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Linear regression
yi=B"x+N(0, 02)
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Goal: Given n iid samples(x; y;), (X, Y5),---,
(x,v,), estimate 8




Linear regression with

yi = ﬂT xi + N(O,O'Z)

Goal: Given samples (x; y;), ( ), ...,
(x,Y,), estimate 8




Related Work and Our Contribution

1. No corruption: x~N(0,%),y = BTx +n,n~N(0,52), £ unknown.

Easy fact: For any accuracy parameter €>0, Ordinary Least Square estimator
achieves ||(8 — ,@)HZ < ge with ((d/e?) samples.

2. Response variable y corrupted: x~N(0,%),y = fTx + 1,
n~N(0,d?), € fraction of corruption, X unknown. [Bhatia Jain Kar 15]
[Bhatia Jain Kamalaruban Kar 17]




Related Work and Our Contribution

3. Corruption on x and y: X~N(0,%),y = fTx + n,n~N(0, 5?), € fraction of
corruption, £ unknown.
[Gao 17] even with infinite sample, can not estimate better than ce.

Result Error ||(B — ﬁ)”z Sample Complexity

[Prasad-Suggala-Balakrishnan- o/ log(d) 0(d?/e*?)
Ravikumar 18]

[Diakonikolas-Kamath-Kane-Li- VG 0(d>/€?)
Steinhardt-Stewart 18]

[Klivans-Kothari-Meka 18] o€ Poly(d, 1/€)
Our algorithm oe log(1/e) 0(d?/e?)
Info-theory LB [Gao 17] o€ Q(d/e?)
Our Statistical Query LB o€ Q.(d?)

4. Same setting except X is known.

[Balakrishnan-Du-Li-Singh 17] o1+ [IB1%e log(1/€)? 0(d?/e?)
Our algorithm gelog(1/e) 0(d/e?)




Preliminary

Toy example: how to detect corruption in mean estimation?
[Filter Algorithm, DKKLMS 16] N(p 1)

€ fraction corruption
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Observation: to change the mean by a constant, the corrupted samples must be put
1/€ far away from p, simply because there is only € fraction of corruption!
Variance will increase by (1/€)? - € = 1/e. For small €, will be able to find the
variance is abnormally large.

Proposition: Variance large Mean could be corrupted

AT s.t. thresholding at T throws away more bad samples than good samples

Proposition: Variance normal Mean is NOT corrupted

Output sample mean




Preliminary

How does this intuition generalize to high dimension?

Filter Algorithm for robust mean estimation with identity covariance.
Input: Set of samples S = {x,%,,...,x,}-

1.
2.

3.

Compute sample mean /1 and sample covariance matrix 2.
If ||Z||Op is close to 1, output /.

Otherwise:

*  Find top eigenvector v of & and threshold T.
 Throw away |VT(X — ﬁ)| > T.

* (Goto step 1.



Algorithm ldea

1. Unknown covariance setting:

First robustly estimate » using d*/e? unlabeled examples, then reduce to identity covariance

setting by scaling x by /2,

2. ldentity covariance setting:
Observe that E[yx] = E[X(XT,B + 17)] = [5. Suffices to robustly estimate the distribution mean

of yx.
Challenges comparing to [DKKLMS 17] :
1. Previous work on (sub-)Gaussian, but the distribution of yx is generalized Chi-square.

2. The covariance of yx is not known, depends on the mean (Cov(yx) = (a2 + BT B)I + BBT).

Proposition[Basic Algorithm]:Given an e-corrupted set of labeled samples of size
(d/£*)polylog(d), there exists an efficient algorithm that returns a candidate vector

B st || —Bll,=0/a?+IBI? elog(1/e)).

However, the error bound has a dependency on ||£]|, which is not information
theoretically necessary(oe by [Gao 17]).




Algorithm ldea

Let [ be the ordinary least square estimator. : . :

We [r))un the filter algorithm to robustly estimate Filter algorithm either

the mean of (y — 37%)x. 1. Returns the sample mean.

1. If filter algorithm returns sample mean. 2. Returns a set of cleaner samples.
Notice that sample mean is 0. Hence
E[(y — fTx)x| < gelog(1/e) LT=p
Done!

If the filter algorithm returns a set of cleaner
samples. Goto step 1.

How to robustly estimate the mean of (y — ETX)X ?

No sample covariance concentration from the g
uncorrupted samples*.

*need concentration of uncorrupted
samples to claim covariance

If ignore samples with large (y — ETX), do hav abnormal/normal.

e
concentration! g




Lowerbound Construction

Regression setting:

Pick f = +/ev, where v is an uniformly randomly unit vector.
1

x~N (O,I — §VVT).

Pick g2 such that the variance of v is 1.

Corruption scheme:
Corrupt the conditional distribution x|y.

Proposition: After € fraction of additive corruption(on the v direction), it’s hard
for SQ algorithm to find the v direction.




Summary

Theorem[Main Algorithm]: In the setting where x~N(0,1),n~N(0,c2),y =
LTx + n, given an e-corrupted set of labeled samples of size (d /s*)polylog(d),
there exists an efficient algorithm that returns a candidate vector B s.t.

|8 = B\, = oloelog(1/¢)).

Theorem[Unknown Covariance]: In the setting where
~N(0,%),n~N(0,0%),y = BTx + n, given an e-corrupted set of labeled
samples of size d?/<?, there exists an efficient algorithm that returns a

candidate vector [ s.t. ||ﬁ — B”z = O(oelog(1/c)).

Theorem[SQ Lowerbound]: No SQ algorithm for robust linear regression for
Gaussian covariates with unknown bounded covariance and random noise with

02 < 1 can output a candidate 3 with ||B — '8”2 = o(+/€) on all instances unless
it uses 2D statistical queries or each query requires 1(d?) samples to be
simulated.




Algorithm ldea

How to robustly estimate the mean of (y — ETX)X ?

If ignore samples with large (y — BTX), do haveg
concentration!

What do we do with the samples with large (y — ﬁTX)?

We first run filter algorithm on (y — ﬁTX), after which the tail of (y — ETX) is small
enough and won’t cause trouble for (y — ETX)X :




