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Examples for Language Learning

We want to learn correct programmable descriptions for given
languages, such as:

16, 12, 18, 2, 4, 0, 16, . . . “even numbers”

1, 16, 256, 16, 4, . . . “powers of 2”

0, 0, 0, 0, 0, . . . “singleton 0”
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Language Learning in the Limit from Positive Data

I Let N = {0, 1, 2, . . .} be the set of all natural numbers.

I A language is a set L ⊆ N.

I A presentation for L is essentially an (infinite) listing T of all
and only the elements of L. Such a T is called a text for L.

I A hypothesis space V is essentially a mapping from natural
numbers to languages.

I For a natural number e that is mapped to a language L, we
think of e as a program for L; further, e can be used as an
hypothesis for L.

I For a natural number e, we write Ve for the language that e is
mapped to.

3/10 John Case, Timo Kötzing Difficulties in Forcing Fairness



Language Learning in the Limit from Positive Data

I Let N = {0, 1, 2, . . .} be the set of all natural numbers.

I A language is a set L ⊆ N.

I A presentation for L is essentially an (infinite) listing T of all
and only the elements of L. Such a T is called a text for L.

I A hypothesis space V is essentially a mapping from natural
numbers to languages.

I For a natural number e that is mapped to a language L, we
think of e as a program for L; further, e can be used as an
hypothesis for L.

I For a natural number e, we write Ve for the language that e is
mapped to.

3/10 John Case, Timo Kötzing Difficulties in Forcing Fairness



Language Learning in the Limit from Positive Data

I Let N = {0, 1, 2, . . .} be the set of all natural numbers.

I A language is a set L ⊆ N.

I A presentation for L is essentially an (infinite) listing T of all
and only the elements of L. Such a T is called a text for L.

I A hypothesis space V is essentially a mapping from natural
numbers to languages.

I For a natural number e that is mapped to a language L, we
think of e as a program for L; further, e can be used as an
hypothesis for L.

I For a natural number e, we write Ve for the language that e is
mapped to.

3/10 John Case, Timo Kötzing Difficulties in Forcing Fairness



Language Learning in the Limit from Positive Data

I Let N = {0, 1, 2, . . .} be the set of all natural numbers.

I A language is a set L ⊆ N.

I A presentation for L is essentially an (infinite) listing T of all
and only the elements of L. Such a T is called a text for L.

I A hypothesis space V is essentially a mapping from natural
numbers to languages.

I For a natural number e that is mapped to a language L, we
think of e as a program for L; further, e can be used as an
hypothesis for L.

I For a natural number e, we write Ve for the language that e is
mapped to.

3/10 John Case, Timo Kötzing Difficulties in Forcing Fairness



Language Learning in the Limit from Positive Data

I Let N = {0, 1, 2, . . .} be the set of all natural numbers.

I A language is a set L ⊆ N.

I A presentation for L is essentially an (infinite) listing T of all
and only the elements of L. Such a T is called a text for L.

I A hypothesis space V is essentially a mapping from natural
numbers to languages.

I For a natural number e that is mapped to a language L, we
think of e as a program for L; further, e can be used as an
hypothesis for L.

I For a natural number e, we write Ve for the language that e is
mapped to.

3/10 John Case, Timo Kötzing Difficulties in Forcing Fairness



Language Learning in the Limit from Positive Data

I Let N = {0, 1, 2, . . .} be the set of all natural numbers.

I A language is a set L ⊆ N.

I A presentation for L is essentially an (infinite) listing T of all
and only the elements of L. Such a T is called a text for L.

I A hypothesis space V is essentially a mapping from natural
numbers to languages.

I For a natural number e that is mapped to a language L, we
think of e as a program for L; further, e can be used as an
hypothesis for L.

I For a natural number e, we write Ve for the language that e is
mapped to.

3/10 John Case, Timo Kötzing Difficulties in Forcing Fairness



Language Learning in the Limit from Positive Data

I Let N = {0, 1, 2, . . .} be the set of all natural numbers.

I A language is a set L ⊆ N.

I A presentation for L is essentially an (infinite) listing T of all
and only the elements of L. Such a T is called a text for L.

I A hypothesis space V is essentially a mapping from natural
numbers to languages.

I For a natural number e that is mapped to a language L, we
think of e as a program for L; further, e can be used as an
hypothesis for L.

I For a natural number e, we write Ve for the language that e is
mapped to.

3/10 John Case, Timo Kötzing Difficulties in Forcing Fairness



Success: TxtEx-Learning

I Let V be an hypothesis space, L a language, h a learner and
T a text (a presentation) for L.

I For all k , we write T [k] for the sequence T (0), . . . ,T (k − 1).

I The learning sequence pT of h on T is given by

∀k : pT (k) = h(T [k]). (1)

I Gold 1967: h TxtEx-learns L wrt V iff, for all texts T for L,
there is i such that pT (i) = pT (i + 1) = pT (i + 2) = . . . and
pT (i) is a program in V for L.

I A set L of languages is TxtEx-learnable wrt V iff there exists
a computable learner h TxtEx-learning wrt V all languages
L ∈ L.
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Complexity in TxtEx-learning

I For TxtEx-learning, we sometimes want the computation of h
on T [k] (= T (0), . . . ,T (k − 1)) to take no more than
polynomial time (in k +

∑k−1
i=0 |T (i)|).

I Fact (Pitt 1989): Essentially, for every TxtEx-learnable set of
languages L, there is such a polynomial time computable
learner learning L.

I Why? A polynomial time learner can be obtained from
delaying necessary computations to a later time, when
sufficient computing time is available (due to having a longer
input).

I As a result, polynomial time learning as above introduces no
actual efficiency, as unfair delaying tricks can be used.

I Hence, correspondingly, we seek to limit unfair delaying tricks.
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Restrictions on TxtEx-Learning

I In Yoshinaka 2009 (a very nice paper) it is claimed that the
following three restrictions force fairness of polynomial time
restricted learning:

I postdictive completeness a.k.a. consistency (i.e., a learner only
outputs hypotheses postdicting all known data);

I conservativeness (i.e., a learner revises its hypothesis only
when that hypothesis fails to predict a new, current datum)
and

I prudence (i.e., a learner’s hypotheses are only for languages it
can learn).

I Below, we will talk about 3-of-3 to refer to the combination of
postdictive completeness, conservativeness and prudence.

I We will talk about <3 to refer to the combination of any of
postdictive completeness, conservativeness and prudence, just
not all three.
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Formally: Restrictions on TxtEx-Learning

I A TxtEx-learner h is called postdictively complete
a.k.a. consistent iff, for all T , k, h(T [k]) correctly postdicts
T [k] (= T (0), . . . ,T (k − 1)), i.e.,

{T (0), . . . ,T (k − 1)} ⊆ Vh(T [k])

(Vh(T [k]) is the language computed by the program h(T [k])).

I A TxtEx-learner h is called conservative iff, for all T , k , if
h(T [k + 1]) 6= h(T [k]), then

{T (0), . . . ,T (k)} 6⊆ Vh(T [k]).

I A TxtEx-learner h is called prudent iff, for all T , k, Vh(T [k]) is
TxtEx-learnable by h.
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Uniformly Polynomial Time Decidable Hypothesis Spaces

I We call an hypothesis space V uniformly polynomial time
decidable iff there is a polynomial time computable function
which, given x , e, decides whether x ∈ Ve .

I Recall that Yoshinaka 2009 claims that 3-of-3 suffices to
forbid all Pitt-style delaying tricks.

I For such uniformly polynomial time decidable hypothesis
spaces (with a few easy closure properties) we get the
strongest possible refutation of Yoshinaka’s Thesis:

I Each set of languages 3-of-3 TxtEx-learnable wrt V is so
learnable in polynomial time (by means of delaying tricks).

I Further, each set of languages <3 TxtEx-learnable wrt V is so
learnable in polynomial time (by means of delaying tricks).

I Hence, with each combination of restrictions, we get arbitrary
delaying tricks.
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I We call an hypothesis space V uniformly decidable iff there is
a computable function which, given x , e, decides whether
x ∈ Ve .

I There are uniformly decidable V such that the set of graphs
of all linear time computable functions is TxtEx-learnable wrt
V by a polynomial time computable learner observing 3-of-3 –
and, importantly, our proof uses Pitt-style delaying.

I Hence, not all delaying tricks are forbidden.
I Furthermore, there are uniformly decidable V such that the

set of all graphs of exponential time computable functions is
TxtEx-learnable wrt V by a computable learner observing
postdictive completeness, but it is not so learnable by a
polynomial time computable learner.

I Hence, some delaying is forbidden with postd. completeness.
I However, for all combinations of <3 which do not involve

postdictive completeness, arbitrary delaying is possible.
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Thank you.
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