
Algorithmica (1994) 11:360-378 Algorithmica
�9 1994 Springer-Verlag New York Inc.

Visibility with a Moving Point of View

Marshal l Bern, 1 David Dobkin , z Dav id Eppstein, 3 and Rober t G r o s s m a n 4

Abstract. We investigate three-dimensional visibility problems in which the viewing position moves
along a straight flightpath. Specifically we focus on two problems: determining the points along the
flightpath at which the topology of the viewed scene changes, and answering ray-shooting queries for
rays with origin on the flightpath. Three progressively more specialized problems are considered:
general scenes, terrains, and terrains with vertical flightpaths.

Key Words. Hidden line removal, Terrain, Flight simulation.

1. Introduction. In recent years computer -genera ted images have grown com-
monplace , but computer -genera ted an ima t ions - - sequences of i m a g e s - - a r e still
prohibit ively expensive for all but a few uses. Fo r the mos t part , this dispari ty is
inherent: high-quali ty an imat ion uses at least 12 distinct images per second. On
the other hand, this dispari ty is part ial ly due to a lack of algorithms. Successive
images are typically t reated independently, even though they may differ only
slightly.

In this paper we investigate a very simple type of animat ion: a fixed three-
dimensional scene is viewed f rom a sequence of different points of view. M o r e
specifically, successive images cor respond to perspective views of a polygonal scene
f rom sample points a long a straight trajectory, or flightpath. T h o u g h this p rob lem
is quite basic, it is also widely applicable in flight s imulat ion and da ta visualization.

We assume that scenes are to be compu ted in object-space, that is, ou tpu t is
given as device-independent two-dimensional coordinates, ra ther than pixel by
pixel [28]. The currently practical solutions to this p rob lem are image-space
solutions: either z-buffers, or the priori ty me thod with priori ty orderings compu ted
using binary space par t i t ions [8], 1-21]. I m a g e - s p a c e solutions, however, suffer
f rom aliasing and hence tend to produce lower-qual i ty images.

In a sequence of views of a static scene, t ransi t ions between viewpoints will
typically be smooth , rapidly computab le t ransformat ions . However , at certain
points a long the f l ightpath topology changes o c c u r - - f o r example, when an object

1 Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304, USA.
2 Department of Computer Science, Princeton University, Princeton, NJ 08544, USA. Supported in
part by NSF Grant CCR87-00917 and a Guggenheim Fellowship. Work done while visiting Xerox
PARC.
3 Department of Information and Computer Science, University of California, Irvine, CA 92717, USA.
Work done while at Xerox PARC.
4 Department of Mathematics, University of Illinois, Chicago, IL 60680, USA. Work done while visiting
Xerox PARC.

Received May 1, 1990; revised September 18, 1992. Communicated by Bernard Chazelle.

Visibility with a Moving Point of View 361

first peeks around the edge of a closer object--and the visible scene is not so easily
computed. We develop algorithms for discovering topology changes, meaning the
critical flightpath points as well as the corresponding changes to the topology of
the visible scene. We also describe data structures that answer ray-shootin9 queries,
that is, given a ray r with origin on the flightpath and arbitrary direction, return
the first polygon struck by r. This type of query is fundamental to the technique
of ray-tracing.

The running times of our algorithms depend on three parameters: n, the total
number of edges in all objects; f, the number of transparent topology changes (that
is, the number of different scene topologies visible along the flightpath, assuming
that all objects are transparent); and k, the number of opaque topology changes.
A major open problem in this area is to replace dependence on ~ by dependence
of k, which is typically much smaller. In general, 0 _< k < • < na/3. We obtain the
following results for finding topology changes. In the first case we find all
transparent--including opaque--topology changes; in the other two we discover
only opaque topology changes.

�9 For general polygonal scenes, a simple algorithm with running time
O((n 2 + E) log n) and a more complicated algorithm with time O(n z + E log n).

�9 For terrains, an algorithm with time O((n + k)23(n) log n). A terrain is a poly-
hedral surface intersected at most once by any line parallel to the z-axis.
The functions 2i(n) are slightly superlinear for each i [27].

�9 For terrains with vertical flightpaths, an algorithm with time O(nJ~g(n) log n),
matching an earlier result of Cole and Sharir [5]. The two algorithms are similar,
but our explanation is more geometric and theirs is more algebraic.

Techniques used in our algorithms include geometric sweeps and transforms
similar to skewed projection [12]. There are relationships between finding topo-
logy changes and two planar problems: the well-studied problem of line-segment
intersection and the problem of finding the external contour of a union of polygons.

The ray-shooting problem is, in a sense, a special case of point location in a
three-dimensional subdivision (the visible scene cross time). For this problem we
obtain the following results:

�9 For the general problem, a data structure of size O(n 2 --~ k) with query time
O(log 2 n). Space improvement is possible if queries are ordered by time.

�9 For terrains with vertical flightpaths, a data structure of size O(n24(n)) with
query time O(log n), improving upon a known O(log 2 n) [5] and giving the first
O(log n) point-location method for a transforming subdivision.

There has been surprisingly little work on these two problems directly, though
there has been a fair amount of related work. Cole and Sharir [5] solve a number
of visibility problems on terrains, including finding topology changes and ray-
shooting for the special case of vertical flightpaths. Hubschman and Zucker [11]
treat convex objects. Swart [29] considers the problem of viewing independently
and linearly moving objects with trajectories that can be dynamically changed.
His running times, however, depend on events such as changes in x-coordinate
order of vertices in a projection of the scene. Plantinga et al. [22], [23] give

362 M. Bern, D. Dobkin, D. Eppstein, and R. Grossman

algorithms that compute "aspect graphs" and "aspect representations" for ortho-
graphic views of an object. These data structures have vertices or regions for each
of the topologically distinct views of a polyhedral object. Translating our results
into their terminology, we show that to determine all views along a given
flightpath, only a small portion of the (perspective) aspect representation need be
computed.

Subsequent to the work reported here, Mutmuley [19] improved our first result
by giving an algorithm for general scenes with running time O((n23(n) + ~') log n),
where f ' is the number of"semi-opaque" topology changes. We define Mulmuley's
notion of semi-opaque topology change after Lemma 1 below; an opaque topology
change is always semi-opaque, and for many scenes f ' ~ f.

2. Preliminaries. Assume we have a set 6 P of polygons, nonintersecting except
along boundaries, and an oriented line segment f , the flightpath, in 3-space. Let
f be parametrized by "time" t, running from 0 to 1. The point on f with parameter
value t is denoted p(t).

We imagine projecting all polygons in 5 P from a given point p(t) on f onto a
sphere centered at p(t) that is large enough to contain 6 p. This projection can be
viewed as an embedding of a planar graph G, which has a vertex set containing
all intersection points of edges and the obvious edge set. Vertices of Gt are labeled,
perhaps with the "names" of the intersecting edges. A point q along an edge of
5 e is visible at time t if the line segment qp(t) does not pass through the interior
of a polygon of 6 e. The projection from p(t) of all visible points of 6 p defines a
labeled, embedded subgraph of G t called H t. The edges of G~ that are not in H t
are called hidden lines. The visible scene at time t is the embedded graph H e with
each face labeled by the name of the polygon of 5 e visible within that face.

We say G t and G't are isomorphic if they are isomorphic as embedded, labeled
graphs; that is, the mapping must preserve the embedding and the vertex labels.
A transparent (opaque) topology change occurs at t if G t (resp. Ht) changes, that is,
for each small e > 0, Gt_ ~ and G t are nonisomorphic.

The problem of "finding all topology changes" is the following: given 5 e and
f , compute a list of the critical values of t at which a topology change occurs. This
list should be in order of increasing t, and each entry in the list should include a
description (of length 0(1)) of the changes to the visible scene. The following lemma
is immediate.

LEMMA 1. A transparent topology change occurs at time t if and only if there are
three edges el, e2, and e 3 of(not necessarily distinct) polygons in 5 a such that there
is a line that intersects p(t), el, e2, and e3. An opaque topology change occurs at
time t if, in addition, there is a line segment with one endpoint at p(t) that intersects
el, e2, and e3 and passes through no polygon interiors.

Mulmuley [19] calls a topology change semi-opaque if there is a line segment
with one endpoint at p(t) that intersects e 1, e2, and e 3 in order, and the portion
of this segment from e I to e 3 passes through no polygon interiors.

Visibility with a Moving Point of View

, ~ , ~ Opaque
t ~~Transparent

soJS)

u- - ->

Fig. 1. Skewed projection of a polygonal scene.

363

Now let e be a line segment, not lying on the same line as the fixed flightpath
f , and parametrized by u running between 0 and 1. Let T be the interior of the
tetrahedron defined by all line segments with one endpoint on e and one on f .
We define a mapping Spe: T ~ [0, 1] x [0, 1] as follows: a point p c T maps to
(u, t), where p(u) and p(t) are the points on e and f with parameter values u and
t, and are the endpoints of the (unique) line segment l passing through p with
endpoints on e and f. If e 1 is a line segment in T, then it is not hard to confirm
that Spe(e 0 is either a line segment or a connected piece of a hyperbola in
[0, 13 x [0, 1].

If e and f were complete lines rather than segments, spe could be extended to
a map from R 3 to R 2 w {oo}. This extension is essentially the same as the skewed
projection introduced by Jaromczyk and Kowaluk [12].

It is not hard to see that a transparent topology change involving edge e of a
polygon in 5 e corresponds exactly to the intersection of two curves spe(el) and
Spe(e2) in the skewed projection of 5 P ~ T. The next lemma relates opaque topology
changes to the external contour of a union of skewed projections of polygons. See
Figure 1.

LEMMA 2. An opaque topology change occurs at time t if and only if an edge e of
5 ~ and uo [0, 1] exists such that (u, t) is a vertex of the boundary ofspe(SP).

PROOF. If (U, t) is a vertex of the boundary of spe(5~), then the line segment with
endpoints p(t) on f and p(u) on e intersects three edges and the flightpath, but no
polygon interior. Conversely, if there is a line segment that intersects the points
p(t) and p(u) and two edges in T, then (u, t) must be the intersection of two
curves in the skewed projection. If in addition this segment intersects no polygon
interiors, then (u, t) must be a boundary vertex. []

3. General Scenes. We first give a simple, practical algorithm and then a more
complicated, but asymptotically faster, algorithm.

THEOREM i. All topology changes for a general scene with a line segment flightpath
can be computed in time O((n2 + f) log n) and space O(n), where n is the total
number of edges in all polygons and ~ is the number of transparent topology
changes.

364 M. Bern, D. Dobkin, D. Eppstein, and R. Grossman

PROOV. Below we describe an algorithm that computes ~ 4-tuples, each consisting
of a critical value of t and three edges that are coincident as viewed from p(t). In
all our algorithms for the topology-change problem, we consider a point p(t) to
be the site of more than one topology change if more than three edges are
coincident as viewed from p(t). In such a case, more than one 4-tuple would share
the same t. An example is the case of a vertex of a polyhedron coming into view
from behind a closer object.

After computing all 4-tuples, we sort them by increasing t. We then compute
the graphs Go and H o. Each face of H o is labeled with the polygon of 5 p visible
within that face; this gives the first visible scene. Each vertex of G o is labeled with
the first polygon "below" that vertex; that is, the vertex at the intersection of the
projections of edges e and f is labeled with the first polygon after both e and f
along the viewing ray from p(0) through e and f. The label "background" means
that the viewing ray continues forever. The computation and labeling of Go and
Ho can be accomplished in time O(n 2) using McKenna's hidden surface removal
algorithm [15].

We then run through the sequence of 4-tuples while updating the labeled graphs
Gt and Hr. Each update takes time 0(1). Notice that labels change only at
transparent topology changes. A newly visible face in H t is either bounded by an
edge of the polygon visible within that face, or it is a "window" formed by three
(or more) polygons through which a more distant polygon is visible. In the latter
case the face's label is computed using an appropriate vertex label from G~; indeed,
windows are the only reason to maintain these labels.

We now describe how to compute the list of 4-tuples. For each edge e of a
polygon in 5P, we perform a rotational sweep around e, similar to Bentley and
Ottmann's line segment intersection algorithm [4]. Let Tt be the triangle with the
base equal to flightpath e and the apex at point p(t) on f . A pierce point of Tt is
the intersection of Tt and an edge of a polygon in 5".

The sweep proceeds from t = 0 to t = 1 as shown in Figure 2. During the sweep,
a balanced binary tree maintains the pierce points of T~ sorted by angle around
p(t). A priority queue maintains future events by increasing t. The events to be
handled are:

(1) An endpoint of an edge is reached.

u = 1

t e l

u = O

t - - O

Fig. 2. Sweep-plane algorithm for general scenes.

Visibility with a Moving Point of View 365

(2) A polygon edge intersects an edge of T~, thereby entering or leaving the sweep
tetrahedron.

(3) Two adjacent pierce points exchange position in the angular order.

There are at most 2n events of types (1) and (2); scheduling these events is
straightforward. The lines passing through e, f , and any other segment define a
quadratic surface S (see [12]). A fourth segment can intersect S in at most two
points; thus the number of events of type (3) for a fixed edge e is at most n(n - 1).
Scheduling an event of type (3) amounts to finding the minimum future t at which
e, f , and two other given segments are collinear. This computation--straightfor-
ward analytic geometry that we omit--takes time O(1). After an event of any of the
three types, at most two future events of type (3)--the upcoming collinearities of
the newly adjacent pairs--must be scheduled and inserted into the priority queue.
After events of types (1) or (2), at most two future events that have already been
scheduled must be deleted.

A priority queue with O(log n) update times results in O((n + Ee) log n) time for
a sweep around edge e, where fe is the number of transparent topology changes
discovered. The sum of all Ee values is f. []

THEOREM 2. All topology changes for a general scene with a line-segment flightpath
can be computed in time O(n 2 + E log n) and space O(n2).

PROOF. We perform a rotational sweep around f in order to discover critical
values of t; the remainder of the algorithm after the computation of the 4-tuples
is the same as in the first algorithm.

The configuration of pierce points of segments of 5 e can be represented by its
dual arrangement of lines, a data structure of size O(nZ). Events are:

(1) The appearance or disappearance of a line (corresponding to reaching a vertex
of ~).

(2) Three lines becoming coincident (corresponding to a transparent topology
change).

The arrangement is represented as a graph with a node for each border segment
of a face and edges between borders that share an endpoint. Each intersection of
lines in the arrangement is the meeting of eight border segments; the edges between
their corresponding nodes are augmented with directional information so that
faces may be traced either clockwise or counterclockwise. We also provide pointers
so that the border segments incident to an intersection can be found in O(1) time
given the identifiers of the two intersecting lines. Events of type (1) necessitate O(n)
work in updating this data structure, corresponding to the total complexity of all
faces bordering the line that is inserted or deleted [7]. Events of type (2) necessitate
O(1) work as only O(1) border incidences are changed.

A priority queue (implemented as a heap) holds a schedule of possible future
events, including the times at which each triangular cell in the arrangement
degenerates to a point. Notice that the initial O(n z) possible events can be formed

366 M. Bern, D. Dobkin, D. Eppstein, and R. Grossman

into a heap in O(n 2) time. As triangles "invert," future events are inserted or deleted,
resulting in the O({ log n) part of the running time. []

It is possible to compute an unsorted list of critical values of t in time
O(n 2 log n + {), faster than the algorithm above for large f. We perform the
following steps for each polygon edge e. We compute the projection spe(Q) of each
polygon Q intersecting tetrahedron T. Each spe(Q) will be a "curved polygon,"
one with sides that are portions of hyperbolas. Next we use Mulmuley's random-
ized-segment or curve-intersection algorithm [17] to compute all intersections in
Spe(~) in expected time O(n log n + g~e), where ~e is the number of intersections. The
expectation is over the randomization used in the algorithm, not over a distribu-
tion of inputs. The sum of all ~e is b ~.

This algorithm explicitly computes the points of intersection of a set of curved
polygons. By Lemma 2, the computation of the 4-tuples for all opaque topology
changes can be reduced to n computations of the external contour of a union of
curved polygons. We expect that an improved algorithm to compute the external
contour of a union of ordinary polygons should also have implications for the
case of curved polygons, and hence for the problem of finding topology changes.

4. Terrains. A terrain is a polyhedral surface that is intersected at most once by
any line parallel to the z-axis [5], [26]. Thus the projection of a terrain onto the
xy-plane is a planar subdivision. In this section 5 ~ denotes a terrain with n edges.
The advantage of a terrain is given by the following lemma, in which a forward
ray with origin on flightpath f is one that has a positive dot-product with f
oriented in the direction of increasing t.

LEMMA 3. In time O(n log n), the edges of 5f can be ordered el, e 2 e,, such
that if there is a forward ray from a point on f that intersects first e i and next e j,
then i < j.

PROOF. Let 5 a* (resp. f*) denote the projection of 5 p (f) onto the xy-plane. As
in Lee and Preparata's point-location algorithm [14], [24], the edges of 5 e* can
be assigned to polygonal chains, monotone with respect to lines perpendicular to
f*. (A polygonal chain is a path of line segments connected only at successive
endpoints; it is monotone with respect to a line l if its intersection with any line
perpendicular to I is at most one point [24].) Chains can be ordered front to back
with respect to f* , where front is the direction of decreasing t. Within chains edges
may be ordered arbitrarily. It is easy to confirm that this ordering has the desired
property. []

We define the ith silhouette St(i) to be the "horizon line" at flightpath point t,
considering only the first i edges. That is, St(i) is an ordered set of segments, each
of which is a piece of an edge of index at most i, such that no line of sight through
a segment of St(i) passes below an edge e j, j <_ i. St(i) is monotone with respect to
a horizontal line in the ~r scene. For each t and i the silhouette St(i) has at

Visibility with a Moving Point of View 367

most 2a(i) vertices [5]. The function)].3(n) is known to be | where e(n) is
the very slowly growing inverse Ackermann function [9]. The function)~4(n) is
known to be | ~(")) [2].

THEOREM 3. All k opaque topology changes for a terrain with an arbitrary
flightpath can be computed in time O((n + k)23(n) log n) and space O(n23(n)).

PROOF. We show how to discover topology changes that are visible along
forward rays in order along the flightpath as t increases. Running the algorithm
twice, once with time reversed, computes all topology changes. Updating the visible
scene is especially straightforward for terrains, as each face must be bounded by
an edge of the polygon visible within that face; that is, there are no "windows."
Thus in order to label H , we need not maintain G~ as in the previous section.

The first step is to compute all silhouettes for p(0) using a standard hidden
surface algorithm [15]. Our algorithm maintains an unordered set Et(i) of all
polygon edges that contribute at least once to silhouette St(i) and an ordered list
V,(i) of all vertices of the silhouette, implemented as a binary search tree. The edges
can be specified simply by index, while the vertices are specified by ordered pairs
of indices with the order implying the segments of S~(i). (As a practical matter,
these edges and lists can be maintained by a similar list or persistent data structure
[6], though this is not necessary for the bounds of the theorem.)

As in the algorithm of Theorem 1, a priority queue maintains future events. The
priority queue contains future events of two kinds sorted by increasing t:

(1) Some future point p(t) on f, an endpoint of edge el, and a point on some edge
in Et(i - 1) are collinear.

(2) Some future p(t) on f, some point on edge el, and a vertex in V,(i- 1) are
collinear.

See Figure 3. Given a vertex (either an endpoint of an edge ei or a vertex of
V,(i- 1)) and an edge, it is possible to determine their next collinearity in O(1)
time, since in the viewed scene vertices have either linear or quadratic apparent
motion.

Notice that, for each endpoint of edge ei, each collinearity, not just the one
that occurs first, with an edge of Et(i - 1) is queued. Similarly, for each vertex of
Vt(i - 1) each collinearity is queued. Thus, throughout the algorithm, the priority
queue contains O(n23(n)) events.

. Type (2) ~ St(i-1)
Type (1) - - " - -

Fig. 3. Events in the view of a terrain.

368 M. Bern, D. Dobkin, D. Eppstein, and R. Grossman

An event of type (1) may not actually be an opaque topology change, as the
edge of Et(i - 1) involved in the collinearity may not be part of St(i - 1) at that
intersection point. An event of type (2) will always be an opaque topology change,
and all opaque topology changes will be of one type or the other. Events of type
(1) are each reported at least twice, once for each of the edges of Y sharing the
endpoint. (A minor modification avoids this redundancy.) When an event of type
(1) occurs, it is tested to see whether it is an opaque topology change. An event
involving an endpoint of edge e i and edge ej~ E t (i - 1) can be tested in time
O(log n) by searching within the list V~(i - 1) and checking whether the endpoint
of ei lies on St(i - 1) at the current time t. There are at most O(n 2) events of type
(1) that are not opaque topology changes, since each vertex and edge combine to
produce at most one.

In the case of an event involving ei that is also an opaque topology change, we
update each Et(j) and Vt(j), j > i, along with the priority queue. For each j, the
list E~(j) (resp. Vt(j)) is updated by inserting or deleting O(1) affected edges (vertices).
The priority queue is updated by deleting all events involving a vertex of V~(j)
(resp. edge of Et(j)) that no longer exist and inserting all events involving a new
vertex of Vt(j) (new edge of Et(j)). In order to find the events that must be deleted,
a dictionary into the priority queue to look up events by vertex (edge) must be
provided.

The number of events of type (1) scheduled at t = 0 is bounded by 2n 2 since (in
the absence of degeneracies) each endpoint and edge uniquely specifies a future
event time. The number of initial events of type (2) is bounded by 2n23(n) since
each vertex in V,(i - 1) may combine with e~ to produce at most two events. Events
that are also opaque topology changes incur extra work of time O(23(n) log n) in
inserting and deleting O(23(n)) events from the priority queue. []

It may be possible to improve Theorem 3 with a sweep algorithm that, for each
edge el, queues only its next event, rather than all future events with the current
silhouette St(i - 1). A difficult data structure problem arises in attempting such an
improvement: a query asks for the earliest intersection of a line segment, each
endpoint of which has linear motion, and a polygonal chain, each vertex of which
has quadratic motion. The solution should be dynamic, allowing fairly rapid
updates of the polygonal chain.

Cole and Sharir [-5] give an example in which k is | flying past f~(n) tall
peaks with a scene of complexity ~(n 2) (such as a mesh of tall peaks and broad
valleys) in the distant background. Thus the algorithms of Section 3 are preferable
in the case of large k.

5. Terrains with Vertical Flightpaths. In this section ~ is a terrain and f is a
flightpath parallel to the z-axis. Let e be a line segment, not lying on the same
line as f .

LEMMA 4. Each vertical (constant u) line in [0, 1] x [0, 1] intersects the boundary
o f sp~(5 ~) at most once.

Visibility with a Moving Point of View 369

PROOF. Assume two points (u, tl) and (u, t3) both lie outside spe(Se), but some
point (u, rE) with t 1 < t2 < t3 lies inside. Then the interior of the vertical triangle
in 3-space with vertices at point u on e and points t 1 and t 3 on f intersects 5 ~,
but the lower edge of this triangle does not intersect 5 p. This contradicts the fact
that 5 f is a terrain. []

THEOREM 4. All O(n24(n)) opaque topology changes for a terrain with a vertical
line-segment flightpath can be computed in time O(n)~4(n) log n) and space O(24(n)).

PROOF. We first compute 4-tuples of critical times and edges as follows. For each
edge e of 5 ~, we repeat the following steps. We compute the image spe(g) of each
edge g of 5 P. By Lemmas 2 and 4 topology changes occur at exactly the vertices
of the pointwise maximum of the curved segments spe(g). To compute the pointwise
maximum, a divide-and-conquer method can be used [3], [-10]: recursively com-
pute the pointwise maximum of the halves of the set of curved segments and then
merge these maxima. The pointwise maximum has complexity O(24(n)) an d - -
using Hershberger's method [-10J--the divide-and-conquer algorithm takes time
O(2a(n) log n).

It takes time O(n24(n) log n) to merge the lists of 4-tuples for all edges e. Adding
the descriptions of the scene changes to the 4-tuples is straightforward. []

Cole and Sharir adapt Wiernik and Sharir's arrangement of line segments with
superlinear lower-envelope complexity [30] to show that the number of opaque
topology changes for terrains with vertical flightpaths may be f~(n23(n)). It is
unknown whether the number of topology changes may be as high as |

6. Ray-Shooting for General Scenes. In this section we sketch a data structure
to answer ray-shooting queries for a general polygonal scene with an arbitrary
flightpath. In the next section we specialize to the case of terrains with vertical
flightpaths. In the first case we use a direct approach, that is, we maintain the
visible scene as a subdivision of a 2-sphere and treat ray-shooting queries as
point-location queries. In the second case we use the dual approach of Cole and
Sharir [5].

An interesting feature of this problem is that the subdivision is dynamic in two
senses. At topology changes edges must be inserted or deleted; between topology
changes the subdivision transforms continuously. Preparata and Tamassia [25]
have recently considered the problem of monotone planar subdivisions dynamic
in the first sense; we make use of their results. Very briefly, their method uses two
total orders on the union of the sets of vertices, edges, and faces. These orders
induce a unique decomposition of the subdivision edges into polygonal chains and
guides the restructuring of these chains during an update.

We also make use of persistent data structures, specifically persistent search trees
of various kinds. A persistent data structure is a data structure that in effect
includes all its own old versions. A query to a persistent search tree includes a

370 M. Bern, D. Dobkin, D. Eppstein, and R. Grossman

look-up key, as usual, along with a "time," that specifies which old version to
search. The usual method of providing persistence is to copy the root-to-leaf access
path of a newly inserted or deleted node, so as to preserve both old and new
versions. An initial search into a list of roots at various "times" then allows access
to all old versions of the data structure. Path-copying requires O(m log m) space,
where m is the total number of data items over all time. Driscoll et al. [6] showed
that by adding a few extra pointers to each node and copying a node only when
all its extra pointers are in use, the space requirement can be reduced to only O(m).

Assume without loss of generality that line segment f lies along the z-axis.
Sphere S t will be centered at point p(t) on f ; each St is the same size and large
enough so that it contains all of 5 P. Assume that S~ is parametrized by spherical
coordinates ~0 (latitude) and 0 (longitude) with f lying along its polar axis. Thus
lines parallel to the z-axis project to constant-0 lines (meridians).

The first step is to compute the projection of 5 p onto the initial sphere So. Next,
hidden lines are removed, giving an initial view of the scene that may be considered
as a planar graph H o or as a polygonal subdivision of So. The polygonal
subdivision can be made monotone with respect to latitude lines (that is, the
intersection of any cell with a meridian is a single segment) by adding some
artificial edges that extend latitudinally (along constant-~0 lines) from interior cusps,
as shown in Figure 4. We then compute Lee and Preparata's chain tree in order
to answer point-location queries in this subdivision [14], [24]. A chain tree stores
a monotone polygonal chain at each node. Each edge of the subdivision is explicitly
listed in only one chain, though we may think of each chain as completely dividing
the subdivision into higher-latitude and lower-latitude parts. Because we have
fixed the orientation of the scene by choosing f to lie along the polar axis, some
"monotone" chains may include meridial segments; this degeneracy does not cause
any real difficulties. (We call a line segment meridial if it lies along a meridian.)

Notice that there is a one-to-one correspondence between point-location queries
in the subdivision and ray-shooting queries with origin at p(0). The following
lemma assures us that a chain that is monotone with respect to latitude remains
monotone as we vary t, as long as its topology remains unchanged. Notice
that under a smooth transformation an edge must become meridial before it
"bends backward."

9e

Fig. 4. Making a subdivision monotone.

Visibility with a Moving Point of View 371

LEMMA 5. I f edge e projects to a meridial segment from some point along f , then
e projects to a meridial segment from every point along f.

PROOF. If edge e projects to a meridial segment from some point p(t) along f ,
then e is contained in a plane containing f. []

Notice that the chain tree, unlike other planar point-location data structures,
does not need to change as the subdivision transforms smoothly while remaining
monotone. That is, comparing a query ray (given by time t and spherical
coordinates ~o and 0) against a chain cg still takes only O(log n) time, since the
spherical coordinates of a given vertex or edge of cg at time t can be computed in
0(1) time.

Each topology change necessitates the addition or deletion of O(1) edges and
vertices from the polygonal subdivision. When an interior cusp first comes into
view an artificial edge must also be added. Each addition or deletion is an update
that can be handled by the methods of Preparata and Tamassia [25]; in fact, our
updates are local, special cases. Thus we can update the chain tree in time O(log 2 n).
By using the persistence methods of Driscoll et aI. [6] to maintain "old versions"
of the chain tree, we can answer ray-shooting queries with arbitrary origins on f.
If ray-shooting queries are ordered by time, then we may update the chain tree
nonpersistently instead.

In addition to handling topology changes, however, we must also handle
artificial topology changes, that is, points along f at which graph Ht changes
because an artificial edge a of Ht intersects a vertex v not previously on a. At
artificial topology changes we must add a new vertex v' to the subdivision (at first
coincident with v) and redefine the artificial edge to lie between v' and the interior
cusp. The next lemma shows that the number of artificial topology changes is not
excessive.

LEMMA 6. There are O(n 2) artificial topology changes along f .

PROOF. Assume artificial edge a lies within a polygonal face F in the embedding
of H t and that a intersects a vertex v of H t at time t but not at any prior time after
the last topology change. Then v must be a vertex of the boundary of F at
which the interior angle is reflex; hence v must be the projection of a vertex of a
polygon of 5 e. Thus at time t, two vertices of 5e-- the one that induces artificial
edge a and the one corresponding to v--project to the same ~0-coordinate, and
these vertices do not project to the same q~-coordinate at all times. There are O(n 2)
such t. []

THEOREM 5. For general scenes with arbitrary flightpaths, a data structure of space
O(n2+ k) that answers ray-shooting queries in time O(log 2 n) can be built in
preprocessing time O((n2 + k) log2n + Y log n). I f queries are ordered by time,
then the space can be reduced t o t h e maximum complexity of a visible scene
along f.

372 M. Bern, D. Dobkin, D. Eppstein, and R. Grossman

PROOF. We first run the algorithm of Theorem 1 and remember all opaque
topology changes. We also compute all artificial topology changes in time O(r/2)

by testing each pair of vertices of 5 ~ We then follow the method given above:
compute the initial scene with hidden lines removed, build a chain tree, and
persistently update the chain tree through topology changes. The preprocessing
time follows from Theorem 1, the query time from the chain method [14], [25],
and the space bound for unordered queries from the space-saving methods of
Driscoll et al. [6]. []

7. Ray-Shooting for Terrains with Vertical Flightpaths. Assume 6 e is a terrain
and f is a segment along the z-axis. For simplicity, assume f is the entire z-axis.
Below we describe a data structure that answers ray-shooting queries for rays with
origin on f in time O(log n). As above, a ray is given by a triple (t, 0, ~p), where
t = z is a parameter running along the flightpath, 0 is longitude around sphere
St, and ~p is latitude.

We briefly describe the method of Cole and Sharir [-5]. Consider the
intersection of 6 a with the vertical half-plane with boundary f and a fixed
longitude 0 o. The intersection is a polygonal chain ~ as shown in Figure 5(a).
If points in the vertical half-plane are given by cylindrical coordinates (r, z),
then a ray with origin p(t) on f and longitude 0 0 can be specified by
an equation z = ar + t, r >__ 0. A duality mapping takes such a ray to a point
(- a , t). Each polygon Pi in Figure 5(b) consists of exactly those points that
are dual to rays that first strike a given segment of the chain in Figure 5(a).
Polygons in Figure 5(b) are unbounded, since the entire terrain can be seen
from a sufficiently high viewpoint. (Think of the horizontal axis as ~0, though
r varies nonlinearly with horizontal distance.) Furthermore, each edge of
the polygonal subdivision D(Oo) in Figure 5(b) lies on a ray rl formed by the
union of edges of D(Oo). (A ray r~ is the dual of the set of viewing rays through a
vertex of c~.)

r l l r

~. VIO

11 Vll v 5

V4 V

vl

(a) (b)

r9 j 9

r~

V 7 i vS _,
~ q

P~

(c)

Fig. 5. (a) Cross section of 5 a at 0 o. (b) Dual subdivision D(Oo). (c) A topology change in D(O).

Visibility with a Moving Point of View 373

Point location on D(Oo) answers ray-shooting queries with longitude 0 o. What
happens to this polygonal subdivision as 0 varies? Between two successive critical
longitudes, the topology of subdivision D(O) remains constant. There are two types
of critical longitudes:

(C1) The longitudes of vertices of 5O.
(C2) Longitudes at which three vertices of U and flightpath f can be connected

by a straight segment that passes through no interiors of edges of U.

There are at most n critical longitudes of type (C1) and O(n24(n)) of type (C2) [5].
At a critical longitude of type (C2), two vertices vl of D(O) pass through each other
as shown in Figure 5(c). Below we view such a topology change as a rotation in
a binary tree.

The crux of the ray-shooting problem is to give a planar point-location method
that works for varying 0. Cole and Sharir use chain trees. In the proof below we
describe a faster method that exploits the fact that for each 0 the edges of D(O)
form a tree.

THEOREM 6. For terrains with vertical flightpaths, a data structure with space
complexity O(n24(n)) that answers ray-shooting queries in time O(log n) can be built
in preprocessing time O(n24(n) log n).

PROOF. We first divide 5O into wedge-shaped strips by cutting outward from f
along a plane of constant 0 through each vertex of 5 ~ We build a separate search
structure for each strip. Building an initial search structure for a strip can be
accomplished in time O(n log n) and finding the strip for a given ray-shooting
query takes time O(log n), so we may treat strips separately. (A unified structure,
however, should be an improvement in practice.)

Now consider the polygonal subdivision D(Oo) in the dual space of rays for the
minimum longitude 0 o in a strip as in Figure 5(b). D(Oo) gives an unbalanced
binary search tree Too by defining a node for each vertex of D(Oo) and adding edges
between nodes that correspond to adjacent vertices, as shown in Figure 6(a). Each
node of Too then corresponds to a ray of D(Oo), namely, the one with origin at the
corresponding vertex. In searching Too, an O(1)-time test at each node determines
whether a query point (t, rp) lies above or below the line through the ray
corresponding to the node. Notice that such a search tree remains invariant
as D(O) transforms smoothly.

We now show how to create a balanced search tree using "parallel tree
contraction," a technique used in the design of parallel algorithms. Following
Miller and Reif [16], we define an operation Rake on rooted trees that merges
each leaf with its parent. Call a connected set of degree-2 nodes in a tree a path;
a node is called a path node if it lies on a path. Define an operation Compress
that merges adjacent pairs of path nodes simultaneously all over the tree. Any set
of adjacent pairs may be chosen, as long as any set of four successive vertices
along a path contains a pair that merge. This is a nondeterministic, generalized
version of Compress; the ordinary version merges successive pairs. The proof of

374 M. Bern, D. Dobkin, D. Eppstein, and R. Grossman

~ k y

PC)" P3 P4 ~ Pll

P5" /~P9 PIO

P~ P~

,"9 ~ s - ~ - - ' ' ~ ' "

I I i I I
I I I I

L ~ I I I i

t i

(a) (b) (c)

Fig. 6. (a) Polygonal subdivision tree Too. (b) As merged by Rake and Compress. (c) Balanced search
tree Reo.

Miller and Reif [16] immediately generalizes to show that any n-node tree is
reduced to a single node after at most c" log n alternating applications of Rake and
Compress, where c is a constant.

We alternately apply Rake and Compress, starting with Rake, to To o until we
obtain a single supernode, as shown in Figure 6(b). Here a dashed oval represents
a merging due to Rake and a solid oval a merging due to Compress; numbers
indicate the order in which supernodes merge. For simplicity, the Rake operation
numbered 1 is not shown; Compress operations 6 and 8 do nothing.

We can define a new search tree level by level by considering each combined
supernode as the parent of the combining supernodes. Each internal node in the
new search tree Roo results from the merger of two supernodes along an edge of
Too or from the merger of two leaves and their parent. Thus at least one of the
child supernodes corresponds to a proper subtree of Too. A proper subtree of TOo
corresponds, in turn, with a roughly wedge-shaped unbounded polygon in Doo.
This polygon has a lower boundary that is a ray and an upper boundary that is
a convex chain. For example, the root of Roo in Figure 6(c) corresponds to merger
9 in Figure 6(b), which is along the edge between the nodes labeled r 1 and r 8 in
Figure 6(a), which in turn corresponds to the edge between v I and v 8 in Figure
5(b). The associated wedge has vertex v8 and an upper boundary formed by r8
and r~ ~.

We augment each internal node of Roo with the following information:

(I1) The coordinates (t, qg) of the leftmost vertex vi of the corresponding wedge-
shaped polygon in D(Oo) (as named in Figure 6(c)).

(12) The slope of the polygon's lower boundary.
(13) The largest slope of a boundary segment of the wedge-shaped polygon.

Notice that (I1), (I2), and (13) vary predictably with 0 once longitude is unfixed.
This information allows an O(1)-time "within-wedge" test to determine whether
a given point query (t, ~o) lies in the left or right subtree of a node in Roo. Points
in the polygon Pi immediately above the wedge-shaped polygon may go either

Visibility with a Moving Point of View 375

way in this test. For example, a point just above the line segment between v 6 and
v7 in Figure 5(b) may go either way when tested at the node marked va, depending
on whether it falls to the right or left of a line through v a with the same slope as
r 7. Say this point tests inside v3's and vs's wedges, outside vv's wedge, and finally
inside v6's wedge; then a single, final test determines whether the point lies in P6
or P8. These extra tests are indicated at the leaves in Figure 6(c); thus the number
of tests needed for point location may be one more than the height of Roo. In
Figure 6(c) i marks the direction to take if a point tests in the wedge. Altogether
point location for queries at longitude 0 o can be accomplished using tree Roo in
O(log n) time.

Search tree Roo is actually valid for all 0 until the next critical longitude. At a
critical longitude, either the strip ends or a rotation occurs in tree T 0. We now
show that by changing only O(log n) nodes and edges of R o at a rotation of TO,
we can maintain the invariant that R o is a tree that could have resulted from TO
by an alternating sequence of Rake and Compress operations.

A generic rotation is shown in Figure 7, with the T o trees shown before and
after a critical longitude. (Of course, before and after could be reversed.) After an
alternating sequence of Rake and Compress operations, call a supernode in the
left tree clean if it contains neither y nor z and is not the parent of a supernode
containing y. After any number of Rake and Compress operations, there are at
most three unclean supernodes, and they induce a path in the left tree.

Assume inductively that each clean supernode on the left, except at most one,
has a counterpart on the right, that is, a supernode containing exactly the same
set of original nodes of TO. This condition certainly holds before any Rake and
Compress operations have been performed. Now consider applying Rake to both
the left and right trees. The counterparts of each pair of clean supernodes that
merge on the left will merge on the right, since the adjacencies of clean supernodes
and their counterparts are identical. A supernode on the left that results from a
merger including an unclean supernode is itselt unclean. Finally, a supernode on
the left that results from a merger including a clean supernode without a
counterpart, will reproduce the one allowable clean supernode without a counter-
part.

Now consider applying Compress to the left. We assert that a valid Compress
for the right tree that maintains counterparts for each clean supernode exists.

Fig. 7. Before and after a rotation in T 0.

376 M. Bern, D. Dobkin, D. Eppstein, and R. Grossman

We join the counterparts of each merging pair of clean supernodes in this
Compress. The pairing of other supernodes on the right is then dictated by this
earlier pairing. For example, if A and B are both single nodes in Figure 7, then
the first Compress on the left may combine x and y but x' may have to remain
unchanged on the right. The next merger above x and y, however, can be mimicked
on the right. As in this example, the pairing on the right may leave gaps, that is,
the merging pairs may be nonsuccessive along a path, but gaps of one are legal
in our nondeterministic version of Compress.

There is also the case that the Compress on the right must merge the counterparts
of a pair that did not merge on the left. Thus a single clean supernode on the left
can lose its counterpart on the right. This loss cannot be repeated, however, until
it has been reversed (i.e., until every clean supernode on the left has regained a
counterpart), since the forced merger on the right only occurs when the length of
the path from the root on the right to the supernode containing x' is one more
than the length of the path from the root on the left to x. Thus after any number
of Rake and Compress operations, there is a one-to-one mapping that takes all
but one clean supernode on the left to a counterpart on the right; except for O(1)
nodes on the right this mapping is onto.

Altogether we conclude that only O(1) supernodes in each level of search tree
Ro must change at a critical longitude. Furthermore, information (I1), (I2), and
(I3) can be updated in time O(1) per changed supernode by consulting that
information at children of the changing supernode.

All changes to R 0 at a critical longitude lie along O(1) root- leaf paths. Thus
these changes can be performed persistently [6] to give a data structure that can
answer ray-shooting queries for arbitrary 0 within the strip. Altogether we obtain
an O(log n)-time search structure for each strip of the scene. []

REMARK. An anonymous referee pointed out that parallel tree contraction
methods that do not use Compress [1], [13] should give somewhat simpler proofs
of Theorem 6. We are not sure which parallel tree contraction method gives the
most satisfactory data structure, and we leave this question to interested readers.

8. Conclusions. We have given algorithms for some natural computer-graphics
problems that have not received sufficient attention. There are numerous possibili-
ties for improvements to our algorithms. We list some specific open questions that
we find intriguing.

�9 Can an unsorted list of points at which transparent topology changes occur be
computed in time O(n 2 + ~)?

�9 Can the external contour of a union of triangles (or curved triangles) be found
in time faster than the total number of intersections of sides? (It appears
that Mulmuley's randomized methods give a positive answer to these questions,
with the running time proportional to a sum in which each intersection
contributes the reciprocal of one more than the number of polygons strictly
containing it [18]. This would improve the running time of the algorithm given
after Theorem 2.)

Visibility with a Moving Point of View 377

�9 Can all opaque topology changes for general scenes be found in time sensitive to
k? (The analogous question for static viewpoints is the longstanding, largely
open, question of finding an output-sensitive hidden-line removal algorithm
[20].)

�9 Can the "sensitivity"--i.e., the term involving k--of our algorithm for terrains
with arbitrary flightpaths be improved?

�9 Can ray-shooting queries for general scenes be answered in time O(log n)? Even
in the special case of no opaque topology changes along f ?

�9 Can our results be generalized to linearly moving objects?

References

[1] K. Abrahamson, N. Dadoun, D. K. Kirkpatrick, and T. Przytycka, A simple parallel tree
contraction algorithm, Proc. 25th Annual Allerton Conf. on Communications, Control, and
Computing, 1987, pp. 624-633.

[2] P.K. Agarwal, Intersection and Decomposition Algorithms for Planar Arrangements, Cambridge
University Press, Cambridge, 1991.

[3] M.J. Atallah, Some dynamic computational geometry problems, Comput. Math. Appl. 11 (1985),
1171-1181.

[4] J.L. Bentley and T. A. Ottmann, Algorithms for reporting and counting geometric intersections,
IEEE Trans. Comput. 28 (1979), 643-647.

[5] R. Cole and M. Sharir, Visibility problems for polyhedral terrains, J. Symbolic Comput. 7 (1989),
11-30.

[6] J. R. Driscoll, N. Sarnak, D. Sleator, and R. E. Tarjan, Making data structures persistent,
J. Comput. Systems Sci. 38 (1989), 86-124.

[7] H. Edelsbrunner, J. O'Rourke, and R. Seidel, Constructing arrangements of lines and hyper-
planes with applications, SlAM J. Comput. 15 (1986), 341-363.

[8] H. Fuchs, Z. M. Kedem, and B. F. Naylor, On visible surface generation by a priori tree
structures, Comput. Graphics 14 (1980), 124-133.

[9] S. Hart and M. Sharir, Nonlinearity of Davenport-Schinzel sequences and of generalized path
compression schemes, Combinatorica 6 (1986), 151-177.

[10] J. Hershberger, Finding the upper envelope of n line segments in O(n log n) time, Inform. Process.
Lett. 33 (1989), 169-174.

[11] H. Hubschman and S. Zucker, Frame-to-frame coherence and the hidden surface computation:
constraints for a convex world, Comput. Graphics 15 (1981), 45 54.

[12] J.W. Jaromczyk and M. Kowaluk, Skewed projections with an application to line stabbing in
R 3, Proc. 4th ACM Syrup. on Computational Geometry, 1988, pp. 362 370.

[13] S.R. Kosaraju and A. L. Delcher, Optimal parallel evaluation of tree-structured computation
by ranking, VLS1 Algorithms and Architectures: Proc. 3rd Aegean Workshop on Computing,
1988, pp. 101-110.

[14] D.T. Lee and F. P. Preparata, Location of a point in a planar subdivision and its applications,
SlAM J. Comput. 6 (1977), 594-606.

[15] M. McKenna, Worst-case optimal hidden surface removal, ACM Trans. Graphics 6 (1987),
19-28.

[16] G. L. Miller and J. H. Reif, Parallel tree contraction and its applications, Proc. 26th 1EEE
Foundations of Computer Science, 1985, pp. 478489.

[17] K. Mulmuley, A fast planar partition algorithm, I, Proc. 29th IEEE Foundations of Computer
Science, 1988, pp. 580-589.

[18] K. Mulmuley, On obstructions in relation to a fixed viewpoint, Proc. 30th IEEE Foundations
of Computer Science, 1989, pp. 592-597.

[19] K. Mulmuley, Hidden surface removal with respect to a moving view point, Proc. 23rd ACM
Syrup. on Theory of Computing, 1991, pp. 512-522.

378 M. Bern, D. Dobkin, D. Eppstein, and R. Grossman

[20] M. Overmars and M. Sharir, A simple output-sensitive algorithm for hidden surface removal,
ACM Trans. Graphics 11 (1992), 1-11.

[21] M. Paterson and F. F. Yao, Binary partitions with applications to hidden surface removal and
solid modelling, Discrete Comput. Geom. 5 (1990), 485-504.

[22] W.H. Plantinga and C. R. Dyer, Visibility, occlusion, and the aspect graph, Internat. J. Comput.
Vision, 5 (1990), 137-160.

[23] W.H. Plantinga, C. R. Dyer, and B. Seales, Real-time hidden-line elimination for a rotating
polyhedral scene using the aspect representation, Manuscript, 1988.

[24] F.P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-Verlag,
New York, 1985.

[25] F .P . Preparata and R. Tamassia, Fully dynamic point location in a monotone subdivision,
SIAM J. Comput. 18 (1989), 811-830.

[26] J .H. Reif and S. Sen, An efficient output-sensitive hidden-surface removal algorithm and its
parallelization, Proc. 4th ACM Symp. on Computational Geometry, 1988, pp. 194-200.

[27] M. Sharir0 Almost linear upper bounds on the length of general Davenport-Schinzel sequences,
Combinatorica 7 (1987), 131-143.

[28] I.E. Sutherland, R. F. Sproull, and R. A. Schumacker, A characterization of ten hidden-surface
algorithms, Comput. Surveys 6 (1974), 1-25.

[29] G.R. Swart, A schema for real time hidden line removal, Technical Report, Department of
Computer Science, University of Washington, 1984.

[30] A. Wiernik and M. Sharir, Planar realization of nonlinear Davenport-Schinzel sequences by
segments, Discrete Comput. Geom. 3 (1988), 1547.

