
LogNIC: A High-Level Performance Model for SmartNICs
Zerui Guo

University of Wisconsin-Madison
USA

Jiaxin Lin
The University of Texas at Austin

USA

Yuebin Bai
Beihang University

China

Daehyeok Kim
The University of Texas at Austin and

Microsoft
USA

Michael Swift
University of Wisconsin-Madison

USA

Aditya Akella
The University of Texas at Austin

USA

Ming Liu
University of Wisconsin-Madison

USA

ABSTRACT
SmartNICs have become an indispensable communication fabric
and computing substrate in today’s data centers and enterprise
clusters, providing in-network computing capabilities for traversed
packets and benefiting a range of applications across the system
stack. Building an efficient SmartNIC-assisted solution is generally
non-trivial and tedious as it requires programmers to understand
the SmartNIC architecture, refactor application logic to match the
device’s capabilities and limitations, and correlate an application
execution with traffic characteristics. A high-level SmartNIC per-
formance model can decouple the underlying SmartNIC hardware
device from its offloaded software implementations and execution
contexts, thereby drastically simplifying and facilitating the devel-
opment process. However, prior architectural models can hardly be
applied due to their limited capabilities in dissecting the SmartNIC-
offloaded program’s complexity, capturing the nondeterministic
overlapping between computation and I/O, and perceiving diverse
traffic profiles.

This paper presents the LogNIC model that systematically an-
alyzes the performance characteristics of a SmartNIC-offloaded
program. Unlike conventional execution flow-based modeling, Log-
NIC employs a packet-centric approach that examines SmartNIC
execution based on how packets traverse heterogeneous computing
domains, on-/off-chip interconnects, and memory subsystems. It
abstracts away the low-level device details, represents a deployed
program as an execution graph, retains a handful of configurable pa-
rameters, and generates latency/throughput estimation for a given
traffic profile. It further exposes a couple of extensions to handle
multi-tenancy, traffic interleaving, and accelerator peculiarity. We
demonstrate the LogNIC model’s capabilities using both commod-
ity SmartNICs and an academic prototype under five application

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0329-4/23/10. . . $15.00
https://doi.org/10.1145/3613424.3614291

scenarios. Our evaluations show that LogNIC can estimate per-
formance bounds, explore software optimization strategies, and
provide guidelines for new hardware designs.

CCS CONCEPTS
•Hardware→ Networking hardware; • Networks→ Network
performance modeling.

KEYWORDS
SmartNIC, Architectural Modeling, Programmable Networks

ACM Reference Format:
Zerui Guo, Jiaxin Lin, Yuebin Bai, Daehyeok Kim, Michael Swift, Aditya
Akella, and Ming Liu. 2023. LogNIC: A High-Level Performance Model
for SmartNICs. In 56th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO ’23), October 28–November 01, 2023, Toronto, ON,
Canada. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3613424.3614291

1 INTRODUCTION
The last few years have seen a rising number of SmartNICs [1, 3, 5,
7, 9, 12, 14] deployed in the public clouds, enterprise clusters, and
edge data centers [4, 23, 25, 26, 37, 61]. Recent surveys [22, 27] from
Dell’Oro project that the SmartNIC market size will exceed 1.6 bil-
lion US dollars by 2026, occupying more than one-third of the total
network adapter market. SmartNICs, staying on the communication
path, provide in-network computing capabilities for traversed pack-
ets, making the network data-planemore reconfigurable and flexible
at the server edge. Researchers have built a series of SmartNIC-
assisted solutions for different system layers–such as networking
stack [30, 64, 72], NFV and network middleboxes [33, 37, 50, 53],
distributed applications [35, 52, 56, 59, 66, 71, 75], and disaggregated
storage [38, 47, 61, 62, 78]–and demonstrated considerable latency
savings, throughput increases, and overall energy/cost efficiency
improvements.

However, it is notoriously challenging and overly arduous to
build an efficient SmartNIC-assisted system. First, a SmartNIC is
an accelerator-rich heterogeneous device incorporating diverse
on-chip/off-chip interconnects (Figures 1 and 8). To maximize the
offloading benefits, one should develop a systematic characteri-
zation and understanding of its capabilities and limitations. For
example, the actual throughput of a SmartNIC off-chip accelerator

https://doi.org/10.1145/3613424.3614291
https://doi.org/10.1145/3613424.3614291
https://doi.org/10.1145/3613424.3614291

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Zerui Guo, Jiaxin Lin, Yuebin Bai, Daehyeok Kim, Michael Swift, Aditya Akella, and Ming Liu

(e.g., a compression engine) depends on its execution parallelism,
aggregated interconnect bandwidth between NIC cores and the
engine, and the delivery rate of submission/completion signals. Sec-
ond, one should carefully refactor the application logic across the
heterogeneous components in a SmartNIC, such as figuring out the
execution model (e.g., run-to-completion v.s. pipeline), partitioning
the data layout, redesigning data structures, and adapting commu-
nication interfaces pertaining to data transfer patterns. Further, the
problem is exacerbated when considering diverse traffic profiles
(e.g., packet/flow size distribution), cross-platform portability, and
multi-tenancy. Therefore, the development process is tedious and
usually involves many design-implement-test iterations.

We argue that a high-level performance model–that decouples
the underlying SmartNIC hardware device from its offloaded soft-
ware implementations and execution contexts–will help simplify
and facilitate the SmartNIC development process. Such a model
could allow programmers to easily explore various design spaces,
identify application performance bottlenecks and suggest optimiza-
tion opportunities, enhance system portability, and even provide
early-stage insights/guidances on next-generation SmartNIC de-
sign.

The architecture community has a long history of develop-
ing systematic and analytical models for different computing sys-
tems [28, 34, 40, 41, 73, 76]. However, we observe that none of them
can be effectively applied in the context of SmartNIC computing.
First, a SmartNIC-offloaded program consists of multiple functional
eclectic kernels that present different computing and I/O intensities,
while existing models mainly focus on one application type. Second,
unlike other computing substrates, the compounding effect among
on-/off-chip interconnects, heterogeneous execution engines, and
memory subsystems, complicates analyzing the data movement
and execution flow on a SmartNIC. Third, the performance analysis
is tightly coupled with traffic profiles. This significantly contrasts
assumptions on existing models where the system input is fixed
and well-defined.

In this paper, we propose the LogNIC model that systematically
analyzes the performance characteristics of a SmartNIC-offloaded
program under a given traffic profile. Our key idea is a packet-centric
modeling approach that examines SmartNIC execution behaviors
based on how packets transmit over different hardware entities, in
contrast to existing models which center around execution flow.
LogNIC consists of four major components: (1) system interface,
where we abstract away the SmartNIC device details using a hard-
ware model, represent an offloaded program as a software execu-
tion graph, and encode execution contexts as model parameters; (2)
throughput modeling, estimating the achievable throughput by con-
sidering both the computing capacity of each triggered hardware
engine and bandwidth limits of traversed interconnects/memory; (3)
latency modeling that captures the execution latency of a compute
engine, data movement overheads, and internal queueing effect; (4)
model extensions that handle mixed execution graphs, interleaved
traffic, and specialized accelerators. Overall, LogNIC takes an ap-
plication execution graph and a set of device/traffic parameters as
inputs, and operates in either (a) an estimation mode that outputs
the expected latency and throughput of the given SmartNIC pro-
gram under a traffic profile; or (b) an optimizer mode that generates

a subset of parameters that can satisfy the stipulated performance
bounds.

We evaluate the LogNIC model using three commodity Smart-
NICs (i.e., Marvell 25GbE LiquidIO-II CN2360 SmartNIC, NVIDIA/
Mellanox 100GbE BlueField-2 DPU, and Broadcom 100GbE Stingray
PS1100R) and an academic prototype (PANIC [55]) under five appli-
cation scenarios. We first validate the model accuracy by estimating
the performance bounds, and then use the model to explore soft-
ware optimization strategies and guide new hardware design. Our
results are summarized as follows:
• In terms of model validation, LogNIC delivers accurate through-
put estimation of six bump-in-the-wire acceleration scenarios
on the LiquidIO-II SmartNIC and identifies their performance
bottleneck on the data path. We also use the model to estimate the
latency of an NVMe-oF target process on the Broadcom Stingray.
Our results show that LogNIC can estimate the latency for three
different I/O patterns with less than a 1% error rate.

• When using the LogNIC model to optimize SmartNIC-offloaded
programs, it helps tune the execution parallelism of Microservice-
based applications on the LiquidIO-II card and decide the network
function placement on the BlueField2. For example, using LogNIC
suggested parallelism, one can achieve up to 36.4% throughput
increase and 22.8% latency saving across five Microservice work-
loads when compared with heuristics-based approaches.

• LogNIC can also be used for hardware design space exploration.
For example, we use it to determine an optimal hardware resource
provision of PANIC for three scenarios: sizing the request queue
of an accelerator, steering traffic at the central scheduler, and
configuring the hardware parallelism.

2 MOTIVATION
This section first describes the hardware architecture of a SmartNIC
and highlights contemporary SmartNIC use cases. We then discuss
the need for a high-level performance model and why existing
models are inadequate.

2.1 SmartNIC Hardware Architecture
SmartNICs extend a traditional NIC with extra computation capa-
bilities using CPUs, FPGAs, or other domain-specific accelerators
(e.g., crypto engines). A SmartNIC can execute general-purpose or
domain-specific programs closer to network I/Os than the host CPU.
Figure 1 presents a high-level overview of the SmartNIC architec-
ture, which captures most of today’s SmartNICs regardless of the
computing substrates (programmable ASIC, Multicore SoC, FPGA)
and deployment models (inline or bump-in-the-wire). A SmartNIC,
staying on the packet communication path, mainly consists of the
following four functional components:
• Parser/Deparser: It (1) analyzes the packet header based on a
predefined parsing graph and generates necessary metadata upon
an incoming packet and (2) rebuilds the packet header when a
packet leaves the pipeline. Packets could come from both RX/TX
ports and the host PCIe bus.

• RX/TX pipeline: It contains a set of match action engines and
performs packet-level header manipulations. The enclosed SRAM
or TCAM table stores thousands of matching rules with fast
lookup support. Some SmartNICs [3, 7, 12, 14] also provide a

LogNIC: A High-Level Performance Model for SmartNICs MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

RX pipelines (1…n)

PA
RS

ER

…
Wimpy core/

FPGA
Memory

Hierarchy

Accelerators

Execution Engines (1…n)

Bypass path

Match
Action Engine

TX pipelines (1…n)

…Match
Action Engine

 Recirculate path

Programmable
DMA

RX
/H

os
t

TX
/H

os
t

DE
PA

RS
ERTraffic

Manager

Figure 1: An overview of the SmartNIC architecture.

recirculating path such that a packet can reenter the processing
pipeline to gain more execution cycles.

• Traffic manager or NIC switch: It performs QoS traffic control
and steers traffic to the NIC engine. Some SmartNICs are also
equipped with a bypassing path that can forward packets directly
to the TX pipeline. This feature is used when a packet requires
no deep packet inspection or flow/application-level computation.

• Execution engine or intellectual property (IP) block: It per-
forms complicated packet processing using a general-purpose
wimpy multi-core processor (such as Mellanox BlueField [12],
Broadcom Stingray [1], Marvell LiquidIO [7], Fungible FAC [3]),
embedded flow engines (like Pensando DSC [14], Netronome
Agilio [9]), FPGAs [18–21], or domain-specific accelerators. Its
memory hierarchy usually encloses the core-local L1 cache, self-
managed scratchpad, L2 cache and DRAM. Some SmartNICs also
hold programmable DMA engines [7, 14, 21].

There are two types of SmartNICs: (1) On-path SmartNICs have
execution engines on the packet communication path and handle all
inbound/outbound traffic between Ethernet ports and the PCIe host.
Examples include LiquidIO, Agilio, Pensando DSC, and Fungible
FAC; (2) Off-path SmartNICs, which expose themselves as a second
network endpoint. It can deliver traffic flows to host CPUs directly
(without entering the SmartNIC SoC) based on forwarding rules
installed on a NIC switch. Packets targeting the host go from the
traffic manager to TX pipelines via the bypass path (Figure 1), while
the rest follow the default path and would trigger execution engines
on the SmartNIC. BlueField and Stingray are examples of off-path
SmartNICs. NIC vendors for both types are also improving the pro-
grammability of the NIC switch. SmartNICs can also be categorized
based on the computing substrate: (1) Pipeline NICs place multiple
offloads in a pipeline to enable packets to be processed by a chain
of functions [20, 37]; (2)Manycore NICs load balance packets across
many embedded CPU cores which control the processing of packets
as needed for different offloads [1, 7, 9, 12]; (3) RMT NICs use the
on-NIC reconfigurable match+action (RMT) pipeline to implement
NIC offloading [9, 14].

2.2 SmartNIC-assisted Systems
SmartNICs have become a new computing substrate at end-hosts,
assisting their computation. Many SmartNIC-assisted systems have
been developed across different layers recently.

• Networking stack and NFV: ClickNP [53] proposes a modu-
lar framework to implement network functions over an FPGA
SmartNIC. AccelNet [37] deploys the virtual networking layer

onto SmartNICs and provides an SDN interface for the control-
plane. AccelTCP [64] partitions the kernel monolithic TCP stack,
and offloads connection management functionalities to the NIC.
FlexTOE [72] accelerates the SmartNIC TCP performance via
fine-grained data-path parallelization and segment reordering.

• Application layer: KV-Direct [52] extends RDMA primitives
with vector operations to build a high-throughput in-memory key-
value store. E3 [59] exploits the use of Multicore-SoC SmartNICs
for energy-efficient Microservice execution. Xenic [71] develops a
SmartNIC-accelerated distributed transaction system via an asyn-
chronous aggregated execution model, flexible point-to-point
communication strategies, and a NIC-side customized data store.
Floem [66] applies a data-flow programmingmodel that simplifies
design space explorations. iPipe [56] uses an actor framework to
offload distributed applications and employs a hybrid scheduler to
optimize the tail latency. NICA [35] proposes an ikernel abstrac-
tion (tightly coupled with the network stack) and uses it to deploy
application logic on FPGA-based SmartNICs. hXDP [33] then de-
velops a compiler that parallelizes and translates eBPF bytecode
to an FPGA SmartNIC. Researchers [75] characterize an off-path
SmartNIC from the communication-path perspective and derive
an optimization guideline to help designers exploit multiple paths
of SmartNICs when offloading distributed applications.

• Storage layer: LineFS [47] decomposes the distributed file system
operations into execution stages and offloads CPU-intensive tasks
to a customized NIC pipeline. Gimbal [62] models the SmartNIC
as a software storage switch that provides performance isolation
for multiple co-located tenants through a couple of networking
techniques. LEED [38] builds an energy-efficient, distributed, and
persistent key-value store over SmartNIC JBOFs. It tackles their
architectural imbalance via two design principles: (a) trading
excessive I/O bandwidth for scarce SmartNIC core computing
cycles and memory capacity; and (b) making scheduling decisions
as early as possible to streamline the request execution flow.
Cloud providers further deploy infrastructure management ser-

vices over SmartNICs to reduce the server virtualization overheads
and enable bare-metal clouds [23–25].

2.3 The Need for a New Performance Model
While SmartNICs can bring us many benefits, building an efficient
SmartNIC-assisted system is notoriously challenging and overly
arduous. In particular, programmers should first develop a solid un-
derstanding and detailed characterization of the underlying Smart-
NIC hardware architecture. For example, as shown in our case study
(§4.2), the actual throughput of a SmartNIC off-chip compression
engine depends not only on its execution parallelism but also on

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Zerui Guo, Jiaxin Lin, Yuebin Bai, Daehyeok Kim, Michael Swift, Aditya Akella, and Ming Liu

Architecture Model Target Domain
LogP [34] Parallel algorithms for MPP machines

Roofline [76] Compute kernels for multi-core/many-core processors
LogCA [28] Compute kernels for domain-specific accelerator
Gables [40] Smartphone applications for mobile SoC

Accelerometer [73] Microservices for domain-specific accelerators
LogNIC In-network computing for SmartNICs

Table 1: A list of architecture models.

the aggregated interconnect bandwidth between NIC cores and the
accelerator, and the delivery rate of submission/completion signals.
Second, one has to carefully refactor the application logic across
heterogeneous computing engines, on-/off-chip interconnects, and
memory subsystems, and explore an optimal offloading strategy
based on their capabilities and limitations (§4.4, §4.5). Third, we
need to dissect the relationship between SmartNIC execution be-
havior and traffic characteristics. For example, an optimized im-
plementation (targeting MTU-sized traffic) would show inferior
performance when running under 64B packets. Such a develop-
ment process is tedious and involves many design-implement-test
iterations. We argue that a high-level performance model, which
decouples the underlying SmartNIC device from the actual soft-
ware implementation and execution contexts, could significantly
facilitate this process with the following four benefits:

• Performance analysis. It is vital to estimate how much latency
and throughput an offloaded program can achieve and what the
potential bottlenecks are. A high-level performance model can
deliver such hints without actually deploying the program. It can
show how the application behaves when varying the traffic input.

• Design space exploration. A model can abstract the SmartNIC
as a parameterized hardware graph, where developers explore
various design options by splitting the application logic and map-
ping it over the hardware graph. In this case, one could figure
out the execution model (e.g., run-to-completion v.s. pipeline),
redesign data structures and partition the data layout, and adapt
communication interfaces pertaining to data transfer patterns.

• Guiding new hardware design. SmartNIC vendors continu-
ously upgrade existing IP blocks or add new hardware features to
accelerate certain workloads. Instead of hinging on a cycle-level
simulator or prototyping the actual hardware design, one could
use the model to answer some early-stage questions, such as
whether it’s worthwhile to integrate an IP into the SoC, where it
should be placed, and how many expected performance improve-
ments.

• Implementation portability. SmartNICs embody great archi-
tectural diversity (§2.1), presenting different capabilities in terms
of execution parallelism across various IPs, memory subsystem
performance, and interconnect speed. A performancemodel could
estimate how a ported application behaves on the target Smart-
NIC, whether there are potential bottlenecks on the data path, and
how to refactor the software design to maximize performance.

2.4 Inadequacies of Existing Models
The computer architecture community has proposed a series of ana-
lytical models (Table 1) to understand the performance bounds
and explore SW/HW optimizations for various computing sys-
tems [28, 34, 40, 41, 73, 76]. The LogP [34] model characterizes
a parallel machine using four parameters: the number of processors

(P), the communication bandwidth (g), the communication delay
(L), and the communication overhead (o). The Roofline model [76]
estimates the performance bound of a compute kernel running on
a multi-core or many-core processor. LogCA [28] suggests which
optimizations may alleviate the performance bottlenecks of general-
purpose hardware accelerators. The Gables model [40] refines and
retargets the Roofline to analyze how an application kernel exe-
cutes on a mobile SoC. Accelerometer [73], extending the LogCA to
analyze concurrency-induced performance bounds, quantifies the
impact of hardware acceleration on microservice-based workloads.
However, none of these models can capture the execution behav-
ior of a SmartNIC-assisted program and analyze its performance
characteristics for the following three reasons:
• The complexity of a SmartNIC-offloaded program. A Smart-
NIC program consists of multiple functional eclectic kernels that
present different execution and I/O intensities, such as packet
header manipulation, transport protocol processing, and per-
packet or per-message or per-flow domain-specific execution.
Hence, the model should describe both the characteristics of
each individual kernel and their interactions, whilst existing
models mainly focus on one compute-intensive or memory-
intensive workload across one or multiple hardware substrates.
The Gables [40] model is the closest one that might be applicable
to our scenario, but it fails at capturing the I/O behavior of an IP.

• The nondeterministic overlapping between computation
and I/O. Differing from many other accelerators, a SmartNIC
stays close to the packet communication path, consumes all or
partial incoming traffic based on stipulated flow rules, and trig-
gers predefined packet-dependent computations over various
IP blocks. There are two types of I/Os affecting the SmartNIC
behavior: external I/Os (from wire and PCIe) and internal I/Os
(happening within the SoC). In terms of memory, there are sev-
eral non-cache-coherent regions (e.g., scratchpad SRAM, TCAM,
packet buffer, DRAM) that allow passing packet contents, data-
plane metadata, as well as temporary computing results. The
compounding effect between diverse I/O interconnects and het-
erogeneous parallel execution engines complicates modeling the
execution flow over a SmartNIC, whereas existing models shed
little light on this.

• The agnosticism of traffic profiles. The performance charac-
teristics of a SmartNIC application highly depend on the incoming
traffic profile, such as packet size, inter-frame gap, flow size dis-
tribution, and burst degree. In contrast, existing models (such as
LogCA [28] and Accelerometer [73]) assume that the system in-
put is fixed and deterministic. Further, the problem could be even
exacerbated by traffic-induced different execution paths. For ex-
ample, a firewall module can be realized by either a match-action
table or a regular expression engine based on traffic demand,
embodying different performance bottlenecks.

3 THE LOGNIC MODEL
3.1 Overview
LogNIC is an analytical model that takes SmartNIC hardware de-
vices, software application implementations, and traffic profiles in
predefined formats as inputs and generates performance estimation
through white-box modeling (Figure 4-a). LogNIC consists of the

LogNIC: A High-Level Performance Model for SmartNICs MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Ingress
Engine

Memory Subsystem

Egress
Engine IP

Interface

(a) SmartNIC hardware model.

Sched

Engine 1Q1

…

Engine 2

Engine n

…

Q2

Qm

(b) IP architectural block diagram.

Ethernet
Ingress

Ethernet
Egress

IP1
(SmartNIC core)

edge2

IP2
(N

VM
e SSD)

edge 1

IP3
(SmartNIC core)

edge3edge 4

(c) An execution graph example.

Figure 2: The hardware and software representation of LogNIC. Figure 2(c) depicts a SmartNIC-offloaded NVMe-oF target program, where
edges 1/4 go through the SoC interconnect and edges 2/3 use SoC interconnect and DRAM.

following four major components: (1) system interface, abstract-
ing away the SmartNIC device details using a hardware model
(§3.2), represents a SmartNIC program as a software execution
graph (§3.3), and encodes execution input/contexts as model pa-
rameters (§3.4); (2) throughput modeling, estimating the achiev-
able throughput by considering both the computing capacity of
each triggered hardware engine and bandwidth limits of traversed
interconnects/memory based on the execution graph (§3.5); (3) la-
tency modeling, which captures not only the execution latency
at a compute engine but also data movement overheads, and inter-
nal queueing effect (§3.6); (4) model extension, which handles
mixed execution graphs due to multi-tenancy, interleaved traffic,
and specialized accelerators (§3.7). §3.8 will describe the overall
workflow.

Key Idea. LogNIC employs a new packet-centric modeling tech-
nique, a variant of data flow modeling [31, 74]. It analyzes the
SmartNIC execution by examining how packets transmit over dif-
ferent hardware entities (e.g., IP blocks, on-/off-chip interconnects,
and non-cache-coherent memory regions). In LogNIC, a SmartNIC-
offloaded program is abstracted as a directed acyclic graph (DAG)
where packets flow through, and its edges/vertices are the hardware
components. This is in contrast to prior computation-centric model-
ing approaches [28, 34, 40, 73, 76], where they view compute units
as first-class citizens and analyze system performance by tracing
the execution flow, i.e., chaining running activities of all IP blocks
on the performance path.

3.2 Hardware Model of a SmartNIC
LogNIC models a SmartNIC using four architectural components
(Figure 2(a)): (1) ingress/egress engines, which move I/O traffic be-
tween wire/PCIe and the SmartNIC; (2) 𝑁 intellectual property (IP)
blocks, which could be a general-purpose CPU, a domain-specific
accelerator, a digital signal processor (DSP), or even an onboard
GPU; (3) an interface (adopted from LogCA [28] and Gables [40]),
the communication layer among different IPs; (4) the memory sub-
system with an interface shared by IPs, such as DRAM, scratchpad,
SRAM, and TCAM. The ingress/egress component includes one or
multiple I/O ports (or channels/lanes) used for data transmission.
All IPs operate concurrently and communicate with each other via
either the interface or memory. Similar to prior work [28, 73], Log-
NIC uses the interface abstraction to provide the intuition for the
performance and communication overhead of moving data across

different IPs, which can be mapped to any high-bandwidth on-chip
interconnect. To facilitate inter-IP data movements via an external
DRAM (if the device employs one), we assume that the DRAM
provides multiple-megabyte buffering/rate-matching capabilities.

IP Architecture. We model each IP block as Figure 2(b) in-
cluding 𝑚 input queues, a request scheduler, and 𝑛 parallel exe-
cution engines. Each queue has 𝑘 entries. The scheduler works in
a (weighted) round-robin fashion and dispatches a request when
an IP engine becomes available. The actual execution parallelism
(i.e., the number of concurrent active engines) would impact the
queueing delay. Each engine operates independently and shares
the bandwidth to/from the interface and memory. Since a physical
IP would be shared by different stages of one program or multiple
applications (§3.7), we partition an IP into multiple virtual instances
(virtual IPs), where each has𝑚′ queues (with 𝑘′ entries per queue)
and 𝑛′ engines. This can be achieved via either temporal or spatial
multiplexing, where the model provides a parameter.

Extended Roofline of an IP.. We repurpose the Roofline [76]
model to profile the computing performance of ingress/egress and
IPs given its capability to analyze parallel engines. The conven-
tional Roofline model determines the attainable performance based
on (1) the arithmetic intensity of the kernel, defined as the num-
ber of floating-point operations per byte of memory traffic; (2) the
DRAM bandwidth, capping the system peak throughput and denot-
ing the performance ceiling. We make two extensions to capture
IPs in a SmartNIC. First, LogNIC adds multiple bandwidth ceilings
to represent input data from different sources, such as SoC inter-
connects or memory hierarchy. Second, we replace the arithmetic
intensity parameter with the packet intensity, defined as the number
of executed IP-specific operations (which could be floating-point
arithmetic computations for a CPU/GPU, checksum computations
for a crypto accelerator, or packet manipulations for a match-action
engine) per packet transmission, which is also size-dependent. The
Roofline of a virtual IP can be obtained in the same way.

3.3 Software Representation of a Program
Execution Graph. LogNIC lets programmers express a Smart-

NIC offloaded programs as a directed graph𝐺 =(𝑉 , 𝐸). A vertex (𝑣𝑖)
represents an IP or an ingress/egress engine, and an edge (𝑒𝑖 𝑗) repre-
sents the data movement from 𝑣𝑖 to 𝑣 𝑗 via a communicationmedium
(which could be either interface or memory subsystem). When data
traverses more than one medium type, such as the SmartNIC core

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Zerui Guo, Jiaxin Lin, Yuebin Bai, Daehyeok Kim, Michael Swift, Aditya Akella, and Ming Liu

Category Parameter Symbol Description Source

Hardware
Interface bandwidth 𝐵𝑊𝐼𝑁𝑇𝐹 The maximum communication bandwidth over an interface SPEC
Memory bandwidth 𝐵𝑊𝑀𝐸𝑀 The maximum data transfer rate over a memory hierarchy SPEC
IP-IP bandwidth 𝐵𝑊𝑚𝑛 The communication bandwidth between two IPs CHAR

Software

Data transfer ratio 𝛿𝑒𝑖 𝑗 The relative data transfer percentage across an edge 𝑒𝑖 𝑗 CONF
Edge medium usage 𝛼𝑒𝑖 𝑗 /𝛽𝑒𝑖 𝑗 The bandwidth usage over an edge 𝑒𝑖 𝑗 via interface/memory CONF
Ingress granularity 𝑔𝑖𝑛 The data transfer granularity at an ingress engine CONF

Overhead 𝑂𝑖 The computation transfer overhead from a node to the next one CHAR
Node partition 𝛾𝑣𝑖 The multiplexing percentage of an execution engine 𝑣𝑖 CONF
IP throughput 𝑃𝑣𝑖 The computing throughput of a physical IP node CHAR

IP parallelism degree 𝐷𝑣𝑖
The parallelism of a (virtual) IP node in the execution graph CONF

IP queue capacity 𝑁𝑣𝑖
The queue capacity of a (virtual) IP node in the execution graph CONF

Traffic Ingress bandwidth 𝐵𝑊𝑖𝑛 The data serving rate to the SmartNIC CONF
Packet size distribution 𝑑𝑖𝑠𝑡𝑠𝑖𝑧𝑒 The packet size distribution of the incoming traffic CONF

Output Throughput 𝑃𝑎𝑡𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒 The estimated throughput of the target application on the SmartNIC N/A
Latency 𝑇𝑎𝑡𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒 The estimated latency of the target application on the SmartNIC N/A

Table 2: Description of the LogNIC parameters. SPEC=Specification. CHAR=Characterization. Conf=Configurable. Specifica-
tion/Configurable/Characterization means the data source comes from the hardware manual, user inputs, and profiling.

issuing a DMA read that copies data from DRAM to an accelerator
through PCIe, its performance parameters should consider all types.
Hence, we divide a SmartNIC program into a series of computing
kernels that run across various IPs.

An Example. Consider an NVMe-oF target application over
the Broadcom Stingray PS1100R SmartNIC [1]. The program (1)
receives RDMA packets from an ingress Ethernet port, (2) executes
the NVMe-over-RDMA target-side protocol and fabricates NVMe
commands at the NIC core, (3) issues NVMe reads/writes and waits
for responses from the SSD drive, (4) builds NVMe-oF response
packets and forwards them to the egress port. Its execution graph
is shown in Figure 2(c), where IP1 and IP3 are both SmartNIC cores,
and are responsible for submission and completion path handling,
respectively. Some SmartNICs (such as Fungible FAC200) employ a
hardware-accelerated NVMe-oF implementation, whose IPs in the
graph are domain-specific accelerators.

3.4 Model Parameters
LogNIC aims to retain the model simplicity and only requires nec-
essary parameters. It comprises four types of parameters (Table 2):
(1) Hardware describes the performance characteristics of each
hardware block and interface/DRAM; (2) Software captures the ex-
ecution behavior of an offloaded program; (3) Traffic details target
traffic profile; (4) Output generates model analyzing results with
a focus on throughput and latency. Parameter calibration is plat-
form and implementation dependent. For example, one can obtain
hardware parameters from the device specification or offline mi-
crobenchmark characterizations. They are fixed and can be reused.
Software and traffic parameters are provided by users, where some
might require programmers to understand the packet execution
flow and testing environment. LogNIC also exposes configurable
parameters for its model optimizer (§3.8) to explore the trade-off of
different design alternatives.

3.5 Throughput Modeling
LogNIC estimates the attainable throughput by analyzing the com-
puting throughput of each triggered IP and the bandwidth capacity
of the traversed interface/memory based on the program’s exe-
cution graph. Any hardware entities along the data-plane would
confine the application performance on a SmartNIC. To simplify

the description, we make two assumptions for now: (1) the incom-
ing traffic has only one type of fixed-sized packets running at a
given rate 𝐵𝑊𝑖𝑛 (i.e., the I/O rate of the ingress engine); (2) each IP
block operates in a work-conserving fashion, and a packet can be
processed by any engine. We will generalize this in §3.7.

Our derivation process works as follows. For a given time 𝑇 , the
total amount of data entering a SmartNIC is𝑊 = 𝑇 × 𝐵𝑊𝑖𝑛 . First,
for an IP[i] (𝑣𝑖 in the graph), the maximum amount of work that
it receives is the aggregated bandwidth across its incoming edges
that feed the data: 𝑇 ×∑

𝐵𝑊𝑒 𝑗𝑖 . Since an IP might not process all
the input data, we have 𝑇 × ∑

𝐵𝑊𝑒 𝑗𝑖 ≤ 𝑊 and thus introduce a
configurable parameter 𝛿𝑒𝑖 𝑗 across each edge (𝑒𝑖 𝑗) to represent the
relative data transfer percentage: 𝑇 × 𝐵𝑊𝑒 𝑗𝑖 = 𝛿𝑒𝑖 𝑗 ×𝑊 . Hence, the
minimum computation time for this IP to process the workload is
the task size divided by its peak performance (which is 𝑃𝑣𝑖):

𝑇𝐼𝑃[𝑖] =
𝑇 ×∑

𝐵𝑊𝑒 𝑗𝑖

𝑃𝑣𝑖
=
∑(𝑇 × 𝐵𝑊𝑒 𝑗𝑖)

𝑃𝑣𝑖
=
𝑊 ×∑

𝛿𝑒 𝑗𝑖

𝑃𝑣𝑖
(1)

Next, the time to move data across the interface and memory is
the total transferred data size (during time 𝑇) across all incoming
edges divided by their bandwidth. The data traversed an interface
and memory edge is 𝛼𝑒𝑖 𝑗 ×𝑊 and 𝛽𝑒𝑖 𝑗 ×𝑊 , respectively. We add
a parameter because an IP block might only use partial packets
for computation or partition traffic across multiple edges. One can
decide its value based on the execution strategy graph and data
granularity of an edge. So the data movement time for an interface
and memory edge is:

𝑇𝐼𝑁𝑇𝐹 =
∑(𝛼𝑒𝑖 𝑗 ×𝑊)
𝐵𝑊𝐼𝑁𝑇𝐹

;𝑇𝑀𝐸𝑀 =
∑(𝛽𝑒𝑖 𝑗 ×𝑊)
𝐵𝑊𝑀𝐸𝑀

(2)

Finally, the maximum attainable throughput of a SmartNIC is
inversely proportional to the maximum of times at each component
(e.g., IP execution at each vertex, data movement across an edge,
and data serving rate at interface/memory):

𝑃𝑎𝑡𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒 =
𝑊

𝑚𝑎𝑥 (...,𝑇𝐼𝑃[𝑖], ...,𝑇𝐵𝑊𝑒𝑖 𝑗
, ...,𝑇𝐼𝑁𝑇𝐹 ,𝑇𝑀𝐸𝑀)

=𝑚𝑖𝑛(...,
𝑊

𝑇𝐼𝑃[𝑖]
, ...,

𝑊

𝑇𝐵𝑊𝑒𝑖 𝑗

...,
𝑊

𝑇𝐼𝑁𝑇𝐹
,

𝑊

𝑇𝑀𝐸𝑀
)

(3)

LogNIC: A High-Level Performance Model for SmartNICs MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Oi

L i Q i+1

Ci/Ai

Ci+1/Ai+1

Reqj @IP i

Q i

Reqj+1 @IP i

Reqj @IP i+1

OiCi/AiQ i

O i+1

Q i+1 Ci+1/Ai+1L i
Reqj execution time for IP i -> IP i+1

IPi

IPi+1

Time

Computation transfer

Figure 3: Modeling 𝑅𝑒𝑞 𝑗 execution for 𝐼𝑃𝑖 −→ 𝐼𝑃𝑖+1.

Inputs

Solver f(x)
Optimization

GoalsTraffic Profiles

Model Parameters

SW ExeGraphs

Constraints

Relax goals/constraints

Yes

No

Apply for optimization

Pattainable

Tattainable

Outputs

(a). LogNIC Workflow (b). LogNIC Optimizer

Inputs Outputs

Figure 4: LogNIC workflow and optimizer.

Via algebra and re-expanding terms (using equations1–3),
𝑃𝑎𝑡𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒 is independent of 𝑇 and equals to:

𝑚𝑖𝑛(...,
𝑃𝑣𝑖∑
𝛿𝑒 𝑗𝑖

, ...,
𝐵𝑊𝑒𝑖 𝑗

𝛿𝑒𝑖 𝑗
, ...,

𝐵𝑊𝐼𝑁𝑇𝐹∑
𝛼𝑒𝑖 𝑗

,
𝐵𝑊𝑀𝐸𝑀∑

𝛽𝑒𝑖 𝑗
) (4)

Discussion. Our derivation procedure is inspired by the
Gables[40] model and uses its interconnect extension to model
SoC interconnects and memory hierarchies of a SmartNIC. We
eradicate the unified operational intensity parameter and replace
it with IP-specific packet intensity, meaning how much traffic the
IP could handle during computation. LogNIC allows the "fan-out"
connectivity between nodes to represent task partition. In this case,
an IP vertex in the execution graph has multiple outgoing edges
where each one is equipped with a data transfer fraction factor (𝛼𝑒𝑖 𝑗
or 𝛽𝑒𝑖 𝑗).

3.6 Latency Modeling
Latency analysis is challenging due to (1) computation transfer
across heterogeneous hardware domains; (2) the compounding
effect between execution pipeline and IP parallelism; (3) traffic-
induced intra-IP queueing and the resulting head-of-line blocking
issue. LogNIC employs an incremental approach: it starts with ex-
amining the execution time between two consecutive IPs, then
extends to all edges in an execution graph, and finally incorpo-
rates the queueing effect. We make the same assumptions as the
throughput case.

Figure 3 illustrates the latency breakdown for the basic compo-
nent of an execution graph (i.e., 𝐼𝑃𝑖 −→ 𝐼𝑃𝑖+1). The execution time of
a request at an IP block mainly includes two components: queueing
time within the block (𝑄) and execution time at the engine (𝐶). To
generalize the description, similar to LogCA [28] and Accelerom-
eter [73] models, we temporarily add a tunable parameter (called
acceleration or 𝐴) to explore the effect of an IP kernel optimization.
When transferring computations across IPs, there are two other
latency components: one is the preparation overhead (𝑂) to trigger
the computation at the next IP, such as passing parameters, setting
up the initialization and completion signals, etc.; the second one is
the time of moving data via either interface or memory, equaling to
the data granularity divided by bandwidth (i.e., 𝑔

𝐵𝑊
). The overhead

(𝑂) is independent of the granularity and computing parallelism.
An engine will immediately fetch the next request via the scheduler
when it’s available. Hence, the execution time of 𝐼𝑃𝑖 −→ 𝐼𝑃𝑖+1 is:

𝑇𝐼𝑃𝑖−→𝐼𝑃𝑖+1 = 𝑄𝑖 +
𝐶𝑖

𝐴𝑖
+𝑂𝑖 +

𝑔

𝐵𝑊
+𝑄𝑖+1 +

𝐶𝑖+1
𝐴𝑖+1

(5)

Next, the latency for a particular path (𝑃𝑘) is an accumulation of
all its edge segments including the queueing and execution at the
last IP block (𝐼𝑃𝑛−1).

𝑇𝑃𝑘 =
∑︁

𝑒𝑖 𝑗 ∈𝑃𝑘
(𝑄𝑖 +

𝐶𝑖

𝐴𝑖
+𝑂𝑖 +

𝑔𝑒𝑖 𝑗

𝐵𝑊𝑒𝑖 𝑗

) + (𝑄𝑛−1 +
𝐶𝑛−1
𝐴𝑛−1

) (6)

We further expand the above equation by (a) representing the
data communication granularity of each edge by considering the
traversed data over interface and memory, and (b) calculating the
computing time of each IP using aggregated data across ingress
edges and its execution throughput.

𝑔𝑒𝑖 𝑗

𝐵𝑊𝑒𝑖 𝑗

=
𝑔𝑖𝑛 × 𝛼𝑒𝑖 𝑗

𝐵𝑊 𝐼𝑁𝑇𝐹
+
𝑔𝑖𝑛 × 𝛽𝑒𝑖 𝑗

𝐵𝑊𝑀𝐸𝑀

𝐶𝑖

𝐴𝑖
=
𝐷𝑣𝑖 × 𝑔𝑒 𝑗𝑖

𝑃𝑣𝑖
=
𝐷𝑣𝑖 × 𝑔𝑖𝑛 ×∑

𝛿𝑒 𝑗𝑖

𝑃𝑣𝑖 × 𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒(𝑣𝑖)

(7)

When an execution graph presents multiple paths, the execution
time for the whole graph (or application) is the weighted average
across 𝑇𝑃𝑘 , where weight (𝑤𝑃𝑘) is calculated using traffic partition
parameters (e.g., 𝛿𝑒𝑖 𝑗 , 𝛼𝑒𝑖 𝑗 and 𝛽𝑒𝑖 𝑗).

𝑇𝑎𝑡𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒 =
∑︁

(𝑤𝑃𝑘 ×𝑇𝑃𝑘) (8)

Finally, we dissect the queueing delay (𝑄) of an IP under a given
system input (𝐵𝑊𝑖𝑛). As stated before, we are considering a work-
conserving systemwithout queueing prioritization which processes
one traffic profile. LogNIC employs two techniques to facilitate the
modeling. First, since the execution path would enclose multiple
disjoint queues from different IPs, to facilitate our modeling, we
apply the virtual shared queue abstraction [67], concatenating these
queues as a single logic one. The queue synchronization overhead
is then merged into the request-pulling phase. Second, we apply
the M/M/1/N queue [29] to capture the queueing delay based on
the observations: (1) the request arrival of most data center traffic
follows the Poisson process; (2) the job service time of an IP presents
the exponential distribution [28, 36, 63, 69].

Hence, the average queueing delay of an IP is then determined
by three parameters (i.e., average number of requests in the queue
𝐿, effective arrival rate 𝜆𝑒 , and request service rate 𝜇). Without node
partition, the queueing delay is:

𝑄 =
𝐿

𝜆𝑒
− 1

𝜇
(9)

Following the M/M/1/N queueing mode, the probability of 𝑘
requests in the queue and queue utilization (𝜌) is:

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Zerui Guo, Jiaxin Lin, Yuebin Bai, Daehyeok Kim, Michael Swift, Aditya Akella, and Ming Liu

𝑃𝑟𝑜𝑘 =
𝜌𝑘∑𝑁
𝑛=0 𝜌

𝑛
=
𝜌𝑘 − 𝜌𝑘+1

1 − 𝜌𝑁+1 ; 𝜌 =
𝜆

𝜇
(10)

So the average number of requests in the queue 𝐿 = ∑𝑁
𝑛=0(𝑛 ×

𝑃𝑟𝑜𝑛). Since the queue has a fixed capacity 𝑁 , 𝜆𝑒 depends on the
IP overall arrival rate and queue reject rate: 𝜆𝑒 = 𝜆(1 − 𝑃𝑟𝑜𝑁). We
can view 𝑃𝑟𝑜𝑁 as the packet dropping rate.

Now considering a specific IP (𝑣𝑖) under the given rate 𝐵𝑊𝑖𝑛 ,
during the certain service time (e.g., 𝑇 = 𝑔𝑖𝑛

𝐵𝑊𝑖𝑛
), 𝜆, 𝜇, and 𝜌 are

calculated as follows:

𝜆 =
𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒(𝑣𝑖)
𝐷𝑣𝑖 ×𝑇

=
𝐵𝑊𝑖𝑛 × 𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒(𝑣𝑖)

𝐷𝑣𝑖 × 𝑔𝑖𝑛

𝜇 =
1
𝐶𝑖

𝐴𝑖

=
𝑃𝑣𝑖 × 𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒(𝑣𝑖)
𝐷𝑣𝑖 × 𝑔𝑖𝑛 ×∑

𝛿𝑒 𝑗𝑖
; 𝜌 =

𝐵𝑊𝑖𝑛 ×∑
𝛿𝑒 𝑗𝑖

𝑃𝑣𝑖

(11)

Now combining equations 9–11, one can derive the final queue-
ing delay as follows:

𝑄 =
𝐿

𝜆𝑒
− 1

𝜇
=
1
𝜇
× (

𝜌

1 − 𝜌
− 𝑁𝜌𝑁

1 − 𝜌𝑁
) (12)

When an IP is partitioned and shared among vertices in the
execution graph, LogNIC introduces a parameter 𝛾𝑣𝑖 to represent
the resource partition ratio and updates the 𝑄 slightly.

Discussion. Compared with other architectural models (e.g.,
LogP [34], LogCA [28], and Accelerometer [73]) that mainly focus
on analyzing the execution flow of a request, LogNIC examines
how concurrent packets traverse different hardware blocks on a
SmartNIC SoC during computation offloading. Thus, it is able to not
only estimate the average processing latency, but also explore the
impact of data movement granularity, IP parallelism and load bal-
ancing, queue sizing and queueing discipline, offering optimization
insights.

3.7 LogNIC Generalization
We have described how LogNIC models the latency and throughput
of a single SmartNIC application under one traffic profile. This
section relaxes the aforementioned assumptions and introduces
three extensions to handle mixed execution graphs, interleaved
traffic, and non-work-conserving IPs.
• Extension #1: Consolidate multiple execution graphs. A
SmartNIC allows multiple tenants to offload different programs
concurrently. LogNIC preserves the composability propriety in-
herently because (1) it provides the node partition parameter
(𝛾𝑣𝑖) to virtualize an IP; (2) it characterizes the IP-IP bandwidth
(𝐵𝑊𝑚𝑛) independently. This frees us from handling the resource
contention issue. When performing throughput/latency model-
ing, LogNIC firstly splits 𝑊 across different graphs and asso-
ciates each with a weight parameter (𝑤𝐺𝑖

). It then computes the
weighted average of data transfer percentage over each edge (e.g.,∑
𝑤𝐺𝑖

× 𝛼), and obtains the 𝑃𝑎𝑡𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒 /𝑇𝑎𝑡𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒 for the entire
SmartNIC.

• Extension #2: Tolerate diverse traffic profiles. LogNIC allows
different execution graphs processing distinct traffic patterns (e.g.,
packet size distribution). When an application consumes multiple
packet sizes, we apply different execution graphs since the per-IP

execution time𝐶 , data transfer ratio 𝛿𝑒𝑖 𝑗 , and overhead𝑂𝑖 would
vary. Even though LogNIC partitions the queue capacity of an
IP for multiple graphs, it also needs to accommodate the request
service rate 𝜇 (proportional to the traffic demand) to capture
the queueing effect of different-sized packets. With the compos-
ability support, we estimate the throughput and latency as the
weighted average across different types ∑𝑑𝑖𝑠𝑡𝑠𝑖𝑧𝑒 × 𝑃𝑎𝑡𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒
and ∑

𝑑𝑖𝑠𝑡𝑠𝑖𝑧𝑒 ×𝑇𝑎𝑡𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒 (Equations 3 and 8).
• Extension #3: Accommodate IP non-determinism. There
are two factors affecting an IP performance: one is the queue-
core mapping, which decides the execution parallelism of a re-
quest; the other one is whether the computation resource is work-
conserving or not, impacting its efficiency. To handle the first one,
LogNIC makes the IP actual parallelism configurable, impacting
both the IP maximum performance (𝑃𝑣𝑖) and the request delay.
It provides an opportunity to use the LogNIC model to explore
an optimal parallelism degree for a request, and then infer the
suggested queue-core mapping. Regarding the second one, we
employ the traffic shaping technique to unify the IP operating
mode. Essentially, all IPs are work-conserving. For non-work
conserving ones, LogNIC will add a specialized hardware block
(called rate limiter) in front of the IP at its incoming edge. This
rate limiter IP only performs enqueue/dequeue operations, but
encloses a fixed-sized queue to capture the computation resource
idleness. The queue capacity depends on the rate limiting degree.
As a result, 𝑇𝑃𝑘 and 𝑇𝐼𝑃[𝑖] are slightly modified.

3.8 LogNIC Workflow and Optimizer
The LogNIC model takes three inputs (i.e., software execution
graphs, traffic profiles, and model parameters) and derives attain-
able performance (Figure 4-a). The model spawns two independent
threads to estimate the throughput and latency for each offloaded
program and the overall. LogNIC is realized in Python.We represent
the execution graph as a directed graph in NetworkX [10]. The mod-
eling procedure uses the NumPy [11] for latency and throughput
calculation. The optimizer uses the SciPy functions [16].

LogNIC Optimizer. LogNIC exposes a couple of configurable
parameters (Table 2) that can guide system optimization, e.g., com-
putation partitioning, load-aware scheduling, concurrency tuning,
etc. To demonstrate this capability, we develop an interactive op-
timizer to explore the system design space (Figure 4-b). It works
as follows. First, the optimizer defines the objective function (such
as minimize 𝑃𝑎𝑡𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒 or maximize 𝑇𝑎𝑡𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒)) as well as the
system constraints (e.g., device bus speed, IP parallelism, average
latency bound). Second, we provide an interface for developers to
prioritize different design alternatives by assigning weights and
encoding them as another set of constraints. Finally, the optimizer
uses an off-the-shelf solver to find a satisfactory solution. The sug-
gested result might not be the optimal one if a local optimization
algorithm (like the Nelder-Mead method [8]) is chosen. If the solver
is unable to find a solution, one can further relax the optimizing
goals or constraints. Our solver applies the SLSQP algorithm (from
the SciPy library [16]) that combines the Han-Powell quasi-Newton
method [15] and the BFGS update [2] of the B-matrix, where the
step-length algorithm uses an L1-test function.

LogNIC: A High-Level Performance Model for SmartNICs MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

 0

 0.5

 1

 1.5

 2

 2.5

 3

CRC 3DES MD5 HFA

T
h

ro
u

g
h

p
u

t
(M

O
P

S
)

Accelerator

512B
1KB

2KB
4KB

8KB
16KB

Figure 5: Accelerator throughput varied with
its data access granularity.

 0

 100

 200

 300

 400

 500

 600

 0 0.5 1 1.5 2 2.5 3

L
a

te
n

c
y
 (

u
s
)

Throughput (GB/s)

4KB-RRD-Measured
4KB-RRD-LogNIC

128KB-RRD-Measured
128KB-RRD-LogNIC
4KB-SWR-Measured

4KB-SWR-LogNIC

Figure 6: Latency varied with the throughput
under three I/O profiles.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100

B
a

n
d

w
id

th
 (

M
B

/s
)

Read Ratio (%)

RD-Measured
WR-Measured

RD-LogNIC
RD-LogNIC

Figure 7: 4KB random IO performance varied
with the read ratio.

I/O
 Bridge

L2/
DRAM

ZIP

Coherent Memory
Interconnect (CMI)

CRC
cnMIPS

Crypto

On-chip Interconnect

NIC Cores (1…n)

I/O Interconnect

Hyper Finite
Automata (HFA)

RX Port TX Port To/From PCIe

DMA
Engine

Random Number
Generator (RNG)

Figure 8: The hardware model of the Liquid-
IOII CN2360 SmartNIC.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

1 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
(M

O
P

S
)

NIC Core Number (#)

MD5-Measured
MD5-LogNIC

KAS.-Measured

KAS.-LogNIC
HFA-Measured

HFA-LogNIC

Figure 9: Throughput varied with the IP1 par-
allelism under line rate.

 0

 5

 10

 15

 20

 25

64 128 256 512 1024 1500

B
a

n
d

w
id

th
 (

G
b

p
s
)

Packet Size (B)

CRC
AES
MD5

SHA-1
SMS4

HFA

Figure 10: Achieved bandwidth varied with
the packet size under line rate.

4 EVALUATION
Our evaluations aim to answer the following questions:

• How accurate is the LogNIC model in terms of performance
estimation and system bottleneck analysis? How does LogNIC
tolerate different traffic profiles? (§4.2–§4.3)

• Can we use the LogNIC model to optimize a SmartNIC-offloaded
program? If so, why and how does the model provide such a
capability? (§4.4–§4.5)

• Can we use the LogNIC model to guide a new SmartNIC design?
If so, how does the model explore the hardware design space and
what configurations can the model suggest? (§4.6)

4.1 Experimental Setup
Our testbed comprises Supermicro x86 servers, connected to an
Arista 7160-32CQ switch. Each server has two Intel Xeon pro-
cessors and 64/92GB memory, equipped with either a dual-port
100GbE NVIDIA Mellanox ConnectX-5 NIC (for traffic generation)
or one of the two SmartNICs: 25GbE LiquidIO-II CN2360 (enclosing
16×1.5GHz cnMIPS cores and 4GB DRAM) and 100GbE BlueField-
2 DPU [12] (equipped with 8×2.5GHz ARM A72 cores and 16GB
DRAM). We install the Broadcom Stingray PS1100R SmartNIC on a
standalone PCIe carrier board. It includes an 8-core 3.0GHz ARM
A72 CPU, 8GB DDR4-2400 DRAM, FlexSPARX accelerators, and a
100GbE NetXtreme NIC. We run either CentOS 7.4 or Ubuntu 20.04
on all the machines.

4.2 Case Study #1: Inline Acceleration
Case Description. SmartNICs enclose a range of domain-

specific accelerators and support bump-in-the-wire (inline) accel-
eration. We take an accelerator-rich SmartNIC (i.e., LiquidIO-II
CN2360) as an example. Figure 8 depicts its overall device model.
The SmartNIC program extends a basic UDP echo server. A NIC
core (IP1) first pulls incoming packets from the RX port via the
I/O interconnect, performs the L3/L4 packet processing, and then

triggers an accelerator (IP2) for execution. After catching the com-
pletion signal, the NIC core (IP3) fabricates the response and sends
it back via the TX port. We consider both (1) on-chip cryptographic
units (i.e., CRC, MD5, 3DES, AES, SMS4 [17], and KASUMI [6])
that uses on-chip interconnect for data movement; and (2) off-chip
application-specific engines, such as (de)compression (ZIP) and
hyper finite automata (HFA), where the NIC-accelerator communi-
cation is performed via CMI (coherent memory interconnect) and
I/O interconnect.

LogNIC Analysis. LogNIC delivers accurate throughput mod-
eling. As shown in Figure 9, for the MTU-sized traffic, on average
across all cases, the difference between estimated and measured
results for all three accelerators (i.e., MD5, KASUMI, HFA) is less
than 0.1%. Further, LogNIC can identify three factors that bound the
overall system throughput (Equation 4). The first one is 𝑃𝐼𝑃1 (IP1’s
computing capacity), which impacts the number of issued accelera-
tor calls. We configure such an experiment by gradually increasing
the IP1’s parallelism and measuring the achieved throughput. As
shown in Figure 9, the experimental results match our hypothesis.
MD5/KASUMI/HFA require 9/8/11 NIC cores to max out the per-
formance, respectively. The number of required cores is different
among these engines because they present different computing
transfer overheads (i.e., 𝑂𝐼𝑃1) in terms of accelerator preparation
and parameter transmission.

The second one is the accelerator throughput (𝑃𝐼𝑃2). Since the
LiquidIO-II SmartNIC provides no programming interface to tweak
an accelerator’s computing performance, to explore the impact
of this factor, we instead vary the packet size of input traffic and
measure the echo server bandwidth, equivalent to changing the
data feed rate to an accelerator. The achieved bandwidth is close
to 𝑀𝐼𝑁 (𝑃𝐼𝑃2 × 𝑃𝑘𝑡𝑠𝑖𝑧𝑒 , 25𝐺𝑏𝑝𝑠), as depicted in Figure 10. Third,
𝐵𝑊𝑀𝐸𝑀 and 𝐵𝑊𝐼𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑒 are two deciding factors from the commu-
nication perspective. Specifically, we examine the cache-coherent
memory interconnect to the crypto engine and HFA I/O fabric,

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Zerui Guo, Jiaxin Lin, Yuebin Bai, Daehyeok Kim, Michael Swift, Aditya Akella, and Ming Liu

 0

 0.5

 1

 1.5

 2

NFV-FIN NFV-DIN RTA-SF RTA-SHM IOT-DH

T
h

ro
u

g
h

p
u

t
(M

R
P

S
)

Applications

Round-Robin
Equal-Partition

LogNIC-Opt

Figure 11: Throughput comparison among
three allocation schemes.

 0

 2

 4

 6

 8

 10

 12

NFV-FIN NFV-DIN RTA-SF RTA-SHM IOT-DH

A
v
g

.
L

a
te

n
c
y
 (

m
s
)

Applications

Round-Robin
Equal-Partition

LogNIC-Opt

Figure 12: Average latency comparison among
three allocation schemes.

 0

 20

 40

 60

 80

 100

64 128 256 512 1024 1500

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Packet Size (B)

ARM-only
Accelerator-only

LogNIC-opt

Figure 13: Throughput varied with the packet
size among three placements.

 0

 5

 10

 15

 20

 25

 30

 35

 40

64B 128B 256B 512B 1024B 1500B

A
v
g

.
L

a
te

n
c
y
 (

u
s
)

Packet Size (B)

ARM-only
Accelerator-only

LogNIC-opt

Figure 14: Latency comparison varying the
packet size from 64B to 1500B.

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Credit (#)

Traffic Profile 1
Traffic Profile 2
Traffic Profile 3
Traffic Profile 4

Figure 15: Measured bandwidth varied with
the number of provisioned credits.

 0

 2

 4

 6

 8

 10

 12

 14

TP1(64B) TP2(512B) TP3(MTU)

L
a

te
n

c
y
 (

u
s
)

Traffic Profile

10/70
30/50
50/30
70/10

LogNIC

Figure 16: Latency comparison among static
and LogNIC suggested partitions.

whose bandwidth is 50Gbps and 40Gbps, respectively. We config-
ure an experiment that maximizes the accelerator performance and
varies the data access granularity (i.e., 𝛼𝑒𝑖 𝑗 and 𝛽𝑒𝑖 𝑗). As reported in
Figure 5 (that uses 1KB-sized traffic), the throughput starts to drop
as the data fetching size is larger than 4KB due to the memory/IO
bandwidth limit. For example, under the 16KB access granularity,
CRC, 3DES, MD5, and HFA only achieves 13.6%, 17.3%, 21.2%, and
25.8% of the maximum, respectively. Note that for all the experi-
ments, the accelerator submission and completion are handled by
the same NIC core, indicating that IP3 holds the same parallelism
as IP1.

Takeaway. LogNIC can locate the performance bottleneck by
considering the computing capability of all involved IPs and the
interconnect/memory bandwidth.

4.3 Case Study #2: NVMe-oF Target
CaseDescription. ASmartNIC JBOF (just a bunch of flash) is an

emerging cost-effective storage appliance for disaggregated storage.
We consider the target-side NVMe-oF [13] protocol (NVMe-over-
RDMA in our case) running over a Broadcom Stingray PS1100R
JBOF. The application consists of RDMA networking stack pro-
cessing on the NIC core, NVMe protocol handling, I/O submis-
sion/completion path coordination, and SmartNIC-SSD interaction.

LogNICAnalysis. One challengewhen applying LogNIC (Equa-
tion 12) in this example is that the SSD internal details (e.g., com-
mand queue and write cache) and execution conditions are hidden
from the programmers, complicating our initial parameter config-
urations. To remedy this, we characterize the latency/throughput
as increasing the IO depth and use the curve fitting technique to
figure out model parameters for the SSD. Next, we feed a single
type of I/O traffic and vary the ingress rate. Figure 6 reports the
comparison between measured latency and model estimated result
for 4KB random read (4KB-RRD), 128KB random read (128KB-RRD),

and 4KB sequential write (4KB-SWR) scenarios. The predicted dif-
ferences are only 0.89%, 0.24%, and 2.75%, respectively. Next, we use
the model to evaluate the aggregated bandwidth under a read/write
mixed traffic scenario for a fragmented SSD (preconditioned with
random writes). Figure 7 presents the 4KB random I/O performance
as we vary the read ratio. Our estimated performance is 14.6% lower
than the characterized one for both reads and writes. The mispredic-
tion rate increases slightly because random write IOs trigger SSD
garbage collection operations that consume internal bandwidth,
thereby, affecting both read/write performance. This cannot be
captured by the LogNIC model.

Takeaway. LogNIC generates accurate latency/throughput esti-
mations for various traffic profiles. It can describe a complicated IP
without exposing its architectural internals.

4.4 Case Study #3: Parallelism Tuning
Case Description. E3 [59] is a SmartNIC-based Microservice

execution platform developed for the LiquidIO CN2360 card. In
E3, each Microservice runs as a multi-threaded process either on
the SmartNIC or the host. An incoming request is forwarded to
an available core in a round-robin fashion, and then triggers its
service chain execution (defined as a dataflow graph). There is an
orchestrator agent that continuously monitors the SmartNIC over-
loading status (by examining the traffic manager queue length) and
migrates the Microservice to the host side if reaching an empirical
threshold. By default, E3 leverages the inter-request parallelism to
maximize system throughput without exploring the intra-request
parallelism opportunities. We use the LogNIC optimizer to deter-
mine an optimal number of NIC cores allocated for a Microservice-
based application.

LogNIC Optimization. Our optimization goal is maximizing
overall throughput by identifying the right parallelism degree (𝑃𝑣𝑖
and𝐷𝑣𝑖) at each vertex. We use the 𝑃𝑎𝑡𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒 to explore the design
space and take the original execution graph [59]. Based on the sug-
gested configurations, we modify the E3 data-plane runtime that

LogNIC: A High-Level Performance Model for SmartNICs MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

 0

 5

 10

 15

 20

 25

TP1(64B) TP2(512B) TP3(MTU)

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Traffic Profile

10/70
30/50

50/30
70/10

LogNIC

Figure 17: Throughput comparison among
four static traffic partitions.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

1 2 3 4 5 6 7 8

L
a

te
n

c
y
 (

u
s
)

Parallel Degree (#)

Traffic Profile1
Traffic Profile2

Figure 18: Latency varying the parallel degree
for two traffic profiles.

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Parallel Degree (#)

Traffic Profile 1
Traffic Profile 2

Figure 19: Throughput varying the parallel
degree for two traffic profiles.

sets up the request-core mapping and enables the cross-core intra-
request execution. We compare this with two other approaches:
the default round-robin scheme (used by E3); an equal partition
mechanism (that allocates NIC cores equally among all deployed
Microservices). Our evaluation considers five E3 applications: flow
monitoring (NFV-FIN), intrusion detection (NFV-DIN), spam filter
(RTA-SF), server health monitoring (RTA-SHM), and IoT data hub
(RTA-DH). Figures 11 and 12 report the throughput and average la-
tency. With 80% traffic load, on average across these five workloads,
our suggested allocation scheme achieves 34.8% and 36.4% through-
put improvement, along with 22.4% and 22.8% latency savings over
the other two. This is mainly because LogNIC can estimate the
actual working set for each IP across the service chain and yields
more accurate and fine-grained NIC core allocation.

Takeaway. The LogNIC optimizer suggests an optimal paral-
lelism degree (𝐷𝑣𝑖) of a vertex in the execution graph under given
traffic profiles that results in higher throughput.

4.5 Case Study #4: Computation Placement
Case Description. This experiment exploits the use of LogNIC

optimizer to place computations over a range of heterogeneous ex-
ecution engines. We consider a network middlebox workload, con-
sisting of five network functions (NFs): firewall gateway (FW)→L4
load balancer (LB)→deep packet inspection (DPI)→network ad-
dress translation (NAT)→packet encryption (PE), which is deployed
over the Mellanox BlueField-2 SmartNIC. Similar to the Broadcom
Stingray, it is also an off-path Multicore-SoC card. All these func-
tions can be implemented using the NIC ARM processor. However,
the SmartNIC also provides hardware-accelerated Crypto, RegEx,
Hashing, and Connection Tracking modules that can benefit most
of the above NFs (except the DPI one). When placing them over dif-
ferent hardware domains, one not only needs to consider hardware
limitations or computing constraints (such as a NAT with a large
connection table will not fit into the NIC switch) but also the data
movement overheads.

LogNIC Optimization. We apply the optimizer in two steps.
First, we prepare the model parameters via offline characterizations
for different-sized traffic. Next, we enumerate different combina-
tions of the target execution graph and ask the optimizer to esti-
mate the performance. For a given traffic profile, we choose the
placement that offers the best throughput without over-subscribing
the hardware resource. We compare it with two other schemes:
ARM-Only, placing the NF on SmartNIC general-purpose cores;
Accelerator-only, which takes a NIC accelerator as the first candi-
date (if possible). Figures 13 and 14 present the results. On average
across different cases, our approach saves 37.9% and 27.3% latencies

compared with the other two schemes, leading to 81.9% and 21.7%
throughput improvements. This is because it considers the packet
size-induced throughput difference and avoids costly off-chip com-
munication if necessary.

Takeaway. The LogNIC optimizer chooses the fastest execution
path for different-sized packets by examining the per-IP execution
throughput (𝐷𝑣𝑖), computation transfer overhead (𝑂𝑖), and potential
queueing delay (equation 12).

4.6 Case Study #5: Guiding SmartNIC Design
Case Description. SmartNICs are upgraded surprisingly fast
to accommodate emerging application demands. This example
demonstrates how to use LogNIC for hardware design space ex-
ploration. We take PANIC [55]–a recently proposed multi-tenant
programmable NIC–as an example. PANIC has four major architec-
tural components: (1) an RMT pipeline that parses the packet and
generates the per-packet offloading chain; (2) a switching fabric,
connecting and orchestrating traffic across all hardware compo-
nents; (3) a central scheduler, which monitors the SoC communi-
cation and computation overloading status, prioritizes different
execution paths, and provides traffic isolation guarantees; (4) com-
pute units that perform acceleration executions. An incoming or
outgoing packet first traverses the RMT pipeline to obtain an of-
floading descriptor and is forwarded to the scheduler through the
switching entity. The scheduler combines pull-/push-based schedul-
ing with a credit mechanism, and steers the packet in a load-aware
fashion. Finally, the packet is injected into a chain of execution
engines for various stateless/stateful packet processing. PANIC has
a number of configurable knobs (such as accelerator parallelism,
request queue size, switching capacity, etc.) to adapt to different
offloading scenarios, where LogNIC could help.

LogNIC Optimization. LogNIC can be used to explore the hard-
ware design when configuring hardware parameters. We consider
three scenarios: configuring the queue size for saving hardware
resources, enhancing the traffic steering capability to improve the
throughput, and designing the optimal execution parallelism for
performance maximization. The execution graphs are based on
the Model 1 ("Pipelined Chain"), Model 2 ("Parallelized Chain"),
and Mode 3 ("Hybrid Chain") from the original paper, where each
compute unit is an IP. We use the same experiment setup as [55].

• Scenario #1: Sizing the request queue of an accelerator. The
number of credits of a compute unit determines its internal queue
capacity. Our goal is to identify theminimal amount of credits that
saves the hardware resource without hurting throughput. We con-
figure four mixed traffic profiles (under Model 1) that splits band-
width across different-sized flows equally: profile 1 (64B/512B),

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Zerui Guo, Jiaxin Lin, Yuebin Bai, Daehyeok Kim, Michael Swift, Aditya Akella, and Ming Liu

profile 2 (64B/512B/1024B), profile 3 (64B/256B/ 512B/1500B), and
profile 4 (64B/128B/256B/1024B/1500B). The default configura-
tion that the original paper suggests is 8 credits and exposes the
credit allocation as a tunable factor. LogNIC models it using the
node partition parameter (𝛾𝑣𝑖), and generates the optimal credit
information as 5/4/4/4 credits for the above four profiles. The
suggestions align well with our experimental results (Figure 15).
Fewer credits reduce the latency. For example, for the first profile,
compared with the 8 credits case, we observe a 21.8% latency
drop when only using 5 credits that LogNIC suggests.

• Scenario #2: Steering traffic at the central scheduler. The
LogNIC model can enhance the PANIC scheduler with acceler-
ator awareness. We take Model 2 as an example and configure
the computing throughput ratio of three accelerators (A1:A2:A3)
as 4:7:3. Our experiment configures the traffic profile that com-
prises 20%, X%, (80-X)% traffic issuing to A1, A2, A3, respectively.
We use the LogNIC to find an optimal X by using the 𝐵𝑊𝑖𝑛 pa-
rameter so that one can minimize the average execution latency.
Figure 16 reports our empirical results by comparing four man-
ually configured cases with the one suggested by LogNIC for
64B/512B/MTU-sized traffic. On average across all three traffic
profiles, compared with the other four load balancing strategies,
LogNIC reduces the average latency by 11.7%, 15.6%, 38.4%, and
57.2%, respectively. Figure 17 illustrates that LogNIC also achieves
16.3%, 11.4%, 84.8%, and 159.1% higher throughput. This is be-
cause the LogNIC optimizer steers traffic in proportion to an
accelerator’s computing capability.

• Scenario #3: Configuring the IP hardware parallelism. This
example demonstrates the capability of the LogNIC model for
tuning the accelerator’s computing throughput. We use a modi-
fied version of Model 3, and set up three execution paths between
ingress and egress: 𝐼𝑃1 → 𝐼𝑃3, 𝐼𝑃1 → 𝐼𝑃4, and 𝐼𝑃2 → 𝐼𝑃4. We
split the traffic between 𝐼𝑃1 → 𝐼𝑃3 and 𝐼𝑃1 → 𝐼𝑃4 in two ways
(i.e., 50%/50%, 80%/20%) and measure the performance when in-
creasing the parallel degree of IP4. The optimizer suggests the
optimal parallel degree for traffic 1 and 2 is 6 and 4, which aligns
with our empirical results Figures 18 and 19.

Takeaway: The LogNIC optimizer determines the minimal
amount of resource provisioning and better execution pipeline
that yield a more efficient hardware implementation.

4.7 Discussion
LogNIC entails the following limitations. First, some model param-
eters (in Table 2) might be inaccessible or difficult to characterize.
For example, the IP-IP communication bandwidth (𝐵𝑊𝑚𝑛) via an
internal SoC interconnect cannot be directly measured if the Smart-
NIC vendor provides no APIs to measure it. An implicit library call
that triggers an acceleration execution would hide the computation
transfer overhead (𝑂𝑖). Hence, developers have to provide conser-
vative parameters that could affect the model’s accuracy. Second,
in addition to data movements, an IP can issue interface/memory
accesses during its execution (such as data structure traversals),
where the model does not have one dedicated parameter to capture
this. We address this by reusing the edge medium usage parameters
(i.e., 𝛼𝑒𝑖 𝑗 and 𝛽𝑒𝑖 𝑗), and allow an IP to integrate its internal band-
width usage into the ingress edge. Third, an IP can be complicated

and opaque, where its architectural internal details are obscure. The
SSD is such an example. Our experience suggests an alternative
solution: empirically obtaining the latency vs. throughput graph as
a whole and applying the curve-fitting technique to generate ap-
proximate parameters. Fourth, the LogNIC model optimizer cannot
take the tail latency as the optimization goal or constraint since the
model is unable to estimate the tail behavior. Lastly, to search the
configuration parameters, 𝐵𝑊𝑖𝑛 should be given.

5 RELATEDWORK
5.1 Compiler Support for SmartNICs
Researchers have developed new programming models, abstrac-
tions, and utilities to assist SmartNIC programming. Floem [66] ap-
plies a data-flow programming model and provides abstractions to
assign computation to hardware execution engines, perform logical-
physical queuemapping, etc. NICA [35] proposes an ikernel abstrac-
tion that is tightly integrated with the network stacks, enabling
deploy application logic on FPGA-based SmartNICs. hXDP [33]
develops a compiler that translates eBPF bytecode to an FPGA
SmartNIC that follows an extended eBPF Instruction-set Architec-
ture. Clara [68] generates offloading insights of legacy NFs and
predicts its key performance parameters (such as the number of
compute instructions and memory accesses). LogNIC is orthogonal
to these systems and can be integrated into their compiler backend
for performance estimation.

5.2 Performance Analysis of Networked System
A number of network-based performance analysis utilities have
been built. For example, Bolt [43] proposes the performance con-
tract for network functions deploying over x86 machines based
on the worst-case execution time (WCET) analysis technique. It
relies on the worst-case execution time (WCET) analysis technique,
identifies the performance critical variables (PCV), and generates
contracts for the target server box. However, it cannot estimate the
whole hardware performance bound and limits the software explo-
ration interface. SLOMO [60] leverages the hardware performance
counters to analyze the interference impact over shared computing
resources, and build an application/ platform-dependent accurate
prediction framework. PIX [42] proposes the performance interface
abstraction for NFs, including the number of instructions, the num-
ber of memory operations, and the number of CPU cycles, which
are specific to the CPU’s ISA. PCIe-bench [65] models the PCIe bus
behavior and analyzes its impact on devices. Collie [48] unearths
performance anomalies in RDMA subsystems by simulated anneal-
ing to trigger RDMA-based performance and diagnostic counters
to extreme value regions. Similar to these systems, LogNIC also
requires an offline characterization phase to obtain the IP Roofline
as model parameters.

5.3 Switch-accelerated System
Driven by the high-throughput computing capability of pro-
grammable RMT switches [32], people have co-designed rack-
scale distributed systems with in-network primitives [39, 44–
46, 49, 51, 54, 57, 58, 70, 77, 79, 80]. For example, NetCache [44]
realizes the key-value store logic on the packet processing pipeline.
NetLock [77] then runs a centralized lock manager on the switch

LogNIC: A High-Level Performance Model for SmartNICs MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

data-plane. Pegasus [54] develops an in-network coherence direc-
tory to track and manage the location of replicated objects, and en-
ables load-aware forwarding and dynamic rebalancing. MIND [51]
places the memory management logic in the network fabric for
distributed shared memory. [80] proposes a rack-level microsecond-
scale request scheduler to mitigate load imbalance and head-of-
line block issues. ATP [49] and SwitchML [70] accelerate machine
learning tasks by using switch-enabled primitives. We believe the
LogNIC model can support programmable switches by designing a
new set of system interfaces.

6 CONCLUSION
This paper proposes LogNIC, a high-level performance model for
SmartNICs. It employs a packet-centric based modeling that cap-
tures the SmartNIC execution based on how packets transmit over
different hardware entities. LogNIC hides the underlying device
details, represents a SmartNIC-offloaded program as an execution
graph, retains a handful of configurable parameters, and estimates
latency/throughput for a given traffic profile.We evaluate the model
using three commodity SmartNICs and an academic prototype un-
der five case studies, and demonstrate its three capabilities i.e.,
identifying performance bounds, exploring optimization strategies,
and guiding new hardware design. We believe LogNIC will be a
useful utility for software developers and hardware architects when
building SmartNIC-assisted solutions.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their com-
ments and feedback. This work is supported in part by NSF grants
CNS-2106199 and CNS-2212192.

REFERENCES
[1] 2022. Broadcom Stingray PS1100R. https://docs.broadcom.com/doc/PS1100R-PB.
[2] 2022. Broyden–Fletcher–Goldfarb–Shanno algorithm. https://en.wikipedia.org

/wiki/Broyden-Fletcher-Goldfarb-Shanno_algorithm.
[3] 2022. Fungible FAC100. https://www.fungible.com/product/nvme-over-tcp-

fungible-accelerator-cards/.
[4] 2022. Intel co-designed the Mount Evans SmartNIC with Google Cloud.

https://www.intel.com/content/www/us/en/products/network-io/infrastruct
ure-processing-units/asic/es2000asic.html.

[5] 2022. Intel IPUs and SmartNICs. https://www.intel.com/content/www/us/en/pr
oducts/network-io/smartnic.html.

[6] 2022. KASUMI Algorithm. https://en.wikipedia.org/wiki/KASUMI.
[7] 2022. Marvell LiquidIO DPUs. https://www.marvell.com/documents/08icqisgk

btn6kstgzh4/.
[8] 2022. Nelder-Mead Method. https://en.wikipedia.org/wiki/Nelder-Mead_metho

d.
[9] 2022. Netronome Agilio SmartNICs. https://www.netronome.com/products/sma

rtnic/overview/.
[10] 2022. NetworkX Library. https://networkx.org/.
[11] 2022. NumPy Library. https://numpy.org/.
[12] 2022. NVIDIA BlueField-2 DPU. https://www.nvidia.com/en-us/networking/pr

oducts/data-processing-unit/.
[13] 2022. NVMe-oF Specification. https://nvmexpress.org/developers/nvme-of-

specification/.
[14] 2022. Pensando DSC-100. https://pensando.io/products/dsc/.
[15] 2022. Quasi-Newton Method. https://en.wikipedia.org/wiki/Quasi-Newton_met

hod.
[16] 2022. SciPy Library. https://scipy.org.
[17] 2022. SMS4 Algorithm. https://en.wikipedia.org/wiki/SM4_(cipher).
[18] 2022. The Alpha Data FPGA SmartNICs. https://www.nvidia.com/en-us/netwo

rking/ethernet/innova-2-flex/.
[19] 2022. The Intel FPGA SmartNIC. https://www.intel.com/content/www/us/en/pr

oducts/details/fpga/platforms/smartnic.html.

[20] 2022. The NVIDIA Mellanox Innova-2 Flex Open Programmable SmartNIC.
https://www.nvidia.com/en-us/networking/ethernet/innova-2-flex/.

[21] 2022. The Xilinx Alveo U25 SmartNIC. https://www.xilinx.com/products/boards-
and-kits/alveo/u25.html.

[22] 2023. 100 Gbps and Higher-Speed Ports to Account for 38 Percent of Shipments.
https://www.delloro.com/news/smart-nic-revenues-projected-to-reach-1-6-bill
ion-by-2026/.

[23] 2023. AWS Nitro System. https://aws.amazon.com/ec2/nitro/.
[24] 2023. Introducing C3 machines with Google’s custom Intel IPU.

https://cloud.google.com/blog/products/compute/introducing-c3-machines-
with-googles-custom-intel-ipu.

[25] 2023. ProjectMonterey. https://blogs.vmware.com/vsphere/2020/09/announcing-
project-monterey-redefining-hybrid-cloud-architecture.html.

[26] 2023. SmartNIC deployment at Tencent Cloud. https://www.theregister.com/
2021/11/08/tencent_homebrew_silicon/.

[27] 2023. SmartNICs to make up 38% of network market by 2026. https://www.ther
egister.com/2022/08/11/smartnics_network_market/.

[28] Muhammad Shoaib Bin Altaf and David A. Wood. 2017. LogCA: A High-Level
Performance Model for Hardware Accelerators. In Proceedings of the 44th Annual
International Symposium on Computer Architecture.

[29] CJ Ancker Jr and AV Gafarian. 1963. Some queuing problems with balking and
reneging. I. Operations Research 11, 1 (1963), 88–100.

[30] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer Rexford,
David Walker, and David Wentzlaff. 2020. Enabling Programmable Transport
Protocols in High-Speed NICs. In Proceedings of the 17th Usenix Conference on
Networked Systems Design and Implementation.

[31] B. Bhattacharya and S.S. Bhattacharyya. 2001. Parameterized dataflow modeling
for DSP systems. IEEE Transactions on Signal Processing 49, 10 (2001), 2408–2421.

[32] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin
Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding Metamorphosis:
Fast ProgrammableMatch-Action Processing in Hardware for SDN. In Proceedings
of the ACM SIGCOMM 2013 Conference on SIGCOMM.

[33] Marco Spaziani Brunella, Giacomo Belocchi, Marco Bonola, Salvatore Pontarelli,
Giuseppe Siracusano, Giuseppe Bianchi, Aniello Cammarano, Alessandro
Palumbo, Luca Petrucci, and Roberto Bifulco. 2020. hXDP: Efficient Software
Packet Processing on FPGA NICs. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20).

[34] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser,
Eunice Santos, Ramesh Subramonian, and Thorsten Von Eicken. 1993. LogP:
Towards a realistic model of parallel computation. In Proceedings of the fourth
ACM SIGPLAN symposium on Principles and practice of parallel programming.

[35] Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and Mark Silberstein. 2019.
NICA: An Infrastructure for Inline Acceleration of Network Applications. In 2019
USENIX Annual Technical Conference (USENIX ATC 19).

[36] Deniz Ersoz, Mazin S Yousif, and Chita R Das. 2007. Characterizing network
traffic in a cluster-based, multi-tier data center. In 27th International Conference
on Distributed Computing Systems (ICDCS’07).

[37] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack
Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Pop-
uri, Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,
Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018. Azure Accel-
erated Networking: SmartNICs in the Public Cloud. In 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18).

[38] Zerui Guo, Hua Zhang, Chenxingyu Zhao, Yuebin Bai, Michael Swift, and Ming
Liu. 2023. LEED: A Low-Power, Fast Persistent Key-Value Store on SmartNIC
JBOFs. In Proceedings of the ACM SIGCOMM 2023 Conference. 1012–1027.

[39] Yongchao He, Wenfei Wu, Yanfang Le, Ming Liu, and ChonLam Lao. 2023. A
Generic Service to Provide In-Network Aggregation for Key-Value Streams. In
Proceedings of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2. 33–47.

[40] MarkHill and Vijay Janapa Reddi. 2019. Gables: A RooflineModel forMobile SoCs.
In 2019 IEEE International Symposium on High Performance Computer Architecture
(HPCA).

[41] M.D. Hill and A.J. Smith. 1989. Evaluating associativity in CPU caches. IEEE
Trans. Comput. 38, 12 (1989), 1612–1630.

[42] Rishabh Iyer, Katerina Argyraki, and George Candea. 2022. Performance Inter-
faces for Network Functions. In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22).

[43] Rishabh Iyer, Luis Pedrosa, Arseniy Zaostrovnykh, Solal Pirelli, Katerina Argy-
raki, and George Candea. 2019. Performance Contracts for Software Network
Functions. In 16th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 19).

[44] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores
with Fast In-Network Caching. In Proceedings of the 26th Symposium on Operating

https://docs.broadcom.com/doc/PS1100R-PB
https://en.wikipedia.org/wiki/Broyden-Fletcher-Goldfarb-Shanno_algorithm
https://en.wikipedia.org/wiki/Broyden-Fletcher-Goldfarb-Shanno_algorithm
https://www.fungible.com/product/nvme-over-tcp-fungible-accelerator-cards/
https://www.fungible.com/product/nvme-over-tcp-fungible-accelerator-cards/
https://www.intel.com/content/www/us/en/products/network-io/infrastructure-processing-units/asic/es2000asic.html
https://www.intel.com/content/www/us/en/products/network-io/infrastructure-processing-units/asic/es2000asic.html
https://www.intel.com/content/www/us/en/products/network-io/smartnic.html
https://www.intel.com/content/www/us/en/products/network-io/smartnic.html
https://en.wikipedia.org/wiki/KASUMI
https://www.marvell.com/documents/08icqisgkbtn6kstgzh4/
https://www.marvell.com/documents/08icqisgkbtn6kstgzh4/
https://en.wikipedia.org/wiki/Nelder-Mead_method
https://en.wikipedia.org/wiki/Nelder-Mead_method
https://www.netronome.com/products/smartnic/overview/
https://www.netronome.com/products/smartnic/overview/
https://networkx.org/
https://numpy.org/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://nvmexpress.org/developers/nvme-of-specification/
https://nvmexpress.org/developers/nvme-of-specification/
https://pensando.io/products/dsc/
https://en.wikipedia.org/wiki/Quasi-Newton_method
https://en.wikipedia.org/wiki/Quasi-Newton_method
https://scipy.org
https://en.wikipedia.org/wiki/SM4_(cipher)
https://www.nvidia.com/en-us/networking/ethernet/innova-2-flex/
https://www.nvidia.com/en-us/networking/ethernet/innova-2-flex/
https://www.intel.com/content/www/us/en/products/details/fpga/platforms/smartnic.html
https://www.intel.com/content/www/us/en/products/details/fpga/platforms/smartnic.html
https://www.nvidia.com/en-us/networking/ethernet/innova-2-flex/
https://www.nvidia.com/en-us/networking/ethernet/innova-2-flex/
https://www.xilinx.com/products/boards-and-kits/alveo/u25.html
https://www.xilinx.com/products/boards-and-kits/alveo/u25.html
https://www.delloro.com/news/smart-nic-revenues-projected-to-reach-1-6-billion-by-2026/
https://www.delloro.com/news/smart-nic-revenues-projected-to-reach-1-6-billion-by-2026/
https://aws.amazon.com/ec2/nitro/
https://cloud.google.com/blog/products/compute/introducing-c3-machines-with-googles-custom-intel-ipu
https://cloud.google.com/blog/products/compute/introducing-c3-machines-with-googles-custom-intel-ipu
https://cloud.google.com/blog/products/compute/introducing-c3-machines-with-googles-custom-intel-ipu
https://blogs.vmware.com/vsphere/2020/09/announcing-project-monterey-redefining-hybrid-cloud-architecture.html
https://blogs.vmware.com/vsphere/2020/09/announcing-project-monterey-redefining-hybrid-cloud-architecture.html
https://www.theregister.com/2021/11/08/tencent_homebrew_silicon/
https://www.theregister.com/2021/11/08/tencent_homebrew_silicon/
https://www.theregister.com/2022/08/11/smartnics_network_market/
https://www.theregister.com/2022/08/11/smartnics_network_market/

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Zerui Guo, Jiaxin Lin, Yuebin Bai, Daehyeok Kim, Michael Swift, Aditya Akella, and Ming Liu

Systems Principles.
[45] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon Kim, Jeongkeun Lee, Vyas

Sekar, and Srinivasan Seshan. 2020. TEA: Enabling State-Intensive Network
Functions on Programmable Switches. In Proceedings of the Annual Conference
of the ACM Special Interest Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer Communication.

[46] Daehyeok Kim, Jacob Nelson, Dan R. K. Ports, Vyas Sekar, and Srinivasan Seshan.
2021. RedPlane: Enabling Fault-Tolerant Stateful in-Switch Applications. In
Proceedings of the 2021 ACM SIGCOMM 2021 Conference.

[47] Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im, Marco Canini, Dejan Kostić,
Youngjin Kwon, Simon Peter, and Emmett Witchel. 2021. LineFS: Efficient Smart-
NIC Offload of a Distributed File System with Pipeline Parallelism. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems Principles.

[48] Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang, Jianxi Ye, Chuanxiong Guo,
and Danyang Zhuo. 2022. Collie: Finding Performance Anomalies in RDMA
Subsystems. In 19th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 22).

[49] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu, Aditya
Akella, and Michael Swift. 2021. ATP: In-network Aggregation for Multi-tenant
Learning. In 18th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 21).

[50] Yanfang Le, Hyunseok Chang, Sarit Mukherjee, Limin Wang, Aditya Akella,
Michael M. Swift, and T. V. Lakshman. 2017. UNO: Uniflying Host and Smart
NIC Offload for Flexible Packet Processing. In Proceedings of the 2017 Symposium
on Cloud Computing.

[51] Seung-seob Lee, Yanpeng Yu, Yupeng Tang, Anurag Khandelwal, Lin Zhong, and
Abhishek Bhattacharjee. 2021. MIND: In-Network Memory Management for
Disaggregated Data Centers. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles.

[52] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, Andrew
Putnam, Enhong Chen, and Lintao Zhang. 2017. KV-Direct: High-Performance
In-Memory Key-Value Store with Programmable NIC. In Proceedings of the 26th
Symposium on Operating Systems Principles.

[53] Bojie Li, Kun Tan, Layong (Larry) Luo, Yanqing Peng, Renqian Luo, Ningyi Xu,
Yongqiang Xiong, Peng Cheng, and Enhong Chen. 2016. ClickNP: Highly Flexible
and High Performance Network Processing with Reconfigurable Hardware. In
Proceedings of the 2016 ACM SIGCOMM Conference.

[54] Jialin Li, Jacob Nelson, Ellis Michael, Xin Jin, and Dan R. K. Ports. 2020. Pegasus:
Tolerating Skewed Workloads in Distributed Storage with In-Network Coher-
ence Directories. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20).

[55] Jiaxin Lin, Kiran Patel, Brent E. Stephens, Anirudh Sivaraman, and Aditya Akella.
2020. PANIC: AHigh-Performance Programmable NIC forMulti-tenant Networks.
In 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20).

[56] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon Peter, and
Karan Gupta. 2019. Offloading Distributed Applications onto SmartNICs Using
IPipe. In Proceedings of the ACM Special Interest Group on Data Communication.

[57] Ming Liu, Arvind Krishnamurthy, Harsha V. Madhyastha, Rishi Bhardwaj, Karan
Gupta, Chinmay Kamat, Huapeng Yuan, Aditya Jaltade, Roger Liao, Pavan Konka,
and Anoop Jawahar. 2020. Fine-Grained Replicated State Machines for a Cluster
Storage System . In 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20). 305–323.

[58] Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind Krishnamurthy, and Kishore
Atreya. 2017. IncBricks: Toward In-Network Computation with an In-Network
Cache. In Proceedings of the Twenty-Second International Conference on Architec-
tural Support for Programming Languages and Operating Systems. 795–809.

[59] Ming Liu, Simon Peter, Arvind Krishnamurthy, and Phitchaya Mangpo
Phothilimthana. 2019. E3: Energy-Efficient Microservices on SmartNIC-
Accelerated Servers. In 2019 USENIX Annual Technical Conference (USENIX ATC
19).

[60] Antonis Manousis, Rahul Anand Sharma, Vyas Sekar, and Justine Sherry. 2020.
Contention-Aware Performance Prediction For Virtualized Network Functions.
In Proceedings of the Annual Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and Protocols for
Computer Communication.

[61] Rui Miao, Lingjun Zhu, Shu Ma, Kun Qian, Shujun Zhuang, Bo Li, Shuguang
Cheng, Jiaqi Gao, Yan Zhuang, Pengcheng Zhang, Rong Liu, Chao Shi, Binzhang
Fu, Jiaji Zhu, Jiesheng Wu, Dennis Cai, and Hongqiang Harry Liu. 2022. From
Luna to Solar: The Evolutions of the Compute-to-Storage Networks in Alibaba
Cloud. In Proceedings of the ACM SIGCOMM 2022 Conference (Sigcomm 22).

[62] Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu Zhao, Andrew Wei, In Hwan
Doh, and Arvind Krishnamurthy. 2021. Gimbal: Enabling Multi-Tenant Storage
Disaggregation on SmartNIC JBOFs. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference.

[63] Asit K. Mishra, Joseph L. Hellerstein, Walfredo Cirne, and Chita R. Das. 2010. To-
wards Characterizing Cloud Backend Workloads: Insights from Google Compute
Clusters. SIGMETRICS Perform. Eval. Rev. (2010).

[64] YoungGyoun Moon, SeungEon Lee, Muhammad Asim Jamshed, and Kyoung-
Soo Park. 2020. AccelTCP: Accelerating Network Applications with Stateful
TCP Offloading. In 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20).

[65] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio
López-Buedo, and AndrewW. Moore. 2018. Understanding PCIe Performance for
End Host Networking. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication.

[66] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine Kaufmann, Simon Peter,
Rastislav Bodik, and Thomas Anderson. 2018. Floem: A Programming System for
NIC-Accelerated Network Applications. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18).

[67] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS: Achieving
Low Tail Latency for Microsecond-Scale Networked Tasks. In Proceedings of the
26th Symposium on Operating Systems Principles.

[68] YimingQiu, JiarongXing, Kuo-FengHsu, Qiao Kang,Ming Liu, Srinivas Narayana,
and Ang Chen. 2021. Automated SmartNIC Offloading Insights for Network
Functions. In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles.

[69] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren.
2015. Inside the Social Network’s (Datacenter) Network. In Proceedings of the
2015 ACM Conference on Special Interest Group on Data Communication.

[70] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. 2021. Scaling Distributed Machine Learning with In-Network Aggrega-
tion. In 18th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 21).

[71] Henry N. Schuh, Weihao Liang, Ming Liu, Jacob Nelson, and Arvind Krishna-
murthy. 2021. Xenic: SmartNIC-Accelerated Distributed Transactions. In Pro-
ceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles.

[72] Rajath Shashidhara, Tim Stamler, Antoine Kaufmann, and Simon Peter. 2022.
FlexTOE: Flexible TCP Offload with Fine-Grained Parallelism. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22).

[73] Akshitha Sriraman and Abhishek Dhanotia. 2020. Accelerometer: Understanding
Acceleration Opportunities for Data Center Overheads at Hyperscale.

[74] Arthur H. Veen. 1986. Dataflow Machine Architecture. ACM Comput. Surv. 18, 4
(dec 1986), 365–396.

[75] Xingda Wei, Rongxin Cheng, Yuhan Yang, Rong Chen, and Haibo Chen. 2023.
Characterizing Off-path SmartNIC for Accelerating Distributed Systems. In 17th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 23).
987–1004.

[76] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an
insightful visual performance model for multicore architectures. Commun. ACM
52, 4 (2009), 65–76.

[77] Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowdhury, and
Xin Jin. 2020. NetLock: Fast, Centralized Lock Management Using Programmable
Switches. In Proceedings of the Annual Conference of the ACM Special Interest
Group on Data Communication on the Applications, Technologies, Architectures,
and Protocols for Computer Communication.

[78] Chenxingyu Zhao, Tapan Chugh, Jaehong Min, Ming Liu, and Arvind Krishna-
murthy. 2022. Dremel: Adaptive Configuration Tuning of RocksDB KV-Store.
Proc. ACM Meas. Anal. Comput. Syst., Article 37 (jun 2022), 30 pages.

[79] Hang Zhu, Zhihao Bai, Jialin Li, Ellis Michael, Dan R. K. Ports, Ion Stoica, and
Xin Jin. 2019. Harmonia: Near-Linear Scalability for Replicated Storage with
in-Network Conflict Detection. Proc. VLDB Endow. (2019).

[80] Hang Zhu, Kostis Kaffes, Zixu Chen, Zhenming Liu, Christos Kozyrakis, Ion
Stoica, and Xin Jin. 2020. RackSched: A Microsecond-Scale Scheduler for Rack-
Scale Computers. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20).

	Abstract
	1 Introduction
	2 Motivation
	2.1 SmartNIC Hardware Architecture
	2.2 SmartNIC-assisted Systems
	2.3 The Need for a New Performance Model
	2.4 Inadequacies of Existing Models

	3 The LogNIC Model
	3.1 Overview
	3.2 Hardware Model of a SmartNIC
	3.3 Software Representation of a Program
	3.4 Model Parameters
	3.5 Throughput Modeling
	3.6 Latency Modeling
	3.7 LogNIC Generalization
	3.8 LogNIC Workflow and Optimizer

	4 Evaluation
	4.1 Experimental Setup
	4.2 Case Study #1: Inline Acceleration
	4.3 Case Study #2: NVMe-oF Target
	4.4 Case Study #3: Parallelism Tuning
	4.5 Case Study #4: Computation Placement
	4.6 Case Study #5: Guiding SmartNIC Design
	4.7 Discussion

	5 Related Work
	5.1 Compiler Support for SmartNICs
	5.2 Performance Analysis of Networked System
	5.3 Switch-accelerated System

	6 Conclusion
	Acknowledgments
	References

