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Gene expression and regulation may be viewed as a parallel parsing
algorithm—translation from a genomic language to a phenotype. We
describe a model of ‘gene expression and regulation based on the operon
model of Jacob and Monod. Operons are groups of genes regulated in the
same way. An artificial cellular metabolism expresses operons encoded
on a genome in a parallel genomic language. This is accomplished using
an abstract entity called a spider. A genetic algorithm is used to evolve the
simulated cells to adapt to a simple environment. Genomes are subjected
to recombination, mutation, and inversion operators. Observations from
this experiment suggest four areas to explore: dynamic environments for
the evolution of regulation, advantages of time lags inherent in the ex-
pression algorithm, sensitivity of our genomic language, and noncoding
regions on the genome. Issues relating to the application of the expression
model to evolutionary computation are discussed.

| 1. Introduction

Gene expression may be viewed as a parsing algorithm—translation
from a one-dimensional genomic language of bases to a three-dimension-
al structural language of proteins. Expression of genes occurs through-
out the lifetime of a cell and is an important component of the (on-
going) development of thé phenotype (or cell body) from the genotype
(cell DNA).

We wish to determine whether the process of gene expression is a
useful notion to apply to evolutionary computation (EC). To answer
this question we build a model that is able to test hypotheses associated
with gene expression and regulation in EC. It is important that the gene
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Figure 1. Schematic of operon structure, An operon consists of a promoter
{regularory) region followed by one or more genes, each coding for a protein.
All genes in the operon are regulated as a unit.

expression model sits at an appropriate level. It should be an abstraction
of biology so as to.embody some of the flexibility and complexity of gene
expression in real cells and it should also bear close relationships to EC
so that it can tell us something about gene expression in the context of
EC.

The model we present in this paper, therefore, sits between biology
and EC. It is a model of a single-celled organism that inhabits a simple
environment. Populations of cells are bred with a genetic algorithm
(GA) [6] to adapt to the environment. As in a real cell, the phenotype
used in our model varies with time—the genome controls the artificial
cellular metabolism at all times.

A typical simulation of one of our cells contains around 185 enzyme-
catalyzed reactions. These are encoded into around 700 coupled differ-
ential equations each containing between 10 and 25§ terms. There are
roughly 200 chemical species and 10-enzymes. This degree of simulation

may seem to be large, but when compared to a real cell, our simulations.

are mere caricatures.

In 1961, Jacob and Monod developed the operon model of gene
expression and regulation [1, 5, 7] to explam expression in prokaryotic
cells. Prokaryotic cells are simple organisms of a single cell. They
contain no membrane-bounded organelles such as a cell nucleus. An
operon is the smallest section of the genome able to be expressed or
regulated. It is a contiguous group of genes that are regulated the same
way. Anoperon consists of a sequence of genes preceded by a regulatory
region called the promoter region (see Figure 1). In general, each gene
codes for one protein or part thereof. In our model, we encode operons
onto a bit string.

Our cell model is similar in spirit to work carried out by Rosenberg
[14] in 1967. His simulation was, by necessity, simpler than ours be-
cause of the limits of the computing machinery of the time. Other, more
recent, cell models (eg., [8]) also share similarities with our model of
expression. See [9] for a survey of related cell models.

Recently gene expression models have been developed for EC. The
grammatical evolution algorithm of O’Neill and Ryan [13] evolves code
in a given language that is provided as input to the algorithm. In
contrast, the model described in this paper evolves strings for a fixed
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parallel genomic language. Each string (or operon) encoded on our
genome acts as a separate control “thread” or program and executes in
parallel with other strings, The mechanism in our model that “runs”
the strings (i.e., the metabolism) is able to regulate activation of the
programs {i.e., operon regulation). ;

In section 2 the model of a single-celled organism in which our process
of gene expression operates is outlined. Following this the model of
genome used and complete details of the parallel genomic language
encoded on it and our method of parsing this language are given. In
section 4 gene expression and regulation is described, initially in terms
of a discrete model of “spider” expression and then in a continuous
rephrasing more in keeping with the cell model.

After describing our model, we present results from an experiment
showing that cells using the gene expression algorithm may be evolved
to adapt to a simple environment. Next we discuss four questions that
may be answered by the model although we do not answer them here.
Finally we discuss how the model may be applied to EC.

It is not the goal of this paper to describe the cell model in more
detail than is required to explam the workings of gene expression and
regulation,

| 2. Overview of the cell modael

When building a model of a cell with particular focus on gene expres-

sion and regulation we feel that it is important to consider the genotype

as a string in some well defined genomic language—or some representa-
tion of a (pseudobiological) computer program on a (mostly read only)
storage medium. In our model (and in biology) the genome is a highly
parallel program. The phenotype may be regarded as a kind of mem-
ory and computer. In our model, different chemical species (and their
relative concentrations) act as a memory and the way that the chemical
species interact (via reactions in the metabolism) represents the com-
putational machinery. The algorithm that generates a phenotype can
be viewed as a sort of parsing algorithm and is part of the metabolism
or computational machinery. It takes a program (genotype) in a paral-
lel genomic language, parses the string from this language, and creates
computational elements (enzymes) that manipulate the memory loca-
tions of the computer (i.e., the concentrations and kinds of chemical
species).

The cell model is an abstraction of a biological cell. The cell is
assumed to be a single “well-stirred” vessel containing no organelles.
Each cell inhabits a simple environment. The environment consists of
a very large well-stirred vessel consisting of a small number of simple
chemical species held at fixed concentration. No reactions occur in
the environment. Some of the chemicals in the environment are simply
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building blocks for other chemicals or a species th.  can be used for
expressing genes.

Our genome encodes bases which are tokens of a genomic language.
When read in sequence, the bases encode sentences that specify a set
of simulated protein molecules able to be generated in the cell. The
simulated protein molecules act as enzymes. As in real biology, enzymes
permit only a small subset of all the possible chemical reactions to occur
in the cell. The entire set of chemical reactions that may occur in the
artificial cell is called its metabolism. Indirectly, through the enzymes,
the genome controls the metabolism and hence the cell. The metabolism,
however, regulates the genome (by turning on or off genes) and actually
produces the simulated enzyme molecules.

Five main processes are embodied in the simulated metabolism.

» Modification of chemicals by reactions caialyzed by enzymes.
» Production of proteins by gene expression and regulation.

® Degradation of proteins into their constituent monomers.

s Growth and shrinkage of the cell.

» Diffusion of chemicals through the cell membrane.

Chemical polymers are modeled as a string of digits according to the
model proposed by Farmer, Kauffman, and Packard [4] and used by
Bagley and Farmer [2] and Bagley, Farmer, and Fontana [3]. Each
digit represents one of 10 possible artificial monomers. 10 monomers
were chosen to permit combination into chemical species of consider-
able complexity. The chemical “shape” (i.e., the list of digits) specifies
how the chemical may interact with other chemicals. The term chem-
ical species means all the molecules (in the cell) that have the same
(particular) shape. ‘

The chemical reactions we model are an abstraction of polymer con-
densation and cleavage reactions. Polymer condensation reactions join
two polymers into a longer polymer and cleavage reactions cut a poly-
mer into two shorter molecules. Pairs of condensation and cleavage
reactions may be viewed as one reversible reaction. The direction of
the reaction (condensing or cleaving) depends on the relative concentra-
tions of the long polymer and the two shorter polymers. The number
of cleavage and condensation reactions that may occur for a given set
of polymer strings is very large, so we model only reactions that are
catalyzed by an enzyme. When catalyzing a reaction, the closer the
shape of the enzyme is to the shape of reactants (i.e., the more specific
the enzyme), the faster the reaction can occur.

The chemical species and the five metabolic processes listed above are
encoded into a large system of coupled nonlinear ordinary differential
equations.
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Associa. .a with the cell is a semipérmeable cell membrane. The
size of a cell is determined by the number of cell membrane molecules
associated with the cell. In this model, cells are assumed to be plump
spheres filled with water. The size of this sphere is determined by the
surface area of the cell membrane which, in turn, is specified by the
number of cell membrane molecules. Growth of the cell occurs as
the result of an increase or decrease (shrinkage) in the number of cell
membrane molecules and, in turn, the surface area of the cell.

Membrane molecules are not modeled explicitly as a separate chemi-
cal species, but their number may be changed under the influence of two
families of chemical species. One family increases the number of mem-
brane molecules (“builders”), whilst the other family decreases them
(“breakers”). The cell controls the relative concentrations of each of
these families to maintain the size of the cell.

A slow background diffusion of chemicals through the cell mem-
brane is modeled. Chemicals that diffuse through the semipermeable
membrane are called permeants. Proteins are assumed to be too large
to pass through the cell membrane so only nonprotein chemical species
are affected by diffusion. The speed of diffusion is proportional to the
surface area of the cell, to the concentration gradient of the perme-
ant molecule, and inversely proportional to the size of the molecule.
The concentration gradient of a molecule is the difference between the
concentration of the molecule inside the cell and in the environment.
Size of a molecule is estimated as the cube of the number of monomers
comprising its length.

L3. Model of the genome

A genome consists of a string of binary values. Blocks of four bits are
read from the string and are interpreted as tokens from a genomic lan-
guage. When read in order, the tokens specify the structure of proteins
to be used in the cell.

At the highest level, we interpret the genome as a list of operons
separated by noncoding regions (see Figure 1). Our language dissociates
genes from particular loci.

Four bit blocks are read from the genome bit string. The 16 possible
coded words are divided into 10 digits (0000, to 1001,) and six control
codes (1010, to 1111,). The 10 digits are used to specify monomers to
build into proteins or as parts of keys for gene regulation. The remaining
six bases encode four special codes: <start operon>(1010,,1011,),
<start enzyme> (1100,, 1101,), <start carrier>(1110,), and
<end operon>(1111,). Figure 2 shows an example of how the tokens
may be combined to build an operon.

Promoter regions contain a sequence of bases that specify a key used
to switch the operon on or off. As in biology, we classify operons
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<start Switch| <start 5 3 2 <start 0 i 7 <end operon> or
operon> | Data | enzyme> carrier> <start operon>

Figure 2. Example of operon structure. The fine grained structure of an
operon containing two genes. Regulatory information occurs after the <start
operon> code. Following this are protein/gene specifications. The first gene
codes for an enzyme protein with shape “532.” The second gene codes for a
carrier protein with shape “017.”

into three types depending on how they are regulated: constitutive,
repressible, and inducible.

» Constitutive operons are always active. They express proteins continu-
ally. ‘

= Repressible operons are active unless a matching key (i.e., a switch chem-
ical) is present. Gene expression, for these operons, may be repressed
under favorable conditions.

= Inducible operons are inactive unless an appropriate key is present. That
is, these operons may be induced to express genes under the right condi-
tions.

For repressible and inducible operons a key is associated with reg-
ulation. Any chemical species in the metabolism may act as a key
providing its shape matches the key specification in the promoter region
of the operon. The closer the shape of a chemical is to the key specifica-
tion of an operon, the more readily that chemical will be able to change
the activation of the operon.

The type of operon is determined (in our model) by the tokens found
in its promoter region. Constitutive operons result when there are
less than two numeric bases in the promoter region. An operon is
repressible if the first base in the promoter region represents an even
number and inducible if the first base is odd. We chose this strategy for
determining the type of operon so as to avoid biasing the code towards
either inducible or repressible operons. The remaining bases in the
promoter region specify the key (or switch chemical) that may be used
to regulate the operon. The strength of activation of an operon to a
particular switch chemical depends on the closeness of match between
the key in the promoter region and the shape of the switch chemical,
that is, its specificity.

Gene specifications follow the promoter region. Each gene begins
with the <start enzyme> or <start carrier>code. Bases fol-
lowing this code describe the monomers that will make up the shape
of the protein. An enzyme is the result of a <start enzyme> gene
and a carrier protein arises from a <start carriers> code. The gene
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continues until the next special code. If this next special code is <start
enzyme> or <start carriers>, another gene begins. If, however, it

is an <end operons> or <start operon> code, then the enzyme or

carrier protein results and the operon ends.

More bit patterns are used for some special codes than others. This
does not cause problems for the GA because selection removes poor
genomes. It does, however, stop the encoding scheme from having bit
patterns that do not code for valid symbols. Such a situation would un-
necessarily expand the genome search space and decrease the efficiency

of the GA.

1 3.1 Parsing the parallel genomic language

The Backus—Naur form description of the grammar for generating valid
operon strings is given in Table 1. The language dissociates genes from
particular loci. This language is context-free, which means that it may
not be parsed by a deterministic finite state automaton. However, it
is possible to parse a genome with a modified deterministic finite state
automaton. The finite state automata accumulates information about
the parsing operation in variables. For details of the modified finite state
automata see [9]. It is important to stress that we are not implying that

<operon> ::= <startoperon> <operonbody>
<operonbody> ::= <promoter> <genelist>
<operonbody> ::= <genelist>

<promoter> ::= <switchtype>

<promoter> ::= <switchtype> <baselist>
<switchtype> ::= <repressible> | <inducible>
<repressible> ::= 0|2 14| 6|8
<inducible> ::= 1| 3| 5] 719

<genelist> ::= <endofoperon>

<genelist> ::= <enzyme> <genelist>
<genelist> ::= <carrier> <genelist>
<enzyme> ::= <startenzyme> <base> <baselist>
<carrier> ::= <startcarrier> <baselist>
<baselist> ::= <base> <baselist>

<baselist> ::= <base>

<base> ::= 0] 11213141516l 7]1819
<endofoperon> ::= <endoperon> | <startoperon>
<startoperon> ::= a | b

<startenzyme> ::= c | @

<startcarrier> ::= e

<endoperon> ::= f

Table 1. Backus-Naur form statement for the parallel genomic language used to
encode genes in an operon. The genome contains strings in this language.
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the parsing operation is accomplished with one molecule: the finite state
automaton is an abstraction of a group of molecules working together.

l 4. Gene expression and regulation

Protein production in biological cells is a complex multistage process
with stages occurring at different places in a cell. This allows the cell
fine control over production of proteins [1]. However, in our model
we are interested only in the basic idea that information encoded in a
genome guides the creation of proteins and that this production can be
regulated. We have, therefore, combined the processes of transcription
and translation into one operation that is performed by an entity called
a spider.

Spiders should be viewed as an abstraction of complex protein ma-
chinery that is able to (i) locate the start of operons; {ii) read and identify
bases on the genome; and (i#f) produce protein strings by traversing the
genome. The analogy is of a spider moving along a surface (the genome)
spinning a strand of its web (a protein chain),

A reading head is often called a “turtle” in computer science. Turtles
may also draw a line or path from their movements through a two-
dimensional space. We chose to introduce the new term spider because
this entity produces a strand as well as reading.

Although combining transcription and translation into one process
simplifies our model considerably, it also limits the kinds of control that
may be exerted over the process of gene expression. However, two other
forms of indirect gene regulation are also modeled: regulation of the
amount of mRNA (or its analogue in our model, spiders) available to
the cell, and competition in the metabolism for protein building blocks
(amino acids in real cells or the monomers in the range [0, 9] for our
model).

I 4.1 A discrete spider model

Spiders are modeled as a family of similarly shaped chemicals. Speed of
initiation of transcription for a spider is proportional to the similarity
of the shape of the spider chemical to an arbitrary but fixed “ideal”
spider. The motivation behind this “blurriness” of spider shape and
transcription ability is to encourage evolution to find spiders. A hard
distinction between spider and nonspider makes discovery of spiders
by evolution more difficult. The problem of spider discovery in such a
scheme becomes akin to the “needle in the haystack™ problem which
is known to be difficult to solve because neighborhood information (in
genome space) is not helpful.

We imagine a population of spider molecules crawling along the
genome reading tokens (Figure 3).  With each step, a spider adds a
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Figure 3. Overview of the discrete model of operon expression with spiders
(without regulation). (a) A pool of molecules exist with each molecule having
the property of being able to read genes and produce proteins. Each molecule
is called a spider. Spiders in the pool are free and are not yet expressing genes.
(b) A spider leaves the pool and binds to the promoter region of a random
operon. Regulation of operons occurs at this stage of our model but is not
shown in this digram. (c) The spider crawls along the genome. It reads the base
at its current position, appends the matching monomer to a growing protein
molecule that it is “spinning” and moves to the next base. (d) When the spider
encounters the end of a gene it releases the protein into the metabolic soup of
the cell. As it starts the next gene in the operon it spins a new protein. (¢) When
the spider reaches the end of the operon it releases the protein and rejoins the
pool.
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Figure 4. Regulation and activation of a repressible operon. (a) No blocker
molecule is present. A spider molecule is therefore able to initiate expression
of the operon. (b} A molecule able to bind to the operon promoter region is
present. The trimer “031” in the switching chemical binds to the promoter
region for a short time. Whilst this occurs a spider is not able to bind to the
promoter region and genes may not be expressed.

monomer to a growing protein chain that it creates. A spider may only
attach to the genome at the promoter region and leave it at the end of
the operon. As it moves from one gene to the next, the spider finishes
the protein and releases it into the metabolism. When a spider falls
off the end of an operon, it randomly joins another operon. Further-
more, a spider may only attach to an operon if the operon is ready for
transcription (switched on).

Constitutive operons (see section 3) are always ready for expression.
Spiders may attach to them at any time.

Repressible operons are active unless a “blocker” molecule is bound
to the promoter region, in which case they are turned off (see Figure 4).
Spiders may only attach to repressible operons if a blocker molecule is
not bound to the promoter region at that time.

Inducible operons function in the other way. They are inactive unless
an activator molecule is bound to the promoter (Figure 5). Molecules
bind to the promoter for only short periods. The more bases matching
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Figure 5. Regulation and activation of an inducible operon. (a) No activator
molecule is present, so spider molecules are not able to start transcription. (b) A
switch chemical that is able to bind to the promoter region is present. In this
case, a spider molecule is able to begin transcription.

between the molecule and the promoter region, the stronger the bond,
and the longer the molecule stays attached. The length of time that
a switch molecule remains bound to a promoter region is given as a
probability distribution (see section 4.2.1).

1 4.2 A continuous spider model

The gene expression scheme of section 4.1, however, is unsuitable for
our cell model because it is discrete, whilst the rest of our model is
encoded continuously using differential equations. We therefore recast
the discrete model of molecular interactions into a continuous model of
chemical reactions.

New chemical species ‘are introduced to represent the amount of
spider chemical that is bound to each token position (or base) along the
interpreted genome. These “fake” chemical species do not take part in
any other reactions. They exist only as a method of representing the
position of spiders along the interpreted genome.

Next we define a set of irreversible reactions that represent the steps
that the spider makes along the list of tokens. These reactions are
irreversible because spiders may only move forward through the list of
tokens. It must be noted that these reactions are not related to the
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polymer condensation and cleavage reactions described in section 2,
The reactions described here are operon expression reactions that build
the proteins. They are not enzyme catalyzed.

As the spider moves from one token to the next, the concentration of
spider at the previous token decreases a little and the concentration of
spider at the new position increases by the same amount.

Each step along the list of tokens, then, is rewritten as an irreversible
reaction. The two reactants of the reaction are a spider molecule bound
to the current position on the token list (S} and a monomer species (M)
that matches the token currently being read. The products of the reac-
tion are the spider molecule bound to the next token in the list (§) and
perhaps a protein (P):

S+M— S +P (1)

A protein (P) is only produced if the current token is the last in a
gene. In this respect, the notation in equation (1) is slightly atypical.

The product spider molecule (§’) becomes the reactant (S) for the
next token in the interpreted genome, thus making a biological pathway
with the chain of reactions. §’ will be either a spider from the pool or
a spider bound to the next position along the interpreted genome. The
former case applies when this reaction represents the addition of the last
monomer of the last protein of an operon. The latter case represents
the situation when there are more genes left in the operon.

4.2.1 Operon activation

In the previous section we described the continuous model of gene ex-
pression. We now wish to describe the other half of the model: gene
regulation. Regulation depends on the type of operon: constitutive,
repressible, or inducible. The regulation is modeled by changing the
reaction rate of the first transcription reaction for the operon. That is,
the reaction where the spider leaves the pool to start expression of the
first gene.

The first reaction in each expression reaction pathway, then, has an
additional parameter that gives the probability that the spider may bind
to the operon at the current time. This parameter regulates the operon
and works similarly to a variable reaction rate. In this case, the rate
“constant” for the reaction is G;Ky where G; is the activation of the ith
operon (in the range [0,1]) and K is the transcription initiation rate
constant for the spider. For all other reactions in the expression reaction
pathway a rate constant of 1 is used so as not to slow down expression.
K7 is determined by the degree of resemblance between the particular
spider molecule and an “ideal” spider shape.

The chain of reactions for expression of an operon is replicated for
each species of spider molecule because each species of spider most prob-
ably operates with a different rate K;. Different intermediary bound
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spider species are also used. These partially expressed protein species
cannot act as enzymes or ordinary chemicals, interact in any other way
with the cell metabolism, or diffuse out of the cell.

Note also that gene expression in our model is noiseless: no bases
are misread or the wrong monomer chosen.

The activation of an operon (G,) depends on the availability of chem-
icals in the metabolism that can switch the operon on or off. This acti-
vation is modeled by calculating the probability that a spider may attach
to the start of an operon.

We now describe the calculation of this probability. There is a differ-
ent probability for each of the three types of operon.

The probability of a spider binding to a constitutive operon is simple
to calculate. It is 1 because constitutive operons are always on.

With inducible and repressible operons the probability that a spider
may bind to the promoter region depends on the probability of a switch
chemical being bound.

* For inducible operons, the probability of a spider binding is equal to
the probability of an activator chemical being bound to the promoter
region at the same time (p,,).

In the case of repressible operons, the probability of a spider binding
is one minus the probability of a blocker being bound to the promoter
region (i.e., 1 —p,).

Calculation of the probability of a spider binding to the operon, then,
reduces to the problem of finding the probability of a bound switching
chemical (p,). Determination of p, is more difficult because there may
be many (#) such similarly shaped species able to bind to the promoter
region. We calculate p, by combining the probabilities of a particular
chemical species binding to the promoter in isolation {p;), which is
simpler to quantify.

The probability that one molecule of a particular chemical species j
is bound to the promoter region (ignoring other species) is

pj=1- e Kisi (2)
where s; is the concentration of species j and
K = K —. (3)
(1-g,)e™

g, is the probability that switching chemical j will not immediately bind
to the promoter region. This is calculated by examining all the possible
ways chemical j can bind to the promoter region and counting all the
positions where there are no bonds (i.e., matches) between the chemical
and the promoter region. g; is the ratio of the number of positions with
no matches to the total number of positions. For example, consider
a switch chemical j with shape “031” and switching information of a
promoter region of “710411.” There are eight positions where chemical
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j may bind to the promoter region, but only three ot these positions have
at least one bond (match) between bases. In this case, q; has value 0.6235.
The exponential part of the denominator of equation (3) specifies the
length of time chemical j will bind to the promoter region. This time
follows the Boltzmann distribution and depends on the average number
of bonds between the chemical and the promoter region (n;) and the
relative strength of each bond (b, typically 0.25 in our experiments).

The value of #; is calculated using a method similar to g;. All the
configurations between the chemical species j and the promoter region
are examined and the number of bonds for each configuration is deter-
mined. 7; is the ratio of total number of bonds in all configurations to
the number of configurations. In the example given above with a switch
chemical “031” and promoter sequence of “710411” there are a total
of four bonds in the three binding configurations. The value of #;, then,
is 1.3.

K is a constant used to calibrate the concentration of a switching
chemical with the probability that the chemical will be bound to the
promoter region. The actual value used (1.0 x 103) is arbitrary but its
general relationship with other parameters is important.

Given the probability of chemical species binding to the promoter
region in isolation p;, we may give the probability that a molecule of
one of n competing chemical species is bound to the same promoter
region as

P +(1 —pl)I(n)
pn_
1+(1-py)I(n)

=3 12 (5)
i=2 t

where # is the number of competing switch chemical species and p; is the
probability that a molecule of species 7 will bind to the promoter region
(assuming no other competition). Derivation of the above equation is
presented in appendix A,

There is a variable p, for each inducible or repressible operon on the
genome and derivatives are added to the system of differential equations:

b, _(__1-py )2 o
dt _(1+(1—p1)1(n) Z (1‘Pi)2 dt |’ (6)

i=1

(4)

Derivation of equation (6) is given in appendix A.2.

l 5. An experiment evolving cells to adapt to a simple environment

An experiment was developed to test the capabilities of the model. We
ask the question: Is it possible to evolve cells that are able to exist
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in a simple environment? A GA was used to evolve a population of
cells. Each cell is simulated in isolation inside its own environment.
The environment causes the cell to grow by bathing it in chemicals that
make the cell membrane increase. When membrane building chemicals
diffuse into the cell the number of water molecules in the cell increases
(because the cell is larger) and the concentrations of chemicals in the
cell decrease. This causes reactions to occur more slowly. At the same
time, the surface area of the cell increases and this causes diffusion to
increase.

The experiment finds pairs of genome and initial metabolic conditions
that build cells which remain stable in the simple “growing” environ-
ment.

Simulation of a cell involves building the cell from its initial chemical
concentrations and genome. Initial chemical concentrations of a cell
are derived from the final concentration values of the mother’s chemi-
cals, the mother being a random choice between the cell’s two parents.
Next, the genome is parsed into a list of operons. A graph of chemical
reactions in the cell is then determined by matching the operon list with
the available chemical species. The reaction graph is encoded into a
system of nonlinear differential equations. Additional terms are added
to equations for diffusion of chemicals through the cellular membrane.

The system of differential equations is numerically integrated to de-
termine how the cell changes over a time period. We start the numerical
integration at time (f) 0 and proceed using time steps that depend on
the smoothness of the differential equations at time ¢. The integration
ends when any of three conditions occurs.

1. The time ¢ exceeds a maximum value (1.5 x 10°).
2. The number of time steps made is more than a maximum value of 2500.

3. One of the chemical concentrations in the cell moves above the (arbitrary)
value 1.0 x 10~%, This denotes cell death due to saturation by a chemical.

When chemicals are created in the cell with concentration greater than
that of one molecule, new reactions become possible and the system of
differential equations is updated similarly to [4].

A GA with steady-state selection (e.g., [12]) and a population of 100
individuals evolves the cell models. Simulation of the cells is distributed
over a network of machines with each machine simulating only one cell
at a time. At any particular time, then, individuals in the population
may either have finished simulation, be waiting for a machine to become
available, or be in the process of being simulated. Breeding among indi-
viduals in the population occurs only when the population contains at
least 75 cells that have finished simulation. Fitness proportionate selec-
tion with the roulette wheel algorithm finds breeding pairs. Mutation is
applied with the probability of a bit mutating of 0.005.
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Exponentially distributed random numbers were used to find dis-
tances between successive crossover points on the genome and regions
between the crossover points were recombined. This algorithm has an
effect similar to two-point crossover but more crossover points are pos-
sible. The exponential distribution was parameterized so as to produce
an average of four crossover points for each pair of genomes.

The inversion genetic operator [6, 9] was also applied with probabil-
ity 0.15 of an inversion event happening to a genome.

Fixed length genomes containing 800 bits were used.

The objective function is a combination of six metrics in the range
[0, 1]. The metrics were derived with the intention of forming a canon-
ical set.

= m,: The absolute change in the volume of the cell over the simulated
period relative to a target value.

* m,: The length of time the cell was simulated.

» my: The degree of correlation between the switching regions and the
chemicals controlling cell growth.

* m,: The complexity of the metabolic reaction graph.
* m;: The number of chemicals affecting cell growth.

* mg: A parsimonious metric of the number of differential equations in the
cell.

Combined metrics were determined for each permutation of single,
double, triple, quadruple, quintuple, and sextuple of metrics. These
were calculated by multiplying the metrics together (e.g., m m,m,
mymymy,, mym,ym;). The objective function consisted of the unweighted
sum of these permutations. Additionally, the fitness of cells that died
during the simulation is halved. Our motivation behind assigning dead
cells a fitness value other than zero was to help evolution at the start
of runs. Many of the metrics conflict with each other so the maximum
fitness of 63 cannot be realized.

Initially we tried simpler objective functions consisting of only 1,
or m; and m,. However, these were not sufficient to evolve cells that
could live in the environment. We required an objective function that
helped the cell find the sorts of behavior that were required (e.g., having
genome switching regions that are similar to cell growth chemicals might
be a useful attribute). On the other hand, we wanted to give the GA
freedom to find solutions rather than programming them in ourselves.
The set of fitness metrics listed above is a compromise between these
two extremes.

B 5.1 Results

An experiment was run evolving cells in the simple environment. The
first population of cells started with random genomes and simple initial
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Figure 6. Graph showing the average and maximum fitness (y-axis) attained for
experiment. Cells are numbered sequentially with an ID as they are generated
(x-axis).

chemical ensembles. The initial chemical ensemble included a basic
set of spider chemicals and simple chemicals that a cell could use as
building blocks, but no enzymes. Figure 6 shows a graph of the fitness
attained. When cells are created from parents they are assigned a unique
identification number. Identification numbers increase for each new
cell. The x-axis represents the identification number of the cell and thus
shows each cell in the order they were created. Although this graph
shows only one run of the experiment others were conducted and the
results are representative.

Values near the maximum fitness were reached early (soon after off-
spring of the initial population are produced). A large diversity of genes
was observed in the final population of cells. This reflects the fact that
there does not appear to be one “right” solution for the experiment
(with maximum fitness) but a variety of valid approaches, all having
similar (high) fitness.

Genomes with different approaches to controlling a metabolism may
be maintained as long as valid metabolic conditions for their use also
exist. This suggests that future experiments may benefit from speciation.

It is difficult to visualize exactly how a simulated cell approaches the
problem of living in its environment. This is because of the number of
chemicals modeled: there are around 200 or so chemical species in each
simulated cell. Many chemicals have multiple uses, they may act as a
spider as well as a switching chemical, for example. Other chemicals
do not contribute to the problem in an obvious way or perhaps at
all. These chemical species are side effects of enzymes that perform
another job or of enzymes that randomly exist on the genome. Many
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chemicals exist at only very low concentration (because their constituent
polymers also exist at low concentration). The GA does not produce
tidy gene sequences where each enzyme does one thing and where there
are no extraneous genes or chemicals. This confusion of chemicals and
enzymes makes it difficult to analyze lots of cells, so here we examine
two cells, in particular, in more detail.

The first cell we looked at scored the maximum fitness (31.0092) of
the final population. We simulated the cell for a further time period
to determine its stability. For this second time period the cell scored a
fitness of 30.4144.

The cell contained five operons although only two of these had genes
that encoded enzymes. The other three operons contained carrier genes.
Of the two enzyme coding operons, one was constitutive and the other
inducible. At the start of simulation the inducible operon was 21 percent
switched on. The constitutive operon contained one gene coding for an
enzyme with shape “51709” and the inducible one contained two genes:
a carrier gene “02640” followed by the enzyme gene “137.” All of the
operons were quite short and only the one contained more than one
gene.

There were 32 enzyme-catalyzed chemical reactions in the cell. How-
ever, there were 82 chemical species and two enzyme species in this cell,
which implies that many of the chemical species in the cell were passed
to it by the mother. Five species of chemical acted as builders although
two of these were in low concentration and two in very low concentra-
tion. 15 species of chemicals could break down the membrane although
13 of these species were present in very low concentration and one other
in low concentration. The cell had three chemicals it used as spiders but
of these only one was present in high concentration.

The main strategy that this cell used was to build membrane breaking
molecules to fight against the membrane building molecules that diffuse
in. Although this appears sensible there are problems with the execution
of this approach by the cell.

The enzyme “51709” that the cell used to make membrane breaking
molecules is not sufficiently specific as it also catalyzes reactions that
create builder molecules. Furthermore, these builder molecules are long
and thus diffuse out of the cell quite slowly. The next problem with
the strategy used by the cell also relates to specificity: the cell creates a
chemical species that acts to both build and break down the membrane.
This wastes resources in the cell. The final problem with this cell is the
fact that most of the breaker molecules made by the cell are constructed
out of other breaker molecules. The disadvantage here is that whilst the
breaker molecules are being transformed they go out of solution and
cannot act to break down the membrane.

The second cell that we examined was the one from the final popula-
tion that scored the highest increase in fitness when run for the additional
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time period. It scored 24.3847 the first time and 28.9469 the second
time.

This cell contained nine operons, all containing one gene. We noticed
that cells in earlier populations tended to have operons with more genes
whereas cells in the later populations had less. Of the nine operons,
three are constitutive, four are inducible, and two are repressible. There
are four operons with enzyme genes: a constitutive operon encoding
an enzyme with shape “07,” an inducible one with enzyme “619,” a
repressible one for shape “53,” and an inducible operon with enzyme
“38.” These two inducible operons were 15 and 55 percent switched on
respectively and the repressible operon was 93 percent on at the start of
simulation. We did not investigate how the operon activations changed
throughout the lifetime of the cell. As well as the four enzymes coded
on the genome, the cell inherited another enzyme “06” from the mother
cell.

At the end of the first simulation there were 69 enzyme-catalyzed
reactions in the cell and 107 chemical species. Of these chemical species
only one was used to build the membrane and this diffuses in from
the environment. There were 46 chemical species able to break down
the membrane. Of these, only two had high concentration: one the
cell started with (shape “30”) and one species that the cell creates itself
(“96730123”). The remainder were present only in very low concentra-
tion. There were five chemical species that acted as spiders, two present
in high concentration and three in very low concentration.

This cell builds membrane breaking chemicals like the other cell.
However, unlike the other cell, it has found enzymes that are specific.
The enzymes do not create any membrane building chemicals and, in-
terestingly, the cell has found (or exploited) a chemical (having shape
“96730123”) with two favorable properties: it may act as both a spider
and a membrane breaking chemical. Additionally, this chemical is not
built from an existing membrane breaking chemical.

It may be seen in Figure 6 that the maximum fitness of cells in the run
fluctuates and even decreases at some times. This occurs because cells
sometimes develop short term strategies to solve the problem posed
by the environment. Such strategies work well for a short time and
are consequently passed on to children. Some time later, however, the
strategy starts to fail and other strategies become dominant. The reason
that a strategy may stop working lies in the fact that genes alone do
not govern the cell. It is the combination of genes interacting with a
particular chemical ensemble that dictate how a cell acts. A set of genes
that worked well in one parent may be passed to a child with a different
chemical ensemble where the genes do not function. Alternately there
may be a defect in the set of genes that takes a long time to manifest
(e.g., the slow build up of a chemical that saturates and poisons the cell).
For more details on these “myopic” cells, see [9] or [10].
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| 6. Questions

The use of the gene expression model in the experiment outlined above
encourages us to formulate four questions. We believe that our gene
expression and regulation model is sufficiently detailed to investigate
these questions and provide useful answers.

= Do we need a dynamic environment to evolve the regulation mechanisms?

= Does the artificial evolution take advantage of time lags inherent in the
expression algorithm?

» Is our genomic language sensitive to attack from genetic operators?

= How does the GA use the noncoding regions between operons?

We discuss each of these questions in turn,

6.1 Do we need a dynamic environment to evolve the regulation
mechanisms?

Although repressible and inducible operons evolved in our experiment
we do not believe they were fully utilized by cells. When looking at
cells in the final population (more than the two analyzed above) we
did not see a strong correlation between information in the promoter
switching regions and the chemicals important to the problem. Instead,
we observed short random-looking strings in the switching regions.
These strings are not specific to particular chemicals in the cell because
the strings are, in general, quite short (comprised of one to three bases).
Rather, these operons are switched by a large set of chemicals including
basic “building block” chemicals that exist in high concentration in the
cell and environment. The concentrations of large sets of chemicals will
not change quickly over time, particularly if major constituents of this
set are the high concentration “building block” chemicals which are
deliberately kept constant in the cell. This means that the activation
of these operons will not change much. They therefore act similar to
constitutive operons that are not switched fully on. However, we need
to analyze the switching regions more completely to be confident that
this observation is general. »

One explanation for why gene regulation has not been used is that it
is not necessary for cells in this environment. This is perhaps because
the environment does not present changing stimuli to the cell. An
experiment to test this hypothesis requires a more dynamic environment.

6.2 Does the artificial evolution take advantage of time lags inherent in the
expression algorithm?

Gene switching is not instantaneous: there is a time lag between a switch
chemical binding to the promoter and a change in the amount of protein
produced. This occurs because regulation affects only spiders joining
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the operon from the pool. The size of this time lag for each gene is
proportional to its distance from the promoter region and also to the
number of bases preceding the gene.

"The GA may conceivably take advantage of this time lag by (i) placing
genes that need fast switching earlier in the operon, (if) using shorter
genes when they need to be switched quickly, or (i#) using two operons
with similar promoter regions for faster gene expression and regulation
(parallel processing).

As explained above, we did not observe much use of the gene regu-
lation mechanism in our experiment. To see how the GA uses time lags
we would need to see more use of gene regulation.

However, in the cells we did examine we noticed that cells in later
populations seemed to favor short operons containing only one or two
genes. Short operons provide a benefit to cells because the enzymes in
them take less time to express (the gene expression reaction pathway is
shorter) and are, therefore, available earlier. Again, we need to system-
atically examine more cells to test whether this observation is general.

There is an interesting tension here that the GA must resolve. Short
operons and genes express faster and are useful earlier, but the short
enzymes that result tend to be less specific and therefore may have more
(possibly unwanted) side effects. Our cells need to find a balance.

J 6.3 Is our genomic language sensitive to attack from genetic operators?

The four special control codes used in our parallel genomic language
cause semantic linkages within operons. The meaning of a base in an
operon is not an intrinsic property, but is dependent on the preceding
“special” tokens. This linkage implies that genetic operators may have a
significant effect on a genome. For example, one mutation could obliter-
ate an operon by changing a <start operon> code to another token.

Experiments are required to test the sensitivity of our genomic lan-
guage. Factors such as the degree of redundancy in the genomic lan-
guage and the density of operons on the genome would appear to be
significant but further investigation with a variety of different languages
is required.

Preliminary experiments varying the rate of mutation applied to the
genome are reported in [9]. These experiments suggest that our en-
coding scheme is not unduly sensitive to high rates of mutation but this
result needs to be compared with other genomic languages with differing
amounts of redundancy.

6.4 How does the genetic algorithm use the noncoding regions between
operons?

We are interested in investigating how the GA uses the regions between
operons. We suspect that these noncoding regions may be used to store
potential new genes and parts of old operons that are no longer used.
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With such a scenario new genes would arise when a fortunate mu-
tation, inversion, or recombination occurs. The ruined operons might
store a garbled history of the genome over past generations. We would
expect that the more redundancy that exists in the genomic language,
the closer the noncoding regions are to being fully fledged operons.
This would be because only small changes are required to transform a
noncoding region to an operon.

Identification of the actual effect of noncoding regions and redun-
dancy on evolution will be a focus of our future work.

l 7. Application to evolutionary computation

We wish to understand how our model of gene expression and regulation
applies to EC and what benefits it may confer. At this point we do not
have a definitive answer, but some issues are clear.

Our model has a strong biological focus: the genes encode proteins
and a system of chemical reactions is required to effect gene expression.
The two kinds of proteins {enzymes and carriers) produced from the
genome may be viewed as two distinct types of parameters that are
found and optimized by the GA. Our gene expression algorithm allows
any number of actual instances of these types of parameters (i.e., species
of proteins) to be created.

The way that these parameters interact with the cell is interesting.
Rather than completely specify the cell, they modify an already existing
system. A child cell is comprised of a set of chemicals inherited from
the mother. As we saw in the second cell case study above, a child cell
may also inherit enzymes from the mother. This ensemble is the existing
chemical system that the genes will modify. Each enzyme specified on
the genome modifies how this chemical system functions. No enzyme
can “break” the chemical system in the sense that fitness may not be
determined. The worst effect an enzyme may have on the system is to
cause the cell to die. However, even in this case, fitness may be calcu-
lated. As well, regulation of operons means that the operons modify the
chemical system dynamically throughout the simulation.

This is different to the way many genomes work in EC where the
genes encoded on a genome completely specify a potential solution to
the problem being solved. If a gene is missing or if there is more than
one copy of a gene, a potential solution cannot be formed and fitness
may not be calculated.

We suggest that application of a gene expression model like ours to
EC requires rethinking the way that the genes apply to the potential
solutions that are evolved. Genes should act as “delta” values to the
system. They should change a system rather than define it. One way to
do this would be to assume default values for parameters of the potential
solution. Each gene would change a parameter. Different types of genes
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would change different parameters. If no genes of a particular type
existed on the genome then the parameter would not be changed and
its default value would prevail. If there were more than one gene of a
particular type then both delta values would be applied to the parameter
in some well defined way.

The first step we wish to take towards applying the expression al-
gorithm to other areas is that of returning to the discrete spider model
(section 4.1) and changing the complex chemical metabolism to a sim-
pler discrete model using finite state automata.

| 8. Conclusions

A gene expression and regulation algorithm was described that operates
within the context of a model of a single-celled organism. There is a close
relationship between the genome and metabolism. Gene expression
and regulation in the model is the result of interactions between the
metabolism and genome.

An experiment evolved cells to exist in a simple environment. Ob-
servations from the experiment lead us to formulate four questions that
may be answered using the model.

1. Do we need a dynamic environment to evolve the regulation mechanisms?

2. Does the artificial evolution take advantage of time lags inherent in the
expression algorithm?

3. Is our genomic language sensitive to attack from genetic operators?

4. How does the genetic algorithm (GA) use the noncoding regions between
operons?

Some issues with the application of our gene expression and regula-
tion model to evolutionary computation (EC) were discussed.

Appendix

l A. Derivation of gene regulation formulae

A.1 Derivation of 5, the probability that one of n competing switch chemicals
is bound to the promoter region of an operon

Initially p,, the probability that one of 7 competing chemicals is bound
to a promoter region at a given time, will be derived from first principles
in a recursive style. Firstly, observe that

n
i Lt T

D1 = T (A.1)
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where T, is the time that the ith switch chemical is bound to the promoter
region and T is the total amount of time of interest. That is, the
probability of one of the chemicals being bound is equal to the time
they are attached, divided by the total amount of time. This can be
rewritten as

n
PuaT= D Ti+ Ty (A.2)
i=1
The probability 5, may also be seen as a throughput. In that case,
we can say that the amount of time chemicals are bound is equivalent
to the throughput multiplied by the total amount of time:

1,2, (T-T,u0) (83)
i=1
n T,
T= —pl— + T,y (A.4)

Similarly, looking at only the probability of the # + 1 switch chemical
binding to the promoter, we can state

Tn+l = Pus+1 (T - Z Tl] (AS)

i=1

< T
T=) T+ (A.6)
; ! Pr+1

Solving the simultaneous equations (A.4) and (A.6) by subtracting
equation (A.6) from (A.4), we get

0= —‘12 - Z T+ Tpn - Lo , (A.7)
P =1 Prst

which simplifies to give
n T 1-p
— (Zl=1A t)pn+l( pn). (A.S)
P (1= Prn1)
Substituting equation (A.8) into (A.4) yields

T

n+l =

T = ,’»‘il T; + (Zi:lATi)pn-rl (1 —p,,). (A.9)
P (1= Puir)

Substitute equation (A.8) into (A.2):

o _ = ‘pn+1(1_bn))
anT—[ZTi](l+pA——————n(1_pn+1) : (A.10)
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Finally, substitute equation (A.9) into (A.10) and simplify to get

_ﬁu;1_+_pn_

A 1‘[’;1-—1 1_pn
P = e Ln (A.11)

T, P

l—pn—l 1-Pn

This equation is cumbersome because it is recursively defined and
of a complex nature. From looking at the forms of p,, p;, and p, a
pattern appears which suggests that there is a simpler iterative form of
equation (A.11).

Theorem 1. An iterative version of equation {A.11) exists that may be
defined as
, _Pit(l-p)Im
" 1+(1—p1)1(n)’
_ P
I(m) = ; T (A.12)

Proof. The proof that equation (A.12) is equivalent to equation (A.11)
proceeds using proof by induction.
1. Show that equation (A.12) is valid for » = 1:

P +(1=-p) 1)  py+(1-p;)0
T 1+ (1-p)I)  1+(1-p)0
=p,. (A.13)
II. Assume that p; is valid:
, _P1t(1-py)IG)

Y1+ (1-p)IG)

III. Show that p,,, follows from p; above, using the recursive form
equation (A.11):

b

(A.14)

Py P
-5~ 1-pisy

1 P,
JE S B 47
1-p; 1-p;,y

p1+{1-p1)0)

( 1+{1=p1 )10 ) + Biy

21 +(1=p ) b,

_ (1_ 1+{1py lw) 1Pins
e LS IE — (A.15)

.F
_pr-p)I) 1-p;
1 1+(1-p7 ) 1D Pir1

This simplifies to give

p1+(1—p1)(1(i)+1—‘j;1:)

1 +(1 —P1)(I(i)+ 1_,—7%,-5)

pr+{(1-p)IGi+1)

T 1+(1-p)IG+ D) (A.16)

Piv1 =

Piy1 =
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So, I follows and

p1+(1-p)I0)
pn=
1+(1—p1)I(n)

is valid for all 7. m -

(A.17)

1 A.2 Derivation of dp, /dt

The derivative of p, is required for the system of differential equations
driving the cell simulation. Each p; in p,, is a function of the concentra-
tion of the switch chemical it describes:

p;=1-—eKe, (A.18)

We may find the derivative with respect to time using the chain rule:
dp; _ dp;ds, ks ds;

At St SRl S . isl—-_—' A.19

& =& a g (A.19)

The value of ds/dt is already defined in the cell model. It is the
differential equation used to determine the rate of change of the chemical
with respect to time. Using the chain rule again, we find

b, _ 1 Oydp; A20
dt _;6p,-dt° (8.20)
This simplifies to give
di’"—( Sl )zn L (A.21)
dt  \1+(1-p,)I(n) ; (1-p) at)
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