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ABSTRACT 1 INTRODUCTION

Generative Adversarial Networks (GANs) are a widely used tool
for generating highly realistic artificial data. As the output of these
networks can show high diversity and novelty, GANs have the
potential to be used as creative tools. However, using GANSs in
this context poses major challenges due to their unpredictability
and lack of controllability, making it difficult for creative people to
realize their artistic vision. To address this problem, we present two
graphical user interfaces that visually order the (otherwise chaotic)
latent input space of a GAN that was trained to generate drum
samples. Further, these GUIs provide convergent search functions
that allow users to fine-tune generated sounds. By doing so, we
provide the ability to create sounds more purposefully to sound-
affine users such as musicians or sound engineers. Additionally,
we present the results of a user study that we conducted in order
to explore our approach in accuracy-oriented and creative tasks.
Our results indicate that usability and pragmatic qualities play
a more important role for users than aesthetic-oriented aspects.
Although not improving the accuracy within reproductive tasks,
we observed that convergent search functions, if available, were
used significantly more often than divergent/randomized search
functions.
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Generative Adversarial Networks (GANs)[12] have been used in a
variety of applications to mimic and reproduce human-generated
data. However, their use as tools for creative people still remains to
be explored. In this paper, we outline a new approach that enables
GANS s to be used as a novel type of musical instrument or sound
design tool.

A big challenge of using GANS in creative applications is their
unpredictability. Although GANs can produce deceptively real data
such as percussive sounds, potential users of the technology have
little opportunity to shape the generated sounds to match their artis-
tic vision or imagination. This stems from the fact that conventional
GANs approximate a transformation function that converts random
noise vectors to new audio data. As the unstructured noise vectors
follow a random distribution, they are by no means interpretable
for humans.

To address this problem, we present two different user interfaces,
which we call Vector Manipulation Modules (VMMs). These give
users the ability to fine-tune the sounds produced by GANs by
visualizing the seemingly chaotic input latent space of the genera-
tive network as manipulatable objects within two or three spatial
dimensions. By doing so, we provide sound-affine users (e.g., musi-
cians or sound engineers) with the ability to directly interact with
the GAN. Additionally, we order the visual representation of the
latent space regarding the single elements’ impact on the generated
audio samples. Thus, we ensure a certain degree of predictability
of the adjustments a user makes.

The research questions we address in this paper are:

(1) How accurately can users reproduce sounds with our two
distinct VMM designs (2D and 3D approaches)?

(2) Which parameter search methods do users prefer while using
the VMMs (convergent or divergent)?

(3) How do these VMM designs impact user behaviour both in
creative and reproductive/targeted search tasks?

(4) How do users experience interaction with our VMM designs?

To assess our system, we conducted an online user study in which
participants interacted with our VMMs which were integrated into
a GAN-based drum sequencer. For research questions (1), (2) and (3),
we evaluate objective quantitative measures derived from user in-
teraction logs. For research question (4), we look at self-assessment
measures such as user experience, the user’s state or sensation of
flow while working with these interfaces, and self-efficacy.

!The web-based demonstrator we used for our online-study is currently hosted as a
live-version containing both VMMs at hcai.eu/pufferfish.
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2 RELATED WORK

2.1 Exploration of Parameter Spaces for
Musical Creativity

A typical use case for parameter search is sound synthesis. A vari-
ety of approaches and algorithms have been applied here, such as
mapping parameters to 2D-Interfaces using Hilbert curves [29], ex-
ploration of parameter spaces with evolutionary algorithms [7, 26]
or by using machine learning models for mapping gestures to syn-
thesizer parameters [13]. Previous work suggests that different
parameter navigation strategies can benefit different stages of the
creative process. For instance, Tubb and Dixon [29] found evidence
for divergent exploration and convergent honing/fine-tuning behav-
iors and argued that systems should offer user interfaces enabling
both strategies. Another interesting approach is understanding
parameter mapping algorithms as new musical instruments that
can be used in real-time. For instance, Berndt et al. [2] built a
touch-based musical instrument that modulates noise. Other ideas
include tangible interfaces such as Snyder’s Birl [27] that is based
on incorporating an artificial neural network within an electronic
wind instrument using Fiebrink’s Wikinator framework [11] for
sonification of gestures. A substantial amount of research covers
deep learning-based applications for music composition and mu-
sic generation. In these approaches, a challenge is that often no
ways to control the generated output (e.g. tonality) are provided
[5]. Fiebrink and Caramiaux [10] described various ways in which
machine learning (ML) algorithms themselves can be understood
as human-computer interfaces in musical contexts. Explicitly, the
authors described that such algorithms can be used as tools for
musical interaction, as creative tools, and also as a new type of user
interface, e.g., by exposing affordances of ML algorithms in a variety
of ways. The authors elaborate on the possibility to expose different
control parameters that can affect the characteristics of a trained
model. As an example, Fiebrink mentioned work from Morris et al.
[23] who exposed parameters such as happy or jazz factors to tune
hidden Markov models generating chords. Kaliakatsos-Papakostas
etal. [16] provided user access to the interactive parameters rhythm,
density and pitch for LSTMs that were trained to compose music.

2.2 Generative Adversarial Networks

GANSs were first introduced by Goodfellow et al. [12] and opened
the possibility of generating high-quality artificial data. The basic
idea of GANGs is that two networks, namely the Generator and the
Discriminator, are trained in an adversarial manner. Hereby, the
generator learns to transform a random noise vector to new data
that resembles a specific training dataset, while the discriminator
learns to distinguish between real data and the fake data generated
by the generator. Thus, the generator aims to fool the discrimina-
tor, while the discriminator aims to not be fooled. Modifications
and improvements of GANs have been applied to various domains
and applications. One modification to the original GAN that is par-
ticularly interesting for our use case was presented by Donahue
et al. [8], who introduced WaveGAN. WaveGAN was designed to
generate audio data of high quality and has already been applied
successfully to the generation of drum sounds in the original publi-
cation.
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2.3 GANs & Controllability

With the ongoing rise of GANs, approaches for gaining control over
the outputs of these models quickly became an active field of re-
search. The first attempt to directly incorporate modifiable features
into the training of a GAN framework was presented by Mirza and
Osindero [22], who suggested to enhance the input space of a GAN
with additional dimensions that are trained in a supervised manner
simultaneously to the unsupervised training of the GAN. Those
so-called Conditional GANs were adapted for various modalities
and applications. For example, Lee [20] applied the idea of con-
ditional GANSs to the WaveGAN framework. Further approaches
for a feature-oriented training of GANs developed quickly, but are
mainly limited to image generation tasks [17, 18, 24]. Other meth-
ods for controlling the output of GANs focus on dealing with the
latent input space, thus performing latent vector manipulations.
For example, Dosovitskiy et al. [9] explore different techniques
of interpolating between different points in the latent space of a
GAN. Harkonen et al. [14] applied Principal Component Analysis
to the GAN input space. Another approach to search through the
latent space of a trained GAN is Latent Variable Evolution (LVE), a
method where evolutionary algorithms are used to search through
the chaotic input space of a GAN. LVE was applied to different
domains, such as video games [30] or fingerprint-based biomet-
ric systems [4]. It was also deployed successfully for searching
through the latent space of a WaveGAN for the purpose of aug-
menting datasets [21]. Further, LVE was used to give human users
the ability to interactively evolve through a learned GAN space
[3, 31]. However, all the aforementioned methods focus on con-
trolling the output of GANs by making it more interpretable and
transparent. Contrary to that, besides providing visual structure
for the input latent space, our approach aims at giving users the
possibility to directly interact with the seemingly chaotic latent
space.

3 APPROACH

3.1 WaveGAN

WaveGAN, which was first introduced by Donahue et al. [8], is a
modification to the original GAN framework specifically designed
for the generation of audio data. Therefore, WaveGAN includes
minor changes to the original GAN architecture, e.g., the use of one-
dimensional filters. For our system, we use a WaveGAN model that
was trained on a dataset consisting of drum sound recordings. The
total length of the dataset is 0.7 hours. The trained model was made
freely accessible by the authors of WaveGAN. For further insights
into WaveGAN and the used model, please refer to Donahue et al.

[8].

3.2 Sequencer User Interface

To provide a context for our novel vector manipulation user in-
terfaces, we embedded them into an existing web-based drum se-
quencer Ul that was previously published by Chris Donahue as a
demonstrator for his WaveGAN architecture (see Figure 1)2.

A drum sequencer provides the user functionalities to program
a drum beat by using a grid UI that can assign notes to different

2https://chrisdonahue.com/wavegan/



Taming the Chaos: Exploring Graphical Input Vector Manipulation User Interfaces for GANs in a Musical Context

Drum 3 }»

TN T ETIEE T

Drums

Drum 6 Drum 7

Figure 1: Screenshot of the web-based Figure 2: Screenshot of the Vector Ma-
nipulation Module Fibonacci Sphere

drum sequencer Ul implemented by

Chris Donahue. (1).

audio channels. This beat can be played back in a loop and mod-
ified at runtime by changing the notes that are assigned to the
channels. The drum sequencer we use utilizes sounds generated by
WaveGAN.

3.3 Vector Impact Analysis

A critical challenge in creating user interfaces is clarifying the
nature of the offer (the affordances) that individual interactive
elements provide. To make the initially chaotic structure of the
input latent space more understandable in this respect, we analyzed
the WaveGAN network regarding the effects that individual vector
elements have on generated audio samples. Therefore, we used
an offline analysis procedure in which individual random vectors
were altered for several epochs. After each manipulation, these
altered vectors were fed into WaveGAN and the resulting outputs
were compared to the WaveGAN outputs of the original vectors
regarding Power Spectral Density (PSD). Subsequently, the mean
impact for individual vector elements was calculated. This method
led to a ranking, sorting vector elements according to their impact
on the output.

In a second step, we investigated the impact individual input
values have on the auditory spectrum of the generated sounds by
calculating the deviations in PSD for the frequency bands (1) 20 to
4000 Hz and (2) 4001 Hz to 16000 Hz

by using the procedure described above on those limited band-
widths, leading to separate rankings for the individual bands. These
rankings were used for structuring the visual latent space represen-
tations within the VMMs.

3.4 Vector Manipulation Modules

To give users the ability to fine-tune the sounds generated by the
WaveGAN, we developed two different UI designs, which we call
Vector Manipulation Modules (VMMs). Both designs have a num-
ber of controls equal to the GAN’s input latent space dimension
(d = 100). Each of these controls (Manipulatable Elements or MEs)
represents a single element of the input latent space. Through ma-
nipulation of the MEs, their respective numerical value in the input
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Figure 3: Screenshot of the Vector Ma-
nipulation Module Slider Array (2).

Figure 4: A custom shader was used to il-
lustrate the impact that individual MEs
have on different frequency bands. In this
example, sphere no. 1 has a comparably
high impact on lower bands, sphere no.
2 a high impact on the upper bands and
sphere no. 3 has a strong impact on the
whole audible spectrum.

latent space can directly be changed. All MEs are presented in
different spatial constellations within both VMMs:

(1) The VMM Fibonacci Sphere (see Figure 2) presents MEs as a
set of 3D spheres that are spatially placed between two larger
3D spheres that illustrate both their minimum and maximum
values. Accordingly, the spatial distance of the MEs from the
minimum and maximum spheres determines their numerical
value. Each ME can be manipulated by the user via drag and
drop. By using the fibonacci lattice algorithm [28], positional
offsets were calculated for each ME, resulting in the latent
input space being represented as a spherical structure.

(2) The VMM Slider Array (see Figure 3) presents MEs as an
array of sliders, which can be adjusted analogously to the
Fibonacci Sphere VMM. The numerical value represented by
the MEs is determined by the spatial distance of the slider
handles to the limits of the sliders.

The MEs of both VMMs were sorted according to their impact
orders that were determined as described in Subsection 3.3. For
(1), more impactful spheres were placed in higher positions, while
less impactful spheres were placed further down. For (2), more
impactful sliders were placed closer to the top left corner of the
screen and less impactful spheres closer to the bottom right corner.
For both VMMs, the additional UI slider Size enables users to hide
less impactful MEs.

To visualize the impact that individual MEs have on the upper
and lower audible frequency bands, each sphere or slider handle
was shaded differently. Spheres and slider handles that have a high
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Figure 6: Technical setup of the demonstrator.

impact on lower frequency bands are displayed bright on the bot-
tom, while low impactful MEs remain dark in that region. The
same principle applies to the upper half of the MEs to indicate
their impact on higher frequency bands. Figure 4 illustrates this
principle.

An additional feature that both VMMs provide is a Reshuffle
button that generates a new random vector which is then passed
to WaveGAN. Subsequently, the positions of the MEs are updated
accordingly. This feature serves as a divergent search tool that
enables users to quickly explore a large variety of sounds.

4 USER STUDY
4.1 Study Procedure

In order to examine our research questions, we conducted a user
study which was run as an online experiment. The basic flow of
our study can be seen in Figure 5.

Table 1: Descriptive information about the participants.

Characteristic Baseline VMM | Total |
n 17 21 38
Age

Mean 27.47 28.24 | 27.89

Standard Deviation 5.30 6.29 5.88
Gender

male 15 12 27

female 1 8

diverse 0 1 1

no answer 1 0 1
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38 Participants (see Table 1) were recruited via Amazon MTurk,
where each participant needed to pass a test in advance to verify
that she or he is capable of identifying typical drum sounds like
snare or bass drums, can assign different drum patterns to their vi-
sual representation in a sequencer grid, and is able to identify subtle
differences within sound samples. We collected data in a top-level
between-groups experiment. Here, one group of participants were
provided with the drum sequencer interface featuring solely the
divergent search/reshuffle function, i.e., the rhythms could be ad-
justed, but the sounds could only be altered by randomly reshuffling
the input vector for the WaveGAN (see Figure 5: baseline condition).
The participants that were in the other group (the VMM condition)
additionally saw both the Fibonacci Sphere and the Slider Array
VMMs in randomized order. By measuring our dependent variables
after each of these stimuli, we nested a within-subject experiment
into the between-groups experiment. By doing so, we were able to
ask participants which VMM they preferred. Additionally, experi-
encing both VMMs enabled participants to provide open feedback
concerning both versions.

After randomly being assigned to either the VMM or baseline
condition, demographic data was collected. Then, each group was
provided with a basic overview of the sequencer user interface. Sub-
sequently, the participants were asked to construct a simple drum
beat to get familiar with the drum sequencer UI, before watching
an animated tutorial explaining the interaction principles of their
respective VMM (if not in the baseline condition). Afterwards, the
participants went through two task sections:

(1) Reproductive Task Section The participants were asked to
recreate three given drum sounds by using the demonstra-
tor. In the baseline condition this could be achieved solely
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through divergent search (i.e., reshufile). In the VMM condi-
tion, both divergent search and convergent search (i.e., ME
manipulation) functionalities could be used.

(2) Creative Task Section In this section, the participants were
allowed to freely explore the demonstrator and do whatever
they wanted, living out their creativity.

After completing both task sections the questionnaires described in
Section 4.2 were filled out. For participants in the baseline condition,
the experiment ended at this point, while participants in the VMM
condition had to repeat both task sections while using the respective
other VMM.

During interaction with the demonstrator, information about
user behaviour was logged for objective evaluation. The architec-
ture of the demonstrator used within our study can be seen in
Figure 6.

4.2 Evaluation Measures

4.2.1 Objective Measures. The data we collected included logs
about interactions with the sequencer Ul and the VMMs.
From these logs we derived the following objective measures:

(1) Reproductive and Creative User Activity is the number of
logged interactions both within reproductive and creative
task sections.

(2) Divergent and Convergent Search Activity is the number of
logged user interactions with the reshuffle functionality (di-
vergent search) as well as ME manipulations (convergent
search).

(3) Time to Task Section Completion is the time users needed
to complete reproductive and creative task sections respec-
tively.

(4) Auditive Similarity of Vector Results: From the logs containing
the vectors users created within the productive task sections,
we reproduced the generated sounds and compared their
PSD with the PSD of the target sounds.

To eliminate sequence order effects due to the repetition of task
sections within the VMM condition (see figure 5) we only took data
of the first reproductive and creative task sections into account for
each participant (applies to measure (1), (3) and (4)).
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production and creative task sections.

4.2.2 Self-Assessment Measures. In order to assess the users’ sub-
jective experience while interacting with our demonstrator, the
following self-assessment measures and questionnaires were used
for both VMM and baseline conditions:

(1) We measured the participants’ User Experience with the UEQ
questionnaire [19]. This questionnaire measures six dimen-
sions of user experience called perspicuity, efficiency, depend-
ability, stimulation, novelty and attractiveness.

(2) We used the Flow Short Scale [25] to measure the users’
state of flow, which has been described as a highly enjoyable
psychological state that refers to the “holistic sensation people
feel when they act with total involvement (in an activity)” [6].
To be able to assess his or her state retrospectively, the items
of the questionnaire were slightly modified (i.e., put in past
tense).

(3) For Self-Efficacy, we used a one-item scale. We used a varia-
tion of the scale proposed by Bernacki et al. [1] ("How con-
fident are you that you would be able to generate exactly the
drum sounds that you aim for in the future with the system
you just used?”).

4.2.3 VMM Preference and Open Feedback. After finishing all task
sections, participants within the VMM condition were asked which
VMM version they liked better. Furthermore, they were encouraged
to provide open feedback.

5 RESULTS

For each dependent variable (in order to check if the data is para-
metric), we used Shapiro’s test to check if the values are normally
distributed and a Levene’s test for equal variances. For independent
measures (between VMM and baseline), if both normal distribution
and equal variances were given, we performed a one-way ANOVA
and post hoc t-tests to check if significant differences existed within
the tested pairs. If not, we performed a Kruskal-Wallis test and
post hoc Mann-Whitney-U tests. For dependent measures (within
the VMM condition), which only affected divergent/convergent
search activity (see Figure 8), we used Friedmann’s test and post
hoc Wilcoxon’s signed rank tests as data was not found to be para-
metric in that case. After the post hoc tests, we corrected p values
with Holm-Bonferri’s method. In the following, we report only
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significant differences. All other results are depicted in Figures 7 -
13.

5.1 Objective Results

o Users that were in the VMM condition performed signifi-
cantly less divergent search actions than convergent search
actions (p = 0.0051).

While interacting with the Slider Array VMM, users per-
formed significantly more convergent search actions than
divergent search actions (p = 0.0107).

During the reproductive task section, users performed signif-
icantly more actions if working with the Slider Array VMM
than the participants in the baseline condition (p = 0.0110).
Participants that were confronted with the Slider Array
VMM spent significantly more time in the reproductive task
section than users in the baseline condition (p = 0.0001).
Participants using the Slider Array VMM used convergent
search functions significantly more often than participants
using the Fibonacci Sphere VMM (p = 0.0029).

5.2 Self-Assessement Results

Users in the Baseline condition rated their Ul significantly
higher in terms of perspicuity than users in the Slider Array
VMM condition (p = 0.0188).

Users rated the Fibonacci Sphere VMM to be significantly
more novel than the Slider Array VMM (p = 0.0155).

Users interacting with the Fibonacci Sphere VMM perceived
the system as significantly more novel than users in the
baseline condition (p = 0.0155).

5.3 User Preference Results

As can be seen in Figure 13, users in the VMM condition tended to
like the Slider Array VMM more than the Fibonacci Sphere VMM.

It should be noted, however, that our randomization algorithm
ended up assigning 14 participants the Slider Array VMM first,

Schlagowski et al.

User Experience Results

3.0 4

2.5

2.04

a B

1.0

0.5+

0.0 4

g

gy

wwm Slider Array
Fibonacci Sphere
Baseline

221

T T T T T T
Attractiveness Dependability  Efficiency Perspicuity ~ Stimulation Novelty

Figure 11: UEQ results for both VMMs and baseline condition. Only
the first UEQ results were evaluated for each participant in the VMM
condition.

while only 7 participants saw the Fibonacci Sphere VMM first. It
is conceivable that this circumstance led to ordering effects that
skewed users’ responses in terms of VMM preference.

6 DISCUSSION

6.1 Discussion of Results

Pragmatic quality overshadows hedonistic quality. In the
evaluation of the user experience, the 3D interface Fibonacci Sphere
was on average rated better than the 2D interface Slider Array
in all UEQ dimensions. The greatest differences were found in
the dimensions of novelty and attractiveness, which are hedonistic
qualities [19]. This was also reflected individually in the open user
feedback. For instance, one participant wrote:

"I don’t know how either work... thus, the less conventional sphere’s
floating around is more fun to experiment with compared to the dozens
of sliders that are unlabeled (which I have seen on synths before)”

This can be largely explained due to the visual aesthetic of the
sphere, which uses three dimensions for the placements of the
manipulatable elements while additionally rotating them, making
the MEs appear larger in size when they are closer to the camera.

However, this is in stark contrast to the answers users gave when
asked about their preferred interface (see Figure 13). Here, the Slider
Array VMM performed substantially better. Furthermore, the ob-
jective logs show that users spent more time and were more active
while interacting with the Slider Array VMM than with both the
Fibonacci Sphere VMM or the baseline system. Furthermore, the
convergent search functions of the Slider Array VMM were used
significantly more often than their equivalents within the Fibonacci
Sphere VMM. This enhanced user engagement is not reflected in
the evaluation of the pragmatic UEQ dimensions efficiency and
perspicuity which can be explained by insufficient sample size and
large standard deviations. We found possible reasons for these ob-
servations while looking at open user feedback, where participants
described the slider VMMs as feeling more familiar, more efficient
and less confusing.
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Hassenzahl et al. [15] suggest that the user’s experience and
perception of a system depend on the mode in which they use
the system. In our case, participants are likely to have been in goal
mode as they participated in order to generate income and therefore
maximize efficiency.

Spatial dimensions can limit accessibility. A reason for
the lack of pragmatic qualities associated with the Fibonacci Sphere
VMM might be the inaccessibility of certain manipulatable elements
that were placed behind other MEs. We tried to solve this issue by
dynamically rotating the entirety of the 3D-UI and providing users
a functionality to rotate it faster, but this might not compensate for
the users’ needs to quickly explore the parameter space. One user
made this fairly clear by writing:

“The spheres constantly move around making it distracting. You
can also lose track of the spheres you clicked on. Also I found that if
any of the spheres were directly behind the center sphere, I could not
click on them or make any adjustments until they reached the edge of
the center sphere or moved out of its radius. The slider interface feels
more user-friendly than the sphere one.”

This lack of accessibility is due to a mismatch of spatial dimen-
sions, as a three-dimensional order of the manipulatable elements is
presented on a 2D screen. Thus, technologies supporting three spa-
tial dimensions for user interaction such as Virtual and Augmented
Reality (Mixed Reality) might be able to resolve this issue.

Users fine-tune their sounds extensively. If given the op-
tion to use both the convergent/fine-tuning strategies (manipulation
of spheres or slider handles in our VMMS) and divergent search
strategies (using the reshuffle function), participants used the con-
vergent option more. We found significant differences both for the
total count of convergent and divergent search actions as well as
solely for the Slider Array VMM. From these results, we conclude
that participants accepted our concept of manipulating input latent
spaces with VMMs in order to search for targeted sounds more
purposefully.

This is in line with the findings of Tubb and Dixon [29] who
argued that systems should offer both options, as users will use
these functions for different tasks according to their needs. However,
it should be noted that for our VMM designs, convergent search
functions were placed quite prominently as they occupied most of
the screen space and outweighed the divergent functions in number.
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More functionality comes with complexity. The baseline
version of the drum sequencer Ul which gave participants only the
option to look for sounds by creating random input vectors, per-
formed surprisingly well, especially within user experience ratings.
For perspicuity, the baseline condition even performed significantly
better than the sphere VMM. This can be explained by the com-
plexity of the VMMs and the accompanying challenges that users
were faced with while learning to use these interfaces and also with
potentially unclear communication of affordances. One participant
wrote:

"This is definitely something I could see messing with in my own
productions, but it definitely needs to be more communicative as to
the parameters being fed to the AI and what they are doing.”

As no participant mentioned the custom shaders displaying af-
fected frequency bands or the order of the manipulatable elements
in both VMMs, we assume that the impact/affordances might not
have been communicated clearly enough. Further research and
creative ideas are required to improve in this regard. This could be
achieved by using a variety of modalities such as auditory, haptic
or tactile feedback.

User effort does not reflect accuracy. When comparing
the samples produced by the participants with the target samples
for the reproduction tasks, we observed no significant differences
between baseline and both VMMs. Instead, the condition which
saw the most activity in convergent search (slider array) had the
largest deviations in PSD similarity (compare Figures 10 and 8). As
such, spending more time and effort for fine-tuning sounds did not
result in more accurate solutions.

6.2 Lessons Learned

Efficiency does not reflect user satisfaction. Objective mea-
sures such as time to completion and user activity (which we mea-
sured by counting user interactions with certain UI functionalities)
seem to correlate positively with user approval of the Ul they are
using. Therefore, time efficiency should not be regarded as some-
thing desirable when designing parameter search Uls. This was also
reflected in our results, where users of the slider array VMM were
significantly slower than baseline participants and substantially
slower than users of the sphere VMM during the reproduction task
sections.
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Temporal constraints limit creative output. Time con-
straints can heavily impact both temporal measures (such as time
to completion) and cumulative measures such as user activity. From
our data we observed that participants in the baseline condition
spent more time in the creative task sections and showed a slightly
increased number of interactions. This could be due to them having
less tasks to fulfill in the time frame they were paid for. We assume
that these effects also negatively affected the users’ likeliness to
experience the state of flow or even their perceived self-efficacy,
which might be a reason for us not observing any significant ef-
fects within these measures. Thus, we recommend giving users the
option to exceed time limits when designing similar studies.

7 CONCLUSION & OUTLOOK

In this paper, we presented a new GUI-based approach to both
providing structure and the ability to interact with input latent
spaces for GANSs in a creative and musical context. Furthermore,
we presented the results of a user study in which we evaluated
two distinct GUI designs (Vector Manipulation Modules or VMMs)
which were integrated into a WaveGAN-based drum sequencer,
one using three and the other using two spatial dimensions. From
investigating user behavior, self-assessment questionnaires, and
open feedback we conclude that usability and pragmatic qualities
of the 2D-version (Slider Array) were heavily appreciated by par-
ticipants, while the emphasized visual aesthetics of the 3D-version
(Fibonacci Sphere) seemed to be less relevant for study participants.
Further, we found that participants used the convergent search
functions that our VMMs provide more often than purely random-
ized/divergent search methods, indicating that users appreciated
having the possibility to directly interact with a GAN on a detailed
level.

In the future, we aim to research more methods and concepts
for communicating affordances for latent space vectors. Further,
we plan to explore the potential of immersive technologies such
as Virtual or Augmented Reality to assess the applicability of the
three-dimensional approach by using hardware that is built for
interaction in three spatial dimensions. Also, we aim to conduct
future studies that investigate the potential of our approach in
environments and use cases that are solely designed to support
creativity.
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