
Lu YANG, Liqian YU, Jianwen TANG, Linzhang WANG,

Jianhua ZHAO, Xuandong LI

State Key Laboratory of Novel Software Technology &
Department of Computer Science and Technology

Nanjing University

McC++/Java:

Enabling Multi-core Based Monitoring

and Fault Tolerance in C++/Java

2010/4/21 IWMSE 2010 1

Agenda

 Motivation

 Preliminary Principles of Multi-core Based

Monitoring and Fault Tolerance

 Approach for Multi-core Based Monitoring and

Fault Tolerance in C++/Java

 Case Study

 Discussion

 Conclusion

2010/4/21 2IWMSE 2010

Agenda

 Motivation

 Preliminary Principles of Multi-core Based

Monitoring and Fault Tolerance

 Approach for Multi-core Based Monitoring and

Fault Tolerance in C++/Java

 Case Study

 Discussion

 Conclusion

2010/4/21 3IWMSE 2010

Motivation

 Reliable software system design approaches, e.g.

monitoring and fault tolerance, may become common

design choices.

 The multi-core architecture is a suitable platform to

support reliable software system design: the advantage

of the parallel performance and prevalence.

 For allowing software developers to handle

programming tasks on multi-core platforms more

efficiently, we propose an approach for enabling

monitoring and fault tolerance in C++/Java programs

on multi-core platforms.

2010/4/21 IWMSE 2010 4

Agenda

 Motivation

 Preliminary Principles of Multi-core Based

Monitoring and Fault Tolerance

 Approach for Multi-core Based Monitoring and

Fault Tolerance in C++/Java

 Case Study

 Discussion

 Conclusion

2010/4/21 5IWMSE 2010

Principles of Multi-core Based Monitoring

 Software monitoring uses monitors to check the behavior

of a target system, and influences the behavior of the

system when monitors confirm that the given properties

are either satisfied or falsified.

 In general, the monitoring design includes three steps:

instrumenting, monitoring and handling.

 optimize the monitoring design on multi-core platforms:

 executing monitors for different properties in parallel on

different cores

 decomposing a monitor task into several sub-tasks running in

parallel on different cores

2010/4/21 IWMSE 2010 6

Principles of Multi-core Based Monitoring

2010/4/21 IWMSE 2010 7

Principles of Multi-core Based Fault Tolerance

 Software fault tolerance is the ability for the software to

detect and recover from failures of the system in order

to ensure that the system performs as specified.

 N-version programming: develop N separate versions

with equivalent functionalities only for some key

software units of the system instead of the whole system.

Each version is developed independently by an isolated

group to prevent identical faults among versions.

 With the multi-core architecture, redundant versions of a

key software unit can run in parallel on different cores to

improve the performance.

2010/4/21 IWMSE 2010 8

Principles of Multi-core Based Fault Tolerance

2010/4/21 IWMSE 2010 9

Agenda

 Motivation

 Preliminary Principles of Multi-core Based

Monitoring and Fault Tolerance

 Approach for Multi-core Based Monitoring and

Fault Tolerance in C++/Java

 Case Study

 Discussion

 Conclusion

2010/4/21 10IWMSE 2010

Enabling Multi-core Based Monitoring and Fault

Tolerance in C++/Java

 A monitoring or fault tolerance task can be designed

and implemented into several monitoring or fault

tolerance modules. All these modules are

implemented as separate processes/threads.

 We introduce a group of special annotations for

software developers to specify a simple and virtual

multi-core based design in a high abstraction level.

 According to these annotations, an automatic and

convenient mapping to a given multi-core platform is

established via a prototype tool McC++/Java.

2010/4/21 IWMSE 2010 11

Workflow of McC++/Java

2010/4/21 IWMSE 2010 12

Annotation Based Virtual Design

 provide a simple and virtual multi-core based design

by using annotations to be instrumented into source

codes in a high abstraction level, which can:

 help software developers understand and complete the

structure of monitoring and fault tolerance programs

 let software developers determine the assignment of

required virtual cores for all monitoring and fault tolerance

modules

 help McC++/Java find the locations to instrument code

lines for mapping the processes/threads for these modules

to suitable physical cores

2010/4/21 IWMSE 2010 13

Annotation Based Virtual Design

2010/4/21 IWMSE 2010 14

Automatic Mapping to Multi-core Platforms

 McC++/Java can help software developers assign a

group of physical cores to all monitoring and fault

tolerance modules.

 The physical cores assignment is in proportion to the

virtual cores assignment.

 three steps:

 scanning source codes with annotations, and getting the

virtual cores assignment information

 executing mapping strategy

 instrumenting and mapping to multi-core runtime platforms

 instrument rules for C++

 instrument rules for Java

2010/4/21 IWMSE 2010 15

Agenda

 Motivation

 Preliminary Principles of Multi-core Based

Monitoring and Fault Tolerance

 Approach for Multi-core Based Monitoring and

Fault Tolerance in C++/Java

 Case Study

 Discussion

 Conclusion

2010/4/21 16IWMSE 2010

Case Study

 case study: monitoring error pattern Array Index Out of

Bound in C++ programs (VideoNet) on a multi-core

platform

 Multi-Process Based Monitoring Design

 the monitoring task is decomposed into 3 sub-monitors:

implemented as separate processes in parallel

 Annotation Based Virtual Design

 a target system with 92 instrumented units and 3 sub-monitors

with analysis units and handler units

 The annotations for monitoring tasks in C++ programs are

inserted into the source codes.

2010/4/21 IWMSE 2010 17

Case Study

 Source Codes Mapping to Runtime Platforms

 use McC++/Java to transform the source codes with

annotations to the source codes with instrumentations

2010/4/21 IWMSE 2010 18

Case Study

 Experiment Design and

Results Analysis

 experiment platform:

quad-core

 experiment design:

maps the target system and

sub-monitors to 2/4 cores

respectively to show the

improvement of the

performance

 results analysis

 4 cores: 1947.2 ms

 2 cores: 4089.9 ms

2010/4/21 IWMSE 2010 19

Agenda

 Motivation

 Preliminary Principles of Multi-core Based

Monitoring and Fault Tolerance

 Approach for Multi-core Based Monitoring and

Fault Tolerance in C++/Java

 Case Study

 Discussion

 Conclusion

2010/4/21 20IWMSE 2010

Discussion: soft affinity or hard affinity?

 Affinity

 soft affinity: let the operating system schedule

processes/threads

 hard affinity: software developers explicitly specify a core

(or a group of cores) for a process/thread to run on

 hard affinity or soft affinity: an application specific

problem

 scenarios suitable for hard affinity

 long-running time-sensitive applications

 applications in scientific and academic computing area

2010/4/21 IWMSE 2010 21

Discussion: soft affinity or hard affinity?

 Experiment Design and

Results Analysis

 experiment design:

soft affinity vs hard affinity on

4 cores, to compare the

efficiency of soft affinity and

hard affinity

 results analysis: mean time

 hard affinity: 1947.2 ms

 soft affinity: 3261.9 ms

2010/4/21 IWMSE 2010 22

Agenda

 Motivation

 Preliminary Principles of Multi-core Based

Monitoring and Fault Tolerance

 Approach for Multi-core Based Monitoring and

Fault Tolerance in C++/Java

 Case Study

 Discussion

 Conclusion

2010/4/21 23IWMSE 2010

Conclusion

 an approach for enabling multi-core based monitoring

and fault tolerance in C++/Java

 a tool McC++/Java

 two case studies on multi-core platforms

 future work

 more platforms

 more programming languages

2010/4/21 IWMSE 2010 24

2010/4/21 25

Thanks! & Questions?

IWMSE 2010

