
Information and Software Technology 128 (2020) 106392

Available online 18 August 2020
0950-5849/© 2020 Elsevier B.V. All rights reserved.

Predicting continuous integration build failures using evolutionary search

Islem Saidani a, Ali Ouni *,a, Moataz Chouchen a, Mohamed Wiem Mkaouer b

a ETS Montreal, University of Quebec, Montreal, QC, Canada
b Rochester Institute of Technology, Rochester, NY, USA

A R T I C L E I N F O

Keywords:
Continuous integration
Build prediction
Multi-Objective optimization
Search-Based software engineering
Machine learning

A B S T R A C T

Context: Continuous Integration (CI) is a common practice in modern software development and it is increasingly
adopted in the open-source as well as the software industry markets. CI aims at supporting developers in inte
grating code changes constantly and quickly through an automated build process. However, in such context, the
build process is typically time and resource-consuming which requires a high maintenance effort to avoid build
failure.

Objective: The goal of this study is to introduce an automated approach to cut the expenses of CI build time and
provide support tools to developers by predicting the CI build outcome.

Method: In this paper, we address problem of CI build failure by introducing a novel search-based approach
based on Multi-Objective Genetic Programming (MOGP) to build a CI build failure prediction model. Our
approach aims at finding the best combination of CI built features and their appropriate threshold values, based
on two conflicting objective functions to deal with both failed and passed builds.

Results: We evaluated our approach on a benchmark of 56,019 builds from 10 large-scale and long-lived
software projects that use the Travis CI build system. The statistical results reveal that our approach out
performs the state-of-the-art techniques based on machine learning by providing a better balance between both
failed and passed builds. Furthermore, we use the generated prediction rules to investigate which factors impact
the CI build results, and found that features related to (1) specific statistics about the project such as team size,
(2) last build information in the current build and (3) the types of changed files are the most influential to
indicate the potential failure of a given build.

Conclusion: This paper proposes a multi-objective search-based approach for the problem of CI build failure
prediction. The performances of the models developed using our MOGP approach were statistically better than
models developed using machine learning techniques. The experimental results show that our approach can
effectively reduce both false negative rate and false positive rate of CI build failures in highly imbalanced
datasets.

1. Introduction

Continuous integration (CI) [1] is a set of software development
practices that are widely adopted in industry and open source envi
ronments [2]. A typical CI system, such as Travis CI1, advocates to
continuously integrate code changes, introduced by different de
velopers, into a shared repository branch. The key to making this
possible, according to Fowler [3], is automating the process of building
and testing, which reduces the cost and risk of delivering defective
changes. From the academic side, the study of CI adoption has become

an active research topic and it has already been shown that CI improves
developers’ productivity [4], helps to maintain code quality [2] and
allows for a higher release frequency [5].

However, despite its valuable benefits, CI brings its own challenges.
Hilton et al. [6]. revealed that build failure is a major barrier that de
velopers face when using CI. A build failure, i.e., failing to compile the
software into machine executable code, represents a blocker that pre
vents developers from proceeding further with development, as it re
quires an immediate action to resolve it. In addition, the build resolution
may take hours or even days to complete, which severely affects both,

* Corresponding author.
E-mail addresses: islem.saidani.1@ens.etsmlt.ca (I. Saidani), ali.ouni@etsmtl.ca (A. Ouni), moataz.chouchen.1@ens.etsmtl.ca (M. Chouchen), mwmvse@rit.edu

(M.W. Mkaouer).
1 https://travis-ci.org/

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

https://doi.org/10.1016/j.infsof.2020.106392
Received 29 March 2020; Received in revised form 7 August 2020; Accepted 10 August 2020

mailto:islem.saidani.1@ens.etsmlt.ca
mailto:ali.ouni@etsmtl.ca
mailto:moataz.chouchen.1@ens.etsmtl.ca
mailto:mwmvse@rit.edu
https://travis-ci.org/
www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2020.106392
https://doi.org/10.1016/j.infsof.2020.106392
https://doi.org/10.1016/j.infsof.2020.106392
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2020.106392&domain=pdf

Information and Software Technology 128 (2020) 106392

2

the speed of software development and the productivity of developers
[7]. Such challenges motivated researchers and practitioners to develop
techniques for preemptively detecting when a software state is most
likely to trigger a failure when built, and thus developers can take the
necessary preventive actions to avoid it.

Existing studies leverage the history of previous build success and
failures in order to train machine learning (ML) models. Such models
learn from the CI builds history and use the domain knowledge to extract
features and predict the outcome of a given input build. For instance,
Foyzul and Wang [8] used Random Forest (RF), for the binary classifi
cation of build outcome, and Ni and Li [9] adapted the cascaded clas
sifiers to improve the accuracy of CI build prediction. Although these
works have advocated that predicting CI build outcome is possible and
beneficial, none of them accommodated for the imbalanced distribution
of the successful and failed classes when building their prediction
models. This challenges their applicability due to the performance bias
that can occur when an imbalanced distribution of class examples is used
in the learning process [10–13]. Hence, the minority class instances, i.e.,
the failed builds class in our case, is much more likely to be
miss-classified. However, in CI context, a good accuracy on the failed
builds prediction is more important than the passed builds accuracy.
Also, increasing the accuracy of the builds failure class (known as
probability of detection) can result in maximizing also the number of
incorrectly classified failed builds (i.e., false alarms) which makes these
two objectives in conflict [10,14].

To deal with the above mentioned challenges, Evolutionary Multi-
Objective Optimisation (EMO) [15–19] have been found useful for
developing software engineering predictive models [20,21]. Re
searchers have advocated that the use of (EMO) is appropriate because it
allows adapting the fitness function to evolve classifiers with good
classification ability across both the minority and majority classes, e.g.,
balance between failed and passed builds. This is accomplished by
treating the conflicting objectives independently in the learning process
using the notion of Pareto Dominance. Additionally, to deal with the
imbalanced nature of the dataset, a Multi-Objective Genetic Program
ming (MOGP) approach [22], that promotes diversity between solutions
equally on both minority and majority classes, allows the imbalanced
training data to be used directly in the learning process i.e.without
relying on sampling techniques to re-balance the data [12,23] which
advocates that MOGP approaches are more suitable for binary classifi
cation tasks with imbalanced data [10].

In this paper, we introduce a novel MOGP approach to predict CI
build outcome. The idea is based on the adaption of the Non-dominated
Sorting Genetic Algorithm (NSGA-II) [24] with a tree-based solution
representation, in order to generate rules from historical data of CI
builds using two competing objectives in the learning process, namely
the probability of detection and the probability of false alarms. As a
solution to this binary classification problem, a candidate rule is
expressed as a combination of metrics and their appropriate threshold
values; and should cover as much as possible the build results from the
base of build results. In a nutshell, our approach takes as input, a given
build, calculates a set a metrics that are fed into our rule, previously
generated using the history of builds, and whose binary output predicts
whether the input build is most likely to succeed or fail, based on its
likelihood to the successful or failed builds.

To evaluate our approach, we conducted an empirical study on a
benchmark composed of 56,019 build instances from 10 open source
projects that use the Travis CI system, one of the most popular CI sys
tems. We compare our predictive performance to existing Genetic Pro
gramming (GP) algorithms and three widely-used ML techniques
namely Random Forest, Decision Tree and Naive Bayes. The statistical
results reveal that our approach advances the state-of-the art by out
performing existing prediction models. Moreover, we examine the most
important features, used by our generated rules, in indicating the correct
CI build outcome, in order to provide the practitioners with useful in
sights on how to avoid build failures. In summary, the contributions of

this work are the following:

• A novel formulation of the CI build prediction as a multi-objective
optimization problem to handle imbalance nature of CI builds as
well as to achieve a good predictive performance on both classes
(passed and failed). To the best of our knowledge, this is the first
attempt to use a search-based approach for the CI build prediction.

• An empirical study of our MOGP technique compared to different
existing approaches based on a benchmark of 10 large and long-lived
projects. The obtained results reveal that our proposal is more effi
cient than existing techniques with a median of AUC (Area Under
The Curve) of 68% compared to 61% achieved by existing ML
techniques for which we applied re-sampling. Additionally, our
approach is able to strike a better balance between both failed and
passed builds achieving an improvement of at least 15% for the
balance metric [25]. These are interesting and actionable results
considering the highly imbalanced nature of the studied projects
with an average failure rate of 19% in the minority class.

• A qualitative evidence of the potential reasons behind build failure
through a novel feature ranking approach. The rules analysis shows
that the metrics related to (1) specific statistics about the project such
as team size, (2) last build information in the current build and (3)
the types of changed files are the most influential to indicate the
potential failure of a given build.

• A comprehensive dataset [26] collected from 10 long-lived software
projects, containing over 56,019 records of build results.

Replication Package. The comprehensive dataset collected and
used in our study is publicly available in [26] for future replications and
extensions. Also, we provide all details about the validation results as
well as illustrative examples of the generated rules available for the
research community.

Paper Organization. The remainder of this paper is organized as
follows. Section 2 provides an overview of the CI build process and the
related work. We present our approach in Section 3. Section 4 shows the
experimental setup of our empirical study. Section 5 presents the results
and findings of our studied research questions. Section 6 discusses the
implications of our findings for developers, researchers and tool
builders. Section 7 reviews the threats to the validity of our results.
Finally, Section 8 concludes the paper and outlines avenues for future
work.

2. Background and related work

In this section, we provide an overview of CI and the related work.

2.1. CI Build process

CI aims to build healthier software systems by developing and testing
in smaller increments without compromising software quality. The basic
notion of CI, as described by Fowler [3] is to support developers’ work
by automating the code compilation, dependencies collection and tests
running. This process is an enduring check on the quality of contributed
code that mitigates the risk of “breaking the build” as regressions can be
detected and fixed immediately.

CI has a well-defined life-cycle when generating builds. The main
phases of the CI build life-cycle are defined as follows. First of all, a
contributor forks, i.e., clones, the project repository, makes some
changes, as creating a new feature or by fixing some bugs, on the code
base. When the work is done, the contributor submits the changes to the
original repository. At this point, the CI service carries out a series of
tasks to build and test these changes. Then, it provides immediate
feedback on the outcome of the test to the core team, i.e., developers
who dispose of write access to a project’s code repository [2]. When one
or more of those tasks fail, the build is considered failed, otherwise it will
be passed and core team members proceed to do a code review and, if

I. Saidani et al.

Information and Software Technology 128 (2020) 106392

3

necessary, the submitter would be requested for modifications. After a
cycle of code reviews, automatic building and testing, if everyone is
satisfied, the submitted changes will be merged to the mainline branch.

2.2. Related work

This section presents the related research about CI builds while
highlighting the contributions of our work.

Prediction of CI builds: Many research works have introduced
prediction models to predict the CI build status. Xia and Li [27]
compared nine ML classifiers to construct CI prediction models of 126
open source projects hosted on GitHub. Their experiments were based
on both cross-validation and online scenarios. In cross-validation, their
models achieved an Area Under the ROC Curve (AUC) score of over 70%.
However, under the online scenario, they observed a tendency for their
prediction scores to decrease up to 60% of AUC. In both scenarios, they
found that Decision Tree (DT) and Random Forest (RF) achieved the best
performance scores. In [8], Foyzul and Wang proposed the prediction
model of CI build outcome on three build systems, namely Ant, Maven
and Gradle, under the cross-project prediction and cross-validation
scenarios. Using random forest, they achieved over 90% of AUC scores
for the considered build systems. Additionally, the cross-validation
provided better results. However, when we looked at the provided
dataset, we found that there is a large amount of redundant lines which
may influence the validity of the reported results. We also found that the
dataset is perfectly balanced (45% of failed builds) which is not in
compliance with the real world situation as it is generally known that
failed builds are much less to occur than passed ones [28]. In this paper,
we found that when applying RF to our generated dataset, our approach
can achieve better results. Xia et al. [29] conducted an empirical study
to evaluate the predictive performance of six common classifiers
including RF, NB and DT under cross-project validation. For dataset
selection, they compared three methods namely Random Selection,
Burak Filter based on build-level and Bellwether Strategy based on
project-level. According to the results of their experiments, they found
that Bellwether strategy performs better than the two other methods.
And among the used classifiers, they found that Decision Tree (DT)
classifier performs the best achieving a score of 17% for F1-measure on
average.

Although most of the existing approach achieved good results by
using variety of domain knowledge and historical information the of CI
builds, none of these works actually construct the prediction model that
perfectly fits the imbalance in build outcomes characteristics of the CI
build outcome which challenges their applicability. Additionally, the
predictive performance of the used techniques like RF, depends highly
on the used features, the dataset representativeness and the failure rate
which may explain the differences in the obtained results.

Insights into CI builds: The analysis of CI build failures is growing
as an active and challenging topic for software engineering research.
Rausch et al. [30]. investigated the impacts that can affect build failures
on Travis CI. They observed by analyzing build logs that the most
common reasons for build failures are failing integration tests, code
quality measures being below a required threshold, and compilation
errors. Beller et al. [31]. focused on testing with an in-depth analysis of
CI builds. The main finding of their study is that 59% of build failures
occur during test phase for Java projects. Luo et al. [32] proposed a case
study to investigate what features have greater impact on the build
result. Conducting a case study on the TravisTorrent dataset, they found
that the total number of commits in a build is the main influence feature
that causes build failure. The number of files changed and the density of
tests also impact a lot. In this paper, we conduct a deep analysis to
investigate the most influencing factors of build outcome using our
proper generated rules.

Other Studies About CI Builds Atchison et al. [33]. conducted a
time-series analysis of the history of CI builds to identify temporal pat
terns in build volume within TravisTorrent dataset [34]. By observing a

clear seasonality in build activity, their approach was able to estimate
the number of builds to be generated in the future, with an average
accuracy of 86%. Another interesting study was conducted by Ghaleb
et al. [35]. to analyse the long duration of builds over 67 GitHub projects
that are linked with Travis CI. The main finding of their study is that
about 40% of builds take over 30 minutes to run which points to the high
energy cost of CI builds that increases as the build duration increases.

3. Search-based prediction of CI build failure

In this section, we describe our approach that uses multi-objective
GP based on an adaptation of NSGA-II.

3.1. Approach overview

Fig. 1 provides an overview of our proposed approach to generate
rules for CI builds outcome prediction. In our study, we start from the
observation that it is more beneficial for CI developers to identify good
practices to follow in order to avoid build failures rather than simply
detecting whether the build will succeed or fail. Thus, the goal of the
proposed approach is to generate a set of rules, as a combination of CI-
related metrics extracted from various sets of information about CI
builds. As described in Fig. 1, the first step of our approach consists of
collecting a set of examples of build results (failed and succeeded builds)
information based CI-related (cf. Section 3.3). Then, in the second step,
we take these inputs to generate a set of predictive rules that predict as
much as possible the CI builds outcome with high accuracy.

The multi-objective GP algorithm is the key element of our approach.
First, it starts by generating a set of solutions. Every solution is
composed of a set of prediction rules i.e., combination of threshold
values assigned to each metric. These combination of metrics-thresholds
are connected with logical operators. All the generated solutions in the
population are evaluated using two objectives to (1) maximize the true
positive rate, and (2) minimize the false positive rate. Change operators
are applied, at every iteration, to generate new solutions. After repeating
this process until reaching a stop criteria, the best solution is returned by
the algorithm. In our experiments, the stop criteria is when reaching a
maximum number of generations. All parameters configuration details
are described later in Section 4.5.

3.2. NSGA-II adaptation

In this section, we describe in details our search-based approach. We
first provide an overview of NSGA-II and then we define how we adapt it
to our build failure prediction problem.

3.2.1. NSGA-II overview
We employed a widely used computational search technique, NSGA-

II [36] that has proven good performance in solving many software
engineering problems [15,37–39]. As described in Algorithm 1, NSGA-II
starts by randomly creating an initial population P0 of individuals
encoded using a specific representation (line 1). Then, a child popula
tion Q0 is generated from the population of parents P0 (line 2) using
genetic operators (crossover and mutation). Both populations are
merged into an initial population R0 of size N (line 5). Fast-non-domi
nated-sort [24] is the technique used by MOGP to classify individual
solutions into different dominance levels (line 6) [24]. The whole pop
ulation that contains N individuals (solutions) is sorted using the
dominance principle into several fronts (line 6). Solutions on the first
Pareto-front F0 get assigned dominance level of 0. Then, after taking
these solutions out, fast-non-dominated-sort calculates the Pareto-front F1
of the remaining population; solutions on this second front get assigned
dominance level of 1, and so on. Fronts are added successively until the
parent population Pt+1 is filled with N solutions (line 8). When MOGP
has to cut off a front Fi and select a subset of individual solutions with the
same dominance level, it relies on the crowding distance [24] to make

I. Saidani et al.

Information and Software Technology 128 (2020) 106392

4

the selection (line 9). This parameter is used to promote diversity within
the population. The front Fi to be split, is sorted in descending order (line
13), and the first (N- |Pt+1|) elements of Fi are chosen (line 14). Then, a
new population Qt+1 is created using selection, crossover and mutation
(line 15). This process will be repeated until reaching the last iteration
according to a stop criteria (line 4).

3.2.2. Adaptation
The following three subsections describe more precisely our adap

tion of GP to the CI build failure problem.
i. Solution/Individual representation: Our adaptation to the

NSGA-II algorithm is to adopt it with the generic model of GP learning to
the space of programs. Unlike other evolutionary search algorithms, in
GP, solutions are themselves programs following a tree-like represen
tation instead of fixed length linear string formed from a limited al
phabet of symbols [40]. For the build failures prediction problem, a
candidate solution, i.e., a prediction rule, is represented as an IF – THEN
clause with the following template:

IF (Combination of metrics and their thresholds) THEN RESULT.

The IF clause describes the conditions under which a build is said to
be succeeded or failed. The condition corresponds to a logical expression
that combines some metrics and their threshold values using logical

operators (OR, AND). A solution is encoded as a tree where each ter
minal belongs to the set of metrics described in Table 1 and their cor
responding thresholds are generated randomly. Each internal-node
belongs to the connective set C = {AND, OR}. Fig. 2 shows an illustrative
example of a solution. This rule predicts the build failure in case the fail
rate history is greater than 0.6 and the files added are higher than or equal
to 5 and the team size is higher than or equals to 20.

IF proj_fail_rate_history > 0.6 AND team_size ≥ 20 AND gh_diff_fi
les_added ≥ 5 THEN Failure.

ii. Generation of an initial population: To generate an initial
population composed of n solutions, we start by defining the maximum
tree length (should not exceed a predefined threshold). The actual tree
length will vary with the number of metrics to use for failure prediction
that vary from 1 to 33 (the number of considered metrics, cf. Table 1).
Notice that a high tree length value does not necessarily mean that the
results are more precise since, usually, only a few metrics are needed to
predict the failure. Because the individuals will evolve with different
tree lengths (structures), with the root (head) of the trees unchanged, we
randomly assign for each one:

• One metric and threshold value to each leaf node. The threshold
values are ranged between lower and upper bounds of the metric in
question (e.g., if the number of team sizes is between 1 and 10, the
threshold will be randomly selected according this metric distribu
tion). These upper bounds are fixed based on the training set. We also
assign a mathematical operator (≥,≤, =) that depends on the metric
category. Note that “=” is only used for categorical metrics (e.g.,
gh_is_pr), ≥ and ≤ are applied only with continuous (e.g., commit
ter_fail_history) or discrete metrics (e.g., gh_team_size).

• A logic operator (AND, OR) to each function node.

It is worth to mention that during individual generation or evolution,
the infeasible rules that contain nodes with the a condition and its
negation in the same sub-tree like for example “gh_is_pr = 1 AND gh_is_pr
= 0” are automatically rejected.

iii. Genetic operators: Crossover and mutation are defined as
follows.

Crossover: is used to combine the genetic information of two parents.
In this adaptation, we use single-point crossover operator. A sub-tree is
extracted from each parent. Then, the crossover operator exchanges the
nodes and their relative sub-trees between parents. Fig. 3 shows an
example of the crossover process. In fact, two parent solutions, namely
P1 and P2, are combined to generate two new child solutions. The right
sub-tree of P1 is swapped with the left sub-tree of P2. For example, after
applying the crossover operator the new rule C2 to predict build failure

Fig. 1. An overview of our approach.

1: Createaninitial populationP0

2: CreateanoffspringpopulationQ0

3: t = 0
4: while stoppingcriterianot reacheddo
5: Rt = Pt ∪ Qt

6: F = fast-non-dominated-sort(Rt)
7: Pt+1 = ∅ and i = 1
8: while | Pt+1 | + | Fi |6 N do
9: Apply crowding-distance-assignment(Fi)

10: Pt+1 = Pt+1 ∪ Fi

11: i = i + 1
12: end while
13: Sort(Fi ,≺ n)
14: Pt+1 = Pt+1 ∪ Fi [N− | Pt+1 |]
15: Qt+1 = create-new-pop(Pt+1)
16: t = t+1
17: end while

Algorithm 1. High level pseudo code of NSGA-II.

I. Saidani et al.

Information and Software Technology 128 (2020) 106392

5

will be:

IF gh_is_pr = 1 OR gh_diff_files_added ≥ 5 THEN Failure.

Mutation: it can be applied either to a function node or a terminal
node. In this problem, the mutation operator first randomly selects a
node in a randomly selected tree. Then, if the selected node is a terminal,
it is replaced by another terminal (metric or another threshold value). If
the selected node is a function (logical operators), it is replaced by a new
function (e.g., OR becomes AND). Then, the node and its sub-tree are
replaced by a new randomly generated sub-tree. To illustrate the mu
tation process, consider again the example that corresponds to a
candidate rule to predict CI build failure. Fig. 4 illustrates the effect of a
mutation that deletes the note containing proj_fail_rate_history feature,

Table 1
CI-related Metrics extracted from literature.

Category Metric Source Description Reference

Change size

git_num_all_built_commits T # of commits contained in this single build [9,27–29,
32]

gh_num_commits_on_files_touched T # of unique commits on the files touched in the built commits [27,32]
git_diff_src_churn T # of lines of code changed in all built commits [8,27,28]

Files change

gh_diff_files_added T # of files added in all built commits [9,27,29,32]
gh_diff_files_deleted T # of files deleted by all built commits [27,29,32]
gh_diff_files_modified T # of files modified by all built commits [9,27,29,32]

Cooperation

gh_num_commit_comments T # of comments of all built commits [27,29,32]
num_of_distinct_authors T # of distinct authors in all built commits [28,29]
Total_Number_Of_Revisions G # of revisions on all the files touched by the current build [28]

Triggering commit

gh_by_core_team_member T Whether the commit that has triggered the build was authored by a core team member [27,32]
gh_is_pr T Whether this build was triggered as part of a pull request on GitHub. [32]
day_week G Day of week of the first commit for the build [8]

Change type

gh_diff_src_files T # of src files changed by all built commits [27,29]
gh_diff_doc_files T # of documentation files changed by all built commits [27,29,32]
gh_diff_other_files T # of files which are neither source code nor documentation. [27,29,32]
num_config_files G # of configuration files (*.xml, *.yml, etc) edited in this commit. [8,9,44]

Test Change

git_diff_test_churn T # of lines of test code changed in all built commits [8,27,29,32]
gh_diff_tests_added T # of test cases added in all built commits [27,32]
gh_diff_tests_deleted T # of test cases deleted in all built commits [27,32]

Link to last build

prev_built_result G Result of last build [8,9,28]
same_committer T Indicates whether the committer is the same as last build [9]
elapsed_days_last_build T Counts the days since last build [9]
git_prev_commit_resolution_status T = it could be “build found”, “merge found” or “no previous build” [27,32]

Committer
Experience

committer_fail_history G The fail rate of the builds by the current committer in the past [9]
committer_fail_recent G Similar to committer history, but measuring only his last five builds [9]
committers_avg_exp G The average number of builds the committers made in the project before this build [9]

Project History

project_fail_history G The fail rate of the all the projectâs previous build [9]
project_fail_recent G Similar to project fail history but using only last five builds [9]
gh_team_size T # of developers that committed from the moment the build was triggered and 3 months

back.
[8,27,32]

gh_sloc T # of source lines of code, in the entire repository at the time of this build. [27–29,32]

Test Density
gh_test_lines_per_kloc T # of lines in test cases per 1000 gh_sloc. [27,32]
gh_test_cases_per_kloc T # of test cases per 1000 gh_sloc. [27,32]
gh_asserts_cases_per_kloc T # of assertions per 1000 gh_sloc. [27,29,32]

T: TravisTorrent, G: Generated

Fig. 2. A simplified example of solution encoding for CI build fail
ure prediction.

Fig. 3. An example of crossover operator.

I. Saidani et al.

Information and Software Technology 128 (2020) 106392

6

leading to the automatic deletion of node AND (no left sub-tree). Thus,
after applying the mutation operator the new rule will be:

IF team_size ≥ 20 OR gh_diff_files_added ≥ 5 THEN Failure.

iv. Multi-criteria solution evaluation (fitness function): An
appropriate fitness function should be defined to evaluate how good is a
candidate solution. According to Harman and Clark [41], search-based
algorithms used from prediction can use performance measures to
identify better solutions in the search process. To evaluate the fitness of
each solution, we use two objective functions to be optimized, based on
two well-known metrics, the true positive rate and false positive rates
[14]:

(1) Maximize the True Positive Rate (TPR), also known as the
probability of detection (PD). PD is an indicator of the percentage
of builds that are correctly classified as failed. The higher the
value of PD, the better is the solution.

PD =
TP

TP + FN
× 100

where TP and FN are the number of true positives and the number of
false positives, respectively.
(2) Minimize the False Positive Rate (FPR), also known as probability

of false alarm (FP), which is the ratio of false positives (i.e.
incorrectly classified failed builds) to the actual number of passed
builds. The lower the value of PF, the better is the solution.

PF =
FP

FP + TN
× 100

where FP and TN are the number of false positives and the number of
true negatives, respectively.

v. Pareto-front selection: Multi-objective algorithms such as NSGA-
II do not produce a single solution like GA, but a set of non-dominated
solutions called Pareto-optimal solutions. These solutions provide a
trade-off between the prediction accuracy of both failed and passed
build classes. In the CI built prediction problem, the best solutions are
those who represent the Pareto-front that maximize the TPR and mini
mize the FPR. Hence a solution is chosen based on its preferences in
terms of trade-off. To this end, and in order to fully automate our
approach, we extract a single default best solution from the returned set
of solutions. Since in our case the ideal solution (True Pareto) has the
best TPR value (equals to 1) and the best FPR value (equals to 0), we
select the nearest solution to the ideal one in terms of Euclidean dis
tance. The following equation is used to choose the solution (noted
BestSol) [42,43] that corresponds of the best compromise between TPR
and FPR:

BestSol = minn
i=1

̅̅̅

(1 − TPR[i])2
+ FPR[i]2

√

where n is the number of solutions in the Pareto front returned by NSGA-
II.

3.3. Dataset and CI-related metrics

To collect our data, we use TravisTorrent [34], which is a publicly
available dataset that contains information about Travis-CI builds of
several projects hosted in GitHub. By combining the data from Travis-CI
and GitHub, detailed features, i.e., metrics can be extracted and used for
predictions [9,27–29,32]. Table 1 lists the build metrics used to generate
our prediction rules. Besides the existing TravisTorrent features (marked
as T in the third column), we also generated other features marked as G
which were extracted from existing research. During feature selection,
we considered 10 categories described as follows:

• Change size. These features measure how the change made is
distributed across the different aspects, including the commits and
code.

• Files change. These features compute the changes (deletion, addi
tion or modification) at the file level.

• Cooperation. These metrics estimate the level of cooperation in
terms of comments and code revisions.

• Triggering Commit. In this group, we collect some information
about the commit that triggered the build, to know whether the build
is managed by a core member or as part of pull requests which may
increase the risk of breaking the build. We are also interested in
collecting other temporal factors such as the day of the week.

• Change Type. In this group, we count different types of files changed
in built commits using file extensions. The changes may be related to
source, documentation, configuration or other files.

• Test Change. These features measure the test changes which
represent additional indicators on the quality of the build code.

• Link to last build. This set of features estimates the project’s sta
bility which may lead to a better prediction.

• Committer experience. These metrics estimate the committer
experience related mainly to the number of passed/failed builds that
may reflect her/his level of experience.

• Project statistics. This group of features captures some additional
information about the committer and the project experience which
may indicate the quality of the current build.

• Test Density. This set of features is dedicated to estimate the project
familiarity with testing, one of the core goals of CI [3].

By using these metrics, we collected a total of 56,019 records of build
results. However, it is worth mentioning that some builds were filtered
out from the original dataset since no information about the last build
was found. Additionally, since TravisTorrent dataset organizes the build
results at the job level, we aggregate the results of all jobs related to a
build and provide one outcome using the build identifier in the Trav
isTorrent dataset. This is required to avoid biasing our results due to
duplicated builds. Also, we eliminated builds that have a status of
“Error” or “Cancel” from our dataset since we only focus on builds that
have a “pass” or “fail” status. For a broader public for reproducibility
and extension, we provide our data available [26].

4. Validation

In this section, we report the results of a large-scale empirical study
on a benchmark of 56,019 build instances. The comprehensive dataset
collected and used in our study is publicly available in [26] for future
replications and extensions.

Fig. 5 provides an overview of our experimental design used in the
validation of our approach. First, we evaluate our predictive perfor
mance against existing approaches in the two first questions. At this
step, we run search-based algorithms and non deterministic ML

Fig. 4. An example of mutation operator.

I. Saidani et al.

Information and Software Technology 128 (2020) 106392

7

techniques used in this empirical study 1000 times to deal with the
stochastic nature of these algorithms. To validate the predictive per
formance, we consider online validation [27]. Next step in this valida
tion is related to a qualitative study of the most important metrics to
indicate CI build outcome. In the following, we describe each step in
detail.

4.1. Research questions

We designed our experiments to answer three research questions:

• RQ1. (SBSE validation). How does the proposed NSGA-II perform
compared to Random Search (RS), mono-objective algorithm (GA)
and other Multi-Objective algorithms?

• RQ2. (Performance evaluation with ML). How does our approach
perform compared to ML techniques?

• RQ3. (Features analysis). What features are most important to
predict CI build failures?

4.2. Analysis method

4.2.1. Prediction performance
The first goal of our empirical study is to evaluate the performance of

our approach for the CI build failure prediction problem compared to
existing techniques (RQ1+RQ2).

RQ1 is a “standard” question asked in any Search-Based Software
Engineering (SBSE) formulation [45]. First, we compare our SBSE
formulation against Random Search (RS) [37,46] is the simplest form of
search-based algorithms. It may fail to find optimal solutions that
occupy small proportion of the overall search as it is unguided without
efficient use of genetic operators [37]. In this RQ, we aim in the first
place as a sanity check to evaluate the need for an intelligent method
such as NSGA-II that can outperform RS. In addition, it is important also
to determine if considering separate conflicting objectives to be opti
mized (multi-objective) is an appropriate formulation compared to
aggregating them in a single objective. Hence, we compared NSGA-II to
mono-objective GP where a single fitness function, Fit(mono), is used. Fit
(mono) is defined as follows:

Fit(mono) =
PD + (1 − PF)

2
. (1)

In order, to make our results comparable, we compute the well-
known evaluation metric Area Under the ROC Curve (AUC). This mea
sure indicates how much a prediction model/rule is capable of dis
tinguishing between classes. A larger AUC value indicates better
prediction performance. For binary classification, AUC is defined as
follows [47]:

AUC =
1 + PD

100 − PF
100

2
∈ [0, 1]. (2)

Moreover, it is important to account for imbalance in a data set.
Indeed, various researchers [25,48,49] advocate the use of the balance
metric to assess the performance of models that were initially trained
using imbalanced training data. Balance measure computes the
euclidean distance between the optimum couple (PD=100, PF=0) to a
specific pair of (PD, PF) [49]. Higher balances are desirable for a model.
The balance metric is defined as follows.

Balance = 1 −

̅̅̅
(

0 − PF
100

)2

*
(

1 − PD
100

)2

2

√
√
√
√
√

∈ [0, 1]. (3)

The main merit of the AUC and balance is their robustness toward
imbalanced data.

4.2.2. Algorithms performance
We evaluate the performance of NSGA-II over other MOEAs to

identify the most effective algorithm in multi-objective optimization.
Thus, we compare our approach with NSGA-III [36], Indicator-Based
Evolutionary Algorithm (IBEA) [50] and Strength-Pareto Evolutionary
Algorithm (SPEA2) [51], as they are among the most popular MOEAs
and have been widely utilized in SBSE [13,15,15,38,52,53]. Addition
ally, all the search-based algorithms used in this paper are implemented
using the MOEA framework [54], an open source framework for
developing and experimenting with MOEAs [55].

Since the underlying goal of MOEAs is to determine a set of alter
native solutions known as Pareto front approximations [55], we aim to
compare the performance of each algorithm using Zitzler et al. [56].
measures, based on three different performance aspects for
multi-objective optimization (1) the quality of the generated Pareto
fronts, (2) the convergence to the exact Pareto front, and (3) the di
versity of the produced solutions. In particular, we consider the
following metrics:

• Hyper-volume (HV): calculates the volume of the space dominated
by all the solutions i.e.convergence of a solution set. A larger HV
value indicates better performance. This metric is widely accepted as
it guarantees that any approximation set that achieves more HV
value for a particular MOP, it should contain more Pareto optimal
solutions [57].

• Generational Distance (GD): measures the average distance be
tween each Pareto front solution and the true Pareto front. Smaller is
GD, better is the MOEA i.e., closer it is from the Pareto optimal. This
metric occupied the second position, after HV, of the most used
MOGP performance metrics [57].

Fig. 5. Experimental design.

I. Saidani et al.

Information and Software Technology 128 (2020) 106392

8

• Spacing (SP): is the most popular uniformity indicator [58]. It
measures the standard deviation of distance from each solution to its
closest neighbor in the obtained set. A lower SP value is preferable as
it indicates that the solution provides a better Pareto front repre
sentation and hence it can be considered to possess better quality.

These indicators are automatically computed, on the testing set,
using the MOEA Framework tool which provides the statistical analysis
and displays the minimum, median and maximum values of each per
formance indicator.

To answer RQ2, we compare the prediction performance of NSGA-II
with three widely-used ML techniques in previous CI and software en
gineering research [8,27,29,32,44,59,59], namely Decision Tree (DT),
Random Forest (RF) and Naive Bayesian (NB). We use both prediction
metrics, balance and AUC, as described for RQ1.

ML preprocessing: First, data scaling is performed in order to
standardize the range of variables. Then we rely on Synthetic Minority
Oversampling Technique (SMOTE) method [60], to re-sample the
training data. Note, that we did not re-sample the testing dataset since
we want to evaluate ML techniques in a real-life scenario, where the data
is imbalanced.

Validation scenario: We conduct an online validation in which
builds are ordered and predicted chronologically. Similar to prior work
[27], we ranked for each selected project, the builds according to its
start time and broke the whole set of a given project into ten folds. Then,
we used the latter five folds as testing sets: At each iteration i (1 ≤ i ≤ 5),
the test set fold j (6 ≤ j ≤ 10), the former j-1 folds were selected as
training set to train the model. It is worthy to mention, that we verified
for each project and validation iteration, the existence of failed builds.
To get more details about the failure rate in each validation iteration,
please consider our replication package [26].

4.2.3. Feature ranking
The goal of RQ3 is to analyze the factors influencing build failures

which will be valuable for developers to prevent potential build failures
in their projects. While existing research works [30–32] attempted to
give insights into CI build failure by applying correlation analysis to
discover the relationship between the selected features and the build
outcome. In this paper, we address this problem by exploring the
interpretable knowledge provided by our generated rules. Since we use
online validation, the analysis produces 5 rules for each project. Thus,
the same feature may occur multiple times in the near-optimal rules. The
higher the number of occurrences of a feature, the more important is the
feature in identifying failed builds. In addition, to give a more general
view, we aggregate the results of features ranking for each project and
feature category (cf. Section 3.3).

4.3. Subjects selection

Our experiments are based on TravisTorrent dataset2, from which we
selected top-10 Java and Ruby, the only supported languages in this
dataset [34], projects according to the number of build records (after
removing inadequate rows as described in Section 3.3). An overview
about the studied projects is reported in Table 2. It is noteworthy that
the data in all these projects is highly imbalanced. Our replication
package is publicly available at [26].

Cloudify3 is a cloud-enablement platform that on-boards applica
tions to public and private clouds without architectural or code changes.
Gradle4 is a popular build tool with a focus on build automation and
support for multi-language development. It offers a flexible model that
can support the entire development lifecycle from compiling and
packaging code to publishing web sites. Graylog2-server5 is an open
source log management system that centrally captures, stores, and en
ables real-time search and log analysis against terabytes of machine data
from different component in the IT infrastructure. Vagrant6 is a tool for
building and distributing development environments that provides easy
workflow for developers and leverages a declarative configuration file
which describes all software requirements, packages, operating system
configuration, users, and so on. Mifosx7 is an open technology platform
for financial inclusion that provides core functionalities to deliver
financial services. OpenProject8 is one of the leading open source web-
based project management systems. Rails9 is a web application frame
work that provides several features needed to create database-backed
web applications according to the Model-View-Controller (MVC)
pattern. Metasploit10 is a penetration testing platform that enables to
write, test, and execute exploit code with a suite of tools to test security
vulnerabilities, enumerate networks, execute attacks, and evade detec
tion. Ruby11 is an interpreted object-oriented programming language
often used for web development. Finally, SonarQube12 is a platform for
continuous inspection of code quality to perform automatic reviews with
static analysis of code to detect bugs, code smells, and security vulner
abilities on several programming languages.

Table 2
Studies projects statistics.

Project Name Language # of Builds Failure Rate Age at CI (days)

CloudifySource/cloudify java 4568 0.25 220
gradle/gradle java 3822 0.08 1833
Graylog2/graylog2-server java 3341 0.12 470
mitchellh/vagrant ruby 3569 0.14 765
openMF/mifosx java 2252 0.07 2
opf/openproject ruby 5913 0.35 287
rails/rails ruby 11,732 0.30 2354
rapid7/metasploit-framework ruby 6391 0.07 2571
ruby/ruby ruby 11,814 0.21 5099
SonarSource/sonarqube java 2317 0.24 1013
Average − 5,602 0.19 1,461

2 https://travistorrent.testroots.org/
3 https://github.com/CloudifySource/cloudify
4 https://github.com/gradle/gradle
5 https://github.com/Graylog2/graylog2-server
6 https://github.com/hashicorp/vagrant
7 https://github.com/openMF/mifosx
8 https://github.com/opf/openproject
9 https://github.com/rails/rails

10 https://github.com/rapid7/metasploit-framework
11 https://github.com/ruby/ruby
12 https://github.com/SonarSource/sonarqube

I. Saidani et al.

https://travistorrent.testroots.org/
https://github.com/CloudifySource/cloudify
https://github.com/gradle/gradle
https://github.com/Graylog2/graylog2-server
https://github.com/hashicorp/vagrant
https://github.com/openMF/mifosx
https://github.com/opf/openproject
https://github.com/rails/rails
https://github.com/rapid7/metasploit-framework
https://github.com/ruby/ruby
https://github.com/SonarSource/sonarqube

Information and Software Technology 128 (2020) 106392

9

4.4. Inferential statistical test methods used

When applied to the same problem instance, search-based algo
rithms, DT and RF techniques may provide different results on each run.
To deal with this stochastic nature, it is important to assess their effec
tiveness by performing several runs, at least 1000 runs as suggested by
Arcury and Briand guidelines [61] as well as recent works [38,39,
62–66]. In addition, it is also essential to use the statistical tests that
provide support for/rejection of the conclusions derived by analyzing
the obtained results. In this paper, we employ Wilcoxon signed rank test
[67] in order to detect significant performance differences between the
algorithms under comparison (α is set at 0.05). In this validation, each
iteration is repeated 1000 times, for each algorithm and each project. It
is worth mentioning that for RQ3, we choose the rule with the median
value through 3000 runs of each iteration.

We also use Vargha-Delaney A (VDA) [68], a non-parametric effect
size measure which is widely used in SBSE [69]. The A measure indicates
the probability that one technique will achieve better performance than
another technique. When the A measure is 0.5, the two techniques are
equal. When the A measure is above or below 0.5, one of the techniques
outperforms the other [70]. Vargha-Delaney statistic also classifies the
magnitude of the obtained effect size value into four different levels
(negligible, small, medium, and large) [71].

4.5. Parameter tuning and setting

First, we investigated a number of calibration of different parameters
in order to effectively set the parameters of each technique used in the
study. To facilitate the replication of our results, we report in Table 3 our
algorithmic parameter tuning. The initial populations of all the search-
based algorithms were randomly generated. The process is stopped
when the maximum number of generations, set to 500, is reached. The
maximum depth of the tree (i.e., rules) is fixed to 10.

The three ML techniques analyzed in the study are DT, RF and NB.
The parameter settings for DT method include maximum depth of 10.
RF’s parameter setting involves using a maximum tree depth of 10 and
number of estimators of 200. For NB classifier selection, we use Gaussian
Naive Bayesian [72] as the majority of the handled data is continuous.

5. Experimental results

This section presents the experimental results obtained for RQ1-3.

5.1. RQ1. Results for GP comparison

In this RQ, we report the results comparing the performance of
NSGA-II the other search-based technique in order to determine the
most effective GP technique for CI build prediction. Fig. 6 plots the re
sults while Table 4 highlights the statistical tests results of this
comparison.

As shown in Fig. 6, we clearly see that NSGA-II outperformed RS as
well as GA and this by an increase of 17% and 35% in terms of AUC and

balance respectively. In fact, both mono-objective algorithms achieved a
median score of 31% in terms of balance, while GA was slightly better in
terms of AUC with a score of 51% compared to 50% achieved by RS.
Additionally, the Wilcoxon test results showed that over 50,000 exper
iment instances (5 iterations × 1000 runs × 10 projects), NSGA-II was
significantly better than GA and RS, with large VDA effect sizes. This
provides evidence that the use of multi-objective formulation for the
prediction problem is more suited as it can provide a better compromise
between PD and PF.

With regards to other MOEAs, NSGA-II was the best in terms of AUC
in all the studied projects while it showed better predictive performance
in nine out of ten projects in terms of balance. Overall, the statistical
tests results reveal that NSGA-II is significantly the best among other
MOEAs with small effect sizes. Next, we compare the performance of
multi-objective optimization for the different MOEAs. Table 5 shows the
results of MOEAs comparisons based on the hyper-volume (HV),
Generational Distance (GD) and Spacing (SP) as described in Section
4.2.1. The experiment shows that, in median, NSGA-II was significantly
the best in terms of HV, GD and SP. In fact, NSGA-II achieved a median
score of 0.99 in terms of HV, while the other algorithms achieved 0.96
which means that NSGA-II is better to cover the volume of the space
dominated by its solutions. In terms of GD, NSGA-II is also better to
achieve a closer distance between its Pareto front solutions and the true
Pareto front with a score of 4*10− 3 compared to 0.01 for NSGA-III,
SPEA2 and IBEA. Regarding SP, NSGA-II achieves also the best
spacing between the generated solutions with median SP score of 0.05.
Hence, these results motivate our choice to use NSGA-II as a search
method

Furthermore, we show the Pareto front of each algorithm in Fig. 7
from the mitchellh/vagrant project. We observe that NSGA-II tends
to evolve more near-optimal solutions in the middle region of the
identified Pareto front with a good spread of solutions along the front,
pushing it outwards toward the ideal point (i.e., high true positive rate
and low false positive rate). We observe also that NSGA-III and IBEA
have less non-dominated solutions in the middle of the Pareto front.
However, for both extremes of the Pareto front we observe that most of
algorithms reach similar regions of the search space. On the other hand,
we observe that IBEA achieves less interesting solutions in its Pareto
front. For the CI build failures prediction problem, optimal solutions
within the extreme edges of the Pareto front are typically less desirable
than solutions in the middle region. That is, solutions in the middle re
gion provide the optimal trade-off between both objective functions
(TPR and FPR) while solutions from the extreme edge region represent
predictions rules with either high true positive rate (TPR) or low false
positive rate (FPR).

5.2. RQ2. Results for the comparison with ML

Figs. 8 and 9 show the boxplots comparing the results of all the
executed experiments iterations to compare NSGA-II with ML algo
rithms (DT, NB, and RF) in each studied project. Table 7 reports the
average (of 5 online validation iterations) balance and AUC scores while

Table 3
Algorithms parameters.

Algorithms Parameters Values

NSGA-II, NSGA-III, IBEA, SPEA2, GA, RS Population size 100
Maximum number of generations 500
Maximum depth of the tree 10
Crossover probability* 0.9
Mutation probability* 0.1

RF Maximum depth of the tree 10
Number of estimators 200

DT Maximum depth of the tree 10
NB Used NB classifier Gaussian naive Bayes

* Not applied to RS

I. Saidani et al.

Information and Software Technology 128 (2020) 106392

10

Table 6 shows the statistical comparisons of these experiments. Note
that NSGA-II, RF and DT were executed 1000 times for each experi
mentation instance to deal with their stochastic nature. Then we
computed the median values of each experiment. Also, in the figures, the
horizontal black lines indicate the average values of the corresponding
scores.

As we can see, our NSGA-II technique achieves an average AUC of
69% and an average balance of 66%. Although the achieved results may
seem modest performance numbers, they are quite significant given the
high imbalanced nature of the data (i.e., only a small portion of the
builds are failed) as can be noticed from Table 2. Moreover, we see from
Table 7 that for the 10 studied projects, the best AUC and balance values
were achieved by the NSGA-II algorithm. On the other hand, for the

different projects, the statistical analysis provide evidence that our
approach performs better than the ML techniques with a large VDA’s
effect size and A estimate > 0.5 for both balance and AUC.

For instance, in the Graylog2/graylog2-server project in
which the number of failed builds represent only 12%, our approach
achieved 71% in terms of AUC compared to 58% for NB, 56% for RF and
52% for DT which represents an improvement of 13% over ML. Also, in
mitchellh/vagrant project, in which we obtained the best results,
our approach outperforms ML techniques by achieving 78% in terms of
AUC compared to 69%, 63% and 60% for RF, NB and DT, respectively.

Based on these results, we can conjecture that NSGA-II performs
better in comparison with ML techniques even without need for features
scaling or relying on any re-sampling technique. This could be justified
by the fact that NSGA-II had a better trade-off (i.e., balance and AUC)
between both positive (i.e., failed) and negative (i.e., passed) accuracies,

Fig. 6. Boxplots comparing scores of the search-based algorithms for the 5000 experiment instances (1,000 runs × 5 validation iterations) in each project.

Table 4
Statistical tests results of NSGA-II compared to other search-based techniques.

NSGA-II vs. RS vs. GA vs. IBEA vs.
NSGA-III

vs.
SPEA2

AUC p-value < 10− 16 < 10− 16 < 10− 16 < 10− 16 < 10− 16

A estimate 0.98 0.97 0.62 0.62 0.57
Magnitude Large Large Small Small Small

Balance p-value < 10− 16 < 10− 16 < 10− 16 < 10− 16 < 10− 16

A estimate 0.98 0.98 0.62 0.62 0.59
Magnitude Large Large Small Small Small

Table 5
Performance metrics achieved by each of the MOEAs in terms of hyper-volume
(HV), generational distance (GD), and spacing (SP).

NSGA-II SPEA2 NSGA-III IBEA

HV 0.99 0.96 0.96 0.96
GD 0.004 0.01 0.01 0.01
SP 0.05 0.10 0.24 0.21

Fig. 7. An example of Pareto Front extracted from mitchellh/

vagrant project.

I. Saidani et al.

Information and Software Technology 128 (2020) 106392

11

which indicates that our approach is advantageous over ML when
developing prediction rules for imbalanced datasets. Although the re
sults reveal that GP shows less sensitivity to deal with imbalanced data

than ML, we advocate the use of HyBridized Techniques (HBT) which
have been found useful by combining the advantages of search-based
and ML techniques to produce better results [14].

5.3. RQ3. Results for feature analysis

In this RQ, we want to better understand what features contributed
to achieving higher performances. Fig. 10 shows the results of feature
ranking for each project while Table 8 provides a summary for the all
studied projects. Broadly speaking, the figure did not reveal any sig
nificant variation between features categories with regard to the rate of
occurrences. However, among all projects, the most important feature
types are project history, link to the last build and change type.

Project History features are the most prominent features for six
projects namely cloudify, graylog2-server, vagrant, open
project, sonarqube and ruby. For these projects, a closer

Fig. 8. Boxplots comparing the achieved AUC values for NSGA-II and each of the machine learning techniques, DT, NB and RF.

Fig. 9. Boxplots comparing the achieved balance values for NSGA-II and each of the machine learning techniques, DT, NB and RF.

Table 6
Statistical tests results of NSGA-II compared to ML techniques.

NSGA-I vs. RF NSGA-II vs DT NSGA-I vs NB

AUC p-value < 10− 16 < 10− 16 < 10− 16

A estimate 0.76 0.92 0.92
Magnitude Large Large Large

Balance p-value < 10− 16 < 10− 16 < 10− 16

A estimate 0.80 0.91 0.93
Magnitude Large Large Large

I. Saidani et al.

Information and Software Technology 128 (2020) 106392

12

examination reveals that the statistics of the project have a clear indi
cation of the build outcome. For instance, in openproject project, our
rules expose that one of the conditions to cause build failure is having a

historical failure rate higher than 34% which alone covers around 63%
of the builds in this project. A similar behavior was observed in
sonarqube project as well. This result lends support to previous
research efforts [9] claiming that the statistics about the project are the
most useful features in predicting the build outcome.

Link to last build is another features category that seems to be
important, which appears the most in metasploit-framework and
mifosx projects. For instance, in metasploit-framework most of
our generated rules classify the instances that failed along from the
previous one. On the other side, in this project, there exist 500 failed
builds of which 124 occurred consecutively (about 25%) which pr1o
vides additional support for our rules. As stated previously [8,9,30], it is
apparent that phases of build instability perpetuate failures.

Change type features are the most occurring among two projects
namely rails and gradle. This suggests that changes to specific types
of files can affect the build outcome. For example, in rails project,
there exists 2567 builds where changes to only source code files

Table 7
Performance of NSGA-II vs ML techniques.

Project AUC Balance

NSGA-II DT RF NB NSGA-II DT RF NB

cloudify 0.67 0.55 0.62 0.56 0.65 0.43 0.47 0.41
gradle 0.69 0.50 0.62 0.61 0.67 0.42 0.51 0.54
graylog2-server 0.71 0.52 0.56 0.58 0.67 0.41 0.41 0.46
metasploit-framework 0.68 0.49 0.60 0.47 0.63 0.44 0.54 0.32
mifosx 0.75 0.62 0.64 0.46 0.72 0.53 0.55 0.36
openproject 0.64 0.52 0.54 0.53 0.63 0.50 0.45 0.47
rails 0.61 0.55 0.58 0.60 0.56 0.44 0.47 0.50
ruby 0.72 0.58 0.71 0.50 0.69 0.56 0.68 0.31
sonarqube 0.65 0.53 0.58 0.54 0.64 0.50 0.49 0.45
vagrant 0.78 0.60 0.69 0.63 0.75 0.53 0.60 0.59
Median 0.68 0.54 0.61 0.55 0.66 0.47 0.50 0.46
Average 0.69 0.55 0.61 0.55 0.66 0.48 0.52 0.44

Fig. 10. Features ranking for each project.

Table 8
A summary of the features ranking for all the studied projects.

Category Occurrence (%)

Project history 12.77
Link to last build 12.08
Change type 11.78
Committer experience 9.40
Triggering commit 9.34
Files change 9.20
Cooperation 9.04
Test density 8.97
Test change 8.75
Change size 8.67

I. Saidani et al.

Information and Software Technology 128 (2020) 106392

13

introduced build failures which represent 72% of failed builds.
Other features are also important in indicating CI build outcome. For

instance, metrics about test change represent also an important per
centage of appearance in sonarqube project. However, statistics about
the triggering commit seem to be less important and the least appearing
in three projects which indicates that these features are not highly
related to the build outcome.

6. Discussion

In this section, we discuss our findings and their implications for
developers, researchers and tool builders.

6.1. For CI developers

We can help developers to take the necessary preventive actions to
avoid breaking the build. We have shown that our approach is able to
predict the CI build results, however, the key innovation of our approach
is that it is able to provide an explainable prediction model, and also
some modalities to be respected in order to avoid build failures. For
instance, Fig. 11 shows an example of a prediction rule that was
generated by our tool to predict the failure in the mitchellh/vagrant
project with high AUC and balance scores of 92%. In this rule, it is
suggested that, among different conditions, if the number of modified
files (FM) in the current build is less 10 then your CI build is likely to fail.
As an alternative to avoid such build failures, the developer may opt to
reduce the number of modified files in a commit or may also split the
number the files into two or more build pushes to reduce the change
complexity, and thus reduce potential build failures. More interestingly,

we plan to extend our approach with further support to software de
velopers by suggesting change fixes for their failed CI builds based on
the violated conditions in the generated tree-based rules.

Hence, such explainable models show indeed that it is possible to
pinpoint the root cause of a CI build failure using our search-based
approach. Moreover, it is worth noting that it may be possible to
reduce the complexity of the generated prediction rules (e.g., tree size
and/or depth) in order to provide easier explainable models for CI de
velopers with smaller slice and less complexity, but with of cost of
scarifying with some accuracy. Indeed, as part of our future work, we
plan to extend our approach into a multi-objective approach to find the
best trade-off between the model accuracy and complexity, which are in
conflicting considerations.

Usage scenario of our tool. Fig. 12 provides a typical usage scenario
of our tool in practice. When a developer commits a change to the re
pository (1) our tool is triggered to predict potential build failures. Once
triggered, (2) the user is invited to choose whether to load the previously
generated rule or generate new rule. This decision can be made if the
current rule is not no more up-to-date, i.e., after a number of builds.
After the generation/loading of the prediction rule, our tool analyzes the
changes made in the commitâs files and compute the CI metrics to
determine whether the build would pass/fail. Finally, the prediction is
provided to the developer with the required explanation to guide the
developer in his retro-actions if needed. In this way, developers can cut
off the expenses of CI build process by saving the build generation time
and effort.

Build verification is fast. We envisage our solution being used by
developers, in their daily CI workflow to check whether their changes
will break the build. One of the benefits of using our approach is that
also, like ML techniques, we can save the learning model to be used for
the prediction or updated later when more data is available over time as
the project evolves. Thus, it is important to assess the scalability of our

Fig. 11. An example of CI build failure prediction rule for the mitchellh/vagrant project.

Fig. 12. A usage workflow of our approach.
Fig. 13. The impact of the training dataset size on the NSGA-II execution time
to build the prediction model.

I. Saidani et al.

Information and Software Technology 128 (2020) 106392

14

approach from the data point of view. To this end, we conducted an
experiment to assess the ability of our search-based approach to scale to
larger datasets. Fig. 13 reports the results of our experiment. We find
that our search-based approach scales linearly i.e., depends on the size of
the learning set, as shown in the figure. For instance, with a dataset
composed of 10,629 our tool can train the model within 9 minutes
approximately, which is considered reasonable from computation point
of view. However, from a developer point of view it is worth noting that
the training on the dataset is required only once to build the model that
will be used later for the prediction. The prediction consists of simply
checking whether the conditions that appear in the prediction rule (e.g.,
Fig. 11) are violated or not which takes typically few seconds. There
after, the tool can update the model with more data after a number
builds that could be configured by the developer.

Note that in this work, all the experiments are executed on a com
puter equipped with an Intel Core i7-7700k 4.2 GHZ CPU and 16GB
memory.

6.2. For researchers

The reasons behind build failure need more in-depth studies.
Although, in this paper, we showed that failure prediction is possible
with encouraging scores, we believe that by enhancing the feature en
gineering, we can obtain better results. Hence, the results may
encourage CI researchers to investigate other measurable internal and
external metrics and factors that could be correlated with the build
outcome.

Retro-actions to fix a failed build. As discussed earlier in Section
6.1, our explainable model for build failures prediction can provide a
valuable support to developers on how to proceed to fix their failed
builds based on the violated rules or conditions. Moreover, looking at
what rules or specific conditions were violated in a build failure repre
sent a crucial information and valuable knowledge to be used as a
starting point to prepare or recommend retro-action plans to fix the
failed build. Thus, such valuable information may encourage re
searchers to develop automated build failure fix approaches, which is
indeed one of our future research works. Furthermore, providing such
information on the build failures may increase learning within de
velopers and provide them with better understanding on the root causes
of such build failures. Moreover, documenting such violations may also
increase knowledge transfer from developers.

Researchers could investigate periodicity in build failure. Our fea
tures analysis lends support to previous a research efforts [30] showing
that many failed builds occurred consecutively which indicate that if the
build failed, the next build is more likely to fail as well. This finding may
encourage researchers to get insights into the periodic trends of build
failure which would help us to enhance the prediction accuracy.

6.3. For tool builders

Rules updating strategies should be considered when building CI
build prediction tools. As we can see from our obtained models, the final
prediction rules (features, and threshold values) can differ from one
project to another, and from datasets in the same project. Ideally, the
prediction rules/models should be updated regularity as the project
evolves, i.e., after a given number of builds, or generalized among other
projects. However, in a real world setting, prediction models may ach
ieve less performance when applied to different data and different
contexts [73,74]. For instance, Fig. 14 highlights a simplified example,
considering a rule R1 for project A and R2 for project B. In the same rule
R1, we see that the feature denoting the source churn (git_
diff_src_churn) can be associated to two different thresholds, in
different sub-trees, i.e., a failed build if the source churn is ≥ 200 and the
elapsed days ≤ 2; or if the number of modified files ≤ 2 and the source
churn ≥ 500. However, in project B, the rule indicates a failed build if
one the three mentioned conditions is met. Hence, it would be difficult
to generalize the threshold values to be recommended for each feature.
However, generating new prediction rules frequently during the devel
opment process could be costly [75]. As an alternative solution to
leverage this issue is to update the existing prediction rule by combining
the information that is captured in the original rule with the information
of the recent data, hence updating the existing rule (e.g., threshold
values, or features). Hence, an interesting feature to consider with tools
builders is to adjust the prediction rules on-the-fly based on the de
velopers preferences or when the prediction accuracy starts to decrease
over time. We are planning to integrate this feature in our approach as
part of our future work.

Tool for recommending relevant files for build failures localisation.
Our features ranking analysis showed that change type features, such as
the number of configuration files touched in the built commits, are
prominent to detect build failures in the studied projects. On another
hand, developers may follow a tedious process to localize the file causing
the failure. Hence, tool builders should supply development teams with
tools to identify potential files in order to accelerate the build fixing
process.

7. Threats to validity

This section describes the threats to the validity of our experiments.
Internal validity. One threat to internal validity is related to

training and test sets selection. As an attempt to mitigate this issue, we
considered online validation which is a realistic scenario as it considers
the chronological order of CI builds and mimics what happens during
the continuous integration process. Future work is planned to validate
our approach considering other scenarios such as cross-project valida
tion. Another threat to validity can be related to the stochastic nature of
the meta-heuristic algorithms [15,61]. To mitigate this threat, we per
formed 1000 runs of each experimentation instance and considered the

Fig. 14. An example showing how the prediction rules can be less effective when applied to other projects.

I. Saidani et al.

Information and Software Technology 128 (2020) 106392

15

median value in each validation iteration. Moreover, we have double
checked our experiments as well as the datasets collected from Trav
isTorrent through manual inspection, still there could be errors that we
did not notice.

Construct validity. Threats to construct validity can be related to
the set of used metrics and performance measure. We basically used
standard performance metrics such as AUC and balance that are widely
accepted in predictive models in software engineering [14]. As for the
used measurements, we used standard features from TravisTorrent data
set and other generated features related especially to historical build
failure that commonly used in the literature [8,27,29,32,44,59,59].
Although our approach is not closely coupled with the features used in
this paper, we plan to extend our measurements to other code level
metrics and other external factors as an attempt to see their impact on
the prediction performance. Another potential threat could be related to
the selection of the prediction techniques. Although we used different
search-based techniques, i.e., NSGA-II, NSGA-II, SPEA2, GA, and random
search, and different machine learning techniques, i.e., DT, RF and NB,
which are the most applied in existing solutions for build prediction and
several other software engineering problems [8,29,32,44]. To mitigate
this threat, we plan as part of our future work to conduct a large scale
empirical study with other search-based and machine learning
techniques.

Conclusion validity. We have carefully chosen non-parametric
tests, namely Wilcoxon and Vargha-Delaney A, in the study as they do
not require data normality assumptions and also for being the most used
statistical tests in SBSE research community [69]. The suitability of the
used statistical non-parametric methods with data ordinality, along with
no assumption on their distribution raises our confidence about the
significance of the analyzed statistical relationships. Moreover, to in
crease the confidence in the study results, we used two
widely-acknowledged prediction performance measures, i.e., balance
and AUC, and three performance measures, i.e., hyper-volume (HV),
generational distance (GD) and spacing (SP) to evaluate the obtained
results from the considered algorithms.

External validity. Our experimental results might have concerns of
generalizability, since we performed the experiments with ten open
source projects that use TravisTorrent as their CI host tool. While
TravisTorrent is one of widely used CI tools, our results could not be
generalized to other CI tools and other open-source or industrial pro
jects. As future work, we plan to extend our study on other open source
and industrial projects as well as other CI tools. We also plan to provide
our approach as bot to be integrated into code review and CI tools to
help developers predicting their build failure risks.

8. Conclusions and future work

In this article, we introduced a new search-based approach for CI
build failure prediction. In our genetic programming (GP) adaptation,
prediction rules are represented as a combination of metrics and
threshold values that should correctly predict as much as possible the
failed builds extracted from a base of real world examples. Considering
online validation, the statistical analysis of the obtained results provides
evidence that our approach outperforms three Machine Learning (ML)
techniques, for which we applied re-sampling, as well as Random Search
and mono-objective Genetic Algorithm, based on a benchmark of 56,019
CI builds of ten projects that use Travis CI. Regarding the most important
indicators used by our generated rules, we found that features related to
(1) specific statistics about the project such as team size, (2) last build
information in the current build and (3) the types of changed files are the
most influential to indicate the potential failure of a given build.

While the obtained results are considered promising, it could be
further validated with larger sample size with a variety of CI systems to
conclude about the general applicability of our methodology. Moreover,
we believe that by using a more personalized group of features with
external factors, the prediction performance could be further improved,

which we plan to explore in the future. Also, we plan also to extend our
approach by adopting HyBridized Techniques (HBT) which have been
found useful by combining the advantages of search-based and ML
techniques to produce better results.

CRediT authorship contribution statement

Islem Saidani: Conceptualization, Data curation, Formal analysis,
Methodology, Software, Validation, Investigation, Writing - original
draft. Ali Ouni: Conceptualization, Validation, Supervision, Resources,
Writing - review & editing, Funding acquisition, Project administration.
Moataz Chouchen: Software, Validation, Investigation. Mohamed
Wiem Mkaouer: Methodology, Validation, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work is supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

References

[1] P.M. Duvall, S. Matyas, A. Glover, Continuous integration: Improving software
quality and reducing risk, Pearson Education, 2007.

[2] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, V. Filkov, Quality and productivity
outcomes relating to continuous integration in github. 10th Joint Meeting on
Foundations of Software Engineering, in: ESEC/FSE 2015, 2015, pp. 805–816.

[3] M. Fowler, Continuous Integration, 2006, https://www.martinfowler.com/articles
/continuousIntegration.html. Accessed: 2020-01-01.

[4] M. Hilton, T. Tunnell, K. Huang, D. Marinov, D. Dig, Usage, costs, and benefits of
continuous integration in open-source projects. 31st IEEE/ACM International
Conference on Automated Software Engineering, in: ASE 2016, 2016, pp. 426–437.

[5] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, B. Vasilescu, The impact of continuous
integration on other software development practices: A large-scale empirical study.
32nd IEEE/ACM International Conference on Automated Software Engineering,
2017, pp. 60–71.

[6] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, D. Dig, Trade-offs in continuous
integration: assurance, security, and flexibility. 11th Joint Meeting on Foundations
of Software Engineering, ACM, 2017, pp. 197–207.

[7] R. Abdalkareem, S. Mujahid, E. Shihab, J. Rilling, Which commits can be ci
skipped? IEEE Trans. Software Eng. (2019).

[8] F. Hassan, X. Wang, Change-aware build prediction model for stall avoidance in
continuous integration. ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, 2017, pp. 157–162.

[9] A. Ni, M. Li, Cost-effective build outcome prediction using cascaded classifiers.
2017 IEEE/ACM 14th International Conference on Mining Software Repositories
(MSR), IEEE, 2017, pp. 455–458.

[10] U. Bhowan, M. Johnston, M. Zhang, Evolving ensembles in multi-objective genetic
programming for classification with unbalanced data. Annual conference on
Genetic and evolutionary computation (GECCO), 2011, pp. 1331–1338.

[11] U. Bhowan, M. Zhang, M. Johnston, Genetic programming for classification with
unbalanced data. European Conference on Genetic Programming, Springer, 2010,
pp. 1–13.

[12] U. Bhowan, M. Johnston, M. Zhang, X. Yao, Reusing genetic programming for
ensemble selection in classification of unbalanced data, IEEE Trans. Evol. Comput.
18 (6) (2013) 893–908.

[13] I. Saidani, A. Ouni, M. Chouchen, M.W. Mkaouer, On the prediction of continuous
integration build failures using search-based software engineering. Proceedings of
the 2020 Genetic and Evolutionary Computation Conference Companion, 2020,
pp. 313–314.

[14] R. Malhotra, M. Khanna, An exploratory study for software change prediction in
object-oriented systems using hybridized techniques, Automated Software
Engineering 24 (3) (2017) 673–717.

[15] M. Harman, S.A. Mansouri, Y. Zhang, Search-based software engineering: trends,
techniques and applications, ACM Computing Surveys (CSUR) 45 (1) (2012) 11.

[16] J. Nam, W. Fu, S. Kim, T. Menzies, L. Tan, Heterogeneous defect prediction, IEEE
Trans. Software Eng. 44 (9) (2017) 874–896.

[17] A. Ouni, M. Kessentini, H. Sahraoui, M. Boukadoum, Maintainability defects
detection and correction: a multi-objective approach, Automated Software
Engineering 20 (1) (2013) 47–79.

[18] J. Chen, V. Nair, R. Krishna, T. Menzies, ǣSamplingǥ as a baseline optimizer for
search-based software engineering, IEEE Trans. Software Eng. 45 (6) (2018)
597–614.

I. Saidani et al.

http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0001
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0001
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0002
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0002
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0002
https://www.martinfowler.com/articles/continuousIntegration.html
https://www.martinfowler.com/articles/continuousIntegration.html
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0003
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0003
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0003
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0004
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0004
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0004
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0004
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0008
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0008
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0008
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0009
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0009
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0009
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0013
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0013
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0013
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0014
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0014
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0015
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0015
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0016
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0016
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0016
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0017

Information and Software Technology 128 (2020) 106392

16

[19] M. Kessentini, A. Ouni, Detecting android smells using multi-objective genetic
programming. International Conference on Mobile Software Engineering and
Systems, 2017, pp. 122–132.

[20] Z. Eckart, L. Marco, T. Lothar, Improving the strength pareto evolutionary
algorithm for multiobjective optimi-zation, EUROGEN, Evol. Method Des. Optim.
Control Ind. Problem (2001) 1–21.

[21] Y. Jin, B. Sendhoff, Pareto-based multiobjective machine learning: an overview
and case studies, IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews) 38 (3) (2008) 397–415.

[22] H. Zhao, A multi-objective genetic programming approach to developing pareto
optimal decision trees, Decis Support Syst 43 (3) (2007) 809–826.

[23] U. Bhowan, M. Johnston, M. Zhang, X. Yao, Evolving diverse ensembles using
genetic programming for classification with unbalanced data, IEEE Trans. Evol.
Comput. 17 (3) (2012) 368–386.

[24] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: Nsga-ii 6, 2002, pp. 182–197.

[25] R. Malhotra, A systematic review of machine learning techniques for software fault
prediction, Appl Soft Comput 27 (2015) 504–518.

[26] Dataset for ci build prediction, 2020, (Available at : https://github.com/GP-CI-B
uild-Fail/replication-package).

[27] J. Xia, Y. Li, Could we predict the result of a continuous integration build? an
empirical study. 2017 IEEE International Conference on Software Quality,
Reliability and Security Companion (QRS-C), IEEE, 2017, pp. 311–315.

[28] Z. Xie, M. Li, Cutting the software building efforts in continuous integration by
semi-supervised online AUC optimization.. IJCAI, 2018, pp. 2875–2881.

[29] J. Xia, Y. Li, C. Wang, An empirical study on the cross-project predictability of
continuous integration outcomes. 2017 14th Web Information Systems and
Applications Conference (WISA), IEEE, 2017, pp. 234–239.

[30] T. Rausch, W. Hummer, P. Leitner, S. Schulte, An empirical analysis of build
failures in the continuous integration workflows of java-based open-source
software. Proceedings of the 14th International Conference on Mining Software
Repositories, IEEE Press, 2017, pp. 345–355.

[31] M. Beller, G. Gousios, A. Zaidman, Oops, my tests broke the build: An explorative
analysis of travis CI with github. IEEE/ACM International Conference on Mining
Software Repositories, 2017, pp. 356–367.

[32] Y. Luo, Y. Zhao, W. Ma, L. Chen, What are the factors impacting build breakage?.
2017 14th Web Information Systems and Applications Conference (WISA) IEEE,
2017, pp. 139–142.

[33] A. Atchison, C. Berardi, N. Best, E. Stevens, E. Linstead, A time series analysis of
travistorrent builds: to everything there is a season. 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR), IEEE, 2017,
pp. 463–466.

[34] M. Beller, G. Gousios, A. Zaidman, Travistorrent: Synthesizing travis ci and github
for full-stack research on continuous integration. 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR), 2017,
pp. 447–450.

[35] T.A. Ghaleb, D.A. da Costa, Y. Zou, An empirical study of the long duration of
continuous integration builds, Empirical Software Engineering (2019) 1–38.

[36] K. Deb, H. Jain, An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i: solving problems
with box constraints, IEEE Trans. Evol. Comput. 18 (4) (2013) 577–601.

[37] M. Harman, P. McMinn, J.T. De Souza, S. Yoo, Search based software engineering:
techniques, taxonomy, tutorial. Empirical software engineering and verification,
Springer, 2010, pp. 1–59.

[38] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh, K. Deb, A. Ouni,
Many-objective software remodularization using NSGA-III, ACM Transactions on
Software Engineering and Methodology (TOSEM) 24 (3) (2015) 17.

[39] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, K. Deb, Multi-criteria code
refactoring using search-based software engineering: an industrial case study, ACM
Transactions on Software Engineering and Methodology (TOSEM) 25 (3) (2016)
23.

[40] J.R. Koza, J.R. Koza, Genetic programming: On the programming of computers by
means of natural selection 1, MIT press, 1992.

[41] M. Harman, J. Clark, Metrics are fitness functions too. 10th International
Symposium on Software Metrics, 2004, pp. 58–69.

[42] A. Ouni, M. Kessentini, H. Sahraoui, M.S. Hamdi, Search-based refactoring:
Towards semantics preservation. IEEE International Conference on Software
Maintenance (ICSM), 2012, pp. 347–356.

[43] A. Ouni, M. Kessentini, K. Inoue, M.O. Cinnéide, Search-based web service
antipatterns detection, IEEE Trans. Serv. Comput. 10 (4) (2017) 603–617.

[44] M. Santolucito, J. Zhang, E. Zhai, R. Piskac, Statically verifying continuous
integration configurations, Technical Report (2018).

[45] M. Harman, B.F. Jones, Search-based software engineering, Inf Softw Technol 43
(14) (2001) 833–839.

[46] D.C. Karnopp, Random search techniques for optimization problems, Automatica 1
(2–3) (1963) 111–121.

[47] J. Cervantes, X. Li, W. Yu, Using genetic algorithm to improve classification
accuracy on imbalanced data. 2013 IEEE International Conference on Systems,
Man, and Cybernetics, IEEE, 2013, pp. 2659–2664.

[48] M. Li, H. Zhang, R. Wu, Z.-H. Zhou, Sample-based software defect prediction with
active and semi-supervised learning, Automated Software Engineering 19 (2)
(2012) 201–230.

[49] T. Menzies, J. Greenwald, A. Frank, Data mining static code attributes to learn
defect predictors, IEEE Trans. Software Eng. 33 (1) (2006) 2–13.

[50] F. di Pierro, S.-T. Khu, D.A. Savic, An investigation on preference order ranking
scheme for multiobjective evolutionary optimization, IEEE Trans. Evol. Comput. 11
(1) (2007) 17–45.

[51] E. Zitzler, M. Laumanns, L. Thiele, Spea2: improving the strength pareto
evolutionary algorithm, TIK-report 103 (2001).

[52] M. Harman, The current state and future of search based software engineering
(2007) 342–357.

[53] A. Ouni, Search based software engineering: challenges, opportunities and recent
applications. Proceedings of the 2020 Genetic and Evolutionary Computation
Conference Companion, 2020, pp. 1114–1146.

[54] D. Hadka, MOEA Framework, (http://moeaframework.org/). Accessed: 2020-01-
01.

[55] D. Hadka, Moea Framework User Guide (2014).
[56] E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, V.G. Da Fonseca, Performance

assessment of multiobjective optimizers: an analysis and review, IEEE Trans. Evol.
Comput. 7 (2) (2003) 117–132.

[57] N. Riquelme, C. Von Lücken, B. Baran, Performance metrics in multi-objective
optimization. 2015 Latin American Computing Conference (CLEI), IEEE, 2015,
pp. 1–11.

[58] M. Li, X. Yao, Quality evaluation of solution sets in multiobjective optimisation: a
survey, ACM Computing Surveys (CSUR) 52 (2) (2019) 1–38.

[59] A. Ni, M. Li, Poster: Acona: Active online model adaptation for predicting
continuous integration build failures. 2018 IEEE/ACM 40th International
Conference on Software Engineering: Companion (ICSE-Companion), IEEE, 2018,
pp. 366–367.

[60] N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, Smote: synthetic minority
over-sampling technique, Journal of artificial intelligence research 16 (2002)
321–357.

[61] A. Arcuri, L. Briand, A practical guide for using statistical tests to assess
randomized algorithms in software engineering. International Conference on
Software Engineering (ICSE), 2011, pp. 1–10.

[62] Y. Zhang, M. Harman, G. Ochoa, G. Ruhe, S. Brinkkemper, An empirical study of
meta-and hyper-heuristic search for multi-objective release planning, ACM
Transactions on Software Engineering and Methodology (TOSEM) 27 (1) (2018)
1–32.

[63] M. Paixao, M. Harman, Y. Zhang, Y. Yu, An empirical study of cohesion and
coupling: balancing optimization and disruption, IEEE Trans. Evol. Comput. 22 (3)
(2017) 394–414.

[64] F. Ferrucci, M. Harman, J. Ren, F. Sarro, Not going to take this anymore: multi-
objective overtime planning for software engineering projects. 2013 35th
International Conference on Software Engineering (ICSE), 2013, pp. 462–471.

[65] N. Almarimi, A. Ouni, S. Bouktif, M.W. Mkaouer, R.G. Kula, M.A. Saied, Web
service api recommendation for automated mashup creation using multi-objective
evolutionary search, Appl Soft Comput 85 (2019) 105830.

[66] S. Boukharata, A. Ouni, M. Kessentini, S. Bouktif, H. Wang, Improving web service
interfaces modularity using multi-objective optimization, Automated Software
Engineering 26 (2) (2019) 275–312.

[67] F. Wilcoxon, S. Katti, R.A. Wilcox, Critical values and probability levels for the
wilcoxon rank sum test and the wilcoxon signed rank test, Selected tables in
mathematical statistics 1 (1970) 171–259.

[68] A. Vargha, H.D. Delaney, A critique and improvement of the CL common language
effect size statistics of mcgraw and wong, Journal of Educational and Behavioral
Statistics 25 (2) (2000) 101–132.

[69] S. Nejati, G. Gay, Search-Based software engineering: 11th international
symposium, SSBSE 2019, Tallinn, Estonia, August 31–September 1, 2019,
proceedings 11664, Springer Nature, 2019.

[70] S.W. Thomas, H. Hemmati, A.E. Hassan, D. Blostein, Static test case prioritization
using topic models, Empirical Software Engineering 19 (1) (2014) 182–212.

[71] S. Scalabrino, G. Grano, D. Di Nucci, R. Oliveto, A. De Lucia, Search-based testing
of procedural programs: Iterative single-target or multi-target approach?.
International Symposium on Search Based Software Engineering Springer, 2016,
pp. 64–79.

[72] G.H. John, P. Langley, Estimating continuous distributions in bayesian classifiers,
arXiv preprint arXiv:1302.4964 (2013).

[73] M. Choetkiertikul, H.K. Dam, T. Tran, T. Pham, A. Ghose, T. Menzies, A deep
learning model for estimating story points, IEEE Trans. Software Eng. 45 (7) (2018)
637–656.

[74] F. Zhang, Q. Zheng, Y. Zou, A.E. Hassan, Cross-project defect prediction using a
connectivity-based unsupervised classifier. 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), IEEE, 2016, pp. 309–320.

[75] K. Janssen, K. Moons, C. Kalkman, D. Grobbee, Y. Vergouwe, Updating methods
improved the performance of a clinical prediction model in new patients, J Clin
Epidemiol 61 (1) (2008) 76–86.

I. Saidani et al.

http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0019
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0019
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0019
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0024
https://github.com/GP-CI-Build-Fail/replication-package
https://github.com/GP-CI-Build-Fail/replication-package
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0026
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0026
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0028
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0028
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0028
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0028
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0029
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0029
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0029
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0033
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0033
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0038
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0038
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0039
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0039
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0040
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0040
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0040
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0041
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0041
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0043
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0043
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0044
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0044
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0045
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0045
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0045
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0046
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0046
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0046
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0047
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0047
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0048
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0048
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0048
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0049
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0049
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0050
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0050
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0050
http://moeaframework.org/
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0051
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0051
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0051
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0052
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0052
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0052
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0053
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0053
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0054
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0054
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0054
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0054
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0055
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0055
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0055
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0056
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0056
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0056
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0057
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0057
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0057
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0057
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0058
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0058
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0058
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0059
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0059
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0059
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0060
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0060
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0060
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0061
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0061
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0061
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0062
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0062
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0062
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0063
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0063
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0063
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0064
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0064
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0064
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0065
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0065
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0066
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0066
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0066
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0066
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0067
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0067
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0068
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0068
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0068
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0070
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0070
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0070
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0071
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0071
http://refhub.elsevier.com/S0950-5849(20)30157-9/sbref0071

	Predicting continuous integration build failures using evolutionary search
	1 Introduction
	2 Background and related work
	2.1 CI Build process
	2.2 Related work

	3 Search-based prediction of CI build failure
	3.1 Approach overview
	3.2 NSGA-II adaptation
	3.2.1 NSGA-II overview
	3.2.2 Adaptation

	3.3 Dataset and CI-related metrics

	4 Validation
	4.1 Research questions
	4.2 Analysis method
	4.2.1 Prediction performance
	4.2.2 Algorithms performance
	4.2.3 Feature ranking

	4.3 Subjects selection
	4.4 Inferential statistical test methods used
	4.5 Parameter tuning and setting

	5 Experimental results
	5.1 RQ1. Results for GP comparison
	5.2 RQ2. Results for the comparison with ML
	5.3 RQ3. Results for feature analysis

	6 Discussion
	6.1 For CI developers
	6.2 For researchers
	6.3 For tool builders

	7 Threats to validity
	8 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References

