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Tomographic Reconstruction

" Recover the image given X-ray measurements

X-ray detector

, Sinogram
X-ray source




Motivation

= X-ray Exposure Reduction

Images courtesy of Pan et.al [2]

Few-View Limited-Angle Half-Detector

" jll-posed problem




Sparse CT
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" Least-squares solution: image

% =min ||Ax — b||3
X

" Regularize the solution:

X =min ||Ax — bl|5 + AR(x)

" R(x) can be sparsity promoting regularizer




Related Work (Sparsity)

" TV minimization:

— Very promising for piece-wise constant images
— ASD-POCS [Pan & Sidky 2009]

" Besov space priors:
— Bayesian inversion [Siltanen et al. 2012]
" X-let sparsity:

— Wavelet [Mirzargar et al. 2013]
— Curvelet [Hyder & Sukanesh, 2011]

" Adaptive sparsity via dictionary learning

— K-SVD [Aharon et al. 2006]




Related Work (Dictionary Learning)

— KSVD for limited-angle CT [Liao & Sapiro 2008]
* Learns pixel values
* Accounts for uniform noise

— Statistical iterative reconstruction [xu et al. 2012]
* Fixed and adaptive dictionaries
* Updates pixel values using surrogate functionals
* Handles Poisson noise

— Sinogram restoration [Shtok et al. 2011]

* Weighted K-SVD
* Handles Poisson noise




Image courtesy of C.G. Koay,
https://science.nichd.nih.gov

Common Pixel Representation
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Expansion Sets

" Alternative for pixel-basis

— Blob functions [Lewitt 1990]
— Kaiser-Bessel functions

— Higher-order box-splines
* Tensor-product linear B-spline
* Tensor-product cubic B-spline
e Zwart-Powell function



Optimization Problem:

" Integrate patch-based adaptive sparsity

into spline framework:

accounts for patch learned
data-dependent noise extractor dictionary
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Proposed Approach

Few-View = Weighted - Dictionary Learning
Projection Data Least-Squares in Spline Domain
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Update Splines

" How to update the spline coefficients?

= Differentiate the quadratic objective function:
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Proposed Approach

Few-View = Weighted = Dictionary Learning
Projection Data Least-Squares in Spline Domain
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Proposed Approach

Few-View = Weighted = Dictionary Learning
Projection Data Least-Squares in Spline Domain
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Proposed Approach

Few-View = Weighted = Dictionary Learning
Projection Data Least-Squares in Spline Domain
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Results: pixel-basis vs. Linear

" 45 projection views:

FBP Pixel-basis Linear
(first-order box-spline) (second-order box-spline)
SNR: 10.49 dB SNR: 10.52 dB SNR: 14.46 dB
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Results: LSQR vs. Spline Learning

" 60 projection views:

FBP (SNR: 15.51 dB)

Orlglnal

LSQR (SNR: 17.19dB) Spline Learning (SNR: 18.23 dB) 16




Results: Fixed vs. Learned Sparsity

" 60 projection views:

Original Wavelet Spline Learning
SNR: 15.72 dB SNR:17.58 dB
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Results: Resilience to
Reduction of Angles

90 views 60 views 45 views
SNR: 15.66 dB SNR: 15.19 dB SNR: 14.46 dB




Summary

" We proposed higher-order box-splines as
alternatives for pixel-basis,

integrated patch-based adaptive sparsity into this

spline framework
" Superiority of higher-order splines

= Simply choice of tensor-product Linear B-spline




Future Work

" Mixed spline representations

" Analysis of approximation error as a function of

grid resolution
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Thank you ...

Questions?




Results: SNR vs. Iteration number
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Results: Resilience
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Results: Convergence
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