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Increasing cold extremes in central Eurasian winter

Extreme temperature occurrence trend in 
DJF based on daily max/min data (1990–

2013: dy/yr/yr)
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decreaseHorton et al. (2015), Nature

 Occurrence frequency of cold extremes are increasing in the central Eurasia. 
(e.g. Liu et al. 2012; Tang et al. 2013; Horton et al. 2015)

※ In this research, we will call this area simply as central Eurasia (CEU).



Observed trend (DJF: 1979/80ー2013/14)
SIC SAT (color) & SLP (contour)
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Whether or not the cause of Eurasian cooling is due 

to sea-ice reduction is controversial 

 There is an influence of sea-ice loss, but it’s not robust. (Chen et al. 2016)

 There is no influence of sea-ice loss (recent cooling is internal variability).
(Sun et al. 2016; McCusker et al. 2016; Ogawa et al. 2018)

 There is significant link between sea-ice loss and central Eurasian cold winter 
(observational studies). (e.g., Inoue.et al. 2012; Tang et al . 2013; Chen et al. 2016)

 Sea-ice loss can force Eurasian cold winter (modeling studies).
(e.g., Honda et al. 2009; Pethoukov and Semenov 2010; Liu et al. 2012; Orsolini et al. 2012;  
Kim et al. 2014; Mori et al. 2014; Peings and Magnusdottir 2014; Screen et al. 2015; Kug et al. 
2015; Nakamura et al. 2015, 2016; Semenov and Latif 2015)



 Ensemble-mean of AMIP-type historical large ensemble 
simulation does not reproduce central Eurasian cooling trend.
(Sun et al. 2016; Ogawa et al. 2018)

 Recent cooling is consequence of atmospheric internal variability.
(Sun et al. 2016; McCusker et al. 2016; Ogawa et al. 2018)

Some studies deny the influence of sea-ice loss

Sun et al. (2016), GRL

SAT & SLP trend (DJF: 1991ー2014)
ERA-Interim 2 AGCMs (70)

Ogawa et al. (2018), GRL

5 AGCMs (100)

(DJF: 1982-2014)
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 Sea-ice loss can force Eurasian cold winter (modeling studies).
(e.g., Honda et al. 2009; Pethoukov and Semenov 2010; Liu et al. 2012; Orsolini et al. 2012;  
Kim et al. 2014; Mori et al. 2014; Peings and Magnusdottir 2014; Screen et al. 2015; Kug et al. 
2015; Nakamura et al. 2015, 2016; Semenov and Latif 2015)

We try to robustly estimate a sea-ice forced signal from observational record with 
the aid of model simulation. → We can evaluate adequacy of the model response.

Remote influence of sea-ice loss on mid-latitudes is in controversial. (Screen et al. 2018)

 Sea-ice has little impact on the mid-latitude atmosphere, and the observed 
cooling is largely explained by internal variability that happened by chance.

 The model may not fully express the influence of sea-ice anomalies.



How sea-ice forced components are extracted
AGCM ensemble
CAM4 20

LBNL-CAM5.1 50
ECHAM5.4 30

ESRL-GFSv2 50
GEOS-5 12

GFDL-AM3 17
MIROC4-AGCM 40

AMIP-type historical ensemble simulation by NOAA-
FACTS (6 AGCMs) and MIROC4-AGCM   (AMIP-FACTS)

• period       : 1979—2014
• ensemble : 219 member (total)
• forcing     : natural and anthropogenic

The large ensemble size ensures that influence of noise arising from atmospheric 
internal variability is well suppressed, and we can anticipate that SVD analysis extracts 
a robust forced signal commonly contained in observed and simulated historical data.

If similarly fluctuating components are present in both observed and simulated 
historical series, it would be a forced variations.

https://www.esrl.noaa.gov/
psd/repository/alias/facts

OBS
(reanalysis)

AMIP

time    t=1980

e=1

t=2014

SVD analysis 
for the same 
variable (SAT) e=2

repeat of the same data for OBS

e=3

・・・・・

・・・・・ e=M
M: ensemble size
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SVD1 for SAT between ERA and AGCM (DJF: detrend)
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 The major forced pattern is “Warm-Arctic Cold 
Eurasian (WACE)” pattern.

WACE is strongly tied to DJF-mean SIC anomaly in 
the Barents-Kara Seas (BKS).

r (ECERA, SIC@BKS) = -0.79
r (ECem , SIC@BKS) = -0.95

 It is plausible that Barents-Kara sea-ice anomalies 
are the main driver of the WACE pattern.

SCF=56%

ー ERA-Interim
spread (±2σ)



SVD1 for SAT between ERA and AGCM (DJF: detrend)
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The origin of WACE is an 
intrinsic mode of variability, 
and sea ice is an agent that 
drives WACE well.
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13.6% WACE variation in 
individual realizations 

is a mixture of 
internally generated 
and externally forced 

components



VF of SAT described by WACE
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VF of SAT described by 
externally forced WACE 

(ensemble-mean response)

VF of SAT described by 
Barents-Kara sea-ice forced 

WACE
r2 (EC, SIC@BKS) x total variance

 All AGCMs underestimate the variance fraction (VF) of SAT described by WACE.

 Sea-ice forced WACE variance in observation can be measured by r2.
 r2: coefficient of determination

 AGCMs systematically underestimate the sea-ice forced WACE magnitude (blue).

 Signal-to-noise ratio is underestimated and its degree is different between models.

 the potential reasons that models show a large diversity for sea-ice influence.

Variance fraction (VF) of SAT described by WACE



How much of recent Eurasian cooling is attributable
to Arctic sea-ice loss? 

r2 : 
co

ef
fic

ie
nt

 o
f 

de
te

rm
in

at
io

n 
(%

)
Ex

pa
ns

io
n 

co
ef

fic
ie

nt

SIC@
BKS (%

)         
20-yr SAT trend
@

CEU
 (K/decade)

warming

cooling

SIC@BKS

EC
 Positive WACE trend reflects 

frequent occurrence of WACE+ 
regime in recent years, which is 
consistent with decreasing SIC trend. 

 Warming trend in CEU gradually 
turns to cooling trend. 

 Sea-ice forced WACE signal in 
observation has been enhanced year 
by year, it reaches to 74% in the last 
20 years. 

74%



Trend of DJF-mean SAT & SLP for 1995-2014 in ERA-Interim
total − WACE WACE total  

= +

 WACE+ explains 59% of cooling at CEU.

 Negative AO-like pattern explains the residual cooling at CEU.

 How much of CEU cooling is explained by sea-ice loss?  59% x 74% (from r2) = 44%

EOF1 ( AO– )EOF1 + EOF2 EOF2 ( WACE+ )

= +



AMIP-FACTS (219) AMIP-FACTS "adjusted”ERA-Interim
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 Ensemble mean response does not show cooling at CEU !!

 This is ground of the argument that "Recent cooling is an extreme natural variability”.

Trend of DJF-mean SAT & SLP for 1995-2014 in AGCMs



AMIP-FACTS "adjusted”

 Discrepancy between observational and modelling estimations strongly suggest 
that the underestimated sea-ice forced signal is obscured by other signals.

 Adjusting the WACE variance (magnitude) in model reconciles the 
model-observation discrepancy in Eurasian cooling.

 The occurrence probability of WACE in model is coherently increased with the 
decreasing sea ice, although the magnitude of WACE is underestimated.

AMIP-FACTS (219)ERA-Interim
Trend of DJF-mean SAT & SLP for 1995-2014 in AGCMs



Summary
 Arctic sea-ice loss influence on central Eurasian cooling has been suggested, 

but its significance remains controversial because of discrepant estimation 
among modelling and between modelling and observational studies. 

 AGCMs well capture spatial structures of atmospheric response to BK sea-
ice loss (WACE pattern), but it disappear from ensemble-mean response 
because the magnitude of cold responses in midlatitude are 
underestimated in AGCMs. This lowered signal-to-noise ratio in model can 
be a potential cause of diverse conclusions between modelling studies. 

 Correction of this model bias can reconcile the model-observation 
discrepancy in the Eurasian cooling trend. At least 44% of the recent 
wintertime central Eurasian cooling is attributable to BK sea-ice loss.

 The underestimation of response to sea-ice loss may originate in the lack 
of ocean-ice-atmosphere coupling process. 
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