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Abstract 

Change detection is one of the most essential processing steps for monitoring urban and forest 

areas using remote sensing data. Even though 2D data obtained from satellite images from 

different dates can already provide plenty of useful information, it is usually insufficient when 

dealing with changes in the vertical direction. Moreover, if only one class of changes, such as 

buildings or forest, is of interest, it is often difficult to distinguish between relevant and irrelevant 

changes. In such cases, the information provided by Digital Surface Models (DSMs) is crucial, as 

it provides additional height information, which can be indispensable when analyzing changes. 

This dissertation addresses the challenge of using DSMs generated by satellite stereo images for 

3D change detection. 

  

DSM generation techniques based on stereo imagery from space have been improved continuously 

in recent years, enhancing the quality of the generated DSMs considerably. Nevertheless, up to 

now these DSMs have not been widely adopted for change detection methods. Available 3D 

change detection approaches prefer LiDAR data, which are more accurate but have the drawback 

of being more expensive and exhibit a comparatively low temporal repetition rate. The 

characteristic and quality of DSMs based on satellite stereo imagery have so far hardly been 

considered within 3D change detection procedures. Therefore, more in-depth investigations 

concerning the adoption of these DSMs for 3D change detection should be performed.  

 

In this dissertation, DSMs based on stereo imagery have been visually and numerically evaluated 

and subsequently analyzed for various land cover types. Taking into account the quality of DSMs 

generated with the described methods, three DSM-assisted change detection approaches are 

developed. The first method, called “DSM-assisted change localization”, describes a robust change 

difference map generation method followed by DSM denoising. The generated change map is 

refined using vegetation and shadow masks and finally shape feature are used to consolidate the 

results through distinguishing relevant from irrelevant objects. 

 

Concerning fusion-based change detection, two methods, feature fusion and decision fusion, are 

proposed. The proposed feature fusion methods make use of the fact that panchromatic images 

feature much sharper contours than DSMs. To alleviate the shortcomings of the DSMs, the 

designed region-based change detection framework extracts the original regions from the ortho-
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images. For this approach, a new robust region-merging strategy is proposed to combine 

segmentation maps from two dates. Regarding the uncertain information contained in the DSMs 

and spectral images, a decision fusion method is proposed as the second fusion-based change 

detection method. The extracted features are classified as change indicators and no-change 

indicators, while two steps of the Dempster-Shafer fusion model are implemented for the final 

change detection.  

 

Post-classification is a common DSM-assisted change detection method, since the DSM can be 

very helpful for building extraction. In this third approach, the changed building’s location is 

obtained by comparing the new building mask with existing (often outdated) building footprint 

information, e.g. from GIS databases. To extract the boundaries of newly built buildings, a robust 

building extraction method has been developed by also considering the quality of the DSM. 

 

These three approaches are evaluated experimentally using four representative data sets. 

Quantitative and qualitative experimental results obtained from each data set are analyzed in detail. 

The experimental results show that all of the proposed approaches are able to determine the change 

status of the objects of interest. The results achieved vary according to the DSM quality, the object 

of interest and the test area. Furthermore, it is shown experimentally that, by making proper use of 

DSMs in complex decision frameworks, both the efficiency and the accuracy of the change 

detection are improve in comparison to 2D change detection approaches. In addition, the 

developed approaches enable the rapid localization of changes concerning objects of interest, such 

as buildings and forest, which is valuable for many applications such as fast response systems after 

earthquake or other disasters. 
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Zusammenfassung 

Veränderungsanalyse ist einer der wichtigsten Verarbeitungsschritte bei der Überwachung von 

Stadt- und Waldgebieten mit Hilfe von Fernerkundungsdaten. Auch wenn 2D-Satellitenbilder von 

verschiedenen Zeitpunkten hierfür bereits viele nützliche Informationen liefern können, reichen 

diese Daten für gewöhnlich nicht aus um Veränderungen in vertikaler Richtung zu untersuchen. 

Wenn nur eine Veränderungsklasse untersucht wird, z.B. Gebäude oder Wald, ist es oft schwierig 

zwischen den relevanten und irrelevanten Veränderungen zu unterscheiden. In solchen Fällen kann 

es notwendig sein Informationen aus digitalen Oberflächenmodellen (DOMs) zu verwenden. Diese 

Daten enthalten ergänzende Höheninformationen, die entscheidend zur Bestimmung von 

Veränderungen sein können. Ziel dieser Dissertation ist es aufzuzeigen in wieweit aus 

satellitenbasierten Stereobildern erzeugte DOMs verwendet werden können, um verlässliche  3D-

Veränderungsanalysen durchzuführen. 

 

In den letzten Jahren wurden die Methoden zur Erstellung von DOMs basierend auf 

satellitengestützten Stereobildern kontinuierlich verbessert, wodurch auch die Qualität der 

erstellten DOMs deutlich zugenommen hat. Bisherige Verfahren zur 3D Veränderungsanalyse 

verwenden LiDAR-Daten, die zwar genauer, aber teurer und für gewöhnlich auch nur mit höherem 

zeitlichem Abstand verfügbar sind. Bis jetzt wurden die Beschaffenheit und Qualität von DOMs 

aus Stereobildern, in Bezug auf 3D Veränderungsanalyse kaum untersucht. Deshalb ist es zunächst 

von Interesse detaillierte Untersuchungen zum Einsatz von DOMs basierend auf 

satellitengestützten Stereobildern für die 3D-Veränderungsanalyse durchzuführen. 

 

In dieser Dissertation werden DOMs basierend auf Stereobildern visuell und numerisch untersucht 

und anschließend für einige Objektklassen detailliert verglichen. Unter Berücksichtigung der 

Qualität der DOMs, werden auf Grund der unterschiedlichen Qualitäten drei DOM-gestützte 

Verfahren zur Veränderungsdetektion entwickelt. In der ersten Methode, hier als „DOM-gestützte 

Veränderungsdetektion“ bezeichnet, wird eine Methode zur robusten Erzeugung einer 

Veränderungskarte vorgeschlagen, gefolgt von einer DOM-Fehlerbeseitigung. Diese 

Veränderungskarte wird anschließend unter Zuhilfenahme von Vegetations- und Schattenmasken 

verbessert. Schließlich werden Formmerkmale verwendet um  nicht relevante von relevanten 

Veränderungen zu unterscheiden. 
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Bei der fusionsbasierten Veränderungsdetektion werden zwei verschiedene Methoden entwickelt: 

die  Merkmals- und Entscheidungsfusion. Die Merkmalsfusion basiert darauf, dass Konturen (z.B. 

von Gebäuden) in panchromatischen Bildern schärfer abgebildet werden als in DOMs, diese 

werden daher aus den Orthobildern extrahiert. Für dieses Verfahren wird eine neue robuste 

Strategie zur Zusammenführung von Regionen entwickelt, mit der die Segmentierungen von zwei 

verschiedenen Zeitpunkten zusammengeführt werden. Um mit ungenauen Informationen in den 

DOMs und Spektralbildern richtig umzugehen, wird außerdem eine neue Methode zur 

Entscheidungsfusion entwickelt. Die extrahierten Merkmale werden dabei in die Klassen 

„verändert“ und „unverändert“ eingeteilt. Für die endgültige Veränderungsdetektion werden zwei 

Prozessschritte des Dempster-Shafer Fusionsmodells implementiert.  

 

Die Post-Klassifizierung ist eine gebräuchliche Methode zur DOM-basierten 

Veränderungsanalyse, da das DOM zur Gebäudeextraktion sehr gut verwendet werden kann. Bei 

diesem dritten Verfahren erhält man die neuen oder veränderten Gebäudepositionen indem die 

neue Gebäudemaske mit existierenden (oft auch überholten) Informationen zu den 

Gebäudeumrissen verglichen wird. Um die Grundrisse der neugebauten Gebäude zu erhalten, wird 

unter Berücksichtigung der Qualität des DOMs eine robuste Methode entwickelt.  

 

Alle drei Verfahren werden an vier beispielhaften Datensätzen experimentell untersucht. Die 

quantitativen und qualitativen Resultate dieser Experimente werden detailliert analysiert. Die 

experimentellen Ergebnisse zeigen, dass alle vorgestellten Verfahren in der Lage sind den 

Veränderungszustand untersuchter Objekte festzustellen. Die erzielten Resultate variieren jedoch 

je nach Qualität des DOMs und der vorhandenen Objekte in den Testgebieten. Außerdem wird 

experimentell gezeigt, dass sowohl die Effizienz als auch die Genauigkeit der 

Veränderungsdetektion bei Verwendung von satellitengestützten Stereobildern gegenüber den 

reinen 2D-Verfahren verbessert werden. Zusätzlich ermöglichen die vorgestellten Methoden auch 

eine schnelle Lokalisierung der Veränderung bestimmter Objekte, z.B. Gebäude oder Wald. Das 

ist für viele Anwendungen sehr wichtig, wie z.B. bei der Verwendung in der Katastrophenhilfe bei 

Erdbeben- oder andren Großschadenslagen. 
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1. Introduction 

Observing the earth with remote sensing sensors is becoming increasingly important nowadays. 

Along with image quality improvements, the requirements for image process efficiency and the 

accuracy of results are also becoming much higher, especially for change detection applications. 

When handling emergency problems, such as earthquakes or floods, more automatic and real-time 

processing systems are preferable to manual image interpretation. In urban area change detection, 

the focus of interest is shifting from overall classification to monitoring of single objects like 

buildings, and even to detailed changes in building boundaries. In forest change detection, it is 

important to determine changes in both area and volume. Height information derived from digital 

surface models (DSM) can be very helpful for these tasks. 

1.1 Motivation and problem statement 

Fast-paced urban and rural development (e.g., urban growing, deforestation) as well as more 

frequent natural disasters (e.g., earthquakes, hurricanes, tsunamis) have increased the demand for 

efficient city monitoring and disaster assessment. These topics are related to change detection and 

have led to the establishment of a fundamental research field in remote sensing. Many works focus 

on comparing multi-temporal images. However, there are several challenges associated with 

change detection using only 2D information extracted from satellite images. Due to the nature of 

the sensors, only changes related to reflectance values and / or local textural changes can be 

detected. High resolution images from sensors like WorldView-2 and IKONOS allow the 

derivation of detailed information; however, automatic change detection methodologies applied to 

these very high resolution (VHR) data often lead to the detection of irrelevant changes between 

images from two dates. Differences in sensor object geometry, sun angle, soil moisture, 

atmospheric conditions, vegetation phenology and other factors influence the radiometric and 

geometric information from satellite images, thus limiting the effectiveness of change detection 

techniques based on these data. 

 

On the other hand, two images of an actually changed area or object can be very similar. For 

example, two panchromatic images from the IKONOS sensor are shown in Fig. 1-1. One is from 

the year 2006 (early summer) and the other is from the year 2010 (winter). In the center of Fig. 1-

1b, a new building can be recognized, which was built on the concrete area visible in Fig. 1-1a.  
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        (a)         (b) 

Fig. 1-1.  Example of change detection at different seasons. Panchromatic image from June 2006 (a) and 

from December 2010 (b). 

 

It is possible that the building’s roof and the previous concrete floor consist of similar material: 

thus, they will share similar radiometric characteristics and even similar textures. Without the 

height information from a DSM, these changes in vertical direction, such as building height or 

forest growth, are easily overlooked. Such information can play an important role in various 

applications, such as disaster assessment (e.g. after an earthquake) and urban area construction 

and/or destruction monitoring. 

 

Fig. 1-1 also shows that due to seasonal differences, most of the unsealed area in Fig. 1-1b is 

snow-covered, while in Fig. 1-1a, fields and bare soil are visible, which would lead to large areas 

of change. A similar problem may also occur in and near forest areas. Some trees have completely 

different radiometric properties in different seasons or from different viewing angles. These are 

just a few examples in which comparing only the spectral images would lead to false positives in 

the change detection process. In these cases, height is a very important feature in highlighting the 

object-specific changes. A considerable body of literature exists for 2D change detection but very 

little research is available that also incorporates height information (referred to hereafter as “3D 

change detection”), especially with regard to satellite data (see also Chapter 3). 

 

Many applications related to 3D change detection make use of DSM from Light Detection and 

Ranging (LiDAR) which unfortunately is not ideal for frequent and large-scale change monitoring 

because of the high acquisition costs and low time resolution. Matching-based DSM generation 

from satellite stereo data and its application has become a very important task, and an increasing 

interest in both remote sensing and computer vision research has recently become evident (Zhang, 
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2005; Hirschmüller, 2008; d’Angelo et al., 2008). However, DSMs generated from stereo 

matching (Stereo-DSM) have not yet been widely used for change detection. Most 3D change 

detection methods rely on a simple subtraction of two DSMs. This may be suitable if DSMs from 

very high quality data, such as DSMs from LiDAR (LiDAR-DSMs), are available. However, due 

to the restrictions to the quality and resolution of DSMs generated from spaceborne data, directly 

subtracting two Stereo-DSMs does not generate higher change detection accuracy than using just 

images. Therefore, a systematic analysis of the quality of the stereo-generated DSMs is necessary 

and, for improved change detection, methods are developed within this thesis to combine the 

height information with features from original images to achieve higher accuracies in automatic as 

well as semi-automatic procedures.  

1.2 Goals and scientific contribution 

This thesis is focused on change analysis for urban and forest areas, since the height component 

plays a major role in these domains. Prior to introducing DSM data from stereo matching for 

automatic or semi-automatic change detection, the analysis of their quality and suitability is 

essential. The main questions to be answered are the following:  

 

• How good is the quality of the generated DSM and how can it be measured? 

• How can DSMs of different quality be used for change detection procedures? 

• How can the information from panchromatic and multispectral data be used? 

• Can a DSM of lower quality also be used to improve the change detection accuracy and 

what are the limitations? 

 

Concerning DSM quality assessment methods for urban and forest areas, a lot of fundamental 

research still has to be done, especially for spaceborne data. Both a visual and a numerical 

evaluation strategy will be used in this work to exhaustively analyze and compare the quality of 

DSMs from several spaceborne sensors with different resolutions. Assessments are performed on 

regions with various land covers. The results from the DSM quality assessment lead to a better 

understanding of the characteristics of these DSMs and provide decision guidance on their 

potential usability for change detection.  

 

A major advantage of working with Stereo-DSM data is that the corresponding spectral 

information for the same time and area is always available. After orthorectification of these images 

by using the generated DSM, the ortho-image and Stereo-DSM are co-registered well and can be 

used together. As well as providing possible change features, the ortho-images can also help to 



1 Introduction 

4 

evaluate the quality of the DSM, and to alleviate some errors of the DSMs. Due to the varying 

DSM quality (e.g., from high or low resolution stereo imagery and acquisitions with different 

viewing and convergence angles), variations in the number of channels (e.g., only panchromatic 

images or multispectral channels (MS)) and differences in the investigated objects (e.g., buildings 

or trees), it is not possible to develop one uniform method which works optimally for all of these 

scenarios. Therefore, three different methodologies for DSM-assisted change detection are 

developed in this thesis. Each of them is focused on solving different parts of the abovementioned 

problems. The approaches differ in how and when the DSM information is integrated into the 

change detection workflow. The first approach focuses on refining a change map generated using 

height subtraction. Subtracting two DSMs is a straightforward way to locate change regions 

quickly. However, a change map generated in this way might contain false alarms. Two aspects 

should be considered for this approach: how to improve the quality of the initial height change 

map, and how to detect the real changes within the initial candidates. Not only the spectral 

information but also the shape features should be considered. The second approach operates 

through direct fusion of the Stereo-DSMs and the original images. As well as height change, 

radiometric changes should be also considered when obtaining the initial change map. Thus, a 

proper fusion model has to be developed. When an outdated building footprint is available, post-

classification methodology is a better choice. Therefore, the third proposed approach uses post-

classification and focuses on developing a robust building extraction method. The Stereo-DSM, 

panchromatic image and multi-spectral channel are fused in a more logical way for automatic 

building extraction.  

 

To study the behavior of the proposed methods, they are tested on different types of test site. The 

data from the test sites differ in their DSM quality and the types of object of interest. The extracted 

change maps and change masks are visually and numerically compared with the change reference 

data provided. Thus the suitability of the proposed approaches to various datasets can be analyzed. 

The correct and false detections are further studied. Thus, the requirements and potential of using 

DSMs for urban and forest areas are evaluated in detail. 

1.3 Organization of the dissertation 

Chapter 2 illustrates the automatic DSM generation procedure and analyzes the quality of DSM 

from different sensors for various land covers.  
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Chapter 3 reviews the different methods that are used for image preprocessing and change 

detection and points out previous work in which 3D information is discussed and used. 

Shortcomings are shown and ideas for further developments presented. 

 

Chapters 4 to 6 present a detailed description of the three successful 3D change detection 

methodologies developed within this dissertation.  Chapter 4 describes a DSM-assisted localization 

approach. Although the quality of DSMs from spaceborne stereo imagery is restricted, subtracting 

two DSMs can provide candidate locations of changed objects. Real changes can be selected from 

these candidates. Chapter 5 presents the fusion-based approach. Two fusion methods have been 

developed for this approach. One is feature fusion-based, focusing on fusing height change 

features from DSM and sharp boundaries from panchromatic images. For this approach, a novel 

region merging approach is proposed. The second method is designed based on the Dempster-

Shafer decision fusion theory. It combines the building change features and no-building change 

features to highlight the building changes. Chapter 6 proposes a post-classification building change 

detection approach. A fast change location strategy is introduced. To extract accurate boundaries 

for the newly built buildings, a novel building extraction method is proposed, which fuses the 

DSM, panchromatic and multispectral image. The basic algorithms and proposed methods were 

implemented using the image processing toolbox in MATLAB. The code is attached on CD-ROM. 

 

The developed methods are evaluated in Chapter 7 with four datasets, including DSMs featuring 

different resolutions and quality. The datasets and experimental results are described in this 

chapter in detail. A discussion is included at the end of this chapter. 

 

Chapter 8 closes this thesis with conclusions obtained from the present work, along with an 

outlook on further work. 
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2. DSM generation and quality assessment 

A DSM represents the height values of the first reflective or visible surface of the earth, while in 

contrast, the Digital Terrain Model (DTM) refers to the bare ground surface, without natural or 

manmade object like buildings, trees or bridges (Zhang, 2005). 

 

Height information from DSM is especially important for change detection of objects exhibiting 

height values above ground, such as buildings or trees. Several technologies are available for DSM 

generation: LiDAR, Interferometric Synthetic Aperture Radar and photogrammetry (Zhang, 2005). 

This work focuses on DSMs generated using photogrammetry, especially from satellite stereo 

imagery, since these data have special benefits, especially the repeatability in short time frames. 

The advantages of these data include: 

 

• Low cost: The images from optical satellites are not as expensive as airborne SAR or 

LiDAR data, since obtaining a pair of satellite stereo images is much cheaper than hiring a 

plane and acquiring airborne stereo imagery, especially for medium size regions.  

• Easy availability with high quality and temporal repetition rate. The satellite camera 

system is able to obtain more frequent images covering the same area, which is very 

important for timely change detection.  

• As the DSMs are generated from optical satellite images, the spectral channels can also be 

used for change detection in a fusion process. The data are acquired without any time 

difference.  

• The increasing quality of both the image resolution for spaceborne stereo data and the 

improved DSM generation technologies from computer vision in recent years.  

 

Since the generation of DSM is not the focus of this thesis, only a brief introduction to spaceborne 

stereo sensors and the generation of DSM is given. More focus is placed upon the 3D co-

registration and the DSM quality measures, since these procedures and their analysis are 

prerequisites for the further processing and analysis of 3D change detection, which is the main 

topic of the thesis. 
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2.1 Stereo sensors 

Extracting height information from stereo imagery is a well-known technique. Zhang (2005) has 

listed most of the existing airborne stereo systems in detail. In recent years, the possibilities for 

obtaining stereo imagery from spaceborne platforms have increased substantially, and stereo data 

quality and image resolution are improving continuously. There are two ways to obtain stereo data: 

one is along-track stereoscopy from the same orbit using two or more views, either using multiple 

cameras or by adjusting the viewing angles; the other is across-track stereoscopy from two or more 

adjacent orbits. For cross-track stereoscopy, the quality of the generated DSM is impaired by 

changes of the surface reflectance during the two acquisition dates from both orbits. Therefore, 

along-track stereoscopy technology is employed by most new satellites, for instance SPOT-5, 

IKONOS, GeoEye-1, WorldView-2, QuickBird, ALOS-PRISM, Cartosat-1 and Ziyuan-3. Basic 

characteristics of these stereo sensors are summarized in Table 2-1.  

 

In the following, these satellites, which represent the most important satellites with stereo 

acquisition capabilities, are briefly described: 

 

• WorldView-2 (US) 

WorldView-2 is a commercial Earth observation satellite that provides VHR space borne images. 

Being Digital Globe’s third satellite, it was launched on October 8th, 2009. It provides 0.5 meter 

panchromatic images and 2 meter resolution 8 band multi-spectral images, four standard colors 

(red, green, blue, and near-infrared 1) and four new bands (coastal, yellow, red edge and near 

infrared 2). Using a pushbroom sensor, WorldView-2 is able to collect large areas of stereo-view 

or multi-view imagery in a single pass by adjusting the view angle of the camera. The average 

revisit time of the satellite is 1.1 days using off-nadir viewing (Satellite Imaging Cooperation, 

2012g).  

 

• GeoEye-1 (US) 

The American satellite GeoEye-1 was launched on September 6th, 2008. It provides 0.5 meter 

(original 0.41 meter) resolution panchromatic and 2 meter (original 1.54 meter) multispectral 

images in 15.2 km swaths to the public. The multispectral images consist of four standard color 

channels (blue, green, red, and near-infrared). GeoEye-1 can acquire imagery at an off-nadir angle 

of up to 60° with a revisit time of less than 3 days (Satellite Imaging Cooperation, 2012c).  
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Table 2-1.  Summary of the stereo sensor properties. 

Country Sensor Ground sampling 
distance (m) Multi-spectral Rev. int. (days) Stereo mode 

U.S. WorldView-2 0.5 8 bands 1.1 Along-track 

U. S. GeoEye-1 0.41 4 bands 3 Along-track /Cross 
track 

U. S. IKONOS 1 4 bands 3 Along-track /Cross-
track 

U. S. Quickbird 0.61 4 bands 1-3.5 Along-track /Cross-
track 

France SPOT 10 4 bands 2-3 Along-track 
/Cross-track 

India Cartosat-1 2.5 pan only 5 Along-track 

China Ziyuan-3 2.1 /3.6 4 bands 5 Along-track 

Japan PRISM 2.5 4 bands 2 Along-track /Cross 
track 

 

 

• IKONOS (US) 

IKONOS supplies commercial customers with 1 meter resolution panchromatic images and 4 

meter resolution multi-spectral images, with the four standard colors. It has a revisit time of about 

3 days at 40° latitude. The off-nadir view can be adjusted up to 60° in order to obtain stereo 

imagery (Satellite Imaging Cooperation, 2012d). 

 

• Quickbird (US) 

Quickbird is another commercial satellite operated by DigitalGlobe. It was launched on October 

18th, 2001. The revisit time of Quickbird is 1 to 3.5 days depending on the latitude. The off-nadir 

view is up to 30°. It has a swath width of 16.5 km at nadir view. The panchromatic image has a 

resolution of 0.61 meter in nadir view and 0.72 meter in 25° off-nadir view. The multispectral 

images have a resolution of 2.44 meter in nadir view and 2.88 meter in 25° off-nadir view 

(Satellite Imaging Cooperation, 2012e). 

 

• Cartosat-1 (India) 

Cartosat-1 was launched on May 5th, 2005 by the Indian Space Research Organization. It carries 

two panchromatic cameras that are able to obtain black-and-white stereo imagery, including a 

forward view of +26° (Band F) and a nadir view of -5° (Band A). The panchromatic images 
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obtained have a spatial resolution of 2.5 meter and cover a swath of 30 km. The satellite has a 

maximum revisit time of 5 days (Satellite Imaging Cooperation, 2012b). 

 

• PRISM (Japan) 

The Panchromatic Remote-Sensing Instrument for Stereo Mapping (PRISM) is one of the three 

instruments on board the Japanese satellite ALOS (Advanced Land Observation satellite). ALOS 

was launched on January 24th, 2006 and stopped working on April 21st, 2011. PRISM can provide 

2.5 meter resolution stereo imagery with up to 70 km swath width. It has a revisit time of 2 days 

(Osawa, 2004; Satellite Imaging Cooperation, 2012a).  

  

• SPOT-5 (France) 

The French satellite SPOT 5 was launched on May 4th, 2002 by an Ariane 4 rocket. The newly 

designed HR stereoscopic instrument contains two fixed cameras, with a ±20° off-nadir viewing 

capability. The stereo imagery has 10 meter resolution and covers a swath of 120 km (Vadon, 

2003). The revisit time is about 2 to 3 days depending on the latitude (Satellite Imaging 

Cooperation, 2012f).  

 

• Ziyuan-3 (China) 

Ziyuan-3 is a new Chinese Satellite, which was launched on January 9th, 2012. The panchromatic 

imagery has 2.1 meter resolution at nadir view, and 3.6 meter resolution for the forward and 

backward view (Tang and Xie, 2012). It has a revisit time of about 5 days. 

2.2 Introduction to DSM generation 

Extracting height automatically from stereo imagery is a task of great importance for many 

applications. The main workflow of DSM generation using Rational Polynomial Coefficients 

(RPC) and dense matching methodology is shown in Fig. 2-1. 

 

Stereo Imagery RPC correction Min and max 
disparity calculation Matching cost

Disparity selection Cost aggregationDSM Disparity map

 

Fig. 2-1.  DSM generation flow chart. 
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Since it is the basis of all further processing, the major difficulty of this work is accurate stereo 

matching. The matching points’ density and accuracy directly influence the DSM quality. 

2.2.1 Rational Polynomial Coefficient (RPC) model correction 

Terrain extraction from satellite stereo imagery requires an accurate RPC sensor model. This 

model is used to transform the three-dimensional object space coordinates into two-dimensional 

image space coordinates. The initial RPC can be derived from orbit and attitude information. 

However, the original RPC usually has a lower absolute accuracy than the ground resolution. Thus 

numerous methods have been used in attempts to refine the RPC model using bundle adjustment. 

Toutin (2003) analysed the bundle adjustment accuracy for IKONOS in-track images. Grodecki 

and Dial (2003) have improved the bundle adjustment directly using the physical camera model by 

introducing the geometric properties of the camera model parameters into the adjustment 

parameter. That made the bundle adjustment more stable than before and generally applicable to 

all photogrammetric cameras.  

 

Correcting the RPC for high quality geolocation requires sub-pixel accurate Ground Control Points 

(GCP). In most literature (Toutin, 2003; Grodecki and Dial, 2003; Xiong and Zhang, 2011), GCPs 

of this quality are usually obtained via ground surveys or high resolution orthorectified images and 

DSMs. Unfortunately such resources are not always available, which is why image-based GCP 

extraction and correction methods are used in contemporary research and applications (Müller et 

al., 2007). For the higher resolution images, like IKONOS and WorldView-2, this RPC model can 

be adjusted by incorporating a priori constraints into the adjustment model (Grodecki et al., 2004). 

If the image resolution is not too high (e.g. for Cartosat-1 and ALOS-PRISM), the Shuttle Radar 

Topography Mission (SRTM: Rodriguez et al., 2005) DSM can be used as a geolocation reference 

(d’Angelo et al., 2008) for RPC correction. However, if the quality of the RPC is good enough, 

RPC correction is not necessary.  

 

The bundle adjustment assumes that a number of N (N = m × n) 3D points are obtained from 

different views. After projecting one pixel i onto the image j, it is located in Xij. To denote whether 

Xij is located outside of the image j, the variable ʋij is either set to 1 (inside) or 0 (outside). As 

illustrated in Eq. (2-1), the bundle adjustment is used to minimize the reprojection error (RE) 

between the image locations of observed and predicted image points.  

 

𝑅𝐸 = min𝑎𝑗,𝑏𝑖 ∑ ∑ 𝑣𝑖𝑗𝑑(𝑄�𝑎𝑗, 𝑏𝑖�, 𝑥𝑖𝑗)2𝑚
𝑗=1

𝑛
𝑖=1               (2-1) 
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where Q(aj ,bi) is the predicted projection of point i on image j and d(x, y) denotes the Euclidean 

distance between the image points represented by vectors x and y. 

2.2.2 Semi-Global Matching (SGM)  

The SGM-based DSM generation procedure – one of the most powerful methods from the dense 

matching category in computer vision – can be divided into three main tasks: epipolar stereo pair 

generation, matching and disparity map generation. First, high quality tie points between the stereo 

pairs are established using pyramid-based local least squares matching. Quasi-epipolar stereo pairs 

are generated by aligning the columns of the two stereo images. SGM is performed based on the 

generated epipolar stereo pairs. This matching procedure, which avoids using matching windows, 

is thus able to reconstruct even sharp edges like building walls. Instead of strong local assumption 

on the local surface shape, the matching step is cast into an energy minimization problem. It 

performs a semi-global optimization by aggregating costs from sixteen directions, which finds an 

approximate solution to the global energy function E: 

 

𝐸(𝐾) = ∑ �𝐶�𝑝,𝐾𝑝� + ∑ 𝑃1𝑇��𝐾𝑝 − 𝐾𝑞� = 1�𝑞∈𝑁𝑝 + ∑ 𝑃2𝑇��𝐾𝑝 − 𝐾𝑞� > 1�𝑞∈𝑁𝑝 �𝑝          (2-2) 

 

Function C is the pixel-wise matching cost between the image and the disparities D.  A combined 

use of the Mutual Information and the Census cost function is employed, as described by 

Hirschmüller (2008) and d’Angelo et al. (2008). The second and third terms of the energy function 

E calculate penalties for disparity changes in the neighborhood Np for all pixels p. T is a 

conditional function: it is equal to 1 if the argument is true, and to 0 otherwise. In the case of small 

disparity changes, a constant penalty P1 is added to the energy function. When a higher penalty 

disparity change occurs, a larger constant penalty P2 will be added. This energy function consists 

of a data term, measuring the similarity of possibly corresponding pixels in the two images, and a 

regularization term, which favors similar disparities for neighboring pixels, but also allows large 

jumps at discontinuities.  

 

Finally, the disparity map is recomputed by choosing the disparities with the smallest E. Sub-pixel 

disparities are computed by fitting a parabola to the aggregated cost values next to the disparity 

with minimum aggregated cost. To detect errors and occlusions, SGM is performed from the first 

to the second and from the second to the first image, and only consistent disparities are kept. 

Additionally, small isolated disparity regions are rejected as outliers, as described in d’Angelo 

(2010). The core SGM algorithm is described in Hirschmüller (2008).  
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2.2.3 Image orientation and DSM generation 

A preliminary point cloud consisting of approximately one million points is generated from a 

thinned SGM disparity map by spatial intersection. This point cloud is aligned with the SRTM 

DSM using a 3D affine transformation. This aligned point cloud and the known image locations 

are used in the image resection, yielding affine RPC correction parameters. The complete process 

is described in d’Angelo et al. (2008). 

 

The DSM is generated by spatial intersection of the complete disparity map using the previously 

estimated RPC correction parameters and subsequent reprojection into a local coordinate system. 

2.2.4 DSM Refinement 

Due to matching errors in regions with weak contrast or occlusions, the generated DSMs possibly 

contain a small number of outliers. To eliminate large outliers, in this paper a check against the 

SRTM DSM is performed. All points whose height deviates more than 200 m from the unfilled 

SRTM DSM are removed. Removing outliers will produce holes in the DSMs. Moreover, 

unmatched pixels also appear as holes. These holes are filled with SRTM data using the delta 

surface fill method proposed by Grohman et al. (2006). The delta surface fill algorithm effectively 

interpolates small holes and seamlessly fills large holes, such as those created by clouds or water 

areas, with SRTM data. Remaining holes in areas where both the generated DSM and the SRTM 

DSM fail to provide data are filled using inverse distance weighted interpolation. 

 

The DSMs used in this dissertation are generated using the DLR in-house software XDibias. All of 

the approaches and algorithms mentioned in this section are available as modules of XDibias.  

2.3 3D co-registration 

When more than one image is used for a designed task like change detection, the co-registration 

among these images is essential. It is necessary to make sure that all corresponding pixels 

represent the same geo-location. Only then can the information from these data be combined or 

compared correctly. When information about the third dimension (height) is used, it should also be 

considered in the co-registration procedure. In this work, 3D co-registration is not only important 

for change detection, but also necessary for DSM quality assessment. The DSMs to be evaluated 

should be co-registered to each other or to a reference DSM before starting the comparison.  
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In the co-registration procedure, one DSM is used as the reference DSM (D0), and register the 

other DSM (D1) to this DSM. The 3D coordinate is defined by X, Y, Z. All of the pixels in these 

two DSMs can be represented as: 

 

𝐴0 =  {P01, P02, … P0𝑖 , … P0𝑛}                 (2-3) 

𝐴1 =  {P11, P12, … P1𝑖 , … P1𝑛}                 (2-4) 

 

In 3D least square matching (Gruen and Akca, 2005), not only the distance shifts in three 

dimensions but also the rotation shifts in three dimensions are considered. In this scenario, all of 

the DSMs are based on stable satellite stereo images, and in the DSM generation procedure, the 

SRTM DSM data are used for RPC correction: therefore, the shift in rotation is generally very low.  

 

That is why a simple version of least square matching, linear shifting, is used for 3D co-

registration to reduce the computation burden and because it is stable and sufficiently accurate. 

The shift distances in three dimensions (Xs, Ys, Zs) are estimated via iterative 3D shifts adjustment 

based on the minimization of Eq. (2-5):  

 

∑ ∑ �𝑍𝐸𝐸𝑓(𝑥,𝑦) − (𝑍2𝑛𝐸(𝑥 + 𝑋𝑠,𝑦 + 𝑌𝑠) + 𝑍𝑠)�2𝑛
𝑦=1

𝑚
𝑥=1             (2-5) 

 

In which m and n are the column and rows of the DSMs, (x, y) are the plane coordinates, and Zref  

and Z2nd  represent the height values from the two DSMs respectively, one DSM is chose as 

reference DSM (ref) in this step. The shift-values Xs, Ys, and Zs are adjusted iteratively, leading to a 

final shift result. In order to avoid large changes between two DSMs, some parameters are added 

to control the iterative procedure. One is the outlier rate, which can be adjusted according to the 

respective situation: for instance, when both DSMs exhibit a large difference in spatial resolution 

or time distance, which can result in large differences or changes between them. In such a case, a 

larger outlier rate is chosen. The pixels classified as outliers are not included in the shift distance 

calculation procedure.  

 

Fig. 2-2 illustrates the effects of the 3D co-registration. Fig. 2-2a shows the displacement between 

the DSMs before the registration. The generated DSMs from stereo matching and the LiDAR-

DSM are displayed in a checkerboard pattern with 50 m × 50 m size interval squares. As can be 

seen, the two DSMs are displaced in all three dimensions. After 3D co-registration, the situation 

has been improved significantly in all three dimensions (shown in Fig. 2-2b). 
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  (a)     (b) 

Fig. 2-2.  3D co-registration results: (a) Before 3D co-registration; (b) After 3D co-registration procedure. 

2.4 DSM quality assessment 

In the context of this section, the quality of the DSM means the accuracy of the height value it 

provides. All of the DSMs used here are provided as raster images, and have been derived from the 

point clouds generated by matching and interpolation as described in section 2.2.3. In principle, the 

evaluation of DSM quality requires real survey height information from the selected test area at the 

same time. Unfortunately these data are not available for our research. That is why, since the 

DSMs from photogrammetry methods have relatively lower quality in comparison to LiDAR-

DSMs from dense LiDAR point clouds, the LiDAR-DSM is used as reference data here. 

 

DSMs quality can be very different for distinct land covers. Firstly, each land cover has its unique 

spectral or texture information, which might influence the matching procedure. Secondly, the 

height derived from different land covers might have different influence from the stereo view 

angle (e.g., forest areas are more sensitive to stereo view angles). Moreover, two Stereo-DSMs for 

the same land cover can have different levels of accuracy if they are based on different sensors. 

Therefore, it is necessary to specify and assess the accuracy for different land covers and different 

stereo sensors. 

 

• Land covers 

The following land cover classes are considered in this work. Three land cover classes are from 

urban areas (Fig. 2-3a). They are buildings, building boundaries and ground (roads). Buildings and 

building boundaries are considered separately. Buildings and building boundaries are defined in 

Fig. 2-4, the background of this figure is a LiDAR-DSM, and the red polygon represents the inner 

part of a building. Pixels inside this red polygon are used to evaluate roof height. The blue polygon 

is a little larger than the real building. Pixels located between these two polygons are building 

boundary. It is defined as a separate land cover to evaluate the sharpness of the stereo-DSM.  
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      (a)      (b) 

Fig. 2-3.  Examples of different land covers, three urban regions (a) and four forest regions (b). 

 

 

Fig. 2-4.  Building and building boundary. Minimum building area (red), maximum building area (blue), the 

region between them is the building boundary. 

 

The other four land covers are from forest areas and their surroundings. They have been marked in 

Fig. 2-3b with rectangles in different colors and are named: high-density forest region (Fig. 2-3b, 

marked with a yellow rectangle), low-density forest region (marked with a blue rectangle), built-up 

region (with low height and high density houses, Fig. 2-3b, marked with a red rectangle) and 

grassland (Fig. 2-3b, marked with a white rectangle).  

• Stereo Sensors 

The following stereo sensors are considered in this work: VHR images (WorldView-2, IKONOS) 

and high resolution (HR) images (Cartosat-1). In the urban area, all three datasets have been used. 

Since the IKONOS stereo imagery is not available in the test area, only DSMs from WorldView-2 

and Carsotat-1 are evaluated. It is necessary to confirm that the reference DSM has a higher 

accuracy than the DSM to be evaluated. The DSM quality is evaluated in two steps. The first is the 

visualization of quality and the second is the statistical comparison. Both of these steps are 

discussed in the following sections. 
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2.4.1 Visualization of the quality 

The quality of the DSM can be demonstrated graphically by comparing it with the reference DSM. 

The visualization methods include error distribution, absolute horizontal errors, results of filtering 

on the top of the topographic map, profiles of the DSM heights etc., as summarized by Höhle and 

Potuckova (2011). Here the profiles of DSM elevations along a given line and height error 

histogram analysis are used to visualize the quality. 

 

Profile comparison can provide a direct overview of the DSM quality. Fig. 2-5 shows an example 

of the profile comparison in an urban area. All of the three relevant land cover types in urban areas 

(buildings, building boundaries and roads) are included. Three of the DSMs shown are based on 

satellite stereo sensors (WorldView-2, IKONOS, Cartosat-1), and are named as WorldView-DSM, 

IKONOS-DSM and Cartosat-DSM respectively. Another was produced using a LiDAR point 

cloud. The LiDAR-DSM is used as reference data. It can be seen that WorldView-DSM and 

IKONOS-DSM match better with the LiDAR-DSM. Although Cartosat-DSM presents more 

outliers than other DSMs, in most cases building areas still obtain higher height values than ground 

areas. Fig. 2-6 shows a profile generated in a forest area, including high and low density forest as 

well as grassland. 

 

 

 
Fig. 2-5.  Profile comparison for an urban area. 
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Fig. 2-6.  Profile comparison for a forest and grass area. 

A further view on the quality of the DSMs can be visualized using a relative frequency histogram 

of the height errors. If there were only regular (non-specific) differences between the generated 

DSM and the reference DSM, the error distribution should follow a normal distribution. The error 

distributions of all seven investigated land covers are shown below in Fig. 2-7. As is shown, the x-

axis represents the error values (m), while the y-axis shows the relative frequency at which these 

errors occur. 

 

As displayed in the height error histograms, the quality of WorldView-DSM is slightly better than 

that of IKONOS-DSM. In Fig. 2-5, the building roof areas are much better represented in 

comparison to the building boundary areas in all of the DSMs. This character is also well 

presented in Fig. 2-7. In the WorldView-DSM, the simulated normal distribution for the building 

roof region is much slimmer than the one based on the building boundary area, and most of the 

errors are centred between -5m and 5m for building roofs and range between -10 m to 20 m in 

building boundary regions. The Cartosat-1 DSM in the boundary areas shows higher noise and 

variations leading to very blurred representation of building walls, which can also be seen 

indirectly the through widely spread histogram values in Fig. 2-7f , which follow approximately a 

normal distribution range from -40 m to 40 m. This is a clear indicator that Cartosat-1 is not 

suitable for urban building monitoring.  

 

Fig. 2-8 displays the height errors in forest areas. The DSMs from four kinds of land cover, namely 

high-density forest regions, low-density forest regions, grassland regions and built-up regions, are 

analysed. As the figure shows, DSMs in high-density forest regions show higher accuracies than 

those in low-density forest regions. 
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Fig. 2-7.  Histograms of the height errors in urban areas from three satellites. Figs. a, b, c: Building roof 

regions; Figs. d, e, f: Building boundary regions; Figs. g, h, i: Urban roads.  

 
In Figs. 2-8a and 2-8b, the small peak on the right can be explained by Fig. 2-6. Normally Stereo-

DSMs feature higher height values in between trees than LiDAR-DSMs. It must be noted that the 

quality difference of the DSM from VHR WorldView-2 and HR Cartosat-1 in forest areas is not as 

obvious in urban areas, especially in the high-density forest regions (as shown in Fig. 2-8a and b). 

But in the built-up regions, the height value from WorldView-DSM is more accurate than from 

Cartosat-DSM. 
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Fig. 2-8.  Histograms of the height errors in and close to forest areas. Figs. a, b: High-density forest regions; 

Figs. c, d: Low-density forest regions; Figs. e, f: Grassland regions; Figs. g, h: Built-up regions. 
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Table 2-2.  Accuracy measures for DSM quality assessment. 

Number of checkpoints (N) n 
Vertical errors (Error) ∆ℎ = |ℎ𝐷𝑆𝑀 − ℎ𝐸𝐸𝑓_𝐻𝐸𝑖𝐸ℎ𝐸| 

Mean errors (MEAN) 𝜇̂ =
1
𝑛
�∆ℎ𝑖

𝑛

𝑖=1

 

Standard Deviation (STD) 𝜎� = �
1

(𝑛 − 1)
�  (∆ℎ𝑖

𝑛

𝑖=1

− 𝜇̂)2 

Normalized Median 
Absolute Deviation 

(NMAD) 
𝑁𝑀𝐴𝐾 = 1.4826 × 𝑚𝑒𝑑𝑖𝑎𝑛(|∆ℎ𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(∆ℎ)|) 

 

Table 2-3.  Quality assessment for seven land covers in three sensors. 

2.4.2 Statistical comparison 

The accuracy assessments are measured using the difference between the Stereo-DSMs and the 

reference LiDAR-DSM (∆h). The mean error (𝜇̂) represents the mean absolute shift value for all 

pixels. The standard deviation (𝜎� ) is derived from the difference of two DEMs without the 

systematic error between them, which also indicates the surface smoothness of the generated 

DSM. Another robust statistical based accuracy measurement is the Normalized Median Absolute 

Deviation (NMAD) (Höhle and Höhle, 2009). This model can be used to evaluate the quality of 

Land cover type Satellite N MEAN STD NMAD 

Buildings 

WorldView-2 216035 3.19 2.59 1.48 

IKONOS 216035 3.88 3.62 1.26 

Cartosat-1 216035 8.24 7.97 4.45 

Build boundary 

WorldView-2 125021 5.60 7.95 4.45 

IKONOS 125021 5.99 8.14 5.45 

Cartosat-1 125021 7.57 9.58 8.90 

Ground (roads) 

WorldView-2 49708 2.94 1.99 0 

IKONOS 49708 2.56 1.92 1.13 

Cartosat-1 49708 7.84 8.66 7.41 

High-density forest 
WorldView-2 12475 4.65 6.46 3.95 

Cartosat-1 12475 4.21 6.52 3.98 

Low-density forest 
WorldView-2 16997 7.91 11.26 6.01 

Cartosat-1 16997 9.02 12.21 8.82 

Grassland 
WorldView-2 25007 0.49 0.49 0.44 

Cartosat-1 25007 0.92 1.13 1.05 

Built-up region 
WorldView-2 11207 3.61 5.27 3.14 

Cartosat-1 11207 5.06 6.32 5.97 
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DSMs in the presence of outliers and non-normal distributions. The NMAD is thus proportional to 

the median of the absolute differences between errors and the median error. It can be considered as 

an estimate for the standard deviation that is more resilient to outliers in the dataset (Höhle and 

Höhle, 2009). Table 2-2 displays the formulas of these accuracy measures. 

 
Calculations of accuracy measures have been carried out for the seven predefined land covers. The 

results are displayed in Table 2-3. Among them, the first three land covers (building, building 

boundary and road) are evaluated in the city area (Munich dataset as shown in Chapter 7). All 

DSMs in the city areas are resampled to 0.5 meter resolution. The other four land covers (high-

density and low-density forest regions, built-up regions and grassland regions) are evaluated in 

countryside, near rural/forest area. 

2.5 Discussion 

The interpretation of qualitative and quantitative results leads to the following statements: in 

general, results of DSMs from stereo imagery are better when the resolution is higher, especially in 

urban areas. The quality differences for different sensors for building roofs are not as obvious as 

for building boundaries. The Cartosat-1 data show low quality for building boundary areas. As 

shown in Fig. 2-7f, the height errors are nearly normally distributed with a maximum at 

approximately 5%. In the profile comparison results (Fig. 2-5), even though the buildings in the 

Cartosat-DSM show higher elevation values for building areas relative to the ground areas, as can 

be seen in the profile comparison results, in areas with high building density, it is very difficult to 

separate single buildings (Fig. 2-5 at pixel 250). Thus, Cartosat-1 stereo data can hardly be used 

directly in building change detection in dense urban areas such as in the city of Munich. It can only 

be used when building boundaries or building footprints can be provided as reference. 

 

WorldView-2 data are more suitable to generate DSMs in city areas, as they are a good match with 

the LiDAR-DSM, especially in areas featuring roads. As presented in Fig. 2-7, the height of 

building roofs and road matched LiDAR-DSM well. Although some false alarms existed in the 

building boundaries area, the situation is still much better than Cartosat-DSM. This demonstrates 

that the resolution of the original stereo imagery can directly influence the DSM quality in urban 

areas. The road error distribution map for Cartosat-1 data has more positive than negative values 

(Fig. 2-7i). This can be explained by the fuzzy building boundaries, which affect the road 

elevation. If the stereo matching failed in areas featuring roads, the interpretation of the unfilled 

DSM by using the neighborhood pixels would give a higher height value. Traffic on the road, e.g. 

buses or trucks, may also influence the elevation for all data sets. But in forest areas, the resolution 

of the satellite image does not influence DSMs’ quality as obviously as in urban areas. As 
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displayed in Table 2-3, the mean, standard deviation and NMAD obtained from WorldView-DSM 

and IKONOS-DSM are quite similar in most of the regions near forest areas, except the built-up 

regions. Fig. 2-8 also shows a similar situation. This indicates that Cartosat-1 stereo imagery might 

be suitable for forest change monitoring.  

 

In the profile comparison of forest area displayed in Fig. 2-6, the LiDAR-DSM is able to measure 

terrain height and canopy height for forest areas simultaneously, but the Stereo-DSMs only show 

the top-of-canopy height. However, because first pulse data also show part of the terrain height, 

which is not usually measured by Stereo-DSMs, there are some discrepancies between the DSMs 

from stereo matching and the LiDAR-DSM in low-density areas. As shown in Fig. 2-9, the nadir 

and forward view may observe different parts of the tree crowns, which leads to inaccurate 

matching results. This situation is even worse for low-density forest areas under the same stereo 

view angle and leads to discrepancies between the Stereo-DSMs and the LiDAR-DSM in low-

density forest areas. However, the DSMs from both WorldView-2 and Cartosat-1 show the main 

trend of forest distribution with accurate canopy height, which can be very helpful in forest change 

detection or even timber volume change estimation. The mean forest canopy height is correct even 

in low-density regions: the main errors stem from the pixels between the trees or forest boundary 

area. 

 

Without influence from buildings or other land cover, the grassland regions display a higher 

accuracy with mean errors less than one meter in Cartosat-DSM. This can be interpreted as 

underlying noise and will not introduce large false alarms in forest change detection. Similar to the 

assessment results in urban regions, the DSM of built-up areas from WorldView-2 is of better 

quality than from Cartosat-1, due to the lower image resolution of the latter. Therefore 

WorldView-2 data is more suitable in this case. In cooperation with the Bavarian State Institute of 

Forestry, a more detailed quality evaluation study has been conducted by comparing the DSMs 

with inventory points (Straub et al., 2013). In that study, DSMs were evaluated for both height and 

timber volume. According to the evaluation result, Cartosat-DSM is only slightly worse than 

WorldView-DSM. However, the differences among Cartosat-DSM, WorldView-DSM and 

LiDAR-DSMs are quite limited. 
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Fig. 2-9.  Stereoscopic image acquisition in low-density forest areas.  

2.6 Summary 

This chapter provides an introduction to the available stereo imagery and how the DSMs can be 

generated. In this dissertation, all of the DSMs have been generated using SGM. Thus, the SGM-

based DSM generation and refinement procedure has been described in detail. In order to better 

understand the accuracy of Stereo-DSMs from difference sensors, they are compared with LiDAR-

DSMs. As it is a necessary pre-process of the comparison work, a 3D co-registration approach has 

been described in this chapter. This 3D co-registration guarantees that all of the compared pixels 

indicate the same location. In the evaluation, both visual and numerical quality evaluation methods 

have been applied. Firstly, profiles of all Stereo-DSMs have been compared with LiDAR-DSM in 

both urban and forest regions. Secondly, the height difference between these Stereo-DSMs and 

LiDAR-DSM, named as errors, has been analyzed using the histogram and statistical parameters: 

mean errors, standard deviation and NMAD. It has been analyzed for various land covers 

respectively. 
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3. Review of change detection techniques 

3.1 Introduction 

The purpose of land cover change detection is to identify changes between two or more images of 

the same location acquired at different times. This has always been one of the most heavily 

investigated topics in satellite image applications. Numerous detection methods and many kinds of 

image are used according to the different applications and user requirements (Singh, 1989; 

Bruzzone and Serpico, 1997; Lu et al., 2004). Among these applications, the change of interest can 

be of any possible class or only pertaining to specific objects, for example buildings or trees. The 

standard automatic or semi-automatic change detection methods can be broadly divided into pixel- 

and region-based methods. Depending on the data sources used, change detection can be classified 

into 2D change detection and 3D change detection.  

 

Hereafter, the most important change detection methods are reviewed. Later, the height 

information involved in 3D change detection, called DSM-assisted change detection, which is 

developed in this work, is discussed. 

3.2 2D change detection  

Change detection algorithms are based on the features which can be extracted from two data sets. 

These features can be grey values or height values, obtained directly from the image and digital 

surface model. They can also be generated with statistical methods by using information from 

multi-spectral or hyperspectral channels. Numerous approaches have been developed for change 

detection using only the 2D satellite images. Many articles reviewing the existing change detection 

methodologies can be found, such as, Singh (1989), Coppin and Bauer (1996), Macleod and 

Congalton (1998), Mas (1999), Lu et al. (2004), and Radke et al. (2005). Recent developments in 

change detection can be divided into pixel-based and region-based methods. Both require that the 

multi-temporal remote sensing images are properly co-registered. 

3.2.1 Pre-processing 

The quality of the images directly influences the performance of any feature detection, and thus 

change detection. Multi-temporal images which are used for change detection are often acquired 
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by different sensors under different atmospheric conditions. Thus, co-registration in radiometry 

and geometry is necessary to make these images comparable. Pre-processing involves (1) 

atmospheric calibration and/or radiometric normalization between multi-temporal images; and (2) 

geometric co-registration. 

• Radiometric correction 

Many change alarms are produced when multi-temporal and multi-sensor data are employed, and 

if the strength or position of the light source (sun) changes (Radke et al, 2005). In this case, 

appropriate radiometric correction is required for successful change detection (Paolini et al., 2006). 

Two types of radiometric correction are usually employed: absolute and relative correction.  

 

Absolute radiometric correction requires various calibration techniques, including modelling 

algorithms to describe the ground reflectance and atmospheric absorption etc. (Bowen, 2002; 

Schroeder et al., 2006). Unfortunately, for many change detection applications, absolute 

radiometric correction is expensive and impractical. Song et al. (2001) demonstrated that absolute 

radiometric correction can improve the accuracy of change detection, but more complicated 

algorithms did not necessarily lead to higher accuracy.  

 

The relative correction takes one image as a radiometric reference image, and adjusts the 

radiometric properties (including the grey value range and grey value distribution) of the other 

image according to this reference image. After the correction, the same land cover in the two 

images exhibits similar grey values. The real reflectance value on the ground is not necessarily 

considered (Radke et al., 2005; Bavolo, 2006). The relative radiometric correction methods include 

dark object subtraction (Chavez Jr, 1988) by selecting pseudo-invariant features (Du et al., 2002). 

The selection of the radiometric correction method depends on the requirements of the application.  

• Geometric co-registration 

In the change detection procedure, in order to compare images from two dates, the co-registration 

between the two images is also very important. The accuracy of the geometric co-registration 

directly influences the co-responding features, especially when pixel-based change detection 

methods are adopted. In the literature, there are two main approaches for 2D image co-registration: 

a) semi-automatic and b) automatic co-registration. For the semi-automatic method, the matching 

control points are manually extracted from the two corresponding images so that the parameters 

for the transformation model can be calculated based on these points (Ton and Jain, 1989). A 

detailed review of automatic registration has been provided by Brown (1992), and later by 

Wyawahare et al. (2009). Automatic co-registration is based on automatic feature detection, 
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followed by feature matching methods such as least square matching or SIFT matching. Using the 

matched points, the parameters for the transformation model can be estimated.  

 

A common agreement has been achieved that to perform reliable change detection on multi-

temporal images, an accurate (in the order of at least 0.3 pixel) spatial co-registration is required 

(Singh, 1989). Detailed research on how co-registration accuracy can influence change detection 

results has been performed by Dai and Khorram (1998) and Roy (2000). Dai and Khorram (1998) 

used satellite images as an example to illustrate that higher registration accuracy was required to 

achieve reasonable change detection results. Roy (2000) demonstrated that when multi-temporal 

images are used, mis-registration errors can significantly influence the thematic change detection 

results (e.g. comparison of vegetation mask). 

3.2.2 Pixel-based change detection 

Pixel-based change detection methods are based on features extracted by combining images at 

pixel level, e.g. pixel-based subtraction, ratioing and image regression. When multi-spectral 

information is available, a feature vector can be obtained for each pixel. Beside the pixel spectrum, 

more features, such as features after color transformation or texture features, can be extracted. To 

reduce data redundancy between bands and to emphasize the difference between objects and 

background, image transformations can be performed, such as color space transformation or 

Principal Components Analysis (PCA) (Lillesand and Kiefer, 1987), Gramm-Schmidt, and Chi-

square transformation. Fung (1990) compared image differencing, principal components analysis 

and tasseled-cap transformation based on Landsat TM data. These combinations can improve the 

mathematical combination result, and the original images can be filtered or transformed to achieve 

a better change map. 

 
In the literature, various techniques have been proposed for performing change detection. For the 

2D method, the main methods are binary change detection, which aims to separate changed from 

unchanged areas, and ‘from-to change detection’, which provides a matrix of change directions 

with results including the nature of change and the spatial pattern of changes. 

 

Image differencing, which works by simply subtracting the pixel grey values of the images from 

two dates, is one of the most basic change detection method (Hayes and Sader, 2001). This 

technique has been widely used and is documented in the early studies of remote sensing (Singh, 

1986; Muchoney and Haack, 1994; Green et al., 1994; Coppin and Bauer, 1996; Macleod and 

Congalton, 1998). Except for direct satellite image subtraction, image differencing has also been 

developed for change feature subtraction. For instance, Normalized Difference Vegetation Index 
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(NDVI) subtraction is used to monitor vegetation changes (Mas, 1999), while the normalized 

difference of near infrared bands and red bands can highlight vegetation (Singh, 1986). Hayes and 

Sader (2001) clustered the NDVI images from each date to several levels, and used the level 

differences to distinguish change / no-change. Post-classification is also a kind of image 

differencing, but it uses the class cover instead of images. Similar to image differencing, pixel-

based image ratio is another widely applied change detection method (Singh, 1989). 

 

Change vector analysis (CVA) was proposed by Malila (1980). A change vector can be described 

by an angle of change (vector direction) and a magnitude of change from date 1 to date 2 (Jensen, 

1996). Originally only the multi-spectral information from remote sensing images are used for the 

features; then the N dimensional Euclidean distance shows the change magnitude. A larger 

magnitude indicates a higher possibility of change. The changes can be identified by manual or 

automatic thresholding. The direction of these vectors can be used to classify different kinds of 

change (Chen et al., 2003). Bovolo and Bruzzone (2007) have tried to improve the accuracy of 

change detection by introducing CVA to the polar coordinate domain instead of Cartesian 

coordinates.  

 

Multivariate alteration detection (MAD) was introduced to the field of change detection by 

Nielsen et al. (1998). It is a well-established linear change detection method (Nielsen et al., 1998; 

Marpu et al., 2011). The main aim of this method is to establish a better background of ‘no 

change’, which consequently enables the identification of real changes. The most important 

advantage of MAD is that it is an unsupervised change detection method. It considers all of the 

feature channels generated from the images from the two dates 𝐹 = (𝐹1, 𝐹2, 𝐹3, … 𝐹𝑘) 𝑇  and 

𝐺 = (𝐺1, 𝐺2, 𝐺3, … 𝐺𝑘) 𝑇 . The changes can be expressed by the linear combination of the 

features from two dates (as shown in Eq. (3-1)). 𝑎𝑖  and 𝑏𝑖  are the coefficients calculated by 

applying canonical correlation analysis.  
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                (3-1) 

 

Iteratively reweighted-MAD (Canty and Nielsen, 2008) is an iterative scheme to put high weights 

on areas with little change. These weights are included in the calculation of the mean, variance and 

covariance. The iteration stops when the largest absolute change in the canonical correlations 

reaches a preset value, such as 10-6.  
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Statistical based similarity measures are able to highlight changes by computing information’s 

theoretical similarity. Many change indicators, such as difference ratios or neighborhood 

correlation (Im and Jensen, 2005), are less meaningful when multi-sensor images are adopted. For 

such cases, similarity measures have been proposed to extract change indicators. Information 

similarity measures, such as Mutual Information, are primarily used for image co-registration (Suri 

and Reinartz, 2010; Reinartz et al., 2011) but they have also been introduced to change detection 

(Inglada and Mercier, 2007; Bovolo et al., 2008; Alberga, 2009; Gueguen et al., 2011).  

 

Kernel-based change detection. Introducing machine learning algorithms to remote sensing image 

processing has led to considerable improvements in this field, especially with regard to the kernel 

method and support vector machines. Initially these methods were mainly used for classification. It 

has been proven that nonlinear decision boundaries are more flexible and effective than a linear 

classifier (Camps-Valls and Bruzzone, 2009). Recently kernel-based methods have also been 

adopted in change detection (Volpi et al., 2012). Kernel PCA (Nielsen and Canty, 2008) and 

kernel minimum noise fraction (Nielsen, 2011) have been proposed to improve the accuracy of 

change detection. 

 

Post-classification comparison. This approach is based on analysis of two or more independently 

produced classification maps, or extracted object maps, such as building change detection based on 

the comparison of two building footprints. As discussed in Singh (1989), since the classification of 

each map is performed independently, the multi-sensor problem can be minimized. In this case, 

precise co-registration is less important than for other change detection methods. However, the 

classification result directly influences the change detection result (Singh, 1989; Mas, 1999). 

Compared to two-time comparison, multi-temporal comparisons are less sensitive in their 

classification accuracy. Liu and Zhou (2004) proposed a rule-based rationality analysis to improve 

the post-classification change detection results based on multi-temporal images. This approach has 

also been widely used to update databases, for instance for road map updates (Mena, 2003) and 

building footprint map revision (Champion et al., 2008). The existing database can be used not 

only as the classification result of one date, but also as training data (Matikanien et al., 2003). The 

information extracted from existing maps can enhance the image interpretation procedure, which 

can reduce the change search space and minimize false alarms (Bentabet et al., 2003; Bouziani et 

al., 2010).  
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3.2.3 Region-based change detection 

The increasingly high resolution of satellite images allows the extraction of more detailed changed 

objects with higher accuracy, but also introduces some false alarm that are not related to the 

changes of interest. The main drawback of pixel-based change detection, called the “salt and 

pepper” effect, is a result of these false alarms. Therefore, region-based change detection methods 

have gained more interest in recent years (Blaschke, 2010). Instead of analyzing pixels 

independently, region-based approaches take the pixels inside one meaningful homogeneous 

region. Some papers refer to this method as ‘object-based change detection (OBCD)’ (Hall and 

Hay, 2003; Blaschke, 2005), as one feature of OBCD is to extract meaningful objects from images. 

Initially, these meaningful objects were obtained from Geographic Information System (GIS) 

databases (Coppin and Bauer, 1996; Walter, 2004; Durieux et al., 2008). However, in more recent 

work, these objects are often extracted using segmentation: thus, the obtained regions might not 

always be a whole object, such as a complete building or bridge, but very probably only one part 

of it. Therefore, referring to these methods as ‘region-based’ is more suitable.  

 

Region-based change detection evolved from ‘region-based image analysis’, which combines 

spectral images with segmentation or GIS data for image understanding or land cover 

classification. The GIS database can also be used as training data, since it includes not only the 

boundary but also the attributes of each region (Walter, 2004). As the use of GIS data is limited to 

the available data sources, object-based change detection using image data is usually preferred, 

along with the development of automatic segmentation techniques (Comaniciu and Meer, 2002; 

Ning et al., 2010). After segmentation, the images can be divided into a number of homogeneous 

regions. The research in this direction is thus focused on obtaining an appropriate segmentation 

level for all land covers of interest. Bruzzone and Prieto (2000) stated that the original segments 

that can be used for change detection should be elementary ‘homogeneous regions’. However, it is 

difficult to provide an ideal definition of ‘homogeneous’ when various objects are of interest: for 

example, the cars on the road, the cars in car parks etc. Multi-level segments are preferred for 

detecting changes to various classes of objects (Bovolo, 2009).  
 

Hall and Hay (2003) proposed a multi-scale change detection framework for forest changes. In 

their framework, the multi-scale segmentation was derived using the watershed methodology. 

After segmentation, the mean grey value change of each segment was used as a change feature for 

change detection. In their experiments, the finest segmentation resulted in the best change 

detection accuracy. Instead of using only panchromatic images, Desclée et al. (2006) successfully 

monitored forest changes based on multispectral SPOT images. In this paper, a multi-data 

segmentation approach was proposed for the first time. The mean and the standard deviation of 
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each region were calculated based on the pixel-wise difference images. Multivariate iterative 

trimming was adopted to separate the forest change from no-change regions.  

 

Besides segmentation, the initial region boundary can be directly obtained from existing GIS data. 

Walter (2004) used multi-spectral channels of airborne data (blue, green, red and near-infrared) for 

classification. Besides the mean value and variance of these channels in each GIS region, the gray-

level co-occurrence matrices textures from the blue channel, the vegetation index and the pixel-

based classification results were used as input for the classification. The classification results were 

compared with existing GIS data for change detection.  

 

A post-classification method in object range has been proposed by Dronova et al. (2011). In the 

region-based classification procedure, NDVI and normalized difference water index and brightness 

obtained from multi-spectral channels were adopted to separate vegetation, water and sand classes.  

 

A significant body of research has been performed with a focus on the comparison of region-based 

and pixel-based change detection methods for remote sensing data. Walter (2004) used region-

based classification results from two dates to generate a land cover change map. The original 

regions were obtained from existing GIS data. Region-based features can thus be extracted, which 

can be used in classification. Desclée et al. (2006) used the region-based approach for forest 

change detection, where it exhibited a much higher Kappa Index of Agreement (KIA = 60%) than 

the pixel-based method (KIA = 49%) using the same features from multi-spectral satellite images. 

Im et al. (2008) compared region- and pixel-based change detection methods. The results have 

shown that the region-based change detection method can reach a higher KIA (about 90%) than 

the pixel-based technique (KIA = 80% ~ 85%). Duveiller et al. (2008) applied the forest / non-

forest classification method from Desclée et al. (2006) in region-based deforestation detection 

from 571 image pairs, where an initial image selection was performed to exclude all poor quality 

images and image pairs with no-forest change. Aguirre-Gutiérrez et al. (2012) compared pixel- and 

region-based methods and their combination in land cover classification. A higher accuracy was 

achieved based on a combined classification method along with a region-based change detection 

analysis. Considering the above comparisons between the pixel- and region-based change 

detection methods, it can be concluded that in general, the region-based method performs better 

than the pixel-based method if a proper segmentation level can be achieved. 

3.2.4 Binary change map generation  

The change map obtained from both pixel- and object-based change detection methods must be 

processed in an appropriate way to obtain the final change mask. In a useful change map, the 
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changed areas are highlighted by a considerably higher value, so that these areas can be separated 

from the background using a threshold value 𝑇. However, in many cases, automatically obtaining 

this threshold value is not an easy task. Several thresholding methods have been proposed for this 

purpose (Melgani et al., 2002). 

 

Methods applicable for choosing a proper 𝑇 were surveyed and analysed by Rosin (2002; Rosin 

and Hervás, 2005). Three of the most popular thresholding methods are Otsu’s algorithm (Otsu, 

1979), the Iterative Self-Organizing Data Analysis Technique (ISODATA) (Ridler and Calvard, 

1978), and Minimum Error thresholding (Kittler and Illingrowth, 1986). 

 

Otsu’s algorithm (Otsu, 1979) defines that an image is composed of objects and background. A 

discriminant analysis is performed by minimizing the intra-class variance (𝜎𝜔2(𝑡), 𝑡 = 0,1, …𝑛). 𝑛 

is the maximum value in the image. 

 

𝜎𝜔2(𝑡) = 𝜔1𝜎12(𝑡) +𝜔2𝜎22(𝑡)                 (3-2) 

 

Weights 𝜔𝑖  are the probabilities obtained from the image histogram that are separated by a 

threshold 𝑡. 𝜎𝑖2 are the variances of the two classes.  

 

ISODATA (Ridler and Calvard, 1978) takes an initial threshold value to separate the image (𝐼) 

into object and background. Then the average pixel values of classified objects and the background 

are calculated. An updated threshold value is the average of those two values. This process is 

repeated until the threshold value does not change any more. 

The detail calculation procedure can be represented as:  

 

𝑇𝑛+1 = 𝜇(𝐼(𝑖,𝑗),𝐼(𝑖,𝑗)<𝑇𝑛)+𝜇(𝐼(𝑖,𝑗),𝐼(𝑖,𝑗)≥𝑇𝑛)
2

              (3-3) 

 

Backgound: 𝐼(𝑖, 𝑗), 𝐼(𝑖, 𝑗) < 𝑇𝑛 

Object: 𝐼(𝑖, 𝑗), 𝐼(𝑖, 𝑗) ≥ 𝑇𝑛 

𝐼(𝑖, 𝑗) is the pixel value in the image 𝐼 at the position (𝑖, 𝑗). 

 

The final 𝑇 is chosen when |𝑇𝑛+1 − 𝑇𝑛| < 𝜀, 𝜀 is a predefined small value. 
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Fig. 3-1.  Minimum Error thresholding. 

 
Minimum Error thresholding (Kittler and Illingrowth, 1986) also obtains the threshold through an 

iterative procedure. It assumes that the image histograms follow a Gaussian mixture model, and 

that each class (object and background) follows a normal Gaussian distribution. As shown in Fig. 

3-1, the threshold value (𝑇) is located at the intersection points of these two normal distributions. 

After iteration the final value 𝑇 which leads to the smallest size of the shadowed area is selected. 

3.2.5 Shortcomings of  2D change detection methodology 

Although numerous change detection methods exist, many methods are tested using ideal pairs of 

images. One of the main problems related to the 2D change detection based on satellite images lies 

in the lack of height information, meaning that only changes that influence reflectance values or 

local texture changes can be detected, while changes in the vertical direction – such as height 

changes of buildings - are not available and are therefore ignored. Furthermore, in some cases, the 

changes detected from spectral images do not represent real changes, but just the image difference 

caused by changes in satellite position, sensor properties or seasonal change (Heller et al., 2001). 

Moreover, when only certain specific objects of change are of interest, for example buildings, it is 

very difficult to separate those changes from other changes without height information. Many 

irrelevant changes will be mixed with building changes, especially when the data are acquired from 

different sensors or under different imaging geometries (e.g. viewing directions). Thus, recently 

DSM-assisted 3D change detection is attracting more interest, particularly as more 3D data become 

available. 

3.3 DSM-assisted change detection 

Singh (1989: 989) stated that: “The basic premise in using remote sensing data for change 

detection is that changes in land cover must result in changes in radiance values.” However, the 

value changes in radiance are not always produced by land cover changes. Besides different 

sensors and different atmospheric conditions, many seasonal changes also influence grey value 
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changes in the image. Thus, recently DSMs have been adopted in change detection approaches, 

especially when only one or several land covers are of interest. Previous DSM-assisted building 

change detection methods can be classified into three categories: 1) DSMs are used to locate the 

change candidates, and these extracted change candidates are refined with spectral information; 2) 

DSMs are employed as change features; 3) DSMs are applied to assist building reconstruction, and 

are thus used as post-classification change detection.  

3.3.1 Change candidates 

The first approach starts by extracting ‘change candidates’ using the height information (Jung, 

2004). With DSM subtraction, it is computationally easy to obtain the initial change map, which can 

be improved to a more precise building change map when additional information from the original 

image is employed. Many 3D change detection methods have started to use this approach. The 

changed pixels are detected through a simple subtraction of one DSM from another.  

 

This approach is also used for DSM quality evaluation tasks (Zhang, 2005; Reinartz et al., 2006; 

Akca, 2007). Other studies focusing on change detection include the work of Murakami et al. 

(1999), who subtracted two DSMs from LiDAR in order to extract building changes, and Tong et al. 

(2012), who subtracted two DSM from pre- and post-earthquake IKONOS stereo pairs for building-

damage detection.  

 

However, in this category of 3D change detection, the quality of the generated DSMs determines 

the accuracy of the final change maps. In fact, mis-registration and significant height differences 

that may arise between DSMs generated from different sources often result in the detection of 

erroneous or irrelevant changes (false alarms). Therefore, some refinements are required based on 

these ‘change candidates’. 

 

Fan et al. (1999) and Liu et al. (2003) detected house changes based on DSMs from airborne images. 

DSMs were computed on the digital photogrammetry workstation VirtuoZo. These “potential 

changed areas” were generated based on DSM subtraction. The candidate regions obtained were 

classified into new built, destroyed and rebuilt buildings using gradient direction histograms. These 

histograms were extracted from the original airborne images. 

 

In Jung (2004), DSMs generated from airborne stereo imagery were employed to obtain an initial 

change map. The change regions from subtracted DSMs are used as ‘candidates’. Subsequently 

these candidate regions from four images (two stereo pairs) are classified into building and no-

building areas based on graph features. Regions which have “building” within one dataset and “no-
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building” in the other dataset are considered changed buildings. This method will fail if one 

building is only partly changed, or if buildings are rebuilt. Also in high density building areas, 

several buildings might exist in one candidate region. A false alarm will be produced if only some 

of them have changed.  

Turker and Cetinkaya (2005) used the DSMs generated from pre- and post-earthquake stereo aerial 

images to detect collapsed buildings. They generated 5-meter resolution DSMs using the DSM tool 

SoftPlotter. The resolutions of the original pre- and post- earthquake stereo images were 0.5 meter 

and 0.25 meter respectively. They compared the resulting building change mask by using a 

threshold (𝑇) from 1 m to 10 m. Among them, 𝑇 = 7 achieved the highest KIA, while  𝑇 = 4 

provides the highest average producer’s accuracy. However, the threshold value was shifted when 

other test areas were selected. 

 

Zhu et al. (2008) detected building changes based on ADS 40 airborne stereo imagery. In their 

change detection procedure, initial ‘change candidates’ were derived from the height difference of 

the two DSMs. Height thresholding followed by low pass morphological filtering was used to 

eliminate the noise level. These change candidates were combined with the extracted building 

masks from two dates. The building masks were extracted separately for two DSMs by combining 

the building extraction result of two methods: Local surface normal angle transform and marker 

controlled watershed segmentation. Height change was analyzed only for the regions detected as 

buildings.  

 

In our earlier work (Tian et al., 2010) we tried to refine the building change map using a box-fitting 

algorithm. To remove the noise within the initial change map, in the work of Chaabouni-Chouayakh 

et al. (2010) for example, post-processing steps such as morphological operations and contextual 

knowledge introduction have been proposed. These methods help to remove virtual changes and to 

preserve the real ones. When only building changes are of interest, shape features can also be used 

to refine the change map (Tian et al., 2011). Instead of a feature test, support vector machine was 

used in Chaabouni-Chouayakh and Reinartz (2011) to classify the real building changes and no-

building changes based on these shape features.  

3.3.2 Fusion-based change detection 

The second change detection approach employs fusion-based methods. Height information from 

DSMs is normally used as change or no-change features to highlight changes. In case the provided 

height information is inaccurate, it can be fused with other change features based on different data 
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sources in order to further improve the change detection accuracy. They can be fused either at 

feature level or at decision level. 

 

Champion (2007) fused an existing database, aerial images and DSMs to extract changes. Firstly, 

building boundaries were extracted from the DSMs; boundaries covered by vegetation were not 

counted. The similarity of the extracted boundaries and 2D contours from the existing database 

were measured to verify the database. In the second step, a new building mask was obtained by 

comparing the above-ground masks of two dates. The final building masks were obtained by 

thresholding the normalized DSMs (nDSMs). 

 

Sasagawa et al. (2008) combined the pixel-changes generated from least square fitting of two 

images, and height changes detected by DSM subtraction, to generate the final change map 

containing three channels (Green: pixel change; Red: positive DSM change; Blue: negative DSM 

change). This change map was provided together with spectral imagery for manual interpretation. In 

their work, the generation method and the accuracy of these DSMs were not mentioned.  

 

James et al. (2012) detected changes by using a LiDAR-DSM and historic maps. These maps 

provide both the historic height information and land cover boundaries, and were fused with newly 

obtained DSMs. However, only the height difference was considered to extract erosion, deposition 

and volumetric changes.  

3.3.3 Post-classification 

Building extraction based on DSM and satellite / airborne images is a task of great importance. 

Many excellent image-based building extraction methods are available, where an existing DSM can 

be used to improve the extraction efficiency and accuracy (Mayer, 1999; Sohn and Dowman, 2007). 

Based on building extraction results, building change detection can be performed by comparing the 

extracted building mask / boundaries to the existing building footprints, which are available in most 

industrial countries (Champion et al., 2008). Alternatively this method can be implemented by 

comparing building extraction results of two dates. We denominate this approach as ‘post-

classification’. This approach has been preferred for building change detection, especially if 

outdated building footprints are provided.  

 

Besides acting as reference building location status, the outdated building footprints can sometimes 

be used as training data (Champion et al., 2009; Matikainen et al., 2010) to assist in building 

extraction. Walter (2004) derived the training area from a GIS database, and used it in a maximum 
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likelihood classification procedure. That paper focused on extracting residential settlement objects, 

which are later compared with the GIS database to highlight the land use changes. Both airborne 

multispectral images and LiDAR data were used to classify residential objects based on the 

maximum likelihood method. First, pixels were classified into houses, streets, grassland and trees 

by using the existing GIS database, vegetation index and nDSM. The subsequent object-based 

classification focused on separating residential settlement objects from industrial areas. The 

classification results were compared with existing databases to find changes.  

 

Different from Walter (2004), Olsen (2004) extracted building masks using a pixel-based 

classification. Changed buildings were extracted by performing a pixel-wise comparison with the 

existing map database. To refine the extracted building mask, regions with small size were removed 

from it. Since this method uses an existing database as training data, high classification accuracy 

can only be achieved if new built buildings have the same spectral information as the existing 

building (i.e. are built with the same or similar construction material).  

 

In order to also extract the new object boundaries, instead of using objects provided by a GIS 

database, Matikainen et al. (2010) extracted initial segments from laser scanner derived DSMs 

based on a height thresholding. Training data were selected from these segments by combining 

information from existing building maps. A classification decision tree was automatically generated 

based on these training data. Morphological slope from DSM, NDVI and texture features from 

airborne images were included as features in that classification tree.  

 

If the new buildings were built with different materials than the existing buildings, or if many 

buildings were removed from the outdated building maps, many false alarms might be introduced 

when using these maps as training data. Therefore, other methods focus on unsupervised 

classification methods. Heller et al. (2001) extracted changes by comparing the 3D geometry 

derived from images of various sensors. After matching the images, they found multiple common 

XY-coordinate matches. They extracted the significance level curves for the values of confidence 

with which the matched pixels could be compared. However, this algorithm was only focused on 

detecting the location of the changes: more detailed change information could not be detected using 

this method.  

 

Olsen and Knudsen (2005) replaced the supervised classification method from Olsen (2004) with a 

rule-based method to achieve much clearer building boundaries. The absolute building height was 

generated from a DSM based on morphological methods. The objects in the above terrain mask 
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were classified into building objects and no-building objects based on defined rules. The final 

building mask could then be compared with a prior database to obtain building changes. 

 

Rottensteiner et al. (2007a) proposed a decision fusion-based classification method using vegetation 

cover maps, height values and the surface roughness from DSMs. The fusion model has been 

designed to separate these four classes: buildings, trees, grassland and bare soil. The detected 

buildings were compared with an existing map to obtain a post-classification change detection 

result. This building extraction method has been proven to be highly accurate and efficient, but the 

fusion model has to be changed when different change objects are of interest.  

 

Waser et al. (2008) used DSMs generated from CIR aerial images for forest change detection. 

These DSMs were co-registered and normalized based on LiDAR data. Fractional tree / shrub 

covers from two dates were extracted separately based on height and a fuzzy classification. The 

decrease and increase of forest and other wooded areas were analyzed. 

 

A special post-classification method was suggested by Choi et al. (2009). Instead of directly 

classifying the whole images, only the obtained change candidate regions were classified. These 

original change candidates were generated through DSM subtraction results. After refining these 

change candidates using morphological filters, the roughness, size and height of these remaining 

segments were calculated separately for each dataset. These regions were classified into ground, 

vegetation and building classes. Finally, a post-classification was analyzed for each candidate 

region. It is assumed that building reconstruction (increase or decrease in the height of buildings) 

can also be detected with this method. However, this method requires DSMs with very high 

accuracy. 

3.4 Summary 

This chapter has presented an exhaustive review of the available literature in the field of change 

detection, especially 3D change detection. Many practical 2D change detection approaches have 

been presented and several applications using these techniques have also been reported. These 2D 

change detection techniques have recently been adopted for 3D change detection purposes. Previous 

studies have demonstrated that 3D change detection that works by fusing DSM and spectral 

imagery is possible and relatively good results can be achieved.  

 

However, until now, most of these DSM-assisted change detection methods have been carried out 

with DSMs from LiDAR or airborne stereo imagery, which feature higher quality than DSMs 
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generated from satellite stereo imagery. The potential errors present in these DSMs are rarely 

considered. Moreover, test datasets, especially in the building change studies, have been rather 

limited in size, featuring simple buildings with lower density rather than complicated shaped 

buildings with high building density. In addition, the information that can be extracted from images 

has not been fully investigated.  

 

Being limited to the quality of the Stereo-DSMs as described in Chapter 2, it is hard to achieve 

precise change detection results using only DSMs. Therefore, DSMs should be used in 

combination with the spectral information from the original stereo images. As the DSMs are 

generated using stereo images, spectral information from the same time and area is always 

available. After orthorectification of these images using the generated DSM, the ortho-image and 

DSM are well co-registered and can be used together. Thus, the main challenge here is how to 

resolve the quality restriction of DSMs by using the additional information available in the 

corresponding spectral images. 

 

Although some change detection studies based on the Stereo-DSM are available, the DSMs 

mentioned in these papers are generated using now outdated matching algorithms. Therefore, the 

DSM quality is relatively low. With the recently proposed SGM matching based method, the 

accuracy of the generated DSM is improved considerably. Corresponding 3D change detection 

approaches should be designed according to the quality and character of these DSMs. 

 

Furthermore, in the post-classification based change detection approach, the accuracy and efficiency 

of building extraction methods will directly influence the change detection result. A robust building 

extraction method is required for this purpose. 

 
Overall, it can be stated that more work is needed to develop a useful, automatic and robust DSM-

assisted change detection approach, and in particular, to be able to use DSMs from satellite stereo 

imagery. Satellite imagery is often easily available and cheaper than laser scanning or airborne 

stereo data for change monitoring in large regions, making it more suitable in applications such as 

emergency situations, e.g. after disasters.  

 

In this dissertation, three approaches are proposed, which mainly differ in the way the DSMs are 

introduced into the process. These three approaches all have their advantages and disadvantages. 

All three rely on a combination of statistical evaluations, fusion processes and filtering methods. 

They have been developed according to the objects of interest and focus on DSMs with different 
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quality. Hereafter these three methods are described in more detail, together with the procedural 

framework in which they will be used in the experimental section. 
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4. DSM-assisted change localization 

4.1 Introduction 

Correct height information can be very important when changes to specific objects are of interest, 

and the change to these objects can directly influence their height, as in the case of buildings and 

trees. Thus, using height to separate the change of interest from other changes (e.g. seasonal 

changes), and using height change to extract initial change candidate areas, are very efficient 

approaches. The continuous improvement to stereo-matching technology has greatly increased the 

quality of the Stereo-DSMs. However, as analyzed in Chapter 2, distance still exists when 

compared with the LiDAR-DSM. One of the main challenges for a change detection algorithm is 

the handling of potential incorrect height information in these Stereo-DSMs. Therefore, the change 

mask generated from DSM subtraction can only provide candidate change regions, which can be 

refined with further process. In this chapter, refinement methods are proposed in constructing a 

relationship between DSMs and satellite images. This approach is known as DSM-assisted change 

localization.  

 

If two high quality DSMs from different dates are available, for instance two LiDAR-DSMs, 

directly subtracting the two DSMs can already produce results with high accuracy (Murakami et 

al., 1999). A change mask (Mask) can be generated after a threshold value (T) is applied to the 

height difference map (D).  

 

𝑀𝑎𝑠𝑘 = 𝐾 > 𝑇                  (4-1) 

 

The threshold value can be adjusted according to the requirements of the respective application. 

However, for DSMs generated from spaceborne stereoscopic images, such a subtraction is 

generally not applicable, especially in the case of different sensors, illumination and convergence 

angle properties. Fig. 4-1 shows the profile comparison result of a Stereo-DSM and a LiDAR-

DSM. As can be seen, the Stereo-DSM (with solid line) has a much rougher surface and more 

blurred features. Assuming that the real 3D changes between the LiDAR-DSM and Stereo-DSM 

are of interest, with a simple subtraction, although there are no real changes between them, the 

rough surface will introduce many false alarms. This problem cannot be solved by applying a 

simple threshold on the difference map. These false alarms caused by blurred or even falsely 

located building edges cannot easily be eliminated. As illustrated on the rightmost building in Fig.  
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Fig. 4-1.  Comparison of DSMs generated from LiDAR and stereo matching. (a) Location of the test area; 

(b) Profiles along the white line in (a).  

 

4-1, this building is about 10 m wider in the Stereo-DSM than in the LiDAR-DSM, and the 

exceeding part shares the same height with that building (about 30 meters). Removing these false 

alarms and thus highlighting the real building changes is the main purpose of the presented 

approach. 
 

The developed DSM-assisted change localization is a coarse-to-fine change detection method. If 

the original stereoscopic images also include multispectral channels, the extracted vegetation and 

shadow classes can be used to refine the initial change map; if not, denoising or filtering of the 

difference map is necessary to obtain a cleaner result. The characteristic quality of the DSM should 

be considered when refining the results. As illustrated in Chapter 2, in urban areas, the building 

boundary regions are of relatively poor quality in comparison to the building roof areas, and some 

noise and false height values are mixed into the correct height information. These problems can be 

solved via the following two processing steps: 1) improved difference image generation procedure; 
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2) through a refinement of the mask. If the original multi-spectral data are also provided, the land 

cover maps extracted from multispectral channels (e.g., shadow, vegetation) can be directly used 

to refine the initial height change map.  

4.2 Robust DSM differencing 

As mentioned in Chapter 3, image differencing is a traditional change detection method, because 

different land covers usually exhibit different radiometric properties. The change of land cover 

directly influences the intensity values in the images: thus, changes can be highlighted in the 

difference image. In theory, this approach should also be applicable for DSM-based change 

detection, especially for the change detection of specific objects of interest, such as buildings and 

forest. However, it is difficult to obtain a precise image difference map using direct DSM 

subtraction, as discussed above (see Fig. 4-1). Another difficulty is the co-registration of the DMSs. 

Even if two images or DSMs are co-registered, the true location of the corresponding pixel’s center 

point may be anywhere within a 3 × 3 pixel window surrounding that pixel (Goodchild, 1994). In 

addition to that, when DSMs with different resolutions are used, image resampling is necessary to 

make sure the pixels have the same geo-size.  

 

Given these limitations, it is clear that directly subtracting two DSMs cannot result in the ideal 

change map. Considering the neighborhood pixels should improve the accuracy. Shown in Fig. 4-2 

are several newly constructed buildings located in the middle of Fig. 4-2b. Fig. 4-2c features the 

direct subtraction results of the corresponding DSMs, showing only the positive values: all the 

negative values have been set to ‘0’ for better display. As can be seen from this difference image, 

some unchanged buildings around them also show quite high positive change values. Moreover, 

some false height values exist in the middle of the rightmost building. All of these false alarms 

impair further change detection refinement. Therefore, this height difference map should be 

improved in the first step. 
 

One possible way to refine the height change map is to first subtract the two DSMs to generate an 

initial change map. After that, a filter kernel can be used to filter the data using a sliding window; 

the value of the pixel in the center of the window should be adjusted considering all of the pixel 

values inside that window (Schindler, 2012). This image filtering works well for images; however, 

DSMs are different from images. Although the false alarms are also called ‘noise’ here, they are not 

comparable to the noise in images. The false alarms from DSM are distributed irregularly, the 

values cannot always be explained easily and they can be small or very large. In some cases, normal 

image filtering cannot remove these false alarms, and at the same time they blur the building 

boundaries (as shown in Fig. 4-3a). Gaussian filtering also does not improve the results (Fig. 4-3b). 
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   (a)     (b) 
 

 
   (c) 

Fig. 4-2.  DSM subtraction results of a building site: panchromatic images from Date1 (a) and from Date2 

(b), DSMs subtraction result (c). 

 

    
   (a)     (b) 

Fig. 4-3.  Different image filtering results: Average filter with windowsize 7 × 7 (a) and Gaussian filter with 

windowsize 7 × 7 and sigma=0.5 (b). 

 

Therefore, the robust difference measure, which was initially developed for 2D change detection, is 

used instead of filtering the height difference map (Castilla et al. 2009). It is designed based on the 

assumption that the corresponding pixels from two images should have a minimum difference in the 

gray value. By applying subtraction to 2D images, in addition to accurate co-registration between 

them, the radiometric calibration of both images is also very important. But radiometric calibration 

of two DSM is unnecessary, because the gray values in the DSMs directly represent elevation 

height. If two DSMs are generated correctly, a height difference between them can directly indicate 
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change. Therefore, the robust difference proposed by Castilla et al. (2009) works better in DSM-

based difference map generation and has been adopted accordingly. 

 

The robust difference between the initial DSM 𝑥1 and the second DSM 𝑥2 for the pixel (𝑖, 𝑗)  is 

defined as the minimum of differences computed between the pixel 𝑥2(𝑖, 𝑗) in the second DSM and 

a certain neighborhood (with window size (2 × 𝑤 + 1) of the pixel ),(1 jix  in the first DSM . The 

robust positive and negative differences ),( jiX Pdif and ),( jiX Ndif  relative to the pixel (𝑖, 𝑗) are 

defined as written in Eq. (4-2) and Eq. (4-3), respectively: 
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This means that only the minimum value (greater than zero) within the defined window size in case 

of positive change or the maximum value in case of negative change is taken. Typically used 

window sizes are 5 × 5 pixels up to 15 × 15 pixels depending on the DSM quality and the difference 

in resolution between the two available DSMs. In Fig. 4-4, the image difference map generated 

using robust DSM differencing is shown. In Fig. 4-4a, a window size of 7 × 7 is used, while in 

Fig.4-4b a window size of 15 × 15 is used. In contrast to Fig. 4-3, after executing the robust image 

difference, the noise in the background is successfully reduced, while the yellow and green areas, 

which are more likely to be real changed areas, are not influenced significantly, especially in the 

building boundary area. The window size can be adjusted according to various requirements: for 

example, if the two DSMs have large resolution distance, a higher window size should be used. 

Overall, it is a robust method, as shown in Fig. 4-4b. Here, a larger window size is adopted, which 

results in a cleaner background. At the same time, the building heights near the boundary area are 

influenced only slightly, the boundaries of the building are preserved and even the roof-error in the 

rightmost building is removed. 

 

1x
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   (a)     (b) 

Fig. 4-4.  Robust difference results with positive changes. Generated based on window size 7 × 7 (a) and 15 

× 15 (b). 

4.3 Change map denoising 

A proper thresholding of the difference image is required to obtain the initial change mask. 

Automatic threshold methods can be used. But in many cases, unlike image gray value changes, 

the height changes have a specific physical meaning for classes like buildings or trees. In such 

cases, we can easily choose a fixed threshold value (e.g., T = 5m or 10m) according to the 

corresponding application and the lateral resolution of the DSMs. This is more direct and robust 

than any other thresholding methods. However, as illustrated in section 4.1, especially adjacent to 

buildings, some false alarms are still obtained. These false alarms will remain in the change map 

after thresholding. And in some cases, these false alarms might also fuse adjacent changed 

buildings together. To solve this problem, morphological filters can be used to refine the mask. 

4.3.1 Morphological filtering of the change map 

Morphological filters, which are mathematically-based image processing methods, are adopted to 

amend this problem. Pesaresi and Benediktsson (2001) have already used morphological filters to 

process remote sensing images. Morphological filtering is mainly based on two operations: erosion 

Eq. (4-4) and dilation Eq. (4-5). 

 

𝑒𝑟𝑙𝑑𝑒(𝑥,𝑦) = min(𝑥′,𝑦′)∈𝑘𝐸𝐸𝑛𝐸𝑙  𝑠𝑟𝑐(𝑥 + 𝑥′,𝑦 + 𝑦′)            (4-4) 

𝑑𝑖𝑙𝑎𝑡𝑒(𝑥, 𝑦) = max(𝑥′,𝑦′)∈𝑘𝐸𝐸𝑛𝐸𝑙  𝑠𝑟𝑐(𝑥 + 𝑥′,𝑦 + 𝑦′)             (4-5) 

 

A morphological filter should be designed according to the object of interest. Here, buildings are 

taken as one example. Most of the buildings in urban areas have rectangular shapes or at least are 

composed of rectangular shapes. Therefore, we define a rectangular shape as the kernel. src in Eqs 

(4-4) and (4-5) is the cover range of all the pixels in this kernel. An example of the morphological  
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       (a)                               (b) 

Fig. 4-5.  Morphological based filtering: (a) Original mask; (b) Mask after filtering. 

 

based method is shown in Fig. 4-5. Fig. 4-5a features the original height-based thresholding result, 

where noise caused by DSM failures and some land cover changes (like trees) can be seen. Fig. 4-

5b shows the morphological filter result, in which the false alarms caused by this noise are 

considerably reduced. 

4.3.2 Shape feature based filtering 

In many cases, urban objects, like buildings, can be extracted using shape features. Although the 

false alarms in the DSM can have height values comparable to buildings, it is unlikely that they 

will have a shape and size similar to buildings. For example, the rectangular shape shown in Fig. 

4-5 can easily be identified as a large building, while other smaller shapes are a result of noise. 

After refining the change detection map by using the shadow and vegetation land covers, it is still 

necessary to separate “changed buildings” from the “unchanged background”, which can be partly 

realized through shape analysis (Tian et al., 2011; Chaabouni-Chouayakh and Reinartz, 2011). 

Since buildings have more regular shapes compared to noise, we propose applying edge-based 

building extraction, improving the output by filtering the undesired objects based on their 

properties. Here, the object properties that we consider include (Tian et al., 2013a):  

 

Height:  

For our purpose, height means the average height for each object, in order to obtain only one 

vertical change value for each constructed/destructed building defined by a single mask. To 

compute this value, we average the pixel values in the fusion result of the “difference image” 

belonging to the same changed object, and define this value as the vertical change of each building. 

Next, we exclude all pixels that have a value of 0 (no height in the changed area), as well as very 

low values or very high values which can be attributed to potential errors in one or both of the 

DSMs, so that these pixels will not be involved in the mean value calculation procedure. As 

displayed in Fig. 4-6, only the pixels of the middle part (gray section) of the height difference 

values are analyzed.  
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Table 4-1.  Shape difference of possible buildings and artifact objects. 

 Shapes 

Possible buildings 

  

  

Artifact objects 

    

 

 

 

 

 

Fig. 4-6.  Vertical change value evaluation. 

 

 
 (a)         (b)             (c) 

Fig. 4-7.  Convex Hull calculation: (a) Pixels in original mask; (b) Generated Delaunay triangulation; and (c) 

Convex hull. 

 
Area: 

The area of the generated region is calculated by counting the number of pixels inside a single 

object included in the generated mask. 

Area= Number of pixels × (Resolution)2 

 

Convexity: 

The Convexity of a region is defined in this thesis as the area ratio of this region and the smallest 

convex polygon that can enclose the region. The computation of the smallest convex polygon (de 

Berg et al., 2008) is shown in Fig. 4-7. Fig. 4-7a shows the original mask from the difference 

image. After connecting all pixels in the original mask using Delaunay Triangulation (Fig. 4-7b), 

Max Value MinValue 

0 5% 5% 
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the object is represented by the generated edges, which constitute the smallest convex hull of the 

original region (shown as the black line in Fig. 4-7c).  

4.4 Change map refinement using land cover classification 

4.4.1 Fusion with vegetation covers 

Vegetation, including trees and grassland, forms an important component of urban areas. In urban 

areas with comparatively simple structures, the four classes building, trees, ground and grassland, 

can be obtained (Lu et al., 2006; Rottensteiner et al., 2007b) if a vegetation mask is combined with 

the height information from DSM. Based on this classification, building changes can be separated 

from tree changes by using the vegetation cover information. Alternatively, the vegetation land 

cover can be used to remove vegetation areas from the original DSMs, thus eliminating the 

influence of the vegetation on building extraction. 

 

Vegetation has high absorption in the red band (𝜌𝐸𝐸𝐸) and low absorption in the near-infrared 

(NIR) band (𝜌𝑛𝑖𝐸 ). This makes it easily distinguishable from other land cover classes in the 

images. In 1969, Jordan introduced the Ratio Vegetation Index (RVI) to extract vegetation (Jordan, 

1969).  

 

𝑅𝑉𝐼 = 𝜌𝑛𝑖𝑟
𝜌𝑟𝑒𝑑

                  (4-6) 

 

RVI was improved to NDVI by Rouse et al. (1973) and Kriegler et al. (1969). NDVI is the ratio 

between the difference and the sum of the NIR and Red channels. The advantage of NDVI lies in 

its normalization of the value range. NDVI ranges from -1 to 1, while RVI ranges from 0 to 

infinity (𝜌𝐸𝐸𝐸 = 0).  

 

𝑁𝐾𝑉𝐼 = 𝜌𝑛𝑖𝑟  −𝜌𝑟𝑒𝑑
𝜌𝑛𝑖𝑟  +𝜌𝑟𝑒𝑑

                 (4-7) 

 

Although many other methods have subsequently been developed for vegetation detection (Huete, 

1988; Kaufman and Tanre, 1992; Qi et al., 1994; Ray, 1994), NDVI remains the most popular 

method due to its reliability and ease of calculation (Lu et al., 2004; Rottensteiner et al., 2007b; 

Awrangjeb et al., 2010). Moreover, if the vegetation cover rate is not too low, NDVI is less 

sensitive to the soil background and atmospheric influences compared to other methods (Ray, 

1994).  
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 (a)          (b)       (c) 

Fig. 4-8.  WorldView-2 images and classified changes: (a) Before change; (b) After change; (c) Change 

classification results with building change (red) and vegetation change (green). 

 

Fig. 4-8 displays an example of the classified building and vegetation changes detected using only 

height information and NDVI. Fig. 4-8a and 8b show WorldView-2 images before and after a 

change in building development. Several houses have been removed in this area (for unknown 

reasons). Using NDVI and height information, changes here can be classified as removed 

buildings (marked in red in Fig. 4-8c) and removed trees (marked in green in Fig. 4-8c). 

4.4.2 Fusion with shadow covers 

• DSM quality in shadow area 

As well as handling the vegetation, detecting and removing shadow influence from satellite images 

or DSMs is very important for urban area monitoring, especially for building change detection. In 

binary change detection, the very important final step consists in highlighting real positive and 

negative changes by getting rid of artificial change (noise and other areas which might contain 

irrelevant change: here, for example, not buildings). The existence of shadows causes false colour 

features, decreases texture information and directly influences the image matching procedure, 

leading to more imprecise height values for shadowed areas in the generated DSM. Moreover, the 

improvement in spatial resolution also leads to an increasing influence of shadows and these 

shadowed areas are often different for the stereo images from the two dates.  
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Fig. 4-9.  Shadow observed in stereo data. 

 

 
  (a)              (b) 

Fig. 4-10.  DSM quality in shadow area: (a) Panchromatic image from WorldView-2; (b) DSM generated 

from (a) and second stereo image. 

 

The influence of shadow on the stereoscopic images is illustrated in Fig. 4-9. The green area 

shown here represents the real shadow of the building on the ground surface, while the red area is 

the shadow that is detected from satellite position 1 (S-P1) and the blue area is the shadow that is 

detected from satellite position 2 (S-P2). This constellation can result in the following two 

problems: i) As some parts of the red area seen from S-P1 are not visible from S-P2 or even from 

both positions, information required for the DSM generation is missing; ii) The area observed from 

both positions (blue area) has relatively low radiometric values, which may cause matching 

failures in the DSM generation procedure.  

 

This problem is further illustrated in Fig. 4-10: As can be seen, the shadow area, especially in the 

top right corner, leads to blurred boundaries in the resulting DSM (Fig. 4-10b). When analyzing 

the accuracy of DSMs, it can be observed that the side of the building borders with lower quality is 

always located at the shady side of the building (Fig. 4-10a). Even though the existence of shadow 

affects the quality of the data, it can also be used to acquire valuable information for building 

extraction (Sirmacek and Unsalan, 2011). If no other high objects are within the shadow cast, the 

S-P1 S-P2 



4 DSM-assisted change localization 

52 

shadow boundaries which run parallel to the building edges can be used to refine the boundaries of 

the extracted buildings.  

• Shadow extraction 

Extensive reviews and evaluation of literature and methods related to shadow extraction have been 

conducted by Prati et al. (2003) and Sanin et al. (2012). According to their research, the selection 

of features is more important than the classification method in shadow detection. Shadows can be 

divided into static and dynamic shadows. Static shadows result from static objects, like buildings 

and trees, while dynamic shadows result from moving objects, like pedestrians or cars (Nadimi and 

Bhanu, 2004). According to the different features used, recent shadow detection methods can be 

divided into intensity, chromaticity, physical properties, geometry and texture-based approaches. 

They all have advantages depending on their application. For this work, the physical model based 

method developed by Makarau et al. (2011) is adopted, due to its robustness and high accuracy for 

remote sensing images. Another advantage of this method is that it is not restricted to the 

radiometric properties of the image or the illumination condition. In Fig. 4-11, the detected shadow 

mask based on the scene shown in Fig. 4-10 is displayed. 

• Shadow based DSM refinement 

As mentioned above, morphological filtering is a method that can be used to refine the object 

shape. In this work, morphological erosion and dilation have been combined with the shadow 

mask to refine the building mask. As has been described in Fig. 4-10, the DSMs’ building 

boundaries on the shady side are relatively worse than on the illuminated side. Therefore, the sharp 

edges from the building shadows are used to refine the building boundaries.  

 

In Fig. 4-12, the whole procedure of the shadow mask based building shape enhancement is 

displayed. The black line corresponds to the originally detected edges, and the blue line represents 

the dilated boundary, which is covered by the shadow mask. The green rectangle in Fig. 4-12 

represents the refined building shape. Further erosion is performed until the original building 

dimensions are reached. The red polygon represents the refined building shape. 
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Fig. 4-11.  Detected shadows based on the scene shown in Fig. 4-10. 

 

 

Fig. 4-12.  Changed building mask and shadow mask. 

4.5 Summary 

In this chapter, DSM-assisted change localization was introduced. Both the robust image 

differencing and the land cover-based change map refinement are suitable for robust 3D change 

detection. They are not restricted by the sensor type or DSM quality and both help to improve the 

height change map. 

 

Fig. 4-13 depicts the flowchart of the approach proposed in this chapter. Starting from two co-

registered datasets, the robust difference, denoising and landcover-based refinement are adopted in 

generating the final change mask. Based on the obtained results, the method presented can 

alleviate some of the drawbacks of DSMs, such as unsmooth boundaries and some small potential 

errors. 

Shadow direction 
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Fig. 4-13.  Flow chart of the DSM-assisted change location method proposed. 

 

However, if there are some changes that are not included in the change map, such as rebuilt 

buildings, which can happen for long time range change detection, these new buildings at similar 

locations to old buildings with similar heights might not be detected. And if the regions at the 

newly built building locations were originally covered with trees, the changed building mask may 

not be represented correctly in the initial change mask. Moreover, if any of the DSMs contain large 

areas of incorrect values, for example, the stereo imagery can fail to extract a whole building or 

one piece of forest. In that case, that building or forest will not appear correctly as change/no 

change in the initial change mask, and neither the robust difference nor the following refinement 

can cover it.  
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5. Fusion-based change detection 

5.1 Introduction 

DSM-assisted change localization approaches, as described in Chapter 4, are mainly based on 

refining the height difference map. If the original DEMs contain large areas of incorrect 

information, refinements can improve the accuracy to a certain extent, but usually cannot correct 

all of these errors. These incorrect height values are produced due to the influence of shadows, and 

some mismatched information due to the methodology used for DSM generation and eventually 

large different view angles of the stereo pair. The existence of these errors makes it difficult to 

extract initial changes precisely using only DSM subtraction. Thus, an efficient method of fusing 

the DSMs and ortho-rectified satellite images is proposed. This method can compensate for the 

disadvantages of using DSMs or spectral images alone for change detection. 

 

The main objective of data fusion in remote sensing is to combine data from different sources, 

producing an improved result comprising information from all the sources. The three different 

types of data fusion techniques identified by identified by Hall and Llinas (1997) and Pohl and van 

Genderen (1998) are shown in Fig. 5-1: 

 

 

Fig. 5-1.  Processing levels of image fusion (Pohl and van Genderen, 1998). 
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• Pixel / Data-level fusion 

• Feature-level fusion 

• Decision-level fusion 

 

Pixel-level fusion is the method at the lowest processing level. It combines different sources of 

raster images into a single image, e.g. for pan-sharpening (Ehlers, 2004). The co-registration 

between these images plays an essential role, as inaccurate co-registration can produce artificial 

colors or features in the final fused result, thus influencing the later interpretation. Different pixel-

based fusion methods have been reviewed in Pohl and van Genderen (1998) and Ehlers et al. 

(2010).  

 

Feature-level fusion combines features extracted from two or more sources of data. Many 3D 

change detection methods belong to this category, since they fuse spectral features from 

multispectral images and height features from DSMs (Sasagawa et al., 2008; Tian et al., 2011). 

Until now, most of the feature fusion methods have been performed based on LiDAR data, as the 

LiDAR data contain highly accurate height information: thus, each value can be considered a 

trustable feature.  

 

Decision fusion treats each feature or initial change detection result as one decision, so a fusion 

rule is needed to combine them. In change detection, these change features are usually extracted 

separately from various data sources, and can indicate the amount of change or change classes. 

The methods of decision fusion include weighted decision methods (voting mechanisms), classical 

inference, Bayesian inference, Fuzzy logic and Dempster-Shafer fusion (Hall and Llinas, 1997). 

 

Since this research is focused on producing change detection maps instead of pixel-fused maps, 

feature fusion and decision fusion methods are developed and tested in this chapter. In both fusion-

based change detection approaches, the initial change maps are generated by using DSMs and 

images, which is also the main difference between the fusion-based methods and the DSM-assisted 

change localization (Chapter 4). 

 

As a feature fusion approach, we employ a region-based change detection method in this thesis. 

The line features from orthorectified panchromatic images are used to produce homogeneous 

regions, and then other change features extracted from images and DSMs are analyzed for these 

regions. For the decision fusion approach, DSM and spectral images can be treated as two parallel 

data sources. Both of them can give an indication of change or no-change for each pixel. Fusion 

rules should be built for each class. Since this decision fusion focuses on evaluating the efficiency 
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of the proposed indicators and the decision fusion method: thus, it is built on the pixel level. 

Moreover, the buildings are taken as objects of interest for the decision fusion model generation.  

5.2 Feature fusion-based change detection 

5.2.1 Feature fusion 

DSMs generated from stereo images as described in Chapter 2 exhibit relatively low quality in 

boundary areas. Fig. 5-2 displays a comparison of the boundary sharpness between a panchromatic 

image and the corresponding DSM. Fig. 5-2a shows the orthorectified panchromatic image; Fig. 

5-2b shows the corresponding DSM. As can be seen here, buildings in panchromatic image have 

much clearer and straighter boundaries than in the DSM. Therefore, using boundary features from 

panchromatic images is more accurate than from DSMs. Poli and Soille (2012) suggest using 

segmentation results from VHR images (e.g. WorldView-2) to refine a Cartosat-1 DSM. In many 

cases, the original Cartosat-1 image itself also provides reasonable segmentation results. 

Moreover, applications using region-based change detection methods can improve the change 

detection accuracy, especially by removing the “pepper and salt” effect in the 2D image-based 

change detection methods. Therefore, instead of directly fusing pixel-based features from the two 

image sources, we extract regions from the panchromatic images.  

 

As shown in Fig. 5-3, a two-step region-based change detection procedure is proposed according 

to the character of the DSMs produced using stereo matching. In the first step, segmentation on 

orthorectified Cartosat-1 images is performed to obtain initial regions. Then regions from two 

dates (Date1 and Date2) are combined to obtain an initial segmentation map. To correct the over-

segmentation resulting from the region combination, a region merging strategy is proposed to 

reach a reasonable segmentation level.  

 

 
           (a)           (b) 

Fig. 5-2.  Boundary sharpness comparison between panchromatic image (a) and generated DSM (b). 
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Fig. 5-3.  Flow chart of the feature fusion approach (Tian et al., 2013b). 

 

5.2.2 Mean-shift segmentation 

Image segmentation is the process of partitioning an image into groups of pixels that are spectrally 

similar. Here, the objective of segmentation is to produce small units that have different spectral 

characteristics in comparison to the areas nearby. A proper level of segmentation in high 

resolution satellite images is difficult to reach due to mixed pixels, spectral similarity between 

different land covers and the textured appearance of specific land covers. Many segmentation 

methods have been introduced in computer vision, like watershed (Vincent and Soille, 1991), 

level-set, mean-shift (Comaniciu and Meer, 2002) and several more. All approaches attempt to 

reach an appropriate segmentation level by adjusting one or more parameters based on one 

segmentation algorithm (Vincent and Soille, 1991; Meyer and Beucher, 1990; Comaniciu and 

Meer, 2002; Melendez et al., 2011). Since urban areas typically consist of different land covers 

(e.g. buildings, roads, shadows, trees), it is difficult to obtain adequate segments for all land covers 

using a single segment scale, since different kinds of objects require different segmentation levels. 

Over- and under-segmentation typically appear together. Some methods perform multi-scale 

segmentation. Since image splitting is more difficult to control, much work has been performed 

based on merging over-segmentation results (Haris et al., 1998; Ning et al., 2010; Nock and 

Nielsen, 2004). 

 

Pre-processing 

Step 1 

Step 2 
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Here, over-segmentation is performed using the mean shift implementation from the EDISON 

library (Comaniciu and Meer, 2002) to obtain small change units. Since segmentation is not the 

focus of this thesis, the details will not be provided here, but it can be said that for our purpose, 

small segments are an important pre-requisite. The segmentation could also be performed using 

other methods, which can lead to over-segmentation. After segmentation, two region maps are 

obtained from the two corresponding datasets. An intersection of the two region maps is 

performed to capture all possible change regions. 

 

Fig. 5-4 presents the intersection procedure of two segments from two dates (before change and 

after change). The example shown in Fig. 5-4c is the ideal intersection result, on which only the 

changed areas produce new segments. However, in many situations, the obtained result is less 

ideal. As shown in Fig. 5-4d, some unexpected segments, like the segment textured with the 

oblique grid, are introduced because of the displaced boundaries. This problem arises frequently in 

change detection due to factors such as imperfect co-registration accuracy between two datasets. 

Many small segments composed of only one or two pixels are produced, primarily at the edges of 

the segmentation results of the two data (as shown in Fig. 5-5). Due to suboptimal registration or 

radiometric differences (e.g. different shadow cast) caused by seasonal or sun angle differences, 

border regions of segment maps from two dates cannot be matched perfectly. Moreover, DSMs 

usually feature lower quality (height values are less accurate) at segment / object edges compared 

to the center of segment / object. Therefore, these small regions introduce false alarm to the final 

results, and appropriate region merging is required before any further steps are performed. A 

detailed requirement of initial regions for change detection was proposed by Bruzzone and Prieto 

(2000). However, they do not specify how to reach this requirement. In the following section, a 

new region merging procedure is proposed to solve this problem.  

 

 

 
     (a)    (b)    (c)     (d) 

Fig. 5-4.  Segmentation intersection procedure: Segments from Date1 (a) and from Date2 (b); Ideal 

intersection result (c) and actual intersection result with displaced edges (d). 
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Fig. 5-5.  Small regions at the borders resulting from imperfect registration. 

 
 

 

 

 
 

  

Fig. 5-6.  Merging problem statement. 

 

5.2.3 Greedy strategy for small region merging 

In order to merge these small regions without influencing the original segmentation result, only 

very small regions (size less than 10 pixels, for example) are considered in the merging procedure. 

As shown in Fig. 5-6, the purple region 𝐺𝑠 is the small region which has to be merged. Each 𝐺𝑠 is 

surrounded by several regions, which are hereafter referred to as candidate regions 𝐺𝑖 (i=1, 2, …, 

k, k is the total number of the neighbors). The objective of this step is to merge each small region 

𝐺𝑠 into one of the candidate regions. To achieve this, the similarity between these small regions 

and the candidate regions is calculated. Following the greedy strategy (Cormen et al., 2001), the 

candidate with the minimum heterogeneity increase after merging it with the region 𝐺𝑠 is selected. 

An energy minimization model composed of four energy functions is proposed for this step. The 

similarities between the regions are measured for both the image intensity difference map 𝐾 (Eq. 

(5-1)) and the height difference map 𝐻 (Eq. (5-2)). 

 

𝐾 = |𝑓1 − 𝑓2|                                                                                   (5-1) 

𝐻 = |ℎ1 − ℎ2|                                                                          (5-2) 

G2 

GS G1 

G3 
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Here 𝑓1 and 𝑓2 represent the pixel values of the panchromatic images from Date 1 and Date 2, and 

ℎ1 and ℎ2 are the two DSMs from Date 1 and Date 2. Merging 𝐺𝑠 into one of the 𝐺𝑖 regions will 

produce  𝐺𝑖′ . We define the following energy functions to measure the distance between 𝐺𝑖 and 

𝐺𝑖′ . The first function (Eq. (5-3)) is the area weighted mean value distance based on D. 

 

𝐸1 = 𝜔 ∗ | µ(𝐺𝑖′) − 𝜇(𝐺𝑖)|                                                    (5-3) 

 

where 𝜇(𝐺𝑖) is the average pixel value of region i, the pixel values are extracted from the image 

intensity difference map D. The energy term is multiplied by a weight 𝜔 because the larger 𝐺𝑖 is, 

the less likely it is to change after merging with 𝐺𝑠 . For this work, the size of 𝐺𝑖  (total pixel 

number) is used as the weight ω. 

 

The intensity range of each region is chose as the second energy function. 

 

𝐸2 = | 𝑀𝑎𝑥𝑚𝑖𝑛(𝐺𝑖′) −𝑀𝑎𝑥𝑚𝑖𝑛(𝐺𝑖)|                                        (5-4) 

 

Where 𝑀𝑎𝑥𝑚𝑖𝑛(𝐺𝑖) is the difference between the maximum and minimum value of region 𝐺𝑖 . 

Also 𝐸2 is computed based on the 𝐾 image. Similar energy functions are computed based on 𝐻 

(shown in Eq. (5-2)), denoted as 𝐸3 and 𝐸4. 𝐸3 is the weighted mean value using average height 

values and 𝐸4 is the height range of each region. 

 

Next the candidate regions are ranked four times according to the four similarity energy functions 

separately: the smaller the value of the energy function, the higher the rank 𝑂 it is assigned. 𝑂𝑗𝑖 

represent the rank order of 𝐺𝑖 according to the energy feature 𝑗. A ranking matrix Ω is generated 

recording the ranks of the candidates. 

 

Ω =

⎩
⎨

⎧𝑂1
1 𝑂21 𝑂31 𝑂41

𝑂12 𝑂22 𝑂32 𝑂42
… … … …
𝑂1𝑘 𝑂2𝑘 𝑂3𝑘 𝑂4𝑘⎭

⎬

⎫
                                                    (5-5) 

 

A ranking vector {𝑂1𝑖 ; 𝑂2𝑖 ; 𝑂3𝑖 ; 𝑂4𝑖} is generated for each candidate i (i = 1,…, k). The candidate 

with the highest sum of ranking 𝑀𝑖𝑛�∑ 𝑂𝑗𝑖4
𝑗=1 � is chosen as the object to ‘merge to’ (since a high 

rank results in a low value). To speed up the merging procedure, all of the neighborhood 

candidates should have more pixels than the defined size of the small regions. For instance, when 
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a region with fewer than ten pixels has to be merged with one of its neighbours, only the 

neighbourhood regions larger than ten pixels size are considered as candidates. 

5.2.4 Region-based change detection 

Using the produced regions described in the previous section, it is possible to apply region-based 

change detection methods. The main difference between pixel-based and region-based change 

detection is the fact that pixel-based change detection operates on single pixels, while region / 

object-based change detection methods operate on a group of pixels belonging to one region / 

object. Change features should thus be extracted for each region. The region-based features can be 

divided into two groups: the average of existing pixel-based features and textures analysis using 

each region as the smallest unit. 

• Region-based change features based on average difference  

Radke et al. (2005) reviewed numerous change features. The image grey value difference is still 

an essential feature of change detection and is easy to implement. The first step of this approach is 

to generate an absolute-valued difference image map 𝐾 (Eq. (5-1)), as we have already used in the 

region merging procedure. 

 

In our published work (Tian et al., 2013b), the multi-level feature sets (Celik, 2009) are adopted. 

These features are obtained by considering a series of neighborhoods with various window sizes S 

{S=1, 3; 5; 7; 9} surrounding the corresponding pixels specified by  

 

𝑣 = 1
𝑆∗𝑆

∑ 𝐾𝑝𝑆∗𝑆
𝑝=1                                                                              (5-6) 

 

This can also be considered as the difference map at different resolution levels. With this multi-

level representation of changes, the neighborhoods of the corresponding pixels are included, 

highlighting the behavior of changes for various land cover classes.  

• Change detection 

In this section, the region-based change vector (v) is described by using the mean value of the 

change features from DSMs and images ( r
iv  is the ith change vector for region r; r = 1, 2, …, nr; nr 

is the total number of regions.). Since the Euclidean distance is adopted for the CVA in this work, 

a standardization of the change vector is preferable when the change features within the change 

vectors are in the same range. All of the change vectors are normalized by dividing them by their 

standard deviation (𝜎(𝑣𝑖) ; vi is the ith change vectors of all regions; i = 1, 2, …, l; l is the total 
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number of region-based change vectors). Moreover, weights ρi are used to balance the influence of 

the change vector from the images and from the DSMs. In this paper, we use five region-based 

change vectors from the image difference map (multi-level features) and only one region-based 

change vector from DSM (see also section 3.2.1). Weight ρ = 0.1 is used for the change vectors 

from images, and ρ = 0.5 for the change vector from DSM. This weight can also be manually 

adjusted if the DSMs exhibit obviously lower or higher quality. The formulated weighted 

multilevel CVA for each region (r) is 
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Here, a larger value of rV∆  indicates a higher probability of change.  

5.3 Decision fusion-based change detection 

5.3.1 Decision fusion 

The general term ‘decision fusion’ means in our case the fusion of different change indicators. 

These change indicators can be extracted directly from images, and can also be a change detection 

result from selected independent methods. The aim of fusing decisions of separate indicators is to 

increase the overall performance. The advantage of decision fusion is its feasibility, low 

computational complexity and robustness to the removal or addition of individual indicators 

(AUG Signals, 2013). Benediktsson and Kanellopoulos (1999) combined three voting systems - 

majority voting, complete agreement and consensus-neural network - to fuse the classification 

results from neural network and Gaussian maximum likelihood. However, the classification results 

from both classification methods directly influence the final fusion results. Fuzzy logic is also a 

popular decision fusion method. As a form of probabilistic logic, it can combine all logic variables 

with values between 0 and 1 (Zadeh, 1965). For fuzzy logic-based classification, membership 

functions have to be defined for each class in the training procedure (Vögtle and Steinle, 2003). It 

provides a large number of combination operators but is said to be a weak method in modelling 

uncertain information (Le Hégarat-Mascle et al., 1997). Fuzzy logic assumes that the information 

from each indicator is 100% certain, which is not true in many cases (Rottensteiner et al., 2005). 

In object-focused change detection, it is usually not possible to decide with 100% certainty if an 

extracted feature based on only one data source has changed or not. Usually, only a probability of 

change can be provided for each feature. This probability can be determined according to the 

quality of the DSM and the quantity of change in height. Correspondingly, the changes detected in 
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spectral images all represent potential changes. When only the change of some objects is of 

interest, the radiometric changes obtained from satellite spectral images do not directly indicate 

changes, but change probabilities. In this work, Dempster-Shafer fusion is used for the purpose of 

fusing uncertain information. 

5.3.2 Dempster-Shafer fusion 

Dempster-Shafer (DS) fusion was introduced in the 1960s by Dempster (1968) and extended by 

Shafer (1976) for the purpose of handling imprecise and incomplete information as well as solving 

conflicting information among different inputs. Another advantage of DS fusion is that it can 

handle not only single classes but also the union of several classes (Le Hégarat-Mascle et al., 

1997). This is particularly useful when change detection is performed for specific objects of 

interest. For example, NDVI can indicate increasing or decreasing vegetation. Here, vegetation 

would be a combination of trees, grass and bush classes instead of a single class. Moreover, DS can 

handle the “mixed” pixel problem, since it can deal with any union of classes (Le Hégarat-Mascle 

et al., 1997). Le Hégarat-Mascle et al. (1997) and Rottensteiner et al. (2007) have adopted 

Dempster-Shafer fusion for classification of multisource remote sensing images. DS fusion rules 

have to be designed according to the object of interest. Therefore, in this work, we take building 

change as one example: only the indicators related to buildings are of interest. 

 

DS theory is a belief function-based combination method. Each indicator gives different certainty 

to the decision class  (𝐴 ∈ 2Θ), 2Θ represent the object classes of interest (such as the building 

change class) and all possible combinations of them. The certainties of the decision class 𝐴 are 

called probability masses (𝑚(𝐴)), and have values between 0 and 1.  
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When p indicators are considered, each indicator provides a probability for the classes in 𝐵 �𝐵 ∈

2Θ�, which have a fuzzy relationship with A. The fused certainty of A can be represented with DS 

fusion theory (Le Hégarat-Mascle and Seltz, 2004) based on:  
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i:  indicator, and 1 ≤ i ≤ p, 
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im :  probability mass  

p: amount of indicators 
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K is a measure of conflict among different indicators, meaning that a decision cannot be, for 

example, change and no-change at the same time. 𝑚𝑖(𝐵𝑖) represents mass functions of indicator i 

to class B. The probability masses shown in Eq. (5-8) are the original belief certainties. For 

instance, if one pixel has less than 1 m height change, then it is given a small probability, 

indicating low significance of real building changes, since this is in the range of DSM-noise. In 

contrast, if it has more than 10 m of height change, it will have a high probability of indicating 

actual building change. In Rottensteiner et al. (2007), a cubic parabola was used to model the mass 

function for the probability between these extremes, which also works well in DSM-assisted 

classification. In that model, several experimental based thresholds are needed for each indicator. 

Therefore, for this investigation, the sigmoid curve is preferred (Tian et al., 2013a) and use it to 

obtain a similar ‘S’ shape with fewer parameters.  

 

𝑃𝑖(𝑥) =  0.99

1+𝐸−
𝑥−𝑇
𝜏

             (5-11) 

 

In Eq. (5-11), x is the original value of each indicator. For our purpose, we add two parameters T 

and τ to control the symmetry point and the shape of the sigmoid function. The symmetry point 

(black point) in Fig. 5-7 indicates a certainty of 50%. Obtaining the parameter T for this value can 

be treated as a threshold selection problem. For pixels having a value (x) near the selected 

threshold value (𝑥 ≈ 𝑇), the obtained probability of 𝑃𝑖 is about 0.5. It indicates 50% of certainty to 

be assigned to the correct class of interest, which means that these values also have a high risk of 

raising a false alarm. The more a value deviates from the threshold, the higher is the probability 

that it is assigned to the correct class.  

 

In image processing, much research has been performed focused on the selection of an appropriate 

gray level threshold to separate the object of interest from the background. The threshold value 

can be provided manually or calculated automatically by adjusting the relationship of the object of 

interest and the background. If the gray values in the images have well understood physical 

meanings, like the height values in DSM, it is not difficult to choose a threshold value. If not, the 

automatic method is more robust. This work employs the Minimum Error thresholding method 
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proposed by Kittler and Illingworth (1986) to select T, because of its efficiency and robustness. 

This thresholding method assumes that both objects and the background in the image follow a 

Gaussian distribution. The threshold T is chosen to optimally separate these two distributions, 

which means that the pixels at this threshold point have a probability of 50% of being classified as 

an object. τ is used to control the slope of this distribution, which can be estimated using a given 

sample. According to the rule of the DS fusion theory, no indicator can give 100% certainty: 

therefore, a maximum value of 0.99 is chosen for this model. 

 

The main advantage of sigmoid curve distribution is that it can expand the middle part of the 

original feature values. After transforming the obtained values, they would be less sensitive to the 

selected threshold value. Fig. 5-8 displays the original height change indicators and the generated 

mass function. The values have been stretched from [-20 m, 23.9 m] to [0, 0.99]. In this example, 

the sample datum (P(x) = 0.1| x = 1) is used to calculate τ: therefore, all of the values below 1 will 

automatically obtain a change probability between 0 and 0.1. As can be seen in Fig 5-8b, the pixels 

with height changes more than 6~7 m obtain a higher change probability (more than 0.8). The 

middle values are mainly located in the building boundaries or shadow areas.  

 

 
Fig. 5-7.  The probability mass function. 

 

 
  (a)      (b) 
Fig. 5-8.  Comparison of the change map before and after sigmoid curve stretching: (a) Original height 

change map; (b) Change indicator stretched with Sigmoid curve.  
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5.3.3 Change and no-change indicators 

DS fusion methods from Le Hégarat-Mascle et al. (1997) and Rottensteiner et al. (2007) are 

focused on classification: thus, the indicators are defined with a focus on different land cover 

classes. In this section, only building changes are of interest. Therefore, we have classified all of 

the features we can get from images and DSMs to building change indicators and no-building 

change indicators. Change features are all of the features that can be used to indicate the changes 

for the specific object, like height changes derived from a DSM or dissimilarity from spectral 

images. In Chapter 4, features that can be extracted from DSMs and images for change map 

generation and refinement were illustrated. Features have been used mainly separately in 

improving change accuracy in that approach. If one feature exhibits large errors, false alarms will 

be produced in the final change result. Therefore, in this section, these features have been 

classified to change indicators and no-change indicators. They are fused together to obtain a 

change map based on DS fusion theory. 

 

As explained in Chapter 4, radiometric information for the same land cover class sometimes 

differs considerably due to the different acquisition circumstances. Instead of comparing gray 

values directly, we use an information similarity measure to highlight building changes. 

Information similarity measures have been widely used in the image processing community, for 

example for image registration (Suri and Reinartz, 2010, Reinartz et al., 2011) and change 

detection (Inglada and Mercier, 2007; Gueguen et al., 2011). Inglada and Mercier (2007) extended 

Kullback-Leibler (KL) divergence for multi-temporal change detection based on the evolution of 

the local statistics of the image between two dates. The local statistics are estimated by using one-

dimensional Edgeworth series expansion, which approximates probability density functions in the 

neighborhood of each pixel in the image. Bovolo et al. (2008) adopted this method for object-

based change detection by computing the KL divergence of the two corresponding objects derived 

using image segmentation. In our work (Tian et al., 2012a), KL divergence was used to obtain a 

change indicator from images. A brief introduction to the calculation procedure is provided below. 

 

Assuming that the local neighborhood of two corresponding pixels is considered as two random 

variables X and Y, with and being the marginal Probability Density Function (PDF), then 

the KL divergence of these two random variables is defined as  

 

𝐾(𝑌|𝑋) = ∫ 𝑙𝑙𝑙 𝑓𝑋(𝑥)
𝑓𝑌(𝑥)

𝑓𝑋(𝑥)𝑑𝑑               (5-12) 

 

Xf Yf
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The remaining task is to estimate the marginal distributions, which can be achieved using several 

approaches. The simplest way is to make use of histograms. However, to do that, a large number 

of samples are required for proper estimation (Inglada and Mercier, 2007), meaning that a 

relatively large window size would have to be used. Here we use the Cumulant-based KL 

approximation for PDF estimation as proposed in Inglada and Mercier (2007). This method works 

under the assumption that the PDF is close to a Gaussian distribution. In this case, the marginal 

density function )(xf X  can be expressed by the Edgeworth series expansion, which relies only on 

the first four cumulants (Cui et al., 2011). The cumulants can be estimated from moment 𝜇𝑋;𝑖, 

which is the centered moment of order i of variable. The Edgeworth series expansion can be 

expressed as described in Inglada and Mercier (2007) and Lin et al. (1999): 
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Where: 
 
𝜅𝑋;1 = 𝜇𝑋;1; 𝜅𝑋;2 = 𝜇𝑋;2 − 𝜇𝑋;1

2 ; 𝜅𝑋;3 = 𝜇𝑋;3 − 3𝜇𝑋;2𝜇𝑋;1 + 2𝜇𝑋;1
3  

 
𝛼1 = 𝑐3 − 3 𝛼

𝜅𝑌;2
; 𝛼2 = 𝑐4 − 6 𝑐2

𝜅𝑌;2
+ 3

𝜅𝑌;2
2 ; 𝑎3 = 𝑐6 − 15 𝑐4

𝜅𝑌;2
+ 45 𝑐2

𝜅𝑌;2
2 − 15

𝜅𝑌;2
3  

 
𝑐2 = 𝛼2 + 𝛽2; 𝑐3 = 𝛼3 + 3𝛼𝛽2; 𝑐4 = 𝛼4 + 6𝛼2𝛽2 + 3𝛽4 
 
𝑐6 = 𝛼6 + 15𝛼4𝛽2 + 45𝛼2𝛽4 + 15𝛽6 
 

and 𝛼 = 𝜅𝑋;1−𝜅𝑌;1
𝜅𝑌;2

; 𝛽 =
𝜅𝑋;2
1/2

𝜅𝑌;2
 

 
Because of the asymmetric property of KL divergence, the symmetric KL divergence 

 

𝐾𝐾𝐾 = 𝐾𝐾𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ(𝑋,𝑌) + 𝐾𝐾𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ(𝑌,𝑋)            (5-14) 

 

is used as one change indicator in this work. 

 

Theoretically, the probability density function is always positive. However, negative function 

values can occur when it is approximated by Edgeworth series expansion because it relies on a 

Hermite polynomial, which has fluctuating properties. In addition, the KL divergence is 
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approximated using only the first four order statistics. In this case, some unusually large values or 

negative values can be obtained when calculating KL divergence. To avoid the influence of these 

values on further processing steps, in this approach, all of the negative values have been set to ‘0’, 

and the 1% very large values have been also removed from the KL divergence result. 

 

In contrast to change indicators, no-building change indicators show the possibility of low 

probability of being the change of interest. In this work, these no-building change indicators are 

introduced to our DS fusion model because of the characteristics of the data used and they are very 

important to achieve reliable results. This can also be seen as one major contribution in the overall 

workflow. As presented in Fig. 5-8b, after being stretched to a sigmoid curve distribution, some 

small height changes (3 ~ 5 m) have change probabilities of approximately 50%. DSM changes of 

this magnitude are caused mainly by errors in the DSMs or the growth of vegetation. In urban 

areas with simple building structures, as described in Chapter 4, vegetation and shadow areas can 

be successfully detected in the multispectral data in order to substantially reduce their influence on 

the final results. However, for urban areas with more complicated building structures, the 

differentiation can be more difficult, as, for example, vegetation can also be found on the roofs of 

buildings. Therefore, these features are only used to calculate a probability of no-building 

indication, while not making an absolute decision. The vegetation cover and shadow cover 

extraction methods, also applied here, have been introduced in section 4.4.2. 

5.3.4 Two–step DS fusion model 

After obtaining all of these change indicators and stretching the change maps to sigmoid curve 

distributions, the DS fusion model has to be designed. This processing step is divided into two 

tasks. First, the building change indicators are fused. Second, the no-building change indicators are 

fused with the result of the first step. 

 

As mentioned in section 5.3.2, DS fusion is able to handle not only single classes but also the union 

of several classes. Three classes are considered in urban areas, building changes (B) land surface 

changes (S) and no-change (N). The hypotheses to be considered in DS formulation are: ∅ (whose 

mass is null according to (5-8), and therefore, it does not need to be considered here), the simple 

hypothesis B, S and N, and the compound hypothesis, B∪S, S∪N, B∪N, Θ= B∪S∪N. 
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Table 5-1.  Decision model for the six classes. 

Type ∆H ∆SM Combined Mass 

B 𝑃∆𝐻 0 
𝑃∆𝐻 × 𝑃∆𝑆𝑀

1 − 𝐾
 

S 0 0 
(1 − 𝑃∆𝐻) × 𝑃∆𝑆𝑀

1 − 𝐾
 

N 0 1 − 𝑃∆𝑆𝑀 
(1 − 𝑃∆𝐻) × (1 − 𝑃∆𝑆𝑀)

1 − 𝐾
 

B∪ S 0 𝑃∆𝑆𝑀  

S∪N 1 − 𝑃∆𝐻 0  

B∪N 0 0  

Where B: Building change; S: Land surface change; N: No-change; ∆H: Height change; ∆SM: Similarity; 

and 𝐾 = 𝑃∆𝐻 × (1 − 𝑃∆𝑆𝑀)  

 

Table 5-1 shows the pixel-based decision model used in this work. The purpose of this procedure 

is to distinguish B from S and N. The height changes (∆H) indicate building change. We assign a 

probability mass P∆H to the class B, and (1 − 𝑃∆𝐻) to the combined class S∪N. P∆H is calculated 

according to the sigmoid curve as described in section 5.3.2. We suppose that for new, demolished 

or changed buildings, as well as height change, some spectral change is also likely. The KL 

divergence similarity (∆SM) indicates building change and surface change, which are represented 

as the combined class B∪ S. We assign a probability mass P∆SM to this combined union, and 

(1 − 𝑃∆𝑆𝑀) to N. In Table 5-1, K is the measure of conflict among different indicators, shown in 

Equation (5-9).  

 

The second step is the fusion of the no-building change indicators to the building change 

probability map. Here we employ the result from Step One as one change indicator (i), and fuse it 

with the other two no-building change indicators separately based on Eq. (5-9). The no-building 

change indicators are considered and accepted in the fusion procedure when they have mass values 

m(A) greater than threshold T. According to the decision rule mentioned in Le Hégarat-Mascle et 

al. (1997), T = 50% is used in this procedure. Three different cases are considered in the fusion 

procedure: 

 

1) m(i) > T, while m(j) < T ⇒  Building change 

2) m(i) < T, while m(j) > T ⇒  No-building change 
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3) m(i) > T, and m(j) > T ⇒  DS fusion 

 

In case 1) of the fusion rules described above, if corresponding pixels exhibit a high certainty of 

building change m(i) and a low certainty of being vegetation or shadow m(j), the decision is 

“building change”. If both indicators are higher than the assumed threshold (T), as for case 3), the 

DS fusion is performed based on Eq. (5-9). 

 

A building change probability map is generated after these two fusion steps. This intermediate 

result might already be important for change indication in a semi-automatic procedure (not 

considered here) because it can save time and manual work if an interpreter uses this initial 

information. Here, our goal is to identify the real changed buildings using a fully automated 

procedure. Therefore, a thresholding of the building change probability map is needed to receive 

an initial building change mask before the object-based building extraction. Since a further 

refinement is considered after we obtain the pixel-based building change map, in order to leave 

more candidates for the subsequent object filtering, a relatively lower threshold should be given. 

 

After generating the building change mask, it is still necessary to separate “changed building” 

from false change alarms. This is the drawback of the pixel-based change detection method. 

Therefore, shape features or other object-based features as described in section 4.3.2 can be 

adopted to extract the real changed buildings and improve the change detection accuracy. Height, 

area (size) and convexity are three of the most important features of buildings used in our work 

(Tian et al., 2012a). 

5.4 Summary 

This chapter presents two fusion-based 3D change detection methods. Unlike the approach 

proposed in Chapter 4, both the methods presented here have used the information from satellite 

images to obtain the initial change maps. In section 5.2, the feature fusion method is described. 

This method is based on a better understanding of the quality characters of the Stereo-DSMs. 

Since the panchromatic images have much sharper boundaries than DSMs generated from them, it 

would be very helpful to use the regions provided by panchromatic images to design a region-

based change detection workflow. In this procedure, a region merging strategy is proposed to 

handle the small regions produced from combining segmentation results of two dates. In section 

5.3, a decision fusion method is described. This decision fusion model, fusing both the satellite 

images and Stereo-DSMs, provides a certain probability for whether or not an object of interest 

has changed. In this method, height changes from DSMs and KL Divergence from panchromatic 



5 Fusion-based change detection 

72 

images are used as change indicators, while shadow and vegetation maps from multi-spectral 

channels are used as no-building change indicators. These indicators are fused in two steps based 

on DS fusion theory.  
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6. Post-classification change detection using GIS data 

6.1 Introduction 

DSM-assisted change localization and fusion-based DSM-assisted change detection were 

presented in Chapter 4 and Chapter 5 respectively. All of these methods are based on directly 

comparing images to their corresponding DSM. In the past few years, 2D building footprints 

(mainly GIS vector data) have been completed in most industrialized countries (Champion et al., 

2008). Along with the trend of rapidly growing cities, urban areas are also changing more 

frequently than before: it is therefore necessary to update these building footprints regularly. 

Although these footprints are usually updated manually, developing a post-classification building 

change detection procedure can save manual work and some processing time. Also, the use of pre-

knowledge from GIS information makes the locating of changed buildings easier and more 

accurate. In order to update the existing building footprint, not only can destroyed buildings be 

marked and removed, but new buildings are expected to be detected and their footprint to be 

added. Digitizing a satellite image requires a great deal of time, especially when many changes 

occur, such as after disasters. Therefore, a robust building boundary extraction method is proposed 

for this building change detection approach. The extracted new building boundaries are finally 

used to update the original footprints.  

6.2 Change classification 

6.2.1 nDSM generation 

DSMs contain object elevation values. If the terrain in the test area has a large slope, it is not easy 

to obtain a building mask directly from a DSM. Thus it is necessary to separate the terrain height 

from the DSM. The normalized DSM (nDSM), which contains the absolute height of the non-

ground area, can directly assist building extraction. Therefore, the first step of DSM-assisted 

building change detection is to remove the underlying elevation by subtracting DTM from the 

DSM. The DTM can be provided from other sources, or it can be calculated based on a suitable 

filtering methodology (Arefi et al., 2011) using the DSM. Another method uses grey-scale 

morphological opening, where the lowest point inside one window is defined as the ground terrain, 

and by this, a DTM can be generated (Weidner and Förstner, 1995) depending on the selected 

window size.  
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               (a)                   (b) 

Fig. 6-1.  DSM vs nDSM. nDSM (b) is generated from DSM (a). 

 

As shown in Fig. 6-1, the nDSM (Fig. 6-1b) generated from the DSM (shown in Fig. 6-1a) contains 

the absolute height of each building. Even though nDSMs generated from morphological filters 

have the disadvantage of requiring a proper window size, they are adopted in this work due to their 

efficient and easy implementation. 

6.2.2 Destroyed building detection 

When a building footprint is provided together with stereo imagery, a co-registration between them 

is necessary. Automatic co-registration of the building footprint with satellite images is not an easy 

task. In this work, since we are not focusing on image registration, a manual registration is used. 

With the help of the existing building footprint, the destroyed buildings can be highlighted by 

extracting the average height within each building mask. Here, the average height of each building 

mask is calculated based on local values of the nDSM. 

 

Fig. 6-2a shows the original DSM, which contains the terrain height. The extracted nDSM based 

on the method illustrated in section 6.2.1 is displayed in Fig. 6-2b. Fig. 6-2c features the raster 

image of building footprints. After giving each building mask the average height value from the 

nDSM, the resulting 3D building footprint is presented in Fig. 6-2d. As can be seen here, one 

destroyed building (marked with a white circle) is shown in light blue color, which corresponds to 

a small height value of about 4 m. This building can be easily identified as a destroyed building. 

The low height value might be introduced from vegetation cover or from reconstruction of the 

building. 
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Fig. 6-2.  Footprint-assisted destroyed building extraction: (a) Original DSM; (b) Calculated nDSM; (c) 

Outdated building footprint; (d) Resulting building footprint, the changed building is marked with white 

circle. 

 

6.2.3 New-built building location detection 

Extracting newly constructed buildings is much more challenging than detecting destroyed 

buildings. The accurate building boundaries of the new buildings are needed to update the existing 

building footprint. To detect newly constructed buildings, two processing steps are required. First, 

the locations of changed buildings have to be detected; next, the building boundary can be 

extracted. 

 

Building location detection is not an easy task, especially in very dense urban areas. Some building 

change detection methods have skipped this step and instead manually specify the building location 

(Cui et al., 2012). This problem can be solved automatically when height information is available. 

Based on nDSM, the high-rise features can be extracted after setting a pre-defined threshold (Sohn 
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and Dowman, 2007). In urban areas, high-rise features are mainly buildings and trees. Again, 

among them, trees can be removed using NDVI. Fig. 6-3b shows the original DSM generated from 

the stereo image; one scene of the stereo pair is shown in Fig 6-3a. After the trees are removed, the 

nDSM containing mainly buildings is shown in Fig. 6-3c. A threshold of 𝑇 = 5 𝑚 was used in this 

example to obtain the initial building mask. It has been refined with morphological erosion and 

dilation. After removing small masks composed of only a few pixels, the resulting automatically 

generated building mask, which can be used to compare with the building footprints from GIS data, 

is displayed in Fig. 6-3d. The initial building mask can only show the possible locations of each 

building. If vegetation areas are located on the roofs of some buildings, only the buildings without 

vegetation cover are shown in the initial building mask.  

 

To compare the mask with the outdated building footprint, a comparison rule is required. 

Matikainen et al. (2003) use the cover rate of each corresponding mask to extract changed 

buildings. However, when comparing the Stereo-DSM mask and the building footprint, the mis-

registration directly influences the cover-rate. Therefore, the robust-differencing described in 

section 4.2 is used here for mask comparison. The changed parts are projected to the mask from 

the Stereo-DSM to calculate the cover rate.  

 

 

                    
   (a)        (b) 
  

              
   (c)        (d) 

Fig. 6-3.  Building location detection procedure: (a) Panchromatic image; (b) Original DSM; (c) nDSM after 

removing vegetation; (d) Cleaned initial building mask. 
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Comparison rules are created by referencing the rules from Matikainen et al. (2003). 

 

• Over 80% of the building mask in the Stereo-DSM mask is covered by the changed part=> 

new building. 

• 5-80% of the building mask is covered by the changed part=> rebuilt building.  

• Less than 5% of the building mask is covered by the changed part=>non-changed 

building. 

 

As buildings in urban areas are often rebuilt to a similar shape, or only enlarged, a smaller cover 

rate value is used as the threshold to separate the non-changed buildings and rebuilt buildings. 

After classifying these buildings, the corresponding rebuilt and newly built buildings are recorded 

in the building mask: these buildings will be further processed. The accurate boundaries of these 

buildings are required in order to update the outdated building footprint. 

6.3 Building reconstruction 

In order to automatically update the building footprint, a high quality robust building boundary 

extraction method is required. Automatic building boundary extraction has been one of the most 

challenging problems for VHR remote sensing data in recent years. In addition to 2-D information 

from multi-spectral satellite images, height information from DSMs has received increasing 

attention for automatic building extraction. A detailed workflow for DSM-assisted building 

extraction has been proposed in Baltsavias et al. (1995). Restricted to the DSM quality at that 

time, only a coarse model of buildings could be generated. Weidner and Förstner (1995) worked 

out a building extraction method based on only the DSM. Ridley et al. (1997) used airborne data 

to simulate the IKONOS stereo data for land cover extraction, from which only 73% and 86% of 

buildings could be interpreted correctly, while no automatic method was mentioned in that paper. 

After IKONOS imagery became commercially available, more detailed 3D building models were 

extracted, but this work was still based on manual interpretation (Fraser et al., 2002). Noronha and 

Nevatia (2001) proposed a building detection method based on multiple airborne data; however, 

only simple building shapes were considered.  

 

Although many methods have been proposed and tested on stereo imagery, they either require a lot 

of manual work or they are only suitable for simple building shapes. A typical European city like 

Munich, Germany features more complex shaped buildings than rural, suburban or industrial 

regions. Therefore, more work is required for automatic building extraction from spaceborne 

stereo imagery, especially in high density building areas with complex building shapes. In the 
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LiDAR-DSM-based building extraction method, the quality of the extracted buildings’ boundaries 

depends on the density of original LiDAR point clouds. Methods developed for airborne multi-

spectral imagery and LiDAR-DSM can hardly be directly adopted for, for example, WorldView-2 

stereo imagery, because of the potential incorrect height information and blurry boundaries of the 

generated DSM.  

 

Here a novel efficient building extraction method is proposed. It combines height from DSMs, line 

segments from the panchromatic image together with building class probability from random forest 

classification based on the multispectral channels. A knowledge-based training data extraction 

method is introduced here for supervised classification. The flow chart of the building extraction 

procedure is shown in Fig. 6-4: the blue frame is the building location detection procedure 

described in section 6.2.3. Using the obtained changed building location, we will focus on building 

boundary extraction in the following. Firstly, building line segments are obtained from 

panchromatic images. As well as the direction of the building, rectangular segments can also be 

extracted based on these lines. These segments are classified from the automatic classification 

results, while the training data used in the classification procedure are automatically generated 

using a knowledge-based method.  

 

 

 

Pan

DSM

New built building location

Building segments

MS Building 
probability

Building mask

Refined building mask

Mophological filter

Random forest
 classification

Training data

Knowledge based

nDSM

Vegetation

Line 
segments

Original building 
Footprint

Building mask

 

Fig. 6-4.  Flowchart of the proposed method (Pan: Panchromatic image; MS: Multispectral image).  
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6.3.1 Hough Line-based segmentation 

The Hough transform, which was first proposed by Paul Hough (Duda and Hart, 1972), is a 

common feature extraction technique used for computer vision and digital image processing. It 

was initially designed for line extraction and later extended to the detection of other shapes, like 

circles and ellipses. In this study, we aim to extract lines and rectangular segments in and around 

each building. 

 

The Hough line extraction procedure is based on transforming the plane coordinates to polar 

coordinates. As shown in Fig. 6-5, 𝑥 and 𝑦 are the pixel coordinates in the image space. When 

representing them in polar coordinates, the parameter 𝑟 is the distance between the line and the 

origin. 𝜃 (𝜃 ∈ [0,2𝜋)) is the angle of the vector from the origin to the nearest points in the line. 

The equation of the line can be written as: 

 

𝑦 = �− cos𝜃
sin𝜃

� 𝑥 + � 𝐸
sin𝜃

�                 (6-1) 
 

which can be rearranged to 𝑟 = 𝑥 cos 𝜃 + 𝑦 sin𝜃  

 

The whole procedure of Hough transform-based line detection is shown in Fig. 6-6. The Canny 

lines (shown in Fig. 6-6b) extracted from the panchromatic image are transformed using a Hough 

transform. Fig. 4c displays all of the detected Hough lines. Using the Hough transform, the lines 

with the same 𝜃  are intersected as explained in Cui et al. (2012). The pixels with the highest 

values in the transformed image represent the main direction (𝜃ℎ) of the building. Here it is 

assumed that each building has only two main directions, and that these two directions are 

perpendicular to each other. Then the other direction of the building is: 

 

�
𝜃ℎ + 90°    (𝑖𝑓 𝜃ℎ < 90°)
𝜃ℎ − 90°    (𝑖𝑓 𝜃ℎ ≥ 90°)                (6-2) 

 

 

 

 

 

 
 

Fig. 6-5.  Line representation. 
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      (a)            (b)            (c)            (d) 

Fig. 6-6.  Building boundary detection procedure: (a) Panchromatic image; (b) Canny edges; (c) Hough 

lines; (d) Extended Hough lines in main directions. 

 

With the two main directions, the extracted Hough-lines can be refined. The lines parallel or near 

parallel (within ± 5°) to these two directions are kept. The line segments extended to lines are 

shown in Fig. 6-6d. After obtaining the Hough lines, Cui et al. (2012) and Grigillo et al. (2012) 

have tried to use the intersection points to extract building boundaries. However, these methods 

would be very difficult to apply in very complex buildings or those without rectangular corners, 

like buildings with holes in the middle or with curved boundaries. 

 

Separating buildings into 2D polygons has been shown to be an efficient method in building 

extraction (Schimid and Zisserman, 1997; Zebedin et al., 2008). After obtaining the rectangular 

segments, Zebedin et al. (2008) used only the height information based on a Graph-cut to merge 

those segments belonging to buildings. The DSM used in this work is not as accurate as the one 

used by Zebedin et al. (2008), but corresponding spectral information is available: thus, in this 

work, instead of a Graph-cut, we applied a classification method instead to classify the obtained 

rectangular segments into buildings and no-buildings. Besides height information from DSM, the 

spectral channels and texture information can be used as features in the classification procedure. 

6.3.2 Automatic training data selection 

Many supervised classification techniques are used to classify remote sensing images, from 

maximum likelihood to support vector machine or random forest. Their efficiency and accuracy 

have been demonstrated in several publications (Dempster et al., 1977; Bruzzone et al., 2006). 

Moreover, when specific objects are of interest (in this case, buildings), it is more logical to use 

supervised classification. However, these methods cannot be directly used for automatic 

classification, as they require training data. Training data selection is time consuming, and 

incorrect or insufficient training data (e.g. number of classes) may weaken the finally accuracy. 

Using IKONOS stereo images, Shaker et al. (2011) employed manually selected training data for 

building classification. Manual training data selection requires quite a lot of work, especially when 
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buildings’ roofs are in various colours and are built with various materials. Moreover, a fully 

automatic building extraction is more desirable, especially if VHR satellite images, like 

WorldView-2 data, are available. Therefore, we adopted the knowledge-based classification 

method to automatically select training samples. 

 

Knowledge-based decision rules can make the classification easy and fast, if the knowledge is 

accurate and detailed enough (Baltsavias, 2004). However, normally only part of the knowledge 

can be obtained in advance, which complicates the class definition. Rule-based classification is 

one of the typical knowledge-based methods where rules are presented with one or more decision 

trees (Huang and Jensen, 1997; Lawrence and Wright, 2001). However, each root of the decision 

tree needs at least one threshold and the accuracy of these thresholds directly influences the 

classification result. The pixels with much higher or lower values compared to the threshold 

usually produce more correct classification results; values close to the threshold may lead to false 

alarms.  

 

Therefore, in this work, existing knowledge is used to build an incomplete decision tree. This 

incomplete decision tree means it cannot classify all of the pixels in an image to defined classes. 

Only the pixels with high probability of belonging to a defined class are labelled. For example, 

only the pixels with a height more than 10m and a high NDVI value are classified as ‘tree’. It is 

difficult to define a ‘high’ value for the NDVI. Thus, the NDVI and shadow values are projected 

to a sigmoid curve to obtain the Belonging-Certainly Value (BCV) from 0% to 100% using the 

same method described in section 5.3.2. The training data selection rules are listed in Table 6-1. 

Thresholds (𝑇 = 80%) are selected by long-term experience; since the vegetation and shadows are 

based on BCV, the thresholds can be easily used for all data. 

 

With the proposed uncompleted decision tree, most of the pixels can be classified into an 

appropriate class. The pixels that cannot be classified are mainly located in the boundary regions: 

for example, the pixels between buildings and shadows, or grass and roads. Fig. 6-7 shows an 

example of the training data generated. After the rule-based labelling, segments with size smaller 

than 100 pixels have been removed from each class layer. As can be seen here, the main part of 

buildings, the centre of the roads and trees are extracted successfully. The unlabeled pixels, named 

as background pixels, marked in blue, are remains on the building and tree edges. In these regions, 

even manual interoperation cannot properly label these pixels. A more intelligent supervised 

classification is required to finally classify these pixels.  
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Table 6-1.  Knowledge-based training data selection rules. 

Classes 
Rules 

Height (m) BCV_veg [%] BCV_shadow [%] 

Trees >10 >80 <80 

Grass <2 >80 <80 

Building >10 <50 ----- 

Shadow <10 ----- >80 

Ground <2 <50 <50 

 

   
            (a)         (b)  

Fig. 6-7.  Generated training data (with five classes) (b) based on WorldView-2 (a). 

 

6.3.3 Random forest-based segments classification 

Random forest is a robust and powerful machine learning classifier, and is able to process large 

datasets (Breiman, 2001). The random forest consists of several decision trees, also called 

classification trees. These classification trees are “grown” based on training sets. Random forest 

builds the tree nodes randomly with random features. Each decision tree is used separately to 

classify the satellite image of interest. By summarizing these classification results, one 

classification map and several membership maps for each class can be obtained. 

 

In this work, random forest classification is adopted to extract the building class based on the 

generated training data. All of the channels from multispectral images, together with panchromatic 

image and DSM, are used as input features. Since only the building class is of interest, instead of 

directly using the classification result, the probability map of building classes is used in the later 

process. In the probability map, the pixel value means BCV to the building class. To combine the 

classification result with the 2D segment obtained from the method described in section 6.3.1, 

these probability values from each pixel are averaged to each 2D segment. In the end, the final 

building mask is generated after thresholding.  

Background 
Ground 

Trees 
Grass 
Building
 Shadow 
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 (a)                     (b)             (c) 

Fig. 6-8.  Building footprint extraction procedure: (a) Original building class probability map; (b) result after 

fitting values in (a) to the obtained rectangular segments; (c) Generated building mask. 

 

Fig. 6-8 shows an example of the steps in the building outline extraction procedure. Fig. 6-8a is 

the obtained building class probability map; pixels with red color have high probability of 

belonging to a building. The pattern shown closely resembles a building shape with blurred edges. 

After fitting these values to the extracted rectangular segments (Fig. 6-8b), the building shapes are 

more regular than before. As displayed in Fig. 6-8c, the final building mask can be obtained after 

thresholding. Finally, small mistakes remaining in the refined building mask are eliminated by 

using morphological filters. With the obtained building mask, building boundaries can be easily 

extracted. The extracted building boundaries can be added to the outdated building footprint map, 

thus updating it. 

6.4 Summary 

In this chapter, a post-classification approach is described. When comparing the satellite images 

with the outdated building footprint, it is not necessary to check all buildings one by one. The 

changed building locations are detected using mask comparison. In section 6.2, a fast change 

classification method is proposed by referring to existing studies. After locating the changed 

buildings, section 6.3 focuses on reconstructing these building locations. For this purpose, a novel 

automatic building extraction method is proposed. 2D segments are extracted using Hough lines 

and these segments are further classified using the supervised classification method “random 

forest”. To avoid manually selecting necessary training samples, a knowledge-based training data 

selection approach is proposed for the classification. Finally, the changed buildings are extracted 

by combining the 2D segments and the classification results. 
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7. Experiments 

In this chapter, the experiments performed with the three proposed DSM-assisted change detection 

methods described in Chapters 4 - 6 are presented. The goal of these experiments is to examine the 

performance of the proposed approaches for different stereo images. In this thesis, four test areas 

with different kinds of sensor combinations and change objects are investigated. The required 

DSMs are generated using stereo imagery with the method described in Chapter 2. The four 

selected test areas are located in Dong-an, Munich, Istanbul and Oberammergau respectively, 

shown in Fig. 7-1. Each dataset consists of two pairs of stereo images captured at different dates, 

generated DSMs and manually extracted change reference data. 

 

 

Fig. 7-1.  Locations of the four test areas. 

Munich 

Oberammergau 

Istanbul Dong-an 
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The four test areas represent four difference scenarios. Among them, the Dong-an test set features 

a typical industrial area, acquired by the IKONOS satellite with 1 m Ground Sample Distance 

(GSD). The Munich test set was captured using two different sensors: IKONOS and WorldView-2. 

This test area is located in the centre of Munich, showing a dense urban area. The other two datasets 

were both captured by the Indian satellite Cartosat-1, with 2.5 m GSD. One test area is located in an 

industrial area (Istanbul), and the other in a forest area (Oberammergau, Bavaria). The evaluation 

procedure includes both the visual inspection of the change maps and the quantitative evaluation of 

the change maps and masks. In the following, the test areas and experimental results will be 

described in more detail.  

7.1 Experimental set-up and quality assessment methods 

7.1.1 Experimental set-up  

The experiments are conducted by comparing the performance of the change detection methods 

described in Chapters 4, 5 and 6 for each test site. Based on these three approaches, four methods 

are adopted here: 

 

• Method I: DSM-assisted change localization. In this method, change maps are generated 

using the robust change difference. Change masks are refined using morphological filtering, 

knowledge about shadow location and the vegetation mask. Following this, shape-based 

filtering is employed, as illustrated in Chapter 4. 

 

• Method II: Feature fusion method as described in section 5.2. After the original regions are 

extracted from orthorectified panchromatic images, the proposed region merging approach 

is applied to obtain the initial homogeneous regions. Change features from DSMs and 

images are combined to generate the initial change map by thresholding and a change mask 

is generated. After removing the small regions (noise) in that mask, the final change mask 

is generated.  

 

• Method III: Decision fusion method as described in section 5.3. Even though this method is 

designed for building change detection, the change indicator fusion step can also be used 

for forest change detection, but not the no-change indicators. Since Cartosat-1 data contain 

only panchromatic channels, the desired no-change indicators cannot be extracted. Thus, in 

the first two test areas, the change map is generated using two fusion procedures, while for 

the other two test areas only the first fusion is applied. In this method, the initial change  
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Fig. 7-2.  Example of selected regions used for 3D-shift determination. 

 

mask is generated by thresholding. The refined change mask is generated by using the 

shape features. 

 

• Method IV: Post classification as described in Chapter 6. This method is only suitable for 

building change detection and needs a building footprint map as a priori knowledge. Thus 

this method could only be tested in the Munich test area. 

 

DSMs for all four test areas are generated using SGM, followed by a 3D co-registration as 

described in Chapter 2. In cases where a large study site is used, instead of using the whole images, 

some regions, distributed evenly over the entire scene (shown in Fig. 7-2), which exhibit relatively 

flat terrain and low variation, are chosen for the 3D co-registration. Then, the values from these 

regions are averaged to compute a final shift value. The obtained shift values are applied to both 

DSMs and orthorectified satellite images. 

7.1.2 Evaluation method 

In order to evaluate the effectiveness of the proposed methods for the detection of the position and 

size of the changed objects and the overall change situation, the results obtained are compared with 

reference data. The evaluation is performed for each test area with the four described methods. The 

assessment of the change detection results is carried out at both pixel and object level. At the pixel 

level, the change map and change masks are evaluated separately.  

 
• Pixel-based evaluation 

For the pixel-level evaluation, the results are displayed in terms of Receiver Operating 

Characteristics (ROC) curve analysis (Hand and Till, 2001). We use the area under the ROC curve 

to evaluate the quality of each change index and the generated result. For each threshold between 
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the maximum and minimum value in the result, we calculate the percentage of true positives (the 

building change pixels that are correctly detected as building change) and the percentage of false 

positives (no-building change pixels that are falsely detected as building change pixels). The ROC 

curve shows the relationship of true positive against false positive. The area under the ROC curve 

(AUC) is used to measure the ability of single or combined features and the difference map to 

detect the real building changes (Hand and Till, 2001). 

 

In the pixel-based change mask evaluation, in order to compute the agreement of the change 

detection mask with the reference change mask, the following measures are involved. 

 

a) True Positive (TP): the number of changed pixels correctly detected as changed. 

b) True Negative (TN): the number of unchanged pixels correctly detected as unchanged. 

c) False Positive (FP): the number of unchanged pixels incorrectly detected as changed. 

d) False Negative (FN): the number of changed pixels incorrectly detected as unchanged. 

e) Overall Accuracy:𝑂𝐴 = 𝑇𝑃+𝑇𝑁
𝑁

× 100% 

f) Kappa Index of Agreement (Congalton, 1991): 𝐾𝐼𝐴 = 𝑃𝐸(𝑎)−𝑃𝐸 (𝐸)
1−𝑃𝐸 (𝐸)

 

Where  𝑃𝑟(𝑎) is the relative observed agreement between the extracted results and reference data, 

it is calculated in the same way as OA, while 

𝑃𝑟(𝑒) = (𝑇𝑃+𝐹𝑃)∗(𝑇𝑃+𝐹𝑁)+(𝐹𝑁+𝑇𝑁)∗(𝐹𝑃+𝑇𝑁)
𝑁∗𝑁

 represents the hypothetical probability of the 

agreement between the extracted result and reference data; 

N is the total number of pixels. 

 

• Object-based evaluation 

Concerning building change detection accuracy, correctly detected building numbers are in some 

cases more important. As a higher level of the analysis, the changed buildings are treated as single 

objects without consideration of their size. Only the effectiveness of the detection of distinct 

changed areas (buildings) in the change map is considered in the assessment. Therefore, four 

parameters are measured to evaluate the object-based change detection result:  

 

a) True detected number (TDN): The number of changed objects that are correctly detected 

as changed. 

b) True detected rate (TD): The number of true detected objects as a percentage TD = TDN / 

NR × 100. 

c) False detected number (FDN): The number of unchanged objects that are incorrectly 

detected as changed. 
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d) False detected rate (FD): The number of falsely detected objects as a percentage FD = 

FDN / ND × 100,  

 

where NR and ND are the total number of changed objects of the reference data and within the 

change map, respectively. 

7.2 Dong-an test area, North Korea 

7.2.1 Data introduction 

The first dataset exhibits very high resolution, same sensor image data acquired over an industrial 

area. It consists of two 1 m resolution IKONOS stereo images, which were acquired on February 

12, 2006 and May 2, 2011 respectively. The dataset represents an industrial region in Dong-an, 

North Korea with an area of 0.6 × 0.6 km² (equivalent to 600 × 600 pixels). It contains mainly well 

separated, regularly shaped smaller size buildings. The panchromatic images and DSMs from both 

dates can be seen in Fig. 7-3 (a-d). Fig 7-3e shows the digitized reference change map: green 

objects represent newly built buildings, red objects represent destroyed buildings and blue objects 

represent rebuilt buildings. The reference data include high buildings, normal houses and tents. A 

tent with an area size less than 100 m2 and low height cannot be detected accurately enough with 1 

meter resolution satellite images and DSMs from stereo matching. Thus in this research, only 

buildings larger than 100 m2 are considered in the reference data, procedures and experiments. 
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          (a)                  (b) 
 

     
          (c)                  (d) 

 

 
         (e) 

Fig. 7-3.  Dataset in the Dong-an test area. Orthorectified panchromatic image from date 1 (a) and date 2 (b), 

DSM from date 1 (c) and date 2 (d), and reference change map (e). 
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7.2.2 Results 

Due to the lack of available building footprints, only the first three methods are tested. The results 

are shown in Fig. 7-4. In order to present the accuracy of the mask, the detected change mask is 

overlaid with the change reference map. Although both positive changes (newly built buildings) 

and negative changes (destroyed buildings) are detected in this test area, only the positive change 

detection results are evaluated in this thesis, since only a very small number of negative changes 

are included in this dataset. As the two DSMs used in the test area are from the same sensor, a 

small window size is used for the robust DSM difference. Fig. 7-4a shows the robust height 

difference map generated with a 3 × 3 pixel window size. Fig. 7-4b features the height-based 

thresholding result. A pre-designed threshold (T = 5 m), with general validity, is used in this 

procedure. After refining the change mask by using shadow and vegetation masks, as well as a 

series of morphological refinements, the result is shown in Fig. 7-4c. The true detected pixels are 

shown in green; false alarms (no-change pixels falsely detected as change) are displayed in red; 

the blue pixels represent the missed alarms (changed pixels falsely detected as no-change). 

 

The change map and change masks resulting from Method II are presented in Fig. 7-5. Fig. 7-5a is 

the generated change map, which has been transformed to sigmoid distribution for better 

understanding. After the transformation, all of the pixels in the change map are in the value range 

0-1. Therefore, it can be used as a change probability map. In this experiment, we used (𝑇 = 40%) 

to generate the change mask displayed in Fig. 7-5b. To remove the noise present in this scene, 

only the change masks with a size larger than 100 pixels (100 m2) are preserved in the final change 

mask (shown in Fig. 7-5c). Both change masks are overlaid with reference data. Compared to the 

change masks displayed in Fig. 7-4 from Method I, the changed buildings are better separated 

from each other. 
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   (a)      (b)   
 

                       
   (c)       (d) 
 
 

Reference data 
 

Change Mask 
Change No-Change 

Change True detected False alarm 

No-Change Missed alarm  

 

Fig. 7-4.  Change map and masks generated in the Dong-an Test area with Method I: 

(a) Robust difference map with positive changes;  

(b) Initial change mask overlaid with reference data (T = 5 m);  

(c) Mask refined using morphological filtering and the land cover mask;  

(d) Refined mask overlaid with reference data ( 𝑇𝐻𝑟𝑒𝑙𝑖𝑙𝑛 = 5𝑚;  𝑇𝑠𝑖𝑧𝑒𝑟𝑒𝑙𝑖𝑙𝑛 = 100 𝑝𝑖𝑥𝑒𝑙𝑠;  𝑇𝑐𝑙𝑛𝑣𝑒𝑥𝑟𝑒𝑙𝑖𝑙𝑛 = 0.5); 

(b) - (d) Green: true detected; Red: false alarm; Blue: missed alarm.  
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          (a)             (b) 
 

 
          (c) 
 

Fig. 7-5.  Change map and masks generated in the Dong-an test area with Method II: 

(a) Region-based change probability map;  

(b) Initial change mask overlaid with reference data (T = 0.4); 

(c) Refined mask overlaid with reference data (𝑇𝑠𝑖𝑧𝐸𝑟𝑒𝑔𝑖𝑜𝑛 = 100 𝑝𝑖𝑥𝑒𝑙𝑠); 

(b) - (c) Green: true detected; Red: false alarm; Blue: missed alarm.  

 

 

 

The decision fusion based Method III has also been applied on the same dataset. After two steps of 

DS fusion, Fig. 7-6a shows the detected change map. The change masks after thresholding and 

after shape feature based refinement are shown in Fig. 7-6b and Fig. 7-6c.  
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          (a)               (b) 

 

 
          (c) 
 
Fig. 7-6.  Change map and masks generated in the Dong-an test area with Method III: 

(a) Change map after two steps of decision fusion;  

(b) Initial change mask overlaid with reference data (T = 0.5);  

(c) Refined mask overlaid with reference data (𝑇𝐻𝑟𝑒𝑔𝑖𝑜𝑛 = 5𝑚;  𝑇𝑠𝑖𝑧𝐸𝑟𝑒𝑔𝑖𝑜𝑛 = 100 𝑝𝑖𝑥𝑒𝑙𝑠;  𝑇𝑐𝐸𝑛𝑣𝐸𝑥𝑟𝑒𝑔𝑖𝑜𝑛 = 0.5); 

(b) - (c) Green: true detected; Red: false alarm; Blue: missed alarm).  

7.2.3 Evaluation of results 

The goal of this experiment was to evaluate and compare the effectiveness of the proposed 

frameworks for the VHR stereo imagery from the same sensor. The change detection results from 

all three methods are compared to the reference data in the evaluation procedure. Table 7-1 

comprises the quality comparison of the change maps generated from 2D features and the three 

proposed methods. Three 2D features: Absolute image difference, KL divergence and multi-level 

features and height difference as 3D feature are considered. They have been used as intermediate 

results for change features in the proposed frameworks. AUC has been adopted to compare them 
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Table 7-1.  AUC comparison in the Dong-an test area. 

Method AUC 

Absolute image difference 0.8132 

KL divergence 0.9122 

Multi-level 0.8354 

Height Difference  0.8993 

I 0.9299 

II 0.9299 

III 0.9621 

 

 

with the change maps displayed in Fig. 7-4a, 7-5a and 7-6a. A higher AUC value indicates a better 

quality of change map, meaning that it is more capable of providing a high accuracy change mask. 

As can be seen in Table 7-1, KL divergence achieves the best 2D change result in this test area. 

But Method I, II, III show higher values than the four intermediate results. Although the result 

from Method II seems visually much better than Method I, which only uses the DSMs, the AUC 

has not improved (and is coincidentally the same as for Method I). The decision fusion-based 

Method III, on the other hand, has substantially improved the AUC value.  

 

The improvement in change masks in each step has been evaluated for both the pixel-based and the 

object-based method and the results are recorded in Table 7-2 and Table 7-3 respectively. The 

meaning of the evaluation parameters is explained in section 7.1.2. For Method I, according to the 

results listed in Table 7-2, the resulting accuracy in both OA and KIA are improved when more 

information is used. Among them, the decision fusion method achieves the best accuracy.  

 

It is noteworthy that in Table 7-3, although Method I and Method II share the same false detected 

building numbers, the false detection rates differ considerably. That can be explained by the total 

number of detected buildings. In the change mask from Method II, all of the small buildings in the 

upper left corner of the images are well separated. For Method I, the initial mask is generated by 

thresholding the height difference map. As this is restricted by the DSM quality, these buildings 

cannot be separated correctly. Due to the lower building heights and high building density, the 

shadow mask in this scene cannot be generated optimally: therefore, after refinement, many 

buildings are still fused together in the final change mask; they are counted as one building in the 

evaluation procedure. That is why the change mask extracted from Method I has fewer buildings 

than from Method II, which influences the false detected rate. 
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Table 7-2.  Pixel-based change masks evaluation in the Dong-an test area. 

Method Description Overall Accuracy (OA) Kappa Index of Agreement (KIA) 

I 

Initial mask 0.9424 0.4227 

Land cover 
refinement 

0.9650 0.5540 

Shape feature based 
refinement 

0.9688 0.5817 

II 
Initial mask 0.9711 0.5951 

Remove small size 
regions 

0.9765 0.6452 

III 
Initial mask 0.9705 0.5866 

Shape feature based 
refinement 

0.9791 0.6686 

 

Table 7-3.  Region-based change masks evaluation in the Dong-an test area. 

Method 
True Detected (Object) False Detected (Object) 

Number Rate [%] Number Rate [%] 

I 42 93.33 13 56.52 

II 43 95.56 13 26.53 

III 42 93.33 7 17.95 

 

 

Consequently, based on the evaluation result of the Dong-an test region we can conclude, that in 

general Method III works better for VHR resolution imagery. However, Method II produces 

sharper boundaries than Method I and Method III. If one of the input DSMs exhibits large regions 

with height errors, like the false-alarm-building in the upper-right corner in Fig. 7-4, all of these 

three methods will produce false alarm.  

7.3 Munich test area, Germany 

7.3.1 Data introduction 

The second dataset consists of two VHR images from different sensors acquired in the centre of 

Munich, Germany (1.3 × 1.3 km²). As can be seen in Fig. 7-7, this dataset features a typical urban 

environment, here the historic city of Munich. The building heights in this scene range from 5 up 

to 100 meters.  
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          (a)      (b) 
 

     
          (c)      (d) 
 

     
          (e)      (f) 

Fig. 7-7.  Dataset in the Munich test area. Orthorectified panchromatic image from date 1 (a) and date 2 (b), 

DSM from date 1 (c) and date 2 (d) , reference change map (e) and building footprint from 2003 (f). 
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The first pair of stereo images was captured by IKONOS on July 15, 2005, while the other pair 

features WorldView-2 data acquired on July 12, 2010. Since the datasets have different resolutions, 

the WorldView-2 images are down sampled to 1 m resolution, to be equal to the IKONOS data. 

The test area contains more complicated building shapes as well as buildings that cannot easily be 

separated from each other. As well as the satellite image data, the building footprint from 2003 is 

also provided (shown in Fig. 7-7f): thus, Method IV, based on post-classification, can be tested 

here.  

7.3.2 Results 

All of the four methods proposed in this thesis are tested and compared in this test area. The 

results obtained are displayed in a similar way to the results from the Dong-an test site. All 

positive changes are chosen to display and evaluate the detected results. To better visualize the 

quality of the extracted changed masks, all of them have been overlaid with the reference map. 

Three colours are shown.  

 

In Fig. 7-8, the generated change map and final change detection masks from Method I are shown. 

Due to the multi-sensor differences, a large window size of 5 × 5 pixels is used for the 

computation of the robust difference. The resulting change map is displayed in Fig. 7-8a, where 

green pixels highlight large height change values (change more than 25 m) and blue pixels 

indicate no change or small height change values. 

 

Fig. 7-9 presents the change detection result based on the region-based method. Fig. 7-9a shows 

the change map. The advantage of the region-based method is not as obvious as in the industrial 

area. Although most of the important building changes are highlighted correctly, some no-building 

change areas are also marked with a high change probability. After thresholding (T = 0.8), one 

alarm, marked with a white circle, is still present in the change mask (Fig. 7-9b). Since it exhibits 

a relatively large size and regular shape, the false alarm is also shown in the final change mask 

(Fig. 7-9c). But the other five large changed buildings are correctly detected, as displayed in Fig. 

7-9c in green. 
 

The building change detection results based on Method III are depicted in Fig. 7-10. Fig. 7-10a 

shows the DS fusion result, including all the change indices and no-change indices. The values in 

the image represent the probability of each pixel containing building change. The changed 

buildings are mostly highlighted in red. Fig. 7-10b shows the thresholding result. The green masks 

represent possibly changed buildings. A combined measure of area, height and convexity is 

applied to extract the really changed buildings, as shown in Fig. 7-10c. The final change mask 
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obtained shows better quality than the results from the other two methods. Only three false alarm 

small building changes remain in the final change mask. 

 
 
 
 

           
            (a)          (b) 
 

                     
            (c)          (d) 
 

Fig. 7-8.   Change map and masks generated in the Munich test area with Method I:  

(a) Robust difference map with positive change;  

(b) Generated change candidates after thresholding overlaid with reference data (T = 5 m);  

(c) Refined mask based on morphological filtering and the land cover mask;  

(d) Refined mask overlaid with reference data (𝑇𝐻𝑟𝑒𝑔𝑖𝑜𝑛 = 5𝑚;  𝑇𝑠𝑖𝑧𝐸𝑟𝑒𝑔𝑖𝑜𝑛 = 200 𝑝𝑖𝑥𝑒𝑙𝑠;  𝑇𝑐𝐸𝑛𝑣𝐸𝑥𝑟𝑒𝑔𝑖𝑜𝑛 = 0.4); 

(b) - (d) Green: true detected; Red: false alarm; Blue: missed alarm.  
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          (a)              (b) 
 

 
          (c) 
 
Fig. 7-9.  Change map and masks generated in the Munich test area with Method II: 

(a) Region based change probability map; 

(b) Initial change mask overlaid with reference data (T = 0.8);  

(c) Refined mask overlaid with reference data (𝑇𝑠𝑖𝑧𝐸𝑟𝑒𝑔𝑖𝑜𝑛 = 200 𝑝𝑖𝑥𝑒𝑙𝑠); 

(b) - (c) Green: true detected; Red: false alarm; Blue: missed alarm.  
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          (a)                (b) 
 

 
          (c) 
 
Fig. 7-10.  Change map and masks generated in the Munich test area with Method III: 

(a) Change map after two steps of decision fusion;  

(b) Initial change mask overlaid with reference data (T = 0.4);  

(c) Refined mask overlaid with reference data (𝑇𝐻𝑟𝑒𝑔𝑖𝑜𝑛 = 5𝑚;  𝑇𝑠𝑖𝑧𝐸𝑟𝑒𝑔𝑖𝑜𝑛 = 200 𝑝𝑖𝑥𝑒𝑙𝑠;  𝑇𝑐𝐸𝑛𝑣𝐸𝑥𝑟𝑒𝑔𝑖𝑜𝑛 = 0.45); 

(b) - (c) Green: true detected; Red: false alarm; Blue: missed alarm).  

 
The experiment design for Method IV differs from the other experiments. The dataset from 

WorldView-2 has been directly compared with the building footprint presented in Fig. 7-7f. First, 

the initial building mask is generated, after the lower objects (below 15 meters) and trees have 

been removed from the nDSM. By comparing this building mask with the outdated building 

footprint, the possible changed buildings obtained are marked in Fig. 7-11a. The green masks 

represent new buildings, while the blue masks show the reconstructed buildings (partly new built). 

The change reference data are overlaid with that extracted change mask, and the results are shown 

in Fig. 7-11b. Since the outdated building footprint was extracted years before the IKONOS scene 

was acquired, several destroyed buildings in IKONOS images are still present in the building  
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        (a)             (b) 
 

 
        (c) 
 
Fig. 7-11.  Change masks generated in the Munich test area with Method IV: 

(a) Extracted initial change mask, new built buildings (green), partly rebuilt buildings (blue); 

(b) Change mask overlaid with reference data;  

(c) Extracted building masks overlaid with reference data; 

(b) - (c) Green: true detected; Red: false alarm; Blue: missed alarm.  

 

footprints (marked with white circles in Fig. 7-11b). As it is the centre of Munich, the newly built 

buildings often share the same shape as the destroyed ones. These areas cannot be counted as 

building changes in the sense of the presented investigations. Fig. 7-11c shows the final refined 

building masks. 

7.3.3 Evaluation of results 

The AUC evaluation results shown in Table 7-4 highlight the advantage of the fusion-based 

method. Since images of two dates from multi-sensor imagery are adopted in this test area, none 
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of the 2D features leads to good results. However, fusing these features with height changes 

largely improve the change detection accuracy. In this test area, the region-based method produces 

a change map with larger AUC than the decision fusion method. However, the change mask of the 

region-based method has relatively low OA and KIA (as shown in Table 7-5). That can be 

explained by several negative changes or normal land cover changes in this test area. Fig. 7-12 

shows more detailed information about a building in the centre of the test area in Munich. Fig. 7-

12a is the panchromatic image from date 1 (IKONOS). Fig. 7-12b is the panchromatic image from 

date 2 (WorldView-2). In the WorldView-2 data, some parts of the building were removed and the 

center of that building has become much brighter. Thus, directly using the intensity value from the 

panchromatic image, as Method II does, will introduce false alarms. 

 

Table 7-4.  AUC comparison in the Munich test area. 

Method AUC 

Absolute image difference 0.7952 

KL divergence 0.5025 

Multi-level 0.8571 

Height difference 0.8695 

I 0.8745 

II 0.9270 

III 0.9025 

 

Table 7-5.  Pixel-based change masks evaluation in the Munich test area. 

Method Description Overall Accuracy (OA) Kappa Index of Agreement (KIA) 

I 

Initial mask 0.9931 0.5396 

Land cover 
refinement 

0.9949 0.6126 

Shape feature based 
refinement 

0.9954 0.6348 

II 
Initial mask 0.9880 0.4228 

Remove small size 
regions 

0.9917 0.5044 

III 
Initial mask 0.9927 0.5700 

Shape feature based 
refinement 

0.9957 0.6899 

 



7 Experiments 

104 

Table 7-6.  Object-based change masks evaluation in the Munich test area. 

Method 
True Detected (Object) False Detected (Object) 

Number Rate [%] Number Rate [%] 

I 7 70 2 22.22 

II 7 70 10 62.50 

III 8 80 3 30 

 
 

      
          (a)          (b) 

Fig. 7-12.  An example of non-positive building change, consisting of the panchromatic image from 

IKONOS date 1 (a) and from WorldView-2 date 2 (b). 

 

     
        (a)     (b)    (c) 

Fig. 7-13.  Three extracted changed buildings. Red polygons = outside boundary of each building; Green 

polygons = inside boundary of each building. 

 

Table 7-4 and Table 7-5 illustrate the change mask evaluation results. According to the pixel-

based change mask evaluation result, Method III obtains the best change mask. The KIA obtained 

from Method III is little higher than Method I, but much higher than Method II. It is worth noting 

that the land cover and shape feature-based refinement has improved the KIA from 0.5396 to 

0.6348 in Method I. The object-based evaluation results listed in Table 7-6 again show the 

weakness of Method II in the Munich test area.  
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Unlike the first three change detection methods, Method IV aims at automatically obtaining the 

correct precise building boundaries. The extracted building mask for this scene is shown in Fig. 7-

13. To evaluate its accuracy, we have overlaid the boundaries of these buildings to the 

WorldView-2 panchromatic images. Three of the changed buildings have been selected and are 

displayed in Fig. 7-13. These are the original building boundaries without any refinement. As can 

be seen here, the main building shapes have been extracted clearly. However, some small errors 

remain, as shown in Fig. 7-13a where small holes remain in the middle of the buildings. Also, the 

boundaries for all three changed buildings are not so straight. These problems will probably be 

refined in our future work.  

 

The evaluation result of this test set proves again that Method III is able to produce a better change 

detection result in VHR imagery than Method I and Method II. This can be explained by the fact 

that it is difficult to achieve a proper segmentation in VHR imagery. High resolution data feature 

sharp boundaries, but also obstructive information for building change detection, like windows on 

building roofs, seen from different perspectives or cars on the road. This information influences 

the segmentation procedure, thus affecting the application of Method II. 

 

7.4 Istanbul test area, Turkey 

7.4.1 Data introduction 

To study the behaviour of the proposed method for HR stereo imagery, a third test area acquired 

by Cartosat-1 is selected. As illustrated in Chapter 2, the DSM generated from Cartosat-1 exhibits 

limited accuracy in urban areas, especially for building boundaries. Without the availability of 

multi-spectral channels (Cartosat-1 acquires only panchromatic data), it is quite difficult to use 

these data for urban building change detection. Therefore, an industrial area with large buildings in 

the eastern part of Istanbul was selected for this experiment. Cartosat-1 images were acquired with 

a time difference of three years: the first was acquired on August 14, 2008 and the second was 

acquired on May 08, 2011. In this industrial area, the focus of change detection lies on newly 

constructed buildings. Fig. 7-14 shows the original panchromatic images (a) and (b), the generated 

DSMs (c) and (d), and the change reference data (d). For this test area, only the changed regions 

with a size greater than 40 pixels (1000 m2) are considered. It covers a total area of 2.5 km × 2.5 

km and is characterized as an industrial area with low-rise buildings in high density.  
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          (a)      (b) 
 

     
          (c)      (d) 
 

 
         (e) 

Fig. 7-14.  Dataset in the Istanbul test area. Orthorectified panchromatic image from date 1 (a) and date 2 

(b), DSM from date 1 (c) and date 2 (d) , and reference change map showing newly built buildings (e).  
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Since no multi-spectral channels are available, it is not possible to apply the full workflow of 

Method I and Method II in this test region. Therefore, in Method I, the land cover-based 

refinement procedure is skipped. The initial change mask is generated only through refinement 

using shape features. For Method III, since the no-building change indicators are not available, 

only the first fusion step (change feature fusion) is processed.  

7.4.2 Results 

The change detection results from Method I are presented in Fig. 7-15. Among them, Fig. 7-15a 

shows the robust change difference map generated with a window size of 3 × 3 pixels. After 

thresholding (𝑇 = 5 𝑚), the resulting mask overlaid with the reference map is presented in Fig. 7-

15b. Fig. 7-15c is the shape-based refinement result. In this test, we have used the threshold values 

𝑇𝐻𝑟𝑒𝑔𝑖𝑜𝑛 = 5𝑚;  𝑇𝑠𝑖𝑧𝐸𝑟𝑒𝑔𝑖𝑜𝑛 = 40 𝑝𝑖𝑥𝑒𝑙𝑠;  𝑇𝑐𝐸𝑛𝑣𝐸𝑥𝑟𝑒𝑔𝑖𝑜𝑛 = 0.55. 

 

Method II is a region-based change detection method. Compared to Fig. 7-15, the results shown in 

Fig. 7-16 are less noisy and the detected buildings exhibit much sharper boundaries. Fig. 7-16a 

depicts the change map, which is automatically stretched to a change probability map. Fig. 7-16b 

is the initial change mask overlaid with the reference change map. After removing the regions with 

a size of less than 40 pixels (1000 m2), the refined mask is displayed in Fig. 7-16c. The obtained 

result notably improves compared to the results from Method I. A problematic area appears in the 

top middle of the test area and some false alarms remain around the buildings. These false alarms, 

represented in red, can be seen in Fig. 7-16c. 

 

Without a multi-spectral channel, only the first step of Method III can be processed. Fig. 7-17a 

shows the obtained fusion result based on the two building-change indicators. The initial change 

mask produced after thresholding is shown in Fig. 7-17b. A lower threshold value is used here, 

because in this industrial area, the building height is relatively low: thus, the construction of new 

buildings is unlikely to result in large height differences. To refine the initial change mask, the 

same shape features used for Method I (𝑇𝐻𝑟𝑒𝑔𝑖𝑜𝑛 = 5𝑚;  𝑇𝑠𝑖𝑧𝐸𝑟𝑒𝑔𝑖𝑜𝑛 = 40 𝑝𝑖𝑥𝑒𝑙𝑠;  𝑇𝑐𝐸𝑛𝑣𝐸𝑥𝑟𝑒𝑔𝑖𝑜𝑛 = 0.55) are also 

used here. The refined result is shown in Fig. 7-17c. 
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        (a)       (b) 
 

 
        (c) 

Fig. 7-15.  Change map and masks generated in the Istanbul test area with Method I: 

(a) Robust difference map with positive change; 

(b) Initial change mask overlaid with reference data (T = 5m);  

(c) Refined mask overlaid with reference data (𝑇𝐻𝑟𝑒𝑔𝑖𝑜𝑛 = 5𝑚;  𝑇𝑠𝑖𝑧𝐸𝑟𝑒𝑔𝑖𝑜𝑛 = 40 𝑝𝑖𝑥𝑒𝑙𝑠;  𝑇𝑐𝐸𝑛𝑣𝐸𝑥𝑟𝑒𝑔𝑖𝑜𝑛 = 0.55); 

(b) - (c) Green: true detected; Red: false alarm; Blue: missed alarm. 
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        (a)          (b) 
 

 
        (c) 

Fig. 7-16.  Change map and  masks generated in the Istanbul test area with Method II: 
(a) Region-based change probability map;  

(b) Initial change mask overlaid with reference data (T = 0.4);  

(c) Refined mask over laid with reference data (𝑇𝑠𝑖𝑧𝐸𝑟𝑒𝑔𝑖𝑜𝑛 = 40 𝑝𝑖𝑥𝑒𝑙𝑠); 

(b) - (c) Green: true detected; Red: false alarm; Blue: missed alarm. 
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          (a)        (b) 
 

 
          (c) 
 
Fig. 7-17.  Change map and masks generated in the Istanbul test area with Method III:  

(a) Change map after one step of decision fusion;  

(b) Initial change mask overlaid with reference data (T = 0.4);  

(c) Refined mask overlaid with reference data (𝑇𝐻𝑟𝑒𝑔𝑖𝑜𝑛 = 5𝑚;  𝑇𝑠𝑖𝑧𝐸𝑟𝑒𝑔𝑖𝑜𝑛 = 40 𝑝𝑖𝑥𝑒𝑙𝑠;  𝑇𝑐𝐸𝑛𝑣𝐸𝑥𝑟𝑒𝑔𝑖𝑜𝑛 = 0.55); 

(b) - (c) Green: true detected; Red: false alarm; Blue: missed alarm. 

7.4.3 Evaluation of results 

The AUC obtained from all three methods are listed in Table 7-7. The quality of the DSMs from 

HR stereo imagery (Cartosat-1) is not as high as from VHR stereo images for buildings. Even 

though an industrial area with large size buildings is selected, the AUC obtained from Method I 

(robust height difference) is lower than from absolute images difference and multi-level features. 

In this case after fusing the 2D change features and height changes, the AUCs improve 

significantly for Method II and Method III. Method II produces the most accurate change map for 

this test area.  
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Table 7-7.  AUC comparison in the Istanbul test area. 

Method AUC 

Absolute image difference 0.9280 

KL Divergence 0.8508 

Multi-level 0.9511 

Height Difference 0.8993 

I 0.9065 

II 0.9667 

III 0.9432 

 

Table 7-8.  Pixel-based change masks evaluation in the Istanbul test area. 

Method Description Overall Accuracy (OA) Kappa Index of Agreement (KIA) 

I 
Initial mask 0.9586 0.5582 

Shape feature 
based refinement 

0.9655 0.6360 

II 
Initial mask 0.9821 0.7577 

Remove small size 
regions 

0.9823 0.7578 

III 
Initial mask 0.9684 0.6106 

Shape feature 
based refinement 

0.9720 0.6365 

 

Table 7-9.  Object-based change masks evaluation in the Istanbul test area. 

Method 
True Detected (Object) False Detected (Object) 

Number Rate [%] Number Rate [%] 

I 28 71.79 21 45.65 

II 29 74.36 5 16.67 

III 28 71.79 14 35.90 
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Tables 7-8 and 7-9 show the change mask evaluation results. Since the change map from Method 

II exhibits a higher AUC value than the other two methods, it leads to the most accurate change 

mask. As shown in Table 7-8, the initial change mask already shows better OA and KIA values 

than the final masks from the other methods. Table 7-9 has again proven the advantages of 

Method II. For the Cartosat-1 images, it is much easier to achieve a proper segmentation level than 

using the much higher resolution images from IKONOS and WorldView-2. Thus, few false alarm 

objects remain in the obtained change mask.  

 

According to the object evaluation result (Table 7-9),.  Method II and III (fusion-based methods) 

perform better in this test area. This proves that the original images can be very helpful in the 

change detection procedure, when the DSM quality is not good enough. Besides extracting changed 

buildings with sharp boundaries, Method II has also correctly detected more changed buildings and 

the false alarms drop significantly in comparison to the other two methods. This can be explained 

by the appropriate segmentation result. This test set is located in an industrial area with simple 

building shapes. It is much easier to get a proper segmentation result in this test area compared to 

more complex structures as for example in the Munich test area. Furthermore, due to the lack of 

multi-spectral channels, only the first fusion step of Method III can be performed.  

7.5 Oberammergau test area, Germany 

7.5.1 Data introduction 

To evaluate the performance of our proposed approaches in a forest area, the fourth dataset used 

was acquired over a forest region near Oberammergau in Bavaria, Germany. With an extension of 

2.25 km2, as shown in Fig. 7-18, this region is characterized by a combination of forest and crop 

change. The first scene is from May 12, 2008 and the second is from May 25, 2009. Both have a 

GSD of 2.5 m and the test images have a size of 600 × 600 pixels. Both scenes were captured by 

Cartosat-1, which, as illustrated before, has only a panchromatic band within each of the two stereo 

cameras. The two generated DSMs are displayed in Fig. 7-18c and 7-18d. In this test area, with one 

year’s time difference, it can be assumed that there are not many positive changes (e.g., new trees, 

tree growth). Most of the changes are a result of deforestation: therefore, in this test area, only the 

negative changes are of interest. The manually extracted reference data are shown in Fig. 7-18e. 
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        (a)                  (b) 
 

     
         (c)                  (d)  
 

 
         (e) 

Fig. 7-18.  Dataset in the Oberammergau forest test area. Orthorectified panchromatic image from date 1 (a) 

and date 2 (b), DSM from date 1 (c) and date 2 (d), and reference change map (e). 
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7.5.2 Results 

To evaluate the performance of our proposed methods for forest areas, the methods are again 

applied separately. Due to the lack of spectral methods and less meaningful shape features, only 

part of Methods I and III can be applied. In addition, as the experiments for this test area are 

focused on forest change detection and the fusion model of Method III is designed for building 

changes, only the first fusion step can be used to detect forest change. In this test area, the imagery 

of two dates are from same HR sensor, in the experiments direct height difference is adopted 

instead of robust difference for Method II and III due to the better performance. 

 

Fig. 7-19 describes the change detection result from Method I. The change map shown in Fig. 7-19a 

is generated from robust height difference. Since the negative changes are of interest, smaller 

values, shown in blue, indicate larger change. After selected the pixels with height decreases of 

more than 10 meters, the result is shown in Fig. 7-19b. The small size regions remaining have been 

removed to generate the final change mask (shown in Fig. 7-19c). 

 

Fig. 7-20 shows the change detection results obtained using Method II. As can be seen, all of the 

real forest changes have been detected successfully. After thresholding, very few false alarms 

remain in the change mask (shown in Fig. 7-20b), and these can be easily removed by filtering 

through size constraints. The final change detection result is displayed in Fig. 7-20c. As can be 

seen, all of the four changed forest areas have been correctly detected, and three of them are very 

close to their reference boundaries.  

 

Since in Method III, the direct height difference is used instead of the robust difference, the 

change map obtained contains comparatively more noise. This noise is mainly located near the 

forest boundary regions. However, this noise does not greatly influence the final change detection 

result. As presented in Fig. 7-21b, all the real changed regions are successfully detected, and only 

some noise-based false alarms remain. But these false alarm regions are mostly small in size, and 

after the removal of regions less than 100 pixels (2500 m2), the results are much better (as shown 

in Fig. 7-21c), but still two areas with wrongly detected changes are presented. 
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         (a)              (b) 
 

 
         (c) 
 
Fig. 7-19.  Change map and masks generated in the Oberammergau test area with Method I: 
(a) Robust difference map with negative changes; 

(b) Initial change mask overlaid with reference data (T = 10 m);  

(c) Refined mask overlaid with reference data (𝑇𝑠𝑖𝑧𝐸𝑟𝑒𝑔𝑖𝑜𝑛 = 100 𝑝𝑖𝑥𝑒𝑙𝑠); 

(b) - (c) Green: true detected; Red: false alarm; Blue: missed alarm.  
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         (a)              (b) 
 

 
         (c) 
 

Fig. 7-20.  Change map and masks generated in the Oberammergau test area with Method II: 

(a) Region-based change probability map;  

(b) Initial change mask overlaid with reference data (T = 0.9);  

(c) Refined mask overlaid with reference data (𝑇𝑠𝑖𝑧𝐸𝑟𝑒𝑔𝑖𝑜𝑛 = 100 𝑝𝑖𝑥𝑒𝑙𝑠); 

(b) - (c) Green: true detected; Red: false alarm; Blue: missed alarm.  
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         (a)             (b) 
 

 
        (c) 
 

Fig. 7-21.  Change map and masks generated in the Oberammergau test area with Method III: 

(a) Change map after one step of decision fusion;  

(b) Initial change mask overlaid with reference data (𝑇 = 0.9);  

(c) Refined mask overlaid with reference data (𝑇𝑠𝑖𝑧𝐸𝑟𝑒𝑔𝑖𝑜𝑛 = 100 𝑝𝑖𝑥𝑒𝑙𝑠);  

(b) - (c) Green: true detected; Red: false alarm; Blue: missed alarm.  

 

7.5.3 Evaluation of results 

As the AUC comparison result in Table 7-10 shows, DSM from HR stereo imagery is 

advantageous in forest areas in contrast to urban areas. AUC from direct height differencing is 

higher than from absolute image difference and KL divergence. It has to be noted that Method 2 

(region-based) does not result in a higher AUC, the pixel based method with same features reaches 

higher AUC values, these results are shown in Tian et al. (2013b). Even if the change map from 

Method III, which looks more noisy (in Fig. 7-21a) than the change map from Method II, the AUC  
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Table 7-10.  AUC comparison in the Oberammergau test area. 

Method AUC 

Absolute image difference 0.9062 

KL divergence  0.8377 

Multi-level 0.9357 

Height difference 0.9231 

I 0.8961 

II 0.9316 

III 0.9505 

 

Table 7-11.  Pixel-based change masks evaluation in the Oberammergau test area. 

Method Description Overall Accuracy (OA) Kappa Index of Agreement (KIA) 

I 
Initial mask 0.9931 0.5347 

Remove small size 
regions 

0.9945 0.5879 

II 
Initial mask 0.9967 0.7472 

Remove small size 
regions 

0.9970 0.7633 

III 
Initial mask 0.9899 0.4603 

Remove small size 
regions 

0.9952 0.6450 

 
 

in this case is still higher than for Method II. However, after further processing (thresholding and 

refinement), Method II obtains the most accurate change mask. This improvement is further 

confirmed by the increase of OA and KIA, presented in Table 7-11. 

 

Among the tested approaches, Method II (the region-based approach) achieves the most precise 

final change masks. In fact, the initial change mask of Method II already exhibits higher OA and 

KIA values than the final masks of the other two methods. This demonstrates that the region-based 

method is more appropriate for change detection in forest areas. These results are similar to those 

achieved in the Istanbul test set, although for these two test sets different change objects are of 

interest. This proves again that Method II is more appropriate for HR imagery, especially when 

only panchromatic imagery is available.  
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7.6 Discussion and summary 

In this chapter, it has been shown that the proposed approaches for DSM-assisted change detection 

can be applied for building as well as for forest change detection. In the quality inspection 

procedure, the manually extracted reference data have been used as ground truth. The evaluation 

includes both visual inspection and a qualitative comparison to the provided reference data. In the 

experimental procedure, four types of data groups are selected for different change objects of 

interest. To prove the advantages of DSM-assisted change detection, the change maps obtained 

from the proposed methods have been compared with 2D change features. As can be seen from the 

evaluation results, the proposed methods perform in nearly all cases better than the 2D features 

alone. It has to be noted, that although the accuracies of these 2D change features are various and 

often low, they are important, since fusing them with height changes leads to improved change 

detection accuracy. 

 

In the following, some problems which have arisen during our investigations are discussed. 

 

As evident from the visual inspection of the obtained results, most of the changes can be correctly 

extracted. The reasons for high false alarm rates in some cases can be divided into three 

categories:  

• One or both of the DSMs exhibit large area matching errors; 

• A reconstructed building is not detected properly; 

• Changed objects which are not of interest lead to large spectral changes in satellite images 

from the two dates. 
 

 

         
 (a)              (b)          (c)         (d) 

Fig. 7-22.  Example of a mis-detected building change: Panchromatic image from date 1 (a) and data 2 (b); 

DSM of date 1 (c) and date 2 (d). 
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        (a)              (b)       (c) 

Fig. 7-23.  Example of a reconstructed building: Panchromatic image from date 1 (a) and data 2 (b); and 

height change map (c). The red arrow points to the reconstructed part. 

 

An example for the first category of false alarms is illustrated in Fig. 7-22. In the panchromatic 

images shown in Fig. 7-22a and 7-22b, it can be seen clearly that the buildings have not changed. 

Due to matching errors of the stereo images from date 1, the large building in the centre of the 

images is missing in the corresponding DSM (Fig. 7-22c). However, in the DSM from the later 

date (Fig. 7-22d) the building is represented correctly. These kinds of mistakes cannot be handled 

by any of the three proposed methods. Also, for the Istanbul test areas, incorrect heights have been 

computed for several industrial buildings. These DSM errors lead to several mis-detections in the 

final change mask.  

 

The second category of false alarms arises when buildings are reconstructed, since the height can 

also be partly influenced in this situation. Within a large time period, several locations might show 

this kind of change. One example can be seen in the centre of Fig. 7-23a. The displayed building 

was reconstructed with a new building shape (see Fig. 7-23b). Using only the height difference 

map, only half of the changes can be detected (as shown in Fig. 7-23c). By combining the change 

information from the DSM and the multispectral images, some small changed areas are extracted, 

as shown in Fig 7-9a and 7-10a. But since they are relatively small and not connected with the 

other parts of the buildings, they are not kept in the change mask after the object-based filtering.  

 

The last category of false alarms occurring in the proposed approaches appears if objects that are 

not of interest show high probability of change. This problem exists only for Methods II and III, 

since in these two methods, the orthorectified satellite images are also adopted in the initial change 

map generation procedure. One example is shown in Fig. 7-12. The spectral information in the 

ground area which was surrounded by the building of interest has changed considerably. This kind 

of change in image can increase the change probability of our final change map. Thus false alarms 

are introduced.  
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According to the above discussion and the evaluation results provided, Method I is relatively 

simple and requires a limited amount of computation, the results are quite robust, and the method 

can achieve useful change detection results. As a prerequisite of successful change detection, the 

DSMs should be of relatively good quality, e.g. DSMs from VHR multiple stereo imagery, and the 

scenes should not feature too many changes through reconstruction of buildings in the same area. 

Taking the Munich test area as an example, Method I can achieve better results than Method II. 

However, when DSMs are not very accurate, as in the Istanbul test area, Method II achieves much 

higher accuracy than Method I.  

 

On the other hand, the region-based method (Method II) does not work so well in dense urban 

areas. This can be explained by the fact that in dense urban areas, it is difficult to achieve a proper 

segmentation level. Several false alarms might also occur in small regions, and these small regions 

can be falsely detected as changes. However, this method works very well for high resolution 

satellite images such as those from Cartosat-1, as could be shown in the Istanbul and Bavaria test 

sites. This is probably due to the fact that it is much easier to obtain a good segmentation result in 

these two test areas.  

 

Method III, decision fusion, is a relatively robust change extraction method. The adopted DS 

fusion is especially powerful in dealing with uncertain information, which fits well with our 

problem. The DSM and the image can together provide a decision to determine whether an object 

of interest has changed. The fusion of multiple possible change and no-change indicators 

eventually highlights the real changes. Moreover, for this approach, a statistically based similarity 

measurement is adopted, which is more robust than using the intensity values directly. 

 

The post-classification approach (Method IV) has only been tested in the Munich area, as it is the 

only area where an outdated building footprint is available. The real positive changes in this test 

area are quite complex: most of the changed buildings are still undergoing reconstruction, while 

some new buildings are only partly finished. All of these problems have noticeably increased the 

complexity of the detection procedure. The proposed building extraction method has also been 

tested in our work (Tian and Reinartz, 2013), and it performs well even with more complicated 

buildings.  

 

A major problem that remains is the selection of appropriate threshold values, which still 

influences the results in several procedures. A manually selected threshold value is used to obtain 

the change masks. A bigger or smaller value might slightly influence the number of missed or 

detected false alarms. In the shape feature-based refinements, we have also used several threshold 
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values. The selection of a proper threshold value is not trivial and we cannot guarantee that the 

values used here are the best choice. Higher accuracy might be achieved when using other 

threshold values, but this improvement is limited. An analysis of how the shape feature threshold 

values can influence the final masks is presented in Tian et al. (2013a). More automatic threshold 

selection methods are a topic of interest for potential future research in this field. 
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8. Conclusions and outlook 

Blair and Bar-Shalon (1996: 450) pose the question “Does more data always mean better 

estimates?” The answer should be ‘yes’ if the data contain mainly correct information. Moreover, 

correct information should be distinguished from incorrect information using the proper 

methodology. With respect to the research topic of this thesis, the DSMs from spaceborne stereo 

matching contain height information, which is essential for change detection. However, the height 

information provided is not always correct. The goal of this thesis was to find out if fusing 

imperfect DSMs with other data or information can improve the final change detection accuracy 

and how these data can be used properly. 

8.1 Summary of achievements 

In this thesis, three 3D change detection approaches have been addressed by considering combined 

usage of DSMs generated from stereo imagery and the corresponding ortho-rectified satellite 

images for change detection. Starting with the DSM generation methodology and DSM quality 

evaluation, these approaches are proposed, taking into account the advantages and drawbacks of 

these DSMs. The approaches differ in the way the DSMs are introduced within the overall 

procedure. 

 

• DSM quality evaluation 

Before addressing the problem of DSM-assisted change detection, a quality evaluation of DSMs 

based on satellite stereo images from different sensors with varying resolutions is presented. The 

quality has been evaluated based on several land covers in urban and forest regions. As illustrated 

in Chapter 2, in urban regions, the quality of DSMs is more sensitive to the image resolution. The 

main drawbacks of the Stereo-DSM are the blurred boundaries of objects and potential errors 

produced in the stereo matching procedure.  

 

• DSM-assisted change localization 

The first change localization approach uses a DSM subtraction result to obtain initial change 

candidates. Additional land cover information, such as vegetation, shadow etc., can be used to 

refine the change map according to the characteristics of the objects of interest. The advantage of 
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this method lies in its efficiency, robust results and ease of use. Especially after disasters, this 

approach can provide a fast building damage estimate. 

 

• Fusion-based change detection 

For full use of all of the change information contained in the original panchromatic or multi-

spectral images and the height information, both the feature fusion and the decision fusion method 

are proposed. Considering the blurred boundaries of some objects in the DSMs, a region-based 

change detection method is tested. It fuses the line features from panchromatic images and change 

features from DSMs. Moreover, a segment merging strategy is proposed to generate the initial 

region unit. Weighted CVA is adopted for the change map generation.  

 

For the decision fusion procedure, we use the DS fusion theory to extract probabilities for real 

building changes. The sigmoid function is employed in the automatic initial mass function 

generation procedure. Furthermore, the whole procedure works unsupervised and the probability 

calculation is much faster than model-based clustering methods. The generated probability maps 

can also be used effectively in a semi-automatic procedure.  

 

• Post-classification change detection 

Post-classification is a highly efficient method for building change detection when outdated 

building footprints are available. This approach consists of two steps: Firstly, the changed building 

locations are detected through initial building mask comparison. Secondly, the destroyed buildings 

and newly built buildings are processed separately. The destroyed buildings can be identified 

easily and removed from the outdated building footprint. The new building boundaries have to be 

detected. For this purpose, a robust building reconstruction method is proposed and evaluated in 

Chapter 6. This approach automatically splits the images around the changed buildings into 2D 

rectangular segments by using the Hough transform. The probability of each segment belonging to 

a building is calculated from random forest estimations. An automatic training data selection 

strategy is designed for this supervised classification. Finally, the 2D segments and classification 

results are combined to obtain the final building boundaries. 

8.2 Conclusion 

To conclude, according to the objectives stated in Chapter 1, this thesis has contributed to DSM-

assisted change detection for spaceborne optical data in the following fields: 
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• Using the three proposed approaches, it has been shown that DSMs generated from 

satellite stereo imagery are suitable for automatic and semi-automatic 3D change detection for 

objects like buildings and forest. It has been proven that the accuracy of change detection is 

improved in all approaches after introducing DSMs to the process chain.  

 

• As DSMs generated from spaceborne stereo data contain potential errors, using only these 

DSMs to extract the change mask would result in numerous false alarms. The original images used 

to create the DSMs can and should be involved in the change detection procedure to improve the 

result. It has been shown that full use should be made of features from original satellite images in 

order to cope with the potential incorrect information from DSMs. Shortcomings may appear if one 

of the DSMs does not meet the minimum required quality (missing objects, large errors) and does 

not represent the real situation, as a result of which the result is negatively influenced. 

 

• It has been proven that in urban areas, VHR spaceborne imagery can provide high 

accuracy DSMs. In this case, directly refining the change mask using DSM subtraction can already 

extract the important changes. Further methods can only improve the accuracy slightly. However, 

the fusion-based methods improve the results considerably when DSMs of low quality are used. 

 

• It has been shown that the decision fusion method is advanced in VHR imagery, but for 

high resolution stereo imagery, the region-based method can normally obtain a clear change mask 

with high accuracy. When an outdated building footprint is available, the post-classification 

method is more efficient for building change detection and makes it possible to detect rebuilt areas.  

8.3 Outlook 

Three main approaches have been demonstrated for DSM-assisted change detection and all of them 

have the ability to highlight changes and provide useful change masks. The most outstanding 

feature of these approaches is the robust fusion of the change and no-change features from DSMs 

and original satellite images. Future investigations for each approach should focus on adopting 

more change features for the fusion models or refining the change detection algorithms. The 

following possible future research topics could be of interest:  

 

• Investigating the possibilities of using more terrain features from DSMs and more texture 

features from images. These features can be adopted in many stages of change detection: for 

instance, change feature calculation, change indicator modelling, segmentation, segmentation 

merging, etc.  
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• The quality of the generated DSM is more sensitive in the DSM-assisted localization 

approach. Therefore, appropriate DSM refinement processing might help to increase the accuracy 

of change detection.  

 

• A basic DS fusion model was designed for the decision fusion-based change detection. If 

more indicators can be extracted, like land cover classes, roughness and texture features, the DS 

fusion model can also be refined to improve the accuracy of change detection. 

 

• Improving the performance of each approach by employing more 2D change detection 

methods, e.g. kernel change detection, IR-MAD etc. Due to the limited time available for this 

research, limited 2D change detection algorithms are tested. More linear or kernel change detection 

algorithms could be introduced to 3D processing. 

 

• A more detailed introduction to 3D shape features could be of interest. During the last step 

of building change detection, a number of shape features are adopted. More 2D as well as 3D 

shape features could be used to improve the overall change detection result.  

 
• A robust automatic thresholding method could be helpful. In the existing framework, 

several threshold values are still required. It is difficult to establish one automatic threshold method 

that can be used for all purposes. 
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