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ABSTRACT   

Precision agriculture can be considered as one of the solutions to optimize agricultural practice such as nitrogen 
fertilization. Nitrogen deficiency is a major limitation to crop production worldwide whereas excess leads to 
environmental pollution. In this context, some devices were developed as reflectance spot sensors for on-the-go 
applications to detect leaves nitrogen concentration deduced from chlorophyll concentration. However, such 
measurements suffer from interferences with the crop growth stage and the water content of plants. The aim of this 
contribution is to evaluate the nitrogen status in winter wheat by using multispectral imaging. The proposed system is 
composed of a CMOS camera and a set of filters ranged from 450 nm to 950 nm and mounted on a wheel which moves 
due to a stepper motor. To avoid the natural irradiance variability, a white reference is used to adjust the integration time. 
The segmentation of Photosynthetically Active Leaves is performed by using Bayes theorem to extract their mean 
reflectance. In order to introduce information related to the canopy architecture, i.e. the crop growth stage, textural 
attributes are also extracted from raw images at different wavelength ranges. Nc was estimated by partial least squares 
regression (R² = 0.94). The best attribute was homogeneity extracted from the gray level co-occurrence matrix (R² = 
0.91). In order to select in limited number of filters, best subset selection was performed. Nc could be estimated by four 
filters (450 ± 40 nm, 500 ± 20 nm, 650 ± 40 nm, 800 ± 50 nm) (R² = 0.91). 
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1. INTRODUCTION 
Precision agriculture is a recent concept to increase land productivity by reducing environmental impacts and economical 
costs while maintaining crop quality and yield1. In this context, one of the main challenges in agriculture requires the 
knowledge of nitrogen (N) plant deficiencies in real time and by taking into account spatial variabilities to provide only 
the necessary amount of nitrogen fertilizer. Indeed, plant growth is hampered when N is lack while an excess leads to a 
risk of environmental contamination or economic losses2. In this context, new technologies are developed to acquire a 
large number of data in real time and in a non-destructive way3. 

A large number of these new devices are based on optical plant properties. Under different nitrogen stresses, the 
physiological state of plants changes and influences spectral responses of crops4. On the field, two scales are studied by 
specific devices. 

At the leaf scale, hand-held chlorophyll meters are used to improve nitrogen input fertilizer managements. These devices 
estimate chlorophyll concentration in leaf which can be related to nitrogen concentration since leaf chloroplasts contain 
70% of the leaf nitrogen concentration5. Two kinds of measurement system exist. Measurement can be based on the 
difference of light absorption through the leaf at 650 nm and 940 nm. The first wavelength is selected due to absorption 
of red light by chlorophyll while the second wavelength, in the near infrared, serves as a reference6. An example of 
device is the SPAD-502. In durum wheat, the use of SPAD index had showed a medium nonlinear relationship (R² of 
0.68) with nitrogen nutrition index (NNI)9. In a second approach, the reflectance of light emitting at 660 nm and 740 nm 
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is used to estimate nitrogen concentration in leaf. An example of such device is the Plant Pen NDVI-300 7. Chlorophyll 
meters present however drawbacks. The measurement area is small (6 mm²) and the spectral response interact with other 
parameters such as the leaf thickness8.  

At the canopy scale, spectral-optical spot sensors are used for estimating Nc by means of vegetation index computation. 
However, interferences can be observed due to the influence of other factors such as the water supply, diseases or other 
nutrient deficiencies. Commercial devices such as GreenSeeker and Crop Circle ACS-470 can be mentioned. The first 
one measures reflectance in two spectral ranges giving the NDVI index whereas Crop Circle ACS-470 is configured to 
provide reflectance measurement from six narrow spectral bands which supply a large set of vegetation index. 
Hyperspectral data can be gained with spectroradiometer device and provide large vegetation indices. Canopy 
Chlorophyll Content Index (CCCI) computed from hyperspectral reflectance had a correlation of 0.76 with nitrogen 
stress index10. 

Images acquired by camera are studied to replace spectral-optical spot sensors. Conventional color cameras offer the 
possibility to compute color indices and link them with plant physiological characteristics. It was found a correlation of 
0.88 between normalized red computed on image acquired with active camera and nitrogen content in leaves11. 
Hyperspectral cameras can study a spectral range from 400 nm to 1000 nm with a spectral resolution reaching 3.7 nm 12. 
These devices acquire a large volume of data which need to be reduced due to redundancy of information between 
similar wavelengths13.  

Studies describe previously were based on the reflectance measurement in several spectral bands to predict Nc. 
Nevertheless, other visual characteristics such as textural features computed on images could be related to nutrient 
content14. Indeed, nitrogen deficiency influences the architecture of canopy by decreasing leaf area and plant size15. 
Imaging has is promising in the development of measurement systems of nitrogen leaves concentration since it allows 
visualizing large scene and providing both spectral and textural information. 

The objective of this study was (i) to evaluate the potential of reflectance attribute and the importance of new 
information brought by textural attributes computed on multispectral images in order to estimate nitrogen leaves 
concentration of winter wheat and (ii) to select a limited number of filters in order to develop a dedicated instrument. 

 

2. MATERIALS AND METHODS 
 

2.1 Experimental field 

Field experiments were conducted at University of Liège, Gembloux Agro-Bio Tech (Belgium) during the 2013-2014 
growing season (Bordia field, 50.56° N, 4.69°E) and during the 2015-2016 growing season (Lonzée field, 50.55°N, 
4.73°E). Seven different nitrogen input treatments were applied for both growing seasons (Table 1). These strategies 
were designed around the Belgian farmers’ current practice, which consists in applying 60 kg N ha-1 respectively at 
tillering, redress and last-leaf stages. The winter wheat seeds (Triticum aestivum, cv. Edgar) were sown on the 24th of 
October 2013 at a grain density of 350 grains/m². The residual nitrogen concentration in soil was 122 kg N ha-1 
(14/03/2014). Two repetitions were made for each treatment which means that eight plots were studied. During the 
second growing season in 2015-2016, winter wheat (Triticum aestivum, cv. Anapolis) was sown on the 29th of October 
2015 at a grain density of 300 grain/m². The residual nitrogen concentration in soil was 10 kg N ha-1 (01/03/2016). Four 
repetitions were made for each treatment which means that twenty plots were studied. 

 

2.2 Nitrogen leaves concentration 

Wheat plants were destructively sampled on five dates: the 11 April 2014, 7 June 2014, 23 May 2016, 30 May 2016 and 
6 June 2016. Plants within two 0.5 m lengths of row per plot were cut and placed in coolers. Reference measurement of 
nitrogen concentration in leaf tissues were obtained by Kjeldahl method. This method implied sampling of green leaves, 
separation of stems, and oven-drying at 70°C. The N concentration is expressed on the basis of unit dry weight (mg N g-

1DW). 
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Table 1: Fertilization strategies during both growing seasons [kg N ha-1]. 

Treatment 
2103-2014 

12/03/2014 07/04/2014 27/05/2014 Total  
0-0-0 0 0 0  

60-60-60 60 60 60 180 
50-40-65 50 40 65 155 
30-30-90 30 30 90 150 

Treatment 
2015-2016 

21/03/2016 12/04/2016 18/05/2016 Total 

0-0-0 0 0 0 0 
60-60-60 60 60 60 180 
30-60-90 30 60 90 180 
30-90-60 30 90 60 180 
90-30-60 90 30 60 180 

 

2.3 Multispectral acquisition system 

A multispectral vision system was designed to acquire top-down images of the scene (covered area of approximately 
0.25 m²) in the visible and the near infrared spectra (Figure 1). The acquisition system included a monochrome 12 bits 
(4096 gray levels) 1.3 megapixels camera (BCI-5, C-Cam Technologies, Belgium) with a filter wheel equipped with 22 
band pass interference filters (Table 1). The filters were selected to cover the sensitivity range of the camera sensor and 
had a central wavelength (LW) ranging from 450 nm (blue) to 950 nm (NIR) (Table 2). They were relatively wide (40-
100 nm FWHM). The rotation of the filter wheel was controlled by a stepper motor. 

In-field spectral measurements made under natural ambient illumination were significantly influenced by solar radiation 
changes from cloudy to sunny situations, which affects spectral responses at all stages of plant growth. To solve that 
problem, a white reference plate was used and the integration time was automatically adjusted in order to acquire images 
through each filter with the white reference radiance at about 3800 grey levels and a precision of ± 5%. 

The image acquisition and the motor rotation were controlled by a program written in C++. 

   
Figure 1: Multispectral vision system, computer and structure (left), camera and wheel filters (right). 

 

Table 2: Interference filters 

Color Central 
wavelength 

Narrow bandwidth Broad bandwidth 

ID FWHM ID FWHM 
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Blue 450 S 50 U 80 

Green 500 V 40 O 80 

Green 550 T 50 K 80 

Red 600 R 50 C 80 

Red 650 F 40 J 80 

Red edge 700 Q 50 L 80 

Red edge 750 E 40 X 80 

NIR 800 W 50 N 100 

NIR 850 H 40 G 100 

NIR 900 I 40 M 100 

NIR 950 D 40 P 100 

 

2.4 Images pretreatment 

Image pre-processing was divided into three main algorithms which were used for computing the leaves mean 
reflectance in an image and extracting textural attributes from an image.  

The first algorithm aims to compute the mean white reference. This includes (i) the application of a mask on the image to 
select the white reference; (ii) the search of the maximum pixel radiance Rmax; (iii) the application of a threshold value 
(0.87 of Rmax was chosen for obtaining acceptable results in both visible and NIR images); (iv) the calculation of the 
mean white radiance value.   

The second algorithm (Fig. 2, left) aims to discriminate the Photosynthetically Active Leaves (PAL) from the rest of the 
image by using the Bayes’ theorem16. This theorem aims to calculate for each pixel the probability to be assigned in 
different classes. The number of classes was set at two (PAL and not PAL) (Figure 2). 

 
Figure 2: canopy image acquired with filter W at 800 nm (left) and corresponding segmented image (right) 

 

The third algorithm comprised several steps (i) image background correction; (ii) image normalization by mean white 
reference radiance; (iii) mask application to only select PAL; (iv) calculation of mean reflectance of PAL at each filter 
wavelength. 
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2.5 Images attributes 

Seven different attributes were calculated on each filter of multispectral images. The mean reflectance of leaves was 
obtained by extracting the PAL from the segmented image and normalizing with respect to the white reference 
reflectance. Gray level co-occurrence matrix (GLCM), which explains the distribution of gray scale transition between 
adjacent pixels (Figure )17, were computed for each corrected image. Contrast (Eq. 5), correlation (Eq.6), energy (Eq. 7) 
and homogeneity (Eq. 8) were computed from this matrix giving information about the texture of the image18,19. P(i,j) 
represents the number of times a pixel with gray level i is adjacent to a pixel with a gray level j 20. 

 

 
Figure 3: 3D representation of the gray level co-
occurrence matrix computed on Figure 2 (left) with 
MATLAB R2015. 

 

 

(5) 

 

(6) 

 
(7) 

 

(8) 

 

Two last attributes were the standardized dispersion coefficient on X axis (SDCX) and Y axis (SDCY) from magnitude of 
Fourier transforms 2D (Figure 4). Normalization was made by dividing results with maximum value.  
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Figure 4: Canopy image acquired with filter W at 800 nm (left), and amplitude of 2D FFT computed (right). 

 

A total of 154 attributes, obtained on base of 7 attributes computed on multispectral images composed of 22 filters, was 
used to predict Nc. All these attributes were computed with MATLAB® R2015a (the Mathworks,USA). 

 

2.6 Data analysis 

An analysis of variance (ANOVA) considering two factors (dates and fertilizer input level) was carried out to assess Nc. 
Three different statistical methods were used in order to create model to estimate Nc based on variables. Partial least 
squares regression (PLS) is a statistical modelling method used to predict one or several responses (Y) when the number 
of variable (X) is higher than the number of observation or when there is an high correlation between variables. PLS 
reduces the large number of initial variables into a smaller set of uncorrelated principal components (PC)21,13. Optimal 
number of components chosen for predictive model was fixed with cross-validation method. Sequential replacement is a 
statistical method suitable to select relevant variables into a large set of variables in order to explain a response22. Best 
subset regression is a statistical method which generates all possible combination of variables to predict a response and 
selects the best subset on the basis of adjusted coefficient determination. 

 

3. RESULTS 
 

3.1 Nitrogen leaves concentration  

Table 3 presents the wheat leaf N concentration measured during the both growing seasons. The mean Nc was 28.9 mg N 
g-1DW the standard deviation was 8.8 mg N g-1DW, and the minimum and maximum were equal to 15.2 mg N g-1DW 
and 47.2 mg N g-1DW, respectively. The range was therefore 32 mg N g-1DW. 

 

Table 3: Nitrogen leaves concentration for 2014 and 2016 campaigns. 

Date 
Modality 
[kg/ha] n  [%] 

min max mean standard deviation 
2016-04-11 0-0-0 4 1.5177 1.6149 1.5523 0.0438 

60-60-60 4 2.0664 2.2123 2.1268 0.0658 
30-60-90 4 1.5763 1.7977 1.7181 0.0972 
30-90-60 4 1.5377 1.9044 1.7848 0.1679 
90-30-60 4 2.2178 2.3078 2.2685 0.0377 

2014-05-23 0-0-0 2 2.918 3.519 3.219 0.425 
60-60-60 2 3.592 3.917 3.755 0.23 
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50-40-65 2 3.358 3.699 3.529 0.241 
30-30-90 2 3.206 3.349 3.2775 0.1011 

2014-05-30 0-0-0 2 2.7 3.081 2.891 0.269 
60-60-60 2 2.839 3.402 3.12 0.398 
50-40-65 2 3.321 3.356 3.3385 0.0247 
30-30-90 2 3.325 3.341 3.333 0.0113 

2014-06-06 0-0-0 2 3.263 3.433 3.348 0.1202 
60-60-60 2 3.732 3.875 3.8035 0.1011 
50-40-65 2 3.778 3.825 3.8015 0.0332 
30-30-90 2 3.555 3.842 3.699 0.203 

2016-06-07 0-0-0 2 2.4571 2.5982 2.5277 0.0998 
60-60-60 2 3.9768 4.0309 4.0039 0.0383 
30-60-90 1 3.6838 3.6838 3.6838 * 
30-90-60 2 3.909 4.716 4.312 0.571 
90-30-60 2 3.9269 3.9517 3.9393 0.0175 

 

3.2 Partial least squares regression 

The partial least square (PLS) regression aimed to reduce the 22 filter responses to a smaller set of uncorrelated 
components. Table 4 shows the results of the PLS regression taking into account all the attributes together and each of 
them separately. The PLS method gave the best model by considering all the attributes (R² = 0.94). 

 

Table 4: Results of prediction of Nc with different image attributes extracted from corrected images. 

Attributes Optimal 
components R² Adjusted R² RMSE 

[mg N g-1DW] 

All attributes 9 0.94 0.94 2.03 

Reflectance 10 0.91 0.91 2.54 

Contrast 6 0.87 0.87 3.01 

Correlation 5 0.79 0.79 3.56 

Energy 9 0.83 0.83 3.30 

Homogeneity 10 0.91 0.91 2.48 

SDCX 9 0.87 0.87 2.92 

SDCY 11 0.88 0.88 2.86 

 

 

3.3 Filters selection 

Using best subset regression with acceptable Mallow’s Cp, four filters were selected for each attributes separately (Table 
5). The number of filters was fixed at four in order to put them in a dedicated device. Determination coefficients R² 
varied between 0.78 and 0.89 for textural attribute of homogeneity. Adjusted R² were similar to corresponding R². It is 
noted that for three attributes (reflectance, energy and homogeneity), all selected filters were in the visible range of light 
spectrum. 

 

Table 5: Selection of filters by the best subset method. 
 Selected filters  R² 

Reflectance J,K,O,U 0.88 
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Contrast F,J,V,X 0.83 

Correlation J,N,P,U 0.78 

Energy C,J,O,V 0.78 

Homogeneity C,J,O,V 0.89 

SDCX D,F,N,X 0.78 

SDCY N,S,T,V 0.83 

 

Considering the filters selected by the best subset regression method for each attribute separately (Table 5), the four 
following filters were extracted due to their repetitive occurrence: J (650 ± 40 nm), N (800 ± 50 nm), O (500 ± 40 nm) 
and V (500 ± 20 nm). Based on all the attributes of these four filters, a multiple linear regression was performed to 
estimate Nc (R² = 0.91). Due to the redundancy of central wavelength between filters O and V, filter O was replaced by 
filter U (450 ± 40 nm) which appears only two times in the best subset regression analyses. Despite that fact, a multiple 
linear regression performed on these four filters led to a determination coefficient R² equal to 0.93. The most relevant 
attributes of the four filters J (650 ± 40 nm), N (800 ± 50 nm), U (450 ± 40 nm) and V (500 ± 20 nm) was extracted by 
means of a best subset regression. The number of attribute was fixed once R² was greater than 0.9. Six attributes could be 
efficient for evaluating Nc (R² = 0.91, adjusted R² = 0.90 and RMSE = 2.74 mg N g-1DW) (Table 6). 

 

Table 6: Multiple linear regression based on the four filters J,N,U and V. 
Term Coefficients regression 

Constant 3.1829 

Reflectance_J -25.7103 

Reflectance_U 48.0889 

Energy_J 1.1134 

Energy_N -25.9770 

Homogeneity_N 4.0304 

Homogeneity_V -5.0758 

 

4. DISCUSSION CONCLUSION 
In this study, the nitrogen leaves concentration is estimated by means of multispectral imaging using both reflectance and 
textural attributes and focusing on a limited number of relevant filters. The best results are obtained with the full-
multispectral approach, including all attributes of all filters (R² = 0.94). 

The results presented in this contribution showed that a model based on reflectance and textural attributes extracted from 
only four filters could be considered as efficient to estimate Nc (R² = 0.91). One selected filter had central wavelength in 
the red (J) spectral region corresponding to the radiation absorption by plant chlorophyll, linked to the N concentration. 
Two other filters (U, V) had a central wavelength at 450 and 500 nm (blue-green) which probably correspond to 
radiation absorption of both carotenoids and chlorophyll. The last filter had a central wavelength in the NIR with a quite 
large bandwidth including a part of the red-edge. 

The reflectance attribute is usually used for estimating the nitrogen leaves concentration. Textural attributes are 
promising to enhance the estimation model since they could be correlated to the canopy architecture which is also 
influenced by the nitrogen leaves concentration. 
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The sources of uncertainties in the multispectral vision system are numerous and are mainly related to the image 
treatment of the canopy which reveals complex. In further studies, the multispectral approach could be extended by 
considering wider ranges of N leaves concentration, different water content, several cultivars, … 
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