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ABSTRACT

Extreme value theory is used as a diagnostic for two high-resolution (12-km parameterized convection and

1.5-km explicit convection) Met Office regional climate model (RCM) simulations. On subdaily time scales,

the 12-km simulation has weaker June–August (JJA) short-return-period return levels than the 1.5-kmRCM,

yet the 12-km RCM has overly large high return levels. Comparisons with observations indicate that the

1.5-kmRCM ismore successful than the 12-kmRCM in representing (multi)hourly JJA very extreme events.As

accumulation periods increase toward daily time scales, the erroneous 12-km precipitation extremes become

more comparable with the observations and the 1.5-km RCM. The 12-km RCM fails to capture the observed

low sensitivity of the growth rate to accumulation period changes, which is successfully captured by the 1.5-km

RCM. Both simulations have comparable December–February (DJF) extremes, but the DJF extremes are

generally weaker than in JJA at daily or shorter time scales. Case studies indicate that ‘‘gridpoint storms’’ are

one of the causes of unrealistic very extreme events in the 12-km RCM. Caution is needed in interpreting the

realism of 12-kmRCMJJA extremes, including short-return-period events, which have return values closer to

observations. There is clear evidence that the 1.5-km RCM has a higher degree of realism than the 12-km

RCM in the simulation of JJA extremes.

1. Introduction

Precipitation extremes have a large impact on society

through floods and droughts, infrastructure damage, and

even human casualties. Hence, understanding and quan-

tifying their magnitude and frequency for the present and

how theymay change in the future is of great importance.

For the United Kingdom, engineers and hydrologists have

often relied on the Flood Estimation Handbook (FEH)

(Reed 1999), which uses statistical methods to estimate

Denotes Open Access content.

*Visiting scientist at the Met Office Hadley Centre, Exeter,

United Kingdom.

Corresponding author address: Steven Chan, Met Office,

FitzRoy Road, Exeter, EX1 3PB, United Kingdom.

E-mail: steven.chan@metoffice.gov.uk

15 AUGUST 2014 CHAN ET AL . 6155

DOI: 10.1175/JCLI-D-13-00723.1

mailto:steven.chan@metoffice.gov.uk


return levels and growth curves from historical obser-

vations. Improving the understanding of current and

future extreme precipitation risks is one of the central

goals of theU.K.Natural EnvironmentResearchCouncil

(NERC)ChangingWater Cycle (CWC) programof which

the Convective Extremes (CONVEX) project is a part

(NERC 2013).

Numerous studies exist on model-simulated (multi)

daily extremes. Fowler and Ekström (2009), Hanel et al.

(2009), and Hanel and Buishand (2010) have found that

(multi)daily precipitation extremes are well simulated

by various 25- to 50-km resolution regional climate

models (RCMs) for all seasons except summer. This is

facilitated by the widespread availability of quality-

controlled daily precipitation datasets, such as the Met

Office (UKMO) National Climatic Information Centre

(NCIC) daily gridded precipitation (Perry et al. 2009),

which is available for the United Kingdom at a high

resolution (5 km) for 501 years. As a consequence, UK

daily precipitation extremes have beenwell characterized

(Fowler and Kilsby 2003a,b; Maraun et al. 2009, 2011;

Atyeo and Walshaw 2012; Jones et al. 2013).

However, to date, few studies have examined subdaily

precipitation extremes because of both sparse subdaily

observations and the inability of coarse-resolution dy-

namical models to reliably simulate subdaily precipitation.

For the United Kingdom, hourly radar (‘‘Radarnet’’)

precipitation measurements (Golding 1998; Harrison

et al. 2000) are only available as a post-2003 gridded

data product. The UKMO and the England and Wales

Environment Agency (EA) also maintain tipping-bucket

rain gauge networks, both of which are used in the FEH

hourly extreme assessments. Some hourly gauges have

measurements for 20–30 years, but hourly station avail-

ability is an order of magnitude less than for daily stations

(Faulkner 1999). From the few studies of subdaily pre-

cipitation that have been, Madsen et al. (2009) found an

intensification of Danish subdaily extreme precipita-

tion in recent decades; Willems (2000) examined Belgian

precipitation extremes across a range of accumulation

periods (minutes to multiday) and found that extreme

behavior is seasonal and weather system dependent; and

Overeem et al. (2009) showed that radar observations

produce subhourly to multiday precipitation extreme

estimates that are comparable with gauges, which sup-

ports the use of radar precipitation for extreme studies.

Unlike observations, dynamical computer models of

weather and climate can generate as much hourly data

as the modeler can afford. The models are powerful tools

with which to assess current and future extreme preci-

pitation if the simulated extremes are deemed to be

sufficiently accurate. However, there are a number of

reasons to question the quality of precipitation from

coarse-resolution dynamical models, especially on hourly

time scales. There can be large mean biases (Kjellström
et al. 2010), poor timing and durations (Brockhaus et al.

2008), and incorrect spatial distributions (Gregersen et al.

2013). One modeling study, that of Hanel and Buishand

(2010), assessed hourly extremes simulated by the

Ensemble-Based Predictions of Climate Changes

and Their Impacts (ENSEMBLES) project 25-km

parameterized-convection RCMs (Hewitt and Griggs

2004) over the Netherlands with the help of radar data,

and found that themodel-simulated generalized extreme-

value distribution shape (location) parameters are too

high (too low), leading to weaker short-return-period

hourly extremes but overly intense long-return-period

hourly extremes.

Hourly extremes (especially summer ones) are domi-

nated by convective precipitation. Convective precipitation

tends to be both short-duration (1–4h) and spatially lo-

calized. An example of a short-duration convective ex-

treme is the 2004 Boscastle flood (Burt 2005; Golding

et al. 2005). Long-duration (from 12h to 3 day) extremes

tend to have larger spatial scales and are often associated

with synoptic weather systems; a good example of such an

event is the 2007 U.K. summer floods (Blackburn et al.

2008). The nature of the event has important conse-

quences for the extent to which we would expect it to be

captured by a dynamical model grid box average or

a point observing station. Convective events (with hori-

zontal scales smaller than 10 km) have scales that are

smaller than typical RCM grid box sizes. Synoptic sys-

tems have spatial scales O(103) km, and precipitation

associated with synoptic systems has spatial scales larger

than typical RCM grid box sizes.

A major contributor to the error in current global and

regional models is the convective parameterization (CP)

scheme, which aims to represent the effects of convection

on the grid scale but does not capture the dynamics of

individual storms. Very high-resolution models (with

order of 1-km grid spacings) are able to represent con-

vection explicitly without the need for a parameterization

scheme (Hohenegger et al. 2008; Kendon et al. 2012).

Such kilometer-scalemodels are not truly cloud resolving

and are often termed ‘‘convective-permitting,’’ as larger

storms and mesoscale organizations are permitted but

convective plumes and smaller showers are not resolved.

The use of convective-permitting models is now common

practice in short-range numerical weather forecasts (e.g.,

Roberts and Lean 2008), where they have been shown to

provide a significantly improved representation of topo-

graphically enhanced and convective precipitation com-

pared to coarser-resolution models (Lean et al. 2008).

The UKMO has recently finished multiyear present-

climate integrations of high-resolution 1.5-km RCM

6156 JOURNAL OF CL IMATE VOLUME 27



simulations over the southern United Kingdom (SUK)

driven by a coarser (12 km) RCM from the same Unified

Model suite (Kendon et al. 2012). Aside from grid spac-

ing, a difference between the two simulations is that the

12-km RCM uses convective parameterization to repre-

sent the effects of unresolved convection. The 1.5-km

RCM does not use CP, but instead it has explicit con-

vection. Kendon et al. (2012) focused on the intensity,

duration, and extent of hourly precipitation. They found

that the 1.5-km RCM generates peak precipitation in-

tensities that are too high, but it has a superior repre-

sentation of the diurnal cycle, structure, and the duration

of precipitation. The differences in intensities and dura-

tion suggest that the (multi)hourly extremes of the two

models could also be very different.

Here we seek to diagnose the differences between the

12- and 1.5-km RCMs with the help of extreme value

theory (EVT). We examine the extent to which the very

high-resolution (1.5km) explicit convection RCM gives

an improved representation of hourly extremes over

a coarser (12km) parameterized convection RCM, and

hence evaluate the 1.5-km RCM value for providing fu-

ture projections.

The main issues that we wish to address here are the

following.

d Does the 1.5-km RCM have different extreme behav-

ior for precipitation than the 12-km RCM?
d What can be done to assess model reliability for hourly

extremes with limited U.K. hourly observations? Are

the observations adequate for use in extreme value

analysis and model extreme evaluations?
d Are the physical representations of the 1.5- and 12-km

RCM precipitation extremes ‘‘realistic’’ (i.e., physi-

cally and meteorologically plausible) in comparison to

observations?

This study seeks to extend the work of Kendon et al.

(2012)with specific focus on extreme events. This paper is

outlined as follows: Section 2 describes the model and

observational data used; section 3 overviews our meth-

odologies; section 4 presents the results from the extreme

value analysis; section 5 presents a physical interpretation

of the extremes; and this paper concludes in section 6.

2. Models and observations

This paper uses the same two UKMO high-resolution

(12 and 1.5 km) RCM simulations as in Kendon et al.

(2012) and Chan et al. (2013). For observations, we have

used the gauge-based UKMO daily gridded values be-

tween 1990 and 2008 (UK5) (Perry and Hollis 2005;

Perry et al. 2009), the radar-basedUKMOhourly gridded

values between 2003 and 2010 (Golding 1998; Harrison

et al. 2000), and the UKMO hourly station values be-

tween 1992 and 2010 that are archived within the UKMO

IntegratedDataArchive System (MIDAS) (Sunter 2012).

For brevity, we only discuss the key RCMdifferences and

the MIDAS database here.

a. High-resolution RCMs

The two RCM simulations are fully described in

Kendon et al. (2012). They are as follows:

d a 12-km European simulation driven by the ERA-

Interim reanalysis (Dee et al. 2011) and
d a 1.5-km southern U.K. simulation driven by the

12-km RCM.1

The RCM simulations are carried out for the years

1990 to 2008, and our southern United Kingdom (SUK)

domain is shown in Fig. 1. A key difference between the

two simulations is that the 1.5-km simulation does not

use a convective parameterization. Daily and hourly

precipitation totals are available from both simulations.

For comparison, the 1.5-km RCM data are spatially

averaged on to a 12-km grid for analysis. For the 12-km

RCM, daily totals of ‘‘convective’’ (parameterized) and

‘‘large-scale’’ precipitation are also available.

b. Observations

UKMO hourly gauge measurements from tipping-

bucket gauges that measure with 0.2-mm increments are

archived within the MIDAS observational database. We

have selected 28 SUK hourly stations that have been in

FIG. 1. The southern United Kingdom domain used in this study

with the 12-km RCM surface geopotential height contoured. The

approximate locations of the UKMO hourly gauges are marked

with asterisks. This figure is adapted from Chan et al. (2013).

1 1.5-km interior, variable spacing (up to 4 km) near the lateral

boundaries.
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nearly continuous operation since 1992 (Fig. 1). The data

have been quality controlled, and the checks include un-

supervised checks against unusual values and supervised

checks at the station and the data center (UKMO 2013).

Analysis here uses precipitation accumulations from

1 h to 5 days. Comparisons with daily UK5 values are

only made for 1-day1 accumulations. Multihour accu-

mulations are computed as hourly running totals. To be

consistent with UK5, all (multi)daily accumulations are

computed as 0900–0900 UTC totals.

Radar has deficiencies. In particular, attenuation can

lead to an underestimate of high intensities (Harrison

et al. 2000). Gauges observe events that they can sample

with higher reliability, but cannot observe events that do

not occur over them, and localized maxima are often

missed. Orographic precipitation is systematically un-

derestimated as most gauges are located in valleys. In-

strumental errors also give systemic negative bias for

high intensities (Legates andWillmott 1990;Molini et al.

2005). All observations used here are quality controlled.

Substantial differences between different observational

datasets exist, and the differences can effect model bias

evaluation (Sunyer et al. 2013).

c. Data corrections

Hourly precipitation observations are limited, and it is

desirable to utilize all available data. This means there

is a need to accept incomplete observations that cover

somewhat different time periods (i.e., radar and gauge

observations do not fully overlap with the model simu-

lation period). Data period sensitivity tests show that our

results are not sensitive to the period choice (not shown).

Missing values pose a difficulty in computingmultihourly

accumulations. Corrections are made to the radar and

hourly gauge measurements to account for missing values

as follows. For radar, we discard all subdaily values that

encounter missing values, while daily totals with U hours

missing are corrected with a multiplier as long as U , 12:

P
RADAR
* 5

24

242U
�

defined

PRADAR . (1)

Otherwise, the radar daily totals are set to missing.

Multihourly gauge accumulations that have missing

or quality-control-fail values are corrected by the

accumulation-period median insertion. If more than

a quarter of the hourly values are missing, then the multi-

hourly accumulations are set to missing (i.e., up to 3h of

missing data are tolerated for a 12-h total). This technique

equates to simple persistence forecasting, that is, pre-

dicting unknown local hourly values from recent values.

All gridded data (models and observations) are re-

gridded to 12-km grid boxes by water-conserving spatial

averaging before analysis to prevent intensity distortions.

All analysis excludes nonland grid boxes.

3. Statistical methods

We have adopted peaks-over-threshold (PoT) extreme

value theory (Coles 2001) to analyze our model and ob-

servational data. PoT is widely used and produces com-

parable results with competing methodologies (Madsen

et al. 1997; Martins and Stedinger 2000, 2001). PoT has

been used to model hydrological extremes—recently by

Re and Barros (2009), Tomassini and Jacob (2009), and

Acero et al. (2011)—and has been applied to gridded da-

tasets (Coelho et al. 2008; Overeem et al. 2009). PoT

characterizes both the extreme recurrence rate (defined as

the annual frequency of exceedances above a threshold, l)

and the probability distribution of the excesses above

a specified threshold with the generalized Pareto (GP)

distribution. The GP distribution is defined by three pa-

rameters: threshold (t; the ‘‘extreme’’ threshold), scale (s;

analogous to the standard deviation), and shape (j; anal-

ogous to the skewness, the curvature of return levels):

z(n j t,s, j)5
8<
:

t1
s

j
[(ln)j 2 1] , j 6¼ 0

t1s ln[ln] , j5 0,

(2)

in which n and z are the return period and return level

respectively. High quantiles (large n return levels) are

sensitive to both parameters with higher scale and shape

parameters giving higher return periods. The GP param-

eters can be constrained with Bayesian prior distributions

(Martins and Stedinger 2001). In the present study, we do

not constrain any fit parameters. Our goal is to diagnose

possible model errors, and it would be inappropriate to

assume that we know a priori what are the probable

values of the fitted parameters for our model data. We

would also note that no spatial or regional pooling

(Hosking and Wallis 1993) is used in the present analysis.

The generalized Pareto distribution requires data

samples to exceed some ‘‘reasonably high’’ event

threshold. There is no general method to determine

the threshold, but ad hoc methods exist (Ribatet 2006).

We use the 95th percentile of wet values ($0.1mm) as in

Tomassini and Jacob (2009) andAcero et al. (2011). Data

samples may not be independent and identically distrib-

uted (i.i.d.) without declustering. Nonindependence is

accounted by automatic declustering (Ferro and Segers

2003), but we depart from the original methodology by

imposing aminimum1-day declustering time. L-moments

are used to estimate the GP parameters (Hosking 1990).

Standard errors of the GP parameters are estimated by

refitting with bootstrapping postdeclustered data samples

1000 times.
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To test goodness of fit, we employ the Anderson–

Darling test (ADt) (Anderson andDarling 1952; Stephens

1977; Laio 2004). The null hypothesis is that the data are

drawn from a GP distribution with unknown parameters

and is rejected when the test statistic is larger than critical

values that are estimated by Monte Carlo simulations

(Lilliefors 1967; Waller et al. 2003).

The very extreme events [say z(100)] are more im-

portant than less extreme ‘‘uncommon’’ events [say z(2)]

in terms of their social and economic impact. The hy-

drological community uses nondimensional ‘‘growth

rates’’ and ‘‘curves’’ as a common standard to charac-

terize the difference between uncommon and extreme

events. The growth rate, or curve, G(n) (Reed 1999) is

defined as the multiple increase of the nth year return

level over an index extreme value:

G(n)5
z(n)

z(i)
, (3)

in which z(i) is some standard return level. That is usually

chosen to be z(2), and is often referred as the annual

maximum rainfall median (RMED) (Reed 1999). Note

thatG(n) is independent of any return period correction

as long as the correction is a linear multiplier that is in-

dependent of the return level. Areal reduction factors

(ARF) (deMichele et al. 2001; Kjeldsen 2007), which are

used to upscale point-estimated return levels to areal

return levels, are such linear multipliers that are assumed

to be functions of accumulation period and catchment

area only. The independence fromARFmakesG(n) an

attractive diagnostic to accommodate hourly gauge

data. The present analysis focuses on June–August (JJA)

and December–February (DJF) only, in order to gain

a cleaner division between summer convective andwinter

stratiform precipitation.

4. GP distributions of model and observed
precipitation extremes

In this section, we present the estimations of the gen-

eralized Pareto parameters together with return levels

and growth curves. It is impractical to examine the esti-

mates at each grid point or gauge, so some diagnostics are

presented as a spatial average.

a. Spatial GP structure

The spatial maps of PoT parameters are shown as

d 1-h extremes: JJA (Fig. 2), DJF (Fig. 3), and
d 1-day extremes: JJA (Fig. 4), DJF (Fig. 5).

The spatially averaged PoT parameters [E(s), E(j),

E(t), E(l)] and GP standard errors [E(Ds) and E(Dj)]

are above each panel. The parameters estimated from

the hourly gauges are shown in Table 1. Radar-estimated

fitted parameters appear to display more spatial vari-

ability than themodel- and gridded-gauge estimates. This

is unsurprising as radar data are shorter.

For 1-h JJA extremes (Fig. 2) both 12- and 1.5-km

simulations have comparable spatially averaged event

occurrence rates (Figs. 2d,h), but higher event frequen-

cies over the orography are evident in the 12-km RCM.

Larger discrepancies are found for the other three pa-

rameters. When compared with the 1.5-km RCM, the

12-km simulation tends to have lower thresholds and scale

parameters, but higher shape parameters. The threshold

differences between the model simulations are closely

related to the differences in their mean precipitation in-

tensities, in which the 1.5-km RCM precipitation is more

intense (Kendon et al. 2012). The differences in the ex-

treme probability distributions are diagnosed by the dif-

ferences in scale and shape parameters. In particular,

higher shape parameters indicate that extreme intensities

increase rapidly with rarity. The largest event frequencies

in bothmodels are concentrated over orography, which is

not surprising as precipitation occurs more often there.

For the 1.5-km RCM, higher thresholds are evident over

orography and the southern coast.

The spatially averaged radar-estimated shape param-

eters are closer to the 1.5-km RCM estimates, although

with a high standard error. While the higher standard

error may be related to lower radar sample sizes (radar

has 8 years of data compared to 19 years of RCM data),

some radar grid points have shape parameters that are

much higher than the average of the whole domain (j $

0.5). There is an apparent concentration of large shape

parameters around the Thames Estuary, the Wash, and

East Anglia. The high shape parameters around theWash

are at least partially due to localized ‘‘radar observed’’

extremes in August 2003 and 2004 that are not corrobo-

rated by the UK5 observations (not shown).

Model comparisons with the radar estimates show that

the 12-km (1.5 km) simulation has lower (higher) scale

parameters and thresholds, indicating negative (positive)

biases in short return levels. Both radar and the 1.5-km

RCM have considerably lower shape parameters (‘‘thin-

ner tailed’’) than the 12-km RCM (‘‘heavy tailed’’). The

higher scale parameters and thresholds in the 1.5-km

RCM are consistent with its tendency to have preci-

pitation that is too intense (Kendon et al. 2012). Along

the southern English coast, the 1.5-km RCM simulates

lines of high threshold and scale parameter. This is also

where positive biases in JJA precipitation and heavy

precipitation frequency are observed (Chan et al. 2013).

The number of rejected fits for JJA in all of the gridded

data is comparable to the number that is expected by
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chance (a 5% test implies a 5% chance of rejection if the

PoT model is correct).

A different picture is found for 1-h DJF GP distribu-

tions (Fig. 3). The large JJA shape parameters in the

12-km RCM are no longer evident in DJF. Both models

and the radar data suggest lower shape parameters in

DJF, and that is corroborated by the hourly gauge esti-

mates (Table 1)—suggesting DJF has considerably lower

large return levels. Thresholds are lower for DJF except

for the 12-km RCM. For the radar and 1.5-km RCM, this

is consistent with the lower intensities expected from

nonconvective winter precipitation. Overall, the estimates

indicate lower hourly extremes for winter precipitation.

The 1.5-km RCM also has lower event frequencies over

orography relative to radar and the 12-km RCM.

The U.K. DJF precipitation is predominately non-

convective. A much larger fraction of the 12-km model-

simulated precipitation comes from the resolved dynamics

and large-scale frontal ascent. Simulated precipitation is

less dependent on the convective parameterization. This

hints that the CP may play a central role in the ‘‘fat tail’’

shape parameter biases seen for the 12-km-RCM JJA

extremes.

Fits with DJF 1-h totals show a higher number of

rejected fits than for JJA for both models and for radar

gridded values. For the 12-km RCM, about 25% of the

grid points have fits rejected, and the rejections appear

to be concentrated over orography. For radar and the

1.5-km RCM, the number of rejections is still twice the

number expected by chance at approximately 10%.

Unlike the 12-km RCM, both radar and the 1.5-km

RCM have no apparent concentration of rejections over

orography.

The lower threshold, shape parameter, and goodness

of fit for 1-h DJF precipitation are consistent with

meteorological understanding. Winter and orographic

precipitation are predominately stratiform, which is less

intense on hourly time scales; such lower totals may not

FIG. 2. PoT fit parameters for (top) 1990–2008 JJA 12-km RCM (R12), (middle) 1990–2008 JJA 1.5-km RCM (R1.5), and (bottom)

2003–10 Radarnet (RAD) 1-h precipitation accumulations: (a),(e),(i) scale (s,mmh21), (b),(f),(j) shape (j), (c),(g),(k) 95th percentile

threshold (t,mmh21), and (d),(h),(l) declustered events per year (l, yr21). RejectedGP fits are blanked in the scale and shape panels. The

number of rejected fits, the spatially averaged fit parameters [E(s),E(j),E(t),E(l)], and the spatially averaged standard errors of s and j

[E(Ds), E(Dj)] are also shown.
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be high enough to be considered ‘‘extreme,’’ and thus GP

may less well describe their distribution.

Moving into 1-day JJA extremes (Fig. 4), the shape

parameters (j ’ 0.1) for the 1.5-km RCM and obser-

vations are found to be insensitive to the accumulation

period change. This insensitivity is also noted in Hanel

and Buishand (2010). Unlike the other datasets, the

12-km RCM shape parameter decreases when the ac-

cumulation period is extended to 1 day. The decreased

12-kmRCM shape parameter is still higher than for both

observations and the 1.5-km RCM, and the large shape

parameter values are concentrated in the southeastern

part of the model domain.

Similarly to 1-h extremes, the 1.5-kmRCM has higher

scale parameters and thresholds than both observations

and the 12-km RCM, indicating a systematic positive bias

in heavy precipitation. While the 12-km RCM tends to

have higher event frequencies and lower thresholds (gives

negative bias to short return levels), it has more accurate

values for the scale parameter than the 1.5-km RCM.

Large 1.5-km-RCM southern coastal scale parameters

and thresholds are also seen for the daily estimates.

Radar and UK5 estimates are generally comparable.

Both have similar spatial patterns in thresholds and

event frequencies. The orographic enhancement is well

captured by both. There is a tendency for the radar to

give a high shape parameter over the southeast, which is

not seen in the UK5 data.

All models and observations show the event frequen-

cies are down by 50%–75% for 1-day extremes compared

to 1-h extremes in JJA, but the spatial patterns are similar—

the largest event frequencies are concentrated over

orography in the western half of the domain. Event

frequencies reflect the number of wet values, plus the

effects of declustering.

Goodness of fit for 1-dayDJF extremes (Fig. 5) ismuch

better than for the 1-h DJF fits. The number of rejections

is now comparable to that expected by chance, and is

consistent with the physical understanding that winter

extremes tend to occur at longer accumulations. A higher

threshold may be needed for the 1-h DJF values to yield

a good goodness of fit. Similar to the 1-h DJF estimates,

the spatial average of the observation-fitted shape pa-

rameters is close to zero (or slightly negative for the

FIG. 3. As in Fig. 2, but for DJF 1-h precipitation accumulations.
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gauges), and this is well simulated by both the 12- and the

1.5-km RCMs. Like the JJA 1-day extremes, there is

a concentration of larger event frequencies, thresholds,

and scale parameters over orography as one may expect

from orographic precipitation.

Similar to the 1-day JJA estimates, both radar and

UK5 have similar spatial patterns in the threshold and

frequency of events. Again, radar estimates are showing

high shape parameters in the southeast.

b. Return levels as functions of return periods

In Fig. 6, we compare the JJA and DJF return level

estimates from the model and observational data. Since

UK5 are daily, return levels are only shown for 1- and

5-day accumulations. The hourly gauge return levels

are not shown to avoid the usage of ARF. Generally

speaking, return levels are higher in JJA than in DJF for

both the models and observations and across all com-

pared accumulation periods.

For JJA, the 12-km RCM appears to simulate 5–10-yr

return levels better than the 1.5-kmRCM across a range

of accumulation periods (from 3- to 12-h totals); how-

ever, the good estimates there are a consequence of

underestimating shorter returns periods and over-

estimating longer return periods. For 1-h accumulations,

z(2) values are overestimated (underestimated) by the 1.5-

km (12km) RCM. For the 1.5-km RCM, z(2) values are

overestimated for all accumulation periods; this is in

contrast with the 12-km RCM in which z(2) biases de-

crease with increasing accumulation period. Both RCMs

have comparable 20–50-yr return levels—higher than

both gridded observation estimates. For JJA, the 12-km

RCM 1-h to 6-h accumulations return levels exceed the

1.5-km RCM return levels for 40–60-yr and longer return

periods. For 6- and 12-h accumulations, both model-

simulated z(100) values are nearly two times higher than

the radar estimates. In summary, the 1.5-km RCM shows

consistent positive return level biases across all examined

accumulation periods, but the 12-kmRCMbiases depend

on the accumulation period.

A key difference between the 12- and 1.5-km RCM

return levels is in the gradient of z(n). Owing to the

FIG. 4. As in Fig. 2, but for JJA 1-day precipitation accumulations. Both UK5 (middle bottom) and Radarnet (bottom) are shown. The

units for threshold (t) and the scale parameter (s) are millimeters per day.

6162 JOURNAL OF CL IMATE VOLUME 27



positive biases in the shape parameter, the 12-km RCM

return levels are growing increasingly fast as log-return

periods (log10n) increase, and eventually surpasses other

datasets at a long enough return period. Near-zero

shape parameters for the observations and the 1.5-km

RCM give quasi-linear increases of return levels with

log10n. The 1.5-kmRCMpositive biases in threshold and

the scale parameter mean its return levels are shifted

upward and have a quasi-linear slope somewhat steeper

than the radar.

FIG. 5. As in Fig. 4, but for DJF 1-day precipitation accumulations.

TABLE 1. JJA and DJF 25th and 75th quartiles of PoT parameters for the ensemble of analyzed Met Office hourly gauges for various

accumulation periods: parentheses indicate negative values.All precipitation valued figures are quoted inmillimeters per its accumulation

period [i.e., 12-h accumulation figures will be presented as mm (12 h)21].

Met Office hourly gauges accumulation period

1 h 3 h 6 h 12 h 1 day 5 days

JJA

s (mm) 2.24–3.18 3.87–4.79 4.67–6.54 5.84–7.96 6.05–9.94 7.45–10.52

j 0.03–0.14 (0.03)–0.16 (0.07)–0.16 (0.09)–0.18 (0.08)–0.18 0.02–0.36

t (mm) 3.2–3.6 7.2–8.0 10.6–12.2 14.8–16.8 18.8–22.2 29.7–34.4

l (yr21) 4.11–5.26 2.95–3.42 2.21–2.42 1.58–1.84 1.16–1.47 0.79–1.00

DJF

s (mm) 1.45–1.80 2.42–2.92 3.62–4.37 3.96–5.40 5.07–6.78 5.48–9.20

j (0.23)–(0.11) (0.19)–(0.02) (0.22)–(0.02) (0.14)–0.04 (0.16)–0.06 (0.19)–0.03

t (mm) 2.0–2.6 5.0–6.4 7.8–9.8 10.6–13.8 13.4–18.5 21.8–35.3

l (yr21) 5.53–7.05 4.00–5.05 3.00–3.79 2.32–3.08 1.89–2.26 1.17–1.41
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FIG. 6. PoT-estimated return levels [z(n)] as a function of return period (n) for the 12-km RCM (orange), 1.5-km

RCM (green), daily gauges (black), and radar (blue) plotted on linear-log graphs. Return periods are computed at

each grid box, and the spatial median (central value) and interquartile range (error bars) are shown. The different

panels represent different accumulations (1, 3, 6, and 12 h; 1 and 5 days) and seasons: (a)–(f) JJA and (g)–(l) DJF.
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Some of the differences in the JJAmodel return levels

are not apparent in DJF. For this season (DJF), the

1.5-km RCM has consistently higher return levels than

the 12-km RCM and the gridded observations for accu-

mulation periods longer than 6h. Unlike JJA, the 12-km

RCM return levels no longer surpass the 1.5-km RCM at

long return periods. Since the DJF shape parameters and

thresholds for 6-h1 accumulations are comparable across

the three datasets, the higher 1.5-km RCM z(100) come

from the higher scale parameters and thresholds.

Despite possible large radar measurement errors,

the return levels estimated by the radar data are com-

parable with UK5 for 1-day accumulations. Obviously,

this agreement cannot be verified for subdaily preci-

pitation. Even though individual estimates of radar data

may be unreliable, useful information can be extracted as

a spatial average. This supports the idea that radar data

are usable and useful if spatial averaging and pooling are

used as inHanel and Buishand (2010) andOvereem et al.

(2009).

c. Growth curves

The growth curves are now examined, allowing the

inclusion of the point gauge estimates with the gridded

data estimates. The JJA and DJF growth curves for dif-

ferent accumulation periods are shown in Figs. 7 and 8.

The JJA growth curves are steeper thanDJF across all

observational and model estimates. The hourly-gauge-

estimated 100-yr JJA growth rates are about 2.0–3.0, in

agreement with the radar data.Daily accumulations show

a similar agreement between the gauges and UK5 esti-

mates. The lower DJF estimates (;1.5) are also consis-

tent between radar and hourly gauge estimates, that is,

despite the radar data having a much shorter record

length. For short (1 h) accumulations, the radar estimates

are higher than the gauge estimates, and both RCM es-

timates are in between the two. Results here give further

support to the use of radar data for the understanding of

observed subdaily extremes as in Hanel and Buishand

(2010).

Radar northwest – southeast differences (not shown)

suggest growth curves are steeper in the southeast than

in the northwest part of the domain for 1-h to 1-day

totals, for both JJA and DJF (see Faulkner 1999). The

same is suggested in the model simulations; however, it

is not evident in the hourly gauge observations. Gridded

gauge observations (see Figs. 4 and 5) hint that some parts

of orography are associated with lower shape parameters

(and hence lower growth rates); however, the gauges tend

to be placed in valleys, and may undersample the oro-

graphic maximums.

The 12-km RCM JJA growth curve is higher than the

observations and the 1.5-km RCM, and the differences

here are consistent with the fitted shape parameter dif-

ferences. For the 12-kmRCM, z(100) is nearly 4–6 times

higher than the z(2). The differences between the 12-km

RCM and the other datasets are gradually reduced as

accumulation periods lengthen, and the differences are

not evident for 5-day accumulations.

Changing the accumulation period has little impact

on both JJA and DJF growth curves for all compared

datasets except for the 12-kmRCM. This is illustrated in

Fig. 9, where G(100) is shown as a function of accumu-

lation period. For the observations, this is a remarkable

result because it suggests that the normalized probabil-

ity distribution of extreme precipitation totals is in-

variant with accumulation period, and this fact is well

captured by the 1.5-km RCM. However, this is not true

for the 12-km RCM, where the JJA extreme probability

distribution is sensitive to the accumulation period.

The above problems are not evident in DJF when 1-h

precipitation growth rates are well simulated by both 12-

and 1.5-km RCMs. This is further corroborated by the

insensitivity of the shape parameter to accumulation

period in DJF (Figs. 3 and 5).

The FEH (Faulkner 1999) shows higher 100-yr growth

rates for 1-h extremes than the 1-day extremes, in con-

tradiction to our results above. However, an invariance

with accumulation period is found in the analysis by

Madsen et al. (2009). The reason behind the differences

is not clear—possibly related to differences in analysis

strategy, or the length of data analyzed. The cause of

these differences would require further investigation.

5. The physical behavior of the model extremes

In the previous section, we have shown that the 12-km

RCM tends to produce too intense long-return period

extremes in summer. Here we seek an explanation by

examining why extreme events appear too large within

the 12-kmRCM. It is not possible to examine each single

climate model-simulated extreme event. For case com-

parisons, we focus only on the very tail of the model ex-

tremes. We will take advantage of the fact that the 12-km

RCM data are used to drive the 1.5-km RCM, which

means some events are common.

An examination of the largest events in both simula-

tions show two types of events:

d ‘‘stationary’’ grid-point storms in the 12-kmRCM, and
d mesoscale convective systems (MCS).

Raw data checks indicate that 7 out of 10 of the largest

12-km RCM events are localized gridpoint storms (not

shown). Highly localized events with high hourly totals

exceeding ;100mmh21 over a few hours are not un-

precedented in the United Kingdom (Burt 2005; Golding
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FIG. 7. JJA PoT-estimated growth curves [y axis:G(n)5 z(n)/z(2)] as a function of return period [x axis:

n (yr)]. Different accumulation periods are shown in different panels. Line color indicates the different

dataset: orange for 1990–2008 12-kmRCM, green for 1990–2008 1.5-kmRCM, black for 1990–2008 gridded

daily gauges, dark blue for 1992–2010 station hourly gauges, and light blue for 2003–10 radar. The central

value and error bars indicate the spatial median and interquartile range.
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FIG. 8. As in Fig. 7, but for DJF. Note: the y-axis scale has been reduced.
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et al. 2005). Such events are not ‘‘common,’’ and typically

have areas less than the grid box area of the 12-kmRCM.

The single largest 1-h accumulation within the 12-km

RCM has peak intensity of 93.3mmh21. Figure 10 shows

the daily totals for this event, and its partitioning be-

tween CP parameterized and explicitly resolved pre-

cipitation. This localized event maintains 501mmh21

intensity for 3 h (not shown) and has a high ‘‘large-

scale’’ fraction within an area in which most of the rain

comes from the CP.

Using the 12-km RCM estimates above, this event

would have been a 1000-yr event for 1-h totals, which

sounds plausible enough. However, if this event were to

take place in the 1.5-km RCM or radar, it would cor-

respond to a 1 000 000-yr event. The 5-h totals from

Boscastle were 75–140mm spanning over approximately

a 50km2 area, and localized 2001mmh21 instantaneous

rates were measured (Golding et al. 2005). Such spatial

scales are smaller than the 12-km RCM is expected to

resolve. The 12-km RCM event has a 5-h total of

2801mm (not shown) in a single grid box. A Boscastle-

like event in the 12-km RCM would have considerably

lower totals after spatial averaging.

While exact correspondences between the 12- and 1.5-

kmRCMs are not expected, the large-scale conditions of

both are similar. Examination of the 1.5-km RCM (not

shown) indicates that there is precipitation for this event

over approximately the same area at much lower in-

tensity (up to ;16mmh21).

The maximum hourly intensity of this event in the

12-km RCM is 1.8 times the largest hourly intensity

(;52mmh21; averaged to a 12-km grid box) occurring

at any time in the 1.5-km RCM (not shown). The 12-km

RCM cannot be expected to have the correct dynamical

structure because the storm is underresolved. The exis-

tence of both explicit and parameterized precipitation in

the same area is a ‘‘red flag’’ (Molinari andDudek 1992).

Such a large amount of explicit or ‘‘large-scale’’ precipi-

tation at a single grid point indicates gridpoint saturation.

CP (including Gregory and Rowntree 1990) assumes that

convective clouds have areas much smaller than the grid

box, and the convective equilibrium state is restored at

the subgrid level. These equilibrium assumptions are in-

valid for ‘‘big’’ convection, and CP alone cannot restore

the equilibrium.

Such gridpoint events have detrimental impacts on the

probability distribution of extremes for the 12-kmRCM.

Apart from tail fattening, it explains the 12-km shape

parameter dependence on accumulation period, as such

gridpoint storms are less important when accumulation

period lengthens. The largest 1.5-kmRCMevents do not

appear as such gridpoint events, but are more like trav-

eling MCSs.

All of the examined MCS-like events are captured by

both models. An example of such an event is shown

in Figs. 11 and 12. The event corresponds to the single

largest and fifth largest 1-h intensity for the 1.5- and the

12-km RCM, respectively. The 1.5-km RCM represen-

tation of this event has much more moderate pre-

cipitation than the 12-km RCM. The 12-km RCM peak

hourly intensity is about 1.6 times higher than the 1.5-km

RCM peak hourly intensity.

Unlike the gridpoint storms, this event appears more

realistic from a meteorological perspective—a traveling

system with temporal continuity that undergoes life cycle

changes. The large hourly accumulations (;70mmh21)

in the 12-km RCM appear near the core of the simulated

MCS and are larger than the single largest intensity for

the 1.5-km RCM. The core is likely to be underresolved

by the 12-km grid boxes (even if theMCS is large), which

FIG. 9. Variation of the G(100) as a function of accumulation

period for (a) JJA and (b) DJF. Different lines represent different

datasets (see legend), and the central values (error bars) are the

spatial median (25th and 75th spatial quartiles).
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means that there is still aliasing of the 12-km-model large-

scale precipitation.

6. Discussion and conclusions

We seek to understand observed and model-

simulated southern U.K. precipitation extremes across

a range of accumulation periods, and askwhether the two

selected UKMO high-resolution models (12- and 1.5-km

RCMs) are able to realistically simulate precipitation

extremes.We also want to knowwhether there is added

value in the convective-permitting 1.5-km RCM in the

simulation of extremes. Our answer appears to be yes

to the second question—the 1.5-km convective-permitting

RCM has more realistic very large extremes than the

12-km RCM, despite the 1.5-km RCM having a positive

bias overall. The JJA 1.5-km RCM 1-h return level

biases against the radar are approximately 25%–30%,

which are generally in line with the intensity biases found

in Kendon et al. (2012).

We have shown evidence that JJA extremes in the

1.5-km RCM are not only different, but have a much

higher degree of realism than those in the 12-km RCM.

The high growth rates in the 12-kmRCM at the subdaily

time scale are closely related to high shape parameters

in the peaks-over-threshold estimates to extreme in-

tensities. The high shape parameters lead to a heavy tail

in the 12-km RCM extremes and rapid non-log-linear

return level increases, and are at least partially caused by

events that appear meteorologically and statistically

implausible. When accumulation periods are extended

toward 1 day or longer, the 12-km RCM simulated JJA

extremes generally improve as the impact from subdaily

grid point storms is reduced. By 5-day accumulations,

the JJA growth curve differences become negligible

between the 12- and 1.5-km RCM.

Although the 1.5-km RCM JJAGP shape parameters

are in line with observations, its thresholds and scale

parameters are too high. This reflects the tendency for

the 1.5-km RCM precipitation intensity to be positively

biased (Kendon et al. 2012) and return level curves to be

shifted upward with steeper linear slopes. This is likely

to be partly a consequence of convection still being

underresolved at 1.5-km grid spacing. For long return

FIG. 10. (a) CP parameterized (daily total), (b) explicit large-scale (daily total), (c) total of (a) and (b), and

(d) parameterized fraction of a ‘‘gridpoint storm’’ (model day 30 Jul 2002) event in the 12-km RCM. The maximum

simulated grid box hourly (parameterized plus explicit) intensity is 93.3mmh21.
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periods, good tail representation and the curvature of

return levels becomes more important than lower mean

and linear slope biases.

DJF extremes are much better simulated by both

models. Observed hourly and daily DJF extremes and

their growth rates are lower than the JJA growth rates

across a range of accumulation periods, and this is well

captured by both simulations. The 12-km RCM appears

sufficient to simulate DJF extremes, and the advantage

of 1.5-km RCM for DJF is low; yet this is overshadowed

by the fact that U.K. JJA extremes are more intense.

Growth curves allow direct comparisons between

station and gridded data. That is because growth curves

are independent of areal reduction factors and mean

biases. Our results indicate that the observed JJA

growth rates are insensitive to accumulation periods that

are 1 h or longer in contrast with the FEH estimates,

which give higher growth rates for 1-h extremes than

1-day extremes (Faulkner 1999). The hourly extreme

estimates in FEH are less robust than the daily extreme

estimates. The number of hourly precipitation mea-

surements by station years (stations 3 years) is about
1/50 of the number of daily precipitation measurements

(Faulkner 1999).

The growth curve differences may be caused by an

underestimation of weaker extremes or an overestimation

of extremes with longer return periods. With the excep-

tion of 1-h totals, the 12-km RCM simulates the RMED

[z(2)] reasonably well across a range of accumulation

periods. This is in contrast with the 1.5-km RCM, which

has higher RMED levels than the observations. The high

JJA goodness of fit indicates the suitability of PoT for our

analysis. We conclude that the growth curve differences

are a reflection of the deficiencies of the 12-km RCM in

simulating the higher JJA extremes.

Climate model biases can be caused by the symmetric

(scale parameter) and asymmetric (shape parameter)

stretching, or the shifting of the probability distribu-

tions. The biases in the probability distribution of sim-

ulated extremes and nonextremes may also differ. As

discussed in Kendon et al. (2012) and Chan et al. (2013),

the 1.5-km RCM produces daily/hourly precipitation

intensities that are higher than observed. Based on the

results here, these positive biases appear to be linked to

the shifts in themean—and are likely to be related to the

1.5-km RCM underresolving convection (Kendon et al.

2012). The biases in the extremeswithin the 12-kmRCM

have a different character, with skewness being different

FIG. 11. Hourly progression of a mesoscale convective system (MCS) extreme event within the 12-km RCM.
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compared to the 1.5-km RCM and observations; this

skewness bias can be linked to 12-kmRCMvery different

and unphysical representation of convection when ex-

plicitly resolved convection becomes as vigorous as pa-

rameterized convection.

Radar-estimated precipitation intensities are often

considered to be of lower quality than gauge data, and its

flaws are well documented (Harrison et al. 2000). Indeed,

some results here appear to be affected by questionable

radar-estimated precipitation. In particular, there are

spurious large radar values near the Wash and Thames

Estuary.More generally over the SUK, we find that radar-

estimated precipitation gives good estimates of growth

curves and return levels that are comparable with station

estimates. Our results indicate that useful information can

be derived from the use of radar-estimated precipitation.

However, wenote that due to radar attenuation and gauge

undersampling of local maxima (which particularly affects

their representation of convective storms and orographic

precipitation), both datasets tend to underestimate high-

intensity precipitation. This suggests that the 1.5-kmRCM

constant positive return-level biases are overstated.

Our results show positive benefits of the explicit con-

vection 1.5-km simulations for summer. Even though the

mean biases may appear higher (Chan et al. 2013), the

1.5-km convective-permitting simulation is more physi-

cally realistic than the 12-km RCM. The 1.5-km RCM is

able to explicitly represent the dynamical structure and

life cycle of convective storms (albeit not perfectly). The

lower mean biases for the 12-kmRCM are in part caused

by compensation between too much light precipitation

and excessively high extreme intensities.

In the case for the 12-km RCM, one would expect the

precipitation intensity to be sensitive to the convective

parameterization and its internal parameters. The shape

parameter is known to be sensitive to the model’s CP

entrainment coefficient (Fowler et al. 2010). However,

caution should be exercised in tuning the CP parameters

to improve the simulation of extremes, as many CPs are

simply not designed for 12-km grid spacing (Arakawa

2004).

Gridpoint storms, which lead to erroneous extremes

in the 12-kmRCM, are a consequence of the fact that CP

assumptions are not valid for 12-km grid boxes. The

12-km RCM operates within the ‘‘gray zone’’ horizontal

grid spacing [a 5–50-km range is quoted byMolinari and

Dudek (1992)]—the resolution is insufficient to resolve

all convective spatial scales. CP is needed to represent

FIG. 12. As in Fig. 11, but for the 1.5-km RCM simulation of the same event.

15 AUGUST 2014 CHAN ET AL . 6171



unresolved convection, but the CP equilibrium principle

is no longer valid. CP introduces artificial and unnatural

separation of cloud processes and scales (Arakawa

2004). Convection cannot be properly represented ei-

ther explicitly or parameterized, and this can lead to

undesired interaction and creates an arbitrary partition

between what is deemed ‘‘resolved’’ and what is not.We

note that, while the gray-zone problem does not disap-

pear as grid spacing approaches the kilometer scale, the

need for CP becomes less acute. Some state-of-the-art

gray-zone-resolution dynamical models are now ad-

dressing problematic assumptions in older-generation

CPs (Gerard et al. 2009), and problems with gray-zone

convection may be somewhat alleviated in the future.

Williamson (2013) has found that runaway storms can be

contained by having a CP closure time scale comparable

to the model time step. While it is desirable to remove

gridpoint storms from the 12-km model and therefore

reduce the skewness bias in the probability distribution,

such improvements will not provide a model capable of

representing short-duration extremes as CPs are not

designed to have that capability.

As part of the CONVEX program, future-climate

GCM-driven 12- and 1.5-kmRCM simulations are being

carried out by theUKMO.Growth curve analysis will be

carried out with these simulations to understand future

changes of extreme precipitation, particularly for sub-

daily extremes.

From the stakeholder perspective, realistic ‘‘very ex-

treme’’ events (with long return periods) are far more

important than ‘‘less extreme’’ events. The unrealistic

12-km RCM very extreme events are a major concern

for its use in providing extreme precipitation guidance.

While this paper has touched on the meteorology of

extremes, the triggers of model extremes have not been

examined. A full understanding of the unusual model-

simulated meteorological events will require non-

supervised detection and categorizing of extremes and

their convective environment, and existing tools from

mesoscale meteorology and cloud dynamics may be

employed for such work (Tsakraklides and Evans 2003;

Baldwin et al. 2005; Davis et al. 2006; Roberts and Lean

2008; Hanley et al. 2014).
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