
5IF���UI�*OUFSOBUJPOBM�$POGFSFODF�BOE�&YIJCJUJPO�
PO�$PNQVUFS�(SBQIJDT�BOE�*OUFSBDUJWF�5FDIOJRVFT

FEM Simulation of 3D Deformable Solids: A practitioner’s
guide to theory, discretization and model reduction

Part One : The classical FEM method and discretization methodology

Eftychios Sifakis 
University of Wisconsin - Madison

Find the latest version of course notes at : www.femdefo.org

http://www.femdefo.org

Computer Graphics Proceedings, Annual Conference Series, 1999

Graphical Modeling and Animation of Brittle Fracture
James F. O’Brien Jessica K. Hodgins

GVU Center and College of Computing
Georgia Institute of Technology

Abstract
In this paper, we augment existing techniques for simulating flex-
ible objects to include models for crack initiation and propagation
in three-dimensional volumes. By analyzing the stress tensors com-
puted over a finite element model, the simulation determines where
cracks should initiate and in what directions they should propagate.
We demonstrate our results with animations of breaking bowls,
cracking walls, and objects that fracture when they collide. By
varying the shape of the objects, the material properties, and the
initial conditions of the simulations, we can create strikingly dif-
ferent effects ranging from a wall that shatters when it is hit by a
wrecking ball to a bowl that breaks in two when it is dropped on
edge.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Physically based modeling;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation; I.6.8 [Simulation and Modeling]: Types of
Simulation—Animation

Keywords: Animation techniques, physically based modeling,
simulation, dynamics, fracture, cracking, deformation, finite ele-
ment method.

1 Introduction
With the introduction in 1998 of simulated water in Antz [5, 14]
and clothing in Geri’s Game [4, 15], passive simulation was clearly
demonstrated to be a viable technique for commercial animation.
The appeal of using simulation for objects without an internal
source of energy is not surprising, as passive objects tend to have
many degrees of freedom, making keyframing or motion capture
difficult. Furthermore, while passive objects are often essential to
the plot of an animation and to the appearance or mood of the piece,
they are not characters with their concomitant requirements for con-
trol over the subtle details of the motion. Therefore, simulations in
which the motion is controlled only by initial conditions, physical
equations, and material parameters are often sufficient to produce
appealing animations of passive objects.

College of Computing, Georgia Institute of Technology, Atlanta, GA 30332.
job@acm.org, jkh@cc.gatech.edu.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
SIGGRAPH 99, Los Angeles, CA USA
Copyright ACM 1999 0-201-48560-5/99/08 . . . $5.00

Figure 1: Slab of simulated glass that has been shattered by a heavy
weight.

Our approach to animating breaking objects is based on lin-
ear elastic fracture mechanics. We model three-dimensional vol-
umes using a finite element method that is based on techniques
presented in the computer graphics and mechanical engineering
literature [3, 6, 18]. By analyzing the stresses created as a vol-
umetric object deforms, the simulation determines where cracks
should begin and in what directions they should propagate. The
system accommodates arbitrary propagation directions by dynami-
cally retesselating the mesh. Because cracks are not limited to el-
ement boundaries, the models can form irregularly shaped shards
and edges as they shatter.
We demonstrate the power of this approach with the following

examples: a glass slab that shatters when a weight is dropped onto
it (Figure 1), an adobe wall that crumbles under the impact of a
wrecking ball (Figure 9), a series of bowls that break when they hit
the floor (Figure 11), and objects that break when they collide with
each other (Figure 14). To assess the realism of this approach, we
compare high-speed video images of a physical bowl dropping onto
concrete and a simulated version of the same event (Figure 13).

2 Background
In the computer graphics literature, two previous techniques have
been developed for modeling dynamic, deformation-induced frac-
ture. In 1988, Terzopoulos and Fleischer [18, 19] presented a
general technique for modeling viscoelastic and plastic deforma-
tions. Their method used three fundamental metric tensors to de-
fine energy functions that measured deformation over curves, sur-
faces, and volumes. These energy functions provided the basis for
a continuous deformation model that they simulated using a va-
riety of discretization methods. One of their methods made use
of a finite differencing technique defined by controlled continuity
splines [17]. This formulation allowed them to demonstrate how
certain fracture effects could be modeled by setting the elastic co-
efficients between adjacent nodes to zero whenever the distance
between the nodes exceeded a threshold. They demonstrated this
technique with sheets paper and cloth that could be torn apart.

137

Figure 5: 40 incompressible elastic tori fall into a pile illustrating complex collision and contact. Object contact and self-contact are repre-

sented as linear constraints during each Poisson solve. Each torus maintains correct volume to within 0.5%, even at the bottom of the pile.

per iteration). Thorough description and analysis of MINRES, con-

jugate gradient, and related solvers for singular or nearly singular

systems can be found in [Choi 2006].

5 Examples

We used the method of [Irving et al. 2004] for internal deviatoric

finite element forces in all our examples. When necessary, we used

a minimum volume recovery time scale of one-fifth of a frame.

Figure 2 shows a comparison of our method against a standard fi-

nite volume discretization using a 104k element mesh. Using a

3GHz Xeon machine, the computational cost was 18 s/frame for

our method, 25 s/frame with Poisson’s ratio .45, and 3.4 min/frame

with Poisson’s ratio .499. Similarly the simulation time for Fig-

ure 3 was 34 s/frame. The armadillo simulations in Figures 1 and

4 were both under 4 min/frame with a 112k element mesh. The

simulation in Figure 5 took an average of 15 min/frame for 40 12k

element meshes (500k elements total) with approximately 65% the

time spent in the two Poisson solves due to the complexity of the

contact constraints.

As a stress test for our method, we squeezed an incompressible

sphere with 22k elements between two kinematic plates (similar to

an example in [Hong et al. 2006]). The minimum volume recovery

time scale was not used (i.e. we set � = 0). The sphere was success-

fully compressed to 1.1% of its original thickness before numerical

error forced the time step to zero (all computations were performed

Figure 6: Volume error, in percent, as a sphere is pressed between

plates. The plates are just touching the sphere at time 0 and move

towards each other with constant velocity until they meet at time 1.

in single precision). The total volume error remained below 1.7%

throughout the simulation, and was lower than 0.1%, 0.5%, and

1% until the sphere reached 13%, 2.3%, and 1.4% of its original

thickness, respectively. A plot of volume error vs. time is shown

in Figure 6. For this simulation we modified the time integration

scheme to enforce contact constraints during both backward Euler

solves (steps 1 and 7) instead of only in step 7, so that the volume

correction in step 2 used the correct collision-aware velocities for

particles in contact with the plates. The use of uncorrected veloc-

ities as input to volume correction would have caused significant

degradation for this simulation due to the high tension involved.

This modification was not necessary for the other examples, which

is fortunate since enforcing contact constraints in both solves typi-

cally causes sticking artifacts during separation.

6 Conclusion

We proposed a novel technique for enforcing local incompressibil-

ity in deformable solids drawing ideas from computational fluid

dynamics. We benefit from the simplicity and flexibility of tetra-

hedra while avoiding the pitfalls of locking by enforcing volume

preservation over one-rings instead of individual tetrahedra. We

augmented our method to incorporate both object contact and self-

contact constraints into the incompressible solve to alleviate prob-

lems with conflicting constraints. The method is trivially adapted

for triangles and thin shells.

Acknowledgments

Research supported in part by an ONR YIP award and a PECASE

award (ONR N00014-01-1-0620), a Packard Foundation Fellow-

ship, ONR N0014-06-1-0393, ONR N00014-05-1-0479 for a com-

puting cluster, ARO DAAD19-03-1-0331, NIH U54-GM072970,

NSF CCF-0541148, NSF IIS-0326388 and NSF ITR-0205671. G.I.

was supported in part by an NSF Graduate Fellowship.

References

ANGELIDIS, A., CANI, M., WYVILL, G., AND KING, S. 2006. Swirling-

sweepers: constant volume modeling. Graphical Models 68, 4, 324–32.

Efficient elasticity for character skinning with contact and collisions

Aleka McAdams1,3 Yongning Zhu2 Andrew Selle1 Mark Empey1
Rasmus Tamstorf1 Joseph Teran3,1 Eftychios Sifakis4,1

1 Walt Disney Animation Studios 2 PDI/DreamWorks
3 University of California, Los Angeles 4 University of Wisconsin, Madison

Figure 1: Our method takes a geometric internal skeleton (left) and a source surface mesh (not pictured) as input. Based on a hexahedral
lattice (center) it then simulates a deformed surface (right) obeying self-collision and volumetric elasticity. The example shown here has
106,567 cells and simulates at 5.5 seconds per frame. c�Disney Enterprises, Inc.

Abstract

We present a new algorithm for near-interactive simulation of skele-
ton driven, high resolution elasticity models. Our methodology is
used for soft tissue deformation in character animation. The al-
gorithm is based on a novel discretization of corotational elastic-
ity over a hexahedral lattice. Within this framework we enforce
positive definiteness of the stiffness matrix to allow efficient qua-
sistatics and dynamics. In addition, we present a multigrid method
that converges with very high efficiency. Our design targets perfor-
mance through parallelism using a fully vectorized and branch-free
SVD algorithm as well as a stable one-point quadrature scheme.
Since body collisions, self collisions and soft-constraints are nec-
essary for real-world examples, we present a simple framework for
enforcing them. The whole approach is demonstrated in an end-to-
end production-level character skinning system.

CR Categories: I.6.8 [Simulation and Modeling]: Types of
Simulation—Animation

Keywords: skinning, corotated elasticity, physics-based model-
ing, elastic deformations

Links: DL PDF WEB

1 Introduction
Creating appealing characters is essential for feature animation.
One challenging aspect is the production of life-like deformations
for soft tissues comprising both humans and animals. In order to
provide the necessary control and performance for an animator,
such deformations are typically computed using a skinning tech-
nique and/or an example based interpolation method. Meanwhile,
physical simulation of flesh-like material is usually avoided or rel-
egated to an offline process due to its high computational cost.
However, simulations create a range of very desirable effects, like
squash-and-stretch and contact deformations. The latter is espe-
cially important as it can guarantee pinch-free geometry, which is
important for subsequent simulations like cloth and hair.

Although the benefits of solving the equations of the underlying
physical laws for character deformation are clear, computational
methods are traditionally far too slow to accommodate the rapid
interaction demanded by animators. Many simplified approaches
to physical simulation can satisfy interactivity demands, but any
such approach must provide all of the following functionality to be
useful in production: (1) robustness to large deformation, (2) sup-
port for high-resolution geometric detail, (3) fast and accurate col-
lision response (both self and external objects). Ideally, for rigging,
it should also provide path independent deformations determined
completely by a kinematic skeleton. However, this is not possible
since contact deformations in general depend on the path taken to
the colliding state.

Whereas previous works have addressed many of these concerns
individually, e.g., robustness to large deformation in [Irving et al.
2004], high resolution detail [Zhu et al. 2010], and quasistatic simu-
lation [Teran et al. 2005], we present a novel algorithmic framework
for the simulation of hyperelastic soft tissues that targets all aspects
discussed above. Our approach is robust to large deformation (even
inverted configurations) and extremely stable by virtue of careful
treatment of linearization. We present a new multigrid approach
to efficiently support hundreds of thousands of degrees of freedom
(rather than the few thousands typical of existing techniques) in a
production environment. Furthermore, these performance and ro-
bustness improvements are guaranteed in the presence of both colli-

Comprehensive Biomechanical Modeling and Simulation of the Upper Body • 99:13

Fig. 13. The soft tissue simulator produces realistic deformations of (a) the visualization geometry, and (b) embedded volumetric muscles.

Fig. 14. Compared to zero muscle coactivation (a), higher coactivation, (b) results in greater muscle bulging and stiffness in the shoulder.

Figure 16 shows snapshots of an autonomous breathing animation
in which plausible respiratory movement is produced by the inter-
costal muscles. For the purposes of this demonstration, we have
specified a simple periodic function, ρ = ρmax(1 − cos θ)/2, where
θ is the phase angle, and set q j = c jρ as target joint angles for the
ribs. Here, c j linearly increases until the fifth rib and stays constant
for the remaining ribs.

5.1 Sensitivity Analysis

We have measured the sensitivity of our method to various mus-
cle modeling parameters. Figure 17(a)–(b) show the effect of the
PCSA of muscles on the computation of muscle activation levels.
In each test, we randomly perturbed the PCSAs of every muscle
by up to ± 5% and measured the change of activation levels for 6
different poses. We executed a total of 10 tests; Figure 17(a) shows

ACM Transactions on Graphics, Vol. 28, No. 4, Article 99, Publication date: August 2009.

Introduction

What does this course aim to do?

✓Give you a brief exposure to the concepts and
methods associated with Finite Elements
✓Provide a primer on continuum mechanics
✓Give you enough insight to start implementing
✓Encourage you to study further, and improve your

understanding

Find the latest version of course notes at : www.femdefo.org

http://www.femdefo.org

Introduction

... a way to model elastic bodies that provides more  
detail and fidelity than using mass-spring networks ...

... a simulation technique for deformable models
represented by tetrahedral (or triangle) meshes ...

... a method for deriving the governing equations of 3D solids,
based on the potential energy they store when deformed ...

How do graphics practitioners describe FEM methods?

Introduction

We associate FEM with

•The Galerkin-based discretization
method (core concept)
•Continuum mechanics concepts 

(stress, strain, energy, etc.)
•Common material models 

(corotated, StVK, Neohookean, etc.)

Finite Elements vs. Finite Differences (the executive summary) :

Finite Differences replace the differential equation  
with an approximate algebraic expression

Finite Elements replace the solution with a parametric
approximation, and then compute the best parameter values

FEM: Just one possible method for solving 
partial differential equations (PDEs)

Introduction

f(x) = x2 - 2x- 2

f 00(x) = 2 x 2 (0, 3)
f(0) = -2
f(3) = 1

FEM vs. Finite Differences

Problem statement:

Example : The Poisson equation

Solution:

(x1, y1)

FEM vs. Finite Differences

(x0, y0)

(x2, y2)

(xN , yN)

Example : The Poisson equation

Using Finite Differences:

i. Introduce a number of data points 
 
 

ii. Approximate the PDE with a finite 
difference formula at each point 
 

 

iii.Solve all FD equations as a system

(x0, y0), (x1, y1), . . . , (xn, yn), xk := x0 + kh

(x1, y1)

FEM vs. Finite Differences

(x0, y0)

(x2, y2)

(xN , yN)

Example : The Poisson equation

Using Finite Differences:

i. Introduce a number of data points 
 
 

ii. Approximate the PDE with a finite 
difference formula at each point 
 

 

iii.Solve all FD equations as a system

(x0, y0), (x1, y1), . . . , (xn, yn), xk := x0 + kh

2 = f 00(xk) ⇡
yk-1 - 2yk + yk+1

h2

FEM vs. Finite Differences

Example : The Poisson equation

Using Finite Elements:

i. Define a family of candidate functions 
(which can approximate the solution)

• Piecewise linear polynomials
• Splines
• etc. 

ii. Tune the available parameters to best
approximate the solution to the PDE

FEM vs. Finite Differences

Example : The Poisson equation

Using Finite Elements:

i. Define a family of candidate functions 
(which can approximate the solution)

• Piecewise linear polynomials
• Splines
• etc. 

ii. Tune the available parameters to best
approximate the solution to the PDE

FEM vs. Finite Differences

Example : The Poisson equation

Using Finite Elements:

i. Define a family of candidate functions 
(which can approximate the solution)

• Piecewise linear polynomials
• Splines
• etc. 

ii. Tune the available parameters to best
approximate the solution to the PDE

FEM vs. Finite Differences

=
1

2
⇥ +2⇥

+
3

2
⇥ -1⇥

+1⇥

FEM vs. Finite Differences

=
1

2
⇥ +2⇥

+
3

2
⇥ -1⇥

+1⇥y(x) :=
X

k

ykNk(x)

FEM vs. Finite Differences

=
1

2
⇥ +2⇥

+
3

2
⇥ -1⇥

+1⇥y(x) :=
X

k

ykNk(x)

FEM vs. Finite Differences

=
1

2
⇥ +2⇥

+
3

2
⇥ -1⇥

+1⇥y(x) :=
X

k

ykNk(x)

FEM vs. Finite Differences

y(x) :=
X

k

ykNk(x)

FEM vs. Finite Differences

How do we find the optimal values ?

y0, y1, . . . , yn

y(x) :=
X

k

ykNk(x)

FEM vs. Finite Differences

How do we find the optimal values ?

Can we substitute into the PDE?

y0, y1, . . . , yn

f 00(x) = 2 x 2 (0, 3)
f(0) = -2
f(3) = 1

y(x) :=
X

k

ykNk(x)

FEM vs. Finite Differences

How do we find the optimal values ?

Can we substitute into the PDE?

y(x) is not differentiable enough!

y0, y1, . . . , yn

f 00(x) = 2 x 2 (0, 3)
f(0) = -2
f(3) = 1

y 00(x) = 0 E[y] =

Z
|y 0(x)|2dx

E[y] = E(y1, y2, . . . , yN)

Solve ... Minimize ...

FEM vs. Finite Differences

y(x) :=
X

k

ykNk(x)

Elasticity on a flexible string

~C(s)

s = 0

s = L

d

ds

k
k~C 0(s)k- 1

k~C 0(s)k
~C 0(s)

!
+ ~f = 0 E = l0

k

2

✓
l

l0
- 1

◆2

2D/3D Elasticity - Material models

Finite Elements

✓ Works naturally with
mesh-based discretizations
✓ Produces numerically nice
(sparse, symmetric, definite)
discrete systems
✗ Requires attention in
choosing proper elements
✗ Discretization is not as
sparse as finite differences

Finite Differences

✓ Very straightforward to write
✓ Generally produces sparse
systems (often sparser than
FEM)
✗ Accommodating irregular
geometries (e.g. meshes) is
nontrivial
✗ Need to be very careful to
preserve useful numerical
properties (e.g. symmetry)

FEM vs. Finite Differences

5IF���UI�*OUFSOBUJPOBM�$POGFSFODF�BOE�&YIJCJUJPO�
PO�$PNQVUFS�(SBQIJDT�BOE�*OUFSBDUJWF�5FDIOJRVFT

2D/3D Elasticity - The deformation map

2D/3D Elasticity - The deformation map

2D/3D Elasticity - The deformation map

Undeformed configuration
(material coordinates)

Deformed configuration
(spatial coordinates)

Undeformed configuration
(material coordinates)

Deformed configuration
(spatial coordinates)

2D/3D Elasticity - The deformation map

~x =

0

@
x
y
z

1

A = �(~X) =

0

@
x(X, Y, Z)
y(X, Y, Z)
z(X, Y, Z)

1

A

F :=
@

@~X
�(~X) =

0

@
@x/@X @x/@Y @x/@Z
@y/@X @y/@Y @y/@Z
@z/@X @z/@Y @z/@Z

1

A

2D/3D Elasticity - The deformation map

φ(Χ) is a map from R3 to R3

Deformation gradient: the Jacobian of φ(Χ)

~x =

0

@
x
y
z

1

A = �(~X) =

0

@
x(X, Y, Z)
y(X, Y, Z)
z(X, Y, Z)

1

A

F :=
@

@~X
�(~X) =

0

@
@x/@X @x/@Y @x/@Z
@y/@X @y/@Y @y/@Z
@z/@X @z/@Y @z/@Z

1

A

2D/3D Elasticity - The deformation map

Spring analogue:

l0
l

~f1

~f2

E = l0
k

2

✓
l

l0
- 1

◆2

φ(Χ) is a map from R3 to R3

Deformation gradient: the Jacobian of φ(Χ)

 ~x = �(~X) = ~X+~t

F = I

2D/3D Elasticity - Deformation examples

Simple translation

2D/3D Elasticity - Deformation examples

Uniform Scaling

 ~x = �(~X) = �~X

F = �I

F =

✓
0.7 0
0 2

◆

2D/3D Elasticity - Deformation examples

Anisotropic scaling

 ~x = �

✓
X
Y

◆
=

✓
0.7X
2Y

◆

F =

✓
0.7 0
0 2

◆

F = R450

Rotation only

 ~x = �

✓
X
Y

◆
=R450

✓
X
Y

◆

F = R450

2D/3D Elasticity - Deformation examples

F- I ??

2D/3D Elasticity - Strain measures

Translation Rotation
F = RF = I

How do we quantify shape change?

E =
1

2
(FTF- I)

✏ =
1

2
(F+ FT)- I

2D/3D Elasticity - Strain measures

Spring analogue:

l0
l

~f1

~f2

E = l0
k

2

✓
l

l0
- 1

◆2

Strain measure: A tensor (matrix) which
encodes the severity of shape change

Green strain

Infinitesimal strain
(small strain tensor)

~n

~⌧

�A

Force density (f) :  
 Measures the internal elastic force per unit (undeformed) volume

Traction (τ) :  
 Measures the force per unit area on a material cross-section

2D/3D Elasticity - Force, traction and stress

~n

~⌧

�A

Force density (f) :  
 Measures the internal elastic force per unit (undeformed) volume

Traction (τ) :  
 Measures the force per unit area on a material cross-section

What is the difference of force and traction?

2D/3D Elasticity - Force, traction and stress

~n

~⌧

�A

Force density (f) :  
 Measures the internal elastic force per unit (undeformed) volume

Traction (τ) :  
 Measures the force per unit area on a material cross-section

What is the difference of force and traction?

 ~⌧L

2D/3D Elasticity - Force, traction and stress

~n

~⌧

�A

Force density (f) :  
 Measures the internal elastic force per unit (undeformed) volume

Traction (τ) :  
 Measures the force per unit area on a material cross-section

What is the difference of force and traction?

 ~⌧L ~⌧R

2D/3D Elasticity - Force, traction and stress

~n

~⌧

�A

Force density (f) :  
 Measures the internal elastic force per unit (undeformed) volume

Traction (τ) :  
 Measures the force per unit area on a material cross-section

What is the difference of force and traction?

 ~⌧L ~⌧R

~f = ~⌧L + ~⌧R

2D/3D Elasticity - Force, traction and stress

~n

~⌧

�A
~⌧ = P~n

2D/3D Elasticity - Force, traction and stress

Force density (f) :  
 Measures the internal elastic force per unit (undeformed) volume

Traction (τ) :  
 Measures the force per unit area on a material cross-section

~n

~⌧

�A
~⌧ = P~n

2D/3D Elasticity - Force, traction and stress

(Piola) Stress tensor (P) :  
 A matrix that describes force response along different orientations

Traction (τ) :  
 Measures the force per unit area on a material cross-section

E[�] :=

Z
 [�]d~X

 [�] := (F)

2D/3D Elasticity - Strain energy

Deformation Energy (E) [also known as strain energy] :  
 Potential energy stored in elastic body, as a result of deformation.

Energy density (Ψ) :  
 Ratio of strain energy per unit (undeformed) volume.

Total potential energy

(for typical materials)

 [�] := (F)

E[�] :=

Z
 [F]d~X

2D/3D Elasticity - Strain energy

Deformation Energy (E) [also known as strain energy] :  
 Potential energy stored in elastic body, as a result of deformation.

Energy density (Ψ) :  
 Ratio of strain energy per unit (undeformed) volume.

Total potential energy

(for typical materials)

Spring analogue:

l0
l

~f1

~f2

E = l0
k

2

✓
l

l0
- 1

◆2

P :=
@ (F)

@F

✏ = 1
2 (F+ FT)- I

 = µk✏kF + �
2 tr

2(✏)

P = 2µ✏+ �tr(✏)I

2

2D/3D Elasticity - Strain energy

Stress-energy relation

Linear elasticity

✓ Linear force-position
relation
✓ Computationally
inexpensive
✗ Bad for large deformations
✗ Not rotationally invariant

Stable Real-Time Deformations: M. Müller, J. Dorsey, L. McMillan, R. Jagnow, B. Cutler

Figure 7: Three bars attached to a wall under the influence of gravity. They are simulated using non-linear (green), warped (blue) and linear
(red) strain measures. Longer bars more noticeably show the artifacts with linear FEM.

(a) (b) (c) (d)

Figure 8: A tube is bent under user-applied forces (a), inertial forces (b) and collision forces with low (c) and high (d) elasticity modulus.

Figure 9: The bone core (white) is animated as a rigid body while the bunny’s skin follows it dynamically.

Figure 10: The great dane’s skin has a low elastic modulus, which makes the surface lag noticeably behind the skull movement.

[Source: Müller et al, “Stable real-time deformations”, 2002]

✏ = 1
2 (F+ FT)- I

 = µk✏kF + �
2 tr

2(✏)

P = 2µ✏+ �tr(✏)I

2D/3D Elasticity - Material models

Linear elasticity

✓ Linear force-position
relation
✓ Computationally
inexpensive
✗ Bad for large deformations
✗ Not rotationally invariant

Corotated linear elasticity

✓ Rotationally invariant
✓ Survives collapse & inversion
✗ Polar decomposition
overhead
✗ Inaccurate volume
preservation

2

E = S- I [F = RS]

 = µkErk2F + �
2 tr

2(Er)

P = R [2µEr + �tr(Er)I]

E = 1
2 (F

TF- I)

 = µkEkF + �
2 tr

2(E)

P = F [2µE+ �tr(E)I]

E = S- I [F = RS]

 = µkErk2F + �
2 tr

2(Er)

P = R [2µEr + �tr(Er)I]

2D/3D Elasticity - Material models

Corotated linear elasticity

✓ Rotationally invariant
✓ Survives collapse & inversion
✗ Polar decomposition
overhead
✗ Inaccurate volume
preservation

St. Venant-Kirchhoff material

✓ Rotationally invariant
✓ No polar decomposition
needed
✗ Weak resistance to
compression
✗ Inaccurate volume

Stable Real-Time Deformations: M. Müller, J. Dorsey, L. McMillan, R. Jagnow, B. Cutler

Figure 7: Three bars attached to a wall under the influence of gravity. They are simulated using non-linear (green), warped (blue) and linear
(red) strain measures. Longer bars more noticeably show the artifacts with linear FEM.

(a) (b) (c) (d)

Figure 8: A tube is bent under user-applied forces (a), inertial forces (b) and collision forces with low (c) and high (d) elasticity modulus.

Figure 9: The bone core (white) is animated as a rigid body while the bunny’s skin follows it dynamically.

Figure 10: The great dane’s skin has a low elastic modulus, which makes the surface lag noticeably behind the skull movement.

[Source: Müller et al, “Stable real-time deformations”, 2002]

2

E = 1
2 (F

TF- I)

 = µkEkF + �
2 tr

2(E)

P = F [2µE+ �tr(E)I]

I1 = kFk2F, J = detF

 = µ
2 (I1 - 3)- µ log(J) + �

2 log2(J)

P = µ(F- F-T) + � log(J)F-T

2

2D/3D Elasticity - Material models

St. Venant-Kirchhoff material

✓ Rotationally invariant
✓ No polar decomposition
needed
✗ Weak resistance to
compression
✗ Inaccurate volume

Neohookean elasticity

✓ Accurate volume
preservation
✓ Discourages collapse/
inversion
✗ Undefined when inverted
✗ Numerically stiff w/

Online Submission ID: 0198

• A new data organization scheme for storing state variables and90

intermediate solver data, facilitating aggressive SIMD accel-91

erations and lock-free, load balanced multithreading.92

The technical portion of our paper is structured as follows: In sec-93

tion 2 we detail how the discrete form of the governing equations94

is obtained and explain our treatment of incompressibility. In sec-95

tion 3 we replace complex integrals in the discrete equations with96

simpler numerical expressions, better suited for computer imple-97

mentation; this section introduces our sub-voxel accurate treatment98

of boundaries. In section 4 we solve the nonlinear discrete equa-99

tions using a high-order defect correction procedure and a symmet-100

ric indefinite Krylov solver for the linearized system. Section 5101

lists several crucial implementation considerations, including our102

SIMD- and thread-optimized data organization scheme. We note103

that we shall defer the discussion of relevant existing research until104

later in our technical exposition, where such contributions can be105

more appropriately contrasted with our proposed approach.106

2 Elasticity and discretization107

We start by reviewing the physical principles that govern the mo-108

tion of an elastic deformable body. Let ⌅ : ⇥⇤R3 be the defor-109

mation function which maps a material point �X =(X,Y, Z) to its110

deformed location �x=(x, y, z)=⌅(�X), and F(�X)=�⌅(�X)/� �X111

denote the deformation gradient. In order to simulate the deforma-112

tion of a body with a specific material composition, we need a quan-113

titative description of how this material reacts to a given deforma-114

tion. For hyperelastic materials this is derived from a strain energy115

density function �(F) which can be integrated over the entire body116

to measure the total energy E[⌅] =
⇥
�
�(F)d �X . In these expres-117

sions ⌅(�X) is an arbitrary deformation field; however, for numer-118

ical simulation we only encode the deformation map via discrete119

values �xi = ⌅(�Xi) sampled at prescribed locations { �Xi}i=1...N .120

Using those, we reconstruct discretized versions of the deformation121

field, the deformation gradient and the elastic energy, as follows:122

⌅(�X;x) =
�

i �xiNi(�X) (1)

F(�X;x) = �⌅(�X;x)/� �X (2)

E(x) =
⇥
�
�(F(�X;x))d �X (3)

In the definitions above, x = (�x1,..., �xN) is a vector containing123

all nodal degrees of freedom and conveys the state of our discrete124

model. The symbol Ni(�X) denotes the interpolation basis func-125

tions associated with each node �Xi. In our approach those will be126

trilinear interpolating basis functions, associated with the vertices127

of a cubic lattice as detailed in section 4. As noted above, the spe-128

cific formula for �(F) is a defining property of the material being129

modeled. Note that both the deformation gradient F(�X;x) as well130

as the energy density �(F(�X;x)) are spatially varying functions131

(of the material location �X). This should be contrasted with tetra-132

hedral discretizations where such quantities are constant on each133

element, as a consequence of the linear basis functions used in that134

setting. In any case, once a discrete energy E(x) has been defined,135

the discrete nodal forces are readily computed as �fi=��E/��xi.136

The remainder of this section addresses certain adjustments to the137

discrete energy definition (3) including modifications to performed138

approximations and a reformulation of the discrete state variables.139

Our objective is to support a spectrum of materials from compress-140

ible to highly-incompressible, accommodate true nonlinear volume141

preservation constraints and avoid locking or poor numerical con-142

ditioning problems that often stem from incompressible materials.143

Figure 2: Simulation of corotated (top) and neohookean (bottom)
materials at high Poisson’s ratio (⇤ = .498). The corotated model
loses more than 50% of the original volume due to its inaccurate in-
compressibility term. The neohookean model stays within .1% of its
original volume, with less than 1% volume variation per element.

2.1 Quasi-incompressibility144

We model response to volume change using the formulation re-145

ferred to as quasi-incompressibility. In this approach, instead of en-146

forcing incompressibility as a hard constraint we append a penalty-147

like volume preservation term to the definition of the deformation148

energy, with a tunable stiffness that allows a range of compressible149

to highly incompressible behaviors. The energy density function150

has the general form �(F) =�0(F)+�M2(F)/2, where M(F)151

measures the deviation from a volume-preserving configuration and152

� is the stiffness of the incompressibility constraint which is related153

(or identified) with material properties such as the bulk modulus154

or the second Lamé coefficient (⇥). For example, linear elasticity155

defines M(F) = tr(F�I) which seeks to make the displacement156

field divergence free. Corotated elasticity uses M(F) = tr(��I)157

(where F = U�VT is the SVD of F) essentially enforcing that158

the average of principal stretch ratios is equal to one. Both mea-159

sures provide an adequate approximation of volume change in the160

small strain regime, but become very inaccurate under large de-161

formation. Thus, more advanced models consider the true volume162

change ratio J = det(F) = det(�) and define M(F) = log(J)163

or M(F) = J�1, properly enforcing that the product of principal164

stretch ratios remains close to one. Although we recommend the165

use of the latter model types, we seek to accommodate any defini-166

tion of M(F) as even the less accurate formulations may be quite167

acceptable in appropriate deformation scenarios.168

For discretization we superimpose a Cartesian lattice on the refer-169

ence model shape ⇥, naturally defining a partitioning ⇥=⇧⇥k of170

the elastic domain into sub-domains ⇥k=⇥⌃Ck within each lattice171

cell Ck. No restriction on the shape of ⇥ is imposed. Thus, each172

sub-domain ⇥k is either an entire cell of our cubic lattice (for cells173

fully interior to the deforming model) or a fractional cell when Ck174

overlaps with the model boundary. The discrete energy can also be175

split into a sum of local terms E(x)=
�

k Ek(x), integrated over176

the respective ⇥k. We define the energy of each cell as follows:177

Ek :=
⇥
�k

�0(F)d �X + 1
2�WkM

2
(⇥k) (4)

178

where Wk :=
⇥
�k

d �X and M(⇥k) := 1
Wk

⇥
�k

M(F)d �X (5)

2

Additional information on course notes

✓Extended discussion of rotational invariance, isotropy
and the common isotropic invariants
✓PDE form of elasticity equations
✓Stress formulas for general isotropic materials
✓Benefits and drawbacks of individual material models

5IF���UI�*OUFSOBUJPOBM�$POGFSFODF�BOE�&YIJCJUJPO�
PO�$PNQVUFS�(SBQIJDT�BOE�*OUFSBDUJWF�5FDIOJRVFT

Tetrahedral models - Deformation measures

Undeformed shape Deformed shape

x = a11X+ a12Y + a13Z+ b1

y = a21X+ a22Y + a23Z+ b2

z = a31X+ a32Y + a33Z+ b3

Hypothesis:
On every tetrahedron

φ(X) is linear!

Tetrahedral models - Deformation measures

0

@
x
y
z

1

A =

0

@
a11 a12 a13

a21 a22 a23

a31 a32 a33

1

A

0

@
X
Y
Z

1

A+

0

@
b1

b2

b3

1

A
Hypothesis:

On every tetrahedron
φ(X) is linear!

Tetrahedral models - Deformation measures

~x = �(~X) = A~X+~t
Hypothesis:

On every tetrahedron
φ(X) is linear!

Remember:

 F :=
@

@~X
�(~X)

Tetrahedral models - Deformation measures

~x = �(~X) = F~X+~t
Hypothesis:

On every tetrahedron
φ(X) is linear!

Remember:

 F :=
@

@~X
�(~X)

Tetrahedral models - Deformation measures

 ~x = F~X+~t

~x1 = F~X1 +~t
~x2 = F~X2 +~t
~x3 = F~X3 +~t

- (~x4 = F~X4 +~t)

9
>>>=

>>>;
)

~x1 - ~x4 = F(~X1 - ~X4)
~x2 - ~x4 = F(~X2 - ~X4)
~x3 - ~x4 = F(~X3 - ~X4)

Tetrahedral models - Deformation measures

~x1 = F~X1 +~t
~x2 = F~X2 +~t
~x3 = F~X3 +~t

- (~x4 = F~X4 +~t)

9
>>>=

>>>;
)

~x1 - ~x4 = F(~X1 - ~X4)
~x2 - ~x4 = F(~X2 - ~X4)
~x3 - ~x4 = F(~X3 - ~X4)

 ~x = F~X+~t

Tetrahedral models - Deformation measures

~x1 = F~X1 +~t
~x2 = F~X2 +~t
~x3 = F~X3 +~t

- (~x4 = F~X4 +~t)

9
>>>=

>>>;
)

~x1 - ~x4 = F(~X1 - ~X4)
~x2 - ~x4 = F(~X2 - ~X4)
~x3 - ~x4 = F(~X3 - ~X4)

 ~x = F~X+~t

Tetrahedral models - Deformation measures

~x1 = F~X1 +~t
~x2 = F~X2 +~t
~x3 = F~X3 +~t

- (~x4 = F~X4 +~t)

9
>>>=

>>>;
)

~x1 - ~x4 = F(~X1 - ~X4)
~x2 - ~x4 = F(~X2 - ~X4)
~x3 - ~x4 = F(~X3 - ~X4)

(~x1 - ~x4 | ~x2 - ~x4 | ~x3 - ~x4) =

=
⇣
F(~X1 - ~X4) | F(~X2 - ~X4) | F(~X3 - ~X4)

⌘

= F
⇣
~X1 - ~X4 | ~X1 - ~X4 | ~X1 - ~X4

⌘

 ~x = F~X+~t

Tetrahedral models - Deformation measures

~x1 = F~X1 +~t
~x2 = F~X2 +~t
~x3 = F~X3 +~t

- (~x4 = F~X4 +~t)

9
>>>=

>>>;
)

~x1 - ~x4 = F(~X1 - ~X4)
~x2 - ~x4 = F(~X2 - ~X4)
~x3 - ~x4 = F(~X3 - ~X4)

 ~x = F~X+~t

(~x1 - ~x4 | ~x2 - ~x4 | ~x3 - ~x4) =

=
⇣
F(~X1 - ~X4) | F(~X2 - ~X4) | F(~X3 - ~X4)

⌘

= F
⇣
~X1 - ~X4 | ~X2 - ~X4 | ~X3 - ~X4

⌘

Tetrahedral models - Deformation measures

 Ds = FDm

Ds = (~x1-~x4|~x2-~x4|~x3-~x4)

Dm = (~X1-~X4|~X2-~X4|~X3-~X4)

F = DsD
-1
m

Spatial shape matrix

Material shape matrix

(~x1 - ~x4 | ~x2 - ~x4 | ~x3 - ~x4) =

=
⇣
F(~X1 - ~X4) | F(~X2 - ~X4) | F(~X3 - ~X4)

⌘

= F
⇣
~X1 - ~X4 | ~X2 - ~X4 | ~X3 - ~X4

⌘

Tetrahedral models - Deformation measures

Compute:

 Ds = (~x1-~x4|~x2-~x4|~x3-~x4)

Dm = (~X1-~X4|~X2-~X4|~X3-~X4)

F = F(~x1,~x2,~x3,~x4)

 (F) = (~x1,~x2,~x3,~x4)

E(tet) = Vol(tet) (F)

= E(~x1,~x2,~x3,~x4)

~fi := -
@

@~xi
E(~x1,~x2,~x3,~x4) = ?!?!?= ?!?!?

F = DsD
-1
m

Deformation gradient

Energy density

Total tetrahedron
energy

Tetrahedral models - Force computation

Compute:

 Ds = (~x1-~x4|~x2-~x4|~x3-~x4)

Dm = (~X1-~X4|~X2-~X4|~X3-~X4)

H =
⇣
~f1 | ~f2 | ~f3

⌘

= -Vol(tet)P(F)D-T
m

~f4 = -~f1 - ~f2 - ~f3

P = P(F)

F = DsD
-1
m(Balance of forces)

(from material model definition)

Tetrahedral models - Force computation

Compute:

 Ds = (~x1-~x4|~x2-~x4|~x3-~x4)

Dm = (~X1-~X4|~X2-~X4|~X3-~X4)

H =
⇣
~f1 | ~f2 | ~f3

⌘

= -Vol(tet)P(F)D-T
m

~f4 = -~f1 - ~f2 - ~f3

P = P(F)

F = DsD
-1
mYour material  

definition
goes here

Tetrahedral models - Force computation

Compute:

 Ds = (~x1-~x4|~x2-~x4|~x3-~x4)

Dm = (~X1-~X4|~X2-~X4|~X3-~X4)

H =
⇣
~f1 | ~f2 | ~f3

⌘

= -Vol(tet)P(F)D-T
m

~f4 = -~f1 - ~f2 - ~f3

P = P(F)

~f1

~f2

~f3

~f4 F = DsD
-1
m

Tetrahedral models - Force computation

Additional information on course notes

✓Optimizations and precomputation opportunities
✓Newton methods for implicit integration of nonlinear

materials
✓Outline of an unconditionally stable, Backward Euler

integration scheme
✓Force differentials for matrix-free implementation of

implicit solvers

FEM Simulation of 3D Deformable Solids: A practitioner’s
guide to theory, discretization and model reduction

Part One : The classical FEM method and discretization methodology

Eftychios Sifakis 
University of Wisconsin - Madison

Find the latest version of course notes at : www.femdefo.org

http://www.femdefo.org

5IF���UI�*OUFSOBUJPOBM�$POGFSFODF�BOE�&YIJCJUJPO�
PO�$PNQVUFS�(SBQIJDT�BOE�*OUFSBDUJWF�5FDIOJRVFT

