
Efficient	Algorithms	and	Lower	Bounds	
for	Robust	Linear	Regression	

Ilias Diakonikolas(USC),	Weihao	Kong(Stanford)	and	Alistair	Stewart(USC)	



D
Distribution

of
labeled	examples

(x1 y1)
(x2 y2)
…

(xn yn)

Linear regression

yi =	𝜷T	xi +	N(0,	𝜎2)	

Goal:	Given	n	iid samples(x1 y1),	(x2 y2),…,	
(xn yn),	estimate	𝜷
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Linear regression with Corruption

Goal:	Given	corrupted samples	(x1 y1),	(x2 y2),…,	
(xn yn),	estimate	𝜷

yi =	𝜷T	xi +	N(0,𝜎2)	



Related Work and Our Contribution

1.	No	corruption:	𝐱~𝑁(0, Σ),	y = 𝜷𝑻𝐱 + 𝜂,	𝜂~𝑁(0, 𝜎2),	Σ unknown.
Easy	fact:	For	any	accuracy	parameter	𝜖>0,	Ordinary	Least	Square	estimator	
achieves	 𝛽 − 𝛽6 7 ≤ 𝜎𝜖 with	Ω(𝑑/𝜖2) samples.

2.	Response	variable	y	corrupted:	𝐱~𝑁(0, Σ),	y = 𝜷𝑻𝐱 + 𝜂,	
𝜂~𝑁(0, 𝜎2),	𝜖 fraction	of	corruption,	Σ unknown.	[Bhatia	Jain	Kar	15]	
[Bhatia	Jain	Kamalaruban Kar	17]



Result Error	 𝛽 − 𝛽< 7
Sample	Complexity

[Prasad-Suggala-Balakrishnan-
Ravikumar	18]

𝜎 𝜖	log	(𝑑)� 𝑂B(𝑑2/𝜖C/D)

[Diakonikolas-Kamath-Kane-Li-
Steinhardt-Stewart	18]

𝜎 𝜖� 𝑂B(𝑑E/𝜖2)

[Klivans-Kothari-Meka 18] 𝜎 𝜖� Poly(𝑑, 1/𝜖)

Our	algorithm 𝜎𝜖	log	(1/𝜖) 𝑂B(𝑑2/𝜖2)
Info-theory	LB	[Gao	17] 𝜎𝜖 Ω(𝑑/𝜖2)

Our	Statistical	Query	LB 𝜎 𝜖� ΩG(𝑑2)

3.	Corruption	on	x and	y:	𝐱~𝑁(0, Σ),y = 𝜷𝑻𝐱 + 𝜂,	𝜂~𝑁(0, 𝜎2),	𝜖 fraction	of	
corruption,	Σ unknown.
[Gao	17]	even	with	infinite sample,	can	not	estimate	better	than	𝜎𝜖.

4.	Same	setting	except	Σ is	known.	

[Balakrishnan-Du-Li-Singh	17] 𝜎 1 + 𝛽 2� 𝜖 log 1/𝜖 2 𝑂B(𝑑2/𝜖2)

Our	algorithm 𝜎𝜖log(1/𝜖) 𝑂B(𝑑/𝜖2)

Related Work and Our Contribution



Output	sample	mean

Preliminary
Toy	example:	how	to	detect	corruption	in	mean	estimation?	
[Filter	Algorithm,	DKKLMS	16]	 𝑁(𝜇, 1)

𝜖 fraction	corruption

Observation:	to	change	the	mean	by	a	constant,	the	corrupted	samples	must	be	put	
1/𝜖 far	away	from	𝜇,	simply	because	there	is	only	𝜖 fraction	of	corruption!
Variance	will	increase	by	 1/𝜖 2 ⋅ 𝜖 = 1/𝜖.	For	small	𝜖,	will	be	able	to	find	the	
variance	is	abnormally	large.

𝜇

Proposition:	Variance	large

T

Mean	could be	corrupted

∃T,	s.t. thresholding	at	𝑇 throws	away	more	bad	samples	than	good	samples

Proposition:	Variance	normal Mean	is	NOT corrupted

1/𝜖



Filter	Algorithm	for	robust	mean	estimation	with	identity	covariance.
Input:	Set	of	samples	S	=	{x1,x2,…,xn}.

1. Compute	sample	mean	𝜇̂ and	sample	covariance	matrix	Σ6.
2. If	 Σ6 LM is	close	to	1,	output	𝜇̂.
3. Otherwise:

• Find	top	eigenvector	𝐯 of	Σ6 and	threshold	T.
• Throw	away	 𝐯O 𝐱 − 𝜇̂ > 𝑇.
• Goto step	1.

Preliminary

How	does	this	intuition	generalize	to	high	dimension?



Algorithm Idea
1.	Unknown	covariance	setting:

First	robustly	estimate	Σ using	𝑑2/𝜖2 unlabeled	examples,	then	reduce	to	identity	covariance	
setting	by	scaling	𝐱 by	ΣQR/2.
2.	Identity	covariance	setting:

Observe	that	E y𝐱 = E 𝐱 𝐱𝑻𝛽 + 𝜂 = 𝛽. Suffices	to	robustly	estimate	the	distribution	mean	
of	y𝐱.	
Challenges	comparing	to	[DKKLMS	17]	:	
1. Previous	work	on	(sub-)Gaussian,	but	the	distribution	of	y𝐱 is	generalized	Chi-square.
2. The	covariance	of	y𝐱 is	not	known,	depends	on	the	mean	(Cov(y𝐱)	=	 𝜎2 + 𝛽U𝛽 𝐼 + 𝛽𝛽U).

Proposition[Basic	Algorithm]:Given	an	ε-corrupted	set	of	labeled	samples	of	size	
(𝑑/𝜀2)polylog(𝑑),	there	exists	an	efficient	algorithm	that	returns	a	candidate	vector	
𝛽6 s.t. 𝛽 − 𝛽6 2 =	O( 𝜎2 + 𝛽 2� εlog(1/ε)).

However,	the	error	bound	has	a	dependency	on	 𝛽 2 which	is	not	information	
theoretically	necessary(𝜎𝜖 by	[Gao	17]).



Algorithm Idea
1. Let	𝛽B be	the	ordinary	least	square	estimator.	
2. We	run	the	filter	algorithm	to	robustly	estimate	

the	mean	of	 𝐲 − 𝛽BU𝐱 𝐱.	
1. If	filter	algorithm	returns	sample	mean.	

Notice	that	sample	mean	is	0.	Hence
E 𝐲 − 𝛽BU𝐱 𝐱 ≤ 𝜎𝜖 log 1/𝜖 									𝛽BU≈	𝛽
Done!

2.					If	the	filter	algorithm	returns	a	set	of	cleaner												
samples.	Goto step	1.

Filter	algorithm	either
1. Returns	the	sample	mean.
2. Returns	a	set	of	cleaner	samples.

How	to	robustly	estimate	the	mean	of	 𝐲 − 𝛽BU𝐱 𝐱 ?	

No sample	covariance	concentration	from	the	
uncorrupted	samples*.	

If	ignore samples	with	large	 𝐲 − 𝛽BU𝐱 ,	do	have	
concentration!

*need	concentration	of	uncorrupted	
samples	to	claim	covariance	
abnormal/normal.



Lowerbound Construction

Pick	𝛽 = 𝜖� v,	where	v	is	an	uniformly	randomly	unit	vector.

𝐱~𝑁 0, 𝐼 −
1
3
𝐯𝐯U .

Pick	𝜎2 such	that	the	variance	of	y is	1.

Proposition:	After	𝜖 fraction	of	additive	corruption(on	the	v	direction),	it’s	hard	
for	SQ	algorithm	to	find	the	v	direction.

Corrupt	the	conditional	distribution	x|y.
Corruption	scheme:

Regression	setting:



Summary

Theorem[SQ	Lowerbound]:	No	SQ	algorithm	for	robust	linear	regression	for	
Gaussian	covariates	with	unknown	bounded	covariance	and	random	noise	with	
σ2 ≤	1	can	output	a	candidate	𝛽< with	 𝛽< − 𝛽 Z = 𝑜( 𝜖� ) on	all	instances	unless	
it	uses	2](^) statistical	queries	or	each	query	requires	𝛺(𝑑2) samples	to	be	
simulated.	

Theorem[Main	Algorithm]:	In	the	setting	where	𝐱~𝑁 0, 𝐼 , 𝜂~𝑁 0, 𝜎2 , 𝑦 =
𝛽U𝐱 + 𝜂,	given	an	ε-corrupted	set	of	labeled	samples	of	size	(𝑑/𝜀2)polylog(𝑑),	
there	exists	an	efficient	algorithm	that	returns	a	candidate	vector	𝛽< s.t.
𝛽 − 𝛽< 2 = O(𝜎εlog(1/ε)).

Theorem[Unknown	Covariance]:	In	the	setting	where	
𝐱~𝑁 0, Σ , 𝜂~𝑁 0, 𝜎2 , 𝑦 = 𝛽U𝐱 + 𝜂,	given	an	ε-corrupted	set	of	labeled	
samples	of	size	𝑑2/𝜀2,	there	exists	an	efficient	algorithm	that	returns	a	
candidate	vector	𝛽< s.t. 𝛽 − 𝛽< 7 = O(𝜎εlog(1/ε)).



Algorithm Idea
How	to	robustly	estimate	the	mean	of	 𝐲 − 𝛽BU𝐱 𝐱 ?	

If	ignore samples	with	large	 𝐲 − 𝛽BU𝐱 ,	do	have	
concentration!

What	do	we	do	with	the	samples	with	large	 𝐲 − 𝛽BU𝐱 ?

We	first	run	filter	algorithm	on	 𝐲 − 𝛽BU𝐱 ,	after	which	the	tail	of	 𝐲 − 𝛽BU𝐱 is	small	
enough	and	won’t	cause	trouble	for	 𝐲 − 𝛽BU𝐱 𝐱 .


