generally computationally expensive to find the so-

lution of the sparse coding coefficients .

In addition to sparsity-based methods, other sophisti-

cated learning techniques have been developed to model the

mapping from LR to HR space, including neighbor embed-

ding [4], random forest [20] and convolutional neural net-

work [2]. Among them, the CNN-based approaches [11, 12]

have recently set state of the art for SISR. A network with

three layers was first developed in [2] to learn an end-to-end

mapping for SR. Subsequently, a deep network with 20 lay-

ers was proposed in [11] to improve the reconstruction ac-

curacy of CNN. The residuals between the HR images and

the interpolated LR images were used in [11] to speedup

the converging speed in training and also to improve the re-

construction performance. Instead of using interpolation for

upscaling as in [2, 11], recent studies [3, 21] have demon-

strated that the SR performance can be further improved

both in terms of accuracy and speed by learning the upscal-

ing filters. The upscaling operation can be effectively learnt

by using deconvolution layers [3] or sub-pixel convolution

layers [21]. In our work, we employ the very deep network

and also integrate the deconvolution layers to further boost

the reconstruction performance.

2.2. Skip connections

As CNNs become increasingly deep, the problem of van-

ishing gradient hampers the training of networks. Many re-

cent approaches have been proposed to address this prob-

lem. ResNets [6] and Highway Networks [22] use bypass-

ing path between layers to effectively train networks with

more than 100 layers. Stochastic depth [8] randomly drops

layers to improve the training of deep residual networks,

which demonstrates a great amount of redundancy in deep

residual networks. FractalNets [14] combines several par-

allel networks with different depths and many short paths

are created in the networks. DenseNets [7] links all layers

in the networks and tries to fully explore the advantages of

skip connections. All these networks share a key idea: it is

essential to build many skip connections between layers to

effectively train a very deep network.

A skip connection was used in [12] to link the input data

and the final reconstruction layer in SR. State-of-the-art SR

results were achieved in [12]. However, only a single skip

connection was adopted in [12], which may not fully ex-

plore the advantages of skip connections. Many symmetric

skip connections were introduced in an encoding-decoding

network [17] for image restoration tasks. However, the im-

provement of the SR performance over the DRCN method

[12] that used a single skip connection is marginal. An ef-

fective way of using a reasonable amount of skip connec-

tions in very deep CNNs may potentially improve the SR

reconstruction performance.

2.3. Contribution

Skip connections can alleviate the vanishing-gradient

problem and enhance the feature propagation in deep net-

works. In this work, we introduce dense skip connections

in a deep network for SISR. Our main contributions are:

• We demonstrate that the deep CNN framework with

the denseNet as basic blocks can achieve good recon-

struction performance and that the fusion of features

at different levels through dense skip connections can

further boost the reconstruction performance for SISR.

• New state-of-the-art results have been achieved on four

benchmark datasets with a upscaling factor of 4 and

visual improvements can be easily noticed in the SR

results. The proposed framework not only achieves

impressive results but also can be implemented very

fast.

The proposed network structure is introduced in Section

3, followed by the experimental results and visual compar-

sions with state-of-the-art results in Section 4. A further

discussion is provided in Section 5 and the paper concludes

in Section 6.

3. Method

The proposed network aims to learn an end-to-end map-

ping function F between the LR image IL and the HR im-

age IH . As shown in Figure 1, SRDenseNet can be decom-

posed into several parts: the convolution layer for learning

low-level feature, the blocks of DenseNet for learning high-

level features, the deconvolution layers for learning upscal-

ing filters and the reconstruction layer for generating the

HR output. Each convolution or deconvolution layer is fol-

lowed by a ReLu layer for nonlinear mapping except the

reconstruction layer. The ReLu activation function is ap-

plied element-wise. Let Xi−1 be the input, the output of ith

convolution or deconvolution layer is expressed as:

Xi = max(0, wi ∗Xi−1 + bi) (1)

where Wi and Bi are the weights and biases in the layer,

and ∗ denotes either convolution or deconvolution opera-

tion for the convenience of formulation. Let Θ denote all
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Figure 1. Different structures of the proposed networks. (a) SRDenseNet H: only the high-level feature maps are used as input for recon-

structing the HR images. (b) SRDenseNet HL: the low-level and the high-level features are combined as input for reconstructing the HR

images. (c) SRDenseNet All: all levels of features are combined via skip connections as input for reconstructing the HR images.

the weights and biases in the network Θ = {Wi, Bi}, i =
1, ...,m. Given a set of training image pairs {Ik

L
, Ik

H
}, we

minimize the following Mean Squared Error (MSE):

l(Θ) =
1

N

N
∑

k=1

∥

∥F (Ik
L
,Θ)− Ik

H

∥

∥

2

2
(2)

Adam [13] is used to find the optimum weights and bi-

ases in the above equation. In the following, we will de-

scribe the details of the proposed network structures.

3.1. DenseNet blocks

After applying a convolution layer to the input LR im-

ages for learning low-level features, a set of DenseNet

blocks are adopted for learning the high-level features. The

DenseNet structure was first proposed in [7]. Different from

ResNets as proposed in [6], the feature maps are concate-

nated in DenseNet rather than directly summed. Conse-

quently, the ith layer receives the feature maps of all pre-

ceding layers as input:

Xi = max(0, wi ∗ [X1, X2, ..., Xi−1] + bi) (3)

where [X1, X2, ..., Xi−1] represents the concatenation of

the feature maps generated in the preceding convolution

layers 1, 2, ..., i − 1. In the structure of DenseNet, short

paths are created between a layer and every other layer. This

strengthens the flow of information through deep networks,

thus alleviating the vanishing-gradient problem. In addi-

tion, DenseNet can substantially reduce the number of pa-

rameters through feature reuse, thus requiring less memory

and computation to achieve high performance [7]. Here,

we employ the DenseNet structure as a building block in

our network. The structure of each denseNet block can be

seen in Figure 2. Specifically, there are 8 convolution lay-

ers in one DenseNet block in our work. If each convolution

layer produce k feature maps as output, the total number

of feature maps generated by one DenseNet block is k ∗ 8,
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where k is refered to as growth rate. The growth rate k reg-

ulates how much new information each layer contributes to

the final reconstruction. To prevent the network from grow-

ing too wide, the growth rate k is set to 16 in this study.

This results in a total number of 128 feature maps from one

DenseNet block.

3.2. Deconvolution layers

In previous SR methods such as SRCNN [2] and VDSR

[11], bicubic interpolation is used to upscale LR images to

the HR space. After that, the SR process including the com-

putationally expensive convolution is carried out in the HR

space. This increases the computational complexity for SR.

In addition, interpolation approaches do not bring new in-

formation for solving the SR problem. Therefore, recent

works [3, 17] have employed deconvolution layers to learn

the upscaling filters, which can also recover the image de-

tails. The deconvolution layer can be considered as an in-

verse operation of a convolution layer. It can learn diverse

upscaling kernels that work jointly for predicting the HR

images. There are two advantages in using the deconvolu-

tion layers for upscaling. First, it accelerates the SR recon-

struction process. After the deconvolution layers are added

at the end of networks, the whole computational process is

performed in the LR space. If the upscaling factor is r, it

will reduce the computational cost by a factor of r2. In addi-

tion, a large amount of contextual information from the LR

images is used to infer the high frequency details. Using the

same depth, the receptive field of the network with decon-

volution layers at the end is about r2 times larger than that

of the network using interpolation at the beginning. In our

work, two successive deconvolution layers with small 3× 3
kernels and 256 feature maps are trained for upscaling.

3.3. Combination of feature maps

As shown in Figure 1, three different types of network

structures were studied and compared in our work. As in

previous methods [2, 11], only the feature maps at the top

layer are used as input for reconstructing the HR output.

We denote this structure as SRDenseNet H which is shown

in Figure 1 (a). Further, a skip connection is introduced

in the network as shown in Figure 1 (b) to concatenate

the low-level and high-level features, which we term SR-

DenseNet HL. The concatenated feature maps are then used

as input for deconvolution layers. In addition, we use dense

skip connections to combine the feature maps produced at

all convolution layers for SR reconstruction, and denote this

method as SRDenseNet All. A comparison between the SR

results using different network structures will be performed

in the experimental section.

3.4. Bottleneck and Reconstruction layers

In the proposed SRDenseNet All as shown in Figure 1

(c), all feature maps in the network are concatenated, yield-

ing many inputs for the subsequent deconvolution layers.

If the large number of feature maps are directly fed into

deconvolution layers, it will significantly increase the com-

putational cost and the model size. Thus, it is necessary to

reduce the number of input feature maps in order to keep

model compactness and to improve the computational effi-

ciency. It has been demonstrated in previous studies [23]

that a convolution layer with 1 × 1 kernel can be used as a

bottleneck layer to reduce the number of input feature maps.

To improve the model compactness and computational effi-

ciency, we employ a bottleneck layer to reduce the number

of feature maps before feeding them to the deconvolution

layers. The number of feature maps is reduced to 256 using

1 × 1 bottleneck layer. After that, the deconvolution layers

transform the 256 feature maps from the LR space to the

HR space. Finally, the feature maps in the HR space are

used to generate HR images via a reconstruction layer. The

reconstruction layer is a convolution layer with 3×3 kernel

and one channel of output.

4. Experiments

In this section, we evaluated the performance of the pro-

posed method on four benchmark datasets. A description of

the datasets is first provided, followed by the introduction

of the implementation details. The benefit of using differ-

ent levels of features is then introduced. After that, compar-

isons with state-of-the-art results are presented.

4.1. Datasets and metrics

During the evaluation, we used publicly available bench-

mark datasets for training and testing. Specifically, 50,000

images were randomly selected from ImageNet for the

training. During testing, the dataset Set5 [1] and Set14

[29] are often used for SR benchmark. The B100 from the

Berkeley segmentation dataset [18] consisting of 100 natu-

ral images were used for testing. In addition, the proposed

method was also evaluated using the Urban100 dataset [9]

which includes 100 challenging images. All experiments

were performed using a scale factor of 4× between LR and

HR images. The peak signal-to-noise ratio (PSNR) and the

structural similarity (SSIM) index were used as metrics for

evaluation. Since SR was performed in the luminance chan-

nel in YCbCr colour space, the PSNR and SSIM were cal-

culated on the Y-channel of images.

4.2. Implementation details

Non-overlapping sub-images with a size of 100 × 100
were cropped in the HR space. The LR images were ob-

tained by downsampling the HR images using bicubic ker-
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Figure 2. The structure of one DenseNet block. Each block consists of 8 convolution layers. The growth rate is set to 16 and the output of

each block has 128 feature maps.

nel with a scale factor of 4×. As suggested by previous

studies, each image has been transformed into YCbCr space

and only the Y-channel was used for training. In all net-

works, 8 DenseNet blocks were used, resulting in 64 con-

volution layers. Within each block, a growth rate of 16 was

set. This generated an output of 128 feature maps from each

block. The filter size was set to 3 × 3 in all weight layers.

The weights were initialized using the method proposed in

[5] and the biases were initialized to zero. The rectified lin-

ear units (ReLu) was used as the activation function. All

the networks were optimized using Adam [13]. The learn-

ing rate was initially set to 0.0001 and decreased by a factor

of 10 after 30 epoches. A mini-batch size of 32 was set

during the training. The training process stopped after no

improvements of the loss was observed after 60 epoches. A

NVIDIA Titan X GPU was used for training and testing.

4.3. Benefit of feature combination

The reconstruction performance using the three types of

network structures as shown in Figure 1 were compared.

Table 1 shows the obtained PSNR and SSIM values on four

datasets. As expected, SRDenseNet HL achieved better re-

sults than SRDenseNet H after adding a skip connection.

This indicates that the combination of low-level features

and high-level feature can improve the SR reconstruction

performance. A further improvement was observed by con-

catenating all levels of features. This suggests that there

are complementary information among different levels of

feature maps for SR. The improvements by combining dif-

ferent levels of features can also be seen in Figure 4.

4.4. Comparison with state­of­the­art methods

We compared the results using the proposed method and

those using other SISR methods, including bicubic, Aplus

[24], SRCNN [2], VDSR [11] and DRCN [12]. The imple-

mentations of these methods have been released online and

thus can be carried out on the same datasets for fair compar-

isons. For SRCNN, the best 9-5-5 image model was used

for comparison in this section. As for the Aplus method

[24], it did not predict image boundaries. To enable a fair

comparison, the borders of HR images were cropped so that

all the results had the same region. The public code in [9]

was used for calculating the evaluation metrics. Table 2

shows the average PSNR and SSIM values on four bench-

mark datasets. In terms of PSNR, the proposed method

achieves an improvement of 0.2dB-0.8dB over state-of-the-

art results on different datasets. On average, an increase of

about 1.0 dB using the proposed method was achieved over

SRCNN [2] with 3-layer CNN and an increase of about 0.5

dB over VDSR [11] with 20-layer CNN. It should be men-

tioned that the most significant improvement is obtained on

the very challenging dataset Urban100.

Visual comparisons using different methods are given in

Figures 3 and 5. In Figure 3, only the proposed method

can well reconstruct the lines and the contours while other

methods generate blurry results. In addition, severe distor-

tions are found in some reconstructed results using existing

methods (i.e. middle panel in Figure 5) whereas our method

can reconstruct the texture pattern and avoid the distortions.

5. Discussion and future work

When the proposed SRDenseNet All is unfolded, the

longest chain has 69 weight layers and 68 activation lay-

ers. The SR task can benefit from using this very deep net-

work in two aspects: (a) since the size of the receptive field

is proportional to the depth, a large amount of contextual

information in LR images can be utilized to infer the high

frequency information in HR images; (b) due to the use of

many ReLu layers, high nonlinearity can be exploited in

very deep networks to model the complex mapping func-

tions between LR image and HR images. One challeng-

ing problem in very deep network is the vanishing-gradient

problem. In this work, we utilized the DenseNet structure

as building blocks to alleviate this problem. DenseNets al-

low layers to use feature maps from their preceding layers.

This provides an effective way to reuse feature maps that

are already learnt and forces the current layer to learn com-

plementary information, thus avoiding the learning of re-

dundant features. In addition, each layer has a short path
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Figure 3. Super-resolution results for “img096” (top figure),“img099” (middle figure) and “img004” (bottom figure) from Urban100 with

an upscaling factor of 4. PSNR and SSIM values are shown on the top of each sub-figure.

Dataset SRDenseNet H SRDenseNet HL SRDenseNet All

Urban100 25.69/0.7700 25.86/0.7761 26.05/0.7819

Set5 31.66/0.8882 31.80/0.8907 32.02/0.8934

Set14 28.34/0.7744 28.40/0.7765 28.50/0.7782

B100 27.42/0.7300 27.47/0.7318 27.53/0.7337

Table 1. Comparison of results in terms of PSNR/SSIM on four benchmark data using three different network structures.

to the loss in the proposed network, leading to an implicit

deep supervision [16]. This can help the training of very

deep networks and improve the reconstruction performance

in SR [12].

Several techniques were proposed to improve the accu-

racy and to speedup the SR process, contributing to the nov-

elty of the proposed framework. In order to improve the re-

construction accuracy, three techniques were proposed and

integrated. (a) First, the DenseNet was used as a basic block

in our network. This is the first work that uses denseNet for

SR. One benefit of using the DenseNet Block is to avoid the

gradient vanishing problem, allowing us to train very deep
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Dataset Bicubic Aplus [24] SRCNN [2] VDSR [11] DRCN [12] SRDenseNet All

Urban100 23.14/0.6577 24.32/0.7183 24.52/0.7221 25.18/0.7524 25.14/0.7510 26.05/0.7819

Set5 28.42/0.8104 30.28/0.8603 30.48/0.8628 31.35/0.8838 31.53/0.8854 32.02/0.8934

Set14 26.00/0.7027 27.32/0.7491 27.49/0.7503 28.01/0.7674 28.02/0.7670 28.50/0.7782

B100 25.96/0.6675 26.82/0.7087 26.90/0.7101 27.29/0.7251 27.23/0.7233 27.53/0.7337

All 24.73/0.6685 25.79/0.7191 25.93/0.7216 26.47/0.7439 26.42/0.7424 27.02/0.7622

Table 2. Comparison of SR results in terms of PSNR/SSIM using different methods. All means the combination of four datasets including

219 testing images.

Figure 4. Comparison of PSNR and SSIM values on the Urban100

dataset using three different network structures.

CNN. (b) Second, low level features and high level features

were fused via skip connections. The fusion of different lev-

els of features can provide rich information for reconstruct-

ing the high-frequency information in high resolution im-

ages. We have demonstrated that the fusion process signifi-

cantly improved the accuracy as shown in Figure 4, indicat-

ing complementary information among different levels of

features.. (c) The use of successive deconvolutional layers

also boosts the reconstruction performance. The deconvo-

lutional layers can learn the up-scaling filters, thus avoiding

the use of the bicubic interpolation as adopted in previous

algorithms such as VDSR and DRCN. Therefore, the use of

the DenseNet blocks is just one part of the contributions in

the proposed framework for improving the accuracy.

In addition, the proposed framework not only achieves

impressive results but also can be implemented very fast.

This was resulted from three aspects: (a) The adoption of

the 1*1 convolutional layer significantly reduced the pa-

rameters of the network; (b) The use of deconvolutional lay-

ers transferred the convolution process from high-resolution

space to low-resolution space, thus substantially reducing

the computational complexity. (c) A small growth rate of

16 was set in the DenseNet blocks. This means that only

16 new feature maps are required to learn for each convo-

lutional layers. Although the growth rate is low, the total

number of features is still large due to the fusion of differ-

ent levels of features as mentioned above. This enables fea-

ture reuse and provides rich information for reconstructing

the high-resolution images. In the end, we have achieved

an average speed of 36.8ms for super-resolving one single

image from the B100 dataset on a Titan X GPU, reaching a

real-time SR with a scaling factor of 4×.

In this work, only the MSE loss is used for guiding the

training of networks. The use of MSE loss can lead to re-

sults with high PSNR values. However, high PSNR values

do not necessarily represent visually pleasing results. Re-

cently, perceptual loss was proposed in [10] for SR to re-

place the low-level pixel-wise loss. Further, adversarial loss

using a generative adversarial network (GAN) was added to

the loss function in [15, 19] and photo-realistic SR images

can be generated. Although the generated high frequency

details in SRGAN [15] may be ‘fake’ texture patterns, it

yields visually pleasing high-resolution images. Note that

the proposed method can provide a very good generator net-
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Figure 5. Super-resolution results for “148026” from B100 (top figure),“253027” from B100 (middle figure) and “ppt3” from Set14 (bottom

figure) with an upscaling factor of 4. PSNR and SSIM values are shown on the top of each sub-figure. Severe distortions are found in the

results of “253027” from B100 using other methods while the proposed method can accurately reconstruct the original pattern.

work initialized for GAN. It would be very interesting to in-

vestigate the integration of perceptual loss in the proposed

framework in order to improve the visualized quality of the

reconstructed images in future.

6. Conclusion

In this paper, we have presented a novel network that

employs dense skip connections for SR. The proposed ap-

proach outperforms state-of-the-art methods by a consider-

able margin on four benchmark datasets in terms of PSNR

and SSIM. Noticeable improvement can visually be found

in the reconstruction results. In addition, we have demon-

strated that the combination of features at different level is

helpful for improving SR performance. Future work will

focus on the integration of perceptual loss in the proposed

network to reconstruct photo-realistic HR images.
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