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Motivation

> Reliable software system design approaches, e.g.
monitoring and fault tolerance, may become common
design choices.

> The multi-core architecture is a suitable platform to
support reliable software system design: the advantage
of the parallel performance and prevalence.

» For allowing software developers to handle
programming tasks on multi-core plattorms more
efficiently, we propose an approach for enabling
monitoring and fault tolerance in C++/Java programs
on multi-core platforms.
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> Preliminary Principles of Multi-core Based
Monitoring and Fault Tolerance
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Principles of Multi-core Based Monitoring

> Software monitoring uses monitors to check the behavior
of a target system, and influences the behavior of the
system when monitors confirm that the given properties
are either satistied or falsified.

» In general, the monitoring design includes three steps:
instrumenting, monitoring and handling.

> optimize the monitoring design on multi-core platforms:

O executing monitors for different properties in parallel on
different cores

O decomposing a monitor task into several sub-tasks running in
parallel on different cores
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Principles of Multi-core Based Fault Tolerance

> Software fault tolerance is the ability for the software to
detect and recover from failures of the system in order
to ensure that the system performs as specified.

» N-version programming: develop N separate versions
with equivalent functionalities only for some key
software units of the system instead of the whole system.
FEach version is developed independently by an isolated
group to prevent identical faults among versions.

»  With the multi-core architecture, redundant versions of a
key software unit can run in parallel on different cores to
improve the performance.
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Principles of Multi-core Based Fault Tolerance

Software System: on a multi-core platform
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> Approach for Multi-core Based Monitoring and
Fault Tolerance in C++/Java
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Enabling Multi-core Based Monitoring and Fault
Tolerance in C++/Java

» A monitoring or fault tolerance task can be designed
and implemented into several monitoring or fault
tolerance modules. All these modules are
implemented as separate processes/threads.

»  We introduce a group of special annotations for
software developers to specity a simple and virtual
multi-core based design in a high abstraction level.

» According to these annotations, an automatic and
convenient mapping to a given multi-core platform 1s
established via a prototype tool McC++/Java.
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Workflow of McC++ /Java

- Software Developer

! inserting source codes number of
: source codes : . : <
5 annotations with annotations physical cores

- McC++/J ava

scanning and virtual cores assignment executing mapping P :
analyvzing for processes/threads strategy ¢ Multi-core

Runtime

g . ' . { Environment,
: source codes with . : code lines for mapping L :
: . . instrumenting P :
: instrumentations proecesses/threads o |

\‘

- Compiler

compiling 7 executable program /—-—--
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Annotation Based Virtual Design

> provide a simple and virtual multi-core based design
by using annotations to be instrumented into source
codes in a high abstraction level, which can:

O help software developers understand and complete the
structure of monitoring and fault tolerance programs

O let software developers determine the assighment of
required virtual cores for all monitoring and fault tolerance
modules

O  help McC++/Java find the locations to instrument code
lines for mapping the processes/threads for these modules
to suitable physical cores
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Annotation Based Virtual Design
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Automatic Mapping to Multi-core Platforms

> McC++/Java can help software developers assign a
group of physical cores to all monitoring and fault
tolerance modules.

> 'The physical cores assignment is in proportion to the

virtual cores assignment.

> three steps:

O

scanning source codes with annotations, and getting the
virtual cores assignment information

executing mapping strategy

instrumenting and mapping to multi-core runtime platforms
® instrument rules for C++

B instrument rules for]ava
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Case Study

» case study: monitoring error pattern Array Index Out of
Bound in C++ programs (VideoNet) on a multi-core
plattorm

» Multi-Process Based Monitoring Design
O the monitoring task is decomposed into 3 sub-monitors:
implemented as separate processes in parallel
» Annotation Based Virtual Design

O a target system with 92 instrumented units and 3 sub-monitors
with analysis units and handler units

0 The annotations for monitoring tasks in C++ programs are
inserted into the source codes.
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Case Study

» Source Codes Mapping to Runtime Platforms

O use McC++/Java to transform the source codes with
annotations to the source codes with instrumentations

Scanning ....

Target System Need Cores: 1 Affinity Mask: 1 index: 0O
Monitor 1 Need Cores: 1 Affinity Mask: 2 index: 1
Monitor 2 Need Cores: 1 Affinity Mask: 4 index: 2
Monitor 3 Need Cores: 1 Affinity Mask: 8 index: 3

Converting ....
Convert Successfully

/x@Q start mapping for target system @sx/
SetProcessAffinityMask(hProcess, 1);
/%@ end mapping for target system @sx/
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Case Study

> Experiment Design and
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> Discussion
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Discussion: soft affinity or hard affinity?

> Affinity

O soft atfinity: let the operating system schedule
processes/ threads

O hard atfinity: software developers explicitly specity a core
(or a group of cores) for a process/thread to run on

O hard atfinity or soft affinity: an application specific
problem

» scenarios suitable for hard atfinity
O long-running time-sensitive applications

O applications in scientific and academic computing area
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> Experiment Design and

Results Analysis 4500
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Conclusion

> an approach for enabling multi-core based monitoring
and fault tolerance in C++/Java

> atool McC++/Java

> two case studies on multi-core platforms

> future work
O more platforms

O mote programming languages
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Thanks! & Questions?
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