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Communication network

A (directed) Graph G = (V,E) : nodes-users, edges-
channels (noiseless);
A subset of source nodes in V access to source with
message set M;
A subset of destinations U ⊂ V, accessed by receivers;
The network is acyclic, if G has no directed cycle.
The goal is to send as much as possible message
from source node to receivers reliably. Coding may
improves the transmission.
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Wiretap network (C. and Yeung 2002, 2011)

Communication network;
A collection of subsets of wiretap channels B: i.e., B
is a collection of subsets of the channels such that all
B ∈ B may be fully accessed by a wiretapper, but no
wiretapper may access more than one wiretap sub-
sets;
We call a single source acyclic wiretap network r−WN,
if B is r− subsets of channels i.e., the wiretapper may
arbitrarily choose r channels and accesses them.
The goal is transmitting the message reliably and se-
curely;
For security generating randomness is necessary, which
will reduce throughput.
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Secure network code

Fix a network code. Let k, k
′ be the outputs of the random-

ness. For B ∈ B, denote by YB, the output of channels in B.
Then the code is secure if
∀m 6= m

′
, u ∈ U, ψu(m

′
, k
′
) for all k, k

′, where ψu is is the
message received by sink u, Decodable Condition;
For all wiretap subsets B, (or in the worst case for the
legal communicators) the information leak to the wire-
tapper I(M; YB) = 0, (Perfect) Security Condition (or
I(M; YB) ≤ i, for 0 ≤ i ≤ H(M), Imperfect Security
Condition).
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Well known special case I:
Shannon Cipher System

s

y=m+k k

t

Random message M
and key K are gener-
ated on the same set
{0, 1, · · · , p− 1}.
m -output of the mes-
sage of M
k -output of key K
y = m + k(mod p)
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Well known special case II: Secret Sharing

There are a dealer and n participants in the game.
The dealer observes a secret message and randomly
chooses “sharings” and sends them to participates.
A subset of participates try to recover the message by
pooling their sharings.
They can recover it if the subset is legal (i.e. in “access
structure”).
Otherwise they should have absolutely no information
about it from their sharings.
A secret sharing with n participates is call (r, n)-threshold
secret sharing scheme, if exactly all r subsets are le-
gal.

(Blakley 1979, Shamir 1979)

Ning Cai Beyond I.I.D. in Information Theory 8 / 37



SS is equivalent to a special class of WN. Given an SS with
access structure A , we construct a 3 layer WN as follows:

Top layer: source node S (the dealer);
Middle layer: n intermediate nodes i(participates): a
channel with capacity ri connects S and the node i if
the node i gets ri bits of sharing;
Bottom layer: Receivers labeled by members in A (le-
gal subsets); The intermediate node connect to re-
ceiver tA if i ∈ A;
A wiretap set of channels corresponds an illegal sub-
set B, and has members (s, b), b ∈ B.
Then existence of secure code for the WN is equiva-
lent to existence of the SS scheme. A (r, n) threshold
secret sharing scheme ”is” a (r − 1)-secure network
code.
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Secret sharing is a special WN
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Figure 1.1: Formulating secret sharing schemes to WN
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Well known special case III:
wiretap channel II

The wiretap channel II (Ozarow-Wyner 1984)
Message is encoded into a codeword of length n;
A legal user receives the whole codeword;
A wtiretapper may access any t components of the
codeword;
The legal user can decode correctly;
The illegal user has no information about the mes-
sage (perfect security), more general the “equivoca-
tion” (conditional entropy) is lower bounded (imperfect
security).
The optimal code is known (R-S code), (for perfect se-
curity, optimal rate: n− t).
Denote the code by (n, t)-WCII.
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Wiretap channel is a special WN II

Obviously, (n, t)-WCII. is equivalent to a 3 layer t-WN with
a sink and n intermediate nodes.

S

4321 5 n

T
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The Basic Results
Every decodable linear NC can be linearly transformed
to a secure network code by a matrix constructed in P
time , provided the coding field is sufficiently large (C.-
Yeung 2002).
The construction of the matrix is equivalent to a coding
problem (Feldman et al, 2004).
For r-WN the code is optimal in the sense to maximize
the throughput and minimize the size of random key
(Yeung-C. 2008).
Secure network coding for WN has been extended to
imperfect security i.e., replacing the security condition
by imperfect security condition I(M; YA) ≤ i for 0 ≤
i ≤ H(M) and optimal codes for r-WN have been con-
structed (C.-Yeung 2011, Rouayheb-Soljanin-Sprintson,
Ngai-Yeung-Zhang 2009).
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Extensions and Alternative Models

Necessary and sufficient conditions for security of NC
have been found (C.-Yeung, 2007, Zhang-Yeung 2009,
C. 2008). By the conditions random network code is
secure if the field is sufficiently large (C.,2009).
To analyze the imperfect secure code for wiretap chan-
nel II, Wei introduced generalized Hamming weight of
linear codes, this has been extended to secure net-
work coding (Ngai-Yeung-Zhang 2009).
Algorithms with low complexity over small fields (X.
Guang 2016).
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Extensions and Alternative Models

Using the universal hashing lemma to show the exis-
tence of universal secrecy code against any type of
wiretappers under size constraint (R. Matsumoto and
M. Hayashi, 2011; J. Kurihara, R. Matsumoto, and T.
Uyematsu 2013).
Secure network coding was also extended to multiple
source network coding (C. 2009).
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Extensions and Alternative Models

Multiple Wiretap (Chan-Grant 2008): Let M1,M2, · · · ,Mj

be messages of (multiple) sources and W be set of
wiretappers. For w ∈ W, fix Aw ⊂ 2E,Bw ⊂ {1, 2, · · · , j}
and assume w can access any subset of channels in
Aw and wants to have information about the messages
{Mi : i ∈ Bw}. An inner bound and an outer bound of
capacity region of secure codes in terms of Γ∗.

In this case sometimes no random key is needed even for
perfect security (C.-Chan,2011).
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Extensions and Alternative Models

Weak security was introduced, for which the wiretap-
per is no able to decode any part of source message.
No additional resource is needed (Bhattad-Narayanan,
2005).
Strongly secure network codes was introduced and its
optimal codes have been constructed. It in fact con-
tained weak secure network code as its special case
(Harada and H. Yamamoto, 2008).
An algebraic security of random linear network codes
(Lima te al, 2007).
A alternative criterion, the cost criterion, was intro-
duced (Tan-Medard, 2006).
Many more . . . . . .
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Active Attack
(Joint Work with M. Hyayshi at el)

Traditionally the wiretapper (Eve) is only allowed to
read the outputs of the channels accessed by her, but
may not change them. Let us call the attack passive
attack.
Now, we assume that Eve is more powerful:

her attack is according to the encoding order;
she may not only read its output, but also change the
output, when she accesses a channel.

We call it active attack.

Question: Can Eve do better by applying an active attack?
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Answer 1: No, if a linear network is employed.
Reason: Errors are linearly additive, if a linear network
code is applied in a network. Thus, Eve may figure out
the changing at a downstream channel, caused by the
changing of the output of a upstream channel. So she can
“simulate” the changing at downstream channels, without
changing the outputs of an upstream channels. That is,
changing makes no difference.
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Answer 2:Yes, an active attack may possibly improve the
performance, if the code is non-linear.

sAlice Bob

e(2)

e(1) e(3)

e(4)

Figure 3.1: An example for the active attack

Alice: sends a binary secrete message M to Bob;
generates a binary randomness L to protect M.
Eve: chooses one of {e(1), e(3)}, {e(1), e(4)}, {e(2), e(3)}
and {e(2), e(4)} to access.
Denote by Yi, the output of e(i).
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A Coding Scheme: on GF(2)
Y1 = L,Y2 = L + M,Y3 = Y1(Y1 + Y2),Y4 = (Y1 + 1)(Y1 + Y2)
That is,

Sending L via e(1), L + M via e(2) (Shannon Cipher
System)
sending 0 via e(3) and sending M via e(4) if e(1) out-
puts 0
sending M via e(3) and sending 0 via via e(4) if e(1)
outputs 1.

Bob: Uniquely decodable
(Y3,Y4) = (0, 0)⇒ M = 0 ;
(Y3,Y4) = (1, 0)⇒ M = 1;
(Y3,Y4) = (0, 1)⇒ M = 1;
(Y3,Y4) = (1, 1) never occurs.

Ning Cai Beyond I.I.D. in Information Theory 23 / 37



Passive attack vs Active attack
Passive attack:
I(M; Y1,Y3) = I(M; Y1,Y4) = I(M; Y2,Y3) = I(M; Y2,Y4) =
1
2 . No mater with subset of channels Eve takes, she is
no able to recover M with probability one.
Active attack: Eve first accesses e(1) and changes
Y1 = 0 ⇒ 1; 1 ⇒ 1 such that e(1) always outputs
1. As a consequence, e(3) always outputs M. Then
she accesses e(3) and decodes M successfully, with
probability one.
With active attack, Eve may get more!
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More results:
In the same network, there is no binary secure code
may successfully protect the message from active at-
tack;
In the same network, when sizes of alphabets are
3, 4, . . ., constructing codes by “anti-Latin square”, to
protect message from active attack;
secrecy and the robustness Code: Let the transmis-
sion rate from Alice to Bob is m0, the rate of “errors”
injected by Eve is m1, and the rate of information leak-
age to Eve is m2. Then m0 − m1 − m2 is achievable by
codes with vanishing probability of error and informa-
tion leak to Eve.
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Open problem:
We have known that in the above network, by active
attack Eve may do better than passive attack for binary
alphabet but she may not do better when the alphabet
size larger than 2;
We also have known that the properties of network
codes is strongly related to alphabet sizes and the
most ‘good” network codes need a sufficiently large
alphabet/field;
What is the relation between the types of attacks and
the alphabet sizes, in particular whether there is a WN
such that for any d0, there is a d ≥ d0 such that Eve
can improve her performance by applying active at-
tack when the alphabet size is d.
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Relay Network (joint a work with M. Hyayshi)
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Figure 3.2: The relay network

Alice and Bob are connected by l groups of relay chan-
nels, and all channels in the i group have capacity γi.
Denote the output of jth channel in the ith group, by
Yi,j.
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Alice encodes for and sends message via the first
group of channels, she is allow to generate unlimited
randomness;
The i−1st relay node encodes for and sends message
via the ith group of channels, and he may at most gen-
erate κi unites of randomness;
Eve may access any ri channels in the ith group, for
every i. (for passive attack)
Denote Ȳi = (Yi,1,Yi,2 . . . ,Yi,ki), Yi,si := (Yi,j, j ∈ si) for ri

subset si of the ith group of channels.
The goal is to send as much as possible message
from Alice to Bob, under the (perfect security)condition:

IW = maxs1×s2...×slI(M; Yl,sl ,Yl−1,sl−1 , . . . ,Y2,s2 ,Y1,s1) = 0,

where the “max” is taken over all ri subsets si of the ith
group of channels, for all i.
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For i = 0, 1, 2, . . . , l, we define hi
i := kiγi; and for a = i +

1, i + 2, . . . , l, ha
i := min{kaγa,

ka−1−ra−1
ka−1

ha−1
i +κa}, recursively.

Theorem:
(i) For all relay code sending h unites of message from
Alice to Bob, IW ≥ h − min1≤a≤l

ka−ra
ka

ha
1. Consequently for a

perfect secure code,

h ≤ min
1≤a≤l

ka − ra

ka
ha

1.

(ii) There exists a perfect secure code sending

h := min
1≤a≤l

ka − ra

ka
ha

1

unites of secrete message from Alice to Bob, on all suffi-
ciently large field, in the case that γ

i
:=

ha
1

ka
, a = 1, 2, . . . , l

are integers.
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(i) The Outline of the converse proof:
We let Eve randomly independently and uniformly chooses
Si from

(
[ki]
ri

)
for i = 1, 2, . . . , l, and use EH(M|Yl,Sl , . . . ,Y2,S2 ,Y1,S1)

to upper bound mins1×s2...×sl H(M|Yl,sl ,Yi−1,sl−1 . . . ,Y2,s2 ,Y1,s1),
where E is expectation with respect to the random sets
Si, i = 1, 2, . . . , l. To upper bound EH(M|Yl,Sl , . . . ,Y2,S2 ,Y1,S1),
we need to prove that for 1 ≤ i ≤ b ≤ l,

EH(M|Yl,Sl ,Yl−1,Sl−1 . . . ,Y2,S2 ,Y1,S1)

≤ kb − rb

kb
EH(Ȳb|Yb−1,Sb−1 , . . . ,Y2,S2 ,Y1,S1),

and

EH(Ȳb|Yb−1,Sb−1 ,Yb−2,Sb−2 , . . . ,Y2,S2 ,Y1,S1)

≤ kb−1 − rb−1

kb−1
EH(Ȳb−1|Yb−2,Sb−2 , . . . ,Y2,S2 ,Y1,S1) + κb.
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Based on the second inequality on the last slide and the
trivial inequality

EH(Ȳa|Ya−1,Sa−1 , . . . ,Y2,S2 ,Y1,S1) ≤ H(Ȳa) ≤ kaγa

we show

EH(Ȳa|Ya−1,Sa−1 , . . . ,Y2,S2 ,Y1,S1) ≤ ha
1

by induction on a. Then by combining the above inequality
with the first inequality (by setting b = a) on the last slide,
we obtain

EH(M|Yl,Sl ,Yl−1,Sl−1 . . . ,Y2,S2 ,Y1,S1) ≤
ka − ra

ka
ha

1.

Thus, the converse part of the theorem follows.
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The outline of direct proof;

Let h := min1≤a≤l
ka−ra

ka
ha

1 and γ
i
:=

ha
1

ka
, a = 1, 2, . . . , l be inte-

gers.
Alice generates h1

1−h unites of randomness and sends
it with M of h unites (totally h1

1 unites) via the first group
of channels by (k1, r1)-WCII (a code for wiretap chan-
nel II), to keep M and k1−r1

k1
h1

1−h unites of randomness
(totally k1−r1

k1
h1 unites) in secrete from Eve, and other

part of randomness is “insecure”. Here each chan-
nel carries one components of the codeword (with rate
γ

1
≤ γ1);
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For i = 1, 2, . . . , l− 1, the ith relay node receives M (of
h unites), ki−ri

hi
1

hi
1−h unites of “secure randomness” and

hi
1 − ki−ri

hi
1

hi
1 unites of “insecure randomness” from the

ith group of the channels. Then he discards “the inse-
cure” part of randomness, uniformly generates hi+1

1 −
ki−ri

ki
hi

1 ≤ κi+1 unites of randomness and send it with
M and the “secure randomness” received by him, by
applying (ki+1, ri+1)-WCII to keep M and ki+1−ri+1

hi+1
1

hi+1
1 −h

unites of randomness in secrete.
To continue the procedure, until Bob receives M and
hl

1 − h (secure and insecure) randomness, who dis-
cards all randomness and decodes M.
By information inequalities, one may show the code is
perfect secure.
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The theorem has 2 consequences in the extremal cases:

Corollary 1
Assume that no relay node is allow to generate random-
ness.
(1) If there is a perfect secure code sending h unites
of secrete message from Alice and Bob, then h ≤
min1≤i≤l

∏l
j=i+1

kj−rj

kj
(ki − ri)γi.

(2) On the other hand, if hi
1

ki
is an integer for every i, there is

a perfect secure code sending h unites of secrete message
from Alice and Bob, with

h = min1≤i≤l

l∏
j=i+1

kj − rj

kj
(ki − ri)γi,

provided that the coding field is sufficiently large.

Ning Cai Beyond I.I.D. in Information Theory 34 / 37



Corollary 2
Assume that all relay nodes are allow to generate unlimited
randomness.
(1) If there is a perfect secure code sending h unites of
secrete message from Alice and Bob, then

h ≤ min1≤i≤l(ki − ri)γi.

(2) On the other hand, if γi is an integer for very i, there is a
perfect secure code sending h unites of secrete message
from Alice and Bob, with

h = min1≤i≤l(ki − ri)γi,

provided the coding field is sufficiently large.
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We also have the capacity region for the following homo-
geneous multicast relay network:

The network has one source node, b (legal) user nodes
and c−1 groups of relay nodes. We regard the source
and user nodes as in the 0th and cth groups resp.;
The capacities of all channels are one unite;
Each node of the i − 1st group is connected to every
node of the ith group by ki channels (totally bi−1biki

channels);
Eve may access any ri of bi−1ki incoming channels of
each node in the ith group;
Only the source node (Alice) may generate random-
ness.
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Thank You!
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