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Abstract: In this paper we present, to our knowledge, the first application of a metaheuristic technique 
to the very popular and NP-complete puzzle known as ‘sudoku’. We see that this stochastic search-
based algorithm, which uses simulated annealing, is able to complete logic-solvable puzzle-instances 
that feature daily in many of the UK’s national newspapers. We also introduce a new method for 
producing sudoku problem instances (that are not necessarily logic-solvable) and use this together with 
the proposed SA algorithm to try and discover what types of instances this algorithm is best suited for. 
Consequently we notice the presence of an ‘easy-hard-easy’ style phase-transition similar to other 
problems encountered in operational research. 
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Introduction 
 
Sudoku has been described as the 21st century’s Rubik’s cube (Pendlebury, 2005). Loosely meaning 
‘solitary number’ in Japanese, sudoku is a popular and seemingly addictive puzzle that is currently 
taking many parts of the world by storm. In The Independent‘s UK best-seller list for June 2005, for 
example, no fewer than three of the top ten spots were taken up with sudoku puzzle books. 
 The object of sudoku is simple: given an n2 × n2 grid divided into n × n distinct squares (see figure 
1), the aim is to fill each cell so that the following three criteria are met: 
 
1. Each row of cells contains the integers 1 through to n2 exactly once. 
2. Each column of cells contains the integers 1 through to n2 exactly once 
3. Each n × n square contains the integers 1 through to n2 exactly once.  
 
In this paper, we will refer to the value of n as the puzzle’s order.  

The fundamental origins of sudoku actually lie within the work of the great 17th century Swiss 
mathematician Leonard Euler who, in 1783, reported on the idea of ‘Latin Squares’: grids of equal 
dimensions in which every symbol occurs exactly once in every row and every column. In fact, the 
problem of constructing Latin squares from a partially filled grid is NP-complete (Colbourn, Colbourn 
and Stinson, 1984), as is sudoku (Yato and Seta, 2003), which only differs to the Latin squares problem 
due to the presence of the third criterion above. 
 The sudoku puzzle first appeared in an American puzzle magazine under the name ‘Number Place’. 
Later, the game also started to appear in Japanese puzzle magazines where it took its present name. 
Currently in Japan there are now five sudoku magazines published every month, with a total circulation 
of over 600,000 (Pendlebury, 2005).  
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Figure 1. An order-3 sudoku puzzle that can be easily solved through simple logic and reasoning, and which is typical of those 
found in many of the UK’s daily newspapers. 

 
Since being introduced into the UK by national newspaper The Daily Mail, the puzzle’s popularity 
amongst British people has also rocketed. At the time of writing, multiple instances of the puzzle 
appear daily in many of the UK’s most popular newspapers including The Independent, The Times, The 
Sun, as well as continuing in the Daily Mail. The vast majority of puzzle-instances found in these 
newspapers are order-3, although The Independent and Irish Independent for example, occasionally 
include puzzles of order-4 (that they call ‘Super Sudoku’). With persistence, the experienced player can 
generally achieve completion of these larger grids and, if lucky, this can result in a prize. (Note that 
some publishers prefer to use numbers from zero through to n2 - 1, or other characters in their 
specifications of what needs to go into the grid. However, this does not affect the puzzle in any way 
and, for clarity’s sake, we will remain with our original definition.) 
 
1 Making and Solving Sudoku Puzzles 
 
As mentioned above, sudoku is an NP-complete problem (Yato and Seta, 2003). However, there are, in 
fact, a large number of grid configurations that can satisfy the three criteria of the game (see section 3.2 
later, for example). In particular, we can easily a produce a valid solution when presented with a blank 
grid by simply applying the following algorithm (producing what we call the ‘Root Solution’). 
 

ROOT-SOLUTION (n) 
1. x ← 0 
2. for i ← 1 to n do 
3.     for j ← 1 to n do 
4.         for k ← 1 to n2 do 
5.             grid [n(i - 1) + j][k] ← x (mod n2) + 1 
6.             x ← x + 1 
7.         x ← x + n 
8.     x ← x + 1 

 
To make the puzzle interesting and challenging, it is therefore typical for a number of the cells in the 
grid to be pre-filled by the puzzle master. The player’s aim is to then complete the grid using the filled 
squares as guidance. 
 As an example of how a player might do this, consider the puzzle-instance given in figure 1. Here, 
we can deduce that the cell in the 7th row and 6th column (shaded) must be a 6, because all numbers 1 to 
5 and 7 to 9 appear either in the same column, the same row, or the same square as this cell. If the 
problem-instance is designed well (as indeed this one is), the filling-in of this cell will present further 
clues, allowing the user to eventually complete the puzzle. 
 As can be imagined, the issue of designing good problem instances is particularly important if they 
are intended for human players. In general, puzzles should be logic-solvable – that is, they should 
admit exactly one solution, which is achievable through use of forward chaining logic only. Indeed, 
puzzles that force the player to make random choices (particularly when the grid is still quite empty) 
will quickly become tedious as he or she will have to go through the lengthy process of backtracking 
and re-guessing if previous guesses turn out to be wrong. On the other hand, puzzles that are too easy 
will also quickly become irksome.  
 Currently, order-3 and order-4 puzzles are made for UK newspaper The Independent by Mark 
Huckvale who uses an automated puzzle generator. According to Huckvale, a ‘good’ sudoku puzzle is 



one that can be solved ‘without guessing, in a logical sequence of steps from the initial configuration to 
a unique final solution’ (Huckvale, 2005). The Daily Mail’s puzzles, on the other hand, are created by 
Peter Stirling who claims to do a lot of the puzzle generation by hand, although these are then checked 
for validity by a computer program (Pendlebury, 2005). 
 It may be concluded, therefore, that only certain sudoku problem instances actually make good 
puzzles. Consequently, puzzle creators need to take great care to ensure that their instances are 
enjoyable and satisfying to the player. 

As well as solving sudoku puzzles by hand, there are also a number of specialised sudoku 
algorithms available on the web (e.g. at www.gwerdy.com and www.scanraid.com). Such algorithms 
typically mimic the logical processes that a human might follow, and standard logical rules, such as the 
so-called X-wing, and Swordfish rules (Armstrong, 2005), are also commonplace. Additionally, some 
of the more sophisticated algorithms, such as the ‘Sudoku Solver by Logic’ for order-3 puzzles 
(available at www.sudokusolver.co.uk) also incorporate simple backtracking schemes that can be used 
to undo guesses that turn out to be wrong (if, indeed, guesses are needed at all). Such algorithms, 
unsurprisingly, are often able to find solutions to the logic-solvable order-3 puzzles found in sudoku 
publications very quickly. 

Lately, there have also been some sudoku-based papers published in the computer science 
literature: first by Simonis (2005), who formulates sudoku as a constraint satisfaction problem; and, 
more recently, by Lynce and Ouaknine (2006) who demonstrate how individual sudoku puzzles may be 
converted into conjunctive normal form, which can then be solved using propositional satisfiability 
techniques. In both of these studies, solutions to a large number of order-3, logic-solvable puzzles are 
quickly obtained by the authors’ proposed algorithms, with no search being required. Higher order 
puzzles, however, are not considered in either case.  

However, in all of the algorithms that we have considered so far, it is worth remembering that they 
are all, to some degree, dependant on being supplied with problem instances that have been specially 
constructed so that they definitely can be solved via the application of logical rules alone; not all 
problem instances, however, will have this property. Indeed, because, as we have mentioned, sudoku is 
an NP-complete problem, we know that we cannot hope to find a polynomial time algorithm for all 
possible problem instances, unless P = NP (Garey and Johnson, 1979). This implies that there will be 
some instances (possibly many) that cannot be solved without some sort of search also being necessary. 

However, the systematic branch-and-bound style searches that are sometimes used as an add-on to 
thee sorts of algorithms are likely to slow up the run times in practice. As a simple demonstration, 
consider the order-3 problem-instance given in figure 1, with all of the 3s removed. In this instance, the 
first two algorithms (mentioned above) – which do not employ any search techniques – both actually 
halt with over thirty cells still unfilled. With regards to the more sophisticated ‘Sudoku Solver by 
Logic’, however, whilst this algorithm is able to solve this new problem-instance, it can only do so by 
making a number of guesses along the way. This, however, unfortunately results in a twenty-fold 
increase in its execution time. 

Clearly then, the purely logic-based algorithms, whilst being ideal for very small and/or logic-
solvable instances, may not actually be so suitable in other cases. Additionally, branch-and-bound 
searches are also likely become much more prohibitive for higher order problem instances, due to the 
much larger search spaces (and therefore potential timing implications) that will occur as a result. It is 
in these cases, therefore, that we might see a case for some sort of stochastic search being employed 
instead. 
 The remainder of the paper is now set out as follows: in section 2, we describe a new method for 
addressing sudoku problem instances that, instead of relying on logic-based rules, approaches this 
problem as one of optimisation. This is achieved via a simple representation, neighbourhood operator, 
and evaluation function, which we then use in conjunction with the standard simulated annealing 
metaheuristic (Kirkpatrick, Gelatt, and Vecchi, 1983). In section 3, we then conduct an analysis of this 
algorithm and also introduce a technique for generating problem instances. Finally, section 4 concludes 
the paper and provides a discussion on some future avenues of research. 
 
2 A New Approach for Sudoku 
 
For the remainder of this paper, the terminology that will be used is as follows: as before, a square 
refers to each n × n area of cells in the grid (denoted by the bold lines in figure 1). A square that is in 
row r and column c of squares will be denoted squarer, c. Secondly, the value contained in a cell in the 
ith row of cells and the jth column of cells is denoted as celli, j. If celli, j has been filled with a specific 
value in the problem-instance, then it is described as fixed (in bold in figures 1 and 2), otherwise it is 
non-fixed. Finally, a complete grid that meets all three of the puzzle’s criteria is referred to as optimal. 



 
2.1 Representation and Neighbourhood Operator 
 
Here, a direct representation is used. In order to form an initial candidate solution, we fill the grid by 
assigning each non-fixed cell in the grid a value. This is done randomly, but in such a way so that when 
the grid is full, every square contains the values 1 to n2 exactly once. 
 During the run, the neighbourhood operator repeatedly chooses two different non-fixed cells in the 
same square and swaps them. In order to stop a sampling bias towards squares with less non-fixed 
values, this is done in the following way: 
  
1. Choose randomly i and j, such that (a) 1 ≤ i, j ≤ n2, and (b) celli, j is non-fixed. 
2. Choose randomly k and l, such that (a) cellk, l is in the same square as celli, j, (b) cellk, l is non-fixed, 

and (c) cellk, l ≠ celli, j. 
3. Swap celli, j with cellk, l. 
 
Note that this method of producing an initial candidate solution, together with the defined 
neighbourhood operator, ensures that the third criterion of the puzzle is always met. The resultant 
search space size is therefore: 
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(Where f (r, c) is a function that indicates how many cells in squarer, c are non-fixed). 
 
2.2 Evaluation of Candidate Solutions 
 
Because our representation and neighbourhood operator ensures that the third criterion of sudoku is 
always met, an appropriate cost function is obviously one that inspects for violations of the remaining 
two criteria. Our cost function looks at each row individually and calculates the number of values, 1 
through to n2 that are not present. The same is then done for each column, and the cost is simply the 
total of these values. (An example is provided in figure 2). Obviously, an optimal solution will have a 
cost of zero. 
 In this approach, we also use the process of delta-evaluation (Ross, Corne, and Fang, 1994) - note 
that a single application of the above neighbourhood operator means that at most two rows of cells and 
two columns of cells are affected by a swap. Thus, after a single move in the neighbourhood, rather 
than re-evaluate the whole candidate solution, only the parts that have been altered are recalculated. 
Such a scheme offers a considerable speed-up to the algorithm, particularly when considering problems 
of a higher order.  
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Figure 2. An example of how an initial candidate solution might be constructed using the problem-instance in figure 1, together 

with the resultant cost (left). Also shown is an optimal solution to this problem-instance (right). 
 

 



2.3 A Simulated Annealing Algorithm 
 
Having defined a suitable representation, neighbourhood operator, and evaluation function, the 
application of the simulated annealing (SA) metaheuristic is now straightforward. 
 Starting with an initial candidate solution, an exploration of the search space is conducted by 
iteratively applying the above neighbourhood operator. Given a candidate solution s, a neighbour s' is 
then accepted if (a) s' is better than s (with respect to the cost function), or (b) with a probability: 
  
(2) exp( )tδ−  
 
where d is the proposed change in the cost function and t is a control parameter, known as the 
temperature. Moves that meet neither of the above two conditions are reset. 
 In general, the way in which t is altered during the run is of great importance to the success and 
expense of the SA algorithm. It is generally believed that the initial temperature t0 should allow the 
majority of moves to be accepted (van Laarhoven and Aarts, 1987), and then, during the run, it should 
be slowly reduced (according to a cooling schedule) so that the algorithm becomes increasingly greedy. 
If the algorithm is successful, eventually the search should converge at (or near to) a global optimum. 
 However, t0 should be chosen with care: a value that is too high will mean that computation time is 
wasted because the algorithm is likely to conduct an unhelpful random walk through the search space. 
On the other hand, a value for t0 that is too low will also have a negative impact, as it will make the 
search too greedy from the outset, and therefore make it more susceptible to getting stuck in local 
minima.  

Van Laarhoven and Aarts (1987) advise that t0 should allow approximately 80% of proposed moves 
to be accepted. One method for calculating this can be achieved by measuring the variance in cost for a 
small sample of neighbourhood moves. This scheme is actually based on the real-world process of 
annealing in metallurgy, which is beyond the scope of this paper, but may be found in the 
aforementioned text. We use this approach here - before starting the SA part of the algorithm, a small 
number of neighbourhood moves are performed. The initial temperature t0 is simply the standard 
deviation of the cost during these moves. 
 During the run, the temperature is reduced using a simple geometric cooling schedule where the 
current temperature ti is modified to a new temperature ti+1 via the formula: 
 
(3) 1i it tα+ = ⋅  
 
where a is a control parameter known as the cooling rate, and 0 < a < 1. Obviously, a large value for 
a, such as 0.999, will cause the temperature to drop very slowly, whilst a setting of, say, 0.5 will cause 
a much quicker cooling.   
 In this approach we also use the version of SA known as the homogenous SA scheme. This 
basically means that the algorithm takes the form of a sequence of Markov Chains, where each Markov 
chain is generated at a fixed value of t, and t is then altered in-between subsequent chains (van 
Laarhoven and Aarts, 1987). Again, the value defining the length of each Markov chain (here we call 
this value ml) also needs to be chosen with care: chains that are too short may not provide a thorough 
enough exploration of the search space, whilst chains that are too long will cause excessive run times. 
As with other practical applications of the SA algorithm (e.g. Abramson, Krishnamoorthy, and Dang, 
1996), we decided that ml should be representative of the size of the problem-instance. Because this is 
defined by the number of non-fixed cells in the grid, ml is therefore calculated as follows: 
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where f (r, c) has the same meaning as section 2.1. Note that such a value allows a good chance of each 
pair of non-fixed cells being considered at least once per Markov chain. 
 Finally, we add a random-restart mechanism to the algorithm: If no improvement in cost is made 
for a fixed number of Markov chains (in all tests this was set to 20), then t is reset to its initial setting t0, 
a new initial solution is generated, and the algorithm then continues as normal. We term this process a 
reheat. 
  
 



3 Experimental Analysis 
 
3.1 Solving Published Puzzles  
 
Our first set of tests involved trying out this algorithm on a large number of order-3 sudoku puzzles (of 
various degrees of supposed ‘difficulty’) found in the UK’s national newspapers, and also every super 
sudoku instance (order-4) that appeared in The Independent during June 2005. 
 Using a cooling rate a = 0.99 and running all experiments on a PC under Linux (2.66Ghz processor 
and 1GB of RAM), we found that all order-3 puzzles were quickly solved by this algorithm, regardless 
of what difficulty rating the newspaper had given it. Typically, this was done in around half a second 
with no reheat being required. It is worth mentioning that although these puzzles might seem small, the 
search spaces are actually still fairly large (e.g. using our representation, the order-3 puzzle in figure 1 
will have approximately 4.4937×1021 possible configurations), and so we believe that these results are 
pleasing, especially considering that the instances, in general, are deliberately constructed to admit only 
one optimal solution (Huckvale, 2005). 
 For the order-4 puzzles, our algorithm also found solutions in every case. However, this generally 
took a little longer to achieve (between 5 and 15 seconds), as sometimes one or two reheats were 
required. An example run with one of these order-4 instances can be viewed in figure 3. 
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Figure 3. A typical run of the SA algorithm using an order-4 instance taken from The Independent on Saturday, June 18th 2005. 
This run required one reheat and took approximately 8 seconds to find a solution. 

 
It must be noted straightaway that better run times for the order-3 puzzles (and, where appropriate, the 
order-4 puzzles) are often displayed by the logic based algorithms mentioned in section 1. However, 
given the fact that these particular puzzles are specifically designed so that they are solvable by the 
very methods employed by these algorithms, this is hardly surprising. This SA algorithm, on the other 
hand, was able to find solutions to these instances without having to make any assumptions on the 
initial configurations. 
 
3.2 Creating Solvable Problem instances 
 
Having seen that this SA algorithm is able to consistently solve published sudoku puzzles, and also 
noted that, in order to be successful, it does not necessarily require a sudoku problem-instance to be 
logic-solvable (i.e. specially constructed to be for solving via forward chaining logic alone), the 
question that now presents itself is: What actually does make a problem-instance difficult to solve with 
this particular algorithm? 
 In an attempt to empirically answer this question, we decided to produce our own instance 
generator. This, we achieved, by implementing a simple algorithm whereby complete, optimal grids are 
first obtained, and then some of the cells are removed from each one, according to some criteria (see 
below). 
 First, in order to produce large numbers of optimal grids, we make use of the fact that, given one 
optimal solution, we can alter it by: 
 
• permuting columns of squares (n! possible permutations); 



• permuting rows of squares (n! possible permutations); 
• permuting columns of cells within a single column of squares (n!n possible permutations); and 
• permuting rows of cells within a single row of squares (n!n possible permutations), 
 
and its optimality will still hold. Thus, given one optimal sudoku solution, there are in fact: 
 
(5) 2( 1)! 1nn + −  
 
other optimal solutions obtainable from it.  
 (Note that we are also able to take any optimal solution and switch the numbers (i.e. change all the 
1s to, say, 4s, then change all the 4s to, say, 2s, and so on), thus providing a further (n! - 1) possible 
grids obtainable from any one. However, whether this actually changes the puzzle in any meaningful 
sense, or just simply makes it look different to the human eye, is open to debate. For our purposes we 
decided not to include this additional procedure in our instance generator.)  
 Moving our attention towards the issue of removing cells from one of these optimal grids, we note 
that if the problem-instance were intended to be a good puzzle for human players, then we would need 
to ensure that the logic-solvable property were always held. In practice, this can easily be achieved via 
an iterative scheme whereby each cell in the grid is considered in turn (possibly in a random order) and 
is then made blank if and only if its value can also be deduced (in some way) by the remaining filled 
cells in the grid. (Some useful discussion on this can also be found in the work of Simonis (2005). 
 However, we note that the utilisation of a scheme such as this would actually impose severe 
limitations on what problem instances could be achieved; not least because in practice we are only able 
to remove a certain proportion of cells before the logic-solvable property is lost. (With order-3 puzzles, 
for example, a consultation of published sudoku puzzles, as well as our own experiences, suggests this 
to be approximately 70%) 
 Thus, in an effort to look at the problem in more general terms (and to also try and answer the 
question posed at the beginning of this subsection), we therefore chose to use a more unrestricted 
method of cell removal. Our scheme therefore operates as follows: given an optimal solution, we define 
a parameter p (where 0 ≤ p ≤ 1). Each cell in the grid is now considered in turn, and is removed with a 
probability of exactly 1 - p. Obviously, this means that low values for p will tend to give fairly 
unconstrained problem instances (i.e. grids with a low proportion of fixed cells), whilst larger values 
for p will usually give more highly constrained problem instances (i.e. grids with a larger proportions 
of fixed cells). 
 Note that it is quite possible, particularly for lower values of p, that this method of cell removal 
could produce problem instances that have more than one optimal solution. Note also that this method 
of cell removal, by paying no heed to the logic-solvable property, is more than likely to be 
inappropriate if the problem instances are intended to make good puzzles for humans to solve by hand.  
  
3.3 Locating Phase-transitions 
 
Using our instance generator, we performed a large number of experiments: for values of p from 0 
through to 1.0 (incrementing in steps of 0.05), we first produced twenty different problem instances. 
With each instance, we then performed twenty trials using our SA algorithm. This we did for instances 
of order-3 (81 cells), order-4 (256 cells), and order-5 (625 cells), using time limits of 5, 30 and 350 
seconds respectively.  
 We noted in section 3.2 that our instance generator first needs to be seeded with a full and optimal 
solution (which can then be shuffled using the four listed operators). We obtained these grids from 
three sources: firstly, by taking some solution grids from The Independent; secondly, by executing our 
SA algorithm, using a blank grid as the problem-instance; and third, by using the puzzle’s root solution 
(generated using the algorithm given in section 1). Note, however, that because, to our knowledge, 
there are no current sudoku publications that make use of order-5 puzzles, in this case we only used the 
latter two methods for producing optimal grids. 
 Also, in our experiments, similarly to Eiben, van der Hauw, and van Hemert (1998) and Ross, 
Corne, and Terashima-Marin (1996), we choose to monitor algorithmic performance using two 
measurements: success rate and solution time. The success rate indicates the percentage of runs where 
a solution was found within the specified time limits (note that the maximum rate achievable is always 
100%), and the solution time indicates the average amount of time that it took to find a solution. If the 
success rate was less than 100%, then those runs where optimality was not found within the time limit 
were not considered in the latter’s calculation. 



 Figures 4, 5, and 6 show the results of the experiments where we used our SA algorithm to produce 
the seed for the instance generator. Note, however, that equivalent results (not shown here) were also 
achieved using the other two methods. 
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Figures 4, 5, and 6. The algorithm’s performance with order-3, order-4 and order-5 problem instances (top, middle, and bottom 
respectively) for varying values of p, using a cooling rate of a = 0.99. 

 
Drawing our attention to figure 4 first (where n = 3), two things can be noticed. Firstly, we see that 

when the proportion of fixed cells is low (i.e. a low value for p) it generally takes longer to find an 
optimal solution. This is intuitive as, according to equation (1), emptier grids present a larger search 
space for the algorithm to navigate. Additionally, we note that in our algorithm the length of the 
Markov chains is also determined by the number of fixed cells in the grid (equation (4)), which also 



results in longer runs (due to a slower cooling). The second thing to notice, however, is that the 
algorithm shows a 100% success rate for all of the trials. 
 Considering figure 5 next (where n = 4), we now see some new features emerging. As before, when 
the proportion of fixed cells is increased, the average amount of time to find a solution decreases. 
However, in this case we also see a dip in the success rate of the algorithm between values p = 0.3 and 
0.55. Also around this point we see a very slight fluctuation in the solution times. 

Finally, if we move our attention to figure 6 (where n = 5) we now see these features becoming 
much more prominent, and the characteristics of a phase-transition become clear: here, between the 
same values of p as figure 5, we see a much sharper drop in the success rate (reaching as low as 30% at 
p = 0.45) and also a large fluctuation in the solution time at the same points. 

It is worth noting that ‘easy-hard-easy’ phase-transitions such as this are common in many NP-
complete problems encountered in operational research (Cheeseman, Kanefsky and Taylor, 1991; Ross, 
Corne, and Terashima-Marin, 1996; Smith, 1994; Turner 1988). We now consider why such a 
transition might occur in this case: 

When the proportion of fixed cells p is very low (or, in other words, the problem-instance has few 
constraints), there are, of course, many optimal solutions present within the search space, meaning that 
the search will generally be successful. However, according to equations (1) and (4), this also means 
that the search space is larger and the Markov chains are longer. In practice, this means that while the 
algorithm generally finds a solution without any reheating being necessary, the solution times are 
generally greater.  

At the other extreme, when the proportion of fixed cells is large (or, in other words, the problem-
instance is highly constrained), the search space and Markov chain lengths are reduced in size. 
Additionally, although in these cases there is probably only a very small number of optimal solutions 
within the search space, the very presence of so many fixed cells is likely to mean that the optimal 
solution lies in a deep local minimum (strong basin of attraction) allowing it to be easily found. These 
two factors therefore allow the algorithm to give low solution times and high success rates. (This 
second point also agrees with Ross, Corne, and Terashima-Marin (1996) who claim, with regards to 
their NP-complete timetabling problem, that as the number of constraints is increased, the sizes of the 
fitter plateaus in the fitness landscape are reduced.) 

The phase-transition region lies in between these two extremes. Here, two characteristics ensure 
that the problem instances are more difficult to solve with this algorithm: firstly, we have a moderately 
large search space that only admits a small number of optimal solutions; secondly, we have a fitness 
landscape that possesses a large number of plateaus and local minima (Cheeseman, Kanefsky and 
Taylor, 1991). These features can be viewed most noticeably in figure 6, where a vast drop in the 
success rate can be witnessed for values of p between 0.3 and 0.55. Lastly, we note that when optimal 
solutions were found for problem instances within this region, because the search was more of a 
‘needle in a haystack’, the algorithm often only did so after performing a number of reheats. The 
consequences of this can also be seen in figure 6 where the solution times in the phase-transition region 
are significantly higher than the solution times immediately to their left. 
 
4 Conclusions and Discussion 
  
In this paper, we have presented, to our knowledge, the first application of a metaheuristic technique to 
the popular sudoku puzzle. When applying this algorithm to a large number of problem instances taken 
from the UK press (of various degrees of ‘difficulty’), we have seen in all our tests that this algorithm 
does not just get close to optimality (as is often the case with optimisation techniques), but consistently 
finds the solution in reasonably short amounts of time. We have also demonstrated that this method, 
particularly for lower order puzzles, is perhaps more robust than many existing algorithms, because in 
order to be successful, it does not necessarily depend on problem instances being logic-solvable.  
 Through a large number of experiments with our own instance generator, in this study we have also 
witnessed the existence of easy-hard-easy style phase-transition in larger puzzles (order 4 and 5), which 
are similar to those found in other NP-complete problems such as constraint satisfaction problems 
(Smith, 1994), timetabling problems (Ross, Corne, and Terashima-Marin, 1996), and graph colouring 
problems (Turner, 1988). Our experiments have indicated that in these cases, problem instances with 
around a 0.4 to 0.45 proportion of fixed cells seem to present this algorithm with the most difficulty, 
and that the effects of the phase-transition seem to become more pronounced as the order of the puzzle 
is increased. These observations are useful because, although this algorithm does not require a puzzle 
to be logic-solvable for it to be successful, it is still important to know where the methodology’s 
general limitations lie. Note, however, that for order-3 puzzles, we do not see such a phase transition 
and, instead, witness a 100% success rate in all cases. 



 With regards to improving our algorithm, it is worth noting that there are a number of ways that this 
could be achieved: we could, for example, try to employ a more sophisticated cooling schedule such as 
those presented by Abramson, Krishnamoorthy, and Dang (1996) for the school timetabling problem. It 
is also quite possible that this representation, neighbourhood operator, and cost function could be used 
with other metaheuristics that are similar to SA such as tabu search (Glover and Laguna, 2002) or 
iterated local-search (Lourenco, Martin, and Stützle, 2002). 
 Finally, although we have demonstrated in this paper that this sort of stochastic search approach is 
able to solve a large variety of different instances unaided, perhaps the most salient point arising from 
this research on the whole is the obvious potential for combining both these techniques and logical-
based approaches (such as those reviewed in section 1). Indeed, although we have often contrasted 
these two basic methodologies in this study, it is worth noting that the relationship between these two 
approaches may well in fact be symbiotic; that is, they may well be able to profit from one another’s 
strengths: a stochastic search algorithm could help a logic-based algorithm to solve a wider range of 
problem instances, and logic-based algorithms have the potential drastically reduce/prune the search 
space in order to decrease the work of a stochastic search algorithm. Thus, a hybrid algorithm for 
sudoku (and other related problems) that, for example, takes a problem instance and follows the 
methodology of (a) filling as many cells as possible via logical rules (and thus hopefully moving it 
away from the phase transition region), and then (b) only switching to a stochastic search technique 
when guesses are finally required (if at all); has the potential to provide a much more powerful 
algorithm than either of these two techniques individually. It is also conceivable that other possible 
combinations might also show even further promise, although all of this is obviously subject to future 
research.  
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