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Background



Lattice Cryptography

e Lattice cryptography has novel properties.
— Resist quantum attacks
— Worst-case/Average-case reduction
— Faster computation and parallelizable
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Lattice Cryptography

e Lattice cryptography has novel properties.
— Resist quantum attacks
— Worst-case/Average-case reduction
— Faster computation and parallelizable

* |In the security reduction, there are statistical steps;
to measure the closeness of two probability

distributions.
e.g., zero centered and non-zero centered discrete Gaussian
distributions.

The security reduction follows through when the
distributions are statistically close.
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Statistical Analysis

Ideal Distribution Real Distribution
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Statistical Analysis

Ideal Distribution /\/_\Real Distribution

|deal distributions and real distributions are
statistically close

\ 4

Simulated cryptographic scheme and real scheme
are statistically indistinquishable.
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Statistical Analysis

LN N

The larger parameters (e.g. Gaussian deviations),
* two distributions become statistically close
e.g. the real schemes become secure,
 the scheme becomes less efficient.
v' We want to analyze the appropriate trade-off.

The analyses owe to statistical measures.

Which measure should be used?
Statistical Distance vs Rényi Divergence

__n——"__'-} {‘_—-—-_
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Statistical Measure

Statistical Distance (SD) Rényi Divergence (RD)
* SDis widely used in security * RDisrecently used in security
reduction. reduction for lattice crypto.

[LPR13,LSS14,LPSS14,BLL+15].
SD should be much smaller than ¢ RD can be independent
the advantage for the reduction. of the advantage.

inefficient parameters »smaller parameters

Small SD offers tight reduction. ¢ Even if RD is small, reductions
always lose the tightness.
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Statistical Measure

Statistical Distance (SD) Rényi Divergence (RD)
* SDis widely used in security * RDisrecently used in security
reduction. reduction for lattice crypto.

[LPR13,LSS14,LPSS14,BLL+15].

sp|Can we prove the security with both

it:‘ small parameters and tight reduction?
. , .

Small SD offers tight reduction. ¢ Even if RD is small, reductions
always lose the tightness.
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Our Solution

* In the previous RD based analyses, the order is fixed
toa = 2.

* In this work, we use the optimized order.
The optimization offers tighter reduction even if we

use the RD.
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Our Solution

* In the previous RD based analyses, the order is fixed
toa = 2.

* In this work, we use the optimized order.
The optimization offers tighter reduction even if we

use the RD.

Our approach offers
— tighter reduction than the previous RD based

analyses,
— with smaller parameters than the SD based

analyses.
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Precomputed Table Size for

BLISS Sighature
SD [DDLL13] 6003 <2
KLD [PDG14] 4872 <2
RD, @ = + 2291 <2
[BLL+15]
RD, a = 2 1160 ~ 2128
[BLL+15]
RD, 1276 <2

optimized order
Ours
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Our Approach



Overview of the Security Reduction

* Problem P: given X = {x;:x; <« ®};—1 _j and
compute f(X)

* Problem P given X' = {x';:x"; « @'};_1 ) and
compute f(X")

v When two probability distributions @ and @' are
statistically close, the adversary for the problem P is
also the adversary for the problem P’.
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SD Based Analysis

e ¢:the advantage for the adversary to solve P
« ¢': the advantage for the adversary to solve P’
The SD between @ and @':

1
A(®, @) =Xl (x) — @'(x)]
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SD Based Analysis
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SD Based Analysis

SD denotes the
summation of the
differences.

4@, @) =2 T/ (x) ~ @' (2)

NN
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SD Based Analysis

e ¢:the advantage for the adversary to solve P
« ¢': the advantage for the adversary to solve P’
The SD between @ and @':

1
AP, D) =§ZI¢(X — @' (x)|
‘ e<e + .

SD should be_much smaller than €/k

The strong requirement leads to inefficient parameters.
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Previous RD Based Analysis

e ¢:the advantage for the adversary to solve P
« ¢': the advantage for the adversary to solve P’
The RD (of order 2) between @ and @':

: ®(x)*
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Previous RD Based Analysis

RD of order 2 denotes the
expected value of the ratios.

0)) 2
R, (q§||cp’) =) CDSX)

N
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Previous RD Based Analysis

e ¢:the advantage for the adversary to solve P
« ¢': the advantage for the adversary to solve P’
The RD (of order 2) between @ and @':
D (x)?
R, (®||®") =
1

‘ e < (& - Ry(@||@")F)?

16/30



Previous RD Based Analysis

e < (&' (Ry(@]|@") )%

 RD are allowed to be larger bounds (small constant).
# Significant parameter savings!
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Previous RD Based Analysis

e < (&' (Ry(@]|@") @

 RD are allowed to be larger bounds (small constant).
# Significant parameter savings!

 Even if RD is extremely small (almost 1), the RHS is
always larger than £'1/2.

mm) The reduction always loses the tightness.
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Our RD Based Analysis

e ¢:the advantage for the adversary to solve P
« ¢': the advantage for the adversary to solve P’

The RD between @ and @':
1

D (x)* )ﬂ

R(X(CPHCD’) — (Z db’(x)“—l
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Our RD Based Analysis

RD of order « relates to
the expected value of

(a — 1) powers of the ratios.
1

D(x)* \a-1
CID’(x)“‘1>

\\
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Our RD Based Analysis

e ¢:the advantage for the adversary to solve P
« ¢': the advantage for the adversary to solve P’

The RD between @ and @':
1

D (x)* \a-1
¢r(x)a—1)

Ra(¢||¢,) — (Z

a—1

) < (&' Ry (®||®)K) @
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Our RD Based Analysis

e< (g Ra(d>||d>’)k)

When the larger « is used, the exponent of &' becomes
close to 1.

g

Tighter reduction!
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Our RD Based Analysis

e < (¢ )

When the larger « is used, the exponent of &' becomes

close to 1.

Tighter reduction!

v’ Since RD becomes exponential of a, @_cannot be
infinitely large.
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Our RD Based Analysis

e < (¢ )

When the larger « is used, the exponent of &' becomes
close to 1.

We adaptively optimize the order a for the reduction to
become as tight as possible.

v’ Since RD becomes exponential of a, @_cannot be
infinitely large.
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Adaptive Optimization of the Order

Assume R, (@||®") < exp(a-y),

a—1

e< (g Ra(d5||q5’)k)%

Sexp(a;l-ln(e’)+(cx—1)-ky).
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Adaptive Optimization of the Order

Assume R, (@||®") < exp(a-y),
a—1
e < (' - Ro(@]|@)k) @
a—1
< exp( - -In(e’) + (a — 1)-ky>.

The RHS is lower bounded as

= exp (ln(s’) — ky + (_ 11;(5') +a- ky))
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Adaptive Optimization of the Order

Assume R, (@||®") < exp(a-y),
a—1
e < (' - Ro(@]|@)k) @
a—1
< exp( - -In(e’) + (a — 1)-ky>.

The RHS is lower bounded as

= exp (ln(e’) — ky + (_ 11;(5') +a- ky))

> exp (ln(e’) — ky + 24/ —In(e") - ky)

by the inequality of arithmetic mean and geometric mezang




Adaptive Optimization of the Order

The equality holds iff
— ln(e’)

—In(e’)

V‘Of_ o
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Adaptive Optimization of the Order

The equality holds iff
— ln(e’)

—In(e’)

V‘Of— o

We use the order and the inequality becomes
e < exp (ln(e’) — ky + 2\/—ln(£’) - k]/)

2
= exp (— (\/—ln(e’) — 1/k)/) ) .

When RD is small (y = 0), the RHS of the inequality

becomes =~ &',
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Summary of Our Results

* Our approach offers security reduction where
— ~ &' «= g'1/2 for computing problems and
— ~ ¢'V/2 = ¢'1/3 for distinguishing problems.
* Applications of our approaches are

— Sampling discrete Gaussian over the integers with
smaller precomputed tables for BLISS signatures.

— Tighter LWE to k-LWE reduction.
— Tighter SIS to k-SIS reduction.
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Sampling Discrete Gaussian
over the Integers

25/30



Bimodal Lattice Signature Scheme

BLISS signatures [DDLL13]

— are secure under the worst case ideal lattice
problem (SIS).

— are comparably efficient as RSA and ECDSA

— requires to sample several hundreds of
independent samples from one-dimensional
discrete Gaussian distributions over the integers
for a signing.
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Sampling Discrete Gaussian
over the Integers [DDLL13]

Discrete Gaussian distributions D7 ; can be sampled by using

Bernoulli random variables with probabilities
2!

C; = exp (——) fori =0,..,[—1.
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Sampling Discrete Gaussian
over the Integers [DDLL13]

Discrete Gaussian distributions D7 ; can be sampled by using

Bernoulli random variables with probabilities
2!

C; = exp (——) fori =0,..,[—1.

Storing the truncated probabilities ¢; with bit precisions p,
Bernoulli random variables can be sampled efficiently.

Larger p with security
VS
Smaller p with efficiency

v An appropriate trade-off should be analyzed.
27/30



Statistical Analyses

The trade-off can be analyzed by estimating the
statistical closeness between the real distributions

(with probabilities ¢;) and the ideal distributions (with
probabilities c;).
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Statistical Analyses

The trade-off can be analyzed by estimating the
statistical closeness between the real distributions

(with probabilities ¢;) and the ideal distributions (with
probabilities c;).

Several statistical measures have been used
— SD [DDLL13]

— Kullback-Leibler divergence [PDG14]
— RD of order &« = 2 and +oo [BLL+15]
v' We use the RD of optimized orders.
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Comparison

statistical measure table bit-size | reduction loss £/¢&’

SD [DDLL13] 6003 <2
KLD [PDG14] 4872 <2
RD, ¢ = 4+ 2291 <2
[BLL+15]
RD, a = 2 1160 ~ 2128
[BLL+15]
RD, 1276 <2

optimized order
Ours
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Our Results

* In the security reduction of lattice cryptography, the
closeness of two probability distributions should be
measured. To bound the closeness via the Rényi
divergence, we adaptively optimize the order.

* Applications of our approach are

— Sampling discrete Gaussian over the integers with
smaller precomputed tables

— Tighter LWE to k-LWE reduction
— Tighter SIS to k-SIS reduction
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