The 25th International Conference on Field-Programmable Logic and Applications (FPL 2015) September 3, 2015

Ultra-Fast NoC Emulation on a Single FPGA

Thiem Van Chu, Shimpei Sato, and Kenji Kise Tokyo Institute of Technology

Contributions

Methodologies for emulating Networkon-Chip (NoC) architectures with up to 1000s of nodes on a single FPGA

Cycle-accurate & 5000x simulation speedup over BookSim¹⁾, a widely used software simulator

Multi/Many-Core Architectures Have Become Mainstream

1000s cores in near future architectures

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

Network-on-Chip (NoC)

- The interconnection network of many-core architectures
- NoC simulation plays a vital role in designing many-core architectures

A many-core architecture with 2D Mesh NoC

Software Simulators

Flexible and easy to debug

Too slow to simulate large architectures

Parallelization is non-trivial

Without sacrificing accuracy, only a limited degree of parallelization can be achieved

	Simple Models	Moderate Models	Detailed Models
Typical Simulation Time of 1000s-Core Architectures	Several days	Several <i>months</i>	Several years

FPGA-Accelerated Simulation

Avoids impractical designs

Possible to reuse RTL code

Can achieve an ultra-fast simulation speed

- Many operations can be simulated simultaneously in a tick of FPGA's clock
- Adding detail to a model requires more hardware, but does not necessary degrade performance

FPGA-Accelerated Simulation

The primary router model

Emulation Model

Three basic components

- Router: a state-of-the-art pipelined router architecture
- Traffic generator: generates and injects synthetic workloads
- Traffic sink: collects performance characteristics

Emulation Model: 2D Mesh

- Packet source: models injection processes (e.g. Bernoulli process)
- Source queue: every packet generated by the packet source is stored in the source queue until it can enter the network
- *Flit generator*: models traffic patterns (e.g. uniform random)

Decoupling Time Counters

Conventional approach

Every packet source is synchronized with the network

The source queues must be very large to cope with the case when the packet sources generate so many packets that the network becomes very congested

Decoupling Time Counters

Proposal

Each packet source, as well as the network, has its own time counter and operates based on a separate state machine

Time-Multiplexing

To complete one cycle of the network, the *physical cluster* sequentially emulates a number of *logical clusters*

15

Time-Multiplexing

- Combinational logic and block RAMs (BRAMs) are utilized much more efficiently because they can be shared between many NoC nodes
- Example: 128x128 mesh NoC

Datapath

- Physical cluster emulates different logical clusters using different states loaded from state memory
- In buffer and out buffer store data passed between
 - logical clusters

- (1) Load a state & Emulate the corresponding logical cluster
- (2) Store the updated state

Datapath

- Physical cluster emulates different logical clusters using different states loaded from state memory
- In buffer and out buffer store data passed between logical clusters

Xilinx VC707 board

Evaluation and Analysis

- 128 × 128 mesh NoC (16,384 nodes) on a Xilinx VC707 board
- Four NoC designs
 - **5-stage 2-VC**: canonical 5-stage pipelined VC router architecture with 2 VCs per port
 - **5-stage 1-VC**: canonical 5-stage pipelined VC router architecture with 1 VC per port
 - **4-stage 2-VC**: canonical 4-stage pipelined VC router architecture with 2 VCs per port
 - **4-stage 1-VC**: canonical 4-stage pipelined VC router architecture with 1 VC per port

Three configurations

- 4-phy (2×2) : use four nodes to emulate the entire 128×128 mesh network
- **16-phy** (4×4) : use 16 nodes to emulate the entire 128×128 mesh network
- **32-phy** (8×4) : use 32 nodes to emulate the entire 128×128 mesh network

Metrics

- Hardware usage
- Verification against BookSim, a widely used cycle-accurate software simulator
- Simulation performance: speedup over BookSim

Configuration Parameters

Тороlоду	128x128 mesh (16,384 nodes)
Router architecture	5-stage pipelined VC router or 4-stage pipelined VC router (employing look-ahead routing)
# of VCs per port	2 or 1
Routing algorithm	Dimension-order (XY)
Flow control	Credit-based
VC/Switch allocator	Separable output first
Arbiter type	Fixed priority
Flit size	25-bit <i>or</i> 22-bit
VC size	4-flit
Packet length	8-flit
Injection process	Bernoulli
Traffic pattern	Uniform random
Source queue length	8-entry

Hardware Usage

Simulation of a same 128×128 NoC design by using 4 physical nodes (4-phy), 16 physical nodes (16-phy), and 32 physical nodes (32-phy)

Accuracy

- The proposed methods do not affect the simulation accuracy
 - Synthetic workloads can be modeled accurately without using a large amount of memory
 - No compromise in simulation accuracy is made
- Verification
 - Compare the output results in simulating 4 NoC designs of the FPGA-based emulator and BookSim
 - 5-stage 2-VC
 - 5-stage 1-VC
 - 4-stage 2-VC
 - 4-stage 1-VC

Verification: Proposal vs BookSim

Solid Lines: Proposal (FPGA-based) Dotted Lines: BookSim (Software-based)

Simulation Performance

Тороlоду	128x128 mesh	
Router architecture	5-stage	
# of VCs per port	2	

The drop is caused by stalling the emulated network in the first proposed method which helps to eliminate the memory constraint

Simulation Performance

Conclusions & Future Work

Conclusions

- Two methods are proposed to enable ultra-fast and accurate emulation of large-scale NoC architectures on a single FPGA
- More than 5000x simulation speedup over BookSim is achieved when emulating an 128x128 NoC with state-ofthe-art router architectures

Future work

- Support full-system simulations
- Support a wide range of benchmarks/workloads

Q & A

Thank you!