
On-the-fly Fluid Model Checking via
Discrete Time Population Models?

Diego Latella1, Michele Loreti2, and Mieke Massink1

1 Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’, CNR, Italy
2 Dip. di Statistica, Informatica, Applicazioni ‘G. Parenti’, Università di Firenze, and

IMT Advanced Studies Lucca, Lucca, Italy

Abstract. We show that, under suitable convergence and scaling con-
ditions, fluid model checking bounded CSL formulas on selected indi-
viduals in a continuous large population model can be approximated by
checking equivalent bounded PCTL formulas on corresponding objects
in a discrete time, time synchronous Markov population model, using
an on-the-fly mean field approach. The proposed technique is applied
to a benchmark epidemic model and a client-server case study showing
promising results also for the challenging case of nested formulas with
time dependent truth values. The on-the-fly results are compared to those
obtained via global fluid model checking and statistical model-checking.

1 Introduction

Model checking has been widely recognised as a powerful approach to the au-
tomatic verification of concurrent and distributed systems, including aspects of
their performance. It consists of an efficient procedure that, given an abstract
model M of the system, decides whether M satisfies a logical formula Φ, typi-
cally drawn from a temporal logic. Recently, the integration of mean field and
fluid approximation techniques, that originate in statistical physics, with formal
modelling techniques has received increasing attention as a way to obtain highly
scalable approximate model checking techniques, such as fluid model checking [3,
4, 12] and mean field model checking [16]. These approaches are independent of
the population size, as long as this is large enough. Such extreme scalability is
a prerequisite for the verification of large scale collective adaptive systems, of
which performance aspects and emerging behaviour are an essential feature.

Traditional model checking approaches do not scale up to such large sys-
tems due to the well-known state space explosion problem. Statistical model-
checking [21] is in general performing much better in this respect. It avoids the
generation of the state space and approximates the results by a statistical anal-
ysis of a number of randomly generated finite executions of the model. This
leads to better scalability, but the complexity is still linear in the number of ob-
jects that the system is composed of. Furthermore, depending on the accuracy

? This work is partially supported by the EU project QUANTICOL (nr. 600708), and
the IT MIUR project CINA

required and the particular property of interest, it may be necessary to take a
large number of samples into consideration.

Fluid model checking [3, 4, 12] relies on a global model checking approach for
time-inhomogeneous Continuous Time Markov Chains (ICTMC) representing a
typical individual object in the context of a large CTMC population model. The
rates of the individual may depend on the fraction of the population that is in
a particular state. The algorithm relies on the deterministic approximation of
the average stochastic behaviour of the system in continuous time, i.e. a fluid
approximation. An alternative approach is the one we refer to in this paper by
on-the-fly mean field model checking [16]. In this approach only as much of the
state space as strictly needed to verify the given formula is generated from a high-
level specification of the individual behaviour and the population. The algorithm
relies on the deterministic approximation of the probabilistic behaviour of the
population in discrete time and can be used to verify formulas of the bounded
Probabilistic Computation Tree Logic (PCTL)[9].

The main contribution of the present paper is to show that, under suitable
convergence and scaling assumptions3, and for models that are not too stiff4,
fluid model checking can be performed exploiting on-the-fly mean field model
checking techniques [16] applied on a time-inhomogeneous Discrete Time Markov
Chain (IDTMC) model and bounded PCTL formula that are derived from a cor-
responding ICTMC model and bounded Continuous Stochastic Logic (CSL) [1]
formula via a transformation presented in Sect. 2.3. This approach is interesting
and differs from other approaches in several respects: 1) the mean field model
checking algorithm is implemented as a particular instantiation of an on-the-fly
probabilistic model-checking algorithm [16]; 2) the latter is parametric w.r.t. the
semantics interpretation of the model specification language and in this case we
instantiate it on the mean-field approximation of a simple probabilistic popula-
tion description language; 3) the transformation presented in Sect. 2.3 allows one
to reuse the implementation once more for a class of CTMC population models;
4) the global fluid model checking algorithm in [3, 4] requires the a priori cal-
culation of discontinuity points, i.e. points in time in which the truth values of
time-dependent (sub)-formulas of an until formula change. This is a non-trivial
task and consists in finding all zeros of an analytic function. In the on-the-
fly setting such points are detected automatically during the computation of the
probabilities, upto a difference that is in the order of a small discrete step size; 5)
on-the-fly approaches are particularly efficient when verifying conditional reach-
ability properties because in that case much fewer states need to be generated.
Ultimately, however, the on-the-fly mean field algorithm is based on an Euler
method to solve differential equations. This poses certain limitations on the con-
tinuous time models that can be analysed efficiently this way, in particular they
should not be too stiff. For non stiff models the results are promising as shown
by the available benchmark models for which also some results for global fluid
model checking and statistical model checking are available in the literature.

3 See Theorem 5 of [4].
4 Stiff models are those whose rates differ several orders of magnitude.

The outline of the paper is as follows. Sect. 2 introduces discrete and contin-
uous time Markov population models. The relevant temporal logics are recalled
in Sect. 3. Sect. 4 presents the model and logic transformation functions and the
correctness results w.r.t. fluid model-checking. Sect. 5 provides a comparison
with benchmark examples from the literature. Related work and conclusions are
presented in Sect. 6 and Sect. 7, respectively. Basic knowledge on Markov chains
and related model checking algorithms is assumed.

2 Population Models

We consider two types of Markov population models: continuous time models
and discrete time models. In both models we assume that the number of objects
in the population is N and that this size remains constant during execution.

2.1 Continuous Time Population Models

For CTMC population models we adopt the notation following [3]. Let Y
(N)
i (t) ∈

S be the random variable representing the state of object i at time t, where S =
{1, 2, . . . , n} represents the local state space of each object. Multiple classes of
agents are represented by partitioning S into disjoint subsets and allowing state
changes only within a single class. Let Q(N)(x) denote the n × n infinitesimal
generator matrix that depends on the fraction of objects x ∈ [0, 1]n that are

in each state. The latter quantity can be computed from Y
(N)
i as X̂

(N)
i (t) =

1
N

∑N
j=1 1{Y (N)

j (t) = i}5. 〈X̂(N)
1 (t), X̂

(N)
2 (t), . . . , X̂

(N)
n (t)〉 is a CTMC X̂ (N) [2]

on the state space [0, 1]n, also called the occupancy measure, with initial state

x
(N)
0 ∈ [0, 1]n. The average infinitesimal variation of X̂ (N), given that it is in

state x is F (N)(x) = xTQ(N)(x), also called the drift6. If, for N →∞, Q(N)(x)
converges uniformly to the Lipschitz continuous generator matrix Q(x), and

x
(N)
0 to x0, and, furthermore, if x(t) is the solution of the ODE dx

dt = F (x) =
xTQ(x) for initial condition x(0) = x0, then in the limit the two processes
behave almost surely the same for a finite time horizon T [7, 13]7.

It is possible to decouple the analysis of a single object from the analysis of
the global system by letting the behaviour of the single object depend on the
other objects only through the solution of the fluid ODE. This result is known
as fast simulation [7, 18]. The stochastic behaviour of a single object can be

defined as Z(N) = Y
(N)
1 on state space S, assuming, without loss of generality,

we are interested in the behaviour of the first object. Note that Z(N) is an
ICTMC. Let z(t) be the ICTMC of an individual object with states in S such
that Pr{z(t + dt) = j|z(t) = i} = qi,j(x(t))dt, and let Qz(x(t)) = (qi,j(x(t))).

5 1{x = y} yields 1 if x = y and 0 otherwise.
6 xT denotes the transpose of vector x.
7 The conditions on uniform convergence and Lipschitz continuity automatically hold

for PEPA population models because in that case the rate functions are all piecewise
linear [20].

We then have that for any finite horizon T and t ≤ T the behaviour of the single
object Z(N)(t) tends to the behaviour of the object that senses the rest of the
system only through its limit behaviour given by x, i.e. z(t).

Running example: Consider the simple PEPA specification of processors
and resources that synchronise on a common task [11]:

Proc0 := (task1 , r1).Proc1 Res0 := (task1 , r1).Res1
Proc1 := (task2, r2).Proc0 Res1 := (reset, s).Res0

Proc0[Np] ��
task1

Res0[Nq]

where Proc0[Np] is a shorthand notation for Np instances of process Proc0 in
parallel, and Res0[Nq] denotes Nq instances of process Res0 in parallel. Such
population oriented PEPA specifications have been given a formal semantics
based on ODE by Hillston in [11] and by Tribastone et al. in [20]. In particular,
the ODE associated to the example specification can be given as:

d proc0(t)
dt = −r1.min(proc0 (t), res0(t)) + r2.proc1 (t)

d proc1(t)
dt = −r2.proc1 (t) + r1.min(proc0 0(t), res0(t))

d res0(t)
dt = −r1.min(proc0 (t), res0(t)) + s.res1 (t)

d res1(t)
dt = −s.res1(t) + r1.min(proc0 (t), res0 (t))

where proc0 (t), proc1 (t), res0 (t) and res1 (t) denote the limit occupancy measure
at time t for each local state respectively. The functionmin denotes the minimum
function and originates from the specific definition of action synchronisation of
the semantics of PEPA [11].

The infinitesimal Q-matrix of an individual object that depends on the be-
haviour of the global system via its limit occupancy measure can be retrieved
as follows (see [3]). From the PEPA semantics of the synchronisation (cooper-
ation) operator we know that the total rate of a shared task1 action is given
by min(r1.proc0 (t), r1.res0 (t)). The rate of an individual process performing a
task1 action is then this global rate divided by the fraction of objects present in
the system at time t, i.e. proc0 (t). The rate of an individual process performing
a task2 action is simply r2 because this action does not depend on the limit oc-
cupancy measure x, where xT (t) = (proc0 (t), proc1 (t), res0 (t), res1 (t)). Similar
reasoning applies to the rates of a resource object. So, we obtain the following
rate functions for the Q-matrix:

Qproc0 ,proc1 (x(t)) = r1.min(proc0 (t), res0 (t))/proc0 (t)
Qproc1 ,proc0 (x(t)) = r2

Qres0 ,res1 (x(t)) = r1.min(proc0 (t), res0 (t))/res0 (t)
Qres1 ,res0 (x(t)) = s

The rate functions used in the Q-matrix are all continuous and bounded, at least
as long as we do not divide by zero.

2.2 Discrete Time Population Models

For DTMC population models we consider again a system of N interacting

objects. Let W
(N)
i (k) ∈ S be the random variable representing the state of

object i at step k, where S = {1, 2, . . . , n} represents the local state space of
each object. Let K(N)(m) denote the n×n one step transition probability matrix
that depends on the fraction of objects m ∈ [0, 1]n that are in each state of S.

This fraction can be computed as M̂
(N)
i (k) = 1

N

∑N
j=1 1{W (N)

j (k) = i}. It is easy

to see that the process 〈M̂ (N)
1 (k), M̂

(N)
2 (k), · · · , M̂ (N)

n (k)〉 is a DTMC M̂(N) on

the state space [0, 1]n, with initial state m
(N)
0 ∈ [0, 1]n.

The average variation of M̂(N), given that it is in state m is F (N)(m) =

mTK(N)(m). Suppose that, for all i, j and for N →∞, the elements K
(N)
i,j (m)

converge uniformly in m to some Ki,j(m), which is a continuous function of

m, and m
(N)
0 converges almost surely to m0, and furthermore define m(k) as

follows: m(0) = m0 and m(k+1) = m(k)T ·K(m(k)); then, for any fixed step t,
almost surely M̂(N) converges to function m(k) [18]. As for CTMC population
models, it is possible to decouple the analysis of the single object from the
analysis of the global system using a fast simulation approach involving the
solution of a difference equation rather than an ODE.

Example: Taking probabilities αi for the rates ri in the processes and re-
sources example, we obtain the following difference equations for mT (k) =
(mp0(k),mp1(k),mr0(k),mr1(k))):

mp0(k + 1) = mp0(k)− α1.min(mp0(k),mr0(k)) + α2.mp1(k)
mp1(k + 1) = mp1(k) + α1.min(mp0(k),mr0(k))− α2.mp1(k)
mr0(k + 1) = mr0(k)− α1.min(mp0(k),mr0(k)) + αs.mr1(k)
mr1(k + 1) = mr1(k) + α1.min(mp0(k),mr0(k))− αs.mr1(k)

where mpj(k) and mrj(k) denote the limit occupancy measure at step k for
processes and resources. We can also retrieve the one step probability matrix for
each individual process and resource object using a similar reasoning as in the
CTMC case:

Kp0,p1(m(k)) = α1.min(mp0(k),mr0(k))/mp0(k)
Kp1,p0(m(k)) = α2

Kr0,r1(m(k)) = α1.min(mp0(k),mr0(k))/mr0(k)
Kr1,r0(m(k)) = αs

The difference equations can be obtained from K bym(k+1) = m(k)T .K(m(k)).

2.3 Relationship Between the Models

First note that we can interpret the difference equations obtained from a dis-
crete time population model as an instance of the Euler forward method for
approximating the solution of a set of ODEs. The set of ODEs we are interested

in solving are those of a corresponding continuous population model. To obtain
an acceptable approximation of the solution we need to find a step size for the
difference equations such that absolute stability of the method, to avoid that the
global error grows exponentially, and a sufficient accuracy [19] are guaranteed.
This, in turn, means that we need to derive suitable values for the probabilities α
from the rates in the continuous model. What we would be even more interested
in is to transform an ICTMC model of an individual (from which the ODEs
can be derived) into an IDTMC model, with the same local states and jump
structure as the ICTMC, from which we get exactly the set of difference equa-
tions that can be used to approximate the solution of the ODEs. We proceed as
follows. Using a feature of CTMC uniformisation8 we can obtain a DTMC with
probability matrix K such that K = I + 1

q ·Q, where Q is the infinitesimal rate
matrix and q the uniformisation rate that is at least as large as the maximal exit
rate of the states in the original CTMC. This DTMC preserves the local states
and the jumps of the original CTMC apart from additional self-loops. Note that
in our case the rates in Q may depend on the occupancy measure m. However,
0 ≤ mi ≤ 1 for all i ∈ |S|, so assuming rate-functions that include minimum
functions and linear combination9 (but not rational functions) that we derive
from PEPA specifications we can easily find a suitable q.

At this point we need to satisfy also the requirements of absolute stability
and obtain a satisfactory accuracy following standard procedures [19]. If we
are lucky, q is already large enough so that these requirements are fulfilled,
otherwise we need to increase q, which is allowed because q is only a lower
bound (see above). For linear systems of l differential equations where u(t) ∈ Rl
and d u(t)/dt = A · u(t) where A is an l× l matrix a necessary condition is that
hλ is in the stability region of the Euler method for each eigenvalue λ of matrix
A and step size h. So, for each eigenvalue λ we need that −2 ≤ hλ ≤ 0 [19].
For non-linear systems we need to determine the range of each eigenvalue and
make sure that the step size h is taken small enough so that hλ stays within the
region of absolute stability for its complete range. Note that h = 1/q.

Example: For the running example, with r1 = 10, r2 = 3.0 and s = 7.0, we
obtain uniformisation rate q = 10 and eigenvalues λ1 = 0 or −r1−r2 ≤ λ1 ≤ −r2
and λ2 = 0 or −r1−s ≤ λ2 ≤ −s, showing that all eigenvalues are in a bounded
range, with a maximum absolute value of 17. So when taking h = 1/q we get that
0 ≤ 17 ∗ 1/q ≤ 2. This implies that q = 10 guarantees stability of the method,
but a higher value may be preferred for better accuracy.

3 Properties of Individual Objects

Properties of the behaviour of individuals in the context of a large population
model can be expressed as formulas of a suitable temporal logic. For the purpose

8 I.e. transforming a CTMC into one where each state has the same exit rate by adding
self-loops where needed, which is an operation that does not alter the transient and
steady state properties of the CTMC.

9 I.e. piecewise linear functions leading to the class of split-free PEPA models [10].

s, t |=C a ⇔ a ∈ `(s)
s, t |=C ¬Φ ⇔ not s, t |=C Φ
s, t |=C Φ1 ∨ Φ2 ⇔ s, t |=C Φ1 or s, t |=C Φ2

s, t |=C P./p(ϕ) ⇔ Pr{σ ∈ PathsC(s, t) | σ, t |=C ϕ} ./ p
σ, t |=C Φ1 U≤τ Φ2 ⇔ ∃ τ2 s.t. 0 ≤ τ2 ≤ τ, σ@τ2, t+ τ2 |=C Φ2 ∧

∀ 0 ≤ τ1 < τ2, σ@τ1, t+ τ1 |=C Φ1

Table 1. Satisfaction relation: CSL fragment.

of this paper, properties of continuous time models are expressed in bounded
CSL, and properties of discrete time models are expressed in bounded PCTL.
Both are briefly recalled in this section, where we assume set P of atomic propo-
sitions is given and a ∈P, τ ∈ Q≥0, k ∈ N and ./∈ {>,<} and p ∈ [0, 1] ∩Q.

Continuous Stochastic Logic for ICTMC. The syntax of the fragment
of bounded CSL we consider is defined below:

Φ ::= a | ¬Φ | Φ ∨ Φ | P./p(ϕ) where ϕ ::= ΦU≤τ Φ.

CSL formulas10 are interpreted over state labelled ICTMCs 〈C, `〉, where C is
an ICTMC with state set S and ` : S → 2P associates each state with a set
of atomic propositions. We define the satisfaction relation on C and the logic
in Table 1. We abbreviate 〈C, `〉 with C, when no confusion can arise, with Q
its infinitesimal generator matrix. A path σ over C is a non-empty sequence

s0
t0→ s1

t1→ · · · such that the probability of going from state si to si+1 at time
Ti =

∑i
j=0 ti is positive for all i ≥ 0. We let PathsC(s, t) denote the set of all

infinite paths over C starting from state s at time t. We require that all subsets
of paths considered are measurable. We let σ@t denote the state sk in σ such
that k is the maximum i such that

∑i
j=0 ti ≤ t, i.e. the state reached on path

σ at time t. Finally, in the sequel we will consider ICTMCs equipped with an
initial state s0, i.e. the probability mass is initially all in s0.

Probabilistic Logic for DTMC.11 The syntax of the fragment of bounded
PCTL we consider is defined below:

Φ ::= a | ¬Φ | Φ ∨ Φ | P./p(ϕ) where ϕ ::= ΦU≤k Φ.

PCTL formulas are interpreted over state labelled DTMCs D in a similar way as
for CTMCs. We assume P to be the one step probability matrix for D. A path
σ over D is a non-empty sequence of states s0, s1, · · · where Psi,si+1

> 0 for all
i ≥ 0. We let PathsD(s) denote the set of all infinite paths over D starting from

10 For simplicity the time bounds in the formulas are of the form [0, τ] instead of the
more general [τ1, τ2].

11 Note that, by making time explicit, the structures used by FlyFast are DTMCs rather
than IDTMCs (see Sect. 4).

s |=D a ⇔ a ∈ `(s)
s |=D ¬Φ ⇔ not s |=D Φ
s |=D Φ1 ∨ Φ2 ⇔ s |=D Φ1 or s |=D Φ2

s |=D P./p(ϕ) ⇔ Pr{σ ∈ PathsD(s) | σ |=D ϕ} ./ p
σ |=D Φ1 U≤k Φ2 ⇔ ∃ 0 ≤ h ≤ k s.t. σ[h] |=D Φ2 ∧ ∀ 0 ≤ i < h . σ[i] |=D Φ1

Table 2. Satisfaction relation: PCTL fragment.

state s. By σ[i] we denote the element si of path σ. We will consider DTMCs
equipped with an initial state s0. We define the satisfaction relation on D and
the logic in Table 2.

4 Fluid Model Checking via Discrete Time Models

We first define two transformation functions. Function TM takes an ICTMC z(t)
with infinitesimal generator matrix Q(t) and initial state s0. It takes a step size
d ∈ Q and a time bound b > d. It returns a DTMC with state set S×{0, . . . , b bdc},
initial state (s0, 0) and one step transition probability matrix U, as follows:

Definition 1. For all 0 < d ∈ Q, b ∈ R with b > d, and infinitesimal generator
matrix Q(t), TM (Q(t), d, b) is the one step transition probability matrix U:

U(s,i),(s′,i′)=

[I + d·Q(i·d)]s,s′ , if i
′= i+1,Q(i·d)s,s 6= 0,

1, if i′ = i, s′ = s,Q(i·d)s,s = 0,
0, otherwise

where the indexes of U are assumed to be ordered as follows:

(s0, 0), ..., (sn, 0), (s0, 1), ..., (sn, 1), ..., (s0, b
b

d
c), ..., (sn, b

b

d
c).

Function TF below transforms bounded CSL into bounded PCTL formulas:

Definition 2. For atomic propositions a, bounded CSL formulas Φ, Φ1 and Φ2,
and d ∈ Q, function TF is defined as follows:
TF [[a]]d = a TF [[Φ1 ∨ Φ2]]d = TF [[Φ1]]d ∨ TF [[Φ2]]d
TF [[¬Φ]]d = ¬TF [[Φ]]d TF [[P./p(Φ1 U≤τ Φ2)]]d = P./p(TF [[Φ1]]d U≤b

τ
d c TF [[Φ2]]d)

The definition for the basic state formulas is straightforward. Bounded CSL until
formulas translate to bounded PCTL until formulas with the same probability
bound and structure, but with a time bound τ

d where τ was the original time
bound in the CSL formula. In the sequel, we let |Φ| denote the duration of Φ,
i.e. the length of time to which it refers, as follows:

Definition 3. For any bounded CSL formula Φ the duration of Φ, |Φ| is defined
as follows:
|a| = 0 |Φ1 ∨ Φ2| = max{|Φ1|, |Φ2|}
|¬Φ| = |Φ| |P./p(Φ1 U≤τ Φ2)| = τ + max{|Φ1|, |Φ2|}

Model CSL Property
FlyFast
(N > 500)

Fluid MC
(N > 500)

SMC
(N=100)

SMC
(N=1000)

SEIR sU≤T r ∼ 0.005 s ∼0.05 s ∼ 5 s ∼ 20 s

SEIR tt U≤T P≤0.01(true U≤10 i) ∼ 6.3 s N.A. N.A. N.A.

CS tt UT (P≤0.167[tt U50CR]) ∼ 63.9 s N.A. N.A. N.A.

Table 3. Comparison of model checking times. Times for Statistical MC (SMC) based
on 10000 runs. Data for SMC and Fluid MC from [5]. Time in seconds.

Recall that we assume that time bounds in until formulas are rational num-
bers. For formula Φ, we let τΦ = (τ1, . . . , τl), denote the vector of all time
bounds occurring in the (until subformulae of) Φ; furthermore we define dΦ and
DΦ as follows: dΦ = max{d ∈ Q | τjd ∈ N, for j = 1 . . . l} and DΦ = {d ∈
Q | there exists w ∈ N s.t. d = dΦ

w }. Note that dΦ is well defined since τj ∈ Q,
for j = 1 . . . l; actually, letting τi = ai

bi
, s.t. gcd(ai, bi) = 1, it is easy to see that

dΦ = 1

lcm(b1,...,bl)
. We are now ready to state the main Theorem for robust CSL

formulas12:

Theorem 1. Let X (N) be a sequence of CTMC population models, with de-
terministic fluid limit x(t) for any fixed time t < T , under initial condition
x(0) = x0, and let z = z(t) be the stochastic process defined from X (N) as in
Sect. 2.1. Let Φ be a robust CSL formula for z. There exists N0 ∈ N, such that,

for all d ∈ DΦ, with d ≤ 1
q as in Sect. 2.3 and for all N ≥ N0 and b > d |Φ|d e the

following holds:

s, t |=z Φ iff (s, b t
d
c) |=TM (z,d,b) TF [[Φ]]d

The proof is by induction on the structure of the CSL formula Φ. One is usually
interested in the result for t = 0. The proof is available in [14]. The result of The-
orem 1 shows that it is indeed possible, under suitable scaling and convergence
conditions, to use PCTL and a discrete time Markov population model to ob-
tain similar results as by global fluid model checking CSL formulas on ICTMCs.
The advantages and limitations of this approach were already outlined in the
introduction.

Complexity. For what concerns the complexity of the approach, this de-
pends on the complexity of the underlying on-the-fly probabilistic model-checking
algorithm that consists of two phases, an expansion phase and a computation
phase, both phases are linear in the number of states and transitions [17] for
the time bounded fragment of PCTL. Furthermore it depends on the length and
type of the formula, e.g conditional reachability is more likely to lead to the gen-
eration of fewer states, the time bounds in the formula and the uniformisation
rate needed.

12 We refer to [4] for the definition of formula robustness and to [13, 6] for constraints
on time horizon T .

5 Benchmark Examples and Comparison

Fluid model-checking is a young field of research and to the best of our knowl-
edge, the global fluid model checking algorithm has not been fully implemented
as yet and is not publicly available; consequently we will only use the few bench-
mark examples available in the literature. More complex examples can be found
in [15]. For those we compare results of global fluid model-checking, on-the-fly
fluid model checking and statistical model checking for a computer epidemic
model and a client-server model [5, 4, 3]. Our experiments were conducted with
a 1.8 GHz Core i7 Intel processor and 4 GB RAM running Mac OS X 10.7.5.
The results are summarised in Table 3.

5.1 A Computer Worm Epidemic Model

The computer worm epidemic model consists of a large number of nodes, each
with four local states; susceptible (S), exposed (E), infected (I) and recovered (R)
(see Fig. 1). Susceptible nodes can be infected by an external source (inf e) or by
other nodes that are already infected (inf s) or, rarely, be patched (patch s). Ex-
posed nodes can be activated (act) and become infected, or they can be patched
(patch e). Infected nodes can be de-activated (de act) or patched (patch i), or
infect other nodes (inf s) while remaining infected. Recovered nodes can loose
(loss) their protection and become susceptible.

S R

E I

inf s

patch s

loss

patch i

act

inf sinf e

de act

patch e

Individual object

Probability functions:

action inf e :: kext/q;
action inf s :: (kinf/q) ∗ (frc I);
action act :: kact/q;
action de act :: kdeact/q;
action patch i :: khigh/q;
action patch s :: klow/q;
action patch e :: klow/q;
action loss :: kloss/q;

system worm = < S[10000] >;

Fig. 1. Computer Worm Epidemic Process and related rates: kext = 0.01, kinf = 5,
kact = kdeact = 0.1, klow = 0.005, khigh = 0.1, kloss = 0.005 (left) and derived
probability functions using uniformisation rate q = 10 (right).

Following the procedure outlined in Sect. 2.3 the model shown in Fig. 1 is
transformed into a discrete time model using a suitable rate which guarantees
absolute stability and sufficient accuracy of the Euler forward method. The high-
est exit rate is that of state S, namely 5.2, if we assume that in theory all nodes
could be infected at some stage, such that frc I = 1. However, to facilitate com-
parison with results in the literature we take q = 10, at the cost of being slightly

less efficient. Fig. 1 (right) shows the probabilities for the actions in the discrete
time probabilistic model. Note that additional self-loops are added implicitly to
the model to make sure that the total outgoing probability for each state is 1.

Fig. 2 shows the correspondence for model checking results (see also [5]) for
all three model checking methods for the CSL path formula sU≤T r, where s (r,
resp.) denote the atomic propositions of being in state S (R, resp.), for T ranging
from 0 to 20 showing the probability that a node is patched before being infected
within T time steps. This corresponds to an equivalent PCTL formula with T
ranging from 0 to 200. Model checking times for all methods for this formula are
shown in Table 3. FlyFast generated 601 states. Note that this holds for any large
number of nodes. FlyFast is faster than global fluid model-checking in this case.
This is likely due to the fact that we are dealing with a conditional reachability
property, so not all states need to be generated, showing the advantage of an on-
the-fly approach. Furthermore, the algorithm uses memoization, meaning that
probabilities computed once are preserved for later use. Note that both fluid
model-checking approaches are several orders of magnitude faster than statistical
model checking for a large population size, providing a scalability compatible
with their use for analysing properties of individuals in the context of large scale
collective systems, which is the main aim of the current work.

0 50 100 150 200
Time bound T

0

0.01

0.02

0.03

0.04

0.05

Pa
th

 P
ro

ba
bi

lit
y

FlyFast Fluid MC

stat mc N=100 (10000 runs)

stat mc N=1000 (10000 runs)
fluid mc

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5
p
ro
b
a
b
il
it
y

0 5 10 15 20
Time

Fig. 2. Results for FlyFast (left) and Stat. MC and global Fluid MC (right).

An example of a nested path formula is true U≤T P≤0.01(true U≤10 i),
where i denotes to be in state I. It says that eventually, within time T ∈ [0, 100],
a state will be reached in which the probability to get infected within 10 time
units is less than 0.01. In PCTL the formula is true U≤T ′ P≤0.01(true U≤100 i),
for T ′ ranging from 0 to 1000, given q = 10. Figures are omitted due to space
limitations, but a comparison of results for a similar formula are shown in Fig. 4
for a more complex example. The FlyFast model-checking time is approximately
6.3 sec. and the number of states generated is 4000. No data on efficiency is
available for the other two techniques for this formula.

5.2 A Client-Server Model

A larger model involving synchronisation is the Client-Server model [4, 3]. This
model is composed of two populations of processes that synchronise on request
and reply actions. A Client process (see Fig. 3) has initial state (CQ) in which
it can only perform a request (rq) to the server and then waits (CW) for either
a timeout (to) or a reply (rp) from the server to happen. After a timeout it goes
to a state to recover (CR), and then returns to the initial state when recovery
is completed (rc). After receiving a reply (rp) the Client enters a thinking state
(CT) after which it returns to the initial state upon completing thinking (th).
The Server process (see Fig. 3) is initially (SQ) ready to receive a request (rq)
from a Client. If it receives it, either a timeout (top) may occur or it may process
the request (pr) moving to the reply state (SR). From the latter it may either
produce a timeout (tor) or deliver a reply (rp) to the client and in both cases the
server moves to a log-state (SL) and afterwards returns to the initial state (SQ)
upon completion of logging (lg). So, the behaviour of Clients and Servers are
synchronising via actions rq and rp, using a PEPA-based interaction paradigm
based on a minimum rate principle [4, 3]. The various timeouts are occurring
independently. The ratio between the number of Clients and Servers is 2 to 1.

CQ CT

CR CW

SQ SP

SL SR

rq

to

rc rp

th rq

pr
top

lg

rp

tor

Client Server

Fig. 3. Client and Server process. Client rates: th=1, rp=100, rq=1, rc=1, to=0.01;
Server rates: rq=1, pr=0.1, top=0.005, tor=0.005, rp=1, lg=10.

As before, we proceed with the transformation of the model shown in Fig. 3
into a discrete time one, by finding a suitable rate. Note that the rate of an action
shared by two types of objects can never be higher than the rate of the objects
that contribute to the synchronisation, and will also be proportional to the
(normalised) population size of the model. Therefore we can choose a rate equal
to the maximum total exit rate of any of the states of the objects. In the client-
server case this maximum is 100.01 (the sum of rates for Client actions rp and to).
This is a large overestimation of the maximal exit rates, since the reply action of
the Client is synchronised with that of the much slower Server (with reply rate
1). Therefore q = 10 is sufficient, given that the next highest rate is that of action
lg which is 10. Table 4 shows the translation of the continuous time model into
a discrete time model in the probabilistic input language of FlyFast. Actions of

different objects must be distinct which is achieved by appropriate prefixing (c
for Client actions and s for Server ones). Fig. 4 (left) shows results concerning

0 100 200 300 400
Steps - tt U<=T (P<=0.167 [tt U<=500 timeout])

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ilit

y

Clientrec
Clientt
Clientw
Clientrq

0 10 20 30 40

0

0.2

0.4

0.6

0.8

1.0

Clientrq
Clientw
Clientt
Clientrec

Fig. 4. FlyFast results (left) and global fluid model checking (right) from [3].

the nested, time-dependent PCTL (path) formula tt UT (P≤0.167[tt U500CR]),
concerning a Client timeout; the FlyFast results are given for T varying from 0
to 400 steps. Nested formulas are computationally the most complex to analyse.
The property is the PCTL version of the corresponding CSL nested property
analysed using the global fluid model checking approach in [4, 3]. Model checking
times for FlyFast are shown in Table 3. This time is the cumulative time for the
400 different values for T considered, while it needed to generate 1598 states.

In the original model in [3], the recovery rate of the Client is 100 and not 10.
This only affects the curve shown as a solid line in Fig. 4 (left), therefore the
other curves continue to show close correspondence to ones on the right of Fig. 4
showing the fluid model checking results for the original model. The latter is a
stiff model in which the parameter values differ five orders of magnitude. It would
require a uniformisation rate of at least 100 and consequently a time bound of
5000 steps in the PCTL formula. The FlyFast results would still correspond well
to the original global fluid model checking results, but model-checking times
increase considerably. Global fluid model checking might be a viable alternative
in that case because it can exploit existing highly optimised adaptive transient
analysis methods, once the points in which the truth values change have been
established.

6 Related Work

Closest to our work is that by Bortolussi and Hillston [4, 3] presenting a technique
for global fluid model checking. We have briefly recalled some of the elements of
this technique and compared their model checking results with those obtained
by our on-the-fly technique and to statistical model checking where available.
Work on fluid model checking can also be found in [12] which uses in part similar
techniques as [4]. On-the-fly probabilistic model checking for bounded PCTL has
also been developed by Della Penna et al. [8] but they do not consider its use for

action c rq : min(αc rq∗frc (CQ), αs rq∗frc (SQ))/frc (CQ) state CQ {c rq.CW}
action c to : αc to state CW {c to.CR + c rp.CT}
action c rc : αc rc state CR {c rc.CQ}
action c th : αc th state CT {c th.CQ}
action c rp : min(αc rp∗frc (CW), αs rp∗frc (SR))/frc (CW)

action s rq : min(αc rq∗frc (CQ), αs rq∗frc (SQ))/frc (SQ) state SQ {s rq.SP}
action s pr : αs pr state SP {s pr.SR + s top.SL}
action s tor : αs tor state SR {s tor.SL+ s rp.SL}
action s top : αs top state SL {s lg.SQ}
action s rp : min(αc rp∗frc (CW), αs rp∗frc (SR))/frc (SR)
action s lg : αs lg

system clientServerSystem =< CQ[1000], SQ[500] >

Table 4. Client and Server specification in FlyFast with q = 10 and the following
values for the probabilities: αc th = 1/q, αc rp = 100/q, αc rq = 1/q, αc rc = 1/q,
αc to = 0.01/q, αs rq = 1/q, αs pr = 0.1/q, αs top = 0.005/q, αs tor = 0.005/q, αs rp =
1/q, αs lg = 10/q.

on-the-fly fast mean field model checking as we did in [16]. Stochastic population
models can also be analysed using statistical model checking methods based on
simulation (see for example [21]). The computational complexity of the latter
increase linearly with the number of objects N, whereas on-the-fly fast mean-field
model checking and fluid model checking do not depend on N.

7 Conclusions

We have illustrated an alternative way to perform fluid model checking of bounded
CSL properties of individual entities in the context of large CTMC population
models. The framework makes use of a prototype implementation of the on-
the-fly fast mean field model checker FlyFast to check bounded PCTL formulas
of individuals in the context of synchronous, discrete time DTMC population
models. We have provided a correctness result and shown promising verification
results compared to those available in the literature. Future work will consist in
integrating the method and related transformation functions into FlyFast, look-
ing for further optimisations and investigating the possibility of generating error
bounds along with the analysis results. We will also consider the extension of
the fragment of the logic with intervals and further operators.

References

1. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-Checking Algorithms
for Continuous Time Markov Chains. IEEE Transactions on Software Engineering.
IEEE CS 29(6), 524–541 (2003)

2. Benäım, M., Le Boudec, J.: A class of mean field interaction models for computer
and communication systems. Performance Evaluation 65(11-12), 823–838 (2008)

3. Bortolussi, L., Hillston, J.: Fluid model checking. CoRR abs/1203.0920 (2012),
version 2 of Jan. 2013.

4. Bortolussi, L., Hillston, J.: Fluid model checking. In: Koutny, M., Ulidowski, I.
(eds.) CONCUR. LNCS, vol. 7454, pp. 333–347. Springer-Verlag (2012)

5. Bortolussi, L., Hillston, J.: Checking individual agent behaviours in Markov popu-
lation models by fluid approximation. In: Bernardo, M., de Vink, E.P., Di Pierro,
A., Wiklicky, H. (eds.) SFM. Lecture Notes in Computer Science, vol. 7938, pp.
113–149. Springer (2013)

6. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of
collective system behaviour: A tutorial. Performance Evaluation 70(5), 317 – 349
(2013), http://www.sciencedirect.com/science/article/pii/S0166531613000023

7. Darling, R., Norris, J.: Differential equation approximations for Markov chains.
Probability Surveys 5, 37–79 (2008)

8. Della Penna, G., Intrigila, B., Melatti, I., Tronci, E., Zilli, M.V.: Bounded proba-
bilistic model checking with the muralpha verifier. In: Hu, A.J., Martin, A.K. (eds.)
FMCAD 2004. LNCS, vol. 3312, pp. 214–229. Springer (2004)

9. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6, 512–535 (1994)

10. Hayden, R.: Scalable Performance Analysis of Massively Parallel Stochas-
tic Systems. Ph.D. thesis, Imperial College London (April 2011),
http://pubs.doc.ic.ac.uk/hayden-thesis/

11. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the
Second International Conference on the Quantitative Evaluaiton of Systems (QEST
2005). pp. 33–43 (2005)

12. Kolesnichenko, A., de Boer, P.T., Remke, A., Haverkort, B.R.: A logic for model-
checking mean-field models. In: DSN. pp. 1–12. IEEE (2013)

13. Kurtz, T.: Solutions of ordinary differential equations as limits of pure jump
Markov processes. Journal of Applied Probability 7, 49–58 (1970)

14. Latella, D., Loreti, M., Massink, M.: On-the-fly fluid model checking via dis-
crete time population models: Extended version. QUANTICOL TR-QC-08-2014,
www.quanticol.eu (2014)

15. Latella, D., Loreti, M., Massink, M.: On-the-fly PCTL Fast Mean-
Field Model-Checking for Self-organising Coordination. SCP (2015),
http://dx.doi.org/10.1016/j.scico.2015.06.009

16. Latella, D., Loreti, M., Massink, M.: On-the-fly fast mean-field model-checking.
In: Abadi, M., Lluch-Lafuente, A. (eds.) Trustworthy Global Computing - 8th
International Symposium, TGC 2013, Buenos Aires, Argentina, August 30-31,
2013, Revised Selected Papers. LNCS, vol. 8358, pp. 297–314. Springer (2013),
http://dx.doi.org/10.1007/978-3-319-05119-2 17

17. Latella, D., Loreti, M., Massink, M.: On-the-fly probabilistic model-checking. In:
Proceedings 7th Interaction and Concurrency Experience ICE 2014. EPTCS, vol.
166 (2014)

18. Le Boudec, J.Y., McDonald, D., Mundinger, J.: A generic mean field convergence
result for systems of interacting objects. In: QEST07. pp. 3–18. IEEE Computer
Society Press (2007), iSBN 978-0-7695-2883-0

19. LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential
Equations. SIAM (2007)

20. Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process
algebra models. IEEE Trans. Software Eng. 38(1), 205–219 (2012)

21. Younes, H., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. statistical
probabilistic model checking: An empirical study. In: Jensen, K., Podelski, A. (eds.)
Proc. 10th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’04). LNCS, vol. 2988, pp. 46–60. Springer (2004)

