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Maximum Likelihood Identification and Realization of
Stochastic Systems

Yaakov Oshman* and Tal Mendelboimt
Technion—Israel Institute of Technology, Technion City, Haifa 32000, Israel

A new maximum likelihood (ML) realization/identification technique is presented. The method utilizes
the recently introduced eigensystem realization algorithm (ERA) in combination with a stochastic adaptive
filter/fixed-interval smoother. The resulting algorithm, called ML/ERA, is thus capable of estimating a
minimal, internally balanced realization for a stochastic system whose process and/or measurement noise
covariances are not necessarily known. Belonging to the ML class of algorithms, the new method is
consistent and asymptotically efficient under reasonable conditions. Moreover, by using standard statistical
testing techniques, the user is able to assess the quality of the resulting estimates during the iterative
estimation process. A numerical investigation of the performance of the new algorithm has shown a vast
improvement over the performance of the original, unaugmented ERA. In cases where the ERA could
not determine the system order because the data was completely masked by noise, the ML/ERA algorithm
was able to identify the order and realize an accurate mathematical model of the system. Numerical
examples, demonstrating the performance of the new algorithm, are included in the paper.

I. Introduction

T HE problem addressed in this paper is that of constructing
a state space mathematical model of a linear, dynamic,

Gaussian process driven stochastic system, utilizing Gaussian
noise contaminated measurements. Specifically, we focus our
attention on the recently presented realization method called
eigensystem realization algorithm (ERA), developed by Juang
and Pappa.1 This method is essentially an extension of the Ho
and Kalman minimum realization procedure2 for deterministic
linear systems, which uses noise-free data to construct a com-
pletely controllable (CC) and completely observable (CO) state
space representation (minimal realization) of the system. In
contrast to the classical system realization theory, which uses
the Hankel matrix, the ERA algorithm operates on a block data
matrix which is called the generalized Hankel matrix. This
matrix is composed of the system measured (or otherwise esti-
mated) impulse response (the system Markov parameters), and
is obtained from the Hankel matrix by deleting some rows and
columns. Thus, one is allowed to include in the analysis only
data which is believed to be "good" in some sense, e.g.,
"strongly measured" data, or data pertaining to "strongly
excited" modes of the system.

The ERA method consists mainly of an application of the
singular value decomposition (SVD) to the generalized Hankel
matrix, to determine the system order and, subsequently, the
system realization. In a (theoretical) completely deterministic
case, the order is determined from the number of nonzero
singular values. In a (real) stochastic system, however, nonzero
singular values exist, which should have been zero in the noise-
free case. A threshold value for the singular values has to be
chosen, therefore, below which the singular values are attributed
only to noise effects.1 Assuming that the system order has been
successfully determined, the ERA method proceeds to compute
a minimal realization of the system. That is, it computes a
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matrix triple (A, B, C), where A is the system transition matrix,
B is the control distribution matrix, and C is the observation
matrix, such that (A, B) are CC and (A, C) are CO. The
realization produced by the ERA algorithm is internally bal-
anced. Moreover, since the eigenvalues of the system are invari-
ant under a nonsingular transformation, the modal parameters
(natural frequencies and damping ratios) of the realized triple
are the modal parameters of the system. Hence, in addition to
its ability to produce a state space realization for the system,
the ERA may also be considered to be a time-domain modal
parameter identification method. Note, in that regard, that the
modal parameters of the system play an important role in certain
applications, e.g., control of large flexible structures.

As described, the original ERA is essentially a deterministic
identification method. It is based on the underlying theoretical
assumptions that no process noise drives the system and that
it operates on noise-free, or at least low noise data. For high
noise levels, however, severe problems may arise. In these
cases, since the true smallest singular values of the system may
be in the order of (or sometimes even smaller than) the singular
values which are due to the noise, the choice of the singular
value threshold may not be clear.6 Consequently, the ERA may
not determine the system order reliably, which may lead to an
inaccurate identification of the system modal parameters. Note,
that even if the appropriate system order has been somehow
determined, the resulting realization may be inaccurate due to
"spillover" of the noise effects into the system-related singular
values. On the other hand, it should be noted that the method
is very simple to implement, involving only an SVD of a block
data matrix. Moreover, it has been shown to perform extremely
well with low noise data,3 mainly by virtue of the excellent
numerical robustness of the SVD.4 Because of these characteris-
tics, the ERA has become very popular in recent years, espe-
cially in large space structures applications, where experimental
verification of the structure model (especially the modal param-
eters) is sometimes possible only while in orbit (e.g., huge
space antennas).

During the last few years, several methods have been sug-
gested to alleviate the ERAs inherent sensitivity to high noise
data. These methods can be categorized as belonging to two
classes, which we call passive and active methods. The passive
methods3-5 do not modify the ERA method itself. The basic
idea underlying these methods is that the known statistical
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OSHMAN AND MENDELBOIM: MAXIMUM LIKELIHOOD IDENTIFICATION 693

characteristics of the measurement noise can be utilized to
correctly determine an optimum singular values truncation and
to assess the quality of the identified modal parameters. Thus,
in Ref. 3 a method was developed to compute an optimal cutoff
value for the singular values of the block data matrix, based
on the measurement noise covariance. Also, the so-called modal
amplitude coherence accuracy indicators were presented, which
may be used to explicitly evaluate the effects of noise on the
identified parameters. In Ref. 5, confidence intervals for the
frequencies and damping ratios obtained from the realization
are given as a function of the measurement noise covariance.
The measurement noise is treated as a perturbation and sensitivi-
ties to this perturbation are computed. Again, the ERA is not
modified, but the bias and variance information may aid the
analyst in determining which data points to use and how much
data should be used for best results.

An innovative approach, which we call the active approach,
has been recently proposed by Mook and Lew.6 Their method,
called ERA/MME, involves a combination of the original ERA
method with the minimum model error (MME) estimator. The
MME algorithm7 is a powerful batch state estimator that presup-
poses that the available mathematical model of the system
is imperfect. Hence, constraining assumptions on the system
dynamics and/or the driving process noise are not necessary
(compare to the classical state estimation/smoothing theory
assumptions). To compensate for the model errors, the method
processes the measurements at the same time seeking the least
amount of correction of the assumed (albeit erroneous) model,
such that the covariance of the "actual measurements minus
estimated measurements" process would be as close as possible
to the (assumed known) covariance of the measurement noise
process (which is the "actual measurements minus noise-free
measurements" process). The idea presented in Ref. 6 is that
by processing the measurements first, using the MME estimator,
then feeding the simulated measurements to the ERA, a better
realization could be computed by the ERA. This better realiza-
tion could, in turn, be used in a second MME run, to produce
an even better data, which could then be fed again to the ERA.
The resulting ERA/MME thus proceeds in an iterative manner.
The numerical example shown in Ref. 6 and the recent applica-
tion of the method to the identification of the mini-mast truss
structure8 demonstrate the viability of the method.

In this paper we enhance the ERA's capability to deal with
inherently stochastic systems by using it within a maximum

algorithms, the new method is guaranteed to be consistent and
asymptotically efficient under reasonable conditions.

Since the ERA plays a major role in the presented ML
scheme, it is briefly summarized in the next section. Then, in
Sec. Ill, the realization/identification problem is mathemati-
cally formulated. The maximum likelihood identification algo-
rithm is presented in Sec. IV. In Sec. V we present three
numerical examples, which serve to demonstrate the perfor-
mance of the new algorithm. One of the examples is used
for the purpose of a qualitative comparison of the ML/ERA
algorithm and the ERA/MME algorithm of Mook and Lew.
Concluding remarks and recommendations for further research
are offered in the last section.

II. Eigensystem Realization Algorithm
For the purpose of the ensuing development, we present in

this section a brief description of the eigensystem realization
algorithm (ERA).

As previously mentioned, the ERA is essentially a determinis-
tic realization method which was developed by Juang and
Pappa1 in 1985 using a system-theoretic approach, based on
the minimal realization procedure developed by Ho and Kal-
man.2 The realization task is to estimate, based on the system
impulse response measured (or otherwise estimated) data, the
matrix triple (A, B, C) which appears in the state space canonical
representation of the linear, time-invariant (LTIV) system of
order «0

k+i = Axk + Buk

yk = Cxk

(la)

(Ib)

Here x e 2ft "o is the state vector, u E Sftp is the deterministic
input to the system (the control action), and y e $im is the
output vector (the measurement). The state transition matrix
is A e 2ft"0'no and the matrices B e <3kno>p and C E 2ft "-"fl are
the control distribution and observation matrices, respectively.
The impulse response of the system (1) is given by the following
set of Markov parameters as

Y(k) = CAkB, k = 0, 1, 2, . (2)

The ERA operates on the following (generalized Hankel) block
data matrix H(k) E l̂77" ,̂

»(*) = Y(k + i,)

.r (* + « , - , )

y()t + i, +;,)

y (* + ! ,_ ,+; , )

Y(k+j2)
Y(k + i, 4

Y(k + ir-

) ... Y(k + i, + 7 , - , )

-72) ... 7(Jt + i r M + 7 , _

(3)

likelihood (ML) parameter identification/state estimation
scheme. Using an active approach somewhat similar to that of
the ERA/MME method, the technique presented in this paper
augments the ERA, still functioning as a realization algorithm,
with a stochastic adaptive filter/fixed-interval smoother that
performs the task of optimally filtering the noise from the
measurements. Joined based on an underlying maximum likeli-
hood identification approach, the two separate algorithms which
constitute the new method iteratively seek the optimal realiza-
tion and covariance estimates that maximize the log-likelihood
function for the identified state space model. The resulting
combined realization/identification scheme still enjoys the pre-
viously mentioned good characteristics of the ERA but can
now cope with the stochastic attributes of the system. Since an
integral linear optimal state estimator is used to compute the
likelihood function, it is easy to check the performance of the
iterative scheme at each stage, by'using standard statistical
testing techniques to verify the consistency of the state estimator
involved. Moreover, belonging to the class of ML identification

where r and s are arbitrary integers, chosen such that

min(/m, sp) ^ n0 (4)

and the integer sequences { i / } / r = J and { y / } / = i are arbitrary.
To obtain a realized triple (A, B, C) from the impulse response
data, the ERA uses the matrices #(0) and //(I). Perform a
singular value decomposition of H (0)

#(0) = (5)

where U E 01""'™ and V E 91** are the orthogonal left and
right singular vector matrices, respectively, and S E ^lm>sp is
the diagonal singular value matrix, which can be written as

E = (6)
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694 OSHMAN AND MENDELBOIM: MAXIMUM LIKELIHOOD IDENTIFICATION

Here n, the number of strictly positive singular values of the
matrix //(O) (the entries of the diagonal matrix £„), is the rank
of #(0). Note that for a completely (theoretical) deterministic
system (i.e., no measurement or process noise) the rank of H(0)
is equal to the true system order nQ. That is, in the singular
value decomposition (5) we should obtain exactly nQ nonzero
singular values. However, due to measurement noise, computer
roundoff errors, and process noise (which can also be interpreted
as system nonlinearity and model uncertainty effects), H(0) is
usually of full mathematical rank. In this case, one has to decide
which singular values actually represent the information portion
of the measured data and which can be attributed to noise
effects, and thus should be disregarded (i.e., those singular
values that should have been zero in the deterministic case).
For sufficiently low noise data, the task of determining the
singular values threshold should not be too difficult, as has
been observed in several applications of the ERA. This merit
of the ERA can be attributed to the usage of the SVD, which
is the most reliable method for cases of rank deficient matrices.4
However, when the noise level is not very low, this task may
become quite delicate, and several methods have been suggested
for that purpose.3

Assuming that the singular values threshold has been deter-
mined, resulting in the n most "significant" singular values, the
rest of the realization procedure is straightforward. Define the
rectangular matrices Un and Vn to be the matrices formed by
the first n left and right singular vectors, respectively. Then,
the realization of order n is determined according to the follow-
ing equations:

•^n (7)

(8)

t=*ET
mU.?P (9)

In Eqs. (8) and (9), the selection matrix E-, is defined as

E; = [J] (10)

where 7, e &tjtj is a unit matrix and the row dimension of Ep
and Em is determined in accordance with Eqs. (8) and (9),
respectively. It can be shown1 that the realization [Eqs. (7-9)]
is an internally balanced minimal realization, which is another
attractive merit of the ERA.

In the next section we define mathematically the realization/
identification problem to be addressed in the rest of this paper.

III. Problem Statement
The algorithm to be presented in the sequel is a stochastic

estimator, which explicitly takes into account the stochastic
inputs of the system under consideration. For that purpose, the
following stochastic mathematical model, which is an extension
of the model in Eqs. (la) and (Ib), is assumed:

EvpJ = R*kJ (13)

As previously discussed, the objective of the ERA is to
identify a matrix triple (A, B, C) from a given set of (impulse
response) measurements. Since we are dealing with a stochastic
system where it cannot be assumed, in general, that the noise
covariance matrices are known, the identification objective of
the new algorithm is set as an extension of the ERA's objective.
In the most general way, this identification objective is as fol-
lows.

Find a maximum likelihood estimate for the parameter set

(14)

Remarks:
1) As is well known, the realization (A, B, C) that has a

given (measured) impulse response is not unique. Therefore,
searching for a realization which is optimal in the maximum
likelihood sense in the space of all possible realizations cannot
yield a unique estimate. However, the uniqueness problem is
settled by noting that the ERA is the tool that will be used to
compute the realization. Hence, the subspace of admissible
realizations in which the estimator is searching for a maximum
likelihood estimate is the subspace of ERA-producible realiza-
tions, i.e., the space of internally balanced minimal realizations.

2) For simplicity it has been assumed that the process noise
and the measurement noise are stationary; however, as will be
clear from the ensuing development, this assumption is not a
necessary requirement and the resulting algorithm can be
adapted very easily to deal with the case of nonstationary noise
processes, i.e., when the covariance matrices Q and R are
replaced in the parameter set 0 by the sequences
{G*l?- i and {**}?.,.

3) As a worst-case type of assumption, it has been assumed
that neither the process noise covariance nor the measurement
covariance are known and, therefore, they should be estimated
from the measurements along with the system's realization.
However, should either of these covariances be known, this
assumption can be relaxed by using the known value instead
of estimating it. We will return to this point later.

4) As previously discussed, in the deterministic case or when
the measurement noise is sufficiently low, the ERA estimates
the system order from the number of positive singular values.
In the high noise case, since the ERA cannot reliably estimate
the system order, we invoke the maximum likelihood principle.
The algorithm to be described does not assume a precise knowl-
edge of the system order. Note, however, that in general the
system order is at least known to lie within a certain range,
which can be estimated using pre-experiment analyses. Such
knowledge can be utilized by the estimator to alleviate the
computations involved.

IV. Maximum Likelihood Algorithm
As is well known, the log-likelihood function for the model

(11) can be expressed as9

xk + j = Axk + Buk + Gwk

yk = Cxk + vk

(Ha)

(lib)

Here, w e 2ft*7, the process noise, is a zero mean, Gaussian
distributed white sequence with covariance

(12)

and the measurement noise v is a zero mean, Gaussian distrib-
uted white sequence with covariance

log det>f , / ,_ ,} -mAnog(2i r ) (15)

where fyN represents the total measurement history (the data
block), yin -, is the innovation process, .AT,-// _ 1 is the innovation
vector covariance, m is the dimension of the measurement, and
N is the number of measurements. The innovation vector and
its covariance matrix can be computed from the Kalman filter
variables as
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OSHMAN AND MENDELBOIM: MAXIMUM LIKELIHOOD IDENTIFICATION 695

and

(16)

(17)

where £/// -1 is the a priori state estimate (prediction) at time /,
and PHI - i is the a priori estimation error covariance matrix. In
accordance with the maximum likelihood estimation principle,15

the goal of the algorithm which will be described in the sequel
is to find the parameter set 6ML that maximizes the log-likelihood
function (15). The algorithm presented, called ML/ERA, is a
two-layer algorithm, as described next.

Outer Layer
The algorithm starts by assuming a certain system order

(within the range predicted by the preliminary analysis) and
initial conditions for the optimization process, i.e., initial
guesses for the optimization parameters, which, usually, are the
process and measurement noise covariance matrices. For the
ensuing presentation, we need the following definitions.

Let Hi be the set of all possible system orders, and H2 the
space of initial conditions for the optimization control variables.
Define H to be the Cartesian product

= a, x (18)

Then, every element o> e fl is the pair

CD : =
{system order; optimization parameters initial conditions} (19)

For each co e H, the inner layer of the algorithm computes,
in the manner to be described next, estimates of admissible
(i.e., minimal and internally balanced) realizations and noise
covariance matrices, i.e.,

8(co) = {(A(o>), 5(a>), C(o>)), (G(o>), /?(<*>))} (20)

Denote the set of all such estimates by 0, i.e.,

0 = {§(co)lco e 11} (21)

Then, the outer layer searches for the ̂ maximum likelihood
optimal parameter estimate, denoted by 6ML

0ML = arg max0 (22)

where ̂ [6((o)l^/N] is the log-likelihood function (15) pertaining
to the model (11).

Inner Layer
The inner layer is based on an idea similar to that of the

extended least squares algorithm,10 namely, a boot-strap combi-
nation of a parameter identifier which operates on filtered data,
and a state estimator that filters measurements given an identi-
fied system. The layer is comprised of the ERA algorithm,
which provides a realization (A, B, C) per given smoothed
measurements, and a stochastic adaptive filter /fixed-interval
state smoother, which estimates the process and measurement
noise covariance matrices and smooths the measurements per
given realization. The adaptive filter is a maximum likelihood
identification scheme, whereas the fixed-interval state smoother
may be taken as any of the known smoothing algorithms. n~13

The smoother used in this study was the square-root algorithm
recently introduced in Ref. 14. For a given realization, the ML
scheme finds the covariance matrices Q and R which maximize
the log-likelihood function. Then, for the optimal Q and R, the
fixed-interval smoother smooths the measurements using the

realization (A, B, C) and the covariances Q and R. The inner
layer works iteratively in the following manner.

1) Let i be an index indicating the iteration number. Applying
the ERA to the original, unsmoothed measurements, yields an
initial triple (A, B, C\ for i = 0. Also, assume some initial
value for the optimization control variables, the process and
measurement covariance matrices (Q, R)h i = 0. If either one
of these matrices is known, then its known value should be
used. The initial values thus selected are denoted by

(23)

2) For the current triple^(A, B, C)/, numerically search for
the optimal values of (Q, R) that maximize the log-likelihood
function. This function is computed by implementing a Kalman
filter which is based on the triple (A, B, C)/. The optimal values
of the covariances thus found are denoted by (Q, R)i+,.

J3)JFor the realized triple (A, B, C)/ and the covariances
(G» R)i+\, smooth the measurements via a fixed-interval state
smoother. Denote the smoothed measurements by ^ J+ j (note

4) Feeding the smoothed measurements $J ?+ , to the ERA
yields a new realization, denoted by (A, B, C)i + \. We have
thus obtained a new estimate for the parameter vector 6

5) Compute the current value of the log-likelihood function
<££(§/+! W), by using the current value for the triple (A, B,
C) /+ i and the covariances (Q, R)i+\.

6) Assuming that £(§ f- + , MN) > 2(§ t W"), check for con-
vergence, by testing the criterion

< € (25)

where e is a prespecified convergence criterion. If convergence
has been achieved^stop thejnner layer process and yield the
resulting estimate, 9(o)) : = 0, +• i to the outer layer. Otherwise,
return to stage 2 and continue until convergence has been
reached. In case #(§,+ 11<8/") < ££(0,1^"), this usually means
that the optimization process ran into numerical problems. In
this case choose 9(o)) := §/.

For the reader's convenience, the two-layer algorithm's flow
chart is shown in Fig. 1.

Remarks:
1) Selection of optimization parameters. As mentioned, the

optimization carried out in the inner layer searches, in principle,
for the optimal covariance matrices Q and R. In practice, it
was found that using diagonal matrices (i.e., using a relatively
small number of optimization parameters) suffices for obtaining
satisfactory results, at the same time maintaining a reasonable
computational load. However, the number and type of optimiza-
tion parameters should be decided by the user according to the
specific characteristics of the case at hand and the available
computational power (e.g., the user may wish to optimize over
only some of the covariance matrix elements). Also, note that
in case the measurement noise covariance matrix is considered
known, this matrix can be kept "frozen" during the optimization
process, or it can be left as an optimization parameter during
the initial stages of the optimization (when the estimated obser-
vation matrix C cannot be considered very accurate).

2) Sensitivity to choice of initial conditions. As is well known,
the results of every complex, nonlinear optimization process
may depend, to some extent, on the choice of initial conditions.
In the presented algorithm, this is taken care of in the outer layer
by maximizing the log-likelihood function over any chosen set
of initial conditions. However, it should be noted that in numer-
ous computer simulations which were run, it was observed that
the algorithm is very insensitive to the choice of initial condi-
tions.

3) Statistical properties of the ML estimator. The ML/ERA
has good asymptotic statistical properties, which follow from
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696 OSHMAN AND MENDELBOIM: MAXIMUM LIKELIHOOD IDENTIFICATION

Outer Layer

Select a) €

Optimization A A
Parameters ( Q , R )

Fig. 1 Flow chart of the ML/ERA two-layer scheme.

its being a maximum likelihood algorithm. Thus, the new identi-
fication scheme is guaranteed to be consistent and asymptoti-
cally efficient, assuming that the data blocks are independent
and identically-distributed (iid).15

4) Statistical evaluation of the estimated parameters. One of
the merits of the new algorithm is the ability to assess the
quality of the results by performing statistical tests on the
consistency of the state estimator which is based on the identi-
fied realization. Define the following normalized innovation
statistic:

Here,.?//,- -1 is the innovation process and Nin _ i is the innovation
covariance. These variables are computed via the Kalman filter,
which is run as a part of the inner layer computational scheme.
Assuming that the process and measurement noises are
Gaussian and the Kalmanfilter is statistically consistent, the
innovation process is white, zero mean, and Gaussian. Hence,
the statistic e/ is a x2 random variable with m degrees of freedom
(ym _ ! e $iw). This yields a 1-a confidence interval as a function
of m and a, i.e.,

= 1 - a (27)

This confidence interval may be used at each stage of the
identification process to test the validity of the results by check-
ing the consistency of the Kalman filter which is involved in
the computation of the log-likelihood function. This procedure
is demonstrated in example 3, in the sequel.

5) Estimation of the system order. Note that the system order
is estimated via the outer layer of the algorithm by maximizing
the log-likelihood function over the estimated range of system
orders. Moreover, although an a priori knowledge of the system
order is not necessary, such a knowledge can be easily utilized
to reduce the work load of the estimator, if available.

V. Numerical Examples
In this section we present three numerical examples that

demonstrate the performance of the new ML/ERA technique.

Example 1
The system considered in the first example is taken from

Ref. 16. The system is a lumped-mass, damped, beam-like
structure that has three modes (see Fig. 2). The input to the
system is the force acting on the lower mass, and the displace-
ments of the other two masses are measured. The true system
model is given by Eq. (11), with

IT 0.9856 0.1628] I" 0.8976 0.4305] [~ 0.
A - diagj[_0.1628 0.9856 J ' [-.4305 0.8976 J ' [-.

1.8127
.5690

0.5690]]
0.8127 J j (28a)
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OSHMAN AND MENDELBOIM: MAXIMUM LIKELIHOOD IDENTIFICATION 697

B =[0.0011 0.0134 -0.0016 -0.0072 0.0011
0.0034]r (28b)

r=|1.5119 0.0 2.0 0.0 1.5119 0.0]
c '1.3093 0.0 0.0 0.0 -1.3093 0.0 l '

G = h (28d)

The system was simulated with the following noise covari-
ance matrices:

Q = 1.0£ - 6 X 76; R = 4.0£ - 2 X 72 (29)

For these covariances, the ratio of the measurement noise to
the measured signal is about 3%. In a typical run, the singular
values of the 60 X 60 generalized Hankel matrix were

155.30 145.20 65.11 62.11 24.45 23.97 3.85 3.66

whereas without any noises (i.e., Q = R = 0), the following
singular values are obtained:

154.98 144.67 63.64 60.50 23.76 23.23
l.OE - 15 1.0£ - 15

Note, that the (wrong) interpretation of the last two additional
singular values as another, fourth-system mode cannot be eas-
ily rejected.

When the new algorithm was run, a varying system order
was assumed in the outer layer, in the range of n e (2, 4, 6,
8, 10). For each system order 10 data blocks were processed.
The average, over these 10 blocks, of the maximal value of
the log-likelihood function, denoted by max ££(01^), is shown
in Table 1. From this table, it is clear that the order of the
minimal realization is 6, since the assumption of a higher system

OUTPUT 1

order does not yield a larger log-likelihood value. Note that
using the log-likelihood function it became much easier to
estimate the true system order (which, in the maximum likeli-
hood sense, is the order of the system that explains best the
given measurements).

In Table 2 we compare the results of 27 Monte Carlo runs
of the ML/ERA algorithm with similar results obtained via the
ERA algorithm. The table shows the average values of the
estimated damping ratios and the standard deviation of the
estimates. As can be observed, using the new algorithm results
in a noticeable improvement in the quality of the estimates in
terms of both the average values and the standard deviations.

Example 2
In this example we consider the three-mode system analyzed

in Ref. 6. The system natural frequencies are 1 rad/s, 2.76 rad/s,
and 5.4 rad/s, and the damping of each mode is zero. The impulse
response of the system is given by

z ( t ) = 1.0 sin(f) + 0.05 sin(2.760
+ 0.001 sin(5.40 (30)

Using a discretization interval of 0.05 s the discretized measure-
ment, contaminated by a measurement noise, is

y ( k ) = z(tk) + v(k) (31)

The measurement noise v is zero mean, Gaussian distributed,
and with known variance.

The singular values of the 50 X 50 generalized Hankel matrix
for the certainty equivalent system (Q = R = 0.0) are compared
with those of the real system with Q = 0.0 and R = 0.01 in
Table 3. Note that whereas the first mode is highly controllable/
observable, the other two modes are very weakly controllable/
observable. Using the singular values as an indication, it is very
difficult, if not impossible, to determine the true system order.

The ML/ERA algorithm was run for system orders n = 2,
4, 6, and 8 in the outer layer. For each assumed order the
maximal value of the log-likelihood function was computed
and averaged over 10 independent data blocks. The average
maximal log-likelihood, max <££(6lW), is shown in Table 4 as
am function of the assumed system order.

From Table 4 it is clear that the true system order is 6
(assuming that the order is 8 actually decreases the log-likeli-
hood value). Moreover, observe that the second and third mode
hardly contribute to the log-likelihood value, which is a strong
indication that these modes are very weakly controllable and
observable (and, therefore, could potentially be deleted if a
model order reduction should be needed).

Table 1 Average maximal
log-likelihood function

values

System order

Fig. 2 Structural arrangement, example 1.

2
4
6
8

10

-5380
-5308

1645
1641
1638

Table 2 Estimated damping ratios

True value
0.638£-02
1.008E-02
1.300E-02

Average damping Standard deviation
ERA ML/ERA ERA ML/ERA

0.77£-02 0.638£-02 0.168£-02 0.038E-02
1.30E-02 1.025E-02 0.018E-01 0.004E-01
2.89E-02 1.40£-02 0.070E-01 0.012E-01
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Table 3 Generalized Hankel
matrix singular values

Q = 0.0
R = 0.0
29.29
20.15

1.27
0.847
0.0257
0.0214

Q = 0.0
R = 0.01

29.63
20.14

1.63
1.60
1.31
1.16
1,14
1.11

Table 4 Average maximal
log-likelihood function

values

System order
2
4
6
8

max 2(6I<3/")
780
787
789
767

Table 5 Estimated modal frequencies

True
value
1.00
2.76
5.40

Average Frequency
ERA/MME ML /ERA

0.9972 1.0002
2.7284 2.762
5.4254 5.12

Standard Deviation
ERA/MME ML /ERA

0.0046 0.0021
0.1098 0.068
0.3570 0.65

Table 6 Modal damping ratios

Estimates
Mode no.
1
2
3

True value
0.00
0.00
0.00

Average
8.66£-04
1. 78£-03
3.07E-02

St. dev.
3.93E-03
3.44£-02
2.91 £-02

The estimated frequencies obtained via the new algorithm
are compared to those obtained via the ERA/MME algorithm
in Table 5. The table also shows the standard deviations of the
estimates. The ML/ERA results shown are based on 18 Monte
Carlo runs. The ERA/MME results are taken from Ref. 6. The
size and structure of the generalized Hankel matrix used by
both algorithms were identical. The covariance matrices were
Q = 0.00 and R = 0. 01, which represent highly contaminated
measurements (note that the standard deviation of the measure-
ment noise is 100 times larger than the third-mode amplitude).
Since the initial realization obtained via the ERA from the
measurements could identify only the first mode, the MME
algorithm used in Ref. 6 was run in the first ERA/MME iteration
assuming a single-mode system only; then, a three-mode real-
ization was obtained from the ERA and the second MME
iteration used a three-mode dynamics. For the sake of compari-
son, the same strategy was adopted using the ML/ERA algo-
rithm. It must be noted that since the results shown were
computed in different computer environments, only qualitative
conclusions may be drawn from this comparison.

As can be observed from Table 5, the first two frequencies
were identified somewhat better by the ML/ERA algorithm, in
terms of both the average frequency estimates and the standard
deviations, whereas the ERA/MME performed remarkably in
identifying the third modal frequency. In Table 6 we show the
average identified damping ratios and the standard deviations

of these estimates. The ML/ERA algorithm performed well in
identifying the modal damping ratios. Note that Ref. 6 reports
much worse estimates for the third modal damping.

Example 3
The system considered in this example is the short period

mathematical model of the F-89 aircraft.17 For the simplified
short period model, the state variables are the pitch angle and
the pitch rate. The aircraft is controlled by the elevator, and
the pitch rate is measured. The true values of the frequency
and damping of the short period mode are 4.228 rad/ s and 0.383,
respectively. The discrete-time state space model, obtained for
a discretization step of 0.005 s, is

r o.
-L-.Q

0.99285 1.006 1
,000385 0.9904 J;

C - [0.0 0.2];

B =

G =

0.10635]
0.1305 J (32)

Table 7 compares the identification results obtained via the
ERA method and the ML/ERA algorithm. The study is based
on the results of 60 Monte Carlo simulations. In all runs, the
process noise and measurement noise covariance matrices were
Q = l.OE - 06 X I2 and R = 0.1, respectively. These values
represent a measurement noise amplitude of about 20% of the
maximum amplitude of the measured signal (which, in reality,
would be considered a nonacceptable measurement). In only
29 of the cases was the ERA successful in identifying a transi-
tion matrix with a complex pair of eigenvalues. In all other
cases, two real eigenvalues were identified. The comparison is
based, therefore, on the results of the 29 successful ERA runs.
On the other hand, the ML/ERA algorithm was able to identify
the short period mode in all 60 runs. The average values of the
frequencies and damping ratios for the ERA and ML/ERA are
shown in Table 7, along with the standard deviations of the
estimates. The improvement achieved by the ML/ERA method
is substantial, both in terms of the estimated values and the
smaller standard deviations.

To assess the quality of the estimated parameters, the statisti-
cal testing technique (outlined in Sec. IV) was used. In the
example presented, 500 samples of the normalized innovation

10 -

0.0

Time

Fig. 3 Consistency test for a Kalman filter based on the system
identified via the ERA algorithm.
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95% Confidence internal

0.0 2.5

Fig. 4 Consistency test for a Kalman filter based on the system
identified via the ML/ERA algorithm.

1.0 1.5
Time (sec)

Fig. 5 F-89 short-period pitch rate impulse response.

Table 7 F-89 Short period frequency and damping ratio

Average
Parameter

Frequency
Damping ratio

True
4.228
0.383

ERAa

8.922
0.821

ML/ERAb

4.196
0.410

Standard Deviation
ERAa

2.445
0.135

ML/ERAb

0.320
0.052

"Based on 29 out of 60 Monte Carlo runs.
bBased on all 60 Monte Carlo runs.

statistic (26) were tested for a = 0.05 (i.e., a 95% confidence
interval was chosen). Figure 3 graphically shows the x2 test
performed for the Kalman filter based on the matrix triple
realized by the ERA, whereas Fig. 4 shows corresponding
results for the system realized by the ML/ERA algorithm (note
that although the statistical test performed was a two-sided test,
only the upper bound of the confidence interval is shown in
these figures, since the lower bound is too close to zero). Of
the samples in Fig. 3, 14% are outside the confidence interval,
which means that the Kalman filter which is based on the ERA-
realized triple is significantly statistically inconsistent. This
result indicates that, for this case, the estimation quality of the
ERA-realized triple is poor. On the other hand, the ML/ERA
based Kalman filter is much more consistent, since only 6.4%
of the points in Fig. 4 are outside the 95% confidence interval.
We conclude, therefore, that the ML/ERA algorithm yielded
higher quality estimates.

Finally, Fig. 5 shows the time histories of the measured
(noisy) impulse response of the system, the impulse response
of the corresponding deterministic system (the certainty-equiva-
lent system), and the impulse response of the ML/ERA-realized
system. It is easy to observe that the ML/ERA method success-
fully filtered out most of the noise in the measurements, thus
yielding an accurate identification of the true (i.e., certainty
equivalent) system.

IV. Conclusions
A new maximum likelihood (ML) realization/identification

technique has been introduced, that is based on the eigensystem
realization algorithm (ERA) of Juang and Pappa and signifi-
cantly extends its capability to deal with stochastic systems.

The ERA algorithm serves for the purpose of producing the
realization, whereas a combination of an adaptive ML filter
and a fixed-interval state smoother is used for estimating the
noise statistics and smoothing the measurements. The quality
of the resulting identified system model can be evaluated via
standard statistical consistency tests which can be performed
on a Kalman filter based on these parameters. Being a maximum
likelihood estimator, the new algorithm is consistent and asymp-
totically efficient, assuming that the data blocks are independent
and identically distributed.

The performance of the new method was demonstrated via
three numerical examples. It was shown that the algorithm
significantly improves the capability of the ERA to deal with
high noise stochastic systems. However, it is felt that a more
thorough investigation is needed, that will include an application
of the algorithm to a "real life" problem.
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