
Information and Software Technology 128 (2020) 106392

Available online 18 August 2020
0950-5849/© 2020 Elsevier B.V. All rights reserved.

Predicting continuous integration build failures using evolutionary search 

Islem Saidani a, Ali Ouni *,a, Moataz Chouchen a, Mohamed Wiem Mkaouer b 

a ETS Montreal, University of Quebec, Montreal, QC, Canada 
b Rochester Institute of Technology, Rochester, NY, USA   

A R T I C L E  I N F O   

Keywords: 
Continuous integration 
Build prediction 
Multi-Objective optimization 
Search-Based software engineering 
Machine learning 

A B S T R A C T   

Context: Continuous Integration (CI) is a common practice in modern software development and it is increasingly 
adopted in the open-source as well as the software industry markets. CI aims at supporting developers in inte
grating code changes constantly and quickly through an automated build process. However, in such context, the 
build process is typically time and resource-consuming which requires a high maintenance effort to avoid build 
failure. 

Objective: The goal of this study is to introduce an automated approach to cut the expenses of CI build time and 
provide support tools to developers by predicting the CI build outcome. 

Method: In this paper, we address problem of CI build failure by introducing a novel search-based approach 
based on Multi-Objective Genetic Programming (MOGP) to build a CI build failure prediction model. Our 
approach aims at finding the best combination of CI built features and their appropriate threshold values, based 
on two conflicting objective functions to deal with both failed and passed builds. 

Results: We evaluated our approach on a benchmark of 56,019 builds from 10 large-scale and long-lived 
software projects that use the Travis CI build system. The statistical results reveal that our approach out
performs the state-of-the-art techniques based on machine learning by providing a better balance between both 
failed and passed builds. Furthermore, we use the generated prediction rules to investigate which factors impact 
the CI build results, and found that features related to (1) specific statistics about the project such as team size, 
(2) last build information in the current build and (3) the types of changed files are the most influential to 
indicate the potential failure of a given build. 

Conclusion: This paper proposes a multi-objective search-based approach for the problem of CI build failure 
prediction. The performances of the models developed using our MOGP approach were statistically better than 
models developed using machine learning techniques. The experimental results show that our approach can 
effectively reduce both false negative rate and false positive rate of CI build failures in highly imbalanced 
datasets.   

1. Introduction 

Continuous integration (CI) [1] is a set of software development 
practices that are widely adopted in industry and open source envi
ronments [2]. A typical CI system, such as Travis CI1, advocates to 
continuously integrate code changes, introduced by different de
velopers, into a shared repository branch. The key to making this 
possible, according to Fowler [3], is automating the process of building 
and testing, which reduces the cost and risk of delivering defective 
changes. From the academic side, the study of CI adoption has become 

an active research topic and it has already been shown that CI improves 
developers’ productivity [4], helps to maintain code quality [2] and 
allows for a higher release frequency [5]. 

However, despite its valuable benefits, CI brings its own challenges. 
Hilton et al. [6]. revealed that build failure is a major barrier that de
velopers face when using CI. A build failure, i.e., failing to compile the 
software into machine executable code, represents a blocker that pre
vents developers from proceeding further with development, as it re
quires an immediate action to resolve it. In addition, the build resolution 
may take hours or even days to complete, which severely affects both, 
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the speed of software development and the productivity of developers 
[7]. Such challenges motivated researchers and practitioners to develop 
techniques for preemptively detecting when a software state is most 
likely to trigger a failure when built, and thus developers can take the 
necessary preventive actions to avoid it. 

Existing studies leverage the history of previous build success and 
failures in order to train machine learning (ML) models. Such models 
learn from the CI builds history and use the domain knowledge to extract 
features and predict the outcome of a given input build. For instance, 
Foyzul and Wang [8] used Random Forest (RF), for the binary classifi
cation of build outcome, and Ni and Li [9] adapted the cascaded clas
sifiers to improve the accuracy of CI build prediction. Although these 
works have advocated that predicting CI build outcome is possible and 
beneficial, none of them accommodated for the imbalanced distribution 
of the successful and failed classes when building their prediction 
models. This challenges their applicability due to the performance bias 
that can occur when an imbalanced distribution of class examples is used 
in the learning process [10–13]. Hence, the minority class instances, i.e., 
the failed builds class in our case, is much more likely to be 
miss-classified. However, in CI context, a good accuracy on the failed 
builds prediction is more important than the passed builds accuracy. 
Also, increasing the accuracy of the builds failure class (known as 
probability of detection) can result in maximizing also the number of 
incorrectly classified failed builds (i.e., false alarms) which makes these 
two objectives in conflict [10,14]. 

To deal with the above mentioned challenges, Evolutionary Multi- 
Objective Optimisation (EMO) [15–19] have been found useful for 
developing software engineering predictive models [20,21]. Re
searchers have advocated that the use of (EMO) is appropriate because it 
allows adapting the fitness function to evolve classifiers with good 
classification ability across both the minority and majority classes, e.g., 
balance between failed and passed builds. This is accomplished by 
treating the conflicting objectives independently in the learning process 
using the notion of Pareto Dominance. Additionally, to deal with the 
imbalanced nature of the dataset, a Multi-Objective Genetic Program
ming (MOGP) approach [22], that promotes diversity between solutions 
equally on both minority and majority classes, allows the imbalanced 
training data to be used directly in the learning process i.e.without 
relying on sampling techniques to re-balance the data [12,23] which 
advocates that MOGP approaches are more suitable for binary classifi
cation tasks with imbalanced data [10]. 

In this paper, we introduce a novel MOGP approach to predict CI 
build outcome. The idea is based on the adaption of the Non-dominated 
Sorting Genetic Algorithm (NSGA-II) [24] with a tree-based solution 
representation, in order to generate rules from historical data of CI 
builds using two competing objectives in the learning process, namely 
the probability of detection and the probability of false alarms. As a 
solution to this binary classification problem, a candidate rule is 
expressed as a combination of metrics and their appropriate threshold 
values; and should cover as much as possible the build results from the 
base of build results. In a nutshell, our approach takes as input, a given 
build, calculates a set a metrics that are fed into our rule, previously 
generated using the history of builds, and whose binary output predicts 
whether the input build is most likely to succeed or fail, based on its 
likelihood to the successful or failed builds. 

To evaluate our approach, we conducted an empirical study on a 
benchmark composed of 56,019 build instances from 10 open source 
projects that use the Travis CI system, one of the most popular CI sys
tems. We compare our predictive performance to existing Genetic Pro
gramming (GP) algorithms and three widely-used ML techniques 
namely Random Forest, Decision Tree and Naive Bayes. The statistical 
results reveal that our approach advances the state-of-the art by out
performing existing prediction models. Moreover, we examine the most 
important features, used by our generated rules, in indicating the correct 
CI build outcome, in order to provide the practitioners with useful in
sights on how to avoid build failures. In summary, the contributions of 

this work are the following:  

• A novel formulation of the CI build prediction as a multi-objective 
optimization problem to handle imbalance nature of CI builds as 
well as to achieve a good predictive performance on both classes 
(passed and failed). To the best of our knowledge, this is the first 
attempt to use a search-based approach for the CI build prediction.  

• An empirical study of our MOGP technique compared to different 
existing approaches based on a benchmark of 10 large and long-lived 
projects. The obtained results reveal that our proposal is more effi
cient than existing techniques with a median of AUC (Area Under 
The Curve) of 68% compared to 61% achieved by existing ML 
techniques for which we applied re-sampling. Additionally, our 
approach is able to strike a better balance between both failed and 
passed builds achieving an improvement of at least 15% for the 
balance metric [25]. These are interesting and actionable results 
considering the highly imbalanced nature of the studied projects 
with an average failure rate of 19% in the minority class.  

• A qualitative evidence of the potential reasons behind build failure 
through a novel feature ranking approach. The rules analysis shows 
that the metrics related to (1) specific statistics about the project such 
as team size, (2) last build information in the current build and (3) 
the types of changed files are the most influential to indicate the 
potential failure of a given build.  

• A comprehensive dataset [26] collected from 10 long-lived software 
projects, containing over 56,019 records of build results. 

Replication Package. The comprehensive dataset collected and 
used in our study is publicly available in [26] for future replications and 
extensions. Also, we provide all details about the validation results as 
well as illustrative examples of the generated rules available for the 
research community. 

Paper Organization. The remainder of this paper is organized as 
follows. Section 2 provides an overview of the CI build process and the 
related work. We present our approach in Section 3. Section 4 shows the 
experimental setup of our empirical study. Section 5 presents the results 
and findings of our studied research questions. Section 6 discusses the 
implications of our findings for developers, researchers and tool 
builders. Section 7 reviews the threats to the validity of our results. 
Finally, Section 8 concludes the paper and outlines avenues for future 
work. 

2. Background and related work 

In this section, we provide an overview of CI and the related work. 

2.1. CI Build process 

CI aims to build healthier software systems by developing and testing 
in smaller increments without compromising software quality. The basic 
notion of CI, as described by Fowler [3] is to support developers’ work 
by automating the code compilation, dependencies collection and tests 
running. This process is an enduring check on the quality of contributed 
code that mitigates the risk of “breaking the build” as regressions can be 
detected and fixed immediately. 

CI has a well-defined life-cycle when generating builds. The main 
phases of the CI build life-cycle are defined as follows. First of all, a 
contributor forks, i.e., clones, the project repository, makes some 
changes, as creating a new feature or by fixing some bugs, on the code 
base. When the work is done, the contributor submits the changes to the 
original repository. At this point, the CI service carries out a series of 
tasks to build and test these changes. Then, it provides immediate 
feedback on the outcome of the test to the core team, i.e., developers 
who dispose of write access to a project’s code repository [2]. When one 
or more of those tasks fail, the build is considered failed, otherwise it will 
be passed and core team members proceed to do a code review and, if 
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necessary, the submitter would be requested for modifications. After a 
cycle of code reviews, automatic building and testing, if everyone is 
satisfied, the submitted changes will be merged to the mainline branch. 

2.2. Related work 

This section presents the related research about CI builds while 
highlighting the contributions of our work. 

Prediction of CI builds: Many research works have introduced 
prediction models to predict the CI build status. Xia and Li [27] 
compared nine ML classifiers to construct CI prediction models of 126 
open source projects hosted on GitHub. Their experiments were based 
on both cross-validation and online scenarios. In cross-validation, their 
models achieved an Area Under the ROC Curve (AUC) score of over 70%. 
However, under the online scenario, they observed a tendency for their 
prediction scores to decrease up to 60% of AUC. In both scenarios, they 
found that Decision Tree (DT) and Random Forest (RF) achieved the best 
performance scores. In [8], Foyzul and Wang proposed the prediction 
model of CI build outcome on three build systems, namely Ant, Maven 
and Gradle, under the cross-project prediction and cross-validation 
scenarios. Using random forest, they achieved over 90% of AUC scores 
for the considered build systems. Additionally, the cross-validation 
provided better results. However, when we looked at the provided 
dataset, we found that there is a large amount of redundant lines which 
may influence the validity of the reported results. We also found that the 
dataset is perfectly balanced (45% of failed builds) which is not in 
compliance with the real world situation as it is generally known that 
failed builds are much less to occur than passed ones [28]. In this paper, 
we found that when applying RF to our generated dataset, our approach 
can achieve better results. Xia et al. [29] conducted an empirical study 
to evaluate the predictive performance of six common classifiers 
including RF, NB and DT under cross-project validation. For dataset 
selection, they compared three methods namely Random Selection, 
Burak Filter based on build-level and Bellwether Strategy based on 
project-level. According to the results of their experiments, they found 
that Bellwether strategy performs better than the two other methods. 
And among the used classifiers, they found that Decision Tree (DT) 
classifier performs the best achieving a score of 17% for F1-measure on 
average. 

Although most of the existing approach achieved good results by 
using variety of domain knowledge and historical information the of CI 
builds, none of these works actually construct the prediction model that 
perfectly fits the imbalance in build outcomes characteristics of the CI 
build outcome which challenges their applicability. Additionally, the 
predictive performance of the used techniques like RF, depends highly 
on the used features, the dataset representativeness and the failure rate 
which may explain the differences in the obtained results. 

Insights into CI builds: The analysis of CI build failures is growing 
as an active and challenging topic for software engineering research. 
Rausch et al. [30]. investigated the impacts that can affect build failures 
on Travis CI. They observed by analyzing build logs that the most 
common reasons for build failures are failing integration tests, code 
quality measures being below a required threshold, and compilation 
errors. Beller et al. [31]. focused on testing with an in-depth analysis of 
CI builds. The main finding of their study is that 59% of build failures 
occur during test phase for Java projects. Luo et al. [32] proposed a case 
study to investigate what features have greater impact on the build 
result. Conducting a case study on the TravisTorrent dataset, they found 
that the total number of commits in a build is the main influence feature 
that causes build failure. The number of files changed and the density of 
tests also impact a lot. In this paper, we conduct a deep analysis to 
investigate the most influencing factors of build outcome using our 
proper generated rules. 

Other Studies About CI Builds Atchison et al. [33]. conducted a 
time-series analysis of the history of CI builds to identify temporal pat
terns in build volume within TravisTorrent dataset [34]. By observing a 

clear seasonality in build activity, their approach was able to estimate 
the number of builds to be generated in the future, with an average 
accuracy of 86%. Another interesting study was conducted by Ghaleb 
et al. [35]. to analyse the long duration of builds over 67 GitHub projects 
that are linked with Travis CI. The main finding of their study is that 
about 40% of builds take over 30 minutes to run which points to the high 
energy cost of CI builds that increases as the build duration increases. 

3. Search-based prediction of CI build failure 

In this section, we describe our approach that uses multi-objective 
GP based on an adaptation of NSGA-II. 

3.1. Approach overview 

Fig. 1 provides an overview of our proposed approach to generate 
rules for CI builds outcome prediction. In our study, we start from the 
observation that it is more beneficial for CI developers to identify good 
practices to follow in order to avoid build failures rather than simply 
detecting whether the build will succeed or fail. Thus, the goal of the 
proposed approach is to generate a set of rules, as a combination of CI- 
related metrics extracted from various sets of information about CI 
builds. As described in Fig. 1, the first step of our approach consists of 
collecting a set of examples of build results (failed and succeeded builds) 
information based CI-related (cf. Section 3.3). Then, in the second step, 
we take these inputs to generate a set of predictive rules that predict as 
much as possible the CI builds outcome with high accuracy. 

The multi-objective GP algorithm is the key element of our approach. 
First, it starts by generating a set of solutions. Every solution is 
composed of a set of prediction rules i.e., combination of threshold 
values assigned to each metric. These combination of metrics-thresholds 
are connected with logical operators. All the generated solutions in the 
population are evaluated using two objectives to (1) maximize the true 
positive rate, and (2) minimize the false positive rate. Change operators 
are applied, at every iteration, to generate new solutions. After repeating 
this process until reaching a stop criteria, the best solution is returned by 
the algorithm. In our experiments, the stop criteria is when reaching a 
maximum number of generations. All parameters configuration details 
are described later in Section 4.5. 

3.2. NSGA-II adaptation 

In this section, we describe in details our search-based approach. We 
first provide an overview of NSGA-II and then we define how we adapt it 
to our build failure prediction problem. 

3.2.1. NSGA-II overview 
We employed a widely used computational search technique, NSGA- 

II [36] that has proven good performance in solving many software 
engineering problems [15,37–39]. As described in Algorithm 1, NSGA-II 
starts by randomly creating an initial population P0 of individuals 
encoded using a specific representation (line 1). Then, a child popula
tion Q0 is generated from the population of parents P0 (line 2) using 
genetic operators (crossover and mutation). Both populations are 
merged into an initial population R0 of size N (line 5). Fast-non-domi
nated-sort [24] is the technique used by MOGP to classify individual 
solutions into different dominance levels (line 6) [24]. The whole pop
ulation that contains N individuals (solutions) is sorted using the 
dominance principle into several fronts (line 6). Solutions on the first 
Pareto-front F0 get assigned dominance level of 0. Then, after taking 
these solutions out, fast-non-dominated-sort calculates the Pareto-front F1 
of the remaining population; solutions on this second front get assigned 
dominance level of 1, and so on. Fronts are added successively until the 
parent population Pt+1 is filled with N solutions (line 8). When MOGP 
has to cut off a front Fi and select a subset of individual solutions with the 
same dominance level, it relies on the crowding distance [24] to make 
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the selection (line 9). This parameter is used to promote diversity within 
the population. The front Fi to be split, is sorted in descending order (line 
13), and the first (N- |Pt+1|) elements of Fi are chosen (line 14). Then, a 
new population Qt+1 is created using selection, crossover and mutation 
(line 15). This process will be repeated until reaching the last iteration 
according to a stop criteria (line 4). 

3.2.2. Adaptation 
The following three subsections describe more precisely our adap

tion of GP to the CI build failure problem. 
i. Solution/Individual representation: Our adaptation to the 

NSGA-II algorithm is to adopt it with the generic model of GP learning to 
the space of programs. Unlike other evolutionary search algorithms, in 
GP, solutions are themselves programs following a tree-like represen
tation instead of fixed length linear string formed from a limited al
phabet of symbols [40]. For the build failures prediction problem, a 
candidate solution, i.e., a prediction rule, is represented as an IF – THEN 
clause with the following template: 

IF (Combination of metrics and their thresholds) THEN RESULT. 

The IF clause describes the conditions under which a build is said to 
be succeeded or failed. The condition corresponds to a logical expression 
that combines some metrics and their threshold values using logical 

operators (OR, AND). A solution is encoded as a tree where each ter
minal belongs to the set of metrics described in Table 1 and their cor
responding thresholds are generated randomly. Each internal-node 
belongs to the connective set C = {AND, OR}. Fig. 2 shows an illustrative 
example of a solution. This rule predicts the build failure in case the fail 
rate history is greater than 0.6 and the files added are higher than or equal 
to 5 and the team size is higher than or equals to 20. 

IF proj_fail_rate_history > 0.6 AND team_size ≥ 20 AND gh_diff_fi
les_added ≥ 5 THEN Failure. 

ii. Generation of an initial population: To generate an initial 
population composed of n solutions, we start by defining the maximum 
tree length (should not exceed a predefined threshold). The actual tree 
length will vary with the number of metrics to use for failure prediction 
that vary from 1 to 33 (the number of considered metrics, cf. Table 1). 
Notice that a high tree length value does not necessarily mean that the 
results are more precise since, usually, only a few metrics are needed to 
predict the failure. Because the individuals will evolve with different 
tree lengths (structures), with the root (head) of the trees unchanged, we 
randomly assign for each one:  

• One metric and threshold value to each leaf node. The threshold 
values are ranged between lower and upper bounds of the metric in 
question (e.g., if the number of team sizes is between 1 and 10, the 
threshold will be randomly selected according this metric distribu
tion). These upper bounds are fixed based on the training set. We also 
assign a mathematical operator (≥,≤, = ) that depends on the metric 
category. Note that “=” is only used for categorical metrics (e.g., 
gh_is_pr), ≥ and ≤ are applied only with continuous (e.g., commit
ter_fail_history) or discrete metrics (e.g., gh_team_size).  

• A logic operator (AND, OR) to each function node. 

It is worth to mention that during individual generation or evolution, 
the infeasible rules that contain nodes with the a condition and its 
negation in the same sub-tree like for example “gh_is_pr = 1 AND gh_is_pr 
= 0” are automatically rejected. 

iii. Genetic operators: Crossover and mutation are defined as 
follows. 

Crossover: is used to combine the genetic information of two parents. 
In this adaptation, we use single-point crossover operator. A sub-tree is 
extracted from each parent. Then, the crossover operator exchanges the 
nodes and their relative sub-trees between parents. Fig. 3 shows an 
example of the crossover process. In fact, two parent solutions, namely 
P1 and P2, are combined to generate two new child solutions. The right 
sub-tree of P1 is swapped with the left sub-tree of P2. For example, after 
applying the crossover operator the new rule C2 to predict build failure 

Fig. 1. An overview of our approach.  

1: Createaninitial populationP0

2: CreateanoffspringpopulationQ0

3: t = 0
4: while stoppingcriterianot reacheddo
5: Rt = Pt ∪ Qt

6: F = fast-non-dominated-sort(Rt)
7: Pt+1 = ∅ and i = 1
8: while | Pt+1 | + | Fi |6 N do
9: Apply crowding-distance-assignment(Fi)

10: Pt+1 = Pt+1 ∪ Fi

11: i = i + 1
12: end while
13: Sort(Fi ,≺ n)
14: Pt+1 = Pt+1 ∪ Fi [N− | Pt+1 |]
15: Qt+1 = create-new-pop(Pt+1)
16: t = t+1
17: end while

Algorithm 1. High level pseudo code of NSGA-II.  
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will be: 

IF gh_is_pr = 1 OR gh_diff_files_added ≥ 5 THEN Failure. 

Mutation: it can be applied either to a function node or a terminal 
node. In this problem, the mutation operator first randomly selects a 
node in a randomly selected tree. Then, if the selected node is a terminal, 
it is replaced by another terminal (metric or another threshold value). If 
the selected node is a function (logical operators), it is replaced by a new 
function (e.g., OR becomes AND). Then, the node and its sub-tree are 
replaced by a new randomly generated sub-tree. To illustrate the mu
tation process, consider again the example that corresponds to a 
candidate rule to predict CI build failure. Fig. 4 illustrates the effect of a 
mutation that deletes the note containing proj_fail_rate_history feature, 

Table 1 
CI-related Metrics extracted from literature.  

Category Metric Source Description Reference 

Change size 

git_num_all_built_commits T # of commits contained in this single build [9,27–29, 
32] 

gh_num_commits_on_files_touched T # of unique commits on the files touched in the built commits [27,32] 
git_diff_src_churn T # of lines of code changed in all built commits [8,27,28] 

Files change 

gh_diff_files_added T # of files added in all built commits [9,27,29,32] 
gh_diff_files_deleted T # of files deleted by all built commits [27,29,32] 
gh_diff_files_modified T # of files modified by all built commits [9,27,29,32] 

Cooperation 

gh_num_commit_comments T # of comments of all built commits [27,29,32] 
num_of_distinct_authors T # of distinct authors in all built commits [28,29] 
Total_Number_Of_Revisions G # of revisions on all the files touched by the current build [28] 

Triggering commit 

gh_by_core_team_member T Whether the commit that has triggered the build was authored by a core team member [27,32] 
gh_is_pr T Whether this build was triggered as part of a pull request on GitHub. [32] 
day_week G Day of week of the first commit for the build [8] 

Change type 

gh_diff_src_files T # of src files changed by all built commits [27,29] 
gh_diff_doc_files T # of documentation files changed by all built commits [27,29,32] 
gh_diff_other_files T # of files which are neither source code nor documentation. [27,29,32] 
num_config_files G # of configuration files (*.xml, *.yml, etc) edited in this commit. [8,9,44] 

Test Change 

git_diff_test_churn T # of lines of test code changed in all built commits [8,27,29,32] 
gh_diff_tests_added T # of test cases added in all built commits [27,32] 
gh_diff_tests_deleted T # of test cases deleted in all built commits [27,32] 

Link to last build 

prev_built_result G Result of last build [8,9,28] 
same_committer T Indicates whether the committer is the same as last build [9] 
elapsed_days_last_build T Counts the days since last build [9] 
git_prev_commit_resolution_status T = it could be “build found”, “merge found” or “no previous build” [27,32] 

Committer 
Experience 

committer_fail_history G The fail rate of the builds by the current committer in the past [9] 
committer_fail_recent G Similar to committer history, but measuring only his last five builds [9] 
committers_avg_exp G The average number of builds the committers made in the project before this build [9] 

Project History 

project_fail_history G The fail rate of the all the projectâs previous build [9] 
project_fail_recent G Similar to project fail history but using only last five builds [9] 
gh_team_size T # of developers that committed from the moment the build was triggered and 3 months 

back. 
[8,27,32] 

gh_sloc T # of source lines of code, in the entire repository at the time of this build. [27–29,32] 

Test Density 
gh_test_lines_per_kloc T # of lines in test cases per 1000 gh_sloc. [27,32] 
gh_test_cases_per_kloc T # of test cases per 1000 gh_sloc. [27,32] 
gh_asserts_cases_per_kloc T # of assertions per 1000 gh_sloc. [27,29,32] 

T: TravisTorrent, G: Generated 

Fig. 2. A simplified example of solution encoding for CI build fail
ure prediction. 

Fig. 3. An example of crossover operator.  
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leading to the automatic deletion of node AND (no left sub-tree). Thus, 
after applying the mutation operator the new rule will be: 

IF team_size ≥ 20 OR gh_diff_files_added ≥ 5 THEN Failure. 

iv. Multi-criteria solution evaluation (fitness function): An 
appropriate fitness function should be defined to evaluate how good is a 
candidate solution. According to Harman and Clark [41], search-based 
algorithms used from prediction can use performance measures to 
identify better solutions in the search process. To evaluate the fitness of 
each solution, we use two objective functions to be optimized, based on 
two well-known metrics, the true positive rate and false positive rates 
[14]:  

(1) Maximize the True Positive Rate (TPR), also known as the 
probability of detection (PD). PD is an indicator of the percentage 
of builds that are correctly classified as failed. The higher the 
value of PD, the better is the solution. 

PD =
TP

TP + FN
× 100  

where TP and FN are the number of true positives and the number of 
false positives, respectively.  
(2) Minimize the False Positive Rate (FPR), also known as probability 

of false alarm (FP), which is the ratio of false positives (i.e. 
incorrectly classified failed builds) to the actual number of passed 
builds. The lower the value of PF, the better is the solution. 

PF =
FP

FP + TN
× 100  

where FP and TN are the number of false positives and the number of 
true negatives, respectively. 

v. Pareto-front selection: Multi-objective algorithms such as NSGA- 
II do not produce a single solution like GA, but a set of non-dominated 
solutions called Pareto-optimal solutions. These solutions provide a 
trade-off between the prediction accuracy of both failed and passed 
build classes. In the CI built prediction problem, the best solutions are 
those who represent the Pareto-front that maximize the TPR and mini
mize the FPR. Hence a solution is chosen based on its preferences in 
terms of trade-off. To this end, and in order to fully automate our 
approach, we extract a single default best solution from the returned set 
of solutions. Since in our case the ideal solution (True Pareto) has the 
best TPR value (equals to 1) and the best FPR value (equals to 0), we 
select the nearest solution to the ideal one in terms of Euclidean dis
tance. The following equation is used to choose the solution (noted 
BestSol) [42,43] that corresponds of the best compromise between TPR 
and FPR: 

BestSol = minn
i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1 − TPR[i])2
+ FPR[i]2

√

where n is the number of solutions in the Pareto front returned by NSGA- 
II. 

3.3. Dataset and CI-related metrics 

To collect our data, we use TravisTorrent [34], which is a publicly 
available dataset that contains information about Travis-CI builds of 
several projects hosted in GitHub. By combining the data from Travis-CI 
and GitHub, detailed features, i.e., metrics can be extracted and used for 
predictions [9,27–29,32]. Table 1 lists the build metrics used to generate 
our prediction rules. Besides the existing TravisTorrent features (marked 
as T in the third column), we also generated other features marked as G 
which were extracted from existing research. During feature selection, 
we considered 10 categories described as follows:  

• Change size. These features measure how the change made is 
distributed across the different aspects, including the commits and 
code. 

• Files change. These features compute the changes (deletion, addi
tion or modification) at the file level.  

• Cooperation. These metrics estimate the level of cooperation in 
terms of comments and code revisions.  

• Triggering Commit. In this group, we collect some information 
about the commit that triggered the build, to know whether the build 
is managed by a core member or as part of pull requests which may 
increase the risk of breaking the build. We are also interested in 
collecting other temporal factors such as the day of the week.  

• Change Type. In this group, we count different types of files changed 
in built commits using file extensions. The changes may be related to 
source, documentation, configuration or other files.  

• Test Change. These features measure the test changes which 
represent additional indicators on the quality of the build code. 

• Link to last build. This set of features estimates the project’s sta
bility which may lead to a better prediction.  

• Committer experience. These metrics estimate the committer 
experience related mainly to the number of passed/failed builds that 
may reflect her/his level of experience.  

• Project statistics. This group of features captures some additional 
information about the committer and the project experience which 
may indicate the quality of the current build.  

• Test Density. This set of features is dedicated to estimate the project 
familiarity with testing, one of the core goals of CI [3]. 

By using these metrics, we collected a total of 56,019 records of build 
results. However, it is worth mentioning that some builds were filtered 
out from the original dataset since no information about the last build 
was found. Additionally, since TravisTorrent dataset organizes the build 
results at the job level, we aggregate the results of all jobs related to a 
build and provide one outcome using the build identifier in the Trav
isTorrent dataset. This is required to avoid biasing our results due to 
duplicated builds. Also, we eliminated builds that have a status of 
“Error” or “Cancel” from our dataset since we only focus on builds that 
have a “pass” or “fail” status. For a broader public for reproducibility 
and extension, we provide our data available [26]. 

4. Validation 

In this section, we report the results of a large-scale empirical study 
on a benchmark of 56,019 build instances. The comprehensive dataset 
collected and used in our study is publicly available in [26] for future 
replications and extensions. 

Fig. 5 provides an overview of our experimental design used in the 
validation of our approach. First, we evaluate our predictive perfor
mance against existing approaches in the two first questions. At this 
step, we run search-based algorithms and non deterministic ML 

Fig. 4. An example of mutation operator.  
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techniques used in this empirical study 1000 times to deal with the 
stochastic nature of these algorithms. To validate the predictive per
formance, we consider online validation [27]. Next step in this valida
tion is related to a qualitative study of the most important metrics to 
indicate CI build outcome. In the following, we describe each step in 
detail. 

4.1. Research questions 

We designed our experiments to answer three research questions:  

• RQ1. (SBSE validation). How does the proposed NSGA-II perform 
compared to Random Search (RS), mono-objective algorithm (GA) 
and other Multi-Objective algorithms?  

• RQ2. (Performance evaluation with ML). How does our approach 
perform compared to ML techniques?  

• RQ3. (Features analysis). What features are most important to 
predict CI build failures? 

4.2. Analysis method 

4.2.1. Prediction performance 
The first goal of our empirical study is to evaluate the performance of 

our approach for the CI build failure prediction problem compared to 
existing techniques (RQ1+RQ2). 

RQ1 is a “standard” question asked in any Search-Based Software 
Engineering (SBSE) formulation [45]. First, we compare our SBSE 
formulation against Random Search (RS) [37,46] is the simplest form of 
search-based algorithms. It may fail to find optimal solutions that 
occupy small proportion of the overall search as it is unguided without 
efficient use of genetic operators [37]. In this RQ, we aim in the first 
place as a sanity check to evaluate the need for an intelligent method 
such as NSGA-II that can outperform RS. In addition, it is important also 
to determine if considering separate conflicting objectives to be opti
mized (multi-objective) is an appropriate formulation compared to 
aggregating them in a single objective. Hence, we compared NSGA-II to 
mono-objective GP where a single fitness function, Fit(mono), is used. Fit 
(mono) is defined as follows: 

Fit(mono) =
PD + (1 − PF)

2
. (1) 

In order, to make our results comparable, we compute the well- 
known evaluation metric Area Under the ROC Curve (AUC). This mea
sure indicates how much a prediction model/rule is capable of dis
tinguishing between classes. A larger AUC value indicates better 
prediction performance. For binary classification, AUC is defined as 
follows [47]: 

AUC =
1 + PD

100 − PF
100

2
∈ [0, 1]. (2) 

Moreover, it is important to account for imbalance in a data set. 
Indeed, various researchers [25,48,49] advocate the use of the balance 
metric to assess the performance of models that were initially trained 
using imbalanced training data. Balance measure computes the 
euclidean distance between the optimum couple (PD=100, PF=0) to a 
specific pair of (PD, PF) [49]. Higher balances are desirable for a model. 
The balance metric is defined as follows. 

Balance = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

0 − PF
100

)2

*
(

1 − PD
100

)2

2

√
√
√
√
√

∈ [0, 1]. (3) 

The main merit of the AUC and balance is their robustness toward 
imbalanced data. 

4.2.2. Algorithms performance 
We evaluate the performance of NSGA-II over other MOEAs to 

identify the most effective algorithm in multi-objective optimization. 
Thus, we compare our approach with NSGA-III [36], Indicator-Based 
Evolutionary Algorithm (IBEA) [50] and Strength-Pareto Evolutionary 
Algorithm (SPEA2) [51], as they are among the most popular MOEAs 
and have been widely utilized in SBSE [13,15,15,38,52,53]. Addition
ally, all the search-based algorithms used in this paper are implemented 
using the MOEA framework [54], an open source framework for 
developing and experimenting with MOEAs [55]. 

Since the underlying goal of MOEAs is to determine a set of alter
native solutions known as Pareto front approximations [55], we aim to 
compare the performance of each algorithm using Zitzler et al. [56]. 
measures, based on three different performance aspects for 
multi-objective optimization (1) the quality of the generated Pareto 
fronts, (2) the convergence to the exact Pareto front, and (3) the di
versity of the produced solutions. In particular, we consider the 
following metrics:  

• Hyper-volume (HV): calculates the volume of the space dominated 
by all the solutions i.e.convergence of a solution set. A larger HV 
value indicates better performance. This metric is widely accepted as 
it guarantees that any approximation set that achieves more HV 
value for a particular MOP, it should contain more Pareto optimal 
solutions [57]. 

• Generational Distance (GD): measures the average distance be
tween each Pareto front solution and the true Pareto front. Smaller is 
GD, better is the MOEA i.e., closer it is from the Pareto optimal. This 
metric occupied the second position, after HV, of the most used 
MOGP performance metrics [57]. 

Fig. 5. Experimental design.  
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• Spacing (SP): is the most popular uniformity indicator [58]. It 
measures the standard deviation of distance from each solution to its 
closest neighbor in the obtained set. A lower SP value is preferable as 
it indicates that the solution provides a better Pareto front repre
sentation and hence it can be considered to possess better quality. 

These indicators are automatically computed, on the testing set, 
using the MOEA Framework tool which provides the statistical analysis 
and displays the minimum, median and maximum values of each per
formance indicator. 

To answer RQ2, we compare the prediction performance of NSGA-II 
with three widely-used ML techniques in previous CI and software en
gineering research [8,27,29,32,44,59,59], namely Decision Tree (DT), 
Random Forest (RF) and Naive Bayesian (NB). We use both prediction 
metrics, balance and AUC, as described for RQ1. 

ML preprocessing: First, data scaling is performed in order to 
standardize the range of variables. Then we rely on Synthetic Minority 
Oversampling Technique (SMOTE) method [60], to re-sample the 
training data. Note, that we did not re-sample the testing dataset since 
we want to evaluate ML techniques in a real-life scenario, where the data 
is imbalanced. 

Validation scenario: We conduct an online validation in which 
builds are ordered and predicted chronologically. Similar to prior work 
[27], we ranked for each selected project, the builds according to its 
start time and broke the whole set of a given project into ten folds. Then, 
we used the latter five folds as testing sets: At each iteration i (1 ≤ i ≤ 5), 
the test set fold j (6 ≤ j ≤ 10), the former j-1 folds were selected as 
training set to train the model. It is worthy to mention, that we verified 
for each project and validation iteration, the existence of failed builds. 
To get more details about the failure rate in each validation iteration, 
please consider our replication package [26]. 

4.2.3. Feature ranking 
The goal of RQ3 is to analyze the factors influencing build failures 

which will be valuable for developers to prevent potential build failures 
in their projects. While existing research works [30–32] attempted to 
give insights into CI build failure by applying correlation analysis to 
discover the relationship between the selected features and the build 
outcome. In this paper, we address this problem by exploring the 
interpretable knowledge provided by our generated rules. Since we use 
online validation, the analysis produces 5 rules for each project. Thus, 
the same feature may occur multiple times in the near-optimal rules. The 
higher the number of occurrences of a feature, the more important is the 
feature in identifying failed builds. In addition, to give a more general 
view, we aggregate the results of features ranking for each project and 
feature category (cf. Section 3.3). 

4.3. Subjects selection 

Our experiments are based on TravisTorrent dataset2, from which we 
selected top-10 Java and Ruby, the only supported languages in this 
dataset [34], projects according to the number of build records (after 
removing inadequate rows as described in Section 3.3). An overview 
about the studied projects is reported in Table 2. It is noteworthy that 
the data in all these projects is highly imbalanced. Our replication 
package is publicly available at [26]. 

Cloudify3 is a cloud-enablement platform that on-boards applica
tions to public and private clouds without architectural or code changes. 
Gradle4 is a popular build tool with a focus on build automation and 
support for multi-language development. It offers a flexible model that 
can support the entire development lifecycle from compiling and 
packaging code to publishing web sites. Graylog2-server5 is an open 
source log management system that centrally captures, stores, and en
ables real-time search and log analysis against terabytes of machine data 
from different component in the IT infrastructure. Vagrant6 is a tool for 
building and distributing development environments that provides easy 
workflow for developers and leverages a declarative configuration file 
which describes all software requirements, packages, operating system 
configuration, users, and so on. Mifosx7 is an open technology platform 
for financial inclusion that provides core functionalities to deliver 
financial services. OpenProject8 is one of the leading open source web- 
based project management systems. Rails9 is a web application frame
work that provides several features needed to create database-backed 
web applications according to the Model-View-Controller (MVC) 
pattern. Metasploit10 is a penetration testing platform that enables to 
write, test, and execute exploit code with a suite of tools to test security 
vulnerabilities, enumerate networks, execute attacks, and evade detec
tion. Ruby11 is an interpreted object-oriented programming language 
often used for web development. Finally, SonarQube12 is a platform for 
continuous inspection of code quality to perform automatic reviews with 
static analysis of code to detect bugs, code smells, and security vulner
abilities on several programming languages. 

Table 2 
Studies projects statistics.  

Project Name Language # of Builds Failure Rate Age at CI (days) 

CloudifySource/cloudify java 4568 0.25 220 
gradle/gradle java 3822 0.08 1833 
Graylog2/graylog2-server java 3341 0.12 470 
mitchellh/vagrant ruby 3569 0.14 765 
openMF/mifosx java 2252 0.07 2 
opf/openproject ruby 5913 0.35 287 
rails/rails ruby 11,732 0.30 2354 
rapid7/metasploit-framework ruby 6391 0.07 2571 
ruby/ruby ruby 11,814 0.21 5099 
SonarSource/sonarqube java 2317 0.24 1013 
Average − 5,602 0.19 1,461  

2 https://travistorrent.testroots.org/  
3 https://github.com/CloudifySource/cloudify  
4 https://github.com/gradle/gradle  
5 https://github.com/Graylog2/graylog2-server  
6 https://github.com/hashicorp/vagrant  
7 https://github.com/openMF/mifosx  
8 https://github.com/opf/openproject  
9 https://github.com/rails/rails  

10 https://github.com/rapid7/metasploit-framework  
11 https://github.com/ruby/ruby  
12 https://github.com/SonarSource/sonarqube 
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4.4. Inferential statistical test methods used 

When applied to the same problem instance, search-based algo
rithms, DT and RF techniques may provide different results on each run. 
To deal with this stochastic nature, it is important to assess their effec
tiveness by performing several runs, at least 1000 runs as suggested by 
Arcury and Briand guidelines [61] as well as recent works [38,39, 
62–66]. In addition, it is also essential to use the statistical tests that 
provide support for/rejection of the conclusions derived by analyzing 
the obtained results. In this paper, we employ Wilcoxon signed rank test 
[67] in order to detect significant performance differences between the 
algorithms under comparison (α is set at 0.05). In this validation, each 
iteration is repeated 1000 times, for each algorithm and each project. It 
is worth mentioning that for RQ3, we choose the rule with the median 
value through 3000 runs of each iteration. 

We also use Vargha-Delaney A (VDA) [68], a non-parametric effect 
size measure which is widely used in SBSE [69]. The A measure indicates 
the probability that one technique will achieve better performance than 
another technique. When the A measure is 0.5, the two techniques are 
equal. When the A measure is above or below 0.5, one of the techniques 
outperforms the other [70]. Vargha-Delaney statistic also classifies the 
magnitude of the obtained effect size value into four different levels 
(negligible, small, medium, and large) [71]. 

4.5. Parameter tuning and setting 

First, we investigated a number of calibration of different parameters 
in order to effectively set the parameters of each technique used in the 
study. To facilitate the replication of our results, we report in Table 3 our 
algorithmic parameter tuning. The initial populations of all the search- 
based algorithms were randomly generated. The process is stopped 
when the maximum number of generations, set to 500, is reached. The 
maximum depth of the tree (i.e., rules) is fixed to 10. 

The three ML techniques analyzed in the study are DT, RF and NB. 
The parameter settings for DT method include maximum depth of 10. 
RF’s parameter setting involves using a maximum tree depth of 10 and 
number of estimators of 200. For NB classifier selection, we use Gaussian 
Naive Bayesian [72] as the majority of the handled data is continuous. 

5. Experimental results 

This section presents the experimental results obtained for RQ1-3. 

5.1. RQ1. Results for GP comparison 

In this RQ, we report the results comparing the performance of 
NSGA-II the other search-based technique in order to determine the 
most effective GP technique for CI build prediction. Fig. 6 plots the re
sults while Table 4 highlights the statistical tests results of this 
comparison. 

As shown in Fig. 6, we clearly see that NSGA-II outperformed RS as 
well as GA and this by an increase of 17% and 35% in terms of AUC and 

balance respectively. In fact, both mono-objective algorithms achieved a 
median score of 31% in terms of balance, while GA was slightly better in 
terms of AUC with a score of 51% compared to 50% achieved by RS. 
Additionally, the Wilcoxon test results showed that over 50,000 exper
iment instances (5 iterations × 1000 runs × 10 projects), NSGA-II was 
significantly better than GA and RS, with large VDA effect sizes. This 
provides evidence that the use of multi-objective formulation for the 
prediction problem is more suited as it can provide a better compromise 
between PD and PF. 

With regards to other MOEAs, NSGA-II was the best in terms of AUC 
in all the studied projects while it showed better predictive performance 
in nine out of ten projects in terms of balance. Overall, the statistical 
tests results reveal that NSGA-II is significantly the best among other 
MOEAs with small effect sizes. Next, we compare the performance of 
multi-objective optimization for the different MOEAs. Table 5 shows the 
results of MOEAs comparisons based on the hyper-volume (HV), 
Generational Distance (GD) and Spacing (SP) as described in Section 
4.2.1. The experiment shows that, in median, NSGA-II was significantly 
the best in terms of HV, GD and SP. In fact, NSGA-II achieved a median 
score of 0.99 in terms of HV, while the other algorithms achieved 0.96 
which means that NSGA-II is better to cover the volume of the space 
dominated by its solutions. In terms of GD, NSGA-II is also better to 
achieve a closer distance between its Pareto front solutions and the true 
Pareto front with a score of 4*10− 3 compared to 0.01 for NSGA-III, 
SPEA2 and IBEA. Regarding SP, NSGA-II achieves also the best 
spacing between the generated solutions with median SP score of 0.05. 
Hence, these results motivate our choice to use NSGA-II as a search 
method 

Furthermore, we show the Pareto front of each algorithm in Fig. 7 
from the mitchellh/vagrant project. We observe that NSGA-II tends 
to evolve more near-optimal solutions in the middle region of the 
identified Pareto front with a good spread of solutions along the front, 
pushing it outwards toward the ideal point (i.e., high true positive rate 
and low false positive rate). We observe also that NSGA-III and IBEA 
have less non-dominated solutions in the middle of the Pareto front. 
However, for both extremes of the Pareto front we observe that most of 
algorithms reach similar regions of the search space. On the other hand, 
we observe that IBEA achieves less interesting solutions in its Pareto 
front. For the CI build failures prediction problem, optimal solutions 
within the extreme edges of the Pareto front are typically less desirable 
than solutions in the middle region. That is, solutions in the middle re
gion provide the optimal trade-off between both objective functions 
(TPR and FPR) while solutions from the extreme edge region represent 
predictions rules with either high true positive rate (TPR) or low false 
positive rate (FPR). 

5.2. RQ2. Results for the comparison with ML 

Figs. 8 and 9 show the boxplots comparing the results of all the 
executed experiments iterations to compare NSGA-II with ML algo
rithms (DT, NB, and RF) in each studied project. Table 7 reports the 
average (of 5 online validation iterations) balance and AUC scores while 

Table 3 
Algorithms parameters.  

Algorithms Parameters Values 

NSGA-II, NSGA-III, IBEA, SPEA2, GA, RS Population size 100  
Maximum number of generations 500  
Maximum depth of the tree 10  
Crossover probability* 0.9  
Mutation probability* 0.1 

RF Maximum depth of the tree 10 
Number of estimators 200 

DT Maximum depth of the tree 10 
NB Used NB classifier Gaussian naive Bayes 

* Not applied to RS 
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Table 6 shows the statistical comparisons of these experiments. Note 
that NSGA-II, RF and DT were executed 1000 times for each experi
mentation instance to deal with their stochastic nature. Then we 
computed the median values of each experiment. Also, in the figures, the 
horizontal black lines indicate the average values of the corresponding 
scores. 

As we can see, our NSGA-II technique achieves an average AUC of 
69% and an average balance of 66%. Although the achieved results may 
seem modest performance numbers, they are quite significant given the 
high imbalanced nature of the data (i.e., only a small portion of the 
builds are failed) as can be noticed from Table 2. Moreover, we see from 
Table 7 that for the 10 studied projects, the best AUC and balance values 
were achieved by the NSGA-II algorithm. On the other hand, for the 

different projects, the statistical analysis provide evidence that our 
approach performs better than the ML techniques with a large VDA’s 
effect size and A estimate > 0.5 for both balance and AUC. 

For instance, in the Graylog2/graylog2-server project in 
which the number of failed builds represent only 12%, our approach 
achieved 71% in terms of AUC compared to 58% for NB, 56% for RF and 
52% for DT which represents an improvement of 13% over ML. Also, in 
mitchellh/vagrant project, in which we obtained the best results, 
our approach outperforms ML techniques by achieving 78% in terms of 
AUC compared to 69%, 63% and 60% for RF, NB and DT, respectively. 

Based on these results, we can conjecture that NSGA-II performs 
better in comparison with ML techniques even without need for features 
scaling or relying on any re-sampling technique. This could be justified 
by the fact that NSGA-II had a better trade-off (i.e., balance and AUC) 
between both positive (i.e., failed) and negative (i.e., passed) accuracies, 

Fig. 6. Boxplots comparing scores of the search-based algorithms for the 5000 experiment instances (1,000 runs × 5 validation iterations) in each project.  

Table 4 
Statistical tests results of NSGA-II compared to other search-based techniques.  

NSGA-II  vs. RS vs. GA vs. IBEA vs. 
NSGA-III 

vs. 
SPEA2 

AUC p-value < 10− 16  < 10− 16  < 10− 16  < 10− 16  < 10− 16   

A estimate 0.98 0.97 0.62 0.62 0.57  
Magnitude Large Large Small Small Small 

Balance p-value < 10− 16  < 10− 16  < 10− 16  < 10− 16  < 10− 16   

A estimate 0.98 0.98 0.62 0.62 0.59  
Magnitude Large Large Small Small Small  

Table 5 
Performance metrics achieved by each of the MOEAs in terms of hyper-volume 
(HV), generational distance (GD), and spacing (SP).   

NSGA-II SPEA2 NSGA-III IBEA 

HV 0.99 0.96 0.96 0.96 
GD 0.004 0.01 0.01 0.01 
SP 0.05 0.10 0.24 0.21  

Fig. 7. An example of Pareto Front extracted from mitchellh/ 

vagrant project. 
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which indicates that our approach is advantageous over ML when 
developing prediction rules for imbalanced datasets. Although the re
sults reveal that GP shows less sensitivity to deal with imbalanced data 

than ML, we advocate the use of HyBridized Techniques (HBT) which 
have been found useful by combining the advantages of search-based 
and ML techniques to produce better results [14]. 

5.3. RQ3. Results for feature analysis 

In this RQ, we want to better understand what features contributed 
to achieving higher performances. Fig. 10 shows the results of feature 
ranking for each project while Table 8 provides a summary for the all 
studied projects. Broadly speaking, the figure did not reveal any sig
nificant variation between features categories with regard to the rate of 
occurrences. However, among all projects, the most important feature 
types are project history, link to the last build and change type. 

Project History features are the most prominent features for six 
projects namely cloudify, graylog2-server, vagrant, open
project, sonarqube and ruby. For these projects, a closer 

Fig. 8. Boxplots comparing the achieved AUC values for NSGA-II and each of the machine learning techniques, DT, NB and RF.  

Fig. 9. Boxplots comparing the achieved balance values for NSGA-II and each of the machine learning techniques, DT, NB and RF.  

Table 6 
Statistical tests results of NSGA-II compared to ML techniques.    

NSGA-I vs. RF NSGA-II vs DT NSGA-I vs NB 

AUC p-value < 10− 16  < 10− 16  < 10− 16   

A estimate 0.76 0.92 0.92  
Magnitude Large Large Large 

Balance p-value < 10− 16  < 10− 16  < 10− 16   

A estimate 0.80 0.91 0.93  
Magnitude Large Large Large  
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examination reveals that the statistics of the project have a clear indi
cation of the build outcome. For instance, in openproject project, our 
rules expose that one of the conditions to cause build failure is having a 

historical failure rate higher than 34% which alone covers around 63% 
of the builds in this project. A similar behavior was observed in 
sonarqube project as well. This result lends support to previous 
research efforts [9] claiming that the statistics about the project are the 
most useful features in predicting the build outcome. 

Link to last build is another features category that seems to be 
important, which appears the most in metasploit-framework and 
mifosx projects. For instance, in metasploit-framework most of 
our generated rules classify the instances that failed along from the 
previous one. On the other side, in this project, there exist 500 failed 
builds of which 124 occurred consecutively (about 25%) which pr1o
vides additional support for our rules. As stated previously [8,9,30], it is 
apparent that phases of build instability perpetuate failures. 

Change type features are the most occurring among two projects 
namely rails and gradle. This suggests that changes to specific types 
of files can affect the build outcome. For example, in rails project, 
there exists 2567 builds where changes to only source code files 

Table 7 
Performance of NSGA-II vs ML techniques.  

Project AUC Balance  

NSGA-II DT RF NB NSGA-II DT RF NB 

cloudify 0.67 0.55 0.62 0.56 0.65 0.43 0.47 0.41 
gradle 0.69 0.50 0.62 0.61 0.67 0.42 0.51 0.54 
graylog2-server 0.71 0.52 0.56 0.58 0.67 0.41 0.41 0.46 
metasploit-framework 0.68 0.49 0.60 0.47 0.63 0.44 0.54 0.32 
mifosx 0.75 0.62 0.64 0.46 0.72 0.53 0.55 0.36 
openproject 0.64 0.52 0.54 0.53 0.63 0.50 0.45 0.47 
rails 0.61 0.55 0.58 0.60 0.56 0.44 0.47 0.50 
ruby 0.72 0.58 0.71 0.50 0.69 0.56 0.68 0.31 
sonarqube 0.65 0.53 0.58 0.54 0.64 0.50 0.49 0.45 
vagrant 0.78 0.60 0.69 0.63 0.75 0.53 0.60 0.59 
Median 0.68 0.54 0.61 0.55 0.66 0.47 0.50 0.46 
Average 0.69 0.55 0.61 0.55 0.66 0.48 0.52 0.44  

Fig. 10. Features ranking for each project.  

Table 8 
A summary of the features ranking for all the studied projects.  

Category Occurrence (%) 

Project history 12.77 
Link to last build 12.08 
Change type 11.78 
Committer experience 9.40 
Triggering commit 9.34 
Files change 9.20 
Cooperation 9.04 
Test density 8.97 
Test change 8.75 
Change size 8.67  
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introduced build failures which represent 72% of failed builds. 
Other features are also important in indicating CI build outcome. For 

instance, metrics about test change represent also an important per
centage of appearance in sonarqube project. However, statistics about 
the triggering commit seem to be less important and the least appearing 
in three projects which indicates that these features are not highly 
related to the build outcome. 

6. Discussion 

In this section, we discuss our findings and their implications for 
developers, researchers and tool builders. 

6.1. For CI developers 

We can help developers to take the necessary preventive actions to 
avoid breaking the build. We have shown that our approach is able to 
predict the CI build results, however, the key innovation of our approach 
is that it is able to provide an explainable prediction model, and also 
some modalities to be respected in order to avoid build failures. For 
instance, Fig. 11 shows an example of a prediction rule that was 
generated by our tool to predict the failure in the mitchellh/vagrant 
project with high AUC and balance scores of 92%. In this rule, it is 
suggested that, among different conditions, if the number of modified 
files (FM) in the current build is less 10 then your CI build is likely to fail. 
As an alternative to avoid such build failures, the developer may opt to 
reduce the number of modified files in a commit or may also split the 
number the files into two or more build pushes to reduce the change 
complexity, and thus reduce potential build failures. More interestingly, 

we plan to extend our approach with further support to software de
velopers by suggesting change fixes for their failed CI builds based on 
the violated conditions in the generated tree-based rules. 

Hence, such explainable models show indeed that it is possible to 
pinpoint the root cause of a CI build failure using our search-based 
approach. Moreover, it is worth noting that it may be possible to 
reduce the complexity of the generated prediction rules (e.g., tree size 
and/or depth) in order to provide easier explainable models for CI de
velopers with smaller slice and less complexity, but with of cost of 
scarifying with some accuracy. Indeed, as part of our future work, we 
plan to extend our approach into a multi-objective approach to find the 
best trade-off between the model accuracy and complexity, which are in 
conflicting considerations. 

Usage scenario of our tool. Fig. 12 provides a typical usage scenario 
of our tool in practice. When a developer commits a change to the re
pository (1) our tool is triggered to predict potential build failures. Once 
triggered, (2) the user is invited to choose whether to load the previously 
generated rule or generate new rule. This decision can be made if the 
current rule is not no more up-to-date, i.e., after a number of builds. 
After the generation/loading of the prediction rule, our tool analyzes the 
changes made in the commitâs files and compute the CI metrics to 
determine whether the build would pass/fail. Finally, the prediction is 
provided to the developer with the required explanation to guide the 
developer in his retro-actions if needed. In this way, developers can cut 
off the expenses of CI build process by saving the build generation time 
and effort. 

Build verification is fast. We envisage our solution being used by 
developers, in their daily CI workflow to check whether their changes 
will break the build. One of the benefits of using our approach is that 
also, like ML techniques, we can save the learning model to be used for 
the prediction or updated later when more data is available over time as 
the project evolves. Thus, it is important to assess the scalability of our 

Fig. 11. An example of CI build failure prediction rule for the mitchellh/vagrant project.  

Fig. 12. A usage workflow of our approach.  
Fig. 13. The impact of the training dataset size on the NSGA-II execution time 
to build the prediction model. 
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approach from the data point of view. To this end, we conducted an 
experiment to assess the ability of our search-based approach to scale to 
larger datasets. Fig. 13 reports the results of our experiment. We find 
that our search-based approach scales linearly i.e., depends on the size of 
the learning set, as shown in the figure. For instance, with a dataset 
composed of 10,629 our tool can train the model within 9 minutes 
approximately, which is considered reasonable from computation point 
of view. However, from a developer point of view it is worth noting that 
the training on the dataset is required only once to build the model that 
will be used later for the prediction. The prediction consists of simply 
checking whether the conditions that appear in the prediction rule (e.g., 
Fig. 11) are violated or not which takes typically few seconds. There
after, the tool can update the model with more data after a number 
builds that could be configured by the developer. 

Note that in this work, all the experiments are executed on a com
puter equipped with an Intel Core i7-7700k 4.2 GHZ CPU and 16GB 
memory. 

6.2. For researchers 

The reasons behind build failure need more in-depth studies. 
Although, in this paper, we showed that failure prediction is possible 
with encouraging scores, we believe that by enhancing the feature en
gineering, we can obtain better results. Hence, the results may 
encourage CI researchers to investigate other measurable internal and 
external metrics and factors that could be correlated with the build 
outcome. 

Retro-actions to fix a failed build. As discussed earlier in Section 
6.1, our explainable model for build failures prediction can provide a 
valuable support to developers on how to proceed to fix their failed 
builds based on the violated rules or conditions. Moreover, looking at 
what rules or specific conditions were violated in a build failure repre
sent a crucial information and valuable knowledge to be used as a 
starting point to prepare or recommend retro-action plans to fix the 
failed build. Thus, such valuable information may encourage re
searchers to develop automated build failure fix approaches, which is 
indeed one of our future research works. Furthermore, providing such 
information on the build failures may increase learning within de
velopers and provide them with better understanding on the root causes 
of such build failures. Moreover, documenting such violations may also 
increase knowledge transfer from developers. 

Researchers could investigate periodicity in build failure. Our fea
tures analysis lends support to previous a research efforts [30] showing 
that many failed builds occurred consecutively which indicate that if the 
build failed, the next build is more likely to fail as well. This finding may 
encourage researchers to get insights into the periodic trends of build 
failure which would help us to enhance the prediction accuracy. 

6.3. For tool builders 

Rules updating strategies should be considered when building CI 
build prediction tools. As we can see from our obtained models, the final 
prediction rules (features, and threshold values) can differ from one 
project to another, and from datasets in the same project. Ideally, the 
prediction rules/models should be updated regularity as the project 
evolves, i.e., after a given number of builds, or generalized among other 
projects. However, in a real world setting, prediction models may ach
ieve less performance when applied to different data and different 
contexts [73,74]. For instance, Fig. 14 highlights a simplified example, 
considering a rule R1 for project A and R2 for project B. In the same rule 
R1, we see that the feature denoting the source churn (git_
diff_src_churn) can be associated to two different thresholds, in 
different sub-trees, i.e., a failed build if the source churn is ≥ 200 and the 
elapsed days ≤ 2; or if the number of modified files ≤ 2 and the source 
churn ≥ 500. However, in project B, the rule indicates a failed build if 
one the three mentioned conditions is met. Hence, it would be difficult 
to generalize the threshold values to be recommended for each feature. 
However, generating new prediction rules frequently during the devel
opment process could be costly [75]. As an alternative solution to 
leverage this issue is to update the existing prediction rule by combining 
the information that is captured in the original rule with the information 
of the recent data, hence updating the existing rule (e.g., threshold 
values, or features). Hence, an interesting feature to consider with tools 
builders is to adjust the prediction rules on-the-fly based on the de
velopers preferences or when the prediction accuracy starts to decrease 
over time. We are planning to integrate this feature in our approach as 
part of our future work. 

Tool for recommending relevant files for build failures localisation. 
Our features ranking analysis showed that change type features, such as 
the number of configuration files touched in the built commits, are 
prominent to detect build failures in the studied projects. On another 
hand, developers may follow a tedious process to localize the file causing 
the failure. Hence, tool builders should supply development teams with 
tools to identify potential files in order to accelerate the build fixing 
process. 

7. Threats to validity 

This section describes the threats to the validity of our experiments. 
Internal validity. One threat to internal validity is related to 

training and test sets selection. As an attempt to mitigate this issue, we 
considered online validation which is a realistic scenario as it considers 
the chronological order of CI builds and mimics what happens during 
the continuous integration process. Future work is planned to validate 
our approach considering other scenarios such as cross-project valida
tion. Another threat to validity can be related to the stochastic nature of 
the meta-heuristic algorithms [15,61]. To mitigate this threat, we per
formed 1000 runs of each experimentation instance and considered the 

Fig. 14. An example showing how the prediction rules can be less effective when applied to other projects.  
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median value in each validation iteration. Moreover, we have double 
checked our experiments as well as the datasets collected from Trav
isTorrent through manual inspection, still there could be errors that we 
did not notice. 

Construct validity. Threats to construct validity can be related to 
the set of used metrics and performance measure. We basically used 
standard performance metrics such as AUC and balance that are widely 
accepted in predictive models in software engineering [14]. As for the 
used measurements, we used standard features from TravisTorrent data 
set and other generated features related especially to historical build 
failure that commonly used in the literature [8,27,29,32,44,59,59]. 
Although our approach is not closely coupled with the features used in 
this paper, we plan to extend our measurements to other code level 
metrics and other external factors as an attempt to see their impact on 
the prediction performance. Another potential threat could be related to 
the selection of the prediction techniques. Although we used different 
search-based techniques, i.e., NSGA-II, NSGA-II, SPEA2, GA, and random 
search, and different machine learning techniques, i.e., DT, RF and NB, 
which are the most applied in existing solutions for build prediction and 
several other software engineering problems [8,29,32,44]. To mitigate 
this threat, we plan as part of our future work to conduct a large scale 
empirical study with other search-based and machine learning 
techniques. 

Conclusion validity. We have carefully chosen non-parametric 
tests, namely Wilcoxon and Vargha-Delaney A, in the study as they do 
not require data normality assumptions and also for being the most used 
statistical tests in SBSE research community [69]. The suitability of the 
used statistical non-parametric methods with data ordinality, along with 
no assumption on their distribution raises our confidence about the 
significance of the analyzed statistical relationships. Moreover, to in
crease the confidence in the study results, we used two 
widely-acknowledged prediction performance measures, i.e., balance 
and AUC, and three performance measures, i.e., hyper-volume (HV), 
generational distance (GD) and spacing (SP) to evaluate the obtained 
results from the considered algorithms. 

External validity. Our experimental results might have concerns of 
generalizability, since we performed the experiments with ten open 
source projects that use TravisTorrent as their CI host tool. While 
TravisTorrent is one of widely used CI tools, our results could not be 
generalized to other CI tools and other open-source or industrial pro
jects. As future work, we plan to extend our study on other open source 
and industrial projects as well as other CI tools. We also plan to provide 
our approach as bot to be integrated into code review and CI tools to 
help developers predicting their build failure risks. 

8. Conclusions and future work 

In this article, we introduced a new search-based approach for CI 
build failure prediction. In our genetic programming (GP) adaptation, 
prediction rules are represented as a combination of metrics and 
threshold values that should correctly predict as much as possible the 
failed builds extracted from a base of real world examples. Considering 
online validation, the statistical analysis of the obtained results provides 
evidence that our approach outperforms three Machine Learning (ML) 
techniques, for which we applied re-sampling, as well as Random Search 
and mono-objective Genetic Algorithm, based on a benchmark of 56,019 
CI builds of ten projects that use Travis CI. Regarding the most important 
indicators used by our generated rules, we found that features related to 
(1) specific statistics about the project such as team size, (2) last build 
information in the current build and (3) the types of changed files are the 
most influential to indicate the potential failure of a given build. 

While the obtained results are considered promising, it could be 
further validated with larger sample size with a variety of CI systems to 
conclude about the general applicability of our methodology. Moreover, 
we believe that by using a more personalized group of features with 
external factors, the prediction performance could be further improved, 

which we plan to explore in the future. Also, we plan also to extend our 
approach by adopting HyBridized Techniques (HBT) which have been 
found useful by combining the advantages of search-based and ML 
techniques to produce better results. 
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