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Language Learning in the Limit from Positive Data

» Let N={0,1,2,...} be the set of all natural numbers.
» A language is a set L C N.

» A presentation for L is essentially an (infinite) listing T of all
and only the elements of L. Such a T is called a text for L.

» A hypothesis space V is essentially a mapping from natural
numbers to languages.

» For a natural number e that is mapped to a language L, we
think of e as a program for L; further, e can be used as an
hypothesis for L.

» For a natural number e, we write V. for the language that e is
mapped to.
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» Let V be an hypothesis space, L a language, h a learner and
T a text (a presentation) for L.

» For all k, we write T[k] for the sequence T(0),..., T(k —1).

» The learning sequence pt of hon T is given by
Vk - pr(k) = h(T[K]). (1)

» Gold 1967: h TxtEx-learns L wrt V iff, for all texts T for L,
there is i such that pr(i) = pr(i+1)=p7r(i+2)=... and
pr(i) is a program in V for L.
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» Let V be an hypothesis space, L a language, h a learner and
T a text (a presentation) for L.

» For all k, we write T[k] for the sequence T(0),..., T(k —1).
» The learning sequence pt of hon T is given by

Vk : pr(k) = h(Tk]). (1)

» Gold 1967: h TxtEx-learns L wrt V iff, for all texts T for L,
there is i such that pr(i) = pr(i+1)=p7r(i+2)=... and
pr(i) is a program in V for L.

» A set L of languages is TxtEx-learnable wrt V' iff there exists
a computable learner h TxtEx-learning wrt V all languages
Le L.
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Complexity in TxtEx-learning

» For TxtEx-learning, we sometimes want the computation of h
on T[k] (= T(0),..., T(k—1)) to take no more than
polynomial time (in k + 3K T(1))).

» Fact (Pitt 1989): Essentially, for every TxtEx-learnable set of
languages L, there is such a polynomial time computable
learner learning L.

» Why? A polynomial time learner can be obtained from
delaying necessary computations to a later time, when
sufficient computing time is available (due to having a longer
input).

» As a result, polynomial time learning as above introduces no
actual efficiency, as unfair delaying tricks can be used.

» Hence, correspondingly, we seek to limit unfair delaying tricks.
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Restrictions on TxtEx-Learning

» In Yoshinaka 2009 (a very nice paper) it is claimed that the
following three restrictions force fairness of polynomial time
restricted learning:

» postdictive completeness a.k.a. consistency (i.e., a learner only
outputs hypotheses postdicting all known data);

» conservativeness (i.e., a learner revises its hypothesis only
when that hypothesis fails to predict a new, current datum)
and

» prudence (i.e., a learner's hypotheses are only for languages it
can learn).

» Below, we will talk about 3-of-3 to refer to the combination of
postdictive completeness, conservativeness and prudence.

» We will talk about <3 to refer to the combination of any of

postdictive completeness, conservativeness and prudence, just
not all three.
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» A TxtEx-learner h is called postdictively complete
a.k.a. consistent iff, for all T, k, h(T[k]) correctly postdicts
T[k] (= T(0),..., T(k—1)), i.e.,

{T(),..., T(k=1)} € Virpa

(Vh(T14)) is the language computed by the program h(TI[k])).
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Formally: Restrictions on TxtEx-Learning

» A TxtEx-learner h is called postdictively complete
a.k.a. consistent iff, for all T, k, h(T[k]) correctly postdicts
T[k] (= T(0),..., T(k—1)), i.e.,

{T(),..., T(k=1)} € Virpa

(Vh(T14)) is the language computed by the program h(TI[k])).

» A TxtEx-learner h is called conservative iff, for all T, k, if
h(T[k + 1]) # h(TI[k]), then

{T(0),..., T(k)} € Virin)-

» A TxtEx-learner h is called prudent iff, for all T, k, V7 is
TxtEx-learnable by h.

7/10 John Case, Timo Kétzing Difficulties in Forcing Fairness



Uniformly Polynomial Time Decidable Hypothesis Spaces

8/10 John Case, Timo Kétzing Difficulties in Forcing Fairness



Uniformly Polynomial Time Decidable Hypothesis Spaces

» We call an hypothesis space V' uniformly polynomial time
decidable iff there is a polynomial time computable function
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8/10 John Case, Timo Kétzing Difficulties in Forcing Fairness



Uniformly Polynomial Time Decidable Hypothesis Spaces

» We call an hypothesis space V' uniformly polynomial time
decidable iff there is a polynomial time computable function
which, given x, e, decides whether x € V.

» Recall that Yoshinaka 2009 claims that 3-of-3 suffices to
forbid all Pitt-style delaying tricks.

8/10 John Case, Timo Kétzing Difficulties in Forcing Fairness



Uniformly Polynomial Time Decidable Hypothesis Spaces

» We call an hypothesis space V' uniformly polynomial time
decidable iff there is a polynomial time computable function
which, given x, e, decides whether x € V.

» Recall that Yoshinaka 2009 claims that 3-of-3 suffices to
forbid all Pitt-style delaying tricks.

» For such uniformly polynomial time decidable hypothesis

spaces (with a few easy closure properties) we get the
strongest possible refutation of Yoshinaka's Thesis:

8/10 John Case, Timo Kétzing Difficulties in Forcing Fairness



Uniformly Polynomial Time Decidable Hypothesis Spaces

» We call an hypothesis space V' uniformly polynomial time
decidable iff there is a polynomial time computable function
which, given x, e, decides whether x € V.

» Recall that Yoshinaka 2009 claims that 3-of-3 suffices to
forbid all Pitt-style delaying tricks.

» For such uniformly polynomial time decidable hypothesis
spaces (with a few easy closure properties) we get the
strongest possible refutation of Yoshinaka's Thesis:

» Each set of languages 3-of-3 TxtEx-learnable wrt V is so
learnable in polynomial time (by means of delaying tricks).

8/10 John Case, Timo Kétzing Difficulties in Forcing Fairness



Uniformly Polynomial Time Decidable Hypothesis Spaces

» We call an hypothesis space V' uniformly polynomial time
decidable iff there is a polynomial time computable function
which, given x, e, decides whether x € V.
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spaces (with a few easy closure properties) we get the
strongest possible refutation of Yoshinaka's Thesis:
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Uniformly Polynomial Time Decidable Hypothesis Spaces

» We call an hypothesis space V' uniformly polynomial time
decidable iff there is a polynomial time computable function
which, given x, e, decides whether x € V.

» Recall that Yoshinaka 2009 claims that 3-of-3 suffices to
forbid all Pitt-style delaying tricks.

» For such uniformly polynomial time decidable hypothesis
spaces (with a few easy closure properties) we get the
strongest possible refutation of Yoshinaka's Thesis:

» Each set of languages 3-of-3 TxtEx-learnable wrt V is so
learnable in polynomial time (by means of delaying tricks).

» Further, each set of languages <3 TxtEx-learnable wrt V' is so
learnable in polynomial time (by means of delaying tricks).

» Hence, with each combination of restrictions, we get arbitrary
delaying tricks.
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» We call an hypothesis space V' uniformly decidable iff there is
a computable function which, given x, e, decides whether
x € Ve.

» There are uniformly decidable V such that the set of graphs
of all linear time computable functions is TxtEx-learnable wrt
V by a polynomial time computable learner observing 3-of-3 —
and, importantly, our proof uses Pitt-style delaying.
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» We call an hypothesis space V' uniformly decidable iff there is
a computable function which, given x, e, decides whether
x € Ve.

» There are uniformly decidable V such that the set of graphs
of all linear time computable functions is TxtEx-learnable wrt
V by a polynomial time computable learner observing 3-of-3 —
and, importantly, our proof uses Pitt-style delaying.

» Hence, not all delaying tricks are forbidden.

» Furthermore, there are uniformly decidable V such that the
set of all graphs of exponential time computable functions is
TxtEx-learnable wrt V' by a computable learner observing
postdictive completeness, but it is not so learnable by a
polynomial time computable learner.

» Hence, some delaying is forbidden with postd. completeness.

» However, for all combinations of <3 which do not involve
postdictive completeness, arbitrary delaying is possible.
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