Fundamenta Informaticae XX (2012) 1-30 1
10S Press

Minimal Coverability Set for Petri Nets:
Karp and Miller Algorithm with Pruning

Pierre-Alain Reynier*

Aix-Marseille Universigé, CNRS, LIF, UMR 7279, Marseille, France
pierre-alain.reynier@lif.univ-mrs.fr

Frédéric Servais

Hasselt University and Transnational University of LimipuBelgium
frederic.servais@uhasselt.be

Abstract. This paper presents the Monotone-Pruning algorithm (MPEémputing the minimal
coverability set of Petri nets. The original Karp and Milidgorithm (K&M) unfolds the reachabil-
ity graph of a Petri net and uses acceleration on branchesto@termination. The MP algorithm
improves the K&M algorithm by adding pruning between braeehf the K&M tree. This idea was
first introduced in the Minimal Coverability Tree algoritf CT), however it was recently shown
to be incomplete. The MP algorithm can be viewed as the MCoralgn with a slightly more
aggressive pruning strategy which ensures completengg®rifhental results show that this algo-
rithm is a strong improvement over the K&M algorithm as it mhatically reduces the exploration
tree.

1. Introduction

Petri nets form an important formalism for the descriptio @analysis of concurrent systems. While
the state space of a Petri net may be infinite, many verificgifoblems are decidable. The minimal
coverability set (MCS) [2] is a finite representation of a kadlosen over-approximation of the set of
reachable markings. As proved in [10], it can be used to @es@Veral important problems. Among
them we mention theoverability problem to which many safety problems can be reduced (issiipte

to reach a marking dominating a given one?);tbeandednesproblem (is the set of reachable markings

Address for correspondence: Pierre-Alain Reynier, LIF,IC3 rue Joliot Curie, 13453 Marseille Cedex 13, France.
*This work has been partly supported by the project ECSPE&efiby the french agency for research (ANR-09-JCJC-0069).

2 P.-A. Reynier, F. Servais/Monotone Pruning Algorithm

finite?); theplace boundednegsoblem (given a placg, is it possible to bound the number of tokens in

p in any reachable marking?); tisemi-livenesproblem (is there a reachable marking in which a given
transition is enabled?). Finally, tlregularity problemasks whether the set of reachable markings is
regular.

Karp and Miller (K&M) introduced an algorithm for computirige MCS [8]. This algorithm builds
a finite tree representation of the (potentially infinitefalding of the reachability graph of the given
Petri net. It uses acceleration techniques to collapsechemnof the tree and ensure termination. By
taking advantage of the fact that Petri nets are strictly tamic transition systems, the acceleration
essentially computes the limit of repeatedly firing a seqaenf transitions. The MCS can be extracted
from the K&M tree. The K&M Algorithm thus constitutes a keydlofor Petri nets, and has been
extended to other classes of well-structured transitiatesys [1].

However, the K&M Algorithm is not efficient and in real-wortkamples it often does not terminate
in reasonable time. This inefficiency is due to processinpmarable but inequal markings. This ob-
servation led to the Minimal Coverability Tree (MCT) algbrn [2]. This algorithm introduces clever
optimizations for ensuring that all markings in the tree im@mparable. At each step the new node
is added to the tree only if its marking is not smaller thanreking of an existing node. Then, the
tree is pruned: each node labelled with a marking that islsmiddan the marking of the new node is
removed together with all its successors. The idea is thatde that is not added or that is removed
from the tree should be covered by the new node or one of itsessors. It was recently shown that
the MCT algorithm is incomplete [9, 7]. The flaw is intricateda according to [7], difficult to patch.
As an illustration, an attempt to resolve this issue has loeee in [9]. However, as proved in [6], the
algorithm proposed in [9] may not terminate. In [7], an aitgive algorithm, the CoverProc algorithm,
is proposed for the computation of the MCS of a Petri net. &lgsrithm follows a different approach
and is not based on the K&M Algorithm.

We propose here the Monotone-Pruning algorithm (MP), arrdnrgdd K&M algorithm with prun-
ing. This algorithm can be viewed as the MCT Algorithm withlgtgly more aggressive pruning
strategy which ensures completeness. The MP algorithntitdes a simple modification of the K&M
algorithm, and is thus easily amenable to implementaticsh tanextensions to other classes of sys-
tems [1, 3, 4]. Moreover, as the K&M Algorithm, and unlike tgorithm proposed in [7], any strategy
of exploration of the Petri net is correct: depth first, bteditst, random. It is thus possible to develop
heuristics for subclasses of Petri nets. Finally expertaleesults show that our algorithm is a strong
improvement over the K&M Algorithm, it indeed dramaticatlyduces the exploration tree. In addition,
optimizations based on symbolic computations (as thosgoged in [5] for MCT) can be integrated in
the MP Algorithm.

While the algorithm in itself is simple and includes the @legideas of the original MCT Algorithm,
the proof of its correctness is long and technical. The méficdlty is to prove the completeness of
the algorithm, i.e. to show that the set returned by the algorcovers every reachable marking. To
overcome this difficulty, we reduce the problem to the cdmess of the algorithm for a particular class
of finite state systems, which we call widened Petri nets (WHIKese are Petri nets whose semantics
is widened w.r.t. a given marking:: as soon as the number of tokens in a plads greater than
m(p), this value is replaced by. Widened Petri nets generate finite state systems for whielptoof
of correctness of the Monotone-Pruning algorithm is eaaseaccelerations can be expressed as finite
sequences of transitions.

Definitions of Petri nets and widened Petri nets are giveneictiBn 2, together with the notions of

P.-A. Reynier, F. Servais/ Monotone Pruning Algorithm 3

minimal coverability set and reachability tree. In Sect&mwe recall the K&M Algorithm and present
the Monotone-Pruning Algorithm. We prove its terminatiordaorrectness under the assumption that
it is correct on WPN. In Section 4, we develop the proof of ectmess of MP Algorithm on widened
Petri nets. In Section 5, we give a comparison of MP and MC®rilyms, and illustrate them on the
Petri net proposed in [7] to prove the incompleteness of MEally, implementation and experimental
results are discussed in Section 6.

2. Preliminaries

N denotes the set of natural numbers. To denote that the uhi@roetsX andY is disjoint, we write
X Y. Aquasi order< on a setS is a reflexive and transitive relation ¢h Given a quasi ordex on
S, a states € S and a subseX of .S, we writes < X iff there exists an element € X such thats < s’.

Given a finite alphabet, we denote by-* the set of words o, and bye the empty word. We
denote by< the (strict) prefix relation oix*: givenu,v € ¥* we haveu < v iff there existsw € ¥*
such thatuw = v andw # . We denote by< the relation obtained as U =.

2.1. Markings, w-markings and labelled trees

Given a finite setP, a marking onP is an element of the séflark(P) = N”. The setMark(P) is
naturally equipped with a partial order denoted

Given a markingn € Mark(P), we represent it by giving only the positive components. iRer
stance(1,0,0,2) on P = (p1, p2, p3, p4) is represented by the multisgt, , 2p4 }. An w-marking onP
is an element of the sark” (P) = (NU{w})?. The order< onMark(P) is naturally extended to this
set by lettingn < w for anyn € N, andw < w. Addition and subtraction oMark”(P) are obtained
using the rulesv + n = w — n = w for anyn € N. Thew-marking(w,0,0,2) on P = (p1, p2, p3,p4)
is represented by the multisgtp;, 2p4 }.

Given two sets¥:; and Yo, a labelled tree is a tuplg = (N,ng, E,A) where N is the set of
nodes,ng € N is the root,E C N x Y5 x N is the set of edges labelled with elementshf and
A : N — 3 labels nodes with elements Bf. We extend the mapping to sets of nodes: faf C NV,
A(S) ={A(n) | n € S}. Given anode: € N, we denote byAncestors(n) the set of ancestors afin
T (nincluded). Ifn is not the root off", we denote byarent-(n) its first ancestor iy". Finally, given
two nodesr andy such thatr € Ancestory(y), we denote byath(z,y) € E* the sequence of edges
leading fromz to y in 7. We also denote bgathlabel(z,y) € ¥ the label of this path.

2.2. Petrinets

Definition 2.1. (Petri net (PN))

A Petri net\ is a tuple(P, T, I,0, mg) whereP is a finite set oplaces T is a finite set otransitions
with PNT =0, I : T — Mark(P) is the backward incidence mapping, representingrtpat tokens,
O : T — Mark(P) is the forward incidence mapping, representingputtokens, andn, € Mark(P)
is the initial marking.

The semantics of a PN is usually defined on markings, but csily ée extended ta-markings. We
define the semantics &f = (P, T, I, O, mg) by its associated labelled transition systévtark® (P), my,
=) where=C Mark“ (P) x Mark”(P) is the transition relation defined by = m’ iff 3t € T s.t. m >

4 P.-A. Reynier, F. Servais/Monotone Pruning Algorithm

P
t5 tl
PG/ \ps

t6 i it?,
P4, 2p5 P4
ta) It
P3,3Ds D3, D5
t3 i it?,
P4, 3ps P4, D5
ta)
P3,4ps '
v
(a) A Petrinet\. (b) Prefix of its reachability tree.

Figure 1. A Petri net with its reachability tree.

I(t) Am’ =m — I(t) + O(t). For convenience we will write, for € 7', m Lom! it m > I(t) and
m’ =m—1(t)+O(t). In addition, we also writen’ = Post(m, t), this defines the operat®ost which
computes the successor of @ammarking by a transition. We naturally extend this operaébosequences

of transitions. Given aw-markingm and a transitior, we writem = - iff there existsm’ € Mark® (P)

such thatm = m’. The relation=* represents the reflexive and transitive closuresofWe say that a
markingm is reachable in\ iff my =* m. We say that a Petri net is bounded if the set of reachable
markings is finite.

Example 2.1. We consider the Petri net” depicted on Figure 1(a), which is a simplification of the
counter-example proposed in [7], but is sufficient to preésen definitions. The initial marking i$p; },
depicted by the token in the plape. For any integern, we havePost({p; }, t1(tst4)™) = {ps,nps}. In
particular, this net is not bounded as plagecan contain arbitrarily many tokens. a
2.3. Minimal Coverability Set of Petri Nets

We recall the definition of minimal coverability set intrazd in [2].

Definition 2.2. A coverability set of a Petri net’ = (P, T, I, O, my) is a finite subse€ of Mark” (P)
such that the two following conditions hold:

1) for every reachable marking of \V, there existsn’ € C such thatm < m/,

2) for everym’ € C, eitherm/ is reachable in\ or there exists an infinite strictly increasing sequence
of reachable marking@n,,),en converging ton’.

A coverability set is minimal iff no proper subset is a covmslity set.

One can prove (see [2]) that a PX admits a uniqgue minimal coverability set, which we denote by
by MCS(WV).

P.-A. Reynier, F. Servais/ Monotone Pruning Algorithm 5

Note that every two elements of a minimal coverability setincomparable. Computing the minimal
coverability set from a coverability set is easy. Note alsat if the PN is bounded, then the set of
reachable markings is finite, and thus the notion of reaehatalximal marking is well-defined. In this
case, a set of markings is a coverability set iff it contailhenaximal reachable markings.

Example 2.2. (Example 2.1 continued)
The MCS of the Petri nelV is composed of the following-markings: {p1}, {ps}, {p3,wps}, and

{p47 Wp5}
2.4. Reachability tree of Petri nets

We recall the notion of a reachability tree for a PN. This d&éin corresponds to the execution of the
PN as a labelled tree. We require it to be coherent with theagtios of PN (soundness), to be complete
w.r.t. the fireable transitions, and to contain no repet#idNaturally, if the PN has an infinite execution,
then this reachability tree is infinite.

Definition 2.3. (Reachability tree of a PN)
The reachability tree of a PW = (P,T,1,0,my) is (up to isomorphism) a labelled tree =
(N,ng, E,A),with E C N x T x N andA : N — Mark(P), such that:

Root: A(ng) = myg

Soundness:V(n, t,n') € E,A(n) = A(n/)

Completeness:VneN, VteT, (A(n) = -) implies (3n'eN | (n,t,n’)EE)

Uniqueness:Vn,n’,n” € NVt € T, (n,t,n’) € E A (n,t,n”) € E impliesn’ =n"
Using notations introduced for labelled trees, the follogvproperty holds:

Lemma2.1. Vz,y € N,z € Ancestorg(y) impliesA(y)=Post(A(z), pathlabely (x,y)).

Example 2.3. (Example 2.1 continued)
A prefix of the reachability tree o% is depicted on Figure 1(b). Each node is represented byhies (a
marking). J

2.5. Widened Petri nets

We present an operation which, given a (potentially unbedhdPetri net, turns it to a finite state sys-
tem. LetP be a finite set, angg € Mark(P) be a marking. We consider tlimite set ofw-markings
whose finite components.€. values different fromw) are less or equal thap. Formally, we define
Mark; (P) = {m € Mark(P) | Vp € P,m(p) < ¢(p) V m(p) = w}. The widening operataiden,,
maps anu-marking into an element dflark;(P): Vm € Mark”(P),Vp € P,

Widen, (m)(p) = { mip) o) < o)

Note that this operator trivially satisfies < Widen,(m).

6 P.-A. Reynier, F. Servais/ Monotone Pruning Algorithm

Definition 2.4. (Widened Petri net)
A widened Petri net (WPN for short) is a pdi/, ¢) composed of a PNW = (P, T,1,0,m) and of a
markingy € Mark(P) such thatng < ¢.

The semantics ofV, ¢) is given by its associated labelled transition systéarks (P), mo, =)

where form, m’ € Mark,(P), andt € T, we havem :t><p m' iff m’ = Widen,(Post(m,t)). We
carry over from PN to WPN the relevant notions, such as rddelaarking and reachability tree. We
define the operatdPost,, by Post,(m,t) = Widen,(Post(m,t)). Subscripty may be omitted when
it is clear from the context. Finally, the minimal coverafilset of a widened Petri néiV, ¢) is simply
the set of its maximal reachable states as its reachakgtis dinite. It is denoted MCSV, ¢).

We state the following result, whose proof easily followsifguction.

Proposition 2.1. Let (A, ») be a WPN, andn be a reachable marking df". Then there exists an
w-markingm’ reachable i\, ¢) such thatn < m/.

Example 2.4. (Example 2.1 continued)

Consider the mapping associatingl to placespy, ps, ps andpg, and3 to placeps, and the widened
Petri net(N,). Then for instance from markingp,, 3ps}, the firing of ¢4 results in the marking
{ps,wps}, instead of the markingps, 4ps} in the standard semantics. Similarly, consider the prefix
of the reachability tree ol depicted on Figure 1(b). FdV,), the prefix of the reachability tree is
obtained by substituting the markid@s, 4ps} with the w-marking{ps, wps}, as we havepr(ps) = 3.
One can compute the MCS of this WPN. Due to the choicg,df coincides with the MCS aV. _

3. Monotone-Pruning Algorithm

3.1. Karp and Miller Algorithm.

The K&M Algorithm [8] is a well known solution to compute a aerability set of a PN. Itis represented
as Algorithm 1 (with a slight modification as in [8], the algbm computes simultaneously all the
successors of a marking). The K&M algorithm uses an exteroetleration functiodcc : 2Mark”(P)
Mark”(P) — Mark®(P) which is defined as follows:

p € P.ACC(M, m)(p) = { w if Im’ 6 M |m'<mAm (p) <m(p) <w
m(p) otherwise.

The K&M Algorithm builds a tree in which nodes are labelleddsymarkings and edges by transi-
tions of the Petri net. Roughly, it consists in exploring teéachability tree of the PN, and in applying the
acceleration functiorcc on branches of this tree. Note that the acceleration may ataapmarkings
that are not reachable. The correctness of this procedlies mn the strict monotonicity of the firing
rule of PN and on the fact that the ord€ron w-markings is well-founded.

Theorem 3.1. ([8])
Let V" be a PN. The K&M algorithm terminates and computes a covisabéet of .

P.-A. Reynier, F. Servais/ Monotone Pruning Algorithm 7

Algorithm 1 The K&M Algorithm
Require: A Petrinet\ = (P, T,1,0,my).
Ensure: A labelled treeC = (X, zo, B, A) such thatA(X) is a coverability set afV.
. Letxo be a new node such thA(xzy) = my.
© X = {xo}; Wait := {(z0,1) | A(mo) = -}; B := 0;
: while Wait # () do
Pop(n/,t) from Wait. m := Post(A(n'), t);
if Ay € Ancestore(n) | A(y) = m then
Letn be a new node s.\(n) = Acc(A(Ancestore(n')), m);
X := X U{n}; B=BU{(n/,t,n)}; Wait :== WaitU {(n, u) | A(n) = -};
end if
end while
: ReturnC = (X, zg, B, A).

=

© 0N a kDN

[EnY
o

3.2. Definition of the algorithm

The K&M Algorithm uses comparisons along the same branchoi exploration (test of Line 5), that
we call vertical pruning We present in this section our algorithm which we call Mamat-Pruning
Algorithm as it includes a kind ofiorizontal pruningin addition to the vertical one. We denote this
algorithm by MP. It involves the acceleration functiédwwc used in the Karp and Miller algorithm.
However, it is applied in a slightly different manner.

Algorithm 2 Monotone Pruning Algorithm for Petri Nets.

Require: A Petrinet\ = (P, T,1,0,my).

Ensure: A labelled treeC = (X, z0, B, A) and a seAAct C X such thatA(Act) = MCS(N).
1: Letzy be a new node such tha{zy) = mo;
20 X :={xzo}; Act := X; Wait := {(x0,t) | A(zo) L -}; B = 0;
3: while Wait # () do

4. Pop(n/,t) from Wait.

5: if n’ € Act then

6: m := Post(A(n'), t);

7: Letn be a new node such that{n) = Acc(A(Ancestorg(n') N Act), m);
8: X :=XU{n}; B:=BU{(n,t,n)};

o: if A(n) £ A(Act) then

10: Act := Act\ {z | Jy € Ancestorg(z) s.t.A(y) < A(n) A (y € ActV y ¢ Ancestore(n))};
11: Act := ActU {n}; Wait := Wait U {(n,u) | A(n) = -};
12: end if
13: endif
14: end while

15: ReturnC = (X, zo, B, A) andAct.

As Karp and Miller Algorithm, the MP Algorithm builds a tr&2in which nodes are labelled by
w-markings and edges by transitions of the Petri net. Thesetoproceeds in an exploration of the

8 P.-A. Reynier, F. Servais/ Monotone Pruning Algorithm

reachability tree of the Petri net, and uses acceleratiomgabranches to reach the “limit” markings. In
addition, it can prune branches that are covered by nodeshem branches (what we cdibrizontal
pruning). Therefore, nodes of the tree are partitioned tiwtosubsets: active nodes, and inactive ones.
Intuitively, active nodes will form the minimal coveraltyliset of the Petri net, while inactive ones are
kept to ensure completeness of the algorithm.

Given a pair(n’,t) popped fromWait, the introduction irC of the new node obtained frofm’, ¢)
proceeds in the following steps:

1. noder’ should be active (test of Lin® ;
2. the “regular” successor marking is computed:= Post(A(n'),t) (Line 6) ;

3. this marking is accelerated w.r.t. thetive ancestorsf nodern’, and a new node is created with
this marking:A(n) = Acc(A(Ancestore(n’) N Act), m) (Lines7 and8) ;

4. the new node is declared as active if, and only if, it is not covered by aisting active node (test
of Line 9 and Linel1) ;

5. update ofAct: some nodes are “deactivated”, i.e. removed fromAset(Line 10).

We detail the update of the sitt. Intuitively, one wants to deactivate nodes (and their eledants)
that are covered by the new node This would lead to deactivate a nodeiff it has an ancestoy
dominated byn, i.e. such that\(y) < A(n). This condition has to be refined to ensure the termination
of the algorithm (see Remark 3.1). In MP Algorithm (see Li0g nodex is deactivated iff its ancestor
y is either activey € Act), or is not itself an ancestor of (y ¢ Ancestorc(n)). In this case, we say
thatx is deactivated by.. This subtle condition constitutes the main differenceMeein MP and MCT
Algorithms (see Section 5).

Consider the introduction of a new nodeobtained from(n’,¢) € Wait, and a node; such that
A(y) < A(n), y can be used to deactivate nodes in two ways:

e if y & Ancestor¢(n), then no matter whetheris active or not, all its descendants are deactivated
(represented in gray on Figure 2(a)),

e if y € Ancestorc(n), theny must be activey € Act), and in that case all its descendants are
deactivated, except nodeitself as it is added téct at Line 11 (see Figure 2(b)).

Remark 3.1. Note that if one considers the simple conditidfy) < A(n) to deactivate nodes, i.e. one
considers all active and inactive nodes to discard noden,dhe looses the termination of the algorithm.
Consider Example 3.1. With this condition, nodgcovers node:; and thus deactivates nodg (this
does not happen in MP as is an inactive ancestor afy). But then, node:; coversng and deactivates
n1g, and so on.

The main result of the paper is that MP Algorithm terminated i correct:

Theorem 3.2. Let /' be a PN. The MP algorithm terminates and computes the mirdowarability set
of V.

P.-A. Reynier, F. Servais/Monotone Pruning Algorithm

root

T

(a) y € Ancestore(n)

root
y € Act
n/
x n

(b) y € Ancestorc(n) N Act

Figure 2. Deactivations of MP Algorithm.

t5 1 I P1 tl
/ \
2:pg 3:p3:O
i/:&
4:pg:h ,
i/'l »’/
Step5 5 * P3,Wps
ts i a1
/ \
2 :pg 3:p3: 5

: 3:p3:5
e lts ™

6 : P4, 2p5 < 4:1)1:5‘}
itl
Step6 ’

O :p3,wps: 6

2:pg 3:p3:O

) It

6:pa,2ps5 : 8aAdipy:h |

T 1p3,3p5 18 D :ip3,wps:6

e /:si

' t4i

{9 p3,wps
t3i

10 : pg,wps : 10

Step10

Figure 3. Snapshots of the execution of MP Algorithm on 8N

10 P.-A. Reynier, F. Servais/ Monotone Pruning Algorithm

Example 3.1. (Example 2.1 continued)

We consider the execution of the MP Algorithm on the RN Three intermediary step$,(6 and10)

are represented on Figure 3. The numbers written on theblefibe the separator “:”) of nodes indicate
the order in which nodes are created. Nodes that are deectiaee represented in light gray, and dashed
arrows indicate how nodes are deactivated. In additionstie of the algorithm at which the node is
deactivated is represented at the right (after the sepdtdto In the following explanations, node;
denotes the node that has been created at step

e At step5, the new nodeus ({ps, ps}) covers nodeus ({ps}), which is thus deactivated, together
with its descendants, except nodethat is just added.

e At step6, the new nodeus ({p4, 2p5}) covers nodews ({p4}). This node was already deactivated
but as it lies on another branch, it can be used to discarckfisathdants. As a consequence node
ns is deactivated.

e At step10, the new nodeu(is covered by nodeg, which is still active. Thusi;g is immediately
declared as inactive.

After step10, MP terminates and the active nodes give the MC &/of a

Remark 3.2. (MP Algorithm for widened Petri nets.)

In the sequel, we will consider the application of the MP Algon on widened Petri nets. L&V,) be

a WPN. The only difference is that the operaBmst (resp.=-) must be replaced by the operafRwst,,
(resp.=,). For WPN, the MP Algorithm satisfies an additional propewye prove in Lemma 4.1 that
all markings computed by MP are reachablg M,). Indeed, the acceleration is consistent with the
semantics of NV, p), i.e. all markings computed bicc belong toMark; (P) (where P denotes the set
of places of\), provided the arguments éfcc do.

Example 3.2. (Example 2.4 continued)
Consider the WPNA/, o) introduced in Example 2.4. Running MP on this WPN also yi¢fdstrees
depicted on Figure 3.

3.3. Termination of the MP Algorithm

The proof of the termination of the MP Algorithm relies on tfacts. First, only a finite number of
accelerations can occur on each branch of the exploratenhimilt by MP. Second, a branch with no
acceleration is finite. This last assertion is a consequefite fact thaMark® (P) equipped with partial
order< is a well-founded quasi-order, yielding the contradiction

Theorem 3.3. The MP Algorithm terminates.

Proof:

We proceed by contradiction, and assume that the algorittes dot terminate. L&t = (X, zg, B, A)
andAct C X be the labelled tree and the set computed by MPC Assof finite branching (bounded by
|T)), there exists by Konig’s lemma an infinite branch in theetr We fix such an infinite branch, and

. . t t . .
write it b = 29 —> 1 — x9.. .., With (z;,t;, 2;41) € B, for all 4.

P.-A. Reynier, F. Servais/ Monotone Pruning Algorithm 11

Let us show that only a finite number of accelerations may ontthis branchh. By definition of
the acceleration functioAcc, two cases may occur when a new nadis built: either one of the active
ancestors of is strictly dominated, in that case at least one newill appear in the resulting marking
(3p | A(n)(p) = w > m(p)), or no active ancestor is strictly dominated, and then tappmgAcc has
no effect on markingn (A(n) = m). We say that in the first case, there is an “effective acattan”.
By definition of the semantics of a Petri net @ommarkings, once a marking has valuen a placep, so
will all its successors. Thus, as there are finitely manygsaa finite number of effective accelerations
can occur on branch

We consider now the largest suffix of the brarbatontaining no effective accelerations: idie the
smallest positive integer such that for apy> i, we haveA(z;1) = Post(A(x;),t;). We will prove
that the setS = {z; | j > ¢} is an infinite set of active nodes with pairwise incomparahbekings,
which is impossible as the sbtark”(P) equipped with partial ordex is a well-founded quasi-order,
yielding the contradiction.

First note that if a node deactivates a node; of the branchb thenn is a node ob. Indeed, all the
descendants of; are also deactivated excepff it is a descendant af;; (line 10 of Algorithm 2). Ifn
does not belong tb, this implies that for any > 4, x;, is deactivated. This is impossible because branch
b is infinite and the algorithm only computes successors dfeaabdes (test of Lins).

Let us show that all nodes;, j > ¢ are active (never deactivated). Indeed jfis deactivated by
n thenn is a node ofb as shown in the previous paragraph. This implies thdbminates an active
ancestor ofr; and therefore that an acceleration occurs. This is a caoti@d with the definition ofi.

Finally, the markings of nodes df are all pairwise incomparable. Indeed, dgtandz;, with i <
J < k. If A(z;) < A(zx) an acceleration occurs which is impossible by definition. dDtherwise, if
A(x;) > A(xy), then the branch is stopped, which is also a contradiction. 0

3.4. Correctness of the MP Algorithm

We reduce the correctness of the MP Algorithm for Petri nethé correctness of this algorithm for
widened Petri nets, which are finite state systems. Thisrlagsult is technical, and proved in the next
section:

Theorem 3.4. The MP Algorithm for WPN terminates and computes the MCS.

We use this theorem to prove:
Theorem 3.5. The MP Algorithm for Petri nets is correct.

Proof:
Let NV = (P, T,1,0,my) bea PNC = (X, z¢, B,A) andAct C X be computed by the MP Algorithm
on . As the MP Algorithm terminates, all these objects are finilée will prove thatA(Act) is the
minimal coverability set of\/.

First note that elements af(Act) are pairwise incomparable: this is a simple consequencaesl9,
10 and 11. Thus, we only have to prove that it is a coveralslity

The soundness of the construction, i.e. the fact that elesyan\ (Act) satisfy item2 of Defini-
tion 2.2, follows from the correctness of the acceleratiamcfion. To prove the completeness, i.e. item
1 of Definition 2.2, we use the correctness of the MP Algorithmwadened Petri nets. We can consider,

12 P.-A. Reynier, F. Servais/ Monotone Pruning Algorithm

for each place € P, the largest value appearing in a marking during the contipataThis defines a
markingy € Mark(P).

We consider now the widened Petri g,) and the execution of the MP Algorithm on it (see
Remark 3.2). We claim that there exists an execution of tigisrighm which builds the same labelled
treeC and the same partition. This execution is obtained by pgkire same elements in the \fait.
This property can be proven by induction on the length of tkexetion of the algorithm. Indeed, by
definition of markingy, operatorsPost and Post,, are equivalent on the markings computed by the
algorithm. Thus, both algorithms perform exactly the sameekerations and compute the same
markings.

By correctness of the MP Algorithm on WPN (see Theorem 3.4)ohtainA (Act) = MCS(N, ¢).

By Proposition 2.1, any marking reachableNfis covered by a reachable marking(df’,), and thus
by MCS(WV, ¢) = A(Act). 0

4. MP Algorithm for WPN

We devote this section to the proof that the MP Algorithm isect on WPN.

4.1. Outline

The main difficulty is to prove the completeness of theAdtreturned by MP. We have to show that
any reachable marking is covered by an elememaif In this section, we illustrate our approach using
the WPN introduced in Example 2.4 and the execution of the MBrihm on this WPN described in
Example 3.2 and illustrated in Figure 3.

Given a reachable marking, we consider a sequence of transitignsuch thatng £ m. For
instance, we consider markif@s, ps} reachable from{p; } with the fireable sequenge= t,tst4. We
want to find an active node that coversn. We will try to follow this sequence of transitionsin the
labelled tree built by MP Algorithm, and reach an active nofiedescribe this walk in the labelled tree,
we consider a sequence of pafts, p;) composed of an active node of the tree, and a sequence of
transitionsp; fireable from the node’s labél(x;). The invariant of this walk is that; is fireable from
A(x;) andPost(A(x;), p;) covers the markingn considered initially. This sequence of pairs is called
the covering path and formally defined in Definition 4.5.

The first element of the covering path is the pair, p) composed of the root, and the sequence of
transitions that we want to follow. In our running exampleistfirst element is the paimn, t1tsty).
Obviously, following this sequence may lead us to an inaatiwde. For instance, the successor of node
ny by the transitiont; is the inactive noders. We would thus reach the pains, tst4), in which ng
is inactive. To reach an active node, we use the explanafidheodeactivation of nodegs. In this
example, noder; has been covered by nodg. We thus consider that we have to fire the remaining
sequencest, from nodens, we thus obtain the paims, tst4). Again, nodens has been deactivated,
because its ancestay; has been covered by nodg. We will thus “jump” to nodeng. However,ng
does not covens, but an ancestor of node;s. Roughly, we thus have to include in the sequence of
transitions that remain to be fired the path fregto ns. It may however not be sufficient to consider the
sequence of transitions labeling this path, as it may hideesaccelerations. This is precisely why our
proof relies on the model of widened Petri netswasorresponds to a finite value, we can represent the

P.-A. Reynier, F. Servais/ Monotone Pruning Algorithm 13

accelerations explicitly by finite sequences of transgiom this example, the new pair we consider is
the pair(ng, t4(tst4)*(t3t4)). Again, asng is inactive, it will be replaced by nodes, and so on. Finally,
the core of our proof consists in showing that the walks wendetiis way in the labelled tree are finite,
i.e. end up with a pair of the forrfn, ¢). The result then trivially follows from the above invariant

The rest of this section formalizes the above intuition. Wfeoduce in Subsection 4.2 a notion of
exploration of aWPN which corresponds to a tree built on the reachability oithe WPN, with some
additional properties. This structure allows to make @xipthe effect of accelerations. We prove in
Subsection 4.3 that MP indeed builds an exploration. In fattter algorithms like K&M or MCT also
do build explorations. Then, we prove that the exploratiaiit by MP is complete in Subsection 4.4:
we define the notion of covering path and prove that all cogepaths are finite.

4.2. Exploration of a WPN

To build a coverability set the different algorithms we ddes (K&M, MCT and MP) proceed in a
similar way. Roughly, the algorithm starts with the root bé treachability tree and picks a fireable
transitiont. Then it picks a descendant that may either be the diredd dlyil: (no acceleration) or a
descendant obtained after skipping a few nodes (acc@ejathis descendant must be strictly greater
than the direct child (by). Then if this node is not covered by the previously sele¢amd active) nodes,
it can be used to prune other branches (not in the K&M algarjthrsome active nodes are deactivated,
intuitively because the subtree rooted at the new node dltmyler those nodes. The process continues
with active nodes.

This process can be viewed as an exploration of the readfaide
R = (N,ng, E, A) in the following sense. We define below an exploration
as atuple€ = (X, B,«a, 3), whereX is the subset ofV explored by the
algorithm, B is an edge relation o, such thafx,¢,2’) € B if 2’ is the
node built by the algorithm when processing the transitifineable from
x. The functiona gives the order in which nodes &f are explored by the
algorithm. The functiorp gives the position at which a node is deactivated,

i.e. B(n) =1iif nis deactivated (pruned) when th¢h node appears. Figure 4. Conditior{v).(a)
of Def. 4.1.

Definition 4.1. (Exploration)
Given a WPN(N, ¢) and its reachability tre® = (N, ng, E, A), an exploration ofR is a tuple€ =
(X, B, a, 8) such that

e X is a finite subset oV,

e BC X xTxX,

HQEX,

(X,no, B, A|x) is alabelled tree,

« is a bijection fromX to {1,...,|X|}, and

£ is a mapping fromX to {1,...,|X|} U {4o0}.

14 P.-A. Reynier, F. Servais/ Monotone Pruning Algorithm

Foranyl < i < |X|, we define the setX; = {x € X | a(x) < i}, Inact; = {z € X | B(x) < i},
andAct; = X; \ Inact;. We letAct = Act x| andInact = Inact,x.
In addition, we require the following conditions:

(i) ¥z € X, a(z) < B(a),
(17) Vz,y € X, x € Ancestorg (y) impliesa(z) < a(y),

(iii) V(z,t,y) € B,a(y) < B(x),

(iv) T-completeness¥z € Act,Vt € T's.t. A(x) =t>¢, w3y e X | (z,t,y) € B,
(v) Y(x,t,y) € B, there exists € N such that:

(@) (z,t,2) € E, andz € Ancestorg (y),
(b) Posty(A(x),1) = A(z) < Ay).

The first condition states that nodes cannot be deactivaietysbefore being selected. The second
condition states that nodes are selected downward: onetsalect a node that has a descendant already
selected. Conditioffiii) states that the algorithm explores subtrees of active nmdgs Condition(iv)
enforces that all fireable transitions of active nodes aptoeed. The last condition (see Figure 4, where
the cone below node denotes the descendantszdh R) requires that the selected descendant is either
the direct child by the selected transitiolor a descendant of this child whose marking is greater than
the marking of the child (acceleration). In the sequel, weotle byAncestorg(-) the ancestor relation
considered in the labelled trée, no, B, A|x). By definition, we have the following simple property:
Vx € X, Ancestorg(x) = Ancestorg (z) N X.

It is easy to verify that setAct; andInact; form a partition ofX; (X; = Act; [+ Inact;) and that sets
Inact; are increasinglfact; C Inact;;1, Vi < | X]).

Remark 4.1. A trivial case of exploration is obtained when relatiBncoincides with the restriction of
relation E to the setX. This case in fact corresponds to the exploration obtainedrnbalgorithm that
would perform no acceleration.

Remark 4.2. It can be proven that K&M and MCT applied on WPN do build exptans. Consider
the K&M Algorithm. As it deactivates no node, it yieldg§n) = +oo for any noden. However, it uses
some accelerations and therefore some nodes are skippeddsytects conditiofv).

4.3. MP-exploration of a WPN

Let (N, ¢) be a WPN with\ = (P, T,1,0,my), andC = (X, zg, B, A), Act C X be the labelled tree
and the set returned by the MP Algorithm. We define here thentappingsy and 5 that allow to show
that the labelled tre€ can be interpreted as an exploration in the sense of Defintib.

Mapping «. Itis simply defined as the order in which elementsXofire built by the MP Algorithm.

P.-A. Reynier, F. Servais/ Monotone Pruning Algorithm 15

Mapping S. Initially, the setAct contains the nodey. Any new noden can be added only once in set
Act, immediately when it is added i (Line 11) (and can thus be removed frofsct at most once). We
define mapping as follows:

¢ if a nodex never enters sétct, then we let3(z) = a(z).
e if a nodex enters sef\ct and is never removed, then we [gtr) = +oc.

e finally, in the last case, let be a node which enters satt and is removed from it during the
execution of the algorithm. Nodes can only be removed frani\seat Line 10. Then letn be the
node added td at Line8 during this execution of thehile loop, we defing3(z) = «(n).

Remark 4.3. Using these definitions of mappingsand 3, one can verify that intermediary values of
setsX andAct computed by the algorithm coincide with séfs andAct; defined in Definition 4.1.

Example 4.1. (Example 3.2 continued)
On Figure 3, numbers indicated on the left and on the righbdes correspond to values of mappings
and 5. When no number is written on the right, this means that thderig active, and then the value of

B is +o00.

Embedding of C = (X, z¢, B, A) in the reachability tree. In the labelled tre€ built by the algo-
rithm, the label of the new node obtained from the paifn’, t) is computed by functiod\cc. To prove
thatC can be embedded in the reachability tre€/f,), we define a mapping called the concretization
function which expresses the marking resulting from theskation as a marking reachable(iN’,)
from markingA(n'). Intuitively, an acceleration represents the repetitibsame sequences of transi-
tions until the upper bound is reached. As the system is finieeconsider widened Petri nets), we can
exhibit a particular sequence of transitions which allowsstach this upper bound.

Definition 4.2. (Concretization function)
The concretization function is a mappindgrom B* to T*. Given a sequence of adjacent ediyes . b, €
B, we definey(by ...bg) = v(b1) ...v(bg). We letM = max{p(p) | p € P} + 1.

Letb = (n/,t,n) € B. The definition ofy proceeds by induction om(n’): we assume is defined
on all edgesz, u,y) € B such thatv(z) < a(n’).

Letm = Post,(A(n’), t), then there are two cases, either :

1. A(n) = m (tis not accelerated), then we defin@) = ¢, or

2. A(n) > m. Let X' = {z1,..., 2k} (z;'s are ordered w.r.tw) defined by:
X' = {z € Ancestore(n') N Acty -1 | A(z) < m A 3p.Az)(p) < m(p) < w}.
Foreachj € {1,...,k}, letw; = path,(z;,n") € B*. Then we define:
y(b) = t.(y(wn))M . (y(w))M,

The following Lemma states the expected property of the ization function:

Lemma4.l. Let z,y € X such thatz € Ancestorc(y), and letw = path.(z,y). Then we have
Post, (A(z),y(w)) = Ay).

16 P.-A. Reynier, F. Servais/ Monotone Pruning Algorithm

Proof:
We prove the result for the case whewes a single edge, that is = (z,¢,n) € B. The general result
follows easily. We letn = Post, (A(x),t).
We distinguish two cases :
If A(n) = m: then by definition we have(w) = ¢ and the result is trivial.
If A(n) > m: then an acceleration has been applied. We prove the prdpemtyuction ona(z).

o if a(x) = 1, then the acceleration is necessarily applied w.r.t. ngdéat isPost,(A(z),t) >
A(z). Letadd € Markg(P) be defined by:dd(p) = Post,(A(z),t)(p) — A(x)(p) foranyp € P.
Naturally, the vector is positive exactly for plagesvhich have strictly increased, and which will
thus be accelerated. For these places, afféterations oft, the value in these places has exceeded
the maximum valuei.e. value p(p), and thus is equal t@. In the other places, the value is let
unchanged. As a consequence, we exactly otRast, (A(z), M) = A(n).

e otherwise, we hava(x) > 1. Following the definition of the concretization functioatty, . . .,z
denote the nodes used to compute the concretized~gath andws,...,wy the paths associ-
ated. Leti € {1,...,k}. By definition, w; = path,(z;,x) € B*. In particular, any edge
b = (z,u,z') € Bcomposing this path is such thatz) < «(z). We can thus apply the induction
hypothesis on path;, for anyi = 1... k. Therefore we hav@ost,(A(z;),y(w;)) = A(x) for
anyi = 1... k. By definition, we havey(w) = t.(y(wy).)M ... (y(wy).t)™. Fori € {0,...,k},
let mé< denote the marking reached froi(z) by the sequence.(y(wy).t)M ... (y(w;).t)M,
i.e. such thatmé = Post,(A(x),t.(v(w1))M ... (y(w;).t)M). We prove, by induction on
i € {0,...,k}, the following property:

p € P.mi(p) w if 31 <j <istAz;)(p) < m(p) <w
y Ty = .
b b m(p) otherwise.

— Fori = 0, the property is trivial by definition afn.

— Leti < k, assume property holds forand let prove it fori + 1. To prove the result we split
the set of place® into three parts and successively prove that for each casgrtiperty is
satisfied:

(¢) P31 <j<i|A(z;)(p) < m(p) < w. Intuitively, P, represents places accelerated
by one of the nodes,, . .., z;. By the induction hypothesis, we haw&““(p) = w, and
we thus we will still haven{{q (p) = w, as expected.

(17) Po:p ¢ PiAA(ziv1)(p) < m(p) < w. Intuitively, P, denotes places not accelerated by
one ofxy,...,x;, but that should be accelerated by, ;. By the induction hypothesis
of the external induction, we havi(x) = Post,(A(z4+1), v(wit1)). Thus we obtain
m = Post,(A(2it+1),7(wit1).t). By definition ofx; .1, we haveA(z;11) < m and
by induction hypothesis, we have < m{“. Thus sequence(w;1).t can be iterated
from markingmg<. Letp € P,. By definition of P,, we haveA(z;+1)(p) < m(p).
This entails that the firing of sequengéw;).t adds tokens in place By the choice
of M, the valuep(p) will be exceeded and we obtain{¢] (p) = w as expected.

(1i1) Ps:p & Py ANp & P,. This last case concerns places that should not be acesldvgt
any of thezx;'s, with j < ¢ + 1. Thus induction hypothesis entails thaf“(p) = m(p)

P.-A. Reynier, F. Servais/ Monotone Pruning Algorithm 17

and we have to prove that{{](p) = m(p). As in the previous case, we haie =
Post, (A(zit1), v(wit1)-t). Letp € P3, then we have\(z;41)(p) = m(p) = m{“(p).

Here, the iteration of the sequengéw;).t will let the value of placep unchanged.
We thus obtaim{{q (p) = m(p) as expected.

It is then trivial to verify that the application of this pregy for: = k leads to the result.

This concludes the proof. O

This result allows to prove by induction that the labellesktbuilt by MP is, up to an isomorphism,
included in the reachability tree of the WPN, and is thus giaration:

Proposition 4.1. (MP-exploration)
The execution of the MP Algorithm on a WP/,) defines an exploratioé of (N, ¢). We call this
exploration an MPexploration of(\, ¢).

Proof:
To embed’ in R, we define the mapping from X to N which maps a node € X to a noden € N
that is labelled with the same markingis recursively defined by:

e 1(xo) = no,

e leth = (x,t,y) € B, n = n(z), andg = v(b). By Lemma 4.1, we havA(n) = .. Thus there
exists a unique node’ € N such that, € Ancestorg (n') andpathlabel (n,n’) = 0. We define
n(y) =n'.

One can verify that using this definition, tlielabelling of a noder € X coincides with theR-labelling
of the nodey(x) € N. As a consequence, we identify in the sequel nede X with noden(x) € N.
It is then routine to verify that properti€s) to (v) hold. O

4.4. Proof of Theorem 3.4

We prove in this section the:

Theorem 3.4. The MP Algorithm for WPN terminates and computes the MCS.

Termination of MP for WPN can be proved as in Theorem 3.3. Asrssequence of Lemma 4.1,
MP algorithm only computes markings that are reachableaitiP N, therefore the algorithm is sound.
We devote the rest of this section to the proof of its compless.

Fixa WPN (N, ¢), with V' = (P, T, 1,0, my), and let€ = (X, B, «, 3) be an MP-exploration of
(N,). We will use notations¥, Act andInact of Definition 4.1.

4.4.1. Preliminary properties.

Given a node: € X, we define the predicatisc(n) as(n) = a(n). When this holds, we say that
is discarded as it is immediately added to thelsatt. In that case, no other node is deactivated.

Given two nodesn,z € X such thata(n) < «a(x) andn € Inact, we define the predicate
prune(n,z) as3y € Ancestorg(n).A(y) < A(z) A (y € Actg,y—1 Vy € Ancestorg()).

18 P.-A. Reynier, F. Servais/ Monotone Pruning Algorithm

IN

Yy n € Act

!
X

Figure 5. lllustration of Proposition 4.3.

One can check that the MP-exploratiérsatisfies the following properties. Arbitrary exploraton
do not satisfy them.

Proposition 4.2. Letn € Inact, then:
(i) disc(n) <= A(n) < Acty(n)—1-
(ii) —disc(n) impliesprune(n,z), wherer = a~1(8(n)).
(7i1) Vo € X s.it.a(n) < a(x), if prune(n,z) A —disc(z), thens(n) < a(x)

Proposition 4.3. Let £ an MP-exploration, and € {1,...,|X|}. Let three distinct nodes, y,n € X
such thatn € Act, A(y) < A(n), y € Ancestorg(z) andy ¢ Ancestorg(n). Then we haves(z) <
a(n).

Proof:

The property is illustrated on Figure 5. First note thét) < «(y) cannot hold. Otherwise, as< Act
andA(y) < A(n), nodey would have been immediately deactivated by nedpredicatedisc(y) would
hold). This is impossible as nogeowns a descendant, nodeThus, we have(n) > «a(y) (the equality
is impossible ag andn are distinct). Then, one can verify that the introductiom @fill deactivate node
x, if it has not yet been deactivated: nogles an ancestor of, covered byn, andy is not an ancestor of
n. We obtains(z) < a(n). 0

4.4.2. Covering Function.

We introduce a functiofemp-Cover which explicits why nodes are deactivated. Intuitively, donode
n € Inact, if we haveTemp-Cover(n) = (z,0) € X x T*, this means that node is in charge of
deactivation ofn, and that the firing of the sequengefrom A(x) leads to a state dominating(n).

Note that to identify the sequence T, we use the path between nodeshe reachability tree This is
possible as by definition, the exploration is embedded in¢hehability tree.

Definition 4.3. (Temp-Cover)
The mappinglemp-Cover is defined frominact to X x 7™ as follows. Letn € Inact, andi = 5(n).
We distinguish two case$:

LIn the following definitions, any choice af andy is correct.

P.-A. Reynier, F. Servais/ Monotone Pruning Algorithm 19

Discarded: If disc(n), then by Proposition 4.2.), there exists a node € Act;_; such thatA(n) <
A(z). We fix such a node and definefemp-Cover(n) = (z,¢).

Not discarded: Otherwise,—~disc(n) holds. By Proposition 4.2ii), prune(n,z) holds, wherer =
a~1(i). We fix a witnessy of propertyprune(n,z), and leto = pathlabel, (y,n) € T*. We
defineTemp-Cover(n) = (z, p).

The following property easily follows from Definition 4.3 dhemma 2.1:

Lemma 4.2. Letn € Inact, Temp-Cover(n) = (,). ThenA(n) < Post,(A(z), o).

The next proposition follows from the strategy of explavatof MP Algorithm.

Lemma 4.3. Letn € Inact, Temp-Cover(n) = (x, o) andc such thapathlabel; (c,n) = . Then we
have:

(1) B(n) < B(x);
(17) o # e implies3(n) = a(x) ;

(791) if o # ¢, thenVy € X, ¢ € Ancestorg(y) A x ¢ Ancestorg(y) implies5(y) < a(z).

Proof:
Property(i) is a consequence of the following property: we have Actg,,. Intuitively, this means
thatx is active when it deactivates node

Property(iz): by definition of Temp-Cover(n), o # ¢ implies that property-disc(n) holds. Then
we obtainz = a~1(3(n)), as expected.

Last, consider propertgiii). As for the previous property, by definition ®&mp-Cover(n), o # ¢
implies thatprune(n, =) holds and that is a witness of the properfgrune(n,). Then, by definition
of the pruning of MP Algorithm, the whole subtree rooted:iis deactivated by node, except node:
itself if it belongs to the subtree. Lgte X such thaic € Ancestorg(y) Az € Ancestorg(y). Theny
belongs to the subtree rooteddnbut not to the subtree rooted in As a consequence, it is deactivated
by nodex, and we obtairt(y) < a(z). O

The previous definition is temporary, in the sense that itdess how a node is deactivated. How-
ever, active nodes may be deactivated, and thus nodesnederdy mappingifemp-Cover may not
belong to seAct. In order to recover an active node from which a dominatindencan be obtained, we
define a mapping which records for each inactivate node theessive covering informations:

Definition 4.4. (Covering function)
The covering functiorCover is a mapping fromX to (X x T*)*. It is recursively defined as follows.
Letn € X.

1. if n € Act, thenCover(n) = ¢;

2. otherwise, leTemp-Cover(n) = (x, o). We defineCover(n) = (z, o) - Cover(z).

20 P.-A. Reynier, F. Servais/ Monotone Pruning Algorithm

Example 4.2. (Example 3.2 continued)

We illustrate the definition of the covering function on Exaen3.2. The MP Algorithm terminates at
step10. Consider node:s, deactivated at step. We haveTemp-Cover(ns) = (ns,¢). Indeed, it is
directly covered by nodes;. Noden; is deactivated at stepby nodeng through nodeu, which is its
ancestor by transitioty. Looking at the definition of the concretization functiorthwespect to mapping
¢, one can observe that we halemp-Cover(ns) = (ng, t4.(t3t4)*). We indeed have that the maximal
value ofp is 3. Nodeng is deactivated at stepbecause it is directly covered by nodg, thus we have
Temp-Cover(ng) = (ng,). We finally obtainCover(ns) = (ns,€) - (ne, t4.(t3ts)*) - (ng,). One can
verify that A(n3) < Post,(A(ns), t4.(tsts)*). g

We state the next property which follows from Lemma 4.2 byuictibn:

Lemma 4.4. Let n € Inact be such thaCover(n) = (z1,01) - (zr, 0x). Then we haveA(n) <
POStSO(A(.%'k), 0kOk—1 - - - Ql)-

We now state a core property of mappi@gver, holding for MP-explorations. It is fundamen-
tal to prove the absence of cycles, and thus the fact thatqbleration yields a minimal coverability
set. Roughly, it states that intermediary markings skippgdccelerations would not modify activa-
tions/deactivations:

Proposition 4.4. Letx € Inact be such tha€over(z) = (x1, 01) - - - (x, or). Defineo = oror—1 ... 01,
and letn € Actando’ € T*. Then we have:

(¢ < o ANA(n) > Post,(A(zy), o)) implies 3(z) < a(n)

Proof:
As ¢’ < p, there exists a unique indeksuch thatl < j < k and¢ = grok_1...0j+10" with
e <X 0" < p;. In particular, this yields thad; # .

By definition of Cover, we have that for any € {1, ..., k}, (¢, o) = Temp-Cover(z,_) (where
we letzy = x). By Lemma 4.3.(i), this impliesg(z,—1) < [(x¢). We thus obtain the inequality
B(z) < B(z;-1), aszo = « (the inequality is non strict as we may haje- 1).

Consider the peculiar casg € Ancestorg(n). This impliesa(z;) < a(n). As g; # €, we have
by Lemma 4.3(i4) the equality3(z;_1) = a(z;), which yields the result. In the sequel we thus assume
xj ¢ Ancestorg (n).

Nodez;_; is deactivated by node;, and with sequence;. This means the ancestor of nadg
by the sequence; in the reachability tree, which we denote fybelongs taX and is covered by;. As
0" < oj, we can consider the successortly the sequencg” (in the reachability tree), and denote this
node byy, which is thus a (strict) ancestor of_; € X. We now distinguish two cases: eithgre X
ory ¢ X. Consider the second case: nadées in between nodesandz;_; and as it does not belong
to X, it is “skipped” by an acceleration. We denote @y, ¢, y2) € B the edge of the exploration that
skips the nodey. By the minimal-completeness property (see Appendix Ahefdéxploratiore applied
on edge(y1, t, y2) and nodey, there exist two nodesandy’ in X verifying the following properties:

(i) z € Ancestorg(y1) andB(z) = a(ys),

(i7) y' € Ancestorg (y) N X, A(y’) < A(y) andz € Ancestorg(y/).

P.-A. Reynier, F. Servais/ Monotone Pruning Algorithm 21

We will prove that in the first casey(€ X), and respectively in the second ong ¢ X), we can apply
Proposition 4.3 to nodes;_;, y andn (resp.z;_1, ¢’ andn in the second case). Therefore, we prove
each of the hypotheses:

e First, properties: € Act andy € Ancestorg(z;—1) (resp.y’ € Ancestorg(x;_1)) are trivial. In
addition, we obviously have;_; # y (resp.xz;_; # y’) asy is a strict ancestor of;_; (andy’ is
itself a strict ancestor af). We also haver; 1 # n asn € Act while z;_, is deactivated by ;.

e Second, we prove that(n) > A(y) (resp. A(n) > A(y’) in the second case). Indeed, we can
prove using Lemma 4.2 th&ost, (A(xk), 0x0k—1 - - - 0j+1) = A(x;). By definition ofc, we have
A(zj) > A(c). By definition ofy, this yieldsPost, (A(xy), 0) > A(y), and thus\(n) > A(y). In
the second case, the property follows frary) > A(y').

e Third, we prove thay ¢ Ancestorg(n) (resp.y’ ¢ Ancestorg(n)), which also entaily) # n
(resp.y’ # n). Consider the first case and proceed by contradictionnassiaty is an ancestor of
noden. This implies that € Ancestorg(n), and then by Lemma 4.@ii), asz; ¢ Ancestorg(n)
andp; # ¢, we obtain3(n) < a(z;) which is impossible as € Act.

Consider now the second case and proceed by contradictgsune thay’ € Ancestorg(n).
Thenys, is necessarily an ancestorrafotherwisen is deactivated at step(y,) (see Lemma 4.8iii)).
But then we can apply a reasoning similar to that of the firse@nd prove that is deactivated
by nodez;, what yields a contradiction.

Finally, we obtain by Proposition 4.3 the inequalifyz;_1) < «(n). Combined with a previous in-
equality, this entail$i(z) < a(n) as expected. 0

4.4.3. Covering Path.

Before turning to the proof of Theorem 3.4, we introduce adiitamhal definition. Our aim is to prove
that any reachable stateis covered by some active node. Therefore we define a noti@owdring
path, which is intuitively a path through active nodes inethéach node is labelled with a sequence (a
stack) of transitions that remain to be fired to reach a staleminating the desired state Formally, a
covering path is defined as follows:

Definition 4.5. (Covering Path)
A covering pathis a sequencén;, g;);>1 € (Act x TN such thatA(n;) %w -and for anyi > 1, we
have either

(1) o; = &, and then it has no successor, or

(it) o0; = ti0}, then letn be such thatn;,t;,n) € B (possible ag is T-complete). Ifn € Act then
(nit1, 0i+1) = (n, 0;). Otherwise, leCover(n) = (x1,m) - - - (zx, M), We defing(n; 11, 0i+1) =
(Ths Ml -1+).

Note that given a node € Act andp € T™* such thatA(n) éso -, there exists a unique covering path
(n4, 0i)i>1 such thainy, 01) = (n,). We say that this path issociated with the paifn, o).

22 P.-A. Reynier, F. Servais/ Monotone Pruning Algorithm

Example 4.3. (Example 4.2 continued)

We illustrate the definition of covering path on Example 3onsider the covering path associated
with the pair(nq,t1t3t4). Successor of node; by transitiont; is the inactive noder;. We have
already shown in Example 4.2 th@bver(ns) = (ns,) - (ng, t4.(t3ts)*) - (ng,). In addition, successor
of nodeng by transitiont, is the active nodeiy, and as the successor of nodg i.e. nodenyg, is
covered by nodewg, firing ¢3 in ng leads to noderg. Finally, one can verify that the covering path is
of the foIIowing form: (nl, t1t3t4), (ng, t4(t3t4)4t3t4), (ng, (t3t4)4t3t4), (ng, t4(t3t4)3t3t4) Ce (ng, 8).
Note that the markingps, p5} reached from node; by the sequencgtst, is covered by the marking
{ps3,wps} of nodeny. J

Lemma 4.5. Let (n;, 0;);>1 be a covering path. Then we haRest,(A(n1),01) < Post,(A(n;), ;)
for all i. In particular, if for some we haveg; = ¢, we obtainPost,(A(n1), 01) < A(n;).

Proof:

We prove that for any, we havePost, (A(n;), 0;) < Post,(A(nit+1), 0i+1)- Inthe definition of covering
path, we extend the path only in cggé). Two cases can occur, in the first one, the property is trivial
the second one, the property follows from Lemma 4.4. O

As a consequence of this lemma, to prove the completenads ieis sufficient to show that for any
reachable marking, there exists a finite covering path theers it. We introduce a notion of cycle for
covering paths:

Definition 4.6. Let(n,t) € ActxT such that\(n) :t>¢ -, and(n;, 0;)i>1 be the covering path associated
with (n,t). The pair(n,t) is said to besingular if there existsi > 1 such that(n;, 0;) = (n,tp), with
oeT*.

The following lemma states that all infinite covering pathes eriodic:

Lemma 4.6. Let (n, o) € Act x T* such thatA(n) = -, andp = (n;, 0;);>1 be the covering path s.t.
(n1,t1) = (n,). If pisinfinite, then there exists a positior> 1 such that the paitn;, ¢;) is singular,
wherep; = t; 0.

Proof:
We distinguish two cases:

o If there exists a bound € N* such that infinitely often, the length of the sequepgcés smaller
thank. Then, as the number of sequences of length boundéddog the number of active nodes
are finite, there exist two positioris< j < [such tha{n;, 0;) = (n;, ;). Leti be an index in the
interval[7, (] such that the length of the sequengés minimal. This implies that the construction
of the coverability path frontn;, ¢;) only depends on the first transitiepof o;: the pair(n;, t;)
is singular.

e Otherwise, for any bound, there exists a position after which all sequences of ttiansi have
a length larger that. For eachk, we notel(k) the first position verifying this propertyvl >
I(k),|lei] > k. Note that the sequence starting/@t) only depends on the nodg ;) and the
transitiont; ;) such thaty) = tz(k)@f(k)- As the number of active nodes and the set of transitions

P.-A. Reynier, F. Servais/ Monotone Pruning Algorithm 23

are finite, there exist < &’ such that (k) < I(k'), ny) = nyury @andty) = t;). Then the pair
(n(k)» tiry) 18 singular.
0

4.4.4, Proof of Theorem 3.4.

We will prove that any reachable marking(@¥’, ¢) is covered by some active node. letc Mark (P)

be a reachable marking. There exigte T such thatmg éq, m. One can prove that there exists a
nodeny, € Act such that\(ng) < A(ny) (n(, covers the root):

Lemma4.7. Let £ be an MP-exploration with roaty. Then there exists a nodg, € Act such that
A(ng) < A(ng).

Proof:

We prove that the property holds for the et; all i < | X|. For alli such thaty € Act;, there is nothing
to prove. Consider, if it exists, the smalléstuch thatyy € Act; andng & Act; 1. Letn = o~ (i + 1).
Following definition ofAct; 1, asng is the root of the tree, we must hakén,) < A(n). Asi has been
chosen to be minimak can not be covered by another node, and thus Act; ;. As a consequence,
the property is true at step+ 1. Moreover, note that as, is the root of the treep is necessarily a
descendant ofig. As a consequence, the definition of active and inactive sigilelds that the only
remaining active node after stép- 1 is the noden. We thus haveAct;; = {n}. In other terms, this
means that from this step, the exploration will start fromeavmoot, and thus by the all new (active or
node) nodes are descendantnof Then, we can inductively apply the same reasoning to ngdend
conclude by the transitivity of relatiof. O

As a consequence, there exists € Mark (P) such thatA (ng) £, m' andm < m'. We can then
consider the covering path associated with the pgjr o).

We now prove that all covering paths are finite. This will con-
clude the proof by Lemma 4.5. By Lemma 4.6, if a covering psth i 01
infinite, then it contains a singular pair. Therefore we provat o
the MP-explorationf cannot admit a singular pair. Consider a T
singular pair(n,t) € Act x T, and denote byn;,o;);>1 its in-
finite covering path. As it is singular, there exigts> 1 such that
(nk,0k) = (n,toy,). Foranyl < i < k, we writeo; = t;o, (this I
zap;(l)(ssilble as the path is infinite and thus never contalnst)er@gl,o,l) (nis1, 0001) - (4,0%)

Foreachl < i < k, we define the positioprod(i) = max{1 < Figure 6. Stacks of a singular pair.
Jj <i| |oj| < loil}. This definition is correct agr| = |t| = 1,
and for anyl < i < k, we have|o;| > 1 aso; # e. Intuitively, the valueprod(:) gives the position
which is responsible of the addition in the stack of traositi;. Indeed, letl < ¢ < k andl = prod(:).
As for any positionj such that < j < i, we havelo;| > |o;], the transitiort; is present inv; “at the
same height”.

Consider now the positioh < ¢ < k such thatx(n;) is minimal among{a(n;) | 1 < j < k} (recall
thatn; = ny), and letl = prod(i). By theT-completeness of, there exists a node € X such that
edge(n;, t;,) belongs toB. As we havgo;| < |o;41], this implies that: € Inact.

24 P.-A. Reynier, F. Servais/ Monotone Pruning Algorithm

We write the covering function associated with nadas follows:Cover(x) = (x1,m1) ... (Tg, 7k)-
Following the definition of a covering path, we obtain = n;,;. In addition, following the above
mentioned property df = prod(i), there exist two sequences, oo € 7™ such thaty ... 11 = o01t;092,
and verifying:

o141 = 01t;000) ando; = t;020]

This means that the head of the stagki.e. transitiont;, has been replaced by the sequenggo,, and
that between positions+ 1 andi, transitiont; (which is the head of the staek), is never consumed.
This situation is depicted on Figure 6. In particular, thiglies the following property:

A(ni) > Posty, (A(ng41), 01)

Indeed, there are two cases, eithier | + 1, and then we necessarily have = ¢ and the property is
trivial, or i+ 1 < 4, and then we have that the covering path starting in(pair; , o1) ends in pai(n;,).
The result then follows from Lemma 4.5.

To conclude, we use the key Proposition 4.4. Indeed, one e&fythat the proposition can be
applied on nodes andn; using sequences = o1t;0o ando’ = p;. This result yields the following
inequality: 3(xz) < a(n;). As x is the successor of; by transitiont;, property(ii) of an exploration
impliesa(n;) < a(z). As we always havex(z) < §(z), we finally obtaina(n;) < a(n;), which is a
contradiction with our choice af

5. Comparison with the MCT Algorithm

The MP Algorithm has been proposed as a modification of the M\@jbrithm to obtain completeness,
using a slightly different pruning strategy. Apart from mirstructural differences in the presentation of
the algorithm, the main difference comes from the deadtimadf nodes. In MP, inactive hodes can be
used to deactivate nodes. In MCT, only active nodes are wsdddctivate nodes. More precisely, the
pruning strategy of the MCT Algorithm is obtained by repfagLine 10 by the following line :

10" : Act := Act\ {z | Jy € Ancestore(z) s.t. A(y) < A(n) Ay € Act};

Thus, condition(y € Act vV y ¢ Ancestorg(n)) in MP is replaced by the stronger conditigne Act

to obtain MCT. In particular, this shows that MP pruning &gy is more aggressive than MCT one,
i.e. for a given partial exploration and a given new node, Mfags deactivates nhodes whenever MCT
does, but the reverse is not always true. This last observdties not imply that the exploration tree of
MP is always smaller than MCT’s. Indeed, one can build an @anvhere a node is deactivated in MP
but not in MCT, this node is then used in MCT to deactivate a nedem (successors o are not
explored in MCT), while successors of are explored in MP.

While the exploration trees of MP and of MCT are in generabinparable (none is included into
the other), we proved that the MP Algorithm is complete. Thmmpleteness of the MCT Algorithm
is illustrated with the Petri net first published in [7] andbaded in Figure 7. Let us show that MCT is
already incomplete for WPN. Consider the WRN_..., ©) wherep = {p1, p2, ps, p4, 3ps, ps, p7} (See
Definition 2.4). We represent in Figure 8 an execution of th@ MAlgorithm on this WPNP. The set

2Actually running MCT on the Petri neV,.... yields the exact same tree.

P.-A. Reynier, F. Servais/ Monotone Pruning Algorithm 25

Figure 8. An execution of the MCT Algorithm oK.

returned by MCT is{p1 }, {p7}, {p2, 05}, {p3, 05}, {p6}, {p1, 2p5}}, this set is incomplete as it should
include {ps, wps} and {p4,wps}. The problem arises from the following fact: successorsanfemsg

(node created at step 8) are not explored on the hypothegishtty will be covered by node; and its
successors; node; and its successors are not explored on the hypothesis thatili be covered by
nodenyo and its successors; but nodg, a successor of nodg, is not explored on the hypothesis that
it will be covered by nodexg and its successors. This cycle in the hypothesis leads to¢bepleteness.

The marking{ps, 3ps} is reachable for instance by the sequetiggt,, it is not covered by the set
returned by MCT in Figure 8. The covering path associatet thi¢é root node:; and the sequence of
transitionststgt, is:

(n1,tstets) - (no,tets) - (ns,ta) - (n10,ta(tsta)?) - (nax, (tsta)*) - (ns, ta(tsts)®) - -

note that(nyo, t2(t3t4)*) comes from the "unfolding” of the acceleration in the WPN fiDition 4.2),
this covering path is infinite (a loop starts withg, t4)). One can check that the pdits, t4) is singular
(Definition 4.6). The crux of our proof of the completenesdvid® for WPN is to show that no singular
pair occurs in the exploration trees built by MP.

Figure 9 illustrates an execution of the MP Algorithm &f.,.. The difference with the execution
of the MCT Algorithm occurs at step 8: node is deactivated because nodgis covered by nodes.
This deactivation does not happen in MCT because m@ds inactive. This exactly corresponds to the
difference between the two algorithms.

26 P.-A. Reynier, F. Servais/ Monotone Pruning Algorithm

1:
ts P1 tr
/ itl\
2 :pg 3:pgy:13 4 : py
fo It L
8 :p4,2ps5 : 10 5:p3: 7 13 : pa, ps
ta T Its Jt2
9 :p3,3p5 : 10 6:pg: 7 14 : p3,ps : 14
A f§i if4 »
10 : pg, wps 7 :p3,wps 8
v
. t4i
11 :p3,wps .
ts)

12 P4, wps = 12

Figure 9. An execution of the MP Algorithm o¥(.....

6. Implementation and Experiments

We implemented the MP algorithm in Pythdnin order to minimize the overhead of the inactive nodes,
our implementation takes advantage of the following otetgsa. One of the following two cases occurs
when a node, different from the new node, is deactivated:

o if the new noden is not a descendant af thenz and its subtree are completely removed (indeed
the algorithm will not need them anymore);

o if the new noden is a descendant of an acceleration has occurred betweeand an ancestor
y of x; the nodezx could be used later to deactivate one of the descendantsdefmain our
implementationz is removed and the set of markings of the deactivated nodieg betweeny
andn (including x) is associated with; nevertheless, note that we only need to keep the minimal
elements of this set.

Therefore our implementation maintains a tree data streatantaining only the active nodes and for
each active node it maintains the set of the minimal markings of the inactimeestors of. (up to the
first active ancestoy of n).

We compare the MP Algorithm with the K&M Algorithm (also aiatle in our implementation)
and with the procedure CoverProc introduced in [7]. Thigtgprocedure is an alternative for the com-
putation of the MCS. Instead of using a tree structure aserki&M Algorithm, it computes a set of
pairs of markings, with the meaning that the second markarghe reached from the first one. This is
sufficient to apply acceleration. To improve the efficieramyly maximal pairs are stored.

Experimental results, obtained on a 3 Ghz Xeon computetpragented in Table 1. The test set is
the one from [7]. We recall in the last column the values at@difor the CoverProc [7] algorithm. Note
that the implementation of [7] also was in Python, and théstegre run on the same computer. We

30ur prototype can be downloadedhattp: //www.1if .univ-mrs.fr/~preynier/coverability/.

P.-A. Reynier, F. Servais/ Monotone Pruning Algorithm 27

report for each test the number of places and transitionseohét and the size of its MCS, the time the
K&M and MP Algorithms took and the number of elements passdtié waiting list.

As expected the MP Algorithm is a lot faster than the K&M Alglom and the tree it constructs
is, in some instances, dramatically smaller. The K&M Algjom could not compute the MCS for the
last five tests (we time out after 20 minutes), while the MPa&iidpm took less than 20 seconds for all
five tests. Note that the time reported for the K&M Algorithentihe time to build the K&M tree, from
this tree one has to extract the minimal coverability setciwimaybe costly if the set is big (see K&M
results in [7]). The MP Algorithm directly computes the nmiral coverability setAct), i.e. no additional
computation is needed.

We also compare two versions of the MP Algorithm, the DeftetkDFS) and Breadth-First (BFS)
ones. To be more precise, we give the number of nodes of taebtriét by the algorithm (# X), and
among them how many are deactivatedirféict). Note that we recover that the number of nodes of
the tree that remain active coincides with the size of the MIB&ll the instances we considered, the
BFS is slightly faster than the BFS. This illustrates theifiast of having an algorithm correct for any
exploration strategy.

Regarding CoverProc, the procedure is significantly slaiven MP. This can be explained by the
fact that considering pairs of markings may increase thebaurof elements to be stored. Moreover,
the MP Algorithm has, in our view, another important advgetaver CoverProc. In MP, the order of
exploration is totally free (any exploration strategy giethe MCS) while, in the CoverProc procedure,
each time an acceleration is applied, the successors aéshting node must be explored in a depth-first
search. This is particularly relevant as we have seen tedilth Algorithm is more efficient in BFS than
in DFS on the tests set we consider.

Finally, we have also implemented the (potentially incostgl MCT procedure. For all instances
we considered, the time needed by the MCT procedure is sitoildne ones of the MP Algorithm, the
difference being less than 1%. Also note that, as alreadytiored in [7], the error in MCT is rare, in
our experiments MCT always computed the correct MCS.

7. Conclusion

We have proposed in this paper the Monotone-Pruning algorian improved K&M algorithm with
pruning. This algorithm is a correction of the MCT Algorithinased on a slightly more aggressive
pruning strategy which ensures completeness. The MP Higoonstitutes a simple modification of
the K&M algorithm, and is thus easily amenable to implemgoiteand to extensions to other classes of
systems. Moreover, as the K&M Algorithm, and unlike the aildpon proposed in [7], any strategy of
exploration of the Petri net is correct: depth first, bredisi, random. The empirical results presented
in Section 6 show that our algorithm drastically outperferi&M and CoverProc algorithms.

A natural continuation of this work is to develop a more effitti prototype based on symbolic data
structures. Another issue is the complexity of the curreabpof correctness. It would be worthwhile
to look for a simpler proof based on an invariant represgrtie pruning strategy of the MP algorithm.

Acknowledgments.We would like to warmly thank Raymond Devillers, Laurent Bay Jean-Francois
Raskin and Olivier De Wolf for fruitful discussions arountefiminary versions of this work. We also
warmly thank the anonymous reviewers for their insightfuinenents.

P.-A. Reynier, F. Servais/Monotone Pruning Algorithm

28

Test K&M MP (DFS) MP (BFS) CoverProc[7]
name #P #T #MCS| # Wait time (s) # Wait #X # Inact time (s) # Wait #X # Inact time (s) time (s)
BasicME 5 4 3 5 < 0.01 5 5 2 < 0.01 5 5 2 < 0.01 0.12
Kanban 16 16 1| 72226 9.1 114 59 58 < 0.01 111 100 99 <0.01 0.19
Lamport 11 9 14 83 0.02 24 24 10 < 0.01 24 24 10 < 0.01 0.17
Manufacturing 13 6 1 81 0.01 30 20 19 < 0.01 30 23 22 < 0.01 0.14
Peterson 14 12 20 609 0.2 35 35 15 0.02 35 35 15 0.02 0.25
Read-write 13 9 41 11139 6.33 76 76 35 .07 76 76 35 .07 1.75
Mesh2x2 32 32 256 X X 6241 4998 4742 15.1 5401 3876 3620 10.5 330
Multipool 18 21 220 X X 2004 1908 1688 5.2 1854 1828 1608 4.7 365
pncsacover 31 36 80 X X 1615 1177 1097 15 1462 1040 960 15 113
csm 14 13 16 X X 102 93 77 .03 122 105 89 .03 0.34
fms 22 20 24 X X 809 623 599 0.24 867 577 553 0.20 21

Table 1. The K&M, MP and CoverProc algorithms comparison #P# MCS : number of places and transitions and size of the&sMCthe Petri
net. #Wait: number of elements passed in the waiting list. # X : numberoafes in the tree constructed by the algorithnmatt: number of nodes
deactivated by the algorithm. For the MP Algorithm, the sifthe MCS is recovered as (# X -I#act).

P.-A. Reynier, F. Servais/ Monotone Pruning Algorithm 29

References

[1] A. Finkel. A generalization of the procedure of Karp andl®&f to well structured transition system. Rroc.
ICALP’87, volume 267 oLLNCS pages 499-508. Springer, 1987.

[2] A. Finkel. The minimal coverability graph for Petri neth Proc. ICATPN’91 volume 674 olLNCS pages
210-243. Springer, 1993.

[3] A. Finkel and J. Goubault-Larrecq. Forward analysisW8TS, part I: Completions. IRroc. STACS'09
volume 3 ofLIPIcs, pages 433—-444. Leibniz-Zentrum fur Informatik, 2009.

[4] A.Finkeland J. Goubault-Larrecq. Forward analysisi8TS, part Il: Complete WSTS. Broc. ICALP’09
volume 5556 oLNCS pages 188-199. Springer, 2009.

[5] A. Finkel, J.-F. Raskin, M. Samuelides, and L. V. Beginohbtonic extensions of petri nets: Forward and
backward search revisite&lectr. Notes Theor. Comput. S@E8(6), 2002.

[6] G. GeeraertsCoverability and Expressiveness Properties of Well-$tnmed Transitions System3hése de
doctorat, Université Libre de Bruxelles, Belgique, 2007.

[7] G. Geeraerts, J.-F. Raskin, and L. Van Begin. On the efficcomputation of the coverability set for petri
nets. International Journal of Foundations of Computer Scieritq2):135-165, 2010.

[8] R. M. KarpandR. E. Miller. Parallel program schemakaurnal of Computer and System Scien&¢8):147—
195, 1969.

[9] K. Luttge. Zustandsgraphen von Petri-Netzen. Mastdresis, Humboldt-Universitat, 1995.
[10] K. Schmidt. Model-checking with coverability grapHsrm. Methods Syst. Ded.5(3):239-254, 1999.

A. Complements for the proof of Proposition 4.4

We prove an additional property of MP Algorithm related ®diccelerations. Intuitively, some nodes
may be hidden when an acceleration is performed. The psoptates that if a nodg is hidden, then it
owns an ancestqy which has been exploregd’(e X), and whose label is strictly less than the label of
y. We call this property the minimal completeness of the exgtion.

Lemma A.1. (Minimal Completeness)
Forany edgé = (z,t,z") € B corresponding to an acceleratiore(such that\ (') > Post,(A(x), t)),
there exists a nodesuch that:

(i) z € Ancestorg(z) andj3(z) = a(x’),

(i7) for any nodey € Ancestorg(z’) \ Ancestorg(x), there exists a nod¢ € Ancestorz(y) N X
such thatA(y") < A(y) andz € Ancestorg(y').

Proof:

The proof proceeds by induction arjz). If «(z) = 1 (z is the root), then one can easily verify that one

can choose = z, and for any node that is skipped by the acceleratiayi,= z is a correct candidate.
We now consider: such thatx(z) > 1, and consider an edge= (x,t,2’) € B. We consider the no-

tations introduced in the definition of the concretizatiandtion, and let/(b) = t(y(wy)t)M ... (y(wi)t)M,

30 P.-A. Reynier, F. Servais/ Monotone Pruning Algorithm

wherew; is the path inB* associated with node;. We assume that nodesg's are ordered w.r.to, and
thusz; is an ancestor of alt;'s. We letz = x;, it verifies property(i).

Let us prove propertyii). Lety € N be a node of the reachability tree such that there exists a
worde # o =< 7(b) verifying A(y) = Post,(A(z), 0). As o = v(b), there exists a uniquesuch that
t(y(w)t)M . (y(wi))™ < gande < t(y(w)t)M ... (v(wirr)t)M.

We can thus decomposgeaso = t(y(w1)t)™ ... (y(w;)t)™ (y(wiy1)t)'n where0 < I < M and
e =< n =2 y(wipr)t.

Consider the nodg’ in the reachability tree defined as follows: it is the sucoes$ nodex; | by
the sequence.

We first prove that\(y') < A(y). Following notations introduced in the proof of Lemma 4. w
have that\ (y) can be reached from marking?“ by the sequencey(w;.1)t)'n. According to previous
properties, we obtaim < m@ < Post,(m?, (y(w;41)t)") and thusA(y') = Post,(A(zi41),7) <
Post,(m,n) < Ay).

Now, we prove that the inequality is strict. By contradiatiof A(y') = A(y), according to pre-
vious inequalities, we obtaiRost,(A(z;+1),m) = Post,(m,n). By completingn to obtain the se-
quencey(w;1)t, we obtainPost, (A(z41), Y(wit1)t) = Post,(m,y(wi11)t). By Lemma 4.1, we
havePost, (A(zi+1), Y(wir1)) = A(x). By definition of m, we obtainm = Post,(m,y(w;y1)t).
This is a contradiction with our choice aof;, ;! Indeed, in Definition 4.2, we require the following
property: Ip.A(x;11)(p) < m(p) < w. One can prove that this implies the following strict inelitya
m(p) < Post,(m,~(w;+1)t)(p), yielding the contradiction

Then, we distinguish two cases:

e if ¥ € X, then we are done:(= x; is an ancestoy’).

e otherwise {/ ¢ X), this implies that)’ is skipped by an acceleration on the path betwegn

andz, related to an edgl = (n,u,n’). But then we can apply the induction hypothesis on this
edge as we have(n) < «a(z), and obtain two nodes andy” verifying properties(i) and (i).
By transitivity, we trivially obtainy” € Ancestorz(y) N X andA(y”) < A(y). It remains to
prove thatz € Ancestorg(y”). As ;41 is an ancestor of node, active at stepy(x), it can not be
deactivated by the acceleration related to eddgeshat implies that’ must be “below”z; 1, i.e.
xi+1 € Ancestorg(2’). This yields the result.

This concludes the proof. O

