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Abstract

Detecting 3D objects from multi-view images is a fundamental problem in 3D com-
puter vision. Recently, significant breakthrough has been made in multi-view 3D de-
tection tasks. However, the unprecedented detection performance of these vision BEV
(bird’s-eye-view) detection models is accompanied with enormous parameters and com-
putation, which make them unaffordable on edge devices. To address this problem, in
this paper, we propose a structured knowledge distillation framework, aiming to improve
the efficiency of modern vision-only BEV detection models. The proposed framework
mainly includes: (a) spatial-temporal distillation which distills teacher knowledge of
information fusion from different timestamps and views, (b) BEV response distillation
which distills teacher response to different pillars, and (c) weight-inheriting which solves
the problem of inconsistent inputs between students and teacher in modern transformer
architectures. Experimental results show that our method leads to an average improve-
ment of 2.16 mAP and 2.27 NDS on the nuScenes benchmark, outperforming multiple
baselines by a large margin.

1 Introduction
Recently, bird’s-eye-view (BEV) based multi-camera perception frameworks have greatly
narrowed the performance gap with LiDAR based methods for 3D object detection tasks [19,
21, 30, 31]. For example, compared with state-of-the-art LiDAR methods, some recent
works have obtained NDS scores within a 10% margin [18, 19].

Such vision-centric BEV frameworks usually involve two stages: single view feature extrac-
tion using backbone networks (convnets [25] or transformers [29]), and information fusion
across multiple camera views and multiple timestamps using transformers [21, 23, 24] or
the lift-splat-shoot paradigm [15, 16, 19]. Once a spatial-temporal coherent feature repre-
sentation is obtained in the unified BEV space, 3D object detection and semantic segmenta-
tion [16, 19, 21] can be done on the BEV feature map with high accuracy.
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However, such performance improvements are achieved with a hefty computation overhead.
For instance, the 120M parameters in BEVDet [16] require more than 4 TFlops computa-
tion, which is almost 20× larger and 10× slower than CenterPoint [32], a state-of-the-art
LiDAR-based 3D detector. Practical applications such as self-driving vehicles, usually have

Figure 1: Experimental results on nuScenes.
The area of circles indicates the number of pa-
rameters. Compared with BEVFormer with a
ResNeXt backbone, our method achieves 0.72
NDS improvements, 2.74× acceleration and
4.97× compression.

limited computation budget but rather strict
latency and accuracy requirements. De-
ployment of such visual BEV models onto
edge devices requires a delicate balancing
between low computation cost and high de-
tection accuracy. Compared with neural
network pruning [10] and quantization [8,
38], knowledge distillation (KD) [3, 13] is
more suited for striking such a balance.

Knowledge distillation (KD) is an effec-
tive model training technique that improves
the performance of a lightweight student
model by transferring the knowledge from a
pre-trained but over-parameterized teacher
model [3, 13]. At deployment time, only the
lightweight student model is used. While
KD has demonstrated great success in var-

ious 2D computer vision tasks, such as classification [35], object detection [6, 17, 34], se-
mantic segmentation [11, 22], and image generation [7, 20, 27, 37], the application of KD
distillation on 3D computer vision, especially the camera-based multi-view 3D detection,
has not been well-studied. However, it is also brought to our attention that simply applying
traditional KD methods to 3D vision tasks usually leads to limited performance gains.

To address the aforementioned problems, this paper proposes a novel KD framework for
visual BEV detection models. We start with analyzing the challenges in the multi-view 3D
detection task and then propose the corresponding solution as follows:

Information fusion from multiple positions: In multi-view 3D detection, the detector takes
input from multiple cameras across different timestamps to identify objects. Hence, the
student should be able to learn not only the information from single images but also how to
fuse and leverage the information from multiple spatial/temporal positions. To tackle this
challenge, we propose spatial-temporal distillation, which improves student performance by
allowing it to learn the semantic correspondence between inputs in different spatial (i.e.,
view) and temporal positions from their teachers. Moreover, we also propose BEV response
distillation, which aims to distill teacher response to different positions/pillars in the BEV
feature map, which contains high level information on object localization.

Discrepancies between the inputs: The state-of-the-art BEV 3D detectors usually employ a
DETR-like architecture, which utilizes self-attention and cross-attention layers for informa-
tion fusion [5, 31]. Different from traditional convolutional detectors, the input information
of DETR-style detectors contains not only images but also trainable queries and positional
encodings. Without explicit constraints, student and teacher models could have learned dif-
ferent positional encodings and queries after training. Knowledge distillation will be hin-
dered by such discrepancies [2]. To address this problem, we propose a weight-inheriting
scheme which fixes the positional encodings and BEV queries of the student model to the
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Figure 2: The overall framework and details of our method. (a) The proposed knowledge
distillation methods mainly include weight-inheriting, spatial-temporal distillation, and BEV
response distillation. Weight-inheriting fixes the parameters of BEV queries and positional
encoding to their value in the pre-trained teacher detector during the whole training period to
guarantee that students and teachers have the same inputs. (b) Spatial-temporal distillation
aims to improve student performance on information fusion of images from multiple views
and timestamps by transferring teacher knowledge in the attention weights in the temporal
self-attention and spatial cross-attention layers. (c) BEV response distillation first computes
the response of different positions in BEV map and then distills it to the students.

corresponding values in the teacher detector. In this way, the student detector will bene-
fit from the pre-trained weights of the teacher detector directly. Surprisingly, we find that
even without applying any knowledge distillation losses, simply using the weight-inheriting
scheme can significantly improve the performance of knowledge distillation for this task.

Without loss of generality, we conduct extensive experiments on the nuScenes dataset [4]
using a representative and state-of-the-art BEVFormer model architecture [21]. On aver-
age, 2.16 mAP and 2.27 NDS improvements can be observed across three different student-
teacher settings, demonstrating the effectiveness of our proposed knowledge distillation
framework. Compared with multiple baseline methods [1, 9, 12, 13, 14, 28, 33, 34], our
method outperforms them all by a large margin.

In summary, our contributions include: (1) We propose a novel spatial-temporal distillation
scheme which enables the student detector to learn teacher knowledge on how to fuse in-
formation from different camera views and timestamps. (2) BEV response distillation is
proposed to distill teacher response to different BEV pillars, which transfers teacher knowl-
edge on object localization to the student. (3) We identify the problem of inconsistent inputs
in knowledge distillation on DETR-style detectors and propose a weight-inheriting scheme
to solve it. (4) Extensive experiments on nuScenes demonstrate the effectiveness of our
method. On average, 2.16 mAP and 2.27 NDS improvements can be obtained compared
with the student without KD.
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2 Methodology

2.1 Preliminary
Without loss of generality, we conduct our experiments on top of the BEVFormer model,
which is a performant and representative multi-view 3D object detection architecture. To
recap, BEVFormer consists of four stages, including feature extraction from single images,
temporal information fusion, spatial information fusion, and prediction.

(I) Feature Extraction of Single Images: In multi-view 3D detection, at timestamp t, the
input image set can be denoted as X (t) = {x(t)1 ,x(t)2 , ...,x(t)v }, where v denotes the number of
views. BEVFormer firstly encodes the feature of each single image with a convolutional 2D
backbone f2D, which can be formulated as F(t) = f2D(X (t)). These features are then fed into
spatial cross-attention in Stage III for multi-view feature fusion.

(II) Temporal Information Fusion: Temporal self-attention is utilized to fuse the infor-
mation between the current input images and the historical images. The input of temporal
self-attention layers includes the predefined trainable BEV queries with positional encoding
and the previous BEV embedding at timestamp t −1, which can be formulated as QBEV and
E(t−1)

BEV , respectively. Then, the computation of temporal self-attention can be written as

E ′(t)
BEV = TSA

(
QBEV

p ,{QBEV,E(t−1)
BEV }

)
= ∑V∈{QBEV,E(t−1)

BEV }
DeformAttn(QBEV

p , p,V ), (1)

where DeformAttn indicates the deformable attention layers [39] and QBEV
p denotes the BEV

query located at the position p. TSA and E ′(t)
BEV indicate temporal self-attention and its out-

puts, respectively.

(III) Spatial Information Fusion: In the stage of spatial information fusion, BEVFormer
samples Nref 3D reference points from each pillar, and then projects them to 2D views. Then,
spatial cross-attention is utilized to fuse the BEV embedding output by temporal information
fusion with the reference points, which can be formulated as

E(t)
BEV =

1
|vhit| ∑

i∈vhit

Nref

∑
j=1

DeformAttn
(

E ′(t)
BEV,P(p, i, j),F(t)

)
, (2)

where vhit indicates the number of views that contain the projection of the 3D reference
points. P(p, i, j) is the projection function to get the j-th reference point on the i-th view
image. F(t) indicates the feature of single images computed in Stage I.

(IV) Prediction In this stage, BEVFormer predicts the positions, dimensions, headings,
and categories of objects based on the two inputs, including the output of spatial cross-
attention and a set of object queries, which can be denoted as QObject and E(t)

BEV, respectively.
Its computation can be formulated as B,P = Detection Head(E(t)

BEV,Q
Object), where “B” and

“P” indicate the predicted bounding boxes and the corresponding probability distribution.

2.2 Structured Knowledge Distillation
In this subsection, we introduce the proposed knowledge distillation based on the above
four stages in BEVFormer. Note that the Stage I (2D convolutional feature extraction) and
Stage IV (prediction) in BEVFormer share quite some similarities with common 2D de-
tectors. Successful attempts have been made to apply knowledge distillation onto these
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stages [6, 34]. Thus in this paper, we focus on the Stage II and Stage III, which are crit-
ical for multi-view 3D detection but rarely explored for knowledge distillation. In particular,
our method can be divided into the following three folds.
Spatial-Temporal Knowledge Distillation In Stage II and Stage III, BEVFormer first in-
tegrates the BEV queries with the BEV embeddings at the previous timestamp for temporal
information fusion, and then fuses the information from different image views for spatial
information fusion. Deformable attention layers are utilized during the two processes. Re-
call that the computation of attention weights in deformable attention layers is obtained by
a linear projection over queries followed with a softmax function, which can be formulated
as A(Q) = softmax(WQ), where Q and W indicate the queries and the trainable parame-
ters in the linear projection layer, respectively. In temporal self-attention, Q indicates the
BEV query QBEV. And the obtained attention weights are utilized to fuse information from
QBEV and the historical BEV embedding E(t−1)

BEV . Hence, the attention weights here show the
temporal relation between the information of the current inputs and the previous input. By
distilling them, the student is allowed to learn how to fuse temporal information from the
teacher detector. In spatial cross-attention, Q indicates the output of temporal self-attention
E ′(t)

BEV. And the obtained attention weights are utilized to fuse the information from the ref-
erence points in the multi-view images. Hence, distilling the attention weights here enables
the student to learn how to fuse spatial information from the teacher detector. Concretely,
we can denote the attention weights in temporal self-attention and temporal self-attention
as Atemporal and Aspatial, respectively, which can be formulated as Atemporal =A(QBEV), and
Aspatial = A(E ′(t)

BEV), respectively. Then, by distinguishing the student and teacher detector
with the scripts S and T respectively, spatial-temporal attention can be formulated as

Lspatial-temp = ∥Atemporal
S −Atemporal

T ∥2 +∥Aspatial
S −Aspatial

T ∥2. (3)

BEV Response Distillation Besides distilling teacher knowledge on the fusion of the in-
formation from different timestamps and views, we also propose BEV response distillation
to distill teacher responses to different object queries, which correspond to different pillars in
3D space. In this paper, we define the BEV response as the average score across the channel
dimension on the absolute value of BEV embedding, which can be written as

R(EBEV(i, j)) = ∑
C
j=1

1
C
|EBEV(i, j)|, (4)

where C denotes the number of channels. The scripts (i, j) denotes the value on the ith BEV
query (i.e., pillar) of the jth channel. As pointed out by abundant research [33, 34, 36], the
response of features demonstrates the importance of their corresponding spatial positions.
Hence, by distilling the BEV response from the teacher, the student model can better corre-
late between the learned semantic features and the potential object spatial occupancies. An
example of BEV response is visualized in Fig. 3. An L2 loss is adopted for BEV response
distillation: Lresponse = ∥R(ES

BEV)−R(ET
BEV)∥2, where S and T denote the student detector

and the teacher detector, respectively. Based on the above notations, the overall training loss
of the detector L becomes:

L= Loriginal +λ · (Lspatial-temp +Lresponse), (5)

where Loriginal indicates the original training loss of BEVFormer. λ is a hyper-parameter
to balance the magnitudes of knowledge distillation loss, which is set to 1×10−2 in all the
experiments. Please refer to the supplementary material for its sensitivity study.
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Table 1: Comparison with other KD methods on the nuScenes [4] dataset with BEVFormer.
Note that a higher mAP and NDS, as well as a lower ATE, ASE, AOE, and AAE indicate
better performance. Params: the number of parameters (M). FPS: Frame per second. FPS is
measured with one A100 GPU. Please refer to [4] for detailed metrics definitions.

Backbone FPS Params KD Method mAP(↑) NDS(↑) mATE(↓) mASE(↓) mAOE(↓) mAVE(↓) mAAE(↓)

ResNet101 10.2 56.57 Teacher w/o KD 36.31 47.49 69.21 28.16 46.08 43.87 19.32

ResNet50 14.5 40.45

Student w/o KD 33.56 44.61 71.41 28.65 54.17 46.44 21.03
+ Hinton et al. [13] 33.57 45.23 71.17 28.50 49.04 46.52 20.33
+ Zagoruyko et al. [33] 33.68 45.69 70.13 27.74 47.87 45.45 20.26
+ Heo et al. [12] 33.87 45.82 69.92 27.79 47.78 45.55 20.09
+ Park et al. [26] 33.77 45.87 70.88 27.78 48.18 43.47 19.83
+ Pung et al. [28] 34.01 45.36 71.21 28.06 50.49 45.77 20.88
+ Ahn et al. [1] 34.11 46.36 70.69 28.02 46.16 42.09 20.04
+ Zhang et al. [34] 34.25 46.34 70.84 28.44 47.06 41.68 19.82
+ Guo et al. [9] 34.10 46.22 70.39 28.39 46.75 42.52 20.22
+ Ours 34.91 46.87 69.77 28.07 46.31 42.23 19.43

ResNeXt-Large 5.3 201.2 Teacher w/o KD 37.69 46.67 70.44 28.52 56.89 45.81 20.12

ResNet50 14.5 40.45

Student w/o KD 33.56 44.61 71.41 28.65 54.17 46.44 21.03
+ Hinton et al. [13] 33.84 45.68 72.72 28.16 46.54 44.50 20.48
+ Zagoruyko et al. [33] 34.10 46.26 70.99 28.24 46.12 42.45 20.05
+ Heo et al. [12] 34.30 46.50 70.36 27.94 44.78 43.06 20.39
+ Park et al. [26] 33.98 46.40 71.82 28.07 45.84 39.86 20.24
+ Pung et al. [28] 34.23 46.23 70.05 28.32 47.33 43.13 20.04
+ Ahn et al. [1] 34.16 46.25 70.37 28.08 46.43 42.73 20.66
+ Zhang et al. [34] 34.56 46.61 70.11 28.01 46.00 42.39 20.14
+ Guo et al. [9] 34.35 46.06 69.92 27.79 47.78 45.55 20.09
+ Ours 35.58 47.39 68.97 28.25 48.06 39.79 18.93

ResNet101 3.5 65.93 Teacher w/o KD 41.01 51.88 67.45 27.36 34.92 37.57 18.97

ResNet50 5.2 47.56

Student w/o KD 35.77 46.74 73.61 28.26 45.85 43.79 19.94
+ Hinton et al. [13] 35.89 46.93 73.45 28.02 45.46 43.66 19.58
+ Zagoruyko et al. [33] 35.98 46.98 73.30 28.22 45.32 43.68 19.60
+ Heo et al. [12] 36.23 47.16 73.09 28.18 45.28 43.34 19.69
+ Park et al. [26] 36.30 47.18 72.94 28.17 45.48 43.43 19.64
+ Pung et al. [28] 36.42 47.26 72.96 28.23 45.48 43.37 19.51
+ Ahn et al. [1] 36.38 47.20 73.02 28.25 45.51 43.50 19.60
+ Zhang et al. [34] 36.64 47.38 73.12 28.15 45.28 43.11 19.53
+ Guo et al. [9] 36.77 47.40 73.14 28.25 45.34 43.43 19.74
+ Ours 38.88 48.52 71.53 28.24 47.34 42.91 19.17

Weight-Inheriting Convnets-based detectors usually only require images as input. But
modern transformer-based detection models require additional learned queries and positional
encodings as input. The teacher and the student model tend to have different query and
positional encoding values after training converges. Intuitively, knowledge distillation works
by aligning the output of the student with the teacher given the same input. Such paradigm
is likely to fail for transformer-based detectors, as the teacher and student can have different
learned queries and position encodings. The discrepancies between the transformer inputs
must be resolved to make the underlying assumptions of knowledge distillation hold true.

Hence, in this paper, we propose a weight-inheriting scheme that fixes the value of the BEV
queries and positional encoding in the student with their values from the teacher detector dur-
ing the whole training period. Hence, the student detector can have consistent inputs with its
teacher detector. Surprisingly, we find that simply performing this weight-inheriting scheme
can make a significant difference in the effectiveness of knowledge distillation, which has
been discussed in the ablation study.

3 Experiment
Dataset and Model: The nuScenes dataset is a large-scale autonomous driving dataset,
which has 3D bounding boxes for 1000 scenes collected from six cameras [4]. The scenes are
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Table 2: Student-teacher settings in our experiments. Please refer to the supplementary
material for more details.

Model FPS Params 2D Backbone BEV Query Decoder Depth

Student-1 14.5 40.45 ResNet50 (150, 150) 3
Teacher-1 10.2 56.57 ResNet101 (150, 150) 3

Student-2 14.5 40.45 ResNet50 (150, 150) 3
Teacher-2 5.3 201.20 ResNeXt-Large (150, 150) 3

Student-3 5.2 47.56 ResNet50 (200, 200) 6
Teacher-3 3.5 65.93 ResNet101 (200, 200) 6

Table 3: Average precision in different classes on nuScenes. “KD” indicates whether our
method is applied. Experiments of the three groups are conducted with student-teacher set-
tings in Table 2.

KD Car Truck Bus Trailer Con.Veh. Pedest. Motor. Bicycle Barrier Tra.Cone

× 54.3 26.0 32.3 8.9 7.4 41.8 31.8 28.2 53.8 51.0
✓ 55.1 27.4 34.2 10.1 6.8 43.4 34.2 31.1 53.9 52.9

× 54.3 26.0 32.3 8.9 7.4 41.8 31.8 28.2 53.8 51.0
✓ 56.5 29.3 37.5 13.3 10.3 45.6 34.4 34.4 43.8 50.8

× 55.8 28.7 35.0 9.7 6.5 46.6 37.5 37.3 54.6 46.0
✓ 58.7 33.1 36.2 12.8 10.1 47.4 40.4 40.8 57.6 51.9

officially split into 700, 150, and 150 scenes for training, validation, and testing, respectively,
including 1.4 million annotated 3D bounding boxes belonging to 10 classes. BEVFormer
models of different sizes are utilized as the student and teacher detectors in our experiments.
As shown in Table 2, We mainly reduce the model size by using fewer BEV queries and
smaller 2D backbones. Please refer to the supplementary material for more details on the
models ,training settings and the implementation of comparison methods.

Experimental results of our method and eight previous knowledge distillation methods in
three different student-teacher settings are shown in Table 1. It is observed that: (i) On
average, 2.16 mAP and 2.27 NDS improvements can be observed with our method in the
three student-teacher settings, which are 1.26 mAP and 0.80 NDS higher than the second-
best knowledge distillation methods. (ii) In all three student-teacher settings, our method
leads to performance improvements in terms of most of the performance metrics, including
mAP, NDS, mATE, mATE, mASE, mAOE, mAVE, and mAAE, indicating that our method
benefits students in estimating the translation, scale, orientation, velocity and attributes of
the objects. (iii) The performance of our method in different categories is shown in Table 3.
It is observed that our method leads to consistent improvements in most of the categories.
(iv) The first student achieves 0.67 higher mAP than the second student, indicating that our
method benefits from a strong teacher.
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Table 4: Ablation study of different modules in our method. “Spatial-Temporal”, “BEV Re-
sponse”, “Weight-Inherit” indicates spatial-temporal distillation, BEV response distillation,
and the weight-inheriting scheme, respectively.

Modules in Our Method
mAP(↑) NDS(↑) mATE(↓) mASE(↓) mAOE(↓) mAVE(↓) mAAE(↓)

Spatial-Temporal BEV Response Weight-Inherit

× × × 33.56 44.61 71.41 28.65 54.17 46.44 21.03
× × ✓ 34.52 46.60 70.97 28.05 46.00 41.74 19.86
× ✓ ✓ 34.99 47.17 70.22 27.75 46.58 39.47 19.24
✓ × ✓ 34.91 47.02 70.62 27.90 47.26 39.60 18.93
✓ ✓ × 35.00 46.68 71.07 28.43 46.09 42.46 20.19
✓ ✓ ✓ 35.58 47.39 68.97 28.25 48.06 39.79 18.93

4 Discussion

4.1 Ablation Study
The proposed knowledge distillation methods mainly have three modules, including spatial-
temporal distillation, the BEV embedding distillation, and the weight-inheriting scheme.
Table 1 gives the ablation study of the three modules. It is observed that: (i) By simply using
the weight-inheriting scheme without applying any knowledge distillation loss, 0.96 mAP
and 1.99 NDS improvements can be obtained, indicating that the student detector can benefit
from using the pre-trained weights from teachers on the BEV queries and positional encod-
ing. (ii) By applying BEV response distillation and weight-inheriting, 1.43 mAP and 2.56
NDS improvements can be observed, which are 0.47 and 0.57 higher than only using weight-
inheriting, indicating BEV response distillation can successfully transfer teacher knowledge
to the student. (iii) 1.35 mAP and 2.41 NDS improvements can be obtained by using spatial-
temporal distillation and weight-inheriting, which are 0.39 and 0.42 higher than only using
weight-inheriting, indicating spatial-temporal distillation allows the student to learn how to
fuse information from different timestamps and views from its teacher. (iv) By combining
the three modules together, 1.67 mAP and 2.58 NDS improvements can be obtained, which
demonstrates that the benefits of spatial-temporal distillation and BEV response distillation
are orthogonal. (v) By only using the two knowledge distillation while disabling the weight-
inheriting scheme, 1.44 mAP and 2.07 NDS improvements can be observed, which are 0.58
and 0.71 lower than performing knowledge distillation with weight-inheriting, indicating
weight-inheriting is also indispensable even if knowledge distillation losses are applied. In
summary, these experimental results demonstrate that the three modules in our method have
their own effectiveness and their merits are orthogonal.

Ablation on Weight-Inheriting To facilitate the training of the student model, some pre-
vious knowledge distillation methods propose initializing the parameters of the student with
the parameters of the teacher (i.e., initialization scheme), which sometimes leads to slight
performance improvements. In contrast, the proposed weight-inheriting scheme in this pa-
per not only initializes the parameters of BEV queries and positional encoding with their
value from the teacher but also freezes them during the whole training period (i.e., weight-
inheriting scheme). To study their difference, we have conducted several experiments and
found that (i) By using the initialization scheme, after the training of the student, the param-
eters of BEV queries and positional encoding in the student are totally different from them
in the teacher, indicating the inconsistency problem between the students and the teachers
in knowledge distillation still exist. (ii) Experimental results show that by only using the
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Prediction

Ground Truth

Prediction

Ground Truth

(a) Student w/o KD (b) Student with KD

Figure 3: Visualization of detection results.
Boxes in blue and green indicate prediction
and the grounding truth, respectively.

Figure 4: Visualization of model response
to different BEV positions and the corre-
sponding detection results.

traditional initialization scheme, the student detector (student-1 in Table 2) achieves 33.63
mAP and 44.70 NDS, which are 0.7 and 0.9 higher than the baseline, but still 0.89 and
1.90 lower than the weight-inheriting scheme. These observations indicate that using such
a weight-inheriting scheme which exactly guarantees the consistency between the inputs of
the students and teachers is indispensable.

4.2 Visualization

Camera: Front Left Camera: Front Camera: Front Right

Camera: Back Left Camera: Back Camera: Back Right

(a) Student Without Knowledge Distillation

Camera: Front Left Camera: Front Camera: Front Right

Camera: Back Left Camera: Back Camera: Back Right

Camera: Back Left Camera: Back Camera: Back Right

Camera: Front Left Camera: Front Camera: Front Right

(b) Student With Our Method

(c) Ground Truth

Figure 5: Visualization of detec-
tion results in different views.

Detection Results Figure 5 and Figure 3 visualize the
detection results of the student detector trained without
and with our method from the perspective of different
camera views and bird-eye-view, respectively. Note that
the used student detector has 6.4 FPS and 40.45M pa-
rameters. It is observed that the student trained by our
method produces impressive results which are similar to
the ground truth. In contrast, the student trained without
knowledge distillation generates incorrect predictions in
the cameras of the front-left view, the front-view, and the
front-right view. As shown in their BEV visualization,
the mistakes made by the student trained without knowl-
edge distillation have a relatively long distance from the
car, indicating the student trained without knowledge dis-
tillation is unable to detect the faraway objects while our
method can address this problem.

BEV Response Figure 4 shows the BEV response and the
corresponding detection results from the student detector. Note that a lighter pixel in BEV
response map indicates the detector has a higher response. It is observed that the detector
tends to show a higher response in the position where objects exist, indicating that BEV
response contains valuable semantic information about the localization of objects. Hence,
the proposed BEV response distillation can improve the ability of localization of the student
detector by training it to imitate the BEV response from its teacher.

Attention Weights The proposed spatial-temporal distillation enables the student to learn
teacher knowledge on information fusion by training it to mimic the attention weights in
temporal self-attention and spatial cross-attention. Figure 6 gives the visualization results of
attention weights from the teacher, the student trained with knowledge distillation and the
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Figure 6: Visualization of attention
weights in temporal cross-attention from
the teacher, the student trained with and
without KD.

student trained without knowledge distillation.
It is observed that: (i) Compared with the stu-
dent detectors, the attention weights from the
teacher tend to concentrate more on several
sampled points, indicating the teacher detector
is able to leverage the information from cer-
tain images. (ii) Compared with the student
trained without knowledge distillation, the at-
tention weights from the student trained with
knowledge distillation are more similar to the
attention weights of the teacher, indicating that
the spatial-temporal distillation successfully en-
ables the student to mimic the teacher detector.

5 Conclusion
Most advanced multi-view 3D detectors suffer from low inference efficiency, which has lim-
ited their applications in edge devices. To address this problem, we propose a series of
knowledge distillation methods to achieve model compression, which includes (1) spatial-
temporal distillation which allows the student to learn how to fuse information from differ-
ent timestamps and views (2) BEV response distillation which enables the student to learn
the localization-aware knowledge, and (3) a weight-inheriting scheme which fixes the BEV
queries and positional encoding to guarantee that students and teachers have the same inputs.
Comparison experiments with 8 previous methods and sufficient ablation studies demon-
strate the significant performance of our method in three different student-teacher settings.
On average, 2.16 mAP and 2.27 NDS improvements can be observed on the nuScenes. We
hope that this paper may promote more research on efficient multi-view 3D detection.

6 Acknowledgement
This research was partially supported by National Key R&D Program of China (2022YFB
2804103), Key Research and Development Program of Shaanxi (2021 ZDLGY01-05), Ts-
inghua University Dushi Program, National Natural Science Foundation of China (2021
1710187), and Tsinghua University Talent Program.

References
[1] Sungsoo Ahn, Shell Xu Hu, Andreas Damianou, Neil D Lawrence, and Zhenwen Dai. Variational

information distillation for knowledge transfer. In IEEE/CVF Conf. Comput. Vis. Pattern Recog.
(CVPR), pages 9163–9171, 2019.

[2] Lucas Beyer, Xiaohua Zhai, Amélie Royer, Larisa Markeeva, Rohan Anil, and Alexander
Kolesnikov. Knowledge distillation: A good teacher is patient and consistent. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10925–10934,
2022.
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