Efficient Algorithms and Lower Bounds for Robust Linear Regression

Ilias Diakonikolas(USC), Weihao Kong(Stanford) and Alistair Stewart(USC)

Linear regression

Goal: Given n iid samples($\mathbf{x}_1 \mathbf{y}_1$), ($\mathbf{x}_2 \mathbf{y}_2$),..., ($\mathbf{x}_n \mathbf{y}_n$), estimate $\boldsymbol{\beta}$

Related Work and Our Contribution

1. No corruption: $\mathbf{x} \sim N(0, \Sigma)$, $\mathbf{y} = \boldsymbol{\beta}^T \mathbf{x} + \eta$, $\eta \sim N(0, \sigma^2)$, Σ unknown.

Easy fact: For any accuracy parameter $\epsilon > 0$, Ordinary Least Square estimator achieves $\|(\beta - \hat{\beta})\|_{\Sigma} \leq \sigma \epsilon$ with $\Omega(d/\epsilon^2)$ samples.

2. Response variable y corrupted: $\mathbf{x} \sim N(0, \Sigma)$, $\mathbf{y} = \boldsymbol{\beta}^T \mathbf{x} + \eta$, $\eta \sim N(0, \sigma^2)$, $\boldsymbol{\epsilon}$ fraction of corruption, Σ unknown. [Bhatia Jain Kar 15] [Bhatia Jain Kamalaruban Kar 17]

Related Work and Our Contribution

3. Corruption on **x** and y: $\mathbf{x} \sim N(0, \Sigma)$, $\mathbf{y} = \boldsymbol{\beta}^T \mathbf{x} + \eta$, $\eta \sim N(0, \sigma^2)$, $\boldsymbol{\epsilon}$ fraction of corruption, Σ unknown.

Result	Error $\left\ ig(eta-\hatetaig) ight\ _{\Sigma}$	Sample Complexity
[Prasad-Suggala-Balakrishnan- Ravikumar 18]	$\sigma \sqrt{\epsilon \log(d)}$	$ ilde{O}(d^2/\epsilon^{4/3})$
[Diakonikolas-Kamath-Kane-Li- Steinhardt-Stewart 18]	$\sigma \sqrt{\epsilon}$	$ ilde{O}(d^5/\epsilon^2)$
[Klivans-Kothari-Meka 18]	$\sigma \sqrt{\epsilon}$	$Poly(d,1/\epsilon)$
Our algorithm	$\sigma\epsilon\log(1/\epsilon)$	$ ilde{O}(d^2/\epsilon^2)$
Info-theory LB [Gao 17]	σε	$\Omega(d/\epsilon^2)$
Our Statistical Query LB	$\sigma \sqrt{\epsilon}$	$\Omega_\epsilon(d^2)$

4. Same setting except Σ is known.

[Balakrishnan-Du-Li-Singh 17]	$\sigma\sqrt{1+\ \beta\ ^2}\epsilon\log(1/\epsilon)^2$	$ ilde{O}(d^2/\epsilon^2)$
Our algorithm	$\sigma \epsilon \log(1/\epsilon)$	$ ilde{O}(d/\epsilon^2)$

Preliminary

How does this intuition generalize to high dimension?

Filter Algorithm for robust mean estimation with identity covariance. Input: Set of samples $S = \{x_1, x_2, ..., x_n\}$.

- 1. Compute sample mean $\hat{\mu}$ and sample covariance matrix $\hat{\Sigma}$.
- 2. If $\|\hat{\Sigma}\|_{op}$ is close to 1, output $\hat{\mu}$.
- 3. Otherwise:
 - Find top eigenvector \mathbf{v} of $\widehat{\boldsymbol{\Sigma}}$ and threshold T.
 - Throw away $|\mathbf{v}^{\mathrm{T}}(\mathbf{x} \hat{\mu})| > T$.
 - Goto step 1.

Algorithm Idea

1. Unknown covariance setting:

First robustly estimate Σ using d^2/ϵ^2 unlabeled examples, then reduce to identity covariance setting by scaling **x** by $\Sigma^{-1/2}$.

2. Identity covariance setting:

Observe that $E[\mathbf{y}\mathbf{x}] = E[\mathbf{x}(\mathbf{x}^T\boldsymbol{\beta} + \eta)] = \boldsymbol{\beta}$. Suffices to robustly estimate the distribution mean of $\mathbf{y}\mathbf{x}$.

Challenges comparing to [DKKLMS 17] :

- 1. Previous work on (sub-)Gaussian, but the distribution of yx is generalized Chi-square.
- 2. The covariance of **yx** is not known, depends on the mean (Cov(**yx**) = $(\sigma^2 + \beta^T \beta)I + \beta\beta^T$).

Proposition[Basic Algorithm]:Given an ε -corrupted set of labeled samples of size (d/ε^2) polylog(d), there exists an efficient algorithm that returns a candidate vector $\hat{\beta}$ s.t. $\|\beta - \hat{\beta}\|_2 = O(\sqrt{\sigma^2 + \|\beta\|^2} \varepsilon \log(1/\varepsilon)).$

However, the error bound has a dependency on $\|\beta\|_2$ which is not information theoretically necessary($\sigma \epsilon$ by [Gao 17]).

Algorithm Idea

- 1. Let $\tilde{\beta}$ be the ordinary least square estimator.
- 2. We run the filter algorithm to robustly estimate the mean of $(\mathbf{y} \tilde{\boldsymbol{\beta}}^T \mathbf{x})\mathbf{x}$.
 - 1. If filter algorithm returns sample mean. Notice that sample mean is 0. Hence $E[(\mathbf{y} - \tilde{\boldsymbol{\beta}}^T \mathbf{x})\mathbf{x}] \leq \sigma \epsilon \log(1/\epsilon) \implies \tilde{\boldsymbol{\beta}}^T \approx \boldsymbol{\beta}$ Done!
 - 2. If the filter algorithm returns a set of cleaner samples. Goto step 1.

Filter algorithm either

- 1. Returns the sample mean.
- 2. Returns a set of cleaner samples.

How to robustly estimate the mean of $(\mathbf{y} - \tilde{\beta}^T \mathbf{x})\mathbf{x}$?

No sample covariance concentration from the uncorrupted samples*.

If ignore samples with large $(\mathbf{y} - \tilde{\boldsymbol{\beta}}^T \mathbf{x})$, do have concentration!

*need concentration of uncorrupted samples to claim covariance abnormal/normal.

Lowerbound Construction

Regression setting:

Pick $\beta = \sqrt{\epsilon} \mathbf{v}$, where \mathbf{v} is an uniformly randomly unit vector. $\mathbf{x} \sim N\left(0, I - \frac{1}{3}\mathbf{v}\mathbf{v}^T\right)$. Pick σ^2 such that the variance of \mathbf{y} is 1.

Corruption scheme:

Corrupt the conditional distribution **x**|y.

Proposition: After ϵ fraction of additive corruption(on the **v** direction), it's hard for SQ algorithm to find the **v** direction.

Summary

Theorem[Main Algorithm]: In the setting where $\mathbf{x} \sim N(0, I)$, $\eta \sim N(0, \sigma^2)$, $y = \boldsymbol{\beta}^T \mathbf{x} + \eta$, given an $\boldsymbol{\varepsilon}$ -corrupted set of labeled samples of size $(\boldsymbol{d}/\boldsymbol{\varepsilon}^2)$ polylog(\boldsymbol{d}), there exists an efficient algorithm that returns a candidate vector $\boldsymbol{\hat{\beta}}$ s.t. $\|\boldsymbol{\beta} - \boldsymbol{\hat{\beta}}\|_2 = O(\sigma \boldsymbol{\varepsilon} \log(1/\boldsymbol{\varepsilon})).$

Theorem[Unknown Covariance]: In the setting where $\mathbf{x} \sim N(0, \Sigma), \eta \sim N(0, \sigma^2), y = \boldsymbol{\beta}^T \mathbf{x} + \eta$, given an $\boldsymbol{\varepsilon}$ -corrupted set of labeled samples of size $d^2 / \boldsymbol{\varepsilon}^2$, there exists an efficient algorithm that returns a candidate vector $\hat{\boldsymbol{\beta}}$ s.t. $\|\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}\|_{\Sigma} = O(\sigma \boldsymbol{\varepsilon} \log(1/\boldsymbol{\varepsilon})).$

Theorem[SQ Lowerbound]: No SQ algorithm for robust linear regression for Gaussian covariates with unknown bounded covariance and random noise with $\sigma^2 \leq 1$ can output a candidate $\hat{\beta}$ with $\|\hat{\beta} - \beta\|_{\Sigma} = o(\sqrt{\epsilon})$ on all instances unless it uses $2^{\Omega(d)}$ statistical queries or each query requires $\Omega(d^2)$ samples to be simulated.

Algorithm Idea

How to robustly estimate the mean of $(\mathbf{y} - \tilde{\boldsymbol{\beta}}^T \mathbf{x})\mathbf{x}$?

If ignore samples with large $(\mathbf{y} - \tilde{\boldsymbol{\beta}}^T \mathbf{x})$, do have concentration!

What do we do with the samples with large $(\mathbf{y} - \tilde{\beta}^T \mathbf{x})$?

We first run filter algorithm on $(\mathbf{y} - \tilde{\boldsymbol{\beta}}^T \mathbf{x})$, after which the tail of $(\mathbf{y} - \tilde{\boldsymbol{\beta}}^T \mathbf{x})$ is small enough and won't cause trouble for $(\mathbf{y} - \tilde{\boldsymbol{\beta}}^T \mathbf{x})\mathbf{x}$.