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a b s t r a c t

The testing procedure of Yakubovich’s oscillatority property is presented. The procedure is applied for
two models of circadian oscillations [J.C. Leloup, A. Goldbeter, A model for circadian rhythms in Dro-
sophila incorporating the formation of a complex between the PER and TIM proteins, J. Biol. Rhythms,
13 (1998) 70–87; J.C. Leloup, D. Gonze, A. Goldbeter, Limit cycle models for circadian rhythms based
on transcriptional regulation in Drosophila and Neurospora. J. Biol. Rhythms, 14 (1999) 433–448]. Ana-
lytical conditions of these models oscillatority are established and bounds on oscillation amplitude are
calculated.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

During recent years an interest in studying more complex
behavior of the systems related to oscillatory and chaotic modes
has grown significantly. It was founded that important and use-
ful concept for studying irregular oscillations in dynamical sys-
tems is ‘‘oscillatority” introduced by V.A.Yakubovich in 1973
[14]. Frequency domain conditions for oscillatority were ob-
tained for Lurie systems, composed on linear and nonlinear parts
[12,14,15]. Oscillation analysis and design methods for generic
nonlinear systems were proposed in [5]. The result of [5] was
developed in [6] for nonlinear time delay systems. In [6] the pro-
posed results were applied to several biological systems, which
models can be described by nonlinear dynamical equations with
delays. Among them the model of circadian rhythms in Drosoph-
ila from works [8,9] was analyzed. The considered model from
[8] has dimension of five. In work [10] more detailed model of
circadian oscillations was proposed (with dimension 10), that
incorporates the formation of a complex between the PER and
TIM proteins. In paper [11] it was noted that circadian oscilla-
tions in Drosophila and Neurospora are closely related by the nat-
ure of the feedback loop that governs circadian rhythmicity, even
if they differ by the identity of the molecules involved in the
regulatory circuit. The simple model of circadian oscillation in
Neurospora was presented in [11] (with dimension 3).

In this paper the theory developed in [5,6] is applied to the
models of circadian oscillations in Drosophila and Neurospora from
papers [10] and [11] to derive conditions of oscillations arising in
the systems. This topic of research dealing with conditions of oscil-
latority of various circadian rhythms models is very popular in the
last years [16–19] (just to mention the latest papers). Mainly the
researches in this field are oriented on developing conditions of
periodical oscillations existence that results to rather complex
and local analysis of the models. The concept of Yakubovich’s oscil-
latority covers any types of irregular oscillations as well as period-
ical ones (without distinguishing the type of periodicity of
oscillating modes). Such relaxation allows one to simplify the test-
ing conditions, additionally, the conditions provide the restrictions
on all admissible values of parameters ensuring oscillatority for the
model (in contrast with bifurcation approach [16], where existence
of oscillations are guaranteed only locally in the vicinity of bifurca-
tion point, while values of parameters of real biological processes
can be far beyond the bifurcation).

In the following section some definitions and notations from [5]
are introduced and the procedure for oscillatority property estab-
lishing is formulated. In section 3 the model of circadian oscilla-
tions in Drosophila from [11] is considered. In section 4 the
complex model of circadian rhythms in Drosophila from [10] is
analyzed.

2. Preliminaries

Let us consider the following model of nonlinear dynamical
system:

_x ¼ fðxÞ; ð1Þ
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where x 2 Rn is the state space vector; f is locally Lipschitz contin-
uous function on Rn, f(0) = 0. Solution x(x0, t) of the system (1) with
initial condition x0 2 Rn is defined at the least locally for t 6 T (fur-
ther we will simply write x(t) if initial conditions are clear from the
context). If T = +1 for all initial conditions, then such system is
called forward complete.

As usual, function q:R+ ? R+ belongs to class K, if it is strictly
increasing and q(0) = 0;q 2 K1 if q 2 K and q(s) ?1 for
s ?1;R+ = {s 2 R:s P 0}. Notation DV(x)F(�) stands for directional
derivative of function V with respect to vector field F if function
V is differentiable and for Dini derivative in the direction of F

DVðxÞFð�Þ ¼ lim
t!0þ

inf
Vðxþ tFð�ÞÞ � VðxÞ

t

if function V is Lipschitz continuous.

Definition 1 [5] . Solution x(x0, t) with x0 2 Rn of system (1) is
called [p�,p+]-oscillation with respect to output w = g(x) (where
g:Rn ? R is a continuous monotonous with respect to all argu-
ments function) if the solution is defined for all t P 0 and

lim
t!þ1

wðtÞ ¼ p�; lim
t!þ1

wðtÞ ¼ pþ;�1 < p� < pþ < þ1:

Solution x(x0, t) with x0 2 Rn of system (1) is called oscillat-
ing, if there exist some output w and constants p�, p+ such,
that x(x0, t) is [p�,p+]-oscillation with respect to the output
w. Forward complete system (1) is called oscillatory, if for
almost all x0 2 Rn solutions of the system x(x0, t) are oscillating.
Oscillatory system (1) is called uniformly oscillatory, if for
almost all x0 2 Rn for corresponding solutions x(x0, t) there exist
output w and constants p�, p+ non-depending on initial
conditions.

Note that term ‘‘almost all solutions” is used to emphasize that
generally system (1) has a nonempty set of equilibrium points,
thus, there exists a set of initial conditions with zero measure such,
that corresponding solutions are not oscillations. It is worth to
stress, that constants p� and p+ are exact asymptotic bounds for
output w. Conditions of oscillation existence in the system are
summarized in the following theorem.

Theorem 1 [5]. Let system (1) have two continuous and locally
Lipschitz Lyapunov functions V1 and V2 satisfying for all x 2 Rn and
t 2 R+ inequalities:

t1ðjxjÞ 6 V1ðx; tÞ 6 t2ðjxjÞ; t3ðjxjÞ 6 V2ðx; tÞ 6 t4ðjxjÞ;

for t1,t2,t3,t4 2 K1 and

oV1=ot þ DV1ðx; tÞfðxÞ > 0 for 0 < jxj < X1 and x R N;

oV2=ot þ DV2ðx; tÞfðxÞ < 0 for jxj > X2 and x R N;

X1 < t�1
1 � t2 � t�1

3 � t4ðX2Þ;

where N � Rn is a set with zero Lebesgue measure, and X \ N is empty
set, X ¼ fx : t�1

2 � t1ðX1Þ < jxj < t�1
3 � t4ðX2Þg. Then the system is

oscillatory.

Note, that the set X determines lower bound for value of p� and
upper bound for value of p+.

Like in [15] one can consider Lyapunov function for linearized
near the origin system (1) as a function V1 to prove local instability
of the system solutions. Instead of existence of Lyapunov function
V2 one can require just boundedness of the system solution x(t)
with known upper bound. It can be obtained using another
approach not dealing with time derivative of Lyapunov function
analysis. In this case Theorem 1 transforms into Theorem 3.4 from
[7].

Conditions of above theorem are rather general and define
the class of systems, which oscillatory behavior can be investi-
gated by the approach. Namely systems, which have in state
space attracting compact set containing oscillatory movements
of the systems. For such systems Theorem 1 gives the useful tool
for testing oscillating behavior and obtaining estimates for the
amplitude of oscillations. It is possible to show that for a sub-
class of uniformly oscillating systems proposed conditions are
also necessary.

Theorem 2 [4]. Let system (1) be uniformly oscillatory with respect
to the output w = g(x) (where g:Rn ? R is a continuous monotonous
with respect to all arguments function), and for all x 2 Rn the following
relations are satisfied:

v1ðjxjÞ 6 gðxÞ 6 v2ðjxjÞ;v1;v2 2 K1;

the set of initial conditions for which system is not oscillating consists in
just one point N = {x:x = 0}. Then there exist two continuous and lo-
cally Lipschitz Lyapunov functions V1:Rn+1 ? R+ and V2:Rn+1 ? R+ such,
that for all x 2 Rn and t 2 R+ inequalities hold:

t1ðjxjÞ 6 V1ðx; tÞ 6 t2ðjxjÞ;

t3ðjxjÞ 6 V2ðx; tÞ 6 t4ðjxjÞ; t1; t2; t3; t4 2 K1;

oV1=ot þ DV1ðx; tÞfðxÞ > 0 for 0 < jxj < v�1
2 ðp�Þ;

oV2=ot þ DV2ðx; tÞfðxÞ < 0 for jxj > v�1
1 ðpþÞ:

For the uniformly oscillatory systems with single equilibrium
point at the origin Theorems 1 and 2 give necessary and sufficient
conditions of oscillations existence. According to the results of
works [8–11] the circadian rhythms in Drosophila and Neurospora
are the nice examples of uniformly oscillating systems. In this case
application of proposed in Theorems 1 and 2 theory to the circa-
dian oscillation models is natural for deriving conditions of oscilla-
tions existence. That is more expressions for time derivatives of
Lyapunov functions V1 and V2 can provide analytical parametric
conditions for oscillations existence.

Finally, let us describe the testing procedure of oscillatority
property presence in dynamical nonlinear systems:

(1) calculation of equilibrium points coordinates;
(2) determining boundedness of the system trajectories property

(using function V2 or applying another approach);
(3) confirmation of local instability property in an equilibrium

(applying function V1 or using the first approximation of
the system dynamics in the equilibrium);

(4) the form of set X calculation and verification of the equilib-
rium points absence in that set.

If all four steps are successfully passed, then the system is oscil-
latory in the sense of Yakubovich (Definition 1). Let us apply the
above procedure to circadian oscillations models in Drosophila
and Neurospora.

3. Circadian oscillations in Neurospora

Following [11] let us consider the following model of the
oscillations:

_M ¼ v s
Kn

I

Kn
I þ Fn

N

� vm
M

Km þM
; ð2Þ

_Fc ¼ ksM � vd
Fc

Kd þ Fc
� k1Fc þ k2FN; ð3Þ

_FN ¼ k1Fc � k2FN; ð4Þ
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where variables M, Fc and FN denote, respectively, the concentra-
tions (defined with respect to the total cell volume) of the frq mRNA
and of the cytosolic and nuclear forms of FRQ.

According to proposed procedure let us start with coordinates
of equilibrium calculation for system (2)–(4). Equating to the zero
the right-hand side of the system we obtain the following system
of nonlinear equations:

F0
c ¼ k2k�1

1 F0
N; M0 ¼ vdk2F0

N

ksðKdk1 þ k2F0
NÞ

; v s
Kn

I

Kn
I þ ðF

0
NÞ

n

¼ vm
M0

Km þM0 ; ð5Þ

where M0; F0
c ; F

0
N are coordinates of possible equilibriums. It is

clear that for any positive values of the system (2)–(4) parame-
ters the first two equations in Eq. (5) have the single positive
solutions. The third equation also admits only single positive
solution since the function on the left-hand side is strictly
decreasing to zero, while the function on the right-hand side is
strictly increasing from zero. Thus, the system has the single
equilibrium with positive coordinates (strictly bigger than zero)
for positive values of the parameters. For n 6 3 it is possible to
analytically calculate the values of M0; F0

c ; F
0
N as functions of the

system parameters, for n > 3 only numerical solution is possible
in generic case.

As the second step let us base the global boundedness of the
system trajectories property using the following propositions.

Proposition 1. Let vs P vm. Then there exists d 2 (0,1) such, that if for
some t0 > 0 it holds that

FNðt0ÞP e; Fcðt0ÞP k2k�1
1 e;

Mðt0ÞP 2
vd

ks
; e ¼ KI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v s

vm
1þ Km

ks

dvd

� �
� 1

n

s
;

then there exists time instant t1 P t0 such, that

FNðtÞ 6 e; FcðtÞ 6 k2k�1
1 e;MðtÞ 6 2

vd

ks
for all t P t1:

Note that the case vs < vm can be considered in the same way as
it was analyzed for the five order model in paper [1].

As the third step let us investigate the conditions of the equilib-
rium instability using the first approximation of the system near
the equilibrium:

x ¼ AðM0; F0
c ; F

0
NÞx;AðM

0; F0
c ; F

0
NÞ

¼

�vm
Km

ðKmþM0Þ2
0 �vsðKIF

0
NÞ

n

ðKn
I þðF

0
NÞ

nÞ2
n

F0
N

ks
�vdKd

ðKdþF0
c Þ

2 � k1 k2

0 k1 �k2

2
6664

3
7775; ð6Þ

where x = (dM,dFc,dFN)T is vector of the system state deviations from
the equilibrium and A is the first approximation matrix dependent
on the model parameters. The characteristic polynomial of the ma-
trix A has form

pðsÞ ¼ s3 þ a1s2 þ a2sþ a3;

a3

a2

a1

0
B@

1
CA ¼

Kmk2vm

ðKmþM0Þ2
2k1 þ Kdvd

ðF0
cþKdÞ2

� �
� k1ksnvsðF0

N KIÞn

F0
N ½ðF

0
NÞ

nþKn
I �

2

k1 þ Kdvd

ðF0
cþKdÞ2

� �
k2 þ Kmvm

ðKmþM0Þ2

� �
þ k1k2 þ Kmk2vm

ðKmþM0Þ2

k1 þ k2 þ Kdvd

ðF0
cþKdÞ2

þ Kmvm

ðKmþM0Þ2

0
BBBB@

1
CCCCA:

Applying Hurwitz criterion to the third order system (6) we
obtain that, if the following inequalities are satisfied, then the
matrix A has all eigen-values with negative real parts:

a1 > 0; a1a2 � a3 > 0; a3 > 0:

For any positive values of the parameters we have a1 > 0,
a2 > 0, straightforward calculations show a1a2 � a3 > 0 (opening
the brackets we obtain that all items have positive signs), thus
the single possibility to lose the stability for Eq. (6) comes from
coefficient a3. The condition a3 < 0 (which ensures for matrix A
the presence of eigen-values with positive real parts) can be
rewritten as follows:

k2vmKm½vdKd þ 2k1ðF0
c þ KdÞ2�F0

NðK
n
I þ ðF

0
NÞ

nÞ2

� k1ksnv sðKIF
0
NÞ

nðF0
c þ KdÞ2ðKm þM0Þ2: ð7Þ

Inequality (7) is a function of the system parameters and the
equilibrium coordinates F0

N; F
0
c ;M

0, which are the solution of
equations (5). For n 6 3 equations (5) have analytical solutions,
substituting which in Eq. (7) it is possible to obtain system
instability condition dependent on the parameters only.

The fourth step is obvious since the system (2)–(4) has only
one equilibrium. Thus, the key condition of the system oscillator-
ity is inequality (7). In [11] the model (2)–(4) was considered
with the following values of parameters:

vm ¼ 0:505; vd ¼ 1:4; vs ¼ 1:6; ks ¼ 0:5;
k1 ¼ 0:5; k2 ¼ 0:6; KI ¼ 1; Km ¼ 0:5; Kd ¼ 0:13; n ¼ 4:

For these values system of equations (5) has the solution:

M0 ¼ 2:583; F0
c ¼ 1:55; F0

N ¼ 1:291;

for which inequality (7) is true. Therefore the system with these
values of parameters is oscillatory. The results of the system
simulation is shown in Fig. 1. The dash line corresponds to
obtained in Proposition 1 bounds for oscillations amplitude
2k�1

s vd.

4. Circadian oscillations in Drosophila

Let us consider the model from paper [10]:

 

40 80 120 160 t0 

10 

20 

30 

M (t)

Fc (t)

FN (t)  

Fig. 1. Oscillations in model (2)–(4).
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_MP¼v sp
Kn

IP

Kn
IPþCn

N

�vmP
MP

KmPþMP
�kdMP ; ð8Þ

_P0¼ksPMP�V1P
P0

K1PþP0
þV2P

P1

K2PþP1
�kdP0; ð9Þ

_P1¼V1P
P0

K1PþP0
�V2P

P1

K2PþP1
��V3P

P1

K3PþP1
þV4P

P2

K4PþP2
�kdP1;

ð10Þ

_P2¼V3P
P1

K3PþP1
�V4P

P2

K4PþP2
��k3P2T2þk4C�vdP

P2

KdPþP2
�kdP2;

ð11Þ

_MT ¼v sp
Kn

IT

Kn
ITþCn

N

�vmT
MT

KmTþMT
�kdMT ; ð12Þ

_T0¼ksT MT�V1T
T0

K1TþT0
þV2T

T1

K2TþT1
�kdT0; ð13Þ

_T1¼V1T
T0

K1TþT0
�V2T

T1

K2TþT1
��V3T

T1

K3TþT1
þV4T

T2

K4TþT2
�kdT1;

ð14Þ

_T2¼V3T
T1

K3TþT1
�V4T

T2

K4TþT2
��k3P2T2þk4C�vdT

T2

KdTþT2
�kdT2;

ð15Þ
_C¼k3P2T2�k4C�k1Cþk2CN�kdCC; ð16Þ
_CN¼k1C�k2CN�kdNCN ; ð17Þ

where MP is cytosolic concentration of per mRNA; P0, P1, P2 are
unphosphorylated, monophosphorylated and bisphosphorylated
concentrations of PER protein correspondingly; MT is cytosolic con-
centration of tim mRNA; T0, T1, T2 are unphosphorylated, monopho-
sphorylated and bisphosphorylated concentrations of TIM protein
correspondingly; C is PER-TIM complex concentration and CN is nu-
clear form of PER-TIM complex. As in work [10] we will consider the
following values of model (8)–(17) parameters:

KIP ¼ KIT ¼ v sT ¼ v sP ¼ 1; vmP ¼ vmT ¼ 0:7;
KdP ¼ KdT ¼ KmP ¼ KmT ¼ 0:2; ksP ¼ ksT ¼ 0:9;
vdP ¼ vdT ¼ 2; V1P ¼ V1T ¼ V3P ¼ V3T ¼ 8;
K1P ¼ K1T ¼ K2P ¼ K2T ¼ K3P ¼ K3T ¼ K4P ¼ K4T ¼ 2;
k1 ¼ 0:6; k2 ¼ 0:2; k3 ¼ 1:2; k4 ¼ 0:6; n ¼ 4;
kd ¼ kdC ¼ kdN ¼ 0:01; V2P ¼ V2T ¼ V4P ¼ V4T ¼ 1:

Let us start with equilibriums number and their coordinates cal-
culations. As in the model (2)–(4) for n = 4 only numerical solu-
tions of this problem is possible which shows that the system
has the single equilibrium with coordinates:

M0
P ¼ 1:513; P0

0 ¼ 0:48; P0
1 ¼ 0:469; P0

2 ¼ 0:403;

M0
T ¼ 1:513; T0

0 ¼ 0:48; T0
1 ¼ 0:469; T0

2 ¼ 0:403;

C0 ¼ 0:305; C0
N ¼ 0:872:

As the second step to prove boundedness of the system (8)–(17)
trajectories it is possible to use the following Lyapunov function:

V2 ¼ Pt þ Tt þ 2
ksP

kd
MP þ 2

ksT

kd
MT ;

Pt ¼ P0 þ P1 þ P2 þ C þ CN; Tt ¼ T0 þ T1 þ T2 þ C þ CN;

where Pt and Tt are total concentrations of PER and TIM proteins
correspondingly. Time derivative of function V2 admits the follow-
ing upper estimate:

_V2 6 �0:5jV2 þ 2
ksP

kd
v sP þ 2

ksT

kd
v sT ;j ¼minfkd; kdCg;

which implies global boundedness of the system trajectories.

For the third step to establish local instability of the system
equilibrium we use the first approximation of the system dynam-
ics near the equilibrium. For the given values of the system

parameters the matrix of the first approximation has two com-
plex conjugate eigen-values with positive real parts, that con-
firms local instability property of the equilibrium (we exclude
the expressions of the matrix and its eigen-values for brevity of
presentation).

Since the system has only one equilibrium the fourth step in
this example is redundant and the system is oscillatory. The result
of the system computer simulation is shown in Fig. 2.

5. Conclusion

The proposed in papers [5,6] conditions of Yakubovich’s oscil-
latority and presented here procedure of these conditions approv-
ing can be applied for wide range of biological systems (see
examples in those papers and above). The approach also can be ap-
plied in adjacent areas like chemistry. The main advance of the
solution comparing it with other approaches [2,3,13] consists in
simplicity of its application for generic class of nonlinear systems.
As a side of results the bounds on oscillation amplitude can be cal-
culated. Oscillatority in the sense of Yakubovich covers wide range
of nonlinear oscillation behavior (from periodical to chaotic oscil-
lations). The conditions are necessary and sufficient for some clas-
ses of oscillating systems like models of circadian oscillations
considered in the paper.
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