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Abstract—Analog least mean square (ALMS) loop is a promis-
ing mechanism to suppress self-interference (SI) in an in-band
full-duplex (IBFD) system. In this letter, a general solution
for the weighting error function is derived to investigate the
performance of the ALMS loop employed in any IBFD system.
The solution is then applied to IBFD systems with single carrier
and multi-carrier signaling respectively. It is shown that due
to the cyclostationary property of the transmitted signal, the
weighting error function in the multi-carrier system varies more
significantly than that in the single carrier one. Therefore, if the
ALMS loop can perfectly mimic the SI channel, SI in the single
carrier system can be suppressed to a much smaller level than
that in the multi-carrier counterpart.

Index Terms—In-Band Full-Duplex, self-interference cancella-
tion, and ALMS loop.

I. INTRODUCTION

In-band full-duplex (IBFD) transmission is a promising solu-
tion to improve the efficiency of frequency spectrum utilization
[1]. It is also regarded as a key technology for the next
generation mobile broadband networks [2]. To enable IBFD,
the most crucial issue is to mitigate the self-interference (SI)
caused by the transmitter to its co-located receiver. Among
various approaches proposed in the literature, a closed-loop
multi-tap filter is proved as the most effective one in the radio
frequency (RF) domain especially for wideband applications
[3]. This multi-tap adaptive filter can be implemented in the
analog domain by employing least mean square (LMS) prin-
ciple. However, conventional LMS loop requires an integrator
which is difficult to build at RF stage. As a result, many
existing SI cancellation filters implemented the LMS loop at
baseband stage with additional down-conversion circuits [4],
[5]. Some others even used dedicated digital modules with
sophisticated algorithms to control the weighting coefficients
[3], [6]. Obviously, these additional blocks consume more
power and produce further noise and interference to the
receiver.

An LMS loop purely implemented at RF stage, so called
analog LMS (ALMS) loop, was proposed in [7] where a low-
pass filter (LPF) was used to replace the ideal integrator. The
behaviors of the ALMS loop were investigated by examining
the weighting error function. This is the first paper considering
the cyclostationary properties of the transmitted signal in
regards to the behavior of the cancellation circuit. However,
the analysis was only conducted for a single carrier system,
and the solution for weighting error function was only derived
for the specific root raised cosine (RRC) pulse shaping.
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In this letter, we firstly extend the solution of the weighting
error function in a general case. This general solution can
be applied to investigate the performance of the ALMS loop
employed in any IBFD system. It is revealed that, due to the
cyclostationary effects of the transmitted signal, the weighting
error function cannot converge to a stable value, but it varies
periodically. Consequently, there always exists an irreducible
SI whose power depends on the variation of the weighting
error function. The solution is then applied to compare the
performance of the ALMS loop in a single carrier system to
that in a multi-carrier such as an orthogonal frequency division
multiplexing (OFDM) system. We show that the convergence
speed of the weighting error function is the same in both cases
and depends on the loop gain. However, the weighting error
function in the single carrier system has a smaller variation
than that in the OFDM case. The irreducible interference
suppression ratio lower bounds (ISRLBs) are also derived for
the two systems respectively. Comparison between them shows
that more SI cancellation can be ultimately achieved for the
single carrier system. Hence, the main contribution of this
letter is the general solution for the weighting error function
which can be used as a key to estimate the ultimate level of
SI cancellation obtained by the ALMS loop. ISRLB is a very
important performance metric in designing the whole IBFD
system.

The rest of this letter is organized as follows. Section II
describes the mathematical models of the transmitted signals
and the structure of the ALMS loop. In Section III, we derive a
general solution of the weighting error function for the ALMS
loop and compare its performance in single carrier and OFDM
systems. Finally, conclusions are drawn in Section IV.

II. SIGNAL AND SYSTEM DESCRIPTION

A. Signal Models
Consider an IBFD system including a baseband part which
can operate in either single carrier or OFDM mode and an
RF part employing an ALMS loop. The transmitted RF signal
is expressed as x(t)=Re{X(t)e2πfct} where fc is the carrier
frequency, and X(t) is the baseband equivalent which is
further denoted as Xs(t) in the single carrier mode and Xo(t)
in the OFDM mode. Mathematically, Xs(t) and Xo(t) can be
expressed as

Xs(t)=
∞∑

i=−∞
aip(t−iTs) (1)

and

Xo(t)=

∞∑
n=−∞

∞∑
m=−∞

Nst/2∑
k=−Nst/2,k 6=0

ak,me
j2π kN(n−mToTs)

·w
[
n−mTo

Ts

]
p(t−nTs) (2)



IEEE COMMUNICATIONS LETTERS, VOL. XX, NO. XX, SEP 2017 2

respectively, where ai, and ak,m are the i-th data symbol
in the single carrier system and the data symbol on the k-
th sub-carrier of the m-th OFDM symbol respectively; Ts
is the symbol period of the single carrier system and also
the sample period of the OFDM system; To is the OFDM
symbol period; Nst is the total number of data subcarriers;
N is the number of samples in one OFDM symbol exclud-
ing cyclic prefix; w[n] is the discrete windowing function
applied to an OFDM symbol; and p(t) is the pulse shaping
function. The root mean square amplitude of the transmitted

signal is defined as VX=
√

1
T

∫ T
0
E{|X(t)|2}dt, where E{.}

stands for expectation; T is the period of transmitted data
symbol, i.e., Ts or To. The complex data symbols ai and
ak,m are assumed to be independent to each other in single
carrier and OFDM systems respectively. The autocorrelation
function of the transmitted baseband signal X(t) is defined
as Φ(t,τ)=E{X∗(t)X(t−τ)}. With the symbol independence
assumption, the autocorrelation functions of single carrier and
OFDM signals can be derived as

Φs(t,τ)=

∞∑
i=−∞

p∗(t−iTs)p(t−τ−iTs) (3)

and

Φo(t,τ)=

∞∑
l=−∞

∞∑
l′=−∞

Nst/2∑
k=−Nst/2,k 6=0

e−j2π
k
N(l′−l)

·w[l]w[l′]g(t−lTs,(l
′
−l)Ts+τ) (4)

respectively, where g(t,τ)=
∞∑

m=−∞
p∗(t−mTo)p(t−mTo−τ).

We see that Φs(t,τ)=Φs(t+Ts,τ) and Φo(t,τ)=Φo(t+To,τ)
for all t and τ . Therefore, both transmitted signals Xs(t) and
Xo(t) can be treated as wide-sense cyclostationary processes.
B. ALMS Loop
The architecture of the ALMS loop proposed in [7] is shown in
Fig.1. This is an L-stage multi-tap filter in which each tap has
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Fig. 1: The ALMS loop structure.
a fixed delay Td. To avoid spectral overlapping, Td is chosen as
Td≤Ts. The cancellation signal y(t) is generated to cancel the
SI z(t) included in the received signal r(t)=z(t)+s(t)+n(t)
where s(t) is the received signal from a remote transmitter,
and n(t) is the additional Gaussian noise. The residual signal
d(t) is amplified by the low noise amplifier (LNA) and
multiplied using the I/Q demodulation architecture with the
delayed versions of the transmitted signal x(t). The outputs
of the l-th I/Q demodulator are filtered by respective Resistor-

Capacitor (RC) LPFs with constant α (α=1/RC) to generate
the complex weight coefficient wl(t) which is derived in [7]
as

wl(t)=
2µα

K1K2

∫ t

0

e−α(t−τ)[r(τ)−y(τ)]

·X(τ−lTd)ej2πfc(τ−lTd)dτ (5)
where K1 and K2 are the dimensional constants of multipliers
in the I/Q demodulator and I/Q modulator respectively; and
2µ is the gain of the LNA. Assume that the SI channel is
modeled as an L-stage multi-tap filter where each tap has a
coefficient h∗l and delay Td, and hence the baseband equivalent
of the SI z(t) can be expressed as Z(t)=

∑L−1
l=0 h

∗
lX(t−lTd).

Since the cancellation signal y(t) is constructed as y(t)=

Re
{∑L−1

l=0 w
∗
l (t)X(t−lTd)ej2πfc(t−lTd)

}
, the performance of

the ALMS loop can be determined by the weighting error
function ul(t)=hl−wl(t)ej2πfclTd. Its expected value ūl(t) is
derived in [7] as

ūl(t)=hl−
µα

K1K2

∫ t

0

e−α(t−τ)
L−1∑
l′=0

ūl′(τ)Φ(τ,(l−l′)Td)dτ. (6)

This equation shows that the weighting error function not only
depends on the loop parameters α, µ and K1K2 but also relates
to the autocorrelation function of the transmitted signal, and
thus the cyclostationary properties will have significant impact
on the ALMS loop performance.

III. CYCLOSTATIONARY ANALYSIS

A. General Solution of Weighting Error Function
It is very difficult to solve (6) in a general case. However, if
the autocorrelation function of the transmitted signal satisfies
that

Φ(t,τ)=

{
V 2
XΦ̃(t,0), for τ=0

0 for τ=integer multiples of Td
(7)

where Φ̃(t,0) is the normalized autocorrelation function, (6)
can be simplified as

ūl(t)=hl−αµA2

∫ t

0

e−α(t−τ)ūl(τ)Φ̃(τ,0)dτ (8)

where A2=V 2
X/K1K2. Taking the differentiation with respect

to t on both sides of (8), we have
dūl(t)

dt
=µA2α2

∫ t

0

e−α(t−τ)ūl(τ)Φ̃(τ,0)dτ−µαA2ūl(t)Φ̃(t,0)

=α
[
hl−ūl(t)

]
−µαA2ūl(t)Φ̃(t,0)

(9)
which can be further rearranged in the form of the ordinary
differential equation (ODE), i.e.,

dūl(t)

dt
+α
[
1+µA2Φ̃(t,0)

]
ūl(t)=αhl. (10)

The solution for the homogeneous form of the ODE, i.e.,
U ′(t)+α

[
1+µA2Φ̃(t,0)

]
U(t)=0 can be found by rearranging

it as
U ′(t)

U(t)
=−α

[
1+µA2Φ̃(t,0)

]
. (11)

Integrating both sides from 0 to t, we get lnU(t)=−α
∫ t

0

[
1+

µA2Φ̃(τ,0)
]
dτ+lnU(0) so that

U(t)=U(0)e
−α

∫ t
0

[
1+µA2Φ̃(τ,0)

]
dτ
. (12)

Replacing U(0) by a function f(t), ūl(t)=

f(t)e−α
∫ t
0

[
1+µA2Φ̃(τ,0)

]
dτ is the solution for the

non-homogeneous form of the ODE. Taking the
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differentiation of ūl(t) and substituting it into (10)

we get f ′(t)=αhle
−α

∫ t
0

[
1+µA2Φ̃(τ,0)

]
dτ . Therefore,

f(t)=αhl
∫ t

0
eα

∫ τ
0

[
1+µA2Φ̃(v,0)

]
dvdτ+C where C is any

constant. The solution for ūl(t) is thus

ūl(t)=
[
αhl

∫ t

0

eα
∫ τ
0

[
1+µA2Φ̃(v,0)

]
dvdτ+C

]
·e−α

∫ t
0

[
1+µA2Φ̃(τ,0)

]
dτ

=
[
αhl

∫ t

0

e−α(1+µA2)(t−τ)eαµA
2
∫ τ
0

[
Φ̃(v,0)−1

]
dvdτ

+Ce−α(1+µA2)t
]
e−αµA

2
∫ t
0

[
Φ̃(τ,0)−1

]
dτ.

(13)

When αµA2
∫ τ

0
[Φ̃(v,0)−1]dv�1 and t�1/α(1+µA2),∫ t

0
e−α(1+µA2)(t−τ)eαµA

2
∫ τ
0

[
Φ̃(v,0)−1

]
dvdτ≈ 1

α(1+µA2). There-

fore, ūl(t)≈
[

hl
1+µA2+Ce

−(1+µA2)t
]
e−µA

2α
∫ t
0

[
Φ̃(τ,0)−1

]
dτ .

From the initial condition that ūl(0)=hl we have C=hl
µA2

1+µA2,
and hence the final solution is

ūl(t)=
[
hl

1+µA2e−α(1+µA2)t

1+µA2

]
e−µA

2αq(t) (14)

where q(t)=
∫ t

0

[
Φ̃(τ,0)−1

]
dτ .

Due to the cyclostationary properties of Φ̃(τ,0), we see
that e−µαA

2q(t) is a periodical function so that ūl(t) varies
periodically. If there was no cyclostationary effect, the weight-
ing error function, denoted as ŭl(t), would have the expec-

tation E{ŭl(t)}=hl1+µA2e−α(1+µA2)t

1+µA2 , which would converge
to a stable value hl

1
1+µA2 when t�1/α(1+µA2). In this

case the residual SI could be further removed in the digital
domain. However, the presence of cyclostationary effect in
the residual SI makes it impossible to be completely removed
in digital domain. Thus there always exists an irreducible
interference whose power PII is determined by the variation
between ul(t) and ŭl(t). The expected value of this variation
is denoted as ũl(t)=E{ul(t)−ŭl(t)}=hl 1

1+µA2(e
−µA2αq(t)−1)

when t�1/α(1+µA2). Since E{|X|2}≥|E{X}|2 for any
random process X , the time averaged PII is

PII=
A2

2

L−1∑
l=0

1

T

∫ T

0

E
{∣∣ul(t)−ŭl(t)∣∣2}dt

≥A
2

2

L−1∑
l=0

1

T

∫ T

0

∣∣∣E{ul(t)−ŭl(t)}∣∣∣2dt=A2

2

L−1∑
l=0

1

T

∫ T

0

|ũ(t)|2dt

=PI
1

T

∫ T

0

[ 1

1+µA2
(e−αµA

2q(t)−1)
]2
dt≈PI

1

T

∫ T

0

[αq(t)]2dt

(15)
where PI=A2

2

∑L−1
l=0 |hl|2 is the normalized interference power.

Based on the lower bound of PII, the irreducible interference
suppression lower bound (ISRLB) defined as

ISRLB=
PI

1
T

∫ T
0

[αq(t)]2dt

PI
=

1

T

∫ T

0

[αq(t)]2dt (16)
can be used as a measure to compare the performance of
the ALMS loop for different types of the transmitted signal.
Therefore, ISRLB is an important figure to be considered in
the cancellation design process. In the following section, we
compare the performance of the ALMS loop in a single carrier
system with that in a multi-carrier one to show the impact of
cyclostationary properties.
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Fig. 2: One period of g(t,τ) with To=80Ts.
B. Single Carrier Versus OFDM
To apply the above solution of the weighting error function
of the ALMS loop to the two systems, we firstly examine
their respective autocorrelation functions. For a single carrier
system with RRC pulse shaping function, it is shown in [7]
that Φs(t,τ) satisfies (7) with a closed-form as

Φs(t,τ)≈

{
V 2
X

(
2βs
π cos

2πt
Ts

+1
)
, for τ=0

0, for τ=integer multiples of Ts
(17)

where βs is the roll-off factor of the RRC pulse shaping
function. Hence, q(t) for the single carrier system is derived
as qs(t)=Tsβsπ2sin

2πt
Ts [7, Eq.(17)]. In case of the multi-carrier

system, an IEEE802.11a baseband is taken as an example.
We firstly examine the autocorrelation g(t,τ) of the pulse
shaping function p(t) introduced in (4), which is a periodical
function of the period To. One period of g(t,τ) with the
power of p(t) normalized to 1 is shown in Fig. 2. Obviously,
g(t,τ)≈0 when τ is any integer multiple of Ts, and hence the
autocorrelation function of this OFDM signal at τ=0 becomes
Φo(t,0)=Nst

∑∞
l=−∞w

2[l]g(t−lTs,0) with the period To. For
simplicity, one period of the convolution of w2[l] and g(t,0)
can be further approximated as a continuous window w2(t).
Therefore, the autocorrelation function of the OFDM signal
has a closed form of a periodical function of t whose period
contains the continuous window w2(t), i.e.,

Φo(t,(l−l′)Td)≈

{
V 2
X

∑∞
m=−∞w

2(t−mTo), for l=l′

0, for l 6=l′
(18)

where w(t), 0≤t≤To, is the normalized continuous window-
ing function such that 1

To

∫ To
0
w2(t)dt=1. For the discrete win-

dowing function recommended in the IEEE802.11a standard
[8], after conversion to the continuous function and normal-
ization, we have expression of the windowing function w(t)
as

w(t)=

√
4(1+βo)

4−βo


sin2(π2( tT1

)) 0≤t<T1

1 T1≤t<T2

sin2(π2(To−tT1
)) T2≤t<To

(19)

where T1=βoTo/(1+βo) and T2=To/(1+βo) with βo as the
roll-off factor of the windowing function. Applying the above
solution, we find the OFDM version of the q(t) function as

qo(t)=



5(βo−1)
2(4−βo)t−

2βoTo
(4−βo)πsin(πtT1

)+
βoTo

4π(4−βo)sin(2πt
T1

) 0≤t<T1

5βo
4−βo(t−To/2) T1≤t<T2
5(βo−1)
2(4−βo)(t−To)+

2βoTo
(4−βo)πsin(π(To−t)

T1
)

− βoTo
4π(4−βo)sin(2π(To−t)

T1
) T2≤t<To.

(20)
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Fig. 3: Normalized weighting error functions with the loop
gain µA2=1000, αTs=0.003, To=80Ts, and βs=βo=0.25.
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Fig. 4: Normalized weighting error variation with the loop
gain µA2=1000, αTs=0.003, To=80Ts, and βs=βo=0.25.

From qs(t), qo(t), and (14) we can obtain the weighting error
functions for the single carrier and OFDM systems as ūl,s(t)
and ūl,o(t) respectively. To compare the performance of the
ALMS loop in the two systems, the convergence curve of
the normalized weighting error function ūl(t)/hl for the two
cases under loop gain µA2=1000, αTs=0.003 and To=80Ts
are plotted in Fig. 3. The normalized variation ũl(t)/hl is
presented in Fig. 4. The insets in Fig. 3 and Fig. 4 show
a closer look for the ūl,s(t) and ũl,s(t) respectively.

From Fig. 3, it can be concluded that with the same loop
gain µA2 and the RC constant α, the convergence speeds
of ūl,s(t) and ūl,o(t) are the same for both cases of the
transmitted signals. Moreover, both ūl,s(t) and ūl,o(t) do not
converge to a stable value, but they vary with periods Ts and To
respectively. In terms of variation, as shown in Fig. 4, ũl,s(t)
varies in a smaller range than ũl,o(t) does. Thus, the ISRLB
of the single carrier system is expected to be smaller than that
of the OFDM counterpart. Substituting qs(t) and qo(t) into
(16), we obtain the ISRLB for the single carrier and OFDM
systems as ISRLBs=1

2

(
αTs

βs
π2

)2
, and

ISRLBo=
α2T 2

oβ
2
o

(4−βo)2(1+βo)2

{
25
12(1−βo)

2+ 5βo
16π2(81−55βo)

}
respectively. Putting the ISRLBs and ISRLBo together in
Fig. 5 as functions of αTs and various values of the roll-off
factors βs, βo, we see that, with the same value of βs and βo
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Fig. 5: ISRLB of the two systems with various values of βs
and βo.
except for βs=0 and βo=0, ISRLBs is much smaller than
ISRLBo. It means that when the ALMS loop has exactly the
same tap spacing as the SI channel, the SI in the single carrier
system can be suppressed to a much lower level than that in the
ODFM system. The reason is that the weighting coefficients
of the ALMS loop are affected by the autocorrelation function
of the transmitted signal as we have analyzed. As the period of
an OFDM symbol is much longer than that of a data symbol in
the single carrier system, the weight coefficients in the OFDM
system vary more significantly.

IV. CONCLUSIONS

The general solution for the weighting error function is derived
to reveal the significant impacts of cyclostationary properties
of the transmitted signal on the performance of the ALMS
loop. Applying this solution to both single carrier and OFDM
IBFD systems, we show that, given the same loop gain and
other parameters, the SI can be potentially canceled more
effectively to a smaller level of ISRLB in the single carrier
system than that in the OFDM system due to the different cy-
clostationary properties of the transmitted signals. Determining
the ISRLB is an important consideration in the SI cancellation
design process.
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