ﬁﬂb\éf

NANJING UNIVERSITY

onitoring

/Java

Lu YANG, Ligian YU, Jianwen TANG, Linzhang WANG,
Jianhua ZHAQO, Xuandong LI

State Key Laboratory of Novel Software Technology &
Department of Computer Science and Technology
Nanjing University

2010/4/21 IWMSE 2010 1

> Motivation

> Preliminary Principles of Multi-core Based
Monitoring and Fault Tolerance

> Approach for Multi-core Based Monitoring and
Fault Tolerance in C++/Java

» Case Study
» Discussion

> Conclusion

2010/4/21 IWMSE 2010

> Motivation

>

2010/4/21 IWMSE 2010

Motivation

> Reliable software system design approaches, e.g.
monitoring and fault tolerance, may become common
design choices.

> The multi-core architecture is a suitable platform to
support reliable software system design: the advantage
of the parallel performance and prevalence.

» For allowing software developers to handle
programming tasks on multi-core plattorms more
efficiently, we propose an approach for enabling
monitoring and fault tolerance in C++/Java programs
on multi-core platforms.

2010/4/21 IWMSE 2010

> Preliminary Principles of Multi-core Based
Monitoring and Fault Tolerance

2010/4/21 IWMSE 2010

Principles of Multi-core Based Monitoring

> Software monitoring uses monitors to check the behavior
of a target system, and influences the behavior of the
system when monitors confirm that the given properties
are either satistied or falsified.

» In general, the monitoring design includes three steps:
instrumenting, monitoring and handling.

> optimize the monitoring design on multi-core platforms:

O executing monitors for different properties in parallel on
different cores

O decomposing a monitor task into several sub-tasks running in
parallel on different cores

2010/4/21 IWMSE 2010

legend
annotation: start Target System:
annotation: end on Core 0
EmmmE nstrumenting = Q

Monitor 1, sub task 1: Monitor 1, sub task m: Monitor n, sub task 1: Monitor n, sub task m:
on Core 1 s+ | on Core m, see | on Core (my+...4my +1)| e+ | on Core (my+...+m,)
— — ITEEE |\ ——— . —
e —— B ——-V——
~ Monitor 1™ Monitorn
------ — =1
Monitor (Sub-monitor)
Runtlm_e Analysis Rlllltllll.t} Handler Feedback
Information : Information . .
: Units . Units Actions
Collection Analysis
[<acaieees]
DDA

2010/4/21 IWMSE 2010

Principles of Multi-core Based Fault Tolerance

> Software fault tolerance is the ability for the software to
detect and recover from failures of the system in order
to ensure that the system performs as specified.

» N-version programming: develop N separate versions
with equivalent functionalities only for some key
software units of the system instead of the whole system.
FEach version is developed independently by an isolated
group to prevent identical faults among versions.

» With the multi-core architecture, redundant versions of a
key software unit can run in parallel on different cores to
improve the performance.

2010/4/21 IWMSE 2010

Principles of Multi-core Based Fault Tolerance

Software System: on a multi-core platform

key software unit key software unit

= s e —PE] . F—m —— P ses —P —|
(N-version module) (N-version module)

A

S —
—~

non-key Sl)ft“':ll:&"iinit - non-key software unit non-key software unit

\j

=

key software unit (N-version module) legend

"""" T ! W 3111II12: (ltl‘tli‘(?tl()ll [l m]jlt\tﬂtk\l]: start
Version 1: v
on Core 0

! of incorrect versions annotation: end
1
: : !
I
I

mstrumenting

B s i

BSOS o
: : R

Version 2: Decision
on Core 1 Unit

: : occcvenes: I
B :

f b correct output

iutput

.
B :

Version n:
on Core n-1

: H
B :

RoRoRTR

2010/4/21 IWMSE 2010

> Approach for Multi-core Based Monitoring and
Fault Tolerance in C++/Java

2010/4/21 IWMSE 2010

10

Enabling Multi-core Based Monitoring and Fault
Tolerance in C++/Java

» A monitoring or fault tolerance task can be designed
and implemented into several monitoring or fault
tolerance modules. All these modules are
implemented as separate processes/threads.

» We introduce a group of special annotations for
software developers to specity a simple and virtual
multi-core based design in a high abstraction level.

» According to these annotations, an automatic and
convenient mapping to a given multi-core platform 1s
established via a prototype tool McC++/Java.

2010/4/21 IWMSE 2010 11

Workflow of McC++ /Java

- Software Developer

! inserting source codes number of
: source codes : . : <
5 annotations with annotations physical cores

- McC++/J ava

scanning and virtual cores assignment executing mapping P :
analyvzing for processes/threads strategy ¢ Multi-core

Runtime

g . ' . { Environment,
: source codes with . : code lines for mapping L :
: . . instrumenting P :
: instrumentations proecesses/threads o |

\‘

- Compiler

compiling 7 executable program /—-—--

2010/4/21 IWMSE 2010

Annotation Based Virtual Design

> provide a simple and virtual multi-core based design
by using annotations to be instrumented into source
codes in a high abstraction level, which can:

O help software developers understand and complete the
structure of monitoring and fault tolerance programs

O let software developers determine the assighment of
required virtual cores for all monitoring and fault tolerance
modules

O help McC++/Java find the locations to instrument code
lines for mapping the processes/threads for these modules
to suitable physical cores

2010/4/21 IWMSE 2010

13

Annotation Based Virtual Design

J#d start target system which needs » virtual cores @/
J#*i@ start instrumented unit & used by monitor ¢ @/
S+ end instrumented unit & used by monitor ¢ Q@

S end target system

[F=D0 IR = T SN VL I

S start creating process for target system @) (/+@ start creating thread
for target system @)

11 /#@ end creating process for target system @« (/%@ end creating thread for
targat system s)

1z .
13
14 /#@ start monitor ¢ which needs v virtual cores @/ 1 /%@ start key unit i G/
is J#@ start analysis unit of monitor S/ 3 Sxi start version 7 of key unit ¢+ which needs v virtual cores @/
4
18 J#i@ end analysis unit of monitor & @/ 5 /@ end version j of key unit i @/
19 ! !
. . G
20 f#@ start handler unit of monitor ¢ G/ 7 /%@ start creating thread for version j of key unit ¢ with dll name
21 J#@ atart success condition @/ diName T,/
22
. | B
23 J*@ end SUCCESE ‘:_'Dndlt“jn ek 9 Jx@ end creating thread for version j§j of key unit ¢ @/
24 J#+i start validation handler @/ 10
25))) 11 J#@ start decision unit of key unit @ %/
26 J+@ end validation handler @/ 12
3; /*@ start failure condition @+/ 13 J#@ end decision unit of key unit & @G/
14
20 S+ end failure condition @/ . . i e
ao J*@ start violation handler @/ 15 /@ end key unit i @,
31
32 J#+@ end violation handler @/ .
33 /%@ end handler unit of monitor i @/ Annotations for Fault Tolerance (J EI.VEI.)
34
35 S+ end monitor @ S
k1

37 S+ start creating process for monitor ¢ Qs S+ start creating thread for
monitor ¢ @)

a8 ..

39 S+ end creating process for monitor ¢ @/ (/+@ end creating thread for
monitor ¢ @)

Annotations for Monitoring (C++)

2010/4/21 IWMSE 2010 14

Automatic Mapping to Multi-core Platforms

> McC++/Java can help software developers assign a
group of physical cores to all monitoring and fault
tolerance modules.

> 'The physical cores assignment is in proportion to the

virtual cores assignment.

> three steps:

O

scanning source codes with annotations, and getting the
virtual cores assignment information

executing mapping strategy

instrumenting and mapping to multi-core runtime platforms
® instrument rules for C++

B instrument rules for]ava

2010/4/21

IWMSE 2010 15

» Case Study

2010/4/21

IWMSE 2010

16

Case Study

» case study: monitoring error pattern Array Index Out of
Bound in C++ programs (VideoNet) on a multi-core
plattorm

» Multi-Process Based Monitoring Design
O the monitoring task is decomposed into 3 sub-monitors:
implemented as separate processes in parallel
» Annotation Based Virtual Design

O a target system with 92 instrumented units and 3 sub-monitors
with analysis units and handler units

0 The annotations for monitoring tasks in C++ programs are
inserted into the source codes.

2010/4/21 IWMSE 2010 17

Case Study

» Source Codes Mapping to Runtime Platforms

O use McC++/Java to transform the source codes with
annotations to the source codes with instrumentations

Scanning

Target System Need Cores: 1 Affinity Mask: 1 index: 0O
Monitor 1 Need Cores: 1 Affinity Mask: 2 index: 1
Monitor 2 Need Cores: 1 Affinity Mask: 4 index: 2
Monitor 3 Need Cores: 1 Affinity Mask: 8 index: 3

Converting
Convert Successfully

/x@Q start mapping for target system @sx/
SetProcessAffinityMask(hProcess, 1);
/%@ end mapping for target system @sx/

2010/4/21 IWMSE 2010

Case Study

> Experiment Design and
5000

Results Analysis

4500

O experiment platform: 4000

quad-core 1500

O experiment design: 3000

maps the target system and 2500

sub-monitors to 2/4 cores 2000

Mean Time tor Monitoring (ms)

respectively to show the 1300

improvement of the
performance

1000

500

O results analysis X4 X2
m 4 cores: 1947.2 ms
m 2 cores: 4089.9 ms

2010/4/21 IWMSE 2010

> Discussion

2010/4/21

IWMSE 2010

20

Discussion: soft affinity or hard affinity?

> Affinity

O soft atfinity: let the operating system schedule
processes/ threads

O hard atfinity: software developers explicitly specity a core
(or a group of cores) for a process/thread to run on

O hard atfinity or soft affinity: an application specific
problem

» scenarios suitable for hard atfinity
O long-running time-sensitive applications

O applications in scientific and academic computing area

2010/4/21 IWMSE 2010

21

> Experiment Design and

Results Analysis 4500
: : £ 4000
O experiment design: @
. : 'S 3500
soft affinity vs hard atfinity on 2
£ 3000
4 cores, to compare the =
_ , 2 2500
efficiency of soft atfinity and 2
. = 2000
hard atfinity g <00
O results analysis: mean time 1000
® hard affinity: 1947.2 ms 500
Ty (1
m soft affinity: 3261.9 ms < <
Soft Affinitv Hard Affinity
2010/4/21 IWMSE 2010 22

>

>

> Conclusion

2010/4/21

IWMSE 2010

23

Conclusion

> an approach for enabling multi-core based monitoring
and fault tolerance in C++/Java

> atool McC++/Java

> two case studies on multi-core platforms

> future work
O more platforms

O mote programming languages

2010/4/21 IWMSE 2010

24

Thanks! & Questions?

2010/4/21

IWMSE 2010

25

