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Abstract

Retailers, from fashion stores to grocery stores, have to decide what range of prod-
ucts to offer, i.e., their product assortment. New business trends, such as mass cus-
tomization and shorter product life cycles, make predicting demand more difficult,
which in turn complicates assortment planning. We propose and study a stochastic
dynamic programming model for simultaneously making assortment and pricing deci-
sions that incorporates demand learning using Bayesian updates. We analytically show
that it is profitable for the retailer to give price discounts early on the sales season to
accelerate demand learning. Our computational results demonstrate the benefits of
such a policy and provide managerial insights that may help improve a retailer’s prof-
itability.

keywords: assortment planning, demand learning, Bayesian updating, stochastic dy-
namic programming, retailing

1 Introduction

The retail industry plays a central role in connecting manufacturers with consumers. Re-
tailers are at the end of the supply chain and form an essential element in a manufacturer’s
distribution strategy. Assortment planning is integral to a retailer’s business and have a
significant impact on a retailer’s bottom line.

Because of its importance, assortment optimization have received significant attention
in the operations management and operations research literature. The majority of research
in this area assumes that the relationship between a retailer’s assortment decisions and the
consumers’ purchase decisions is known. In other words, demand – the major factor affecting
assortment decisions – is assumed to be a known function of the assortment. However, this
full information setting is becoming increasingly uncommon in practice. Mass customization
and shorter product life cycles because of rapidly changing consumer preferences, are just a
few factors driving the frequent introduction of new products, for which it is hard to predict
demand. Because it is becoming more common that there is insufficient historic data for
forecasting future demand, it becomes necessary to put greater emphasis on “exploration”
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of the market as opposed to “exploitation” of the market. That is, demand learning has
to become an integral part of effective assortment management, which is the focus of our
research. With learning also comes dynamic decision making. In the presence of full infor-
mation making decisions once works well, but when demand is learned over time decisions
have to be reviewed and revised frequently.

We focus on the size of the market, or the customer arrival rate, as the unknown parameter
of the demand function. The size of the market represents the number of people who are
interested in a product and are considering purchasing it. Whether they purchase the product
or not depends on the price of the product. Our premise is that the distribution of market
size can be learned by observing sales, unlike the exact size of the market which is inherently
uncertain and cannot be learned. Thus, we advocate and analyze a loop in which at the end
of a period demand learning occurs based on observed sales in the period, and the estimate
of the demand function is updated before decisions about the assortment for the next period
are made. In practice, a substantial amount of uncertainty about the demand process is
resolved through early sales information.

One of the most prevalent learning methods is Bayesian updating. Bayesian updating
can be used in situations where observations come from a fixed distribution and are used
to update information, represented in the form of a prior distribution. In the retailer’s
context, a manager’s belief about the demand function is updated after observing new sales
data. Thus, Bayesian updating utilizes both the manager’s initial estimate of demand and
the observed sales data to revise the demand forecast. We use parametric Bayesian, where
the shape of the demand function is assumed to be known, but some of its parameters are
unknown.

More specifically, we consider a retailer who has the option to sell a number of different
product families and has to decide what assortment of product families to offer and what
prices to charge for them. Since we focus on assortment planning at the product family level,
we assume that demands are independent and there is no need to consider substitution. This
seems reasonable as product families are well differentiated and customers are likely to go to
a competitor if a product family is not offered. An assortment decision still has to be made,
because insufficient space is available to sell all product families.

The retailer faces a dilemma when making assortment and pricing decisions if it wants
to learn more about demand at the same time. On the one hand, the retailer wants to
maximize the revenue based on its current belief about demand by charging the optimal
price and choosing the most profitable product families, i.e., it wants to exploit the market.
On the other hand, the retailer wants to maximize the learning of the true size of the market
by manipulating prices and offering different product families, i.e., it wants to explore the
market. We develop a stochastic dynamic programming model that optimally balances the
exploitation and exploration of the market.

Our main innovation is the use of pricing to accelerate demand learning. Our computa-
tional experiments demonstrate that offering carefully chosen price discounts for the express
purpose of speeding up demand learning can outperform state-of-the-art demand learning
strategies. That is, we investigate the benefits of using pricing to influence the observed
sales. Note that there is full information about price-response function and, as a result, the
optimal price. However, we show that the retailer is better off charging prices below the
optimal price to learn about the market size.

We carefully distinguish between passive and active learning. In passive or off-line learn-
ing, the retailer observes sales and uses the observed sales to adjust its belief about the
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demand and then uses this adjusted belief about demand to optimize assortment and price
decisions. In this setting, no assortment or price decisions are taken with the specific intent
to learn about demand. Learning takes place, as observed sales are used to update the belief
about demand, but it happens in a passive way. In active or on-line learning, assortment and
price decisions may be taken with the specific intent to learn about demand, e.g., including
a product family in the assortment to observe the effect on sales or setting a lower price to
observe the effect on sales. Our analysis and empirical study shows that both passive and
active learning are effective strategies in environments in which there is uncertainty about
the size of the market, that active learning is more effective.

The remainder of the paper is organized as following. In Section 2, we discuss assortment,
pricing, and learning in more detail and review relevant literature. In Section 3, we propose
a stochastic dynamic programming model, discuss its approximate solution, and derive some
asymptotic results. In Section 4, we present results of a computational study. Finally,
in Section 5, we present final remarks and discuss future research opportunities. For
convenience, we will use the term product instead of product family from now on.

2 Related Literature

Assortment planning, also known as product line selection and product portfolio optimiza-
tion, is concerned with the problem of choosing which products to offer or display or “put
on the shelf”. Assortment planning is a key element in retail merchandizing, and as Alan
(1993) indicates in an early review, it is a vital factor in the final profitability of retailers.
Displaying or offering a larger variety of products increases market share, as it attracts a
more heterogenous set of customers and satisfies customers’ variety-seeking tendencies (see
for example Tang (2006)). The need to choose arises because there is a limit on the number
of products that can be offered or displayed, i.e., there is “limited shelf space”.

Assortment planning is not limited to traditional bricks-and-mortar stores, which have
to decide which products to carry in the store. It is crucial too for modern on-line retailers,
which have to decide how to allocate the available screen space on their websites. Similar
decision situations arise when space to hold safety stocks is limited or when trained and
knowledgeable sales staff is in short supply. In the airline industry, and more generally
service industries, assortment planning manifests itself in the selection of fare classes to
offer. Of course in this case it is not only the shelf space that is limited, i.e., a limited
number of fare classes can be offered, but product inventory, i.e., the seats, itself is bounded.

The value of assortment planning is clearly illustrated by Kök and Fisher (2007), who
develop an optimization-based methodology and report that their recommendations for a
grocery store chain, when compared with the existing approach, result in profit increases of
more than 50%. Similarly, Rajaram (2001) use a non-linear integer programming model for
assortment planning in a large catalog retailer specializing in women’s apparel, and report
a profit increase of 40%.

Russell and Urban (2010) extend assortment planning by not only deciding a product’s
allocated space, but also it’s location: it has been shown that the location of a product affects
its sales. They consider a setting in which products are categorized as part of a family, and
the integrity of a family should be maintained.

An important aspect of the research in the above-mentioned papers, and much of the
assortment literature, is modeling product substitution. Product substitution occurs when a
customer’s preferred product is not offered and the customer decides to purchase a different,
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but similar product. See van Ryzin and Mahajan (1999), Mahajan and van Ryzin (2001),
Li (2007), and Gallego et al. (2011) for more on product substitution using Multinomial
Logit models, Smith and Agrawal (2000) for more on product substitution using exogenous
models, and Gaur and Honhon (2006) for more on product substitution using locational
choice models. Most of the research related to product substitution in assortment planning
assumes that the demand distribution is known in advance and can thus be categorized as
static assortment planning. We refer to Kök et al. (2009) for an extensive review of the
static assortment planning literature with an emphasis on its practical aspects as they arise
in retail supply chain management.

In the above papers, it is assumed that the retailer has full knowledge about the demand
function. Even though there are new and improved methods to forecast sales, e.g., using
inventory and gross margins data as illustrated in Kesavan et al. (2010), the assumption of full
information is far from reality in settings where there is limited historic data available, and
the retailer needs to learn about demand during sales horizon. When assortment planning
is coupled with demand learning, it is categorized as dynamic assortment planning. Caro
and Gallien (2007) develop a stylized dynamic assortment planning model to study the sale
of fashion items, where the size of the market is unknown. They employ a finite horizon
multi-armed bandit model with several plays per stage and Bayesian learning. To solve the
model, they use Lagrangian relaxation to handle the weakly coupled dynamic programs, an
approach that we will also use. The results of the model are converted into a desirability
index that can be used to choose the products to display in each period. In related research,
Caldentey and Caro (2011) study an assortment planning setting in which a retailer can
choose from basic and fashion items and where the vogue is modeled as a stochastic process.
Rusmevichientong et al. (2011) pursue a similar line of research and consider an environment
in which a retailer chooses an assortment of products so as to maximize profit subject to
a capacity constraint. They model the demand under substitution and study both a static
case, where the parameters of the demand function are known, and a dynamic case, where
the parameters of the demand function are unknown. They develop an adaptive policy that
learns the unknown parameters from past data, and that, at the same time, optimizes the
profit.

The problem discussed in the recent paper by Posen and Levinthal (2011) has many of
the characteristics of dynamic assortment planning. The paper shows how an organization
chooses, or should choose, its strategy in a changing environment. (The problem can be
viewed as assortment planning with a shelf space of size one.) Learning, more specifically
exploration to generate new knowledge about the environment, is incorporated to enhance
the quality of decision making. The main message of the work, in the terminology of dynamic
assortment planning, is that care has to be taken when incorporating mechanisms to learn
the demand when that demand itself may be changing.

Price optimization, or pricing, is concerned with the problem of choosing what to charge
for a product when demand is price-sensitive. A high price may turn some customers away,
but a low price reduces the profit margin. A major portion of the academic literature focuses
on dynamic pricing which, adopting the definition of Weatherford and Bodily (1992), arises
in situations where a perishable and nonrenewable product has a stochastic demand over
a finite period of time. That is, in situations where a given stock of items has to be sold
by a certain deadline, and where demand is stochastic and a function of the offered price.
The problem is to dynamically adjust the price to maximize the total revenue over the sales
horizon. In such a setting, if the demand function is known fully and in advance: the changes
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in the optimal price arise only because of the limited inventory and the stochasticity of the
demand. Furthermore, the analysis of various models has shown that dynamically changing
the price is not necessary to achieve high profits; a fixed-price policy is near-optimal. We
refer to Gallego and van Ryzin (1994, 1997) for a detailed analysis. Another reason for
adjusting prices is demand learning. We refer to Araman and Caldentey (2009) and Gallego
and Talebian (2012) for two recent studies about dynamic pricing with demand learning.
For an example of non-parametric learning, we refer the reader to Besbes and Zeevi (2009).

Our paper is different from the above stream of research in the sense that the retailer
is not uncertain about the optimal price; the retailer has full information about customers’
sensitivity to price. However, the retailer uses price discounts as a mechanism to increase
the number of observations and thus to learn more about the market size. The idea of
decreasing prices to accelerate information acquisition has been studied in the marketing
literature, although it has been primarily focused on a single product (we refer the reader to
Braden and Oren (1994) for an example). To the best of our knowledge, we are the first to
consider pricing as a leverage to accelerate demand learning in a setting where there exist
multiple products and an assortment decision needs to be made.

Finally, there is some existing literature on joint assortment and pricing. Chen and
Hausman (2000), for example, formulate a nonlinear integer optimization problem, where
the nonlinearity is due to considering a sum of linear ratios. Ratios correspond to the
probability of purchasing a product and is derived by dividing each product’s attractiveness
by sum of the products’ attractiveness. Fractional programming properties are used to
solve the model. Schön (2010a) extends this work in two respects. First, by assuming
that the seller can practice price discrimination and therefore has to decide the price to
charge different groups of customers. Second, by introducing fixed costs associated with
choosing a product line. The analysis is restricted to the case where prices have to be chosen
from a set of discrete values. This restriction is removed in Schön (2010b). Aydin and
Ryan (2000) study joint pricing and assortment planning under substitution. Rodriguez and
Aydin (2011) study joint assortment and pricing for configurable products under demand
uncertainty. Cachon and Kök (2007) study joint assortment and pricing in a competitive
setting with two retailers. They compare the prices and variety levels under decentralized
management and under centralized management, and show that decentralized management
results in higher prices and less variety. The study is extended in Kok and Xu (2011), where
it is shown that the order of consumer decisions, i.e., whether consumers first choose the
product type or first choose the brand, has a critical effect on the optimal management
policy.

From a methodological perspective, we use discrete-time finite-horizon dynamic program-
ming (see Wright (2011) for a short but rigorous introduction and Powel (2007) for a review
of approximation methods). The exploration vs. exploitation trade-off is well-known in dy-
namic programming, where information about a state can only be obtained by visiting it.
Therefore, a state can be visited because it is profitable (exploitation), or to gain information
about it (exploration). In a landmark paper, Gittins and Jones (1974) show that learning,
or what they call the information acquisition problem, and the exploration vs exploitation
tradeoff can be reduced to a series of one-dimensional problems using an index policy. Our
research extends their work in two respects. First, we allow visiting of more than one state
at each stage, corresponding to shelf space larger than one. Second, we allow influencing the
profit of a state by deciding on prices.
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3 Model and Analysis

We consider a retailer that has the option to sell N products over a sales horizon T . We
assume that the customer arrival rates for products are independent and follow a Poisson
distribution. We represent the customer arrival rate for product n by θn; we can think of θn

as the size of the market for product n. We represent the normalized price-response function
of product n by dn(pn), and assume this function is known for all products. We use knt and
pnt to denote the retailer’s assortment and price decisions at time t. That is, knt is a binary
variable indicating whether product n is in the assortment at time t (knt = 1) or not (knt = 0),
and pnt ≥ 0 is the price charged for product n at time t. Thus, the expected demand for
product n at time t is θndn(pnt ). The number of products that can be part of the assortment
is limited to r. We will frequently refer to this limit as the available “shelf space”. The
retailer’s objective is to maximize its total revenue over the sales horizon. For convenience
and when it is clear from the context, we drop superscripts and subscripts.

Our model assumes the following:

1. The sales horizon is finite, i.e., the products are perishable;

2. The demand is stationary;

3. The market size for a product is stochastic and follows a Poisson distribution;

4. The variable costs associated with sales are negligible;

5. The decision maker is risk-neutral; and

6. The revenue function (pd(p)) is strictly concave.

These assumptions are commonly made in the pricing literature and their supporting argu-
ments can be found there. We refer the reader to Bitran and Caldentey (2003), who present
an overview of pricing models, and the references therein. Assumption 4 implies that maxi-
mizing revenue is an appropriate objective function and Assumption 5 assures that working
with expected revenues is justified. Assumption 6 guarantees that there exists a (unique)
revenue maximizing price.

Under full information, the assortment and price optimization problem is as follows:

R = max
p,k

T∑
t=1

N∑
n=1

knt p
n
t θ

ndn(pnt )

such that

N∑
n=1

knt ≤ r t = 1, ..., T (1)

pnt ≥ 0, knt ∈ {0, 1} n = 1, ..., N, t = 1, ..., T.

This problem can be solved easily in two steps. In the first step, the optimal price for
each product is determined. The optimal price is independent of the arrival rate and equal
to p̂n ∈ argmax

p
{pdn(p)}; i.e., p̂ denotes the optimal price under the full information setting.

In the second step, the assortment is determined, which involves nothing more than
selecting the r products with the highest revenues, i.e., with highest values θnp̂ndn(p̂n).
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3.1 Demand learning under an uncertain market size

We investigate the variant in which the size of the market is uncertain, i.e., the parameter θ
of the demand function is uncertain, and the retailer has the opportunity to adjust its initial
belief about the size of the market during the sales horizon. We represent the retailer’s belief
about the size of the market at time t as a prior distribution and use the observed sales st
at time t to update this belief. We assume that the retailer’s belief about θn is a Gamma

distribution with parameters (an, bn), and thus E[θn] =
an

bn
and C.V.[θn] = 1/

√
an. We choose

the Gamma distribution to represent the retailer’s belief since it is a conjugate distribution
for Poisson and results in closed-form Bayesian updating. We denote the retailer’s belief
(an, bn) at time t by (an(t), bn(t)), and therefore the retailer’s belief about θn at time t is
distributed as Γ(an(t), bn(t)).

Lemma 1 If a retailer’s belief about the market size for a given product in a given period
is distributed as Γ(a, b) and the price for the product has been set to p, then after observing
sales s in the period and applying Bayesian updating, the retailer’s belief will update to:

Γ(a+ s, b+ d(p)).

Proof: All proofs can be found in the appendix.

Note that the retailer’s knowledge concerning the demand function is affected both by
its initial belief (demand estimation) and by the observed sales (demand learning). Since we
have to capture uncertainty and information being revealed over time, a stochastic dynamic
programming model seems appropriate. Counting time backward, so that t represents the
remaining time, we let (a(T ), b(T )) represent the retailer’s initial belief and let Rt(a(t), b(t))
represent the expected revenue from period t to the end of the time horizon, conditioned
on the current belief. Assuming R0(a(0), b(0)) = 0 for all states, the Bellman’s equation
corresponding to the stochastic dynamic program is as follows:

Rt(a(t), b(t)) = max
pt,kt

(
N∑
n=1

knt p
n
t

an(t)

bn(t)
dn(pnt ) + Est [Rt−1(a(t− 1), b(t− 1))])

such that

N∑
n=1

knt ≤ r t = 1, ..., T

pnt ≥ 0, knt ∈ {0, 1} n ∈ N, t = 1, ..., T (2)

a(t− 1) = a(t) + ktst

b(t− 1) = b(t) + ktd(pt).

For each product n, snt is taken to follow a Poisson(
an(t)

bn(t)
dn(pnt )) distribution if knt = 1 and

to be zero otherwise.
The objective function consists of two parts. The first part corresponds to the revenue at

time t and the second part corresponds to the expected revenue, with respect to the observed
sales, in the remainder of the sales horizon. The last two transition equations capture the
updating of the retailer’s belief.
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We consider three options for “solving” this assortment and price optimization problem
with demand learning.

The simplest, but most naive, option is for the retailer to assume that its initial belief is
correct and use a(T ) and b(T ) throughout the sales horizon. We refer to this option as the
“no-learning” policy. The retailer focuses on exploiting the market under the assumption that
its belief about the market size is correct, i.e., the retailer reverts back to solving problem 1

and chooses the r products with the largest values of
an(T )

bn(T )
p̂nd(p̂n). In this option, products

are chosen greedily based on the initial belief.
The second, more intelligent, option is for the retailer to update its belief about the

market size at time t, i.e,
a(t)

b(t)
, using observed sales st, and adjust the assortment and prices

based on the updated belief about the market size, i.e., for time t− 1 choose the r products

with the largest values of
an(t− 1)

bn(t− 1)
p̂nd(p̂n). We refer to this option as the “passive learning”

policy. The retailer updates its belief based on observed sales, and thus learns, but does
not actively seek new knowledge and does not incorporate any exploration. The retailer’s
decisions are not influenced by a desire or intent to learn more about the market size; learning
is passive. In this option, products are chosen greedily too, but based on the current belief.

The third option is to solve, or approximately solve, the stochastic dynamic program (2).
We refer to this option as the “active learning” policy. When making assortment and price
decisions, the retailer considers both exploring the market to learn more about demand and
exploiting the market to generate revenue.

Stochastic dynamic programs are notoriously hard to solve analytically and numerically.
We next discuss the steps we have taken to solve the problem approximately.

3.2 Deriving the active learning policy

Limited self space is the only problem characteristic that links the products. Therefore, by
dualizing the shelf space constraint and solving the Lagrangian dual problem instead, we
can treat the products independently. Note that the shelf space constraint is a cardinality
knapsack constraint and that a cardinality knapsack constraint has the integrality property,
so solving the Lagrangian dual is likely to provide a tight approximation.

We can write the Lagrangian relaxation as follows, where λt(a(t), b(t)) is the Lagrangian
multiplier corresponding to shelf space constraint for time t:

H
λt(a(t),b(t))
t (a(t), b(t)) =

max
pt,kt
{
N∑
n=1

pnt k
n
t

an(t)

bn(t)
dn(pnt )+λt(a(t), b(t))(r-

N∑
n=1

knt )+

Est [H
λt-1(a(t)+ktst,b(t)+ktd(pt))
t−1 (a(t) + ktst, b(t) + ktd(pt))]} =

rλt(a(t), b(t)) + max
pt,kt
{
N∑
n=1

(
pnt
an(t)

bn(t)
dn(pnt )− λt(a(t), b(t))

)
knt +

Est [H
λt−1(a(t)+ktst,b(t)+ktd(pt))
t−1 (a(t) + ktst, b(t) + ktd(pt))]}.

The corresponding Lagrangian dual problem may be thought of as seeking λt(a(t), b(t)) val-

ues so as to minimize H
λT (a(T ),b(T ))
T (a(T ), b(T )). We solve this Lagrangian dual problem
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approximately using a rolling horizon approach. That is, we solve the Lagrangian dual prob-
lem sequentially, period by period, where in each period, we make decisions for the remaining
periods, but only implement the decisions for the current period. Furthermore, when solving
the Lagrangian dual problem for a given period, we make several approximations (i.e., each
time the Lagrangian dual problem is solved for a given period, a new set of approximations
is made):

1. We assume that the cost of shelf space does not depend on the retailer’s belief con-
cerning demand and does not depend on the time remaining in the sales horizon, i.e.,
λt(a(t), b(t)) = λ. This gives

Hλ
t (a(t), b(t)) = rλ+ max

pt,kt
{
N∑
n=1

(pnt
an(t)

bn(t)
dn(pnt )− λ)knt + Est [H

λ
t−1(a(t) + ktst, b(t) + ktd(pt))]}

= rλ+
N∑
n=1

Hλ
t,n(an(t), bn(t))

where

Hλ
t,n(an(t), bn(t)) =

max{max
pnt
{pnt

an(t)

bn(t)
dn(pnt )− λ+ Esnt [Hλ

t-1,n(an(t)+snt , b
n(t)+dn(pnt ))]}, Hλ

t-1,n(an(t), bn(t))} =

[max
pnt
{pnt

an(t)

bn(t)
dn(pnt )− λ+ Esnt [Hλ

t−1,n(an(t) + snt , b
n(t) + dn(pnt ))]}]+.

The value Hλ
t,n(an(t), bn(t)) can be interpreted as the expected revenue from product

n from time period t onwards, assuming a belief of (a(t), b(t)). The two terms that
are being compared in the maximum operation represent including product n in the
assortment at time t, (knt = 1), and not including product n in the assortment at time
t , (knt = 0). Including the product in the assortment results in immediate revenue and
future revenue. Not including the product in the assortment can only result in future
revenue. In fact, with fixed shelf space cost, if it is not optimal to include the product
in the assortment now, it will not be optimal to include the product in the assortment
later, hence the second equality. (See Caro (2005), Chapter 3, for a rigorous proof of
this assertion in a similar setting.)

We next focus our attention on

R̃λ
t,n(an(t), bn(t)) = max

pnt
{pnt

an(t)

bn(t)
dn(pnt )− λ+ Esnt [Hλ

t−1,n(an(t) + snt , b
n(t) + dn(pnt ))]}.

The magnitude of λ determines if Hλ
t,n(an(t), bn(t)) is equal to R̃λ

t,n(an(t), bn(t)) or
equals zero.

2. We approximate R̃λ
t,n(an(t), bn(t)) by employing a one-period look-ahead to estimate

future revenue. This gives

R̃λ
t,n(an(t), bn(t)) ∼= max

pnt
{pnt

an(t)

bn(t)
dn(pnt )−λ+(t−1)Esnt [(max

pnt−1

{pnt−1
an(t− 1)

bn(t− 1)
dn(pnt−1)−λ})+]}.
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The one-step look-ahead captures the first order trade-off between exploration and
exploitation, and a cursory investigation showed us that a more detailed approximation,
e.g., a two-step look-ahead, does not change the results significantly. The maximization
problem inside the expectation can be simplified by observing that an(t−1) = an(t)+snt ,
bn(t − 1) = bn(t) + dn(pnt ), and λ are all independent of pnt−1. Thus this term can be
written as

max
pnt−1

{pnt−1
an(t− 1)

bn(t− 1)
dn(pnt−1)−λ} =

an(t− 1)

bn(t− 1)
max
pnt−1

{pnt−1dn(pnt−1)}−λ =
an(t− 1)

bn(t− 1)
p̂ndn(p̂n)−λ

where p̂n is the (time-independent) maximizer of pndn(pn). Therefore, we have

R̃λ
t,n(an(t), bn(t)) ∼= max

pnt
{pnt

an(t)

bn(t)
dn(pnt )− λ+ (t− 1)Esnt [(p̂n

an(t− 1)

bn(t− 1)
dn(p̂n)− λ)+]}

= max
pnt
{pnt

an(t)

bn(t)
dn(pnt )− λ+ (t− 1)Esnt [(p̂n

an(t) + snt
bn(t) + dn(pnt )

dn(p̂n)− λ)+]}.

3. Computing the expectation in the approximation for R̃λ
t,n(an(t), bn(t)) involves the

distribution of snt , and is complicated by the (·)+-function (otherwise the result would
simply be a linear function of the expected value of snt ). We deal with this difficulty

as follows. Observe that
snt

dn(pnt )
has a Poisson distribution with expected rate

an(t)

bn(t)
,

the parameters of the Gamma distribution. It can be shown, a priori, that
snt

dn(pnt )
has

a Negative Binomial distribution with parameters (an(t),
bn(t)

1 + bn(t)
). To make analysis

and numerical computations easier, we approximate the Negative Binomial distribution
with a Normal distribution, because the expected value of the positive part of a Normal
distribution has a closed form, and approximate snt with a Normal distribution with
parameters

(
an(t)

bn(t)
dn(pnt ),

an(t)(bn(t) + 1)

bn(t)2
dn(pnt )2),

which is appropriate if an(t) is large enough. Representing a random variable with
standard Normal distribution by z, we obtain

R̃λ
t,n(an(t), bn(t)) ∼= Rλ

t,n(an(t), bn(t)) = max
pnt

gλt,n,an(t),bn(t)(p
n
t ) (3)

where

gλt,n,a,b(p) = p
a

b
dn(p)− λ+ (t− 1)vn,a,b(p)E[(z − yλn,a,b(p))+],

vn,a,b(p) =

√
a(b+ 1)p̂ndn(p̂n)

b

dn(p)

b+ dn(p)
, and

yλn,a,b(p) =
(λ− a

b
p̂ndn(p̂n))

vn,a,b(p)
.

We will refer to Rλ
t,n(an(t), bn(t)) as the “revenue potential” of product n at time t for

shelf space cost λ.
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As an aside, we note that the value of a Negative Binomial distribution with parameters
(n, p) at point x can be interpreted as the probability of observing x failures before
observing n successes when the probability of success is p. There exists evidence in
the literature to support a Negative Binomial distribution for arrivals, e.g., Smith
and Agrawal (2000) who study static assortment planning under full knowledge. The
negative binomial also results from a sequence of Poisson arrivals, where each arrival
demands a random quantity according to logarithmic distribution.

We are now in a position to approximately solve the Lagrangian dual, because we have
the following proposition.

Proposition 1 A product’s revenue potential Rλ
t,n(an(t), bn(t)) is well-defined, as the max-

imum in (3) exists and is decreasing in the shelf space cost λ.

Because of Proposition 1 and because the maximization in (3) is relatively easy to com-
pute, we can approximately solve the Lagrangian dual by increasing λ, starting from zero
until at most r products have nonnegative revenue potential. In other words, we choose
the cost of shelf space, λ, so that all available shelf space is used. If there are fewer than r
products with positive revenue potential for λ = 0, then it is not optimal to use all available
shelf space. Note that while available shelf space is exogenous in our model, the optimal
value of λ, i.e., the shadow price of shelf space, can guide the retailer in decisions regarding
the increase of shelf space.

Our active learning approach can thus be defined as follows. For a given t, and given state
(a(t), b(t)), we choose λt(a(t), b(t)) ≥ 0 as large as possible so that at least r products have

non-negative revenue potential, i.e. for at most r of the n’s, R
λt(a(t),b(t))
t,n (an(t), bn(t)) ≥ 0,

where if this is not possible, we take λt(a(t), b(t)) = 0. Include in the assortment all products
with strictly positive revenue potential, and, if possible, make up the remainder up to r with
any products that have zero revenue potential, chosen arbitrarily. Now for each product n
in the assortment, choose its price (pnt )∗ to be the value of pnt which achieves the maximum
in (3) for λ = λt(a(t), b(t)).

The stochastic dynamic program (2) is hard to solve analytically, since the optimal policy
does not have a closed form. It is hard to solve computationally, since the states a and b
are continuous. The three different policies – the no-learning, passive learning, and active
learning policies – can be viewed as three different approximations for solving the stochastic
dynamic program (2). In the first policy, the no-learning policy, the transition equations are
ignored and (a, b) are approximated as fixed over time. In this policy, the assortment and
the prices do not change. The passive and active learning policies differ in how the revenue
potential is approximated. The passive and active learning policies employ zero-period and
one-period look-ahead estimations, respectively. This results in fixed prices and dynamic as-
sortment under the passive learning policy, because new information only changes retailer’s
belief about size of the market which does not affect the optimal price to be charged. How-
ever, under active learning both prices and assortment are dynamic; where prices dynamic
is due to the retailer’s active seek for new information.

3.3 Analytic results and insights on active learning

In what follows, we study the properties of the function gλt,n,a,b(p) introduced in (3) and of
its maximization over p, providing consequent insights about the active learning prices that

11



result and their sensitivity to parameters. We consider an arbitrary product n and so take
n to be fixed. We use p∗ to denote the maximizer of gλt,n,a,b(p), for fixed parameters λ, t, a,
and b (and n). We also use p̂ to denote the price under the full information setting, i.e. to
denote the maximizer of pdn(p).

Proposition 2 Prices under the active learning policy (p∗) are lower than prices in the
full information setting (p̂), i.e. p∗ ≤ p̂.

Proposition 2 confirms our intuition that a retailer may give price discounts under active
learning to accelerate exploration of the size of the market. In other words, the discounts
reflect the price of exploration for the retailer. A lower price is more informative because
it results in a higher demand and more observations, and, as a result, in less uncertainty
regarding the updated belief.

The following propositions provide insight into the asymptotic behavior of revenue po-
tential and price for a single product at a specific time and with a specific shelf space cost.
In particular, we explore the behavior of Rλ

t,n(a, b) = max
p
gλt,n,a,b(p) and the maximizer p∗, as

each of the remaining time t, the market size C.V. 1/
√
a and the expected market size a/b

increase. We illustrate each with a sample product for which d(p) = e−.5p, and hence p̂ = 2,
with λ = 2 fixed.

Proposition 3 As the remaining sales horizon (t) goes to infinity, the price (p∗) converges
to zero and the revenue potential (R) converges to infinity.

Figure 1 shows the sensitivity of price and revenue potential to the time remaining, t,

for the sample product, with
a

b
= 2 and a = 2 fixed. We see that price is a non-increasing

function of the remaining sales horizon; as the time remaining increases so does the price
discount. This is not surprising, because when there is more time remaining, the retailer
should invest more in exploring the market size so as to increase future revenues. This is
also reflected in the product’s revenue potential.

Proposition 4 As the C.V. of the belief about arrival rate (1/
√
a) goes to infinity, the

price (p∗) converges to the full information optimal price (p̂) and the revenue potential (R)
converges to infinity.

Figure 2 shows the sensitivity of price and revenue potential to the arrival rate C.V.,
which represents the retailer’s uncertainty regarding its belief of the market size, for the

sample product, with
a

b
= 2 and t = 4 fixed. We see that the relationship between price

and uncertainty is not monotone. As the retailer’s uncertainty increases, the price initially
decreases but eventually increases back to the full information optimal price. This is likely
the result of two competing factors simultaneously impacting the price. On the one hand,
the value of learning increases when the retailer is more uncertain, and therefore the retailer
is more willing to decrease the price to accelerate learning. On the other hand, learning is
easier when the retailer is more uncertain, and therefore the retailer does not need to decrease
the price much to learn a lot. The first factor pushes the price down and the second factor
keeps it close to the full information optimal price. At beginning the first factor is more
powerful, but at some point the second factor overtakes the first one. We also observe that
as the belief uncertainty increases, the revenue potential increases. This can be explained
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Figure 1: Sensitivity of price and revenue potential to the time remaining.

by noting that if a product turns out not to be profitable, then the retailer has the option
to exclude it from the assortment. This means that when computing the expected future
revenue, the retailer only needs to consider products with positive revenue potential, so a
product with more uncertainty becomes more attractive.

Proposition 5 As the arrival rate expectation (a/b) goes to infinity, the price (p∗) converges
to the full information optimal price (p̂), and the revenue potential (R) converges to infinity.

Figure 3 shows the sensitivity of price and revenue potential to the arrival rate expectation
for the sample product, with a = 2 and t = 4 fixed. We see that as the expected arrival
rate increases, the retailer has a higher willingness to explore and learn about the market
size. However, the relationship between price and arrival rate expectation is not monotone.
Intuitively, it is clear that for an extremely large market, with infinite demand, there is no
incentive for the retailer to sacrifice the optimal price in the hope of learning more about
the size of the market. Similarly, for an extremely small market, with hardly any demand,
there is no incentive for the retailer to sacrifice the optimal price either. In between these
extremes the value of learning drives down the price.

3.4 An extension to set-up costs

In some settings, there can be costs associated with including a product in the assortment.
If such costs are incurred in each period in which the product is in the assortment, they can
easily be accommodated in our approach: they play a similar role to the shelf space cost.

In other situations, such costs are incurred only the first time a product is included in the
assortment, e.g., contract negotiation and legal fees or the acquisition of product expertise.
In these situation, we need to keep track of whether a product has been included in the
assortment before or not, with the addition of a new state space variable. Representing this
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Figure 2: Sensitivity of price and revenue potential to the arrival rate C.V.

variable by fn(t), taken to be 1 if product n has not been included in the assortment in
periods prior to t (or t = T ), and 0 otherwise, we have

Rλ
t,n(a(t), b(t), f(t)) = max

pnt
{pnt

an(t)

bn(t)
dn(pnt )− λ− fn(t)F n + (t− 1)vE[(z − y)+]},

where F n is the set-up cost for product n.
We can also model situations where the fixed costs need to be paid in periods which a

product is included in assortment after not being in the assortment, like decoration costs.
Similar variables to the fn(t) can be defined to represent whether a product has been included
in the assortment in the last period or not.

Whilst our solution approach can be applied in either of these two set-up cost settings
as described above, the assumption of a fixed shelf space cost becomes less realistic as the
competition for shelf space increases over time as more and more products try to recapture
the fixed cost incurred.

4 Policy Comparison

We use numerical simulation to analyze computationally the value of the active learning and
providing price discounts.

Consider a situation in which the retailer has the option to sell three products with the
characteristics given in Table 1.

Furthermore, let the shelf space available allow at most one product to be offered in each
period. We see that the retailer believes that the size of the market for Product 3 is smaller
than the size of the market for Product 1 and 2, and that the retailer’s confidence in its
belief is the same for all products. We also note that the demand for Product 1 is less price
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Figure 3: Sensitivity of price and revenue potential to the arrival rate expectation.

Table 1: Product characteristics

Product d(p) a(T ) b(T ) a(T )/b(T ) p̂
1 e−.5p .5 .025 20 2
2 e−p .5 .025 20 1
3 e−p .5 .05 10 1

sensitive than the demand for Product 2 and Product 3. We have chosen a modest level
of uncertainty, and expect that the benefit of learning increases as the initial uncertainty
increases.

If the retailer is completely confident in its current belief, and therefore has no reason
to explore and learn more about the market size and to change its decisions over time, it
will choose to offer Product 1 in all periods at optimal price of $2. If the true market size
happens to be (9,20,30), then the expected revenue will be $6.62 per period, whereas with
the optimal decision, i.e., offering Product 3 at a price of $1, the expected revenue will be
$11.04 per period. Thus, the lack of information (i.e., the unfounded confidence) is costing
the retailer about 40% in terms of expected revenue.

To investigate this situation further, we have conducted the following simulation experi-
ment. Based on the true market size of (9,20,30), we create 10,000 sample paths of realized
sales over the sales horizon and observe assortment and pricing decisions under different
policies. Figure 4 focuses on the revenues and the assortment and pricing decisions through
time under active learning for a sales horizon of 12 periods. In the top graph, we see that the
average revenue increases substantially in initial periods and slightly in subsequent periods.
This is due to both an improving understanding of the market size, and thus of expected
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revenues, and less exploration towards the end of the sales horizon, which implies smaller
price discounts. In the middle graph, we see that in all sample paths Product 1 is chosen in
the first period, Product 2 is chosen in the second period, and depending on the observed
sales in the first two periods, Product 3 is chosen in about a quarter of sample paths in the
third period and its share increases to about half by the last period. We also observe that
active learning recognizes the revenue potential of Product 3 and switches to it over time.
This switch will not happen with passive learning, because the retailer’s initial belief about
the profitability of Product 3 is less than the true profitability of Product 2. Furthermore, we
see that a planning horizon of 12 periods is not long enough for the assortment to converge
to Product 3 in all sample paths. In the bottom graph, we see that whenever a product is
offered for the first time, a high discount is offered (a discount with respect to the optimal
price) and that the discount decreases as the retailer learns more about the market size and
as the remaining sales horizon gets shorter.

Figure 5 compares revenues of different policies. In addition to policies already intro-
duced, we also report the revenue of the variant of the active learning policy in which the
price is always taken to be the optimal price. This policy corresponds to the policy of Caro
and Gallien (2007). We observe that using pricing to accelerate learning results in higher
revenues. Active learning results in a 13.7% increase in revenue over passive learning, and
active learning with pricing to accelerate learning results in a 16.3% increase in revenues over
passive learning. Note that we report revenues and that because of the small profit margins
in the retail industry, the differences will be more pronounced when considering profits.

Figure 6 shows the effectiveness of active learning in terms of closing the gap between
the revenue in the no learning and full information settings. In other words, the graph shows
the ability of the active learning policy to recapture the cost of lack of information. We see
that as the sales horizon increases and the retailer has more time to learn, the benefit of
active learning increases.

The above observations obviously depend on the true market size and for a different mar-
ket size the results will be different. Therefore, in the second set of simulation experiments,
we assume that the retailer’s belief about the market size, represented by a Gamma distribu-
tion with parameters a and b, is correct, we draw a market size from that distribution (which
will be unknown to the retailer) and we observe a single sample path of realized sales over
the sales horizon and repeat this process 10,000 times. When presenting results, we average
over the 10,000 repetitions. The simulation results are summarized in Figure 7. As before,
we see that the value of learning increases as there is more time to learn. For a sales horizon
of 20 periods, the active learning policy gives average revenues of $18.15, which corresponds
to recapturing 80% of the cost of the lack of information.

A different way of evaluating the benefits of learning is to look at how the retailer’s belief
evolves over time. Figure 8 shows how the error of the retailer’s belief evolves over time
under the active learning policy for given levels of initial belief uncertainty, where the error
of the retailer’s belief is measured as the absolute difference between its belief about the
market size and the true market size. As we observe, as the retailer becomes less certain
about its initial belief the learning becomes less beneficial.

Finally, Figure 9 shows the effect of set-up costs (when set-up costs are incurred only
the first time a product is offered) on demand learning. We see that as the set-up cost
increases, then the effectiveness of learning in reducing the belief error decreases. As the
cost of learning increases, because of the costs associated with the set-up of an as of yet
unexplored product, less exploration takes place and the focus shifts to exploitation.
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Figure 4: Revenues and assortment and price decisions

5 Conclusions and Further Research

Our research has focused on incorporating active demand learning into dynamic joint as-
sortment and price optimization. It differs from the stream of research in which the demand
parameters are estimated upfront, based on historic information, before the optimization
takes place, but the optimization itself does not explicitly incorporate the possibility of
learning the demand. In active learning, exploiting current knowledge to maximize profit is
combined with investing in exploring to increase knowledge so as to increase future profits.
Our study may initiate change in the way retail and department stores are managed and op-
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Figure 5: Revenues of four different policies and hypothetic full information case (T = 12)

erated, and may increase their profits by better assortment and pricing decisions. Given the
importance of the retail sector, which corresponds to a large portion of developed countries’
economies1, the impact can be significant.

While the value of full information depends highly on the setting and the bias of the
retailer’s initial belief, our numerical study shows that both passive and active learning
policies are effective in increasing revenue and recapturing loss of revenue due to the lack of
full information. The value of learning increases with a longer sales horizon, less shelf space,
and higher belief uncertainty.

Our investigation shows that embedding pricing in an active learning strategy results
in price discounts in the early sales periods to intensify learning (lower prices increase the
number of sales observations). The magnitude of the price discount increases as there is
more time left until the end of the sales horizon. This confirms the intuition that product
perishability should affect a retailers investment in exploration: as a product’s sales horizon
gets shorter, the benefits of learning reduce and the emphasis should be on exploitation. Less
intuitive is the fact that as a retailer’s uncertainty or as the size of the market increases,
the price discounts initially increase, but then start to decrease. (If the retailer is extremely
uncertain or if the market is extremely large, there is no need for any price discount.)

There are a number of extensions to the model that are beyond the scope of this paper and
we plan to explore in the future. The current model assumes that there is a single unknown
parameter of the demand function, i.e., the customer arrival rate. In more complex settings,
it may be valuable to learn, in addition to the arrival rate, other parameters of the demand
function, such as the customers’ reservation price and price sensitivity. Another extension
is to consider heterogenous product sizes. The current model assumes that products have
the same size. If products have different sizes, then the linking constraint, i.e., the shelf

1The Australian Bureau of Statistics reports retail spending at about 20 billion dollar per month.
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Figure 6: Revenue recovered by the active learning policy for different sales horizons
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Figure 7: Revenue recovered by the active learning policy for different sales horizons

space constraint, represents a general knapsack problem rather than a cardinality knapsack
problem, in which case the Lagrangian dual approximation may no longer be as strong and
therefore the learning speed may decrease. Furthermore, we may also incorporate decisions
on the amount of shelf space to assign to each chosen product, as studies have shown that
with an increased amount of shelf space the demand for a product increases.
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Figure 8: Belief error evolution for the active learning policy (T = 8)

It is also natural to investigate product substitution by modeling consumer choice. How-
ever, because of the price dynamics, substitution cannot be modeled by an exogenous matrix
but needs to be price dependent, possibly a Multinomial Logit (MNL) model, which signifi-
cantly increases the complexity. Note that a dynamic substitution model which incorporates
prices does not allow us to treat products independently in the Lagrangian dual problem.

A substantially different model arises when we consider situations in which inventory is
either scarce or needs to be managed, e.g., there is limited initial inventory, but inventory
can be replenished at a cost. Recently, there has also been an increasing interest in studying
strategic customers, which are customers that make their purchase decisions based on their
expectations of the future price and availability of a product (see for example Levina et al.
(2009)). Finally, a more methodological question to study is the quality of open loop policies.
Our heuristic is based on constant Lagrangian multiplier and one-period look-ahead. To the
best of our knowledge, there is limited knowledge about the actual quality of this widely
used approximation.
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Appendix – Proofs

Lemma 1

The posterior probability density function (pdf) of market size θ conditioned on observing
sales s at the end of the period is:

f(θ|s) =
exp(−θd(p)) (θd(p))

s

s!
θa−1 exp(−bθ)∫∞

0
exp(−xd(p)) (xd(p))

s

s!
xa−1 exp(−bx)dx

=
exp

(
− θ(b+ d(p))

)
θs+a−1∫∞

0
exp

(
− x(b+ d(p))

)
xs+a−1dx

=
(b+ d(p))a+s

Γ(a+ s)
θa+s−1 exp(−(b+ d(p))θ).

Proposition 1

Consider (3) for a given product n and period t, with a = an(t), b = bn(t) given. In what
follows, we drop these subscripts. For the first part of the proof, for notational convenience
we also drop the λ superscript, which we treat as constant for this part, . Notice that:

v′(p) =

√
a(b+ 1)p̂d(p̂)

(b+ d(p))2
d′(p) ≤ 0.

Applying chain rule to the expectation term in the definition of g(p), we find

d

dp
E[(z − y(p))+] = −F (y(p))y′(p) = F (y(p))

1

(v(p))2
v′(p) ≤ 0,

where F (y) represents the complementary cumulative distribution function (ccdf) of the
standard normal random variable. Thus

d

dp
(v(p)E[(z − y(p))+]) = v′(p)E[(z − y(p))+] + v(p)

d

dp
E[(z − y(p))+] ≤ 0,

showing that the last term in g(p) is non-increasing. Because pd(p) is strictly concave, the

maximum of (p
a

b
d(p)−λ+(t−1)vE[(z−y)+]) is in the closed interval [0, p̂], (for more detail

see the proof of Proposition 2), so R is well-defined.
We now consider how R changes with respect to λ. First we observe (treating p as

constant) that

dgλ

dλ
=

d

dλ
(p
a

b
d(p)− λ+ (t− 1)vE[(z − yλ)+])

= −1 + (t− 1)vF (z − yλ)−1

v
= −1− (t− 1)F (z − yλ) ≤ 0.

It is now not hard to see that Rλ = max
p
gλ(p) is also a non-increasing function of λ.
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Proposition 2

We take parameters n, t, λ, a and b to be fixed. Thus g(p) = f(p)+h(p) where f(p) = pd(p)
is strictly concave with maximizer p̂ and h(p) = −λ + (t − 1)v(p)E[(z − y(p))+]. From the
proof of Proposition 1, we know that h′(p) ≤ 0 for all p. Now since p∗ maximizes g, it must
be that g′(p∗) = 0 = f ′(p∗) + h′(p∗). Since h′(p∗) ≤ 0, it must be that f ′(p∗) ≥ 0. Now since
f is strictly concave and f ′(p̂) = 0, it must be that p∗ ≤ p̂.

Proposition 3

Let θ =
a

b
. Then

lim
t→∞

R

t− 1
=

maxp{pθd(p)− λ+ (t− 1)

√
a(a
θ
+1)p̂d(p̂)
a
θ

d(p)
a
θ
+d(p)

E[(z − (λ−θp̂d(p̂))√
a(a
θ
+1)p̂d(p̂)

a
θ

d(p)
a
θ
+d(p)

)+]}

t− 1

=

√
θ +

θ2

a
p̂d(p̂) max

p
{ d(p)
a
θ

+ d(p)
E[(z − (λ− θp̂d(p̂))√

θ + θ2

a
d(p)

a
θ
+d(p)

)+]},

where the second equality follows from the fact that the first two terms go to zero when t goes

to infinity. Next, we observe that lim
t→∞

R

t− 1
gets maximized where

d(p)
a
θ

+ d(p)
is maximized,

since yE[(z− c

y
)+] gets maximized when y gets maximized, and that this happens at p∗ = 0,

in which case R goes to infinity.

Propositions 4 and 5

1√
a
→∞ or θ →∞:

limR = max
p
{pθd(p)− λ+ (t− 1)

√
a(a

θ
+ 1)p̂d(p̂)
a
θ

d(p)
a
θ

+ d(p)
E[(z − (λ− θp̂d(p̂))√

a(a
θ
+1)p̂d(p̂)
a
θ

d(p)
a
θ
+d(p)

)+]}

= max
p
{pθd(p)− λ+ (t− 1)

√
θ +

θ2

a
p̂d(p̂)

d(p)
a
θ

+ d(p)
E[(z − (λ− θp̂d(p̂))√

θ + θ2

a
d(p)

a
θ
+d(p)

)+]}

= max
p
{pθd(p)− λ+ (t− 1)

√
θ +

θ2

a
p̂d(p̂)E[(z − (λ− θp̂d(p̂))√

θ + θ2

a

)+]}

= max
p
{pd(p)}θ − λ+ (t− 1)

√
θ +

θ2

a
p̂d(p̂)E[(z − (λ− θp̂d(p̂))√

θ + θ2

a

)+],

where the third equality follows from the fact that
d(p)

a
θ

+ d(p)
goes to one when a goes to zero

or θ goes to infinity. Next, we observe that limR gets maximized for p∗ = p̂, in which case
R goes to infinity.
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