An Ant Colony System
for Responsive Dynamic Vehicle Routing

M. Schyns *

Abstract. We present an algorithm based on an Ant Colony System to deal with a broad
range of Dynamic Capacitated Vehicle Routing Problems with Time Windows, (partial)
Split Delivery and Heterogeneous fleets (DVRPTWSD). We address the important case of
responsiveness. Responsiveness is defined here as completing a delivery as soon as possible,
within the time window, such that the client or the vehicle may restart its activities. We
develop an interactive solution to allow dispatchers to take new information into account in
real-time. The algorithm and its parametrization were tested on real and artificial instances.
We first illustrate our approach with a problem submitted by Liege Airport, the 8th biggest
cargo airport in Europe. The goal is to develop a decision system to optimize the journey
of the refueling trucks. We then consider some classical VRP benchmarks with extensions
to the responsiveness context.

Keywords. DVRPTW, heuristics, ant colony system, airport application, responsive-
ness criterion.

1 Introduction

The starting point of this work is a problem submitted by Liege Airport (LGG), the 8th
largest cargo airport in Europe. The goal is to develop a decision system that is able to
optimize the journey of the airport’s refueling trucks. The trucks must deliver a standardized
product, fuel, to aircrafts during predefined time windows corresponding to a sub period of
the time on the ground. There are different types of trucks, operating at different speeds,
and some of them are not capable of adequately serving certain models of aircraft. As
is sometimes currently done, a delivery may be split between several trucks under certain
conditions.

In this paper, we give special attention to optimizing a responsiveness objective in a
dynamic environment. Indeed, while minimizing traveled distance is a classical objective
in Vehicle Routing Problems (VRP), the highest priority for an airport is to complete the
deliveries as soon as possible, allowing the aircrafts to return to operations. Airline companies
have to pay for the time spent by aircrafts on the ground. As a result, inactive aircrafts not
only fail to make money, but cost a lot too. Furthermore, flights must satisfy strict schedules
and any delays will lead to financial penalties. In the worst cases, take-off or landing slots
may be lost so that the flight has to be rescheduled or canceled. Since unexpected events
may occur at any time, there is a strong reason to not only perform all the jobs in the
allowed time window, but as soon as possible. This responsiveness is also crucial for many
production or service activities in different fields: express parcel deliveries, taxi services, Just
in Time production, express repair services, medical care, petrol station replenishment, etc.

*QuantOM, HEC Management School, University of Liege, Rue Louvrex 14 (N1), 4000 Liege, Belgium.
M.Schyns@ulg.ac.be.

The second challenge in this area is the uncertain dynamic environment. An airport
operates continuously seven days a week. There is no clear end of the planning horizon nor
perfect time to start an optimization. Moreover, the airport environment is highly uncer-
tain; flights could be delayed or canceled, for example due to the weather or a breakdown.
Similarly, quantities for fuel deliveries are initially only expectations, which will need to be
tuned at the last moment depending on the load and weather conditions. We develop an
interactive solution to allow dispatchers to take new information into account in real-time.

Our goal is therefore to present an approach to dealing with a broad range of Dynamic
Capacitated Vehicle Routing Problems with Time Windows, (partial) Split Delivery and
Heterogeneous fleets, in which this airport refueling problem belongs. Finding the optimal
solution for a real size vehicle routing problem remains a challenge. VRPs are complex
combinatorial problems, known to be NP-Hard. It is why exact methods in the literature
typically focus on well-defined categories with restricted sets of constraints. This work is
unique in that it simultaneously takes into account all the previously mentioned constraints,
using an ant colony approach. This metaheuristic had already been adapted and proved to
be a good strategy for solving the standard VRP and some extensions. In this research, we
took inspiration from (Gambardella et al) (1999) for the Vehicle Routing Problem with Time
Windows (VRPTW) and from Montemanni et all (2005) for the added dynamic dimension.

We illustrate our approach with a specific instance provided by Liege Airport. We also
test our algorithm on sets of popular VRPTW benchmarks. We start from the work by
Montemanni et all (lZDDﬂ) and use the same VRPTW datasets in a dynamic context. We also
perform experiments utilizing some Solomon’s benchmarks. We compare different dynamic
strategies and the impact of the responsiveness criterion.

Section 2 provides a brief literature review. In section 3, the main components of the
problem are described in further details. In section 4, a classical Ant Colony System (ACS)
algorithm for solving VRPTW is briefly revisited. In section 5, our extensions for addressing
responsiveness and richer problems are described. Next, section 6 contains various strategies
for improving the quality of the results. The results for the Liege Airport case and for the
other benchmarks are presented and commented on section 7. Finally, conclusions are drawn
in the last section.

2 Literature review

The problem under consideration belongs to the family of Vehicle Routing Problems. These
problems are of crucial importance in practice for logistic and supply chain management.
They are also complex combinatorial problems, known to be NP-Hard, which have aroused
the interest of researchers for decades. Laporte (IL&pLLr_tf.l, 1992, |2£)_O_g) highlighted the main
contributions since the first paper on this topic, written in 1959 by Dantzig and Ramser
(Dantzig and Bamseﬂ, |L9_5ﬂ) Finding the optimal solution for a real-world problem remains
a challenge. The most common approach in the literature is therefore to focus on simplified
problems dealing with specific constraints one at a time. At the opposite, the first contri-
bution of our work is to simultaneously integrate a very large set of characteristics so as
to allow companies to easily use our framework for real-life problems. More precisely, we
have simultaneously integrated in our framework the constraints separately studied in the
following VRP subfields: Capacitated VRP (CVRP), VRP with Time Windows (VRPTW)

(see, eg,mmm,m,@mw E&al]ﬁha&ge_eﬁuiﬂhﬂﬂﬂ VRP

with heterogeneous fleet (see, e.g., (Choi and Tchal, 2007; Seixas and Mendes, 2013), VRP
with multi-trips and Split Deliveries (see, e.g.JArgheLLi and Speranzal,m; Dror et al., M;
Salani and Vacca, QOH) Other constraints for variations like VRP with Backhauls or with
Pickup and Delivery, VRP with multi-depots, Dial-A-Ride Problems are not included in our
approach, even if it would be a natural and possible extension.

A second contribution of our work is linked to the nature of data. Omne of our main
concerns is the uncertain dynamic environment. Following |Ghiani et all (Il)_O_Zﬂ), VRPs may
be classified along two dimensions: static versus dynamic and deterministic versus stochastic.
A VRP is said to be static if its input data do not depend explicitly on time, otherwise it is
dynamic. A VRP is deterministic if all input data are known when designing vehicle routes,
otherwise it is stochastic. The deterministic static cases are the most studied. Dynamic
stochastic problems, also called real-time problems are more complex and less studied. Our
work belongs to this last category. In this context, uncertain data is revealed during the
course of the operational day and new plans have to be computed or adjusted after the
new information arrives. As stated in @m@wjﬂ 4201)_4]), this approach is requested in
practice. While an initial planning minimizing the risk is necessary, we need methods to
respond to unforeseen events when they happen. It is only more recently that technology
has allowed consideration of such applications. Indeed, real-time applications require a
powerful information system, such as systems based on GPS, to locate the vehicles and
to communicate with them. Repeatedly computing new solutions also requires powerful
computers or systems of computers (parallel computing as in |Qh.ianiﬂ_al.|, |2Q0_Ei) and state-
of-the art algorithms. In our framework, we accept and immediately react to any unexpected
events, without relying on probability distributions and without identifying beforehand sets
of possible future, as would be typically done in static stochastic approaches. The dynamic
dimension of our work was inspired by the work of Montemanni et all (IZDD&I) and is adapted
to include the reoptimization strategy proposed by (Gendreau et all <|_‘|_9_9_Q) Our work also
departs from these two papers by the extensive list of constraints we consider. Moreover,
we believe that our third and main contribution is to propose a new objective criterion, i.e.
responsiveness, especially adapted in such dynamic contexts. To the best of our knowledge,
this approach is new and original.

State of the art methods to exactly solve VRPs are very complex. They typlcally rely
on branch-and-cut-and-price algorithms and route relaxations strategies (see ,
). Richer and medium-sized problems generally remain intractable or too lengthy to
solve with exact methods. In this context, the development of heuristics is the tradi-
tional and often only reasonable approach Many strategies are described in the liter-
ature (see, eg,ﬁmbﬁﬁmsi&pﬂamd de&mmmwm
for a description of methods and surveys). Tabu search is probably the most often cited
method, either alone or to expedite exact methods. Many authors also tackle VRP vari-
ants using ant colonies. Other papers rely on ad-hoc heuristics, adaptive large neighbor-
hood search or genetic algorithms. Our fourth contribution is to analyze the performances
of an Ant Colony System (ACS) approach. We selected this metaheuristic based on the

romising results described in the literature for the standard VPRTW (Gambardella. et all,
M) Note that many of our developments could be adapted to other local search meth-
ods. Ant Colony Optimization (ACO), as explained in [Dorigo et all (1996), is inspired
by the collaborative behavior of naturally independent agents: ants. This algorithm has
been modified to solve many different discrete optimization problems (I]ln;iggj_t_al], |19_QQ)
In particular, ACO was applied to graph optimization problems including the Traveling

Salesman Problem (Dorigo and Gambardella, [1997), which can be seen as a VRP with

only one vehicle. This leads to the ACS, an improved version of the ACO. The ACO
algorithm is very flexible, and other characteristics such as time dependency, uncertainty,
real-time conditions, backhauls, pickup and delivery, heterogeneous fleet or other improve-
ments were introduced one at a time in the literature (Benslimane and Benadadal, |2Qlj

Bin et all, 200d: Donati et. all. 2008: (Gajpal and Abad, 2009: [Gambardella et a1l, 2003, 190
Montemanni et al .,quEzL Reimann et all UKA, Rizzoli et al .,um . In this research, we took

inspiration from (Gambardella et al. (|L9_9_Q) for the ant framework.

3 Problem description

We present an approach to dealing with a broad range of Dynamic Capacitated Vehicle
Routing Problems with Time Windows, (partial) Split Delivery and Heterogeneous fleets
(DVRPTWSD). Formally, this problem can be represented by a digraph G = (N, A) where
N ={D,1,...,n} is the set of nodes and A = {(¢,7)]i,7 € N,i # j} is the set of arcs. The
nodes in N\ {D} denote the clients to serve and D represents the depot. For each customer
iin N\ {D}, we have a positive quantity ¢; to be delivered within a particular time window
[a;, b;]. This is a hard time window within which the service must be entirely completed. This
is a strong constraint justified by the huge penalties encountered by the companies when
these windows are not respected, such as in the context of the airports. Note, however,
that this constraint is essentially restrictive at the upper bound b;. As usually accepted for
VRPTW, a vehicle is allowed to arrive in advance but has to wait until the beginning of
the time windows to start the service. No penalty is incurred in this case. We consider a
single depot D from which each vehicle starts and must return. We assume that there is no
demand at D and that the depot is always open. For algorithmic reasons, the depot D is
duplicated once for each vehicle. Distances between copies of the depot are set to zero. Let
V ={1,...,v} be the set of vehicles, Dy with k € V is the virtual copy of the depot from
which vehicle k starts. d;; and ¢;; represent respectively the distance and the travel time
along the arc (i,5) € A. We assume that ¢;; is directly proportional to d;; and that each
vehicle travels at the same speed.

The fleet of vehicles V' is heterogeneous. Each vehicle k € V' is characterized by a specific
capacity C}, a service operating time and an incompatibility list. The operating time for
serving client j with vehicle k is defined as 0? = ¥ + v¥q;, where ¥ is the constant time
required by vehicle k for setup and post-operations, and v* is the variable time required by
vehicle k to deliver one unit of product. The incompatibility list takes into account that some
vehicles are not allowed or not appropriate to serve some clients. For example, in the case
of an airport, some trucks are too big to serve some small types of aircraft or are prohibited
from delivering fuel to some specific flights. We also make the assumption that the fleet of
vehicles belongs to the fleet handler. The size of such a fleet cannot vary dynamically with
respect to the demand, and reducing the number of trucks operating simultaneously does
not have a strong impact on the cost structure. We therefore do not attempt to minimize
the number of vehicles in use.

We are concerned by situations where the responsiveness is more critical than the dis-
tance traveled. Responsiveness is defined here as completing a delivery as soon as possible,
within the time window, such that the client or vehicle are able to operate again. Note
that minimizing the arrival time within the time window is not the only way to improve

responsiveness. The duration of the service, depending on the vehicle, must also be taken
into account. The global objective to minimize becomes R =}, s; +0§(]) a; where s; > a;
is the start of service time for client j and where the superscript k(j) is used to express that
a specific vehicle k is determined by the algorithm to serve client j. By definition, since the
operating service time is a strictly positive value, so is R. A lower bound can be computed
beforehand. This objective is in contrast to the cost function computed in traditional VRPs
where the goal is to minimize the total distance T" =}~ ;) 4 dijzi; (or a related function).
In this last function, z;; is a binary variable that indicates if arc (7,7) is traveled in the
solution. Note that, in our context, when two solutions with the same responsiveness are
found, the one with the shortest distance T is preferred.

In the VRP with split deliveries, a single customer can be served by different vehicles. The
basic case is one in which the quantities requested by the clients are larger than the capacity
of the vehicles. This can also occur in certain specific situations when the overall cost is
decreased by splitting the delivery. A typical case is when the remaining capacity of a vehicle
at the end of its trip is no longer large enough to serve another client. Instead of sending this
vehicle back to the depot with a positive remaining capacity, it may be beneficial to empty
the vehicle by visiting a final client before sending another vehicle to complete, either totally
or partially, the delivery. In the airport context, this is the usual technique. Following our
approach, a split delivery can only occur when the remaining capacity is not large enough to
serve an attractive client. This covers the basic case where the vehicle capacities are smaller
than the demands. However, it excludes a split delivery between vehicles which would have
been able to fully serve a client on their own. This last strategy is rarely optimal due to
the travel costs and the fixed amount of time required for any service. Moreover, several
vehicles may be banned from serving the same client simultaneously. Such operations are
often prevented by infrastructure constraints such as a limited number of unloading docks
or an aircraft with one tank and one main inlet.

Our problem is a multi-trip VRP. The planning horizon may be extremely long, or even
infinite, while at the same time the fleet size is limited. The same vehicle must be allowed
to replenish to start a new tour afterward, if needed. Fach time a vehicle comes back to
the depot, we automatically load it again at full capacity. The time required for reloading
vehicle k follows a scheme similar to the one for serving the clients : of, = ¢ + v% (Cy —).
Specific constant and variable times, ¢, and v¥,, are allowed for the depot. The quantity to
load is the difference between the full capacity C} and the remaining capacity r; at the end
of the previous tour. As soon as the replenishment is complete, the vehicle is again available.
Note that this multi-trip possibility also implies that a split delivery could be performed by
a single vehicle.

Finally, we consider a stochastic dynamic environment. Many companies operate con-
tinuously seven days a week. It is therefore not possible to precisely determine the end or
the beginning of the planning horizon. Moreover, the world is uncertain: delivery quanti-
ties might only be based on expectations and time windows may be shifted; flights could
be delayed or canceled due to the weather or a breakdown. In Dynamic Vehicle Routing
Problems, new events and new information can be integrated into the process. We are able
to respond to any change of the data at any moment: client cancellation, new time windows,
new quantities to deliver, new clients, lateness or breakdown of a vehicle, new incompatibil-
ity lists and new locations of the clients or of the vehicles. As in|Gendreau et all (1999), our
strategy is to reconsider the plan each time new information is available.

To address this dynamic context, some additional assumptions must be made. First, as

n [Gendreau et all (|J_9_9_d), we assume that a driver may accept a new instruction only when
he has completed the previous operation. Second, while all the vehicles start initially from
the depot, they can be anywhere at the time of a new optimization. Each client location, not
only the depot, could become the starting point of the updated route. Finally, the routes
are closed loops. When we start the optimization of a new plan we consider that the final
operation of a vehicle is to return to the depot. This could be suboptimal in a dynamic
context. Indeed, imagine that in the current planning a vehicle is serving a final client
1 before returning to the depot with a large remaining capacity. If a new order appears
immediately afterwards for a client in the vicinity of i, then going back to the depot in
between was an erroneous decision. Instead, we could have considered open routes ending
with clients instead of the depot. In this case, the vehicles wait at client locations for new
orders. This approach also has drawbacks since it could be optimal to immediately return to
the depot at each period of inactivity to replenish and to be again available to operate large
tours. The optimal location or relocation of vehicles during the inactivity period is itself
another separate research question and is not developed here. We believe that the closed
routes approach is more realistic and will adhere to it.

An important question to address concerns the existence of a feasible solution, especially
in a dynamic context. In our multi-trip framework and under a weak assumption guarantying
the existence of at least one compatible truck for each client, the sole critical constraints
are the time windows. Three main scenarios can be considered to fix this problem. In
the first one, the total demand is predictable and stable, and the size of the fleet is initially
determined to match any peak of demand. Agreements may also exist with other transporters
to temporarily extend the size of the fleet, if needed. In the second case, the decision process
implies that the firm must decide which orders to accept and which orders to reject before
starting the optimization of the tours. Some authors have studied the feasibility of families
of VRPs in the dynamic context and propose mechanisms to identify the orders to reject
(see, e.g., Bﬁl.@gl]@mﬂ 2010, 2011, |2Q].ﬂ In the last scenario, we consider soft windows
where penalties proportional to the violations are added to the cost function in order to
minimize it.

The starting point of this work is a problem submitted by an airport. In this context, as
in many other ones, the demand is predictable and the fleet size is typically large enough.
Moreover, rejecting an order is not an option, there is only one service provider and each
flight must be served. We therefore focus in this work on the first scenario. Note however
that the soft time windows approach is extremely easy to implement when the criterion to
optimize is responsiveness. Indeed, in a basic scheme, we only need to ignore the upper
bounds of the time windows since the definition of responsiveness implies that any late
completion of service, within or outside the time windows, costs more. This approach has
nevertheless the disadvantage to drastically increase the size of the solution space. Note also
that our dynamic approach allows us to adjust the hard time windows based on the actual
conditions (even if it is likely to induce a penalty for the company) when no feasible solutions
exist.

4 The ACS algorithm for the VRPTW

Ant colony algorithms are inspired by the collaborative behavior of ants in real life. The
ants wander randomly when looking for food but they are attracted to a substance, called

pheromone, left by other ants. Pheromone is generated by the ants on their way back to
the colony after reaching food. When several ants use a path to reach food, pheromone
levels increase up and a path becomes more and more attractive to other ants. However,
pheromone evaporates with time. As it takes a longer period of time to travel along a long
path, the intensity of pheromone is lower than for a shorter path. This mechanism has the
double advantage of favoring shorter paths and reducing the attraction to local optima.

We first briefly recall the basic ant colony algorithm for the classical VRPTW with one
vehicle and a distance minimization objective. A route is constructed iteratively by moving
one ant, namely the vehicle, from one client to the next one. A route starts from the depot,
must serve all clients, and comes back to the depot. A typical criterion is the minimization of
the total distance (or of the travel time as a function of the distance). Starting from client i,
the next client j is probabilistically selected in the set of clients reachable from client 7. This
set is denoted N . For the VRPTW, a client belongs to N; if it has not yet been visited, if
the remaining vehicle capacity is large enough to serve it and if the vehicle can arrive before
the end of the time window. This definition is extended later for the DVRPTWSD. Two
measures of attractiveness are attached to each feasible move: the closeness 7;;, which is
typically the inverse of the distance between the two clients, and the pheromone trail 7;;. In

mbardell 11 (1999), the closeness measure is based on time, and distance is redefined
for the closeness measure as distance = (s; — w;)(b; — w;) where w; = s; + 0;, or the time at
which the vehicle is again available after serving client i.

The selection of the next client to serve is done in two steps. First, we select at random
either, with a probability ¢y, an exploitation strategy or, with a probability (1 — o), an
exploration strategy. During exploitation, the most attractive client j is selected, that is to
say the one with the highest Tijnfj where 3 is a parameter weighting the importance of the
closeness criterion. During exploration, any client j within A can be selected but with a
probability p;; still depending on its attractiveness. There is no warranty that the ant will
be able to visit all the clients but this process is repeated using m ants.

B

o TigMy
T - _ B
ZZGM il

It was found empirically that a good initial value for all the 7;; is given by 79 = ﬁ,
where n is the number of clients and Ly is the best known length of the route found by a
heuristic. In ACS, the pheromone trail is updated both locally and globally. Locally, each
time an ant moves along an edge, the corresponding trail is decreased using the formula
7,5 = (1 — p)7; + p7o, where p(0 < p < 1) is a parameter. This corresponds to evaporation
and favors diversification. Globally, each time the m ants have completed their search, the
pheromone trails 7;; associated with the best solution encountered since the beginning are
increased by 7;; = (1 — p)7;; + pL*, where L* is the length of the new optimal route.

This scheme is easily extendable to the multi-vehicles case as follows. A virtual depot Dy,
is created for each vehicle k. They are considered as new possible “clients” to visit, without
demand and with a large time window. All the copies have the same coordinates. When
the ant leaves a depot Dy, it corresponds to the beginning of a route for vehicle k, which
becomes the current vehicle. When the ant arrives in a depot Dy, it corresponds to the end
of the route of the current vehicle. If a depot Dy, is not visited, then the associated vehicle k
is not used. A solution, denoted v, can be represented as a sorted list of clients and depots
D, to visit.

Dij

9 PR32 061014131201
W 22 W e

Figure 1: Structure of a route for one ant

When vehicle k leaves Dy, the corresponding vehicle properties are associated to the ant
and the clock is reset to the beginning of the planning horizon. While ¢ is constructed
successively one vehicle at a time, the time sequence is not strictly increasing. Each segment
of the path between two copies Dj, corresponds to one parallel time sequence. Time and
capacity usages are then computed as usual. If client j belongs to N;,we get:

Sj = max (Si + 0; + tija aj) T’j =T; — Qj

where r; is initialized at the vehicle capacity C'

5 The ACS algorithm for the DVRPTWSD with re-
sponsiveness

We give first the outline of the algorithm and leave the details of the adaptations with respect
to the standard ACS for the next subsections. We also provide a basic example at the end
of the section to illustrate how all the characteristics are handled.

5.1 From the standard VRPTW to the DVRPTWSD with re-
sponsiveness

The algorithm for the problem at hand, limited first to the static context, is depicted in
Algorithm 1. The general scheme of the ACS presented in the previous section is preserved.
Until a time limit is reached (line 3), one ant at a time leaves the colony (line 4) to sequentially
construct a tentative path . A move from one location to the next one may be considered
while there exists at least one client who can still be visited within the time window by a
non-empty and compatible truck (loop starting line 10). Otherwise, the ant stops its attempt
and the post-treatments start (line 13). Each move from the current location to the next one
implies two steps. First, the next location is determined (lines 11) by calling the function
SelectNextLocation (see Algorithm 2). Second, the move is executed from i to j (line 12)
by calling the function MoveTo (see Algorithm 3). Next, if the final ant path does not go
through all the clients, a procedure attempts to insert the missing customers (line 13). Some
post-treatments occur (lines 14-18) each time one ant founds a path serving all the clients.
It includes local search improvements, the update of the best solution and the pheromone

1 (R*,¢*) < Greedy heuristic ; // Initialization
2 Tg(—nLR*;TZ-j%TO Vi,j € N;

3 while = Time limit do

4 foreach Ant do // Main loop: one ant looks for a solution
5 Draw vehicle £ € V' at random ;

6 Read vehicle status;

7 W <+ {Dy} ; // Path initialization
8 1+ D ; // First location
9 w; < 1st time of availability for k;
10 while 3 client j who can be reached within its TW by a compatible truck do
11 J < SelectNextLocation(i);
12 i < MoveTo(5);
13 if All clients are not served then 1 <— Insertion_procedure(1));
14 if All clients are served then // A solution v exists— post-treatments
15 Update v to bring all the vehicles back to D;
16 Local search to eventually improve the current solution ;

17 if (RY < R*) OR ((RY == R*) AND (T% < T*)) then (R*,¢*) < (R¥,%);
18 foreach arc (i,j) € ¢ do 7; = (1 — p)7y; + p70;// Update trail locally
19 | foreach arc (i,j) € ¢¥* do 7; = (1 — p)7; + 4; // Update trail globally
Algorithm 1: Static ant colony algorithm

1 Function SelectNeztLocation (i)

2 if (N; =={D}) then j + D;

3 else

4 foreach j € N;\ {D} do 1n;; SRR

5 With probability dy, j < D ; // Depot strategy
6 else With probability qg, j < argmax; Timg ; // Exploitation

b
7 else Select j € N;\ {D} with probability = LTy ik // Exploration
L ten; Til"ly
8 | Return j;

Algorithm 2: SelectNextLocation()

evaporation. Finally (line 19), when a group of ants has completed the search, the trail
is globally updated based on the best current solution. In the dynamic context, the same
algorithm is called repeatedly with a proper initialization of the inputs.

SelectNextLocation selects the next visit using the ant colony mechanisms: trail intensity,
closeness, exploration and exploitation. A vehicle is only allowed to move to a feasible
neighbor € NV;. A client belongs to A if it has not yet been (fully) served, if the remaining
vehicle capacity is large enough to serve it and if the vehicle can be served before the end of
the time window. This last constraint may be relaxed when considering soft time windows.
We remove from this set the list of incompatible clients for the vehicle visiting i. MowveTo
performs the move. The path 1), the client status and the vehicle status are updated. The
procedure differs when the next location is the depot (lines 2-8), or a client (lines 9-19).

1 Function MoveTo(j)

2 if (j == D) then // Either return to depot
3 T < Ck;

4 New time of availability for k < w; + t;p + 0’,5;

5 With probability (, restart with the same vehicle k;

6 else Draw vehicle k € V' at random;

7 ¥+ {Di}

8 wp < 1st time of availability for k;

9 else // ...or serve a client
10 U1+ {jh

11 if (¢; > r;) then // If this is a split delivery
12 wj < w; + ti; + oj-:(j) with ¢; in 0*U) replaced by 7y

13 q; < qj — 1, for this ant;

14 a; < w; for this ant;

15 rE < 0;

16 else // ... or not a split delivery
17 Wj < Wy + tij + 0?0);

18 Tk < Tk — Gj;

19 7 is marked as fully served;

20 Return j;

Algorithm 3: MoveTo()

5.2 Responsiveness criterion

We are concerned by situations where responsiveness is more critical than the distance
traveled. The global objective, as defined in the problem description section, is to minimize
the responsiveness Zj 55+ of(]) —a;. In the ACS, the optimization of the objective function
is achieved through the closeness measure that we redefine as:

1 1
nl = = -
’ Ri; s; + of(]) — a;

where R;; is the marginal responsiveness attached to the move from client 7 to client j.

A drawback to this measure is that the standard mechanism for determining the next
move can no longer be used as such. In the previous mechanism, the closeness measure is used
without differentiating between the depot and the clients. In our context, however, the depot
and the clients have different structures for the time windows. For the depot, the window
includes the entire planning horizon. Therefore, the depot is always eligible and the related
closeness measure strictly increases with time. The more time goes into the construction
of the path, the more the algorithm would suggest to bring the vehicle back to the depot.
We can easily solve this issue by removing all the depots from the neighborhoods N; and by
adapting the displacement strategy. Two cases occur. When there are no more clients in N;,
the only feasible next move is going to the depot (line 11). Otherwise, we may allow, with a
probability of dy (line 14), the vehicle to go back early to the depot, or, with a probability
of (1 —dp), we may apply the traditional exploitation/exploration mechanism (lines 15-16).

10

dy is a parameter and could be left at zero to send the vehicles back to the depot only when
truly required. This is the typical strategy in practice in many cases. We suggest here to
allow anticipated returns for two reasons. The first is in the context of a multi-trip strategy.
We may hope that a vehicle fully replenished during intermediate periods (when the demand
would be less intense) could be able to serve successively more clients later (during periods
with more intense demand). Second, anticipated returns may allow construction of more
balanced routes. Indeed, within the responsiveness framework, each vehicle is considered
successively for constructing routes. It increases the probability that longer routes, in terms
of number of clients, would be affected to the first selected vehicles. The sequence of vehicles
is drawn at random and no vehicle is actually disadvantaged, but the process could still end
with unbalanced routes. Note, however, that the local search described later, based on cross
exchanges, naturally corrects this phenomenon. The anticipated return strategy remains an
option in an attempt to improve the process at the level of the ACS. On the other hand,
requiring the vehicles to come back in advance to the depot may prevent the construction
of unbalanced routes. This question is solved by applying this strategy only to a subset of
ants and by defining a dynamic value of dy. Any static value for dy could be defined by the
user depending on the problem at hand. We propose a more dynamic strategy. Based on
the first multi-trip motivation, sending back a vehicle is senseless if its remaining capacity is
large. We first associate dy with the percentage of emptiness ((Cy — 7%)/Ck). Sending back
a vehicle every two moves on average when it is at half capacity would remain excessive. We
next associate dy with the average number of moves a vehicle would perform before being
empty. With g denoting the average demand, the typical number of moves would be Cj /3.
Q(Cg . k)

In connection with the responsiveness criterion, there is another major difference between
our approach and the traditional one: the size of the fleet. We consider fleets of vehicles
belonging to the operator. The size of such a fleet cannot vary dynamically with respect to the
demand and reducing the number of vehicles operating simultaneously does not have a strong
impact on the cost structure. We therefore don’t try to minimize the number of vehicles in
use. By contrast, an optimal solution in the context of the responsiveness criterion would
naturally put as many vehicles to work as possible . Initializing the algorithm with a realistic
fleet size limit is therefore compulsory. This contrasts with the results obtained when the
criterion is based on the distance and where using fewer vehicles could be a way of reducing
the distances. Note also that the responsiveness objective is not always contradictory to the
minimization of the distances. Short distances imply short travel times, and short travel
times facilitate an arrival at the beginning of the time windows. This becomes even more
significant when responsiveness includes the travel time; for example when the beginning of
a time window corresponds to the demand notification in the dynamic case. The shortest
route is, however, not guaranteed to be the optimal one. We check this assertion in the
experiments.

This leads to our proposal: dy =

5.3 Heterogeneous fleet

The main adaptation of the algorithm for the heterogeneous fleet, beside the definition of
the closeness measure as a function of og‘?, is done at the level of the neighborhoods N;
constructions. Before considering the addition of client j to N, we must ensure that client
7 doesn’t belong to the list of incompatible clients for the vehicle leaving . The specific
operating time of also has an indirect impact on the neighborhood construction. Depending

11

on the departure times from each client j, a specific vehicle £ may or may not be able to
reach another client in time. For all three of these components, we need to know which
vehicle is arriving at client j. Since one depot D) was created as a starting point for each
vehicle k, it suffices to check which was the last parking visited by the ant.

When dealing with a heterogeneous fleet, another concern is the allocation process of
the depots during the construction of the route. Until now, the depots were considered
equivalent and it made no difference for an ant to start or to come back to one or another
depot. This is no longer the case with a heterogeneous fleet. Considering all the depots
successively in one sequence would always favor the same vehicles which is not optimal.
Therefore, to allow full exploration, each vehicle is drawn at random at the beginning of a
new tour (lines 5 and 21).

5.4 Multi-trip

Lots of companies operate continuously seven days a week. The operating day can be long
or even unbounded. Therefore, the vehicles are allowed to come back to the depot for
replenishment (lines 17-23). The depot is managed as a client to be served and the service
corresponds to the replenishment. A specific operating time for replenishment, still with
constant and variable parts, is associated to each vehicle (o line 19). After this operation,
the vehicle is available again and can start a new trip to a new client. While in the basic
algorithm the initial departure time from the depot is set to the beginning of the planning
horizon, this can no longer be the case when the same vehicle is allowed to start new trips.
After each replenishment and before a new eventual departure, the initial time associated to
the vehicle must be reset to the time of completion of the last replenishment (lines 19 and
23).

Note that the next vehicle to be considered by default for departure after a replenishment
in Algorithm 1 is drawn at random. Another strategy would be to restart with the vehicle
which was just replenished. This would lead to a more intensive use of the same vehicles and,
in some extreme cases, possibly to a reduction in the number of vehicles operating. In our
context, the fleet belongs to the operator and its size cannot be instantaneously adapted.
Minimizing the number of vehicles on the road does not lead to significant benefits since
it has no impact on the fixed costs. Moreover, it could be a counterproductive strategy
when the fleet and the demands are highly heterogeneous. We have therefore integrated a
mechanism in the ACS algorithm to permit the intensification of the use of the same vehicles.
When selecting the next Dy, as a starting point, the last vehicle used in the current solution
is selected with a probability (; otherwise, another vehicle is drawn at random. By setting
(to zero, we obtain the original algorithm.

5.5 Split delivery

Split delivery also requires some adaptations of the ACS algorithm (lines 26-30). First, a
client 7 is no longer rejected from the neighborhood N; when the only constraint unsatisfied is
a remaining capacity inferior to the demand. However, to speed up the optimization process,
we still reject vehicles that would not be able to deliver a quantity larger than a minimal
threshold set by the operator. Due to the initialization and travel times, such solutions
would later be discarded and the work of the ant lost. Next, the client is not marked visited
(to be opposed to line 34)and its demand is reduced by the quantity already delivered (line

12

28). Moreover, if we don’t want to allow several simultaneous deliveries, the beginning of
the time window for client j is set to the time of the end of the last partial delivery (line
29). To the process, client j appears as a “new” classical client yet to be served. This
strategy is valid since only one ant is used to construct all the routes for each vehicle and
the construction process is sequential. Finally the first vehicle has no other alternative (due
to line 30) than to next go back to the depot, where, thanks to the multi-trip strategy, it
can reset its capacity and hit the road again to serve any unserved client.

5.6 Dynamic stochastic environment

We now extend the previous algorithm to the dynamic stochastic context. In our ap-
proach, new events and new information can be integrated into the process over time. As in
Gendreau et al. GLM), our strategy is to restart the optimizer each time new information
is available. Another strategy, as in [Montemanni et al. (lZDD_d), would be to slice the days
into sub-periods and to optimize again only at these moments. The former has the advan-
tage of taking into account any change immediately. Since responsiveness is the main goal,
delaying the use of information would be counterproductive. On the other hand, if the pro-
cess requires a long computation time to get a good (local) optimum, optimizing too often
with a strict limit on computation time would risk reducing the quality of the intermediate
plannings. Fortunately, our heuristic is fast and, at least for our experiments, good results
can be achieved very quickly on modern computers.

Implementing dynamism into the ACS requires several adaptations. First, for each opti-
mization, vehicles can be anywhere and not only at the depot. Second, we must keep track
of the remaining capacity of each vehicle for each new start. The vehicle capacity and loca-
tion questions are simply solved by a correct initialization of the ACS parameters (line 6).
Instead of the full nominal capacity, each vehicle starts with the real current capacity. In-
stead of starting from the depots (lines 7-8,22), we set the departure locations at the current
observed location for each vehicle. If a new piece of information requesting an optimization
arrives while a vehicle is still serving a client or moving to another location, then this vehicle
is marked available only after completing this current operation. It is therefore important
to associate with each vehicle the time w; at which it becomes available again (with ¢ being
the vehicle location after completing the current operation). This time can be later than the
time at which the new optimization occurs. We also have to determine the location ¢ and
the remaining capacity r; of each vehicle after the completion of the operation in progress.

In order to facilitate these reoptimizations and to handle stochasticity, we designed a
PhP interface. Before each new optimization, the code computes the theoretical situation
according to the previous planning i.e. the locations of the vehicles, the remaining capacities
and the demands still to satisfy. The dispatcher only has to adjust the data, if necessary,
based on new information he has received since the last optimization.

5.7 A small illustration

To illustrate the previous mechanisms, imagine that two trucks are available to serve three
flights as depicted in Figurel The distances, corresponding to the travel times, are indicated
on each arc. The quantities ¢, time windows and types of the aircrafts are indicated beside
each node. The fleet is heterogeneous. Truck 1 has a lower capacity (@ = 20) than Truck
2 (@ = 25) but has a faster service time when the quantity to deliver is less than 14 units.

13

Truck 1 (resp. Truck 2) is not convenient and cannot be used for Boeing 777 aircrafts (resp.
Boeing 432). This implies that Flight 1 (resp. Flight 2) can only be served by Truck 2
(resp. Truck 1). Moreover, we assume in this example that Truck 1 is initially still operating
somewhere and cannot be used before one unit of time has passed. Split deliveries are
allowed, but any delivery must be larger than five units when the demand is larger.

o ERUDID Re7 T
Type=B432 > DOD2GPE@R=125 T=39

75 DD @P @ R=1165T=36
=15 7 D2 PLOPEPR=125 T=39

q
q=20 TW=[10,90] ®#2@P2PLP3@ R=116.5T=36
TW=[5,85] =B/ A
Type=B777 TWPe=b747 #E @D R=1165T=36
"> P Incompatibility: Truck1 x F1
, % @23 @ Time Window: 99.5>90
Q=20 il (3N Q=25 g STl .
0(q)=2+1.5q *=® o' 0(q)=9+q 9’%@@@ Too low remaining capacity
BHL B2
w=1 w=

Figure 2: A small illustration

When constructing a path, an ant could consider up to 60 distinct sequences of moves
before reaching a feasible solution or a first infeasibility. If the trucks are allowed to return
to the depot for replenishment only when there are no more flights in their neighborhood,
then only two paths are feasible. These two solutions are represented in the top right corner
of Figure [(Ants 1 and 2). Four other solutions are feasible when the trucks may come
back to the depot at any time (dy > 0 - Ants 3 up to 6). Solution 1 is detailed in Table [II
In solution 1, a first truck, Truck 1, is initially selected at random to take into account the
heterogeneity of the fleet. Truck 1 leaves the depot (D;) to first serve Flight 2 and then
Flight 3. Responsiveness after serving Flight 2 is equal to 18; the difference between the
completion time w (25) and the start of the time window (7). When arriving at Flight 3’s
location, its remaining capacity is 10 units while the demand is larger (15 units). A split
delivery occurs for 10 units. Truck 1 completes this first part of the delivery at time 46.
The second part of the delivery cannot start before the completion of the first part. Flight 3
will appear in the sequel as a new client with a time window starting at time 46 and with a
demand of 5 units of fuel. Truck 1 must then go back, empty, to the depot. Truck 2 is then
considered. It leaves at time 0 (w = 0) to reach Flight 1’s location. After serving Flight 1,
it goes to Flight 3 to serve the five remaining units of fuel. It arrives at Flight 3’s location
at time 43 but has to wait until time 46 because Truck 1 is, according to the time line, still
serving Flight 3 (new time window). All the services (s) started after the beginning a of
each time window and were completed before the end b. The responsiveness R amounts to
97 units of time and the traveled distance T' to 37 units.

Ant 2 illustrates a multi-trip solution. The ant first starts with Truck 2 and visits Flight
1. The remaining capacity (five units of fuel) is not large enough to serve any other flights
and the truck must come back to the depot for replenishment. Truck 1 is then operated to
fully serve Flight 2 and partially serve Flight 3. To complete Flight 3’s delivery, Truck 2
restarts a new trip after replenishment. As for Ant 1, the first part of Flight 3’s delivery
ends at time 46. Due to its first tour and the replenishment, Truck 2 may only arrive at time

14

Path sequence |D1 2 3 [DiJ|D2 1 3 [D2]

Time window: start (a) 0 7 10 0 0 5 10—46 0
Time window: end (b) 96 87 90 96 96 85 90 96
Travel time (¢) o 7 4 6 0 5 9 6
Service starts at (s) 0 8 29 52 0 5 43—46 66
Service duration (o) 0 17 17 32 0 29 14 34
Service completed at (w) 1 25 46 84 0 34 60 100
Quantity delivered (q) 0 10 10 -20 |0 20 5 -25
Truck remaining capacity (r) | 20 10 0 20 25 5 0 25
Responsiveness (R) 0 18 18 18 18 47 97 97
Distance (T') 0 711 17 17 22 31 37

Table 1: Feasible path for ant 1

74 for completing Flight 3’s delivery, significantly increasing the final responsiveness (125).

Ants number three through six consider anticipated returns to the depot. These solutions
appear less natural and are indeed not beneficial, at least for this example.

All other sequences of visits are eluded by the ant optimization process. Indeed, the
neighborhood definitions prevent such paths. Three cases are illustrated in Figure 2 by the
ants 7, 8 and 9. Ant 7 attempts to start with Truck 1. Visiting Flight 1 after leaving D; is
rejected since this aircraft, a B777, is incompatible with Truck 1. Ant 8 illustrates a violation
of a time window. It is not possible to visit Flight 3 after replenishing Truck 1 since Truck
1 would not be able to complete the operation before time 99.5, i.e. after the end of the
time window (90). Ant 9 illustrates a problem of insufficient capacity. No flight is in the
neighborhood of Flight 1 for Truck 2 since its remaining capacity is five units of fuel at this
time, which is less than the minimal allowed quantity for a split delivery and less than what
is required by the other flights (10 and 15).

Another important insight from this illustration is that optimizing responsiveness or
distance does not lead to equivalent solutions. The path for the most responsive solution (Ant
1) is longer (37 units) than the shortest solution (36 units). Conversely, the responsiveness
for the shortest solution (116.5 units of time) is far less attractive than the most responsive
solution (97). Note also that the shortest path would not have been encountered without
allowing trucks to return in advance to the depot (dy > 0).

5.8 Back to the distance criterion

Considering responsiveness instead of distance is of critical importance in many applications.
Thus, the focus of this work is on responsiveness. Minimizing the length of routes obviously
remains an attractive question in many other contexts. It is also scientifically interesting
to compare routes obtained with these two different objectives. While Algorithm 1 was
developed with a responsiveness criterion in mind, it can easily be adapted to use the distance
criterion instead,; going back to the procedures defined in Section (] for the objective and the
closeness measure. The implementation of all the other constraints remains valid. Primarily,
the closeness measure must be replaced based on the distance (line 13), each NV;\ {D} by N;
(lines 11 and 16) and the probabilistic return to the depot (line 14) suppressed. Finally, R
has to be replaced by T'. In the results section, the two versions are executed on benchmarks
found in the literature in order to compare the responsive routes with the shortest ones.

15

6 Initialization and improvements

We discuss here how to initialize the ACS and, as a side effect, how to get some benchmarks
for the responsiveness criterion. We also present some methods to improve the solutions
provided by the ants.

6.1 Initial solutions

A first feasible solution is required to initialize 79. A classical approach is to use a nearest
neighbor heuristic. A sequence of visits is constructed one at a time for each vehicle. In the
sequence, the nearest client of ¢ in the feasible neighborhood N is selected. N is defined
as in the ant colony algorithm and therefore takes into account all the dimensions of the
problem. The nearest client is defined as the one for which the client responsiveness is the
smallest. If two clients have the same responsiveness, the tie is broken by minimizing the
distance. When we replace the objective of responsiveness by a traditional criterion, the
nearest client remains the closest one.

This first heuristic does not adequately suit a responsiveness criterion. In practice, dis-
patchers in airports use another basic approach, simply serveing the clients by order of
arrival. The main loop is therefore no longer on the vehicles, but on the clients. Within
the pool of vehicles available and compatible at the start of a client time window, we select
the one which is idle for the longest time. This heuristic, named FIFO for First In First
Out, may serve as a tool to identify an initial feasible solution and to compute 7y, but it is
also a benchmark with which to compare our results to standard practice. Note that this
benchmark assumes, in the dynamic case, that the vehicle starts to move to reach a client ¢
only after a; since a dispatcher typically waits until the start of the time window for all the
latest information. It therefore implies that the client will always have to wait, at least for
the travel time. In a deterministic case and to better take into account the heterogeneity of
the fleet, a variation of this heuristic allows the vehicle to start to the client as soon as the
vehicle is available, and the preferred vehicle is the one which incurs the smallest responsive-
ness for the client. This variant, denoted F'IF'O2, is used to compute the initial solution. If
we want to replace the responsiveness criterion with a more traditional minimization of the
distance, the same heuristic remains valid. The preferred vehicle for a client simply becomes
the nearest one. One additional approach is sometimes considered in practice. The dispatch-
ers initially plan the journey deterministically as in the F'I FO approach. A list of clients is
then associated with each driver, but here he has to follow this list even if new events occur.
Along the course of the operating day and with the arrival of new information, each driver
adapts the plan using the FIFO heuristic but only considering his vehicle and his list of
clients. This second strategy is clearly less efficient than the F'IFO one but corresponds to
another reality of operations. Since it will always provide a larger value for the objective
function, we do not use it in the sequel.

6.2 Local searches

When an ant has completed its search (line 36 of Algorithm 1), the solution might be in-
complete. As suggested in |(Gambardella et al. (|L9_9_d), the algorithm attempts to reconstruct
a local solution by inserting the remaining clients in the path . For each client, the best
insertion in the current tours is kept if such an insertion exists. (Gambardella et all (1999)

16

considers each client by decreasing demand. In our responsiveness and richer context, we ob-
tained better results by selecting the clients in a random order. Finally, to preserve the spirit
of the ant colony and to avoid spending too much time here, the insertion procedure is only
started when the ant provides a significantly long solution (for our numerical experiments,
at least 75% of the clients must be visited by the ant before initiating insertions).

Even when the ant, with or without insertions, provides a local feasible optimum, it is well
known that performance can generally be improved by combining the ACS with local search
procedures (line 39). As suggested again in Gambardella et all (1999), we developed a local
search basic heuristic based on CROSS exchanges (Taillard et al! (1997)). Such an operation
consists of permuting two sub-chains of clients belonging to two different vehicles. One of the
sub-chains could be empty, leading to a more traditional insertion. Both sub-chains could
also end at the depot leading to a 2-opt edges exchange. In our naive algorithm, we only
apply a few CROSS exchanges such that it improves the objective each time. Each vehicle is
tested in a random order in conjunction with a second one. Since CROSS exchanges imply
two vehicles, we also tested a local search limited to one vehicle at a time. Each client is
successively moved to another position in the same tour. The best move, if any, is kept.

6.3 Pheromone conservation

As a final improvement, we have included in the algorithm the pheromone conservation
procedure developed by Montemanni et. all (lZDlﬂ) The idea is to pass valuable information
from one optimization to the next one in the dynamic context. Indeed, the problems under
consideration from one optimization to the next one generally share lots of characteristics
since the most recent one is an adaptation of the previous one. The optimal paths of the
first problem are therefore good candidates for the next problem. Since the attractiveness
of a path is stored in the pheromone matrix, the idea is to stop initializing this matrix by
only using the results of a heuristic, but instead by mixing it with past information. For
each pair of clients which appear both in the old and in the new problem, the corresponding
pheromone matrix entry is initialized to the following value:

7 = (1 =7 + 970

where Ti‘;ld is the pheromone intensity associated to the path between client ¢ and client j

at the end of the previous optimization, 7 is the default pheromone value computed by the
initialization heuristic and ~ is a parameter controlling the level of conservation. We slightly
adapt this scheme. Since the clients are typically not exactly the same from one optimization
to the next, the orders of magnitude of 7' and 7y could be different. We therefore use this

formula instead:

-

o old '0
;= (1— ’Y)Tij —old + 770
0

where 75! is the initial value of the pheromones in the previous optimization. 7' is used in

the local updating scheme and can be seen as the basic or neutral level of pheromones. —

0
can then be interpreted as a scaling factor to the new context.

7 Results

The approach is tested on real and simulated instances. The code is written in Java. All
results were obtained on a standard laptop operating Windows 8. An online web interface

17

written in PhP is also available. We further analyze the performance of the ACS using two
sets of benchmarks. To our knowledge, no benchmark exists that allows us to simultaneously
consider all the characteristics of the types of problems we are faced with here, especially
in regard to the responsiveness criterion. We therefore start from a set of well-known VRP
benchmarks used in the literature and initially designed for the distance criterion. Each of
these two sets of benchmarks exhibits some of the characteristics of our problem. In the first
case, we analyze the impact of a dynamic strategy when new events/demands are added into
the schedule during operations. In the second case, we work in a static context on VRPs
with time windows using one set of Solomon’s benchmarks. In both cases, we endeavor to
replicate results found in the literature when the criterion is distance, and we extend them
to responsiveness.

7.1 Airport problem

We first test the ACS on a real case provided by our partner: Liege Airport (LGG). LGG
is the 8th biggest cargo airport in Europe and received the World’s Best Cargo Airport
Airport of the Year Award for the quality of its management in Singapore in 2013. The goal
is to develop a decision system to optimize the journey of the refueling trucks. We consider
a representative night of operations. 30 aircrafts, of seven different models, are expected
during the next three hours and must be refueled within one hour of landing. During this
tight schedule, there are many time window overlaps and possibilities to plan the truck
journeys. Up to five trucks were used during this night but some of them are not able to
serve certain types of aircraft. The service operating time depends on the aircraft and on
the selected truck and takes ten minutes on average. The parking spaces are mainly along a
straight road, which induces lots of symmetries in the problem. Split deliveries may occur if
the truck can serve at least 1500L. For confidentiality reasons, the flight names are replaced
by fake names and we set the start of the operations at time zero. Data is available on our
website.

The ACS algorithm is initialized with standard values for VRP. Exploration (¢), closeness
weight (/) and pheromone update (p) parameters are respectively set to 0.9, 1 and 0.1. The
longer the optimization process runs, the higher the probability is to find the optimal or at
least an improved solution. However, there is a limited amount of time available in practice
to find a solution. It is especially limited in the dynamic context. We therefore limit the
computation time in all the experiments. We test different reasonable limits as specified in
the next tables. Ten ants start from the colony at each iteration.

Many simulations were conducted using this configuration and some variations. The
most representative ones are displayed in Table Pl and Table Bl The selected parameters are
given in the first five lines of each table, while the next lines are the corresponding results.
Table 2] summaries the results for the responsiveness criterion in a deterministic context.
Table B provides results when the criterion is distance. Table [B] also contains results for the
responsiveness criterion in a dynamic case where new information is provided throughout
the day and new optimizations occur. Responsiveness is the total time the 30 aircrafts must
stay on the ground before refueling is completed. It includes the operating service time and
the idle time, where the idle time is the time spent by the aircraft waiting for the arrival of
a truck. We provide the average and maximal idle time per aircraft. We also provide the
safety time as a measure, on average and as a minimum, of time left before the theoretical
departure. This can be seen as a buffer that could absorb an unexpected event or as an

18

opportunity to reduce the time on the ground, therefore saving costs.

\ A B C D E F G H
Objective: Resp. Resp. Resp. Resp. Resp. Resp. Resp. Resp.
Algorithm: FIFO FIFO2 ACS ACS ACS ACS ACS ACS
Max CPU time : - - 1h 5’ 5’ 307 307 307
Local searches: No No Yes No Yes Yes Yes Yes
Back to depot: - - Dynamic Dynamic Dynamic Dynamic None Dynamic
Truck intensity: 0 0 0 0 0 0 0 1
Responsiveness: 11h33 10h00 9h00 9h08 9h03 9h03 9h04 9h03
Distance (m): 35550 32253 26984 27252.8 27928.2 27928.2 25422.6 27129.3
Average idle time: 9.1 6.2’ 4.2 4.9 4.2 4.2 4.2 4.2
Max idle time: 25.1° 30.1° 32.5’ 28.9’ 34 34 34 34
Average safety time: | 37.1° 40’ 41.9° 41.7 41.9’ 41.9’ 41.8’ 41.9
Min safety time: 17.2° 13.8’ 3.7 5.6’ 2.2’ 2.2’ 2.2’ 2.2’

Table 2: Airport case: responsiveness criterion in a deterministic context

Some general comments may be made regarding these simulations. First, thanks to the
ACS, it is always possible to organize the trips so that each flight is served on time, so that
the average idle time is low and so that the average safety time is high. This is already a
significant outcome for the airports. This instance is complex. Many flights arrive in the
same short interval of time and the total demand corresponds roughly to the total fleet
capacity. In this context, multiple trips have a high cost and each truck should therefore be
used at its maximum capacity during each tour. We observe that each of the five trucks are
operated. We also observe that split deliveries never occur in the optimal solutions, which
can be explained by the extra (constant) time required to operate more than one truck for
a same client that makes this operation unattractive. Note, however, that one truck returns
to the depot for replenishment before restarting for serving a late flight. Applying local
searches always improves the quality of the solutions and speeds up the process (compare
case E vs. case D). Allowing the trucks to come back to the depot at any time (d0 > 0 and
a dynamic strategy based on the remaining vehicle capacity) has a slightly positive impact
(compare case F vs. case G). Actually, there is no major difference in the quality of the
solutions if the optimization process is allowed to run longer, but this simulation and the
tests on the Solomon’s benchmarks later indicate that the process often converges faster. As
mentioned previously in the illustration with a small example, it also important in order to
cover all the domain. Finally, the impact of intensifying the use of a same truck is not clear.
It has no significant impact for this instance when responsiveness is the main criterion (case
F vs. case H), and it has a slightly negative impact when the criterion is distance (case K
vs. case L).

Table 2 provides more details with regard to the operational quality of the results in the
deterministic context for the responsiveness criterion. Case F provides a solution with an
objective value of only 9h03 in 30 seconds of CPU computation time. Very few new improved
solutions are found when the allocated CPU time increases. A similar result is obtained in
five minutes (case E). 9h00 is the best solution found (case C) but it requires one hour
of computation time. This solution is depicted in Figure This is a strong performance
with respect to three benchmarks. First, imagine that the airport applies a traditional
FIFO strategy (case A) as described in the previous section. The total responsiveness would

19

7] Schedule - M.Schyns - oiEl

DDDDD

DDDDD 0
\ 31 18 330 53 413 41 L
T — 408519

DDDDD

Figure 3: Optimal schedule (Case C)

amount for 11h33, meaning that the ACS approach is able to improve responsiveness by
22%. Second, if it was possible to apply the second strategy FIFO2, which is not realistic
in a dynamic context, FIFO2 would perform better than the FIFO strategy but would still
remain far less attractive at 10h00, than the ACS solution. It shows that a very basic
heuristic can already provide an interesting solution with respect to the FIFO rule, at least
when the objective is responsiveness optimization, but also that an Ant Colony can still make
a significant difference. Finally, we can investigate whether 9h00 is the global optimum.
Unfortunately we have no tool to prove this. We can still compute a lower bound. Assuming
that the fastest operating truck is able to serve an aircraft immediately without generating
idle time, then, based on the quantities to be delivered, it would require at least 6h30 of
operations (i.e. responsiveness). This corresponds to an average difference of five minutes
per aircraft in comparison with the best ACS solution. Note also that it is a very optimistic
lower bound since we made two strong assumptions that can clearly not be satisfied in this
context of intense demand.

Analyzing the performances of the ACS approach when the objective is to minimize the
distance rather than optimizing the responsiveness is also enlightening. Cases I to L indicate
that the ACS algorithm is able to find good solutions with respect to this other criterion. The
best result with a distance of 17877m is obtained after one hour (case I). A very close result,
17968m, is already obtained after 30 seconds (case K). More interestingly, we can compare the
solutions when we use distance instead of responsiveness as the criterion. These two different
objectives lead to drastically different tours. Assuming that optimizing the responsiveness is
of crucial importance for some companies, minimizing the distance in the hope that a shorter
set of routes will imply a higher speed of service and a better responsiveness is erroneous.
In our case, the shortest tour (case I) is associated with a responsiveness of 16h03, which is
far inferior to the most responsive solution (case C: 9h00). Even the typical FIFO strategy
(case A) does better with 11h33. We also observe a large variation of the responsiveness
for solutions of approximately the same length, which in itself shows that responsiveness
is not directly linked to distance. When (tight) time windows exist, two elements explain
this difference. First, the time associated with a trip is no longer calculated as the distance
divided by the speed since the vehicles have to wait if they arrive in advance by a client.
Distance divided by speed is only a lower bound. Second, responsiveness time is also lower
than the time for the fastest tour since responsiveness is measured with respect to the start
of the client time window and not with respect to the time of departure from the previous
client; i.e. a subset of this last interval. Conversely, when optimizing the distance is of
crucial importance, optimizing the responsiveness is not an adequate strategy. It leads to
solutions 50% longer for this instance (17876m vs. 27253m) or as high as two times longer

20

if we compare with the FIFO strategy (35550m). When responsiveness is the criterion in
opposition to distance, we also observe that the aircrafts do not need to wait as long before
being served, and that there is a vast buffer period before planned departure. Moreover, the
average idle time per aircraft is reduced by a factor four when responsiveness is considered
instead of distance. This is an important and attractive operational result.

\ 1 J K L \ M N (0]
Objective: Dist. Dist. Dist. Dist. Resp. Resp. Resp.
Algorithm: ACS ACS ACS ACS FIFO Oracle ACS
Max CPU time : 1h 5 307 30” - 1h 42x40”
Local searches: Yes Yes Yes Yes No Yes Yes
Back to depot: - - - - - Dynamic Dynamic
Truck intensity: 0 0 0 1 0 0 0
Responsiveness: 16h03 13h44 13h44 14h24 11h03 8h038 8hbH9
Distance (m): 17876.8 17967.6 17967.6 18134.6 | 37068 27122 29268.1
Average idle time: 18’ 13.4° 13.4° 14.7 8’ 3.4 4
Max idle time: 46.2 41.9’ 41.9’ 45’ 27.6° 254 26’
Average safety time: | 27.8’ 32.5 32.5° 31.1 34 38.6° 379
Min safety time: 3.2 4.9’ 4.9 3 -4.3’ 4 3.4

Table 3: Airport case: distance and dynamic contexts

The previous results only discuss the algorithm in a static context for which all the
information is known precisely in advance. With cases M, N and O, we now discuss the
performances of the approach in a stochastic environment. Throughout the operating day,
new events occur. The landing time and the beginning of each time window are not known
with certainty. To simulate this, we draw at random the beginning of each time windows
a;. We use a Gaussian probability distribution centered on the previously used expectation
time and with a standard deviation corresponding to fifteen minutes. When the size of the
time windows after shifting its beginning becomes greater than one hour or smaller than 30
minutes, the (expected) end of the time window is adjusted to maintain a standard one hour
window for the operations. If the resulting a; is smaller than the previously expected time,
the dispatcher is informed ten minutes before a;. Otherwise, he gets the new information
at the initially expected time of arrival. The true quantities to deliver are communicated
precisely at the beginning of each (new) time window. They are computed thanks to a normal
distribution centered on the expected quantities and with a standard deviation corresponding
to 10% of the expected quantities. Finally, the service time is sometimes faster and sometimes
slower than expected by a value distributed once more according to a normal distribution
N(0,3). This information is made available during the service. All in all, in this simulation
scheme, new information appears at 42 different moments during the operating day of the
30 flights.

Case O provides the final results obtained when a new optimization is performed each
time a new piece of information appears, leading to 42 runs. The shortest delay between the
arrival of two new pieces of information was one minute. Due to this level of granularity,
each new optimization was allowed to run for only a fraction of one minute, more precisely 40
seconds. This ensures real time operations. Thanks to our approach, it was always possible
to adapt the planning to serve all the flights in time. We also observe that the results are
very good. To determine this, first note that the average idle time is very low and the safety
time very large, which is attractive to the airports. The minimum safety time of only 3.4

21

minutes is linked to a sole flight for which a truck experienced a very long unanticipated
breakdown. We can also compare the case O with the cases M and N. Case N corresponds
to the best known estimation of the solution for this problem. In this case, we assume that
an oracle was able to predict all the events well before the beginning of the horizon and
that a static optimization was run during an extended time (one hour). Responsiveness then
amounts to 8h38. This is only 21 minutes less than the solution found in case O. Case M
illustrates a solution that could be typically observed in airports, using the FIFO strategy.
Not only is responsiveness significantly less attractive in this case (11h03 instead of 8h59),
we also observe that one flight cannot be served within its time window. The service ends
four minutes after the expected time of departure, inducing penalties for the airport.

7.2 A benchmark for the Dynamic VRP
We use here the benchmark proposed by IKilby et al. (|L9_9ﬁ) and also used by Montemanni et all

) in a dynamic ant colony context. The initial benchmark consists of seven instances
taken from |(Chri (1984), two instances from [Fisher and Jaikumail (1981)
and twelve from (Taillard (1994). These instances range from 50 up to 199 customers as
reported in the names of the cases. |Kilby et al. (IL%)S) has added to these instances an
appearance time of the order and a service duration for each client. Moreover, they specify
a length of the working day and suggest a cut-off time. Any orders received after the cut-
off time, typically set at half of the working day, are postponed to the next day. A whole
day therefore consists of all the orders received in the first half of the day plus the orders
received in the second half of the previous day. [Kilby et al. (IL%_@) also suggest an advanced
commitment time defining how far in advance orders have to be committed to the vehicles.
We set it to the recommended value of zero in our experiments, meaning that the driver may
start as soon as the demand is known.

In the papers by Kilby et al! (1998) and Montemanni etall (2005), the goal is to minimize
the distance. The notion of time is only important to determine the sequence of order arrivals
in the dynamic context. No explicit time windows (TW) are set but weak TW still implicitly
exist. For each client, the beginning of the TW corresponds to the arrival time of the order
and the end of the TW corresponds to the end of the day. We propose an extension for which
any client must be served within the two hours following the reception of the order. This is
particularly relevant in the context of the optimization of the responsiveness. Note that these
two definitions of TW imply a major difference between these sets of cases and the airport
case considered in the previous section. Indeed, since the order and the corresponding TW
are only known at the order arrival time and since the commitment time is zero, there is no
way to dispatch the truck to the client in advance to start the service right at the beginning of
the TW. In this context, the responsiveness criterion is directly impacted by the travel time
ti; since the service time s; will always be larger than (a; + ¢;;). Minimizing the distance
therefore becomes a very important objective even when dealing with the responsiveness
criterion.

The framework proposed by Montemanni et all (IZDDﬂ) is the closest to ours. Their fo-
cus is on dynamic problems and their approach is based on an Ant Colony System with
a pheromone conservation procedure. However, by contrast they only consider the mini-
mization of the distance. They also follow a different strategy for the reoptimization of the
problems. They divide a working day into time slices of equal length. They only start a new
optimization at the end of each time slice. Any order arriving in between is postponed to

22

Criterion: distance Criterion: responsiveness

MGRD | 25slices Events \ 25slices Events | 25slices Events T™™W
AT B C | D E| F G H

Obj. , Obj. # Obj. #, Obj. Obj. | Obj. Obj. Obj. #

¢50 Resp. - 1426 129.7 65 756 581 55.9 778 10
Dist. 681.86 , 700.6 7 633.7 7 , 7541 7251, 9055 887.4 1382.3

¢75 Resp. - 11249 114.2 | 57 LI 447 41 29.6 20
Dist. 1042.39 , 1103 13 1161.6 14, 1218.8 1197.1 , 1498.4 1525 1443.8

c100 Resp. - 11396 130.4 572 196 45.6 41.2 29.7 15
Dist. 1066.16 , 1056.3 11 1138.2 12, 1463 1390.6 , 1505.3 1408.6 1686.2

c100b Resp. -1 1158 115.7 686 8.1 511 45.9 26.6 19
Dist. 1023.6 , 899.6 10 946.6 12, 1579.5 1750.3 , 2279.4 22154 2262.3

c120 Resp. - | 2082 190.7 957 7.2 826 67.4 46.1 14
Dist. 1525.15 | 1349.3 9 14759 13, 1971.2 2181.3 , 2438.7 2226.1 2327.7

¢150 Resp. -1 173 102.9 | 59 458 | 41.8 38.4 25 23
Dist. 1455.5 , 1391.6 14 1672 18, 1588.2 1768.9 , 1931.6 1920 1978.3

c199 Resp. -1 106.7 87.9 5L 4281 36.9 33.5 22.6 32
Dist. 1844.82 | 1829.6 19 1971.2 22, 1930 2027.1 , 2488.9 2490.8 2614

f71 Resp. -1 T6T 77.5 361 35.71 201 28.2 156 8
Dist. 34869 , 3199 6 311.9 6 , 4505 4925, 5741 5714 5544

f134 Resp. - 836 690.7 | 5364 3695 4651 3283 149.1 14
Dist. | 16083.56 , 16037.9 8 15404.9 & , 19930.2 18722.3 , 24784 24656.3 27059.4

tai7ha Resp. - 271 241 1247 1214 ' 1082 100 69.5 20
Dist. 10452, 1971 14 2027.8 14, 3197.7 3249.7 | 40313 3968.3 4096.5

tai75b Resp. -1 2363 235 972 81.9 | 75.6 62.1 40.7 18
Dist. 1704.06 , 1566.4 12 14952 12, 2828 2491.7 , 2870.1 27835 3030.6

tai7hc Resp. -1 2596 218.8 787 7151 708 58.2 36.4 17
Dist. 1653.58 | 1600 13 1724.1 13, 2122.9 1956.6 , 2884.5 2842.4 2885.5

tai75d Resp. -1 2574 245.7 1229 1058 ' 95.3 86.3 51.8 17
Dist. 1529 | 1612.3 11 1855.1 12, 2898 28185, 31190.1 20494 2872.4

tail00a Resp. -1 3045 278.4 1384 127.3 ' 110.1 104.5 67.3 22
Dist. 2428.38 | 2587.9 14 25627 16, 3694.6 3909.9 | 4793.9 4604.3 4553.6

tail00b Resp. - 259 249.7 127.2 1157 96 90.3 62.3 22
Dist. 2347.9 | 2400.3 14 2513.6 15, 3465.7 3588.3 , 3956 4242.2 4528.8

tail00c Resp. -1 2317 215.2 | 83.8 777 72 66.1 421 21
Dist. 1655.91 | 1624.2 14 1647.1 14, 2538.6 26722, 3490.9 3091.6 3222.3

tail00d Resp. -1 2515 226.6 ! 87 84.5 1 744 66.2 402 21
Dist. 2060.72 | 21438 15 1986.4 14, 2802.9 2657.2 , 3112.8 3121.3 32334

tail50a Resp. -1 3358 313.3 1559 1634 ' 1339 123 742 29
Dist. 3840.18 | 4168.3 20 4354 18, 5637.2 5134.7 , 7807.3 7413 7352

tail50b Resp. -1 3201 258.7 1364 13291 1129 107.7 85.1 27
Dist. 3327.44 | 3607.5 20 3530.5 20, 52232 51224, 5971.3 58422 6683.9

tail50c Resp. -1 280.2 219.1 1189 1055 ' 89.9 79.2 435 28
Dist. 3016.14 | 2901.1 17 3047.4 18, 53752 5128.7 | 6008.1 57284 5206.1

tail50d Resp. -1 306.1 249.8 ! 134 1188 1 105.2 93.6 53.1 28
Dist. 3203.75 | 3310.3 17 35532 18, 4849.7 4836.2, 6291.4 61627 62538

AverageResp. 2471 218.6 1163 100.3 ' 95.2 81.8 51.8 20.2

(Wait) . 226.9 198.4 L 96.1 80.1 | 75 61.6 31.6
Dist. 2561.1 | 2580 13.2 2619.7 14.1 3596.2 35153 | 4416.3 4316.7 4534.6

Table 4: Main results: new events dynamically added

23

the next slice. They observed in their work that 25 slices per day is a suitable frequency.
This strategy has several advantages. First, it guarantees a constant and sufficient period
of time for optimization. Indeed, a working day of 8 hours corresponds to 25 slices of about
20 minutes, while, with our basic strategy of reoptimizing each time a new event occurs, the
optimization time could be limited to no more than one minute, leading potentially to sub-
optimal solutions. Grouping the orders also slightly relaxes the problem. By waiting until
the end of the period, we get more information before the allocation decision is required.
The picture of the future is clearer and more decisions are still possible. The extreme case
with only one time slice per day is equivalent to the oracle. However, as mentioned by these
authors, it can only work when there are no (restrictive) time windows and it could be not
suitable for problems where urgent orders are likely to exist, in other words when respon-
siveness is the main goal. Note that the lack of time for optimization in the strategy based
on events occurrence is partially compensated by the increase in computer power and new
advanced optimization algorithms over the last decade. For these benchmarks, we consider
both strategies and make comparisons with Montemanni et all (lZDQﬂ) results. We don't,
however, start a new optimization if no new event occurs during a time slice.

Based on the literature and on the previous results, we use these typical values for the
parameters. Exploration (¢q), closeness weight (/3), pheromone update (p) and pheromone
memory parameters are respectively set to the 0.9, 1, 0.1 and 0.3. Ten ants start from the
colony at each iteration. The first optimization before the beginning of the working day
is allowed to run for ten minutes. The subsequent optimizations taking into account the
new events run for a maximum of 40 seconds each. The local searches are activated but the
vehicle intensification is not. The returns in advance are allowed using the dynamic strategy.

The results for the dynamic case are reported in Table @l The names of the instances
are indicated in the first column. For each of them, the first line provides the responsiveness
associated to the solution while the second one gives the distance. Columns A, B and C
address the minimization of the distance while cases D up to H are concerned with the
optimization of the responsiveness. We analyze the results for different dynamic strategies
and fleet sizes. In all these configurations, an important first outcome is that the ACS was
able to find feasible solutions of good quality.

When the criterion is the distance and the day is split into slices, our algorithm is
closely related to the one used in Montemanni et all (|201)_d) It still remains tricky to make
comparisons because there are slight differences in the algorithms, newer computers are of
superior speed and some parameters slightly differ (e.g. computation time is limited to
40 seconds in our case). Column A contains a copy of the average results as reported by
Montemanni, Gambardella, Rizzoli and Donati (MGRD). Column B provides the results we
got from our algorithm for the same data when the goal is also to optimize the distance.
Unsurprisingly, since the two algorithms are basically the same, we got similar results. The
average distance is 2561.1 units for column A and 2580 units for column B. The variation
that did exist is likely essentially due to different random runs. In both cases, a large number
of vehicles were available (30 vehicles in our simulations), and only a subset was selected
by the process. This is reported on the right of column B (#). With our software, we can
compute the responsiveness associated with the shortest solution. This amounts to 247 units
of time on average. It can be dissected into waiting time for the client and service time.
Since the fleet is homogeneous and the demand does not change with time, the service time
is constant and can be computed in advance. It represents approximately 20 units of time on
average. This shows that, when optimizing the distance, the clients are essentially waiting

24

for service (92% of the responsiveness corresponds to waiting time).

With column C, we compare the results when the dynamic strategy is to start a new opti-
mization each time a new event appears, as in |Gendreau et al. (IL%)Q), and not at predefined
times. Conclusions are difficult to draw here. With an average of 2620 units of distance, the
solutions are slightly inferior, even if not significantly, than those obtained when the day is
split into slices. We are not surprised by this result. For these instances, there are no strong
time windows. It is therefore not penalizing, for the distance criterion, to delay an order to a
driver. Moreover, delaying the orders, as in the time slice strategy, allows decision-making to
occur when more information is available and therefore allows for better decisions. The time
slices approach appears to be a better strategy when the ultimate goal is to minimize the
distance. The event strategy was justified by a hope to increase "responsiveness for problems
where urgent orders are likely to exist. However, we have already demonstrated that this
goal is difficult to reach if the optimization criterion is based on distance. Note that the pref-
erence for the time slices approach is less obvious for problems with tighter time windows.
In these cases, some solutions would remain feasible only if the vehicles are allowed to move
as soon as possible, i.e. as soon as new events are known. Delaying an order could prevent
vehicles from reaching some clients within their time windows, therefore dooming the time
slices strategy. On the other hand, it does not imply that the events strategy surpasses the
slices strategy in this context. It may be the case that the event strategy allows for reaching
clients who would not be accessible otherwise. It may not be superior if the advantage of
waiting for more information compensates for the infeasibility of some routes.

With columns D and E, we show what would have happened if the criterion had been
the optimization of the responsiveness instead of the distance, everything else kept constant,
especially the size of the vehicle fleet. Indeed, when the criterion is the responsiveness, the
fleet size must be limited or it would become unnaturally large. In case D (resp. case E), the
number of available vehicles is the one obtained in the solutions of column B (resp. column
C). Since responsiveness may always be improved by using more vehicles, the number of
vehicles in a solution corresponds to the maximal size initially allowed. When comparing
the solutions for column D (resp. column E) with those for column B (resp. column C),
there is again a significant difference between the results for the two optimization criteria.
The classical algorithms based on the minimization of the distance do not lead to suitable
solutions when responsiveness is of primary importance. Responsiveness is improved by more
than 50% for each of the two dynamic strategies. Alternatively, if distance is preeminent,
the responsiveness criterion leads to longer routes.

Note that the responsiveness for columns D and E cannot be compared since the fleet
sizes sometimes differ. It prevents us from comparing the two dynamic strategies for the
responsiveness criterion. Columns F and G allow us to make this comparison. In columns
F, G and H, the sizes of the vehicle fleet are set for each instance to a same level. We
determine the size such that the total capacity of the vehicles corresponds to two times the
total demand. In other words, each vehicle will operate at least at half capacity on average.
The number of resulting vehicles is indicated in the last column on the first line of each
instance. With 81.8 units of time on average (column G) instead of 95.2 (column (F), the
dynamic events strategy now clearly outperforms the time slices strategy. There is a match
between the justification of this strategy and the responsiveness criterion. This result is
confirmed for each specific instance (and also for column D with respect to column E when
the fleet size is the same).

We added in column H a final configuration "TW where the time windows are tighter.

25

We first define a period of time of one 25th of a day, by analogy to the previous time slices.
For each client, we decide that the time windows start one period after the time at which that
order is received. This is also an indirect way of implementing the advanced commitment
time T, mentioned by Kﬂw (|l£19ﬁ) and [Montemanni et all (IZDQEJ), in essence a way of
giving the drivers an appropriate reaction time after having been committed to new orders.
The length of a time window has been arbitrarily set to four periods. For a working day
of 8 hours, this corresponds to 77 minutes and this implies that all operations must be
completed within 96 minutes after receiving the order. The responsiveness seems improved
but comparisons with the other cases are not legitimate. Indeed, by postponing the beginning
of the time windows, the impact of the travel time can be reduced or even canceled. More
significantly, the ACS was again always able to find feasible solutions of apparent good
quality.

7.3 Solomon’s benchmark for VRPTW

In this last section, the ACS is tested using some Solomon’s benchmarks. These could
seem to be simpler cases since they concern deterministic VRPs with time windows as
sole constraints. However, Solomon’s instances are known to be difficult, especially the
random instances that we consider here. These problems are even more challenging in a
responsiveness context. Indeed, since the fleet is homogeneous and the demand the same for
each client, only the idle time of the client, i.e. the first part of the responsiveness criterion,
makes a difference. The time measure taken into account in traditional approaches is either
the travel time if the vehicle does not arrive in advance or otherwise the travel time plus a
waiting time. When responsiveness is the criterion, the time measure is consequently the
same but is reduced by the travel time that occurs before the beginning of the time windows.
There is less information, especially when a vehicle is able to arrive on time or in advance.
Note also that when the main objective is to minimize the distance, our algorithm is not
expected to outperform existing approaches. It was developed for more general cases and it
may waste time considering strategies such as split deliveries or multi-trip.

Table B contains the results for the R1xx Solomon’s instances with 100 clients. Column
A provides the best possible solutions when the goal is to minimize the total distance.
These solutions were computed using our implementation of a branch-and-cut-and-price
algorithm (excepted for the instance R112 found in the literature). It allows us to compute
the associated responsiveness levels. Colum B provides the results in the same context but
using the ACS algorithm. The parameters were set to the same values as for the previous
benchmark, except for the running time being limited to one hour. We set the maximum
number of available vehicles to the number of vehicles in operation in the optimal solutions,
plus two units to provide some degrees of liberty. The ACS found good solutions within
one percent of the optimal solutions in average. The final number of vehicles in operation is
the same as in the optimal solution for nine instances and is only augmented by one unit in
the last three ones. Columns C and D provide results when the criterion is responsiveness.
To allow comparisons, the fleet size is the same as for the distance criterion (column B).
In column D, the vehicles may come back in advance to the depot (dy > 0 based on the
remaining vehicle capacity). In column C, we test what happens if the vehicles may only
come back to the depot when the neighborhood is empty (dy = 0). The results are similar,
slightly in favor of the strict policy. However, when looking into the logs, we observe that
the best solutions are typically found earlier with the anticipated return strategy. For three

26

Criterion: Distance Criterion: Responsiveness

Optimum ACS ACS-no return ACS-Dyn

A B C D

Obj. # Obj. # Obj. Obj.

R101 Resp. 11.99 11.99 10.6 10.6
Dist. 1637.7 20 1637.7 20 1969.5 2007.8

R102 Resp. 40.9 38.3 17.4 19.7
Dist. 1466.6 18 1468.4 18 1939.2 2133.9

R103 Resp. 67.16 64.72 38.3 38.2
Dist. 1208.7 14 12224 15 1609.2 1554.3

R104 Resp. 94.63 93.7 69 68.8
Dist. 971.5 11 997 11 1242.4 1245

R105 Resp. 21.83 21.83 15 14.8
Dist. 1355.3 15 1355.3 15 1605.2 1583.2

R106 Resp. 44.22 46.8 26.6 26.8
Dist. 1234.6 13 1246.6 13 1452.8 1438.8

R107 Resp. 70.64 73.09 57.5 57.5
Dist. 1064.6 11 1073.3 11 1284.5 1284.5

R108 Resp. 92.87 86.18 67.7 99
Dist. 932.1 10 961 11 1185.6 2112.2

R109 Resp. 36.38 35.7 234 23.3
Dist. 1146.9 13 1148.7 13 1365.2 1321.6

R110 Resp. 51.22 49.51 33.6 33.8
Dist. 1068 12 1078.5 12 1301.5 1308.9

R111 Resp. 63.1 52.09 33.6 33.2
Dist. 1048.7 12 1068.3 12 1308.4 1290

R112 Resp. 68.76 59.78 46.7 47.1
Dist. 948.6 10 969.9 11 1168.7 1191.7

Average Resp. 55.3 52.8 36.6 39.4
Wait 45.3 42.8 26.6 29.4

Dist. 1173.6 13.3 1185.6 13.5 1452.7 1539.3

Table 5: Solomon’s benchmarks

instances (R102, R106 and R107) in the context of responsiveness, the initial heuristics
were not able to find a feasible solution. This implies that the ACS pheromones were not
correctly initialized and that the optimization process took many iterations before finding
a first feasible solution. Most of the ants stopped before visiting all the clients. This is
explained by the complexity of Solomon’s instances, and we had to intensify the use of the
insertion routine in order to solve these instances. Alternatively, we also obtained solutions
by softening the time windows or by increasing the size of the fleet. Finally, we again observe
a significant difference between the results obtained for the two possible objectives.

8 Conclusions

We have presented here a new algorithm for handling rich VRP problems. We explicitly
cover the case of dynamic stochastic contexts, heterogeneous fleet and split deliveries. We
do not only focus on the traditional objective function based on the minimization of the
distance but we propose an approach to optimizing the responsiveness. Responsiveness is a
major and natural criterion in lots of practical situations. We tested our approach on a real
case in the field of air transportation and sets of well-known benchmarks. This algorithm,

27

based on an ant colony, was proved to be very flexible and was always able to reach good
feasible solutions in a limited amount of time. A dynamic interactive version written in PhP,
as well as a Java version, were developed and are available on our website. We have shown
that traditional algorithms relying on a distance or time criterion do not provide suitable
solutions when responsiveness matters. We have also shown that different dynamic strategies
may be applied when new information becomes available. In the presence of urgent requests,
the best approach is to repeatedly start new optimizations based on the responsiveness cri-
terion as soon as new events occur.

Acknowledgments This work was initiated as part of a research project with Liege
Airport. Special thanks are due to J. Pauwels, Director of Operations. This work was
also partially funded by the Interuniversity Attraction Poles Programme initiated by the
Belgian Science Policy Office (grant P7/36). Thanks are due to the referees for their valuable
comments. The paper, however, only expresses the author’s views.

References

Archetti C. and Speranza M.G. (2012). Vehicle routing problems with split deliveries. Inter-
national Transactions in Operational Research, Vol. 19(1/2), pp.3—22.

Baldacci R., Mingozzi A. and R. Roberti. (2012) Recent exact algorithms for solving the
vehicle routing problem under capacity and time windows constraints, Furopean Journal
of Operational Research, 2Vol. 18, pp. 1-6.

Benslimane MT. and Benadada Y. (2013). Ant colony algorithm for the multi-depot vehicle
routing problem in large quantities by a heterogeneous fleet of vehicles. INFOR, Vol. 51(1),
pp-31-40.

Berbeglia G., Cordeau J.-F. and Laporte G. (2010). Dynamic pickup and delivery problems.
FEuropean Journal of Operational Research, Vol. 202, pp.8-15.

Berbeglia G., Pesant G. and Rousseau L.-M. (2011). Checking the feasibility of dial-a-ride
instances using constraint programming. Transportation Science, Vol. 45(3), pp.399-412.

Berbeglia G., Cordeau J.-F. and Laporte G. (2012). A hybrid tabu search and constraint
programming algorithm for the dynamic dial-a-ride problem. INFORMS Journal on Com-
puting, Vol. 24(3), pp. 343-355.

Bin Y., Zhong-Zhen Y. and Baozhen Y. (2009). An improved ant colony optimization for
vehicle routing problem. European Journal of Operational Research, Vol. 196, pp. 171-176.

Briaysy O. and Gendreau M. (2005). Vehicle Routing Problem with time windows, Part
I: route construction and local search algorithms. Transporation Science, Vol. 39(1), pp.
104-118.

Choi E. and Tcha DW. (2007). A column generation approach to the heterogeneous fleet
vehicle routing problem. Computers € Operations Research, Vol. 34(7), pp. 2080-2095.

Christofides N. and Beasley J.E. (1984). The period routing problem. Networks, Vol. 14, pp.
237-256.

28

Cordeau J.-F., Desaulniers G., Desrosiers J., Solomon M.M. and Soumis F. (2002) Vehicle
Routing Problems with Time Windows, In: Toth P. and D. Vigo (Editors), The Vehicle
Routing Problem, Siam monographs on Discrete Mathematics and Applications, pp. 157—
195.

Dantzig G.B. and Ramser J.H. (1959) The truck dispatching problem, Management Science,
Vol. 6, 80-91.

Donati A.V., Montemanni R., Casagrande N., Rizzoli A.E. and Gambardella L.M. (2008).
Time dependent vehicle routing problem with a multi ant colony system. European Journal
of Operational Research, Vol. 185, pp. 1174-1191.

Dorigo M., Maniezzo V. and Colorni A. (1996). Ant system: optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Mans and Cybernetics, Part B, Vol.
26(1), pp. 29-41.

Dorigo M., Di Caro G. and Gambardella L.M. (1999). Ant Algorithms for Discrete Opti-
mization. Artificial Life, Vol. 5, pp. 137-172.

Dorigo M. and Gambardella L.M. (1999). Ant colony system: A cooperative learning ap-
proach to the traveling salesman problem. IEEE Transactions on Evolutianory Computa-
tion, Vol. 1, pp. 53-66.

Dror M., Laporte G. and Trudeau P. (1994) Vehicle routing with split deliveries. Discrete
Appl. Math. Vol 50, pp. 239-254.

Fisher M.L. and Jaikumar R. (1981). A generalized assignment heuristic for vehicle routing.
Networks, Vol. 11, pp. 109-124.

Gajpal Y. and Abad P.L. (2009). Multi-ant colony system (MACS) for a vehicle routing
problem with backhauls. Furopean Journal of Operational Research, Vol. 196, pp. 102—
117.

Gambardella L.M., Rizzoli A.E., Oliverio F., Casagrande N., Donati A.V., Montemanni R.
and Lucibello E. (2003). Ant Colony Optimization for vehicle routing in advanced logis-
tic systems. Proceedings of MAS 2003 International Workshop on Modelling and Applied
Stmulation, Bergeggi, Italy, pp. 3-9.

Gambardella L.M., Taillard E. and Giovanni A. (1999). MACS-VRPTW: A multiple ant
colony system for vehicle routing problems with time windows. In: Corne D., Dorigo M.
and Glover F (Editors), New Ideas in Optimization, McGraw-Hill, London, pp 63-76.

Gauvin C., Desaulniers G. and Gendreau M. (2014) A branch-cut-and-price algorithm for
the vehicle routing problem with stochastic demands. Computers € Operations Research,
Vol. 50, p141-153.

Gendreau M., Guertin F., Potvin J.-Y. and Taillard E. (1999) Parallel tabu search for real-
time vehicle routing and dispatching, Transportation Science, Vol. 33(4), pp. 381-390.

Ghiani G., Guerriero F., Laporte G. and Musmanno R. (2003) Real-time vehicle routing:
Solution concepts, algorithm and parallel computing strategies, European Journal of Op-
erational Research, Vol. 151, pp. 1-11.

29

Giaglis G., Minis I., Tatarakis A. and Zeimpekis V. (2004) Minimizing Logistics Risk
through Real-Time Vehicle Routing and Mobile Technologies: Research To-Date and Fu-
ture Trends, International Journal of Physical Distribution and Logistics Management,

Vol. 34(9), pp.749-764.

Gulezynski D., Golden B. and Wasil E. (2011) The multi-depot split delivery vehicle routing
problem: An integer programming-based heuristic, new test problems, and computational
results. Computers € Industrial Engineering, Vol. 61(3), pp.794-804.

Kallehauge B., Larsen J., Madsen O.B.G and Solomon M.M. (2005) Vehicle Routing Prob-
lems with Time Windows, In: Desaulniers G., Desrosiers J. and Solomon M.M. (Editors),
Column Generation, Springer, 67-98.

Kilby P., Prosser P. and Shaw P. (1998) Dynamic VRPs: A study of scenarios, Technical
Report, APES-06-1998, University of Strathclyde, UK.

Laporte G. (1992) The Vehicle Routing Problem: An Overview of exact and approximate
algorithms, Furopean Journal of Operational Research, Vol. 59, pp. 345-358.

Laporte G. (2009) Fifty Years of Vehicle Routing, Transportation Science, Vol. 43(4), pp.
408-416.

Montemanni R., Gambardella L.M., Rizzoli A.E. and Donati A.V. (2005). Ant colony system
for a dynamic vehicle routing problem. Journal of Combinatorial Optimization, Vol. 10,
pp. 327-343.

Reimann M., Doerner K. and Hartl R.F. (2004). D-Ants: Savings Based Ants divide and
conquer the vehicle routing problem. Computers ¢ Operations Research, Vol. 31, pp. 563~
591.

Rizzoli A.E., Montemanni R., Lucibello E. and Gambardella L.M. (2007) Ant Colony Op-
timisation for real world vehicle routing problems: from theory to applications. Swarm
Intelligence, Vol. 1(2), pp. 135-151.

Salani M. and Vacca, I. (2011). Branch and Price for the Vehicle Routing Problem with
Discrete Split Deliveries and Time Windows, European Journal of Operational Research,
Vol. 213(3), pp.470-477.

Seixas MP. and Mendes AB. (2013). Column Generation for a Multitrip Vehicle Routing
Problem with Time Windows, Driver Work Hours, and Heterogeneous Fleet. Mathematical
Problems in Engineering, Vol. 2013, pp.1-13.

Taillard E. (1994). Parallel iterative search methods for vehicle-routings problems, Networks,
Vol. 23(8), pp.661-673.

Taillard E., Badeau P., Gendreau M., Guertin F. and Potvin J.-Y. (1997). A tabu search
heuristic for the vehicle routing with soft time windows, Tansportation Science, Vol. 31,
pp.170-186.

30

	Introduction
	Literature review
	Problem description
	The ACS algorithm for the VRPTW
	The ACS algorithm for the DVRPTWSD with responsiveness
	From the standard VRPTW to the DVRPTWSD with responsiveness
	Responsiveness criterion
	Heterogeneous fleet
	Multi-trip
	Split delivery
	Dynamic stochastic environment
	A small illustration
	Back to the distance criterion

	Initialization and improvements
	Initial solutions
	Local searches
	Pheromone conservation

	Results
	Airport problem
	A benchmark for the Dynamic VRP
	Solomon's benchmark for VRPTW

	Conclusions

