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Lattice Cryptography 

• Lattice cryptography has novel properties. 

– Resist quantum attacks 

– Worst-case/Average-case reduction 

– Faster computation and parallelizable 

• In the security reduction, there are statistical steps; 
to measure the closeness of  two probability 
distributions.  
e.g., zero centered and non-zero centered discrete Gaussian 
distributions.   

The security reduction follows through when the 
distributions are statistically close.  
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Ideal Distribution Real Distribution 

Ideal distributions and real distributions are  
statistically close 

 
 
 

Simulated cryptographic scheme and real scheme 
are statistically indistinguishable. 



Statistical Analysis 
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Ideal Distribution Real Distribution The larger parameters (e.g. Gaussian deviations),  
• two distributions become statistically close 

e.g. the real schemes become secure, 
• the scheme becomes less efficient.  

 We want to analyze the appropriate trade-off.  
 

The analyses owe to statistical measures.  

Which measure should be used? 
Statistical Distance vs Rényi Divergence 



Statistical Measure 
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Statistical Distance (SD) 
• SD is widely used in security  

reduction.  
 
 

• SD should be much smaller than 
the advantage for the reduction.  
inefficient parameters 
 

• Small SD offers tight reduction.  

Rényi Divergence (RD) 
• RD is recently used  in security  

reduction for lattice crypto. 
[LPR13,LSS14,LPSS14,BLL+15].  
 

• RD can be independent   
of the advantage.  
smaller parameters 
 

• Even if RD is small, reductions 
always lose the tightness.  
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• SD is widely used in security  

reduction.  
 
 

• SD should be much smaller than 
the advantage for the reduction.  
inefficient parameters 
 

• Small SD offers tight reduction.  

Rényi Divergence (RD) 
• RD is recently used  in security  

reduction for lattice crypto. 
[LPR13,LSS14,LPSS14,BLL+15].  
 

• RD can be independent   
of the advantage.  
smaller parameters 
 

• Even if RD is small, reductions 
always lose the tightness.  

Can we prove the security with both  
small parameters and tight reduction? 



Our Solution 

• In the previous RD based analyses, the order is fixed 
to 𝛼 = 2.  

• In this work, we use the optimized order.  
The optimization offers tighter reduction even if we 
use the RD.  
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Our Solution 

• In the previous RD based analyses, the order is fixed 
to 𝛼 = 2.  

• In this work, we use the optimized order.  
The optimization offers tighter reduction even if we 
use the RD.  

 

 

Our approach offers  

– tighter reduction than the previous RD based 
analyses, 

– with smaller parameters than the SD based 
analyses.  7/30 



Precomputed Table Size for  
BLISS Signature 
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statistical measure table bit-size reduction loss 𝜺/𝜺′ 

SD [DDLL13] 6003 ≤ 2 

KLD [PDG14] 4872 ≤ 2 

RD, 𝛼 = +∞ 
[BLL+15] 

2291 ≤ 2 

RD, 𝛼 = 2 
[BLL+15] 

1160 ≈ 2128 

RD,  
optimized order 

Ours 

1276 ≤ 2 



Our Approach 
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Overview of the Security Reduction 

• Problem P: given 𝑋 = 𝑥𝑖: 𝑥𝑖 ← 𝛷 𝑖=1,…,𝑘 and 
                    compute 𝑓(𝑋) 

• Problem P’: given 𝑋′ = 𝑥′𝑖: 𝑥′𝑖 ← 𝛷′ 𝑖=1,…,𝑘 and 
                    compute 𝑓(𝑋′) 

 

When two probability distributions 𝛷 and 𝛷′ are 
statistically close, the adversary for the problem P is 
also the adversary for the problem P’.  
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SD Based Analysis 

• 𝜀: the advantage for the adversary to solve P 

• 𝜀′: the advantage for the adversary to solve P’  

The SD between 𝛷 and 𝛷′:  

𝛥 𝛷,𝛷′ =
1

2
∑ 𝛷 𝑥 − 𝛷′ 𝑥  
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SD Based Analysis 
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𝛷′ 𝛷 

SD denotes the  
summation of  the  

differences.  

𝛥 𝛷,𝛷′ =
1

2
∑ 𝛷 𝑥 − 𝛷′ 𝑥  

 



SD Based Analysis 

• 𝜀: the advantage for the adversary to solve P 

• 𝜀′: the advantage for the adversary to solve P’  

The SD between 𝛷 and 𝛷′:  

𝛥 𝛷,𝛷′ =
1

2
∑ 𝛷 𝑥 − 𝛷′ 𝑥  

𝜀 ≤ 𝜀′ + 𝑘𝛥 𝛷,𝛷′  

13/30 

SD should be much smaller than 𝜀/𝑘 

The strong requirement leads to inefficient parameters.  



Previous RD Based Analysis 

• 𝜀: the advantage for the adversary to solve P 

• 𝜀′: the advantage for the adversary to solve P’  

The RD (of order 2) between 𝛷 and 𝛷′: 

𝑅2 𝛷||𝛷′ = ∑
𝛷 𝑥 2

𝛷′ 𝑥
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𝛷′ 𝛷 

RD of order 2 denotes the  
expected value of the ratios. 

𝑅2 𝛷||𝛷′ = ∑
𝛷 𝑥 2

𝛷′ 𝑥
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𝛷 𝑥 2

𝛷′ 𝑥
 

 

𝜀 ≤ 𝜀′ ⋅ 𝑅2 𝛷||𝛷′ 𝑘
1
2 
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Previous RD Based Analysis 

𝜀 ≤ 𝜀′ ⋅ 𝑅2 𝛷||𝛷′ 𝑘
1
2 

 

• RD are allowed to be larger bounds (small constant).  

Significant parameter savings!  

• Even if RD is extremely small (almost 1), the RHS is 

always larger than 𝜀′1/2.  

The reduction always loses the tightness.  
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Our RD Based Analysis 

• 𝜀: the advantage for the adversary to solve P 

• 𝜀′: the advantage for the adversary to solve P’  

The RD between 𝛷 and 𝛷′:  

𝑅𝛼 𝛷||𝛷′ = ∑
𝛷 𝑥 𝛼

𝛷′ 𝑥 𝛼−1

1
𝛼−1
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Our RD Based Analysis 
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𝛷′ 𝛷 

RD of order 𝛼 relates to  
the expected value of 

(𝛼 − 1) powers of the ratios. 

𝑅𝛼 𝛷||𝛷′ = ∑
𝛷 𝑥 𝛼

𝛷′ 𝑥 𝛼−1

1
𝛼−1

 

 



Our RD Based Analysis 

• 𝜀: the advantage for the adversary to solve P 

• 𝜀′: the advantage for the adversary to solve P’  

The RD between 𝛷 and 𝛷′:  

𝑅𝛼 𝛷||𝛷′ = ∑
𝛷 𝑥 𝛼

𝛷′ 𝑥 𝛼−1

1
𝛼−1

 

 

𝜀 ≤ 𝜀′ ⋅ 𝑅𝛼 𝛷||𝛷′ 𝑘
𝛼−1
𝛼  
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Our RD Based Analysis 

𝜀 ≤ 𝜀′ ⋅ 𝑅𝛼 𝛷||𝛷′ 𝑘
𝛼−1
𝛼  

 

When the larger 𝛼 is used, the exponent of 𝜀′ becomes 
close to 1.  
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Tighter reduction! 

We adaptively optimize the order 𝛼 for the reduction to  
become as tight as possible.  



Adaptive Optimization of the Order 

Assume 𝑅𝛼 𝛷||𝛷′ ≤ exp 𝛼 ⋅ 𝛾 , 

𝜀 ≤ 𝜀′ ⋅ 𝑅𝛼 𝛷||𝛷′ 𝑘
𝛼−1
𝛼  

≤ exp
𝛼 − 1

𝛼
⋅ ln 𝜀′ + 𝛼 − 1 ⋅ 𝑘𝛾 . 

22/30 



Adaptive Optimization of the Order 

Assume 𝑅𝛼 𝛷||𝛷′ ≤ exp 𝛼 ⋅ 𝛾 , 

𝜀 ≤ 𝜀′ ⋅ 𝑅𝛼 𝛷||𝛷′ 𝑘
𝛼−1
𝛼  

≤ exp
𝛼 − 1

𝛼
⋅ ln 𝜀′ + 𝛼 − 1 ⋅ 𝑘𝛾 . 

The RHS is lower bounded as  

= exp ln 𝜀′ − 𝑘𝛾 +
− ln 𝜀′

𝛼
+ 𝛼 ⋅ 𝑘𝛾  

22/30 



Adaptive Optimization of the Order 

Assume 𝑅𝛼 𝛷||𝛷′ ≤ exp 𝛼 ⋅ 𝛾 , 

𝜀 ≤ 𝜀′ ⋅ 𝑅𝛼 𝛷||𝛷′ 𝑘
𝛼−1
𝛼  

≤ exp
𝛼 − 1

𝛼
⋅ ln 𝜀′ + 𝛼 − 1 ⋅ 𝑘𝛾 . 

The RHS is lower bounded as  

= exp ln 𝜀′ − 𝑘𝛾 +
− ln 𝜀′

𝛼
+ 𝛼 ⋅ 𝑘𝛾  

≥ exp ln 𝜀′ − 𝑘𝛾 + 2 −ln 𝜀′ ⋅ 𝑘𝛾  

by the inequality of arithmetic mean and geometric mean.  
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Adaptive Optimization of the Order 

The equality holds iff 

− ln 𝜀′

𝛼
= 𝛼 ⋅ 𝑘𝛾                 𝛼 =

− ln 𝜀′

𝑘𝛾
. 
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Adaptive Optimization of the Order 

The equality holds iff 

− ln 𝜀′

𝛼
= 𝛼 ⋅ 𝑘𝛾                 𝛼 =

− ln 𝜀′

𝑘𝛾
. 

We use the order and the inequality becomes 

𝜀 ≤ exp ln 𝜀′ − 𝑘𝛾 + 2 −ln 𝜀′ ⋅ 𝑘𝛾  

= exp − −ln 𝜀′ − 𝑘𝛾
2
. 

When RD is small (𝛾 ≈ 0), the RHS of the inequality 
becomes ≈ 𝜀′.  
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Summary of Our Results 

• Our approach offers security reduction where  

– ≈ 𝜀′ ←≈ 𝜀′1/2 for computing problems and 

– ≈ 𝜀′1/2 ←≈ 𝜀′1/3 for distinguishing problems.  

• Applications of our approaches are 

– Sampling discrete Gaussian over the integers with 
smaller precomputed tables for BLISS signatures. 

– Tighter LWE to k-LWE reduction. 

– Tighter SIS to k-SIS reduction. 
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Sampling Discrete Gaussian 
over the Integers 
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Bimodal Lattice Signature Scheme 

BLISS signatures [DDLL13] 

– are secure under the worst case ideal lattice 
problem (SIS).  

– are comparably efficient as RSA and ECDSA 

– requires to sample several hundreds of 
independent samples from one-dimensional 
discrete Gaussian distributions over the integers 
for a signing.  
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Sampling Discrete Gaussian  
over the Integers [DDLL13] 

Discrete Gaussian distributions 𝐷ℤ,𝑠 can be sampled by using 
Bernoulli random variables with probabilities 

𝑐𝑖 = exp −
𝜋2𝑖

𝑠2
 for 𝑖 = 0,… , 𝑙 − 1.   
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 An appropriate trade-off should be analyzed.  
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Larger 𝑝 with security 
vs  

Smaller 𝑝 with efficiency 



Statistical Analyses 

The trade-off can be analyzed by estimating the 
statistical closeness between the real distributions 
(with probabilities 𝑐𝑖 ) and the ideal distributions (with 
probabilities 𝑐𝑖).  
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Statistical Analyses 

The trade-off can be analyzed by estimating the 
statistical closeness between the real distributions 
(with probabilities 𝑐𝑖 ) and the ideal distributions (with 
probabilities 𝑐𝑖).  

Several statistical measures have been used 

– SD [DDLL13] 

– Kullback-Leibler divergence [PDG14] 

– RD of order 𝛼 = 2 and +∞ [BLL+15] 

 We use the RD of optimized orders.  
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Comparison 
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statistical measure table bit-size reduction loss 𝜺/𝜺′ 

SD [DDLL13] 6003 ≤ 2 

KLD [PDG14] 4872 ≤ 2 

RD, 𝛼 = +∞ 
[BLL+15] 

2291 ≤ 2 

RD, 𝛼 = 2 
[BLL+15] 

1160 ≈ 2128 

RD,  
optimized order 

Ours 

1276 ≤ 2 



Our Results 

• In the security reduction of lattice cryptography, the 
closeness of two probability distributions should be 
measured. To bound the closeness via the Rényi 
divergence, we adaptively optimize the order.  

• Applications of our approach are 

– Sampling discrete Gaussian over the integers with 
smaller precomputed tables  

– Tighter LWE to k-LWE reduction 

– Tighter SIS to k-SIS reduction 
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